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Unitary Harish-Chandra representations
of real supergroups

Claudio Carmeli, Rita Fioresi, and Veeravalli S. Varadarajan

Abstract. We give conditions for unitarizability of Harish-Chandra super modules for Lie super-
groups and superalgebras.

1. Introduction

Let g be a real Lie superalgebra. It is natural to ask how to define the concept of (infinites-
imal) unitarity or unitarizability for a super module V for g and how to obtain, starting
from V , a unitary module for G a Lie supergroup with g D Lie.G/, G0 simply con-
nected. This problem, of great interest also in physics, was studied in several papers from
a mathematical perspective, see [1, 12, 13, 17, 24, 29] and the references therein. From the
physical point of view, in [11,16,28] (see also references therein) the realization of unitary
representations as holomorphic sections on harmonic superspace and, more generally, on
superflags is instrumental for their applications in supergravity theories.

Let 
 be the representation of g in V . We say 
 is unitary if V is equipped with a
hermitian product i.e. a positive definite hermitian form in which V0 and V1 are orthogonal,
and the following conditions are met (see [3, 17] and also [24, 29]):

(U1) For all Z 2 g0, i
.Z/ is symmetric on V .

(U2) For all X 2 g1, �.X/ WD e�i�=4
.X/ is symmetric on V .

These are not enough in general to define in the completion H of V a unitary represen-
tation of a Lie supergroupG, (see [3, Sec. 2.3] for its definition), with gD Lie.G/, whose
infinitesimal form on V is 
 . Indeed, as was remarked in Nelson [25], this is already not
enough in the classical setting, that is when g1 D 0. In general, we need an additional
condition.

(U3) There is an even unitary representation �0 of G0, the simply connected group
defined by g0, on the completion H of V such that d�0.Z/ is defined on V for
all Z 2 g0 and coincides with 
.Z/ on V ; in the usual notation V � H and

.Z/ � d�0.Z/, Z 2 g0 (see [27, Vol. 1, Ch. 8, Sec. 1, 2, 5] for definitions and
notation).
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We recall here that d�0.Z/ is the unique self adjoint operator on H such that
�0.exp.tZ// D eitd�0.Z/. Then, [3, Proposition 3] leads to the following theorem.

Theorem 1. Let V be a module for a real Lie superalgebra g, via the representation 

such that conditions (U1)–(U3) are satisfied. Suppose that V � C!.�0/. Then each �.X/
(X 2 g1) is essentially self adjoint on V with C1.�0/ � D.�.X//, and there is a unique
unitary representation .�0; �;H / of the Lie supergroup .G0; g/ in H such that �.X/ is
the restriction to C1.�0/ of �.X/ for all X 2 g1.

The shortcoming of this theorem is that it assumes the existence of �0. As we shall see,
when g0 is reductive and the modules are Harish-Chandra modules of .g; k/-type, then we
can dispense with (U3) entirely. As a notational convention, when we say that some mod-
ule is a Harish-Chandra module, we assume it is already of .g; k/-type, i.e., each vector
in the module lies in a direct sum of a finite number of irreducible k-modules, with k the
maximal compact subalgebra in g, k D k0 (see [5]). We also recall that k is not always
semisimple and so not all of its finite dimensional modules are completely reducible; the
condition for complete reducibility is that each element of the center of k acts semisim-
ply in the representation space. We also shall use freely the super Harish-Chandra pairs
(SHCP) terminology; for all the notation and preliminaries on supergeometry refer to
[4, Ch. 4 and 7], [32], besides the classical references [2, 20–22].

We shall prove the following.

Theorem 2. Let g be a real Lie superalgebra with g0 reductive acting via 
 on a complex
vector superspace V . Assume the following:

(U1) For all Z 2 g0, i
.Z/ is symmetric on V .

(U2) For all X 2 g1, �.X/ WD e�i�=4
.X/ is symmetric on V .

LetG0 be the simply connected Lie group defined by g0 and letG be the supergroup whose
SHCP is .G0;g/. If V is finitely generated, then there is a unique unitary representation of
the Lie supergroup G on the completion H of V , say .�0; �;H /, such that V � C!.�0/.

We turn then to infinitesimal unitarity, where we need to introduce some extra hypothe-
ses. Let gC the complexification of g, gD k˚ p the super Cartan decomposition (see [6,7]
for its definition). Assume gC contragredient. This is to say, gC is the sum of complex
simple Lie algebras and complex simple Lie superalgebras of type (see [18])

A.m; n/; m ¤ n;B.m; n/; C.n/;D.m; n/;D.2; 1I˛/; F.4/;G.3/:

Assume further that g is equal rank, that is rk.k/ D rk.g/ and that kC has a non trivial
center (see [5, 7]). Fix hC a Cartan subalgebra of kC and gC . Let � be the root system
of gC , gC D hC ˚

P
˛2� g˛ the root space decomposition. The equal rank condition

allows us to decompose kC , pC into root spaces; we say that a root ˛ is compact (non
compact) if g˛ � kC (g˛ � pC). Let ˇ W Z.gC/! S.hC/

W denote the Harish-Chandra
homomorphism (see [23, Sec. 13.1], [19, Thm. 3]). We prove the following result.
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Theorem 3. Let � 2 h�C and let �� be the irreducible highest weight representation of
highest weight �. Then �� is unitary if and only if .�i/jajˇ.a�a/.�/> 0 for all a 2U.gC/.
In particular, it is necessary that �.H˛/ � 0 for ˛ compact and �.H˛/ � 0 for ˛ non
compact even roots.

In the end, we give an explicit example regarding gC D ospC.1j2/ and its real form
ospR.1j2/ ([4, Appendix A]) proving the following.

Theorem 4. Let Vt be the universal (Verma) ospC.1j2/-module of highest weight t .

(1) Then Vt is irreducible. It is a unitary module for ospR.1j2/ if and only if t is real
and negative.

(2) All unitary representation of the real Lie supergroup

OspR.1j2/ D .SL2.R/; osp.1j2//

are given on the completion H of Vt , and are such that Vt � C!.�0/, �0 unitary
representation of BSL2.R/ in H integrating .Vt /0.

2. .g; k/-supermodules and their unitarity

2.1. Harish-Chandra modules for reductive Lie algebras

Let g be a real reductive Lie algebra. Then g D g0 ˚ c where c is the center of g and g0 D

Œg; g� is semisimple. Let k � g0 be a maximal subalgebra of compact type, which means
that it is the set of fixed points of a Cartan involution of g0. Let V be a (g0, k)-module.
We recall that this means that V is a g0-module which, as a k-module, is a direct sum of
finite dimensional irreducible k-modules. Recall also that k is reductive in g. Note that if
V is irreducible, then c acts through an additive character on V and so V is an irreducible
(g,k)-module. This allows a reduction to the case when g is itself semisimple. One knows
from Harish-Chandra’s work (slightly modified to include the reductive case) that if V is
irreducible, or more generally, is finitely generated as a U.g0/-module on which c acts
semisimply through a finite number of additive characters, then the k-isotypical subspaces
V� are all finite dimensional, where � runs through the set Ok of equivalence classes of
irreducible finite dimensional representations of k (k is not in general semisimple, see
[30, Ch. 5] for details on representations of .g; k/-modules). A basic question in the theory
of .g; k/-modules is whether such a module is the module of k-finite vectors of a Hilbert
space representation (not necessarily unitary) of the simply connected group G defined
by g. In his paper [14], Harish-Chandra proved this for irreducible .g; k/-modules which
satisfy a certain condition. He later verified that this condition is satisfied for highest
weight .g; k/-modules and so all such modules can be realized as the k-finite vectors of
Hilbert space representations of G. This is actually sufficient for our purposes. However,
it is possible to remove the special condition imposed by Harish-Chandra in [14, Thm. 4].
The general result is as follows (see [33, Ch. 8]).
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Theorem 5. Any .g; k/-module V which is a direct sum of a finite number of irreducible
g-submodules is identifiable as the module of k-finite vectors of a Hilbert space (not nec-
essarily unitary) representation � of G. Moreover, V � C!.�/.

As mentioned earlier, when we deal with irreducible highest weight Harish-Chandra
modules, the above general result is not needed, and Harish-Chandra already proves the
above theorem for these modules. The question arises if an irreducible .g; k/-module V ,
which is infinitesimally unitary, is the module of k-finite vectors of an irreducible unitary
representation of G. In [14], Harish-Chandra proves that such a unitary representation
exists and is unique up to equivalence, provided V is the module of k-finite vectors of
a Banach space representation of G ([14, Thm. 9]). In view of the above remarks and
results, we can now state the following theorem.

Theorem 6. Let V be an irreducible .g; k/-module defined by the representation 
 of
U.g/, which is unitary in the sense that there is a hermitian product . ; / on V such that
i
.X/ is symmetric for all X 2 g. Then, there is a unitary representation of G (unique up
to unitary equivalence) in the completion H of V with respect to the norm defined by the
hermitian product, such that V is the module of k-finite vectors in H .

2.2. Unitarity of super modules

We shall now present a proof that for a Lie superalgebra g with g0 reductive, conditions
(U1) and (U2) of Section 1 are enough to guarantee the existence of a unitary represen-
tation of the Lie supergroup. Let g be a Lie superalgebra with g0 reductive. Write, as in
Section 2.1, g0 D g00 ˚ c0. k0 is the subalgebra of g00 fixed by a Cartan involution.

Lemma 7. Let V be a .g0; k0/-module. If V admits a hermitian product which is k0-
invariant, namely, elements of k0 are skew symmetric with respect to it, then the isotypical
subspaces V� are mutually orthogonal.

Proof. Let V1, V2 be two irreducible k0 -stable finite dimensional subspaces such that they
carry inequivalent representations of k0. We want to prove that V1? V2. LetW D V1˚V2.
LetP be the orthogonal projection V1!V2 in V . We claim thatP is a k0-map. Let u2V1,
write u D x C y where x 2 V2, y 2 W , y ? V2, or y 2 V ?2 \W . Then Pu D x and for
X 2 k0, XPu D Xx. On the other hand, Xu D Xx C Xy and we know that Xx 2 V2,
Xy 2 W \ V ?2 . Hence PXuD Xx D XPu, proving the claim. This implies that P D 0,
as otherwise P will be a non zero k0-map between V1 and V2.

Lemma 8. Suppose that V is a unitary .g0; k0/-module such that the V� are all finite di-
mensional. Then for any submoduleW � V ,W ? is also a submodule, and V DW ˚W ?.

Proof. It is only a question of proving that V D W ˚ W ?. The point is that V is in
general not complete. NowW D ˚�W� where theW� are finite dimensional and mutually
orthogonal, and W� � V� . Let W 0

�
be the orthogonal complement of W� in V� . Since the

isotypical subspaces of V are mutually orthogonal, it is clear that W 0
�

is ? to all V� 0 for
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� 0¤ � . ThusW 0
�
�W ?. Since this is true for all � , we see thatW ˚W ?�W� ˚W 0� DV�

for all � (as the V� are finite dimensional). So W ˚W ? D V .

Lemma 9. If V is as in the previous lemma, then V is the orthogonal direct sum of
irreducible submodules.

Proof. We shall first show that if W � V is any submodule, then W has an irreducible
submodule. This is a standard argument of Harish-Chandra. Consider pairs .W 0; �/ for
submodules W 0 � W and � such that W 0

�
¤ 0. Among these choose one for which W 0

�

has the smallest dimension; let .W 0; �/ be the corresponding pair. Let W 00 be the cyclic
submodule ofW 0 generated byW 0

�
. If L is a proper submodule ofW 00, then we claim that

L \W 0
�

is either 0 or equal to W 0
�
. Otherwise dim.L� / is positive and strictly less than

dim(W 0
�

), a contradiction. It cannot equal W 0
�
, as then L D W 00. So L \W 0

�
D 0, hence

L ? W 0
�
. In other words, all proper submodules of W 00 are orthogonal to W 0

�
, showing

that their sum is still proper. Let Z denote this sum. Then W 00 \ Z? is an irreducible
submodule of W 00.

This proves the existence of irreducible submodules of V . Let (Vi ) be a maximal
family of mutually orthogonal irreducible submodules of V . If Y WD

L
i Vi ¤ V , then

Y ? will contain an irreducible submodule, contradicting the maximality of (Vi ). Hence
the lemma.

Corollary 10. Let the notation be as above. If V is finitely generated, then V is an orthog-
onal direct sum of finitely many irreducible submodules.

Proof. Each generator lies in a finite sum of the Vi . Since there are only finitely many
generators, the corollary follows.

We are now ready to prove our main result for this section.

Proof of Theorem 2. Since g0 leaves invariant V0, V1 separately, �0 can be constructed
separately on the closures of V0 and V1, by Theorem 5 in Section 2.1, and so the full �0
is even. We know that V � C!.�0/, again by Theorem 5. Theorem 1 of Section 1 now
proves the present theorem.

Remark 1. In the special case of highest weight modules, the proof of unitarizability is
simpler. In view of our corollary to Lemma 9, it is enough to show, besides (U1) and (U2),
only that the Vi are highest weight modules for g0, because the conditions in Corollary 10
are automatically verified (see [23, Ch. 8]).

2.3. Construction of Harish-Chandra modules for .g; k/

Apart from the highest weight modules we have not produced any other Harish-Chandra
modules (see [5]). In this section, we do precisely this. First notice that V0, V1 are Harish-
Chandra modules for .g0; k/, (k D k0). We now need some preliminary remarks.

Let M be a Harish-Chandra module for g0 and define V WD U.g/˝U.g0/M .
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By the Poincaré–Birkhoff–Witt theorem, if X1; X2; : : : ; Xr is a basis for g1, and L is
the span of all theXi1 � � �Xim where i1 < � � �< im,m� r , then U.g/DLU.g0/. Although
g1 is stable under ad.g0/, this is not true for L. Let R be the linear span of all monomials
Xi1 � � �Xim where the i ’s are not ordered and satisfy only 1 � i1; i2; : : : ; im � r , m � r .
Then R is finite dimensional, stable under ad.g0/, graded, and RU.g0/ D U.g/. Hence

U.g/˝U.g0/M D R˝U.g0/M:

The action of U.g/ on V is by the left of the first factor. Since R is ad.g0/-stable, the
action of g0 is the tensor product of the adjoint action on R and the action on M . We
recall a well-known result. If p, q, r are three irreducible representations of k, we write
p < q ˝ r if p occurs in q ˝ r . Then

p < q ˝ r ” r� < q ˝ p�

where a� is the dual representation of a. This follows from the fact that p < q ˝ r if and
only if q˝ r ˝p� contains the trivial representation, and hence if and only if r�<q˝p�.

Proposition 11. Let M be a Harish-Chandra module for g0. Then

V WD U.g/˝U.g0/M

is a Harish-Chandra module for .g; k/.

Proof. We must show that for any irreducible class p of k, dim.Vp/ <1. Let r1; : : : ; rt
be the irreducible classes in R. M is the direct sum of the Mq for the various irreducible
classes q of k, and we know that dim.Mq/ <1 for all q. Now, by our remark above, p
occurs in r ˝ q if and only if q� < r ˝ p�. Taking r D r1; : : : ; rt and fixing p, this gives
only finitely many choices for q. Let Q be the finite set of q such that q� < rj ˝ p� for
some j D 1; 2; : : : ; t . Hence

Vp � R˝
M
q2Q

Mq;

showing that dim.Vp/ <1.

Remark 2. By a slight variation of the argument in Lemma 9, we can show that V has
subquotients which are irreducible. Starting with a moduleM for which the weight spaces
are not all finite dimensional, one of the subquotients of a finite composition series for V
will have this property and so will not be a highest weight module. These modules were
studied in [8, 9] for ordinary Lie algebras and the above theory allows us to build non
highest weight Harish-Chandra modules for Lie superalgebras. We plan to explore this
further in a forthcoming paper.



Unitary Harish-Chandra representations of real supergroups 293

3. Infinitesimal unitarity

3.1. Harish-Chandra homomorphism

Let gC be a contragredient complex Lie superalgebra, hC a Cartan subalgebra of gC

(see [18]). The Harish-Chandra homomorphism

ˇWZ.gC/! S.hC/
W (1)

identifies the center Z.gC/ of the universal enveloping algebra with the subalgebra I.hC/

of S.hC/
W (see [19]),

I.hC/ D
®
� 2 S.hC/

W
j �.�C t˛/ D �.�/;8� 2 h˛i?; ˛ isotropic;8t 2 C

¯
:

For any � 2 h�C , let UŒ�� be the subspace of U.gC/ given by

UŒ�� D
®
a 2 U.gC/ j ŒH; a� D �.H/a;8H 2 hC

¯
:

Then UŒ0� is a subalgebra, Z.gC/ �UŒ0�, and .UŒ��/ is a grading of U.gC/; moreover,
UŒ�� ¤ 0 if and only if � is in the Z-span of the roots. If 
1; : : : ; 
t is an enumeration of
the positive roots, �C D ¹
1; : : : ; 
tº and .Hi / is a basis for hC , then elements of UŒ0�

are linear combinations of monomials

Xp1�
1 � � �H
c1
1 � � �X

n1

1

(2)

with .p1 � n1/
1 C � � � D 0. It is then clear that every term occurring in such a linear
combination must necessarily have some pi > 0 except those that are just monomials in
the Hi alone. So for any u 2 UŒ0� we have an element ˇ.u/ 2 U.hC/ such that

u Š ˇ.u/.modP /; P D
X

>0

U.gC/g
 ; 
 2 �C: (3)

Let � 2 h�C . The action of u on the Verma module V� must leave the weight spaces stable
since it commutes with hC , and so applying it to the highest weight vector v� we see that
uv� D ˇ.u/.�/v� where we are identifying U.hC/ with the algebra of all polynomials
on h�C , so that ˇ.u/.�/ makes sense. It follows from this that if u 2 U.hC/ \ P then
u.�/D 0 for all � and so uD 0, i.e., U.hC/\P D 0. Hence ˇ.u/ is uniquely determined
by equation (3).

We extend the homomorphism ˇ W UŒ0�! U.hC/ to a linear map U.gC/! U.hC/

by making it 0 on UŒ�� for � ¤ 0.

3.2. Hermitian forms

Let V be a complex super vector space. A hermitian form on V is a complex valued
sesquilinear form . ; / (linear in the first, antilinear in the second argument) such that

.u; v/ D .�1/jujjvj.v; u/; 8u; v 2 V (4)
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and .u; v/ D 0 for juj ¤ jvj, where juj denotes the parity of an homogeneous element
u 2 V (see [32, p. 111] and [10, Sec. 4]). If X is an endomorphism of V , we define its
adjoint X� as

.Xu; v/ D .�1/jujjX j.u;X�v/: (5)

One can immediately verify that (see [32, p. 110])

hu; vi D

´
i.u; v/ juj D jvj D 1;

.u; v/ otherwise,
(6)

is an ordinary hermitian form. If X� is the adjoint with respect to this ordinary hermitian
form, we have thatX�D i jX jX�. In fact, taking juj D jX j D 1, jvj D 0, we have .Xu;v/D
�.u;X�v/ and

.Xu; v/ D �ihXu; vi D �ihu;X�vi: (7)

A similar calculation is done if juj D 0 and jX j D jvj D 1.
The form . ; / is a hermitian product on V if . ; / and i. ; / are positive definite on V0

and V1 respectively, i.e. if the ordinary form h ; i is positive definite on V .
Let V be a g-module, g a real Lie algebra, via the representation � . V (or �) is said

to be unitary if there is a hermitian product . ; / for V such that

.�.X/u; v/ D �.�1/jujjX j.u; �.X/v/; .u; v 2 V;X 2 g/; (8)

(see [32, p. 111]). This implies

�.X/� D

´
��.X/; jX j D 0;

C�.X/; jX j D 1;
�.X/� D

´
��.X/; jX j D 0;

�i�.X/; jX j D 1:
(9)

As one can readily check, this is equivalent to (U1), (U2) in Section 1, with (6) as hermi-
tian product there. In fact, while condition (U1) regards the ordinary case, condition (U2)
is expressed for jX j D juj D 1 (similarly for jX j D jvj D 1) as

he�i�=4�.X/u; vi D hu; e�i�=4�.X/vi;

that is
h�.X/u; vi D ihu; �.X/vi:

This implies the condition of unitarity to be �.X/� D �i�.X/, in agreement with (9).
Let g be a real form of the contragredient complex superalgebra gC and g D k˚ p its

Cartan decomposition. We assume gC to satisfy the equal rank condition

hC � kC � gC

for a fixed Cartan subalgebra hC D .hC/0. Assume also that kC has a non trivial cen-
ter. Then kC and pC decompose into the sum of root spaces and the root system of gC

has admissible positive systems and we fix P one of such (see [7]). We can extend the
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antiautomorphism X ! �.�1/jX jX on g to an antiautomorphism of U.g/. Then, this
antiautomorphism can be furtherly extended to a conjugate linear antiautomorphism of
U.gC/, that we denote by a! a? and call the adjoint. It has the following properties:

(1) a?? D a,

(2) .ab/? D .�1/jajjbjb?a?,

(3) a? is conjugate linear in a,

(4) X? D �.�1/jX jX for all X 2 g.

It is uniquely determined by these requirements. We then can extend the unitary condition
for a representation expressed in (8),

.�.X/u; v/ D .u; �.X/?v/; X 2 U.gC/:

3.3. Unitary highest weight representations

We now wish to give a criterion for a highest weight representation of gC to be unitary.
We shall follow closely [15].

Lemma 12. Let �� be a unitary highest weight representation of gC of highest weight �.
Then .�i/jajˇ.a�a/.�/ > 0 for all a 2 U.gC/.

Proof. Let v be the highest weight vector. It is not restrictive to assume v to be even. By
definition of ˇ we have

.av; v/ D ˇ.a/.�/.v; v/; a 2 U.gC/:

Hence,

0 < i jaj.av; av/ D i jaj.�1/jaj.a�av; v/ D .�i/jajˇ.a�a/.�/.v; v/;

which gives our claim, since .v; v/ D hv; vi > 0.

To ease the notation let ˇ�.a/ WD ˇ.a/.�/, a 2 U.gC/.

Lemma 13. Assume .�i/jajˇ�.a?a/ � 0 for all a 2 U.gC/. Then

.w; z/ D .�i/jzjjwjˇ�.z
?w/; w; z 2 U.gC/; (10)

defines a semipositive definite supersymmetric sesquilinear form on U.gC/, whose radical
R is a left ideal.

Proof. By (10) and by the definition of ˇ and ? we immediately have that . ; / is sesquilin-
ear: linear in the first and antilinear in the second argument. Notice that .w; z/ D 0 if
jzj ¤ jwj. In fact, if jzj ¤ jwj, jz?wj D 1, hence z?w …UŒ0�, which consists of even ele-
ments only and ˇ� is zero on UŒ��, for �¤ 0. Moreover, since .�i/jajˇ.a?a/.�/� 0, we
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have that ha; ai � 0, by (6). By a standard argument in ordinary linear algebra (see [26]),
this implies that ha; bi D hb; ai, jaj D jbj and this concludes the first part of the proof.

Let R be the set of z 2 U.gC/ with kzk WD
p
hz; zi D 0. If z; z0 2 R, that is kzk D

kz0k D 0, by kz C z0k � kzk C kz0k, we immediately have that R is a subspace. Further-
more, if b? D b0, for b; b0 2 U.gC/, we have

.w; bz/ D .�i/jwjjbzjˇ�..bz/
?w/ D ˙.�i/jwjjbjjzjˇ�.z

?b?w/ D ˙.b0w; z/:

Hence k.w; bz/k � kb0wkkzk. If z 2 R, i.e. kzk D 0 and w D bz, we get kbzk D 0,
hence R is a left ideal.

Lemma 14. Let the notation be as above. Assume .�i/jajˇ�.a?a/� 0 for all a 2U.gC/.
Then U.gC/=R is a unitary representation of gC with highest weight �.

Proof. One can check right away that . ; / is well defined on U.gC/=R. To prove our
claim, we need to show R DM�, the (unique) maximal (left) ideal containing

P� D
X

2P

U.gC/gC
 C
X

2P

U.gC/.H
 � �.H
 /1/:

We have P� �R. They are both left ideals, so it is enough to showX˛ 2R for ˛ > 0 and
H
 � �.H
 /1 2R, the latter being an ordinary statement, so true for the ordinary theory.
Notice that .X˛; v/ D ˇ�.v�X˛/ D 0 because of (3), hence X˛ 2 R.

Now, let M0 be a proper maximal ideal containing R. We want to show M0 D R. We
first notice that it is stable under the hC action, in fact

ŒH;m� D Hm �m.H � �.H// � �.H/m 2M0; H 2 hC; m 2M0:

By a standard fact, then also m0, the UŒ0� component of m is in M0. Then, by (3), m0 �
h mod .P / and h� ˇ�.h/ mod .P�/, so thatm0� ˇ�.h/ mod .P�/ for some h2U.hC/

(P � P�). Since P� �R �M0, we have ˇ�.h/ 2M0, and being a complex number, this
tells that ˇ�.h/ D 0, otherwise M0 would not be a proper ideal. Hence, also ˇ�.m0/ D
ˇ�.h/ D 0. Now, let z 2M0. Since X?˛ D c˛X�˛ for any root vector X˛ , ˛ a root of gC

(see [10, Sec. 4]), we have z?z 2 UŒ0�. Taking m0 D z?z, for any z 2 M0, this gives
.�i/jzjˇ�.z

?z/ D hz; zi D 0, so M0 D R.

We are ready for the main result of this section.

Proof of Theorem 3. The first statement is immediate from the previous lemmas. The sec-
ond statement comes from the ordinary result in [15] and easy calculations.



Unitary Harish-Chandra representations of real supergroups 297

4. Irreducible representations of ospR.1j2/

4.1. Introductory remarks

We present here some calculations on highest weight Harish-Chandra modules for gC D

ospC.1j2/ and the unitary ones of g D ospR.1j2/.
Let N D ¹0; 1; 2; : : :º. We assume that t … N. The Lie superalgebra gC consists of

matrices 0@ 0 � �

� a b

�� c �a

1A
where �, � are complex odd variables, a, b, c are complex even variables. The real form g

consists of the real Lie superalgebra of matrices0@ 0 � �ix�

�ix� ia b

�� �b �ia

1A
where the variables �, b are still complex, a is real, and bar denotes complex conjugation
(see [4, Appendix A] for notation).

The complex basis of .gC/0 D sl.2/ is the standard one, H D E22 �E33, X D E23,
Y DE32,Eij denoting the elementary matrices (see [31] for notation). The complex basis
for the odd part .gC/1 is ¹x; yº where

x D E13 CE21; y D E12 �E31:

For the real form, the even part has real basis ¹iH;X C Y; i.X � Y /º and the odd part has
real basis

xQD �ix C y; yQD �x C iy:

4.2. Verma modules for .gC/0 with highest weight t … N.

We recall here the ordinary theory. Let Wt be the Verma module for .gC/0 of highest
weight t . Then Wt has basis ¹vt ; vt�2; : : : º where vt ¤ 0, Xvt D 0, vt�2r D Yrvt . One
knows that all the vt�2r are non zero, because of the identity

XY rC1 D Y rC1X C .r C 1/Y r .H � r/

in U..gC/0/, established easily by induction on r . This shows that

Xvt�2.rC1/ D .r C 1/.t � r/vt�2r : (11)

Since t … N, the factor .r C 1/.t � r/ is not zero for any integer r � 0, it follows that if
some vt�2.rC1/ D 0, then vt�2r D 0, so that we eventually get vt D 0. That this is irre-
ducible already is seen because of (11). Indeed, (11) shows that starting with any vt�2r ,
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we can reach vt by applying X repeatedly. Thus the Verma modules Wt are already irre-
ducible. We now want to determine when the Wt are unitary. By unitary we mean the
existence of a hermitian product such that

.Zu; v/ D �.u;Zv/

for all Z in the real form of sl.2/, and u; v 2 Wt , i.e., for Z D iH , X C Y , i.X � Y /.
The main idea is to transfer the condition for unitarity to the complex Lie algebra sl.2/.
For the Verma modulesWt , unitarity is equivalent to assuming that the vt�2r are mutually
orthogonal and X� D �Y or Y � D �X or both. In fact, the condition is that H� D H ,
.X C Y /� D �.X C Y /, .X � Y /� D X � Y .

Proposition 15. Wt is unitary if and only if t is real and t < 0.

Proof. Recall that t … N. Let Wt be unitary. Then

.vt�2; vt�2/ D .Y vt ; vt�2/ D �.vt ; Xvt�2/:

But
Xvt�2 D XYvt D YXvt CHvt D tvt :

Hence .vt�2; vt�2/ D �t > 0 if we normalize .vt ; vt / D 1 (possible). Hence �t > 0. For
the converse we must, when t < 0, define a unique hermitian product such that .vt ; vt /D 1
and X� D �Y . The vt�2r are to be mutually orthogonal and so we need to determine the
N.r/ WD .vt�2r ; vt�2r / inductively so that X� D �Y and all the N.r/ > 0. The require-
ment X� D �Y forces the relation (by (11))

.vt�2r ; vt�2r / D .Y vt�2.r�1/; vt�2r / D �r.t � r C 1/.vt�2.r�1/; vt�2.r�1//

or
N.r/ D �r.t � r C 1/N.r � 1/; N.1/ D 1;

the second being the normalization .vt ; vt / D 1. We define N.r/ inductively by this and
note that for t < 0 we have N.r/ > 0 for all r , since the factor �r.t � r C 1/ is always
> 0 for r � 1, as t < 0. The hermitian product is now well defined and positive definite.
It is now only a question of verifying that X� D �Y . For this we only need to check
.Y vt�2.r�1/; vt�2r / D �.vt�2.r�1/; Xvt�2r / as all other hermitian products needed are
zero. But the left-hand side is N.r/ while the right-hand side is

�r.t � r C 1/.vt�2.r�1/; vt�2.r�1//;

which is �r.t � r C 1/N.r � 1/, and these are equal by definition of N.r/.
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4.3. Super Verma modules for gC

Now, we report here for completeness some preliminary results. Let t … N where N D
¹0; 1; 2; : : :º and let Vt be the gC-module with highest weight t and highest weight vec-
tor vt .

Lemma 16. Let t … N where N D ¹0; 1; 2; : : :º. Then the super Verma module Vt with
highest weight t is irreducible. Let Wt D U..gC/0/vt and Wt�1 D U..gC/0/vt�1 with
vt�1 WD yvt . Then Wt and Wt�1 are irreducible Verma modules for .gC/0 and Vt D
Wt ˚Wt�1.

Proof. By the Poincaré–Birkhoff–Witt theorem, U.gC/DU..gC/0/¹1;x; y; yxº. Hence

Vt D U..gC/0/vt CU..gC/0/vt�1:

If vt�1 D 0 then xvt D yvt D 0, hence, as H D xy C yx, we have Hvt D tvt D 0,
showing that t D 0. Also, if Xvt�1 ¤ 0, then it has weight t C 1 which is impossible.
The modules U.gC/vt , U.gC/vt�1 are then highest weight non zero modules, of highest
weights t , t � 1. Hence, by our assumption that t … N, they are Verma modules and irre-
ducible. Note the sum is direct since H has disjoint spectra in the two pieces. Hence the
result follows.

Corollary 17. Let the notation be as above. Vt has basis ¹vt ; vt�1; : : : º where

vt�r D y
rvt :

Proof. Recall that y2D�Y . Given t …N there is only one structure of a super gC-module
for Wt ˚Wt�1, namely the super Verma with highest weight t .

Lemma 18. Let the notation be as above. In U.gC/ we have

xy2m D y2mx �my2m�1; xy2mC1 D �y2mC1x C y2m.H �m/:

In particular, in Vt ,

xvt�m D cmvt�mC1; c2m D �m; c2mC1 D t �m:

Proof. Since xy D �yx CH in U.gC/, we have, by direct calculation, xy2 D y2x � y
and xy3 D �y3x C y2.H � 1/. Hence the results are true for m D 1. We use induction
on m. We have

xy2mC2 D xyy2mC1 D .�yx CH/y2mC1 D y2mC2x � .mC 1/y2mC1

and

xy2mC3 D xyy2mC2 D .�yx CH/y2mC2 D �y2mC3x C y2mC2.H �m � 1/

by direct calculation. The induction is complete. The formulae for Vt are immediate con-
sequences by applying them to vt�m D yt�mvt .
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4.4. Unitary super Verma modules for gC

The main idea now is to transform the condition for unitarity to the complex setting. For
the ordinary Verma modulesWt , unitarity is equivalent toX�D�Y or Y �D�X , or both.
In fact, the condition is thatH� DH , .X C Y /� D �.X C Y /, .X � Y /� D X � Y . For
supermodules we impose, following [3] and (U2) as in Section 1, the condition �Z is
symmetric in the hermitian product where � D e�i�=4 (see [3]). As in the Verma case, we
must convert this definition into a condition on the complex basis for gC . The condition
is that �xQ, �yQare symmetric (acting on the module) where xQD �ix C y, yQD �x C iy.
This is the same as (see (9))

xQ� D �ixQ; yQ� D �iyQ

or
ix� C y� D �x � iy; �x� � iy� D ix C y:

These are the same as
x� D �y; y� D �x

or even just one of these relations, as the other follows by taking adjoints. Notice that for
u; v even u� D u� and .u; v/ D hu; vi, see Section 3.2 for the notation.

Theorem 19. Vt is unitary if and only if t is real and t < 0.

Proof. Recall that t … N and Proposition 15. Let Vt be unitary. Then

xvt�1 D xyvt D �yxvt CHvt D tvt :

So
hvt�1; vt�1i D hyvt ; vt�1i D �hvt ; xvt�1i D �thvt ; vt i:

We can normalize hvt ; vt i D 1 so that we get hvt�1; vt�1i D �t . Thus we must have t < 0.
We now prove the converse. If t < 0 we must define a hermitian product on Vt such that
x� D �y.

The definition of the hermitian product goes as in the Verma case. The formulae for cm
of Lemma 18 show that for m � 1, we see that cm < 0 always. Let N.r/ D hvt�r ; vt�ri.
The relation x� D �y forces the relation

hvt�r ; vt�ri D hyvt�rC1; vt�ri D �crhvt�rC1; vt�rC1i

or
N.r/ D �crN.r � 1/:

We define N.r/ inductively with N.0/ D 1. Then, as �cr > 0, the N.r/ are defined
and > 0 for all r . With the orthogonality of the vt�r this defines a hermitian prod-
uct for vt . To prove that x� D �y in this hermitian product we only need to check
that hxyvt�rC1; vt�ri D �hvt�rC1; xvt�ri. The left side is N.r/ while the right side
is �crN.r � 1/ and so we are done.
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Remark 3. We observe that the necessary condition of Theorem 3 for V , chosen as in
Theorem 19, to be unitary is satisfied, since we have only a non compact even root ˛ and
�.H˛/ D �.H/ D t < 0.

Proof of Theorem 4. The first statement is Theorem 19. The second statement is an imme-
diate consequence of the first statement and Theorem 2.
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