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Non-embeddable II1 factors resembling
the hyperfinite II1 factor

Isaac Goldbring

Abstract. We consider various statements that characterize the hyperfinite II1 factors amongst
embeddable II1 factors in the non-embeddable situation. In particular, we show that “generically”
a II1 factor has the Jung property (which states that every embedding of itself into its ultrapower
is unitarily conjugate to the diagonal embedding) if and only if it is self-tracially stable (which
says that every such embedding has an approximate lifting). We prove that the enforceable factor,
should it exist, has these equivalent properties. Our techniques are model-theoretic in nature. We
also show how these techniques can be used to give new proofs that the hyperfinite II1 factor has
the aforementioned properties.

1. Introduction

In [10], Murray and von Neumann proved that there exists a unique (up to isomorphism)
separable hyperfinite II1 factor. This unique factor, henceforth denoted by R, plays a
crucial role in the theory of finite von Neumann algebras. By Connes’ seminal work in
[4], we know that R is also the unique separable II1 factor possessing any of the following
properties: injectivity, semidiscreteness, and amenability.

In this article, our focus will be on some statements that characterize R amongst the
class of separable embeddable II1 factors, where a separable tracial von Neumann algebra
is embeddable if it embeds into some (equivalently, any) ultrapower RU of R with U a
nonprincipal ultrafilter on N. For example, as proven by Jung in [9], any embedding of R

into RU is unitarily conjugate to the diagonal embedding. In [2], the authors say that a
separable II1 factorM has the Jung property if and only if any embedding ofM intoMU

is unitarily conjugate to the diagonal embedding. In [3] (see also [2, Theorem 3.1.3]), the
authors show that R is the unique separable embeddable II1 factor with the Jung property.

In [1], the author defines a separable tracial von Neumann algebra M to be self-
tracially stable if any embedding of M into MU has an “approximate lifting.” (See the
next section for a precise definition.) It is easy to see that any II1 factor with the Jung
property is self-tracially stable (see [2, Proposition 3.3.14] for a proof). It follows that R

is self-tracially stable. The fact that R is the unique separable embeddable self-tracially
stable II1 factor is the content of [3, Theorem 2.4].
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Recall that the Connes Embedding Problem (CEP) asks whether or not every separa-
ble1 tracial von Neumann algebra is embeddable. As announced in the recent landmark
paper [8], the Connes Embedding Problem has a negative answer. It thus makes sense
to ask whether or not there are separable non-embeddable II1 factors that have the Jung
property or are self-tracially stable. (See [2, Question 3.3.12] and [1, Question 1.8] respec-
tively.)2

Our first main result is that “generically” these are the same question. To explain this,
recall that a tracial von Neumann algebraM is existentially closed (or e.c. for short) if the
following holds: whenever M is contained in the tracial von Neumann algebra N , then
there is an embedding of N into MU that restricts to the diagonal embedding of M .3 The
notion of e.c. tracial von Neumann algebras comes from model theory and has proven
useful in applications of model theory to operator algebras. Much is known about the
class of e.c. tracial von Neumann algebras: they must be McDuff II1 factors with only
approximately inner automorphisms (see [5] for more on this class). The generic separable
tracial von Neumann algebra is e.c. in the sense that in a natural Polish topology on the
space of separable tracial von Neumann algebras, the e.c. algebras form a comeager set.
The notion of e.c. factor can be relativized to the class of embeddable factors, in which
case R is an e.c. embeddable factor.4

We show the following:

Theorem 1. IfM is a separable e.c. factor, then any embedding ofM into itself is approx-
imately inner.

From this theorem, it follows fairly quickly that if M is separable, e.c., and self-
tracially stable, then M has the Jung property; see Proposition 6 below. In connection
with the previous theorem, it is worth noting that recently Popa and Vaes constructed a
family of examples of embeddable factors all of whose endomorphisms are approximately
inner [11, Theorem D].

We next turn to two model theoretic characterizations of R amongst embeddable
factors. We call an e.c. (embeddable) factor enforceable if it embeds into all other e.c.
(embeddable) factors.5 Should the enforceable (embeddable) factor exist, it is automati-
cally unique. In [7, Theorems 5.1 and 5.2], it is shown that R is the enforceable embed-

1Separability is not an issue here if one allows ultrafilters over larger index sets.
2We should mention that in [2, Theorem 3.2.5] it was shown that R is the unique separable embeddable

II1 factor with the generalized Jung property, meaning that any two embeddings of itself into its ultrapower
are conjugate by some (not necessarily inner) automorphism of the ultrapower; [2, Theorem 3.3.1] shows
that there are non-embeddable factors with this property.

3Again, this definition makes sense for not necessarily separable factors using ultrafilters on larger
index sets. Alternatively, one can give a purely syntactical, model-theoretic, definition which makes it clear
that density character is irrelevant.

4This follows immediately from the fact that R has the Jung property, but we will discuss another
proof at the end of this paper.

5This is not the original definition given in [7], but is equivalent by the results in Section 6 of that
paper.
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dable factor and that the CEP is equivalent to R being the enforceable factor. Due to the
negative solution of the CEP, we see that R is not the enforceable factor. This does not,
however, preclude the existence of the enforceable factor. We view the problem of the
existence of the enforceable factor to be one of the central problems in the model theory
of II1 factors, for if the enforceable factor exists, then it is a canonical object deserving of
further study, whereas any proof that it does not exist yields a stronger refutation of CEP.

In this paper, we prove the following:

Theorem 2. If the enforceable factor exists, then it has the Jung property.

It is worth noting that by [6, Theorem 2.14], if M is a II1 factor with the Jung
property and M is elementarily equivalent to M ˝M , then M Š R.6 Consequently,
if the enforceable factor E exists, then we have that E is not elementarily equivalent to
E ˝ E .7

Our final result concerns the finite forcing companion. A finitely generic factor is a par-
ticular kind of e.c. II1 factor with the generalized Jung property. (See [7, Definition 5.3] for
a precise definition. Alternatively, [7, Propsition 3.10] presents a more workable version
of the notion.) These factors always exist and any two of them are elementarily equivalent;
the common first-order theory of the finitely generic factors is known as the finite forcing
companion, denoted by T f . In the embeddable situation, R is a finitely generic embed-
dable factor (see [7, Corollary 3.14]), whence the finite forcing companion is simply the
complete theory of R. Since R embeds in any model of its theory (due to the axiomatiz-
ability of being McDuff), the fact that R has the generalized Jung property implies that it
is the prime model of its theory.8

It is currently unknown whether or not T f has a prime model. However, if it does,
then it is a non-embeddable factor with the Jung property:

Theorem 3. If T f has a prime model M , then M has the Jung property.

In the final section, we revisit the embeddable situation and give model-theoretic
proofs that R has the Jung property and is self-tracially stable that might be of inde-
pendent interest.

In order to keep this note fairly short, we will freely use model-theoretic language
when necessary. The reader is advised to consult [2, Section 2] for a more thorough intro-
duction.

6Here, two II1 factors are elementarily equivalent if they have the same first-order theory. By the
Keisler–Shelah theorem, we can equivalently say that they have isomorphic ultrapowers. The reference [6]
actually only deals with strongly self-absorbing C�-algebras, but the proof there implies the result that we
mention above.

7By the work in [7, Remark 5.8], the failure of CEP already implies that E , should it exist, could not
be isomorphic to E ˝ E .

8In general, the prime model of a theory is a model which elementarily embeds into any other model
of the theory and, if it exists, it is automatically unique.
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2. Proofs of theorems
We first prove Theorem 1. In fact, the following yields an even stronger result:

Theorem 4. Suppose thatM is an e.c. factor with subalgebraN . Then any embedding of
N in M is approximately unitarily conjugate to the inclusion map.

Proof. Let f W N !M be an embedding. Let P be the HNN extension obtained fromM

and f ; we note that P is finite and there is a trace on P such that the inclusion M � P is
trace-preserving (see [12, Corollary 4.2]). In particular, there is a unitary u 2 P such that
uf .x/u� D x for all x 2 N . Since M is e.c., this implies that for any finite F � N and
" > 0, there is a unitary v 2M such that kvf .x/v� � xk2 < " for all x 2 F , as desired.

Remark 5 (For the model theorists). Theorem 4 implies that, in any e.c. II1 factor, the
quantifier-free type of a tuple implies its complete type. It would be interesting to see if
one could leverage this fact to gain any further insight into the class of e.c. factors.

In connection with Theorem 1, we say that a II1 factor M has the weak Jung property
if every endomorphism of M is approximately inner.

Proposition 6. A separable II1 factor has the Jung property if and only if it has the weak
Jung property and is self-tracially stable.

Proof. First suppose that M has the Jung property and that f W M ! M is an endo-
morphism. By viewing f as taking values in MU, there is a unitary u 2 MU such that
uf .x/u� D x for all x 2 M . In particular, given any finite F � M and " > 0, there is
a unitary v 2 M such that kvf .x/v� � xk2 < " for all x 2 F , whence f is approxi-
mately inner. As mentioned in the introduction, any II1 factor with the Jung property is
self-tracially stable.

The converse is clear.

Given the fact that R is the unique separable embeddable factor with either the Jung
property or the property of being self-tracially stable, the following question seems natu-
ral9:

Question 7. Must there be at most one non-embeddable factor with the Jung property?
That is self-tracially stable?

We now move on to Theorem 2, which will follow from an alternative characterization
of the enforceable factor. First, recall from [1] that if C is a class of tracial von Neumann
algebras, then a tracial von Neumann algebra M is said to be C-tracially stable if when-
ever f WM !

Q
UNi is an embedding with U a nonprincipal ultrafilter on N and eachNi

belongs to C, then there are *-homomorphisms fi WM ! Ni such that f .x/ D .fi .x//U
for all x 2 M . (We refer to the sequence .fi /i2N as an “approximate lifting” of f .) In
particular, M is self-tracially stable if and only if M is ¹M º-tracially stable.

9On the other hand, there may be more than one non-embeddable factor with the generalized Jung
property; see [2, Corollary 3.3.5].
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We let E denote the class of e.c. factors. The following theorem immediately implies
Theorem 2:

Theorem 8. The II1 factor M is the enforceable factor if and only if it is e.c. and E-tra-
cially stable.

In order to prove Theorem 8, we need to recall a few model-theoretic facts from [7].
First, ifM is an e.c. factor and a is a tuple fromM , the existential type of a inM , denoted
by etpM .a/, is the collection of existential formulae '.x/ such that 'M .a/ D 0. Such an
existential type is called isolated if, given any " > 0, there is an existential formula '.x/
and ı > 0 such that 'M .a/ D 0 and whenever N is an e.c. factor with a tuple b 2 N such
that 'N .b/ < ı, then there is c 2 N such that kb � ck2 < " and for which etpM .a/ D
etpN .c/. The e.c. factorM is called e-atomic if the existential types of all finite tuples are
isolated. It is shown in [7, Section 6] that an e.c. factor M is e-atomic if and only if it is
the enforceable factor (in which case it is unique).

Proof of Theorem 8. First suppose thatM is the enforceable factor. We must show thatM
is E-tracially stable. Towards this end, fix an embedding f WM !

Q
UNi with each Ni

e.c. Since M is e.c., it is McDuff, whence singly generated. Fix a generator a of M and
write f .a/ D .ai /U. Fix " > 0 and let '.x/ and ı > 0 be as in the definition of isolated
existential type for a and ". Since M is e.c., f is an existential embedding, meaning
that '

Q
UNi .f .a// D 0 and thus 'Ni .ai / < ı for U-almost all i . For these i , there is

bi 2Ni such that kai � bik2 < " and for which the map a 7! bi extends to an isomorphism
betweenM and the subalgebra ofNi generated by bi . Thus, f has an approximate lifting.

Conversely, suppose that M is e.c. and E-tracially stable. It follows that M embeds
into every e.c. II1 factor, whence M is enforceable.

Finally, we prove Theorem 3.

Proof of Theorem 3. Let M be the prime model of T f . To show that M has the Jung
property, we show that M has the weak Jung property and is self-tracially stable.

Fix a finitely generic factor N . Since M is the prime model of T f , we have that M
embeds elementarily in N . Thus, by [7, Corollary 3.12], M itself is finitely generic. In
particular, M is e.c. and thus has the weak Jung property.

It remains to show that M is self-tracially stable. The argument for showing this is
similar to that showing that the enforceable factor is self-tracially stable. Indeed, fix an
embedding f W M ! MU. This time, given any a 2 M , the complete type of a in M ,
denoted by tpM .a/, is isolated10. Fix a generator a of M and write f .a/ D .ai /U. Given
" > 0, there is some formula '.x/ and ı > 0 such that 'M .a/ D 0 and such that, given
any model N of T f and any b 2 N with 'N .b/ < ı, there is c 2 N such that tpM .a/ D
tpN .c/ and kb � ck2 < ". Since M is finitely generic, f is an elementary map, whence
'M

U
.f .a// D 0 and thus 'M .ai / < ı for U-almost all i . As before, for these i , this

10This follows from the fact that prime models of theories are atomic models.
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guarantees the existence of bi 2M such that kai � bik2 < " and such that the map a 7! bi
extends to an embedding of M into itself. Thus, f has an approximate lift.

Remark 9. It is not clear if there is any relationship between the existence of the enforce-
able factor and the existence of the prime model of T f .

3. Revisiting the embeddable situation

In this section, we show how our techniques from above can yield different proofs that R

has the Jung property and is self-tracially similar.
Recall from the introduction that R is the enforceable embeddable factor. Besides the

model theory behind building models by games, the two main operator-algebraic ingredi-
ents in the proof are as follows:

• being hyperfinite is8
W
9-axiomatizable11, whence being hyperfinite is an enforceable

property for embeddable factors;

• R is the unique separable hyperfinite factor.

Noting that our proof from the previous section that the enforceable factor (should
it exist) is self-tracially stable relativizes immediately to the embeddable situation, we
obtain the fact that R is self-tracially stable, without resorting to the fact that R has the
Jung property.

Unfortunately, our proof in the previous section that the enforceable factor (should
it exist) has the weak Jung property does not necessarily relativize to the embeddable
situation as the following seems to be an open question:

Question 10. Is the class of embeddable tracial von Neumann algebras closed under HNN
extensions?

If the answer to the previous question is positive, then we learn that all e.c. embeddable
factors (and thus, in particular, R itself) have the weak Jung property.

Nevertheless, we can give a proof that is similar in spirit that does relativize to the
embeddable situation. Indeed, fix an endomorphism f W R ! R; we show that f is
approximately inner. Let a be a generator of R. Since R is a finitely generic embeddable
factor12, we have tpR.a/ D tpR.f .a//. Consequently, there is an elementary extension
N of R and an automorphism � of N such that �.f .a// D a. Using that R � N Ì� Z
and the class of embeddable factors is closed under crossed products by Z (and, more
generally, by any amenable group), we have that, given any " > 0, there is a unitary u 2R

such that kuf .a/u� � ak2 < ". Consequently, f is approximately inner.
Combining these proofs gives a new proof that R has the Jung property.

11Morally speaking, one just axiomatizes the property that any finite tuple is within any positive toler-
ance of a copy of some matrix algebra.

12This follows from being the enforceable factor.
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