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Tracing projective modules over noncommutative
orbifolds

Sayan Chakraborty

Abstract. For an action of a finite cyclic group F on an n-dimensional noncommutative torus A� ,
we give sufficient conditions when the fundamental projective modules over A� , which determine
the range of the canonical trace on A� , extend to projective modules over the crossed product C�-
algebra A� Ì F . Our results allow us to understand the range of the canonical trace on A� Ì F ,
and determine it completely for several examples including the crossed products of 2-dimensional
noncommutative tori with finite cyclic groups and the flip action of Z2 on any n-dimensional non-
commutative torus. As an application, for the flip action of Z2 on a simple n-dimensional torus A� ,
we determine the Morita equivalence class of A� Ì Z2, in terms of the Morita equivalence class
of A� .

1. Introduction

For n � 2, let Tn denote the space of all n � n real skew-symmetric matrices. The n-
dimensional noncommutative torus A� is the universal C �-algebra generated by unitaries
U1; U2; U3; : : : ; Un subject to the relations

UkUj D e
2�i�jkUjUk (1.1)

for j; k D 1; 2; 3; : : : ; n, where � WD .�jk/ 2 Tn. For the 2-dimensional noncommutative
tori, since � is determined by only one real number, �12, we will denote �12 by � again
and the corresponding 2-dimensional noncommutative torus by A� .

There is a canonical action of SL.2;Z/ on 2-dimensional noncommutative tori, which
is given by sending U1 to e�iac�12U a1 U

c
2 and U2 to e�ibd�12U b1 U

d
2 , for a matrix

�
a b
c d

�
2

SL.2;Z/. This action was further generalised to the higher dimensional noncommutative
tori. It was pointed out in [14] that the right replacement of the group SL.2;Z/ is

Sp.n;Z; �/ WD
®
W 2 GL.n;Z/ W W T �W D �

¯
:

Then there is a natural action of Sp.n;Z;�/on the n-dimensional noncommutative torusA�.
It is easy to see that Sp.2;Z; �/ is exactly SL.2;Z/.
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The study of crossed product C �-algebras associated to finite group actions on non-
commutative tori goes back to the work of Bratteli, Elliott, Evans, and Kishimoto [3].
However, they only looked at the action of Z2 on the C �-algebra A� , for 2-dimensional
tori. Recall that the action of Z2 on any n-dimensional A� , often called the flip action, is
defined by sending Ui to U�1i . Note that the above action is basically given by the matrix
� idn 2 Sp.n;Z; �/, where idn is the n � n unit matrix. Later various other authors stud-
ied actions of other finite cyclic subgroups of SL.2;Z/ on 2-dimensional noncommutative
tori; see [4,9,24,25]. Motivated by the 2-dimensional results, it is also natural to consider
a finite cyclic group F inside Sp.n;Z; �/ and consider the crossed product A� Ì F , for an
n-dimensional torus A� . We may call such a crossed product a noncommutative orbifold.

The authors in [2, 9] considered actions of cyclic subgroups of SL.2;Z/ on 2-dimen-
sional noncommutative tori. Along with K-theory computations of the corresponding
crossed products, the authors computed the images of the canonical tracial states of such
algebras. The recent development of the classification program of C �-algebras allowed
them to deduce results about isomorphism and Morita equivalence classes of such algeb-
ras, when the algebras are simple. One of the major facts they used is that the algebras are
simple AH algebras when � is irrational (for the finite group actions, the algebras are even
AF). Then the algebras are classifiable in the sense of Elliot’s classification program.

Jeong and Lee in [14] and He in [12] studied actions of finite subgroups of Sp.n;Z; �/
on an n-dimensional A� and found many of such crossed products to be classifiable, when
� is non-degenerate (see Definition 5.6) so thatA� is simple. However, they did not discuss
isomorphism and Morita equivalence classes of the crossed products. Our paper is a first
attempt towards this kind of results for the higher dimensional cases.

To understand isomorphism and Morita equivalence classes of such noncommutative
orbifolds, it is necessary to compute the K-theory of the orbifolds and understand the
ranges of the canonical tracial states of the algebras. While the dimensions of the K-
groups are known (from [15]), the tracial ranges are not understood. Our main results
help to understand which numbers belong to the tracial ranges of the orbifolds and even
determine the tracial ranges completely for several examples.

To understand the tracial range of an orbifold, one should first understand the same for
the noncommutative torus itself. This was done by Elliott in [10]. To give an overview of
our results, we recall the tracial range result from [10]. For an integer p with 1 � p � n

2
,

if we denote the sub-matrix M �
I of � consisting of rows and columns indexed by the

numbers i1; i2; : : : ; i2p for some i1 < i2 < � � � < i2p , I WD .i1; i2; : : : ; i2p/, then Elliott’s
result may be stated as

Tr
�

K0.A� /
�
D ZC

X
0<jI j�n

pf.M �
I /Z;

where jI j WD 2m for I D .i1; i2; : : : ; i2m/ and pf denotes the pfaffian. Here Tr denotes the
canonical tracial state on A� .

It was observed in [5] that for each such I , there is a projective module E�I over A� ,
trace of which is exactly pf.M �

I /, assuming pf.M �
I / ¤ 0. This module is governed by an
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element gI;† 2 SO.n; njZ/. Here SO.n; njZ/ is a certain subgroup of the group of linear
transformations of the space R2n preserving the quadratic form x1xnC1C x2xnC2C � � � C

xnx2n (see Section 3 for more details). The modules of such kind are called fundamental
projective modules.

Now coming back to the crossed products of n-dimensional tori A� with a finite cyc-
lic group F � Sp.n;Z; �/, if TrF denotes the canonical trace on A� Ì F , the regular
representation A� Ì F ,! MN .A� / gives

TrF
�

K0.A� Ì F /
�
�
1

N
Tr
�

K0.A� /
�
D

1

N

�
ZC

X
0<jI j�n

pf.M �
I /Z

�
:

Our main theorem (Theorem 1.1) determines when the term 1
N

pf.M �
I / lies in the left-

hand side of the above equation. The proof of the theorem involves extending the modules
E�I to modules over the crossed products using the so-called metaplectic operators, which
were already used by the author (in a joint work with Luef) in [6] to extend a specific type
of modules (Bott classes) to modules over the crossed products.

Let R denote the subgroup of SO.n; njZ/ generated by the elements of GL.n;Z/.

Theorem 1.1 (Theorems 4.2 and 5.2). With all the notations introduced above, assume
that pf.M �

I /¤ 0. LetW 2GL.n;Z/ be of finite order such thatW t�W D� andF WD hW i.
Suppose that gI;†F.gI;†/�1 � R inside SO.n; njZ/. Then E�I becomes a finitely gener-
ated, projective module over A� Ì F and 1

N
pf.M �

I / 2 TrF .K0.A� Ì F //, whereN is the
order of W .

The condition in the above theorem is easy to check for many examples. In fact, we
provide some examples with explicit tracial range computations. These examples include
the 2-dimensional cases and the flip action of Z2. It is worthwhile to explicitly state the
consequences for the flip action here in the introduction, since the results were unknown
to the author. For the tracial range, we get

TrZ2
�

K0.A� Ì Z2/
�
D
1

2
Tr
�

K0.A� /
�
;

for any � in Tn. And as a corollary we have the following:

Corollary 1.2 (Corollary 5.11). Let �1; �2 2 Tn be non-degenerate. Let Z2 act onA�1 and
A�2 by the flip actions. Then A�1 Ì Z2 is strongly Morita equivalent to A�2 Ì Z2 if and
only if A�1 is strongly Morita equivalent to A�2 .

It is worth mentioning that the only action of a finite cyclic subgroup of Sp.3;Z; �/ on
a 3-dimensional torus A� , when � is non-degenerate, is the flip action [14, Theorem 1.4].

Apart from the applications in classification of C �-algebras, the computations of the
ranges of tracial states turn out to be useful in physics (Bellisard’s gap labelling theorem,
in particular). Our results are similar to results which appeared in connection with the
study of a twisted version of the gap labelling theorem, recently conjectured in [1]. We
hope that our techniques will be helpful for a better understanding of the conjecture.
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This article is organised as follows: in Section 2, we recall the definition of twisted
group C �-algebras and give relevant examples. In Section 3, we discuss the fundamental
projective modules over noncommutative tori. Section 4 deals with extending the funda-
mental modules to modules over orbifolds, and proving Theorem 1.1 (Theorem 4.2). In
the last section, Section 5, the proof of Theorem 1.1 (Theorem 5.2) about the ranges of
the canonical traces on orbifolds is discussed along with various examples. We also dis-
cuss the results about Morita equivalence classes of orbifolds, along with Corollary 1.2 in
Section 5.

Notation. e.x/ will always denote the number e2�ix , and idm will be the m � m unit
matrix.

2. Twisted group C �-algebras and noncommutative orbifolds

Let G be a discrete group. A map ! W G �G ! T is called a 2-cocycle if

!.x; y/!.xy; z/ D !.x; yz/!.y; z/

whenever x; y; z 2 G, and if

!.x; 1/ D 1 D !.1; x/

for any x 2 G.
The !-twisted left regular representation of the group G is given by the formula�

L!.x/f
�
.y/ D !.x; x�1y/f .x�1y/;

for f 2 l2.G/. The reduced twisted groupC �-algebraC �.G;!/ is defined as the sub-C �-
algebra ofB.l2.G// generated by the !-twisted left regular representation of the groupG.
Since we do not talk about full group C �-algebras in this paper, we simply call C �.G;!/
the twisted group C �-algebra of G with respect to !. When ! D 1, C �.G;!/ DW C �.G/
is the usual reduced group C �-algebra ofG. We refer to [9, Section 1] for more on twisted
group C �-algebras and the details of the above construction.

Example 2.1. Let G be the group Zn. For each � 2 Tn, construct a 2-cocycle on G by
defining!� .x;y/D e.h��x;yi/. The corresponding twisted groupC �-algebraC �.G;!�/
is isomorphic to the n-dimensional noncommutative torus A� , which was defined in the
introduction.

Example 2.2. Suppose that W is an invertible n � n matrix of finite order with integer
entries. Let F WD hW i act on Zn by usual matrix multiplication with vectors. Let us also
take � 2 Tn. We assume in addition that W is a � -symplectic matrix; i.e., W t�W D � .
Then we can define a 2-cocycle !0

�
on G WD Zn Ì F by !0

�
..x; s/; .y; t// D !� .x; s � y/.

Sometimes one calls the corresponding twisted group C �-algebra, C �.G;!0
�
/, a noncom-

mutative orbifold. We will come back to this example in Section 4.
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3. K-theory generators of noncommutative tori

3.1. Projective modules over noncommutative tori

In [22], Rieffel and Schwarz defined (densely) an action of the group SO.n; njZ/ on Tn.
Recall that SO.n; njZ/ is the subgroup of GL.2n;R/, which contains matrices, with
integer entries and of determinant 1, of the following 2 � 2 block form:

g D

�
A B

C D

�
;

where A, B , C , and D are arbitrary n � n matrices over Z satisfying

AtC C C tA D 0; B tD CDtB D 0; and AtD C C tB D idn :

The action of SO.n; njZ/ on Tn is defined as

g� WD .A� C B/.C� CD/�1

whenever C� C D is invertible. The subset of Tn on which the action of every g 2
SO.n; njZ/ is defined, is dense in Tn (see [22, p. 291]). We have the following theorem
due to Hanfeng Li.

Theorem 3.1 ([16, Theorem 1.1]). For any � 2 Tn and g 2 SO.n; njZ/, if g� is defined,
then A� and Ag� are strongly Morita equivalent.

For any R 2 GL.n;Z/, let us denote by �.R/ the matrix
�
R 0
0 .R�1/t

�
2 SO.n; njZ/,

and for any N 2 Tn \Mn.Z/, we denote by �.N/ the matrix
� idn N
0 idn

�
2 SO.n; njZ/.

Notice that the noncommutative tori corresponding to the matrices �.R/� D R�Rt and
�.N/� D � CN are both isomorphic to A� . Also define

SO.n; njZ/ 3 �2p WD

0BB@
0 0 id2p 0

0 idn�2p 0 0

id2p 0 0 0

0 0 0 idn�2p

1CCA ; 1 6 p 6 n=2:

We recall the approach of Rieffel [21] to find the A�2p� �A� bimodule and follow the
presentation in [16].

We fix 1 6 p 6 n=2 and let q 2 N such that n D 2p C q. Let us write � 2 Tn as�
�11 �12
�21 �22

�
, partitioned into four sub-matrices �11, �12, �21, �22, and assume �11 to be an

invertible 2p � 2p matrix. Define a new cocycle!� 0 on Zn by!� 0.x;y/D e.h�� 0x;yi=2/,
where

� 0 D

 
��111 ���111 �12

�21�
�1
11 �22 � �21�

�1
11 �12

!
D �2p�:

Set A D C �.Zn; !� / and B D C �.Zn; !� 0/. Let M be the group Rp � Zq , let G WD
M �cM , and let h�; �i be the natural pairing betweenM and its dual groupcM (our notation
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does not distinguish between the pairing of a group and its dual group, and the standard
inner product on a linear space). Consider the Schwartz space E1 WD S.M/ consisting of
smooth and rapidly decreasing complex-valued functions on M .

Denote by A1 D �.Zn; !� / and B1 D �.Zn; !� 0/ the dense sub-algebras of A and
B, respectively, consisting of formal series (of the variables ¹Uiº) with rapidly decaying
coefficients. Let us consider the following .2p C 2q/ � .2p C q/ real valued matrix:

T D

0@T11 0

0 idq
T31 T32

1A ; (3.1)

where T11 is an invertible matrix such that T t11J0T11 D �11, J0 WD
� 0 idp
� idp 0

�
, T31 D �21,

and T32 is any q � q matrix such that �22 D T32 � T t32. For our purposes, we take T32 D
�22=2.

We also define the following .2p C 2q/ � .2p C q/ real valued matrix:

S D

0B@J0.T t11/�1 �J0.T
t
11/
�1T t31

0 idq
0 T t32

1CA :
Let

J D

0@J0 0 0

0 0 idq
0 � idq 0

1A
and J 0 be the matrix obtained from J by replacing the negative entries of it by zeroes.
Note that T and S can be thought as maps from .Rn/� to Rp � .Rp/� � Rq � .Rq/�

(see the definition of an embedding map in [16, Definition 2.1]), and S.Zn/, T .Zn/ �
Rp � .Rp/� � Zq � .Rq/�. Then we can think of S.Zn/, T .Zn/ as in G via composing
S jZn , T jZn with the natural covering map Rp � .Rp/� � Zq � .Rq/� ! G. Let P 0 and
P 00 be the canonical projections of G to M and cM , respectively, and let

T 0 WD P 0 ı T; T 00 WD P 00 ı T; S 0 WD P 0 ı S; S 00 WD P 00 ı S:

Then the following formulas define a B1-A1 bimodule structure on E1:

.f U �l /.x/ D e
�˝
� T .l/; J 0T .l/=2

˛�˝
x; T 00.l/

˛
f
�
x � T 0.l/

�
; (3.2)

hf; giA1.l/ D e
�˝
� T .l/; J 0T .l/=2

˛� Z
G

˝
x;�T 00.l/

˛
g
�
x C T 0.l/

�
Nf .x/dx; (3.3)

.U
�2p�

l
f /.x/ D e

�˝
� S.l/; J 0S.l/=2

˛�˝
x;�S 00.l/

˛
f
�
x C S 0.l/

�
; (3.4)

B1hf; gi.l/ D e
�˝
S.l/; J 0S.l/=2

˛� Z
G

˝
x; S 00.l/

˛
Ng
�
x C S 0.l/

�
f .x/dx; (3.5)

where U �
l

, U �2p�
l

denote the canonical unitaries with respect to the group element l 2 Zn

in A1 and B1, respectively. See [16, Proposition 2.2] for the following well-known
result.
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Theorem 3.2 (Rieffel). The smooth module E1, with the above structures, is an B1-
A1 Morita equivalence bimodule which can be extended to a strong Morita equivalence
between B and A.

Let E denote the completion of E1 with respect to the C �-valued inner products
given above. Now, E becomes a right projective A-module which is also finitely generated
(see the discussion preceding [9, Proposition 4.6]). Note that E is a Morita equivalence
bimodule between B D A�2p� and A D A� .

3.2. Fundamental projective modules

For a definition of the pfaffian of a skew-symmetric matrixA, pf.A/, we refer to [5, Defin-
ition 3.1]. We start with the following remark.

Remark 3.3. The trace of the module E , which was computed by Rieffel [21], is exactly
the absolute value of the pfaffian of the upper left 2p � 2p corner of the matrix � , which
is �11. Indeed, as [21, Proposition 4.3, p. 289] says that the trace of E is j deteT j, where

eT D �T11 0

0 idq

�
;

the relation T t11J0T11 D �11 and the fact det.J0/ D 1 give the claim.

Let p be an integer such that 1 � p � n
2

.

Definition 3.4. A 2p-pfaffian minor (or just pfaffian minor) of a skew-symmetric matrix
A is the pfaffian of a sub-matrix MA

I of A consisting of rows and columns indexed by
i1; i2; : : : ; i2p for some numbers i1 < i2 < � � � < i2p and I WD .i1; i2; : : : ; i2p/.

Note that the number of 2p-pfaffian minors is
�
n
2p

�
and the number of all pfaffian

minors is 2n�1 � 1.
Let � 2 Tn. We will now see that for each non-zero pfaffian minor of � , we can con-

struct a projective module over A� such that the trace of this module is exactly the pfaffian
minor. Fix 1 � p � n

2
. Choose I WD .i1; i2; : : : ; i2p/ for i1 < i2 < � � � < i2p , and assume

that the pfaffian minor pf.M �
I / is non-zero (so that M �

I is invertible). Choose a permuta-
tion † 2 �n such that †.1/ D i1; †.2/ D i2; : : : ; †.2p/ D i2p . If U1; U2; : : : ; Un are
generators of A� , there exists an n � n skew-symmetric matrix, denoted by †.�/, such
that U†.1/;U†.2/; : : : ;U†.n/ are generators of A†.�/ and A†.�/ Š A� . Note that the upper
left 2p � 2p block †.�/ is exactly M �

I , which is invertible. Now, consider the project-
ive module constructed as completion of S.Rp � Zn�2p/ over A†.�/ as in the previous
subsection and denote it by E�I . The trace of this module is the pfaffian of M �

I by the
remark above, which is

P
�2….�1/

j�j
Qp
sD1 �i�.2s�1/i�.2s/ . Varying p, and assuming that

all the pfaffian minors are non-zero, we get 2n�1 � 1 projective modules. We call these
2n�1 � 1 elements the fundamental projective modules.

We recall the following fact due to Elliott which will play a key role.
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Theorem 3.5 (Elliott). Let � be a skew-symmetric real n � n matrix. Then Tr.K0.A� // is
the range of the exterior exponential

exp.�/ W ƒevenZn ! R:

We refer to [10, Theorem 3.1] for the definition of exterior exponential and the proof
of the above theorem. The range of the exterior exponential is well known and is given
below as a corollary of the above theorem:

Corollary 3.6. Tr.K0.A� // is the subgroup of R generated by 1 and the numbersX
�

.�1/j�j
mY
sD1

�j�.2s�1/j�.2s/ for 1 � j1 < j2 < � � � < j2m � n;

where the sum is taken over all elements � of the permutation group �2m such that

�.2s � 1/ < �.2s/ for all 1 � s � m and �.1/ < �.3/ < � � � < �.2m � 1/:

Noting that
P
�.�1/

j�j
Qm
sD1 �j�.2s�1/j�.2s/ is exactly the pfaffian of M �

I , where I D
.i1; i2; : : : ; i2m/, we have

Tr
�

K0.A� /
�
D ZC

X
0<jI j�n

pf.M �
I /Z; (3.6)

where jI j WD 2m for I D .i1; i2; : : : ; i2m/.
So for a non-zero pf.M �

I /, I D .i1; i2; : : : ; i2p/, we have constructed a projective mod-
ule E�I over A� , whose trace is pf.M �

I /. A quick thought shows that E�I is an equivalence
bimodule between A� and AgI;†� for some gI;† 2 SO.n; njZ/. Indeed, let R†I be the per-
mutation matrix corresponding to the permutation †. Note that †.�/ D �.R†I /� . Then
clearly gI;† D �2p�.R†I /.

3.3. Explicit generators of K0.A�/ for a general � 2 Tn

Consider the matrix Z 2 Tn whose entries above the diagonal are all 1:

Z D

0BBBBBBBBBBBBB@

0 1 � � � � � � 1

�1
: : :

: : :
:::

:::
: : :

: : :
:::

:::
: : :

: : : 1

�1 � � � � � � �1 0

1CCCCCCCCCCCCCA
:

Now, for any � 2 Tn, there exists some positive integer t , such that all the pfaffian minors
of �.tZ/� D � C tZ are positive (see [5, Proposition 4.6]). Note that A�CtZ and A�
define the same noncommutative torus. We then have the following theorem.
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Theorem 3.7. The K-theory classes of the fundamental projective modules E�CtZI , along
with Œ1�, generate K0.A�CtZ/ and hence K0.A� /.

Proof. See [5, Theorem 4.7].

4. Noncommutative orbifolds and projective modules

Let us recall Example 2.2. Let W WD .aij / be an invertible n � n matrix of finite order
with integer entries and let F be the finite cyclic group generated by W . In addition, we
assume thatW t�W D � . Hence F is a finite subgroup of Sp.n;Z; �/ WD ¹A 2 GL.n;Z/ W
AT �A D �º. By [9, Lemma 2.1], we have C �.Zn Ì F;!0

�
/ D A� Ì˛ F , where the action

of F on A� is given by (see [14, Equation (2.6)]):

˛.Ui / D e

 
nX
kD2

k�1X
jD1

akiaj i�jk

!
U
a1i
1 � � �U

ani
n ; (4.1)

where U1; : : : ; Un are the generators of A� . Sometimes we just write the crossed product
as A� Ì F , without the “˛” decoration.

Let us look into the case where nD 2. Note that Sp.2;Z; �/D SL.2;Z/. Finite cyclic
subgroups of SL.2;Z/ are up to conjugacy generated by the following four matrices:

W.2/ WD

�
�1 0

0 �1

�
; W.3/ WD

�
�1 �1

1 0

�
;

W.4/ WD

�
0 �1

1 0

�
; W.6/ WD

�
0 �1

1 1

�
;

where the notation W.r/ indicates that it is a matrix of order r . The actions of the cyc-
lic groups generated by these matrices are considered already in [9], where the authors
constructed projective modules over the corresponding crossed products using the funda-
mental projective modules.

For n � 3, finding a finite order matrix W 2 Sp.n;Z; �/ is non-trivial. In [14], and in
[12], the authors found some of the matrices for n � 3 and studied the associated actions.
Note that, for all n, there will always be a matrix W of order 2, i.e., � idn. The action by
Z2 D hW i is the flip action, which was already defined in the introduction.

One natural question is how does one extend the fundamental projective modules, E�I ,
over noncommutative tori A� to the aforementioned crossed products. In [6], this was
answered when the module E�I is a completion of S.Rp/, i.e., when the dimension of the
torus is even (D 2p), and � is invertible so that E�I is defined. This module is called the
Bott class. In this section, we do this extension for a general E�I . We need the following
proposition for such extensions.

Proposition 4.1. Suppose that F is a finite group acting on a C �-algebra A by the
action ˛. Also suppose that E is a finitely generated projective (right) A-module with
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a right action T W F ! Aut.E/, written .�; g/� �Tg , such that �.Tg/a D .�˛g.a//Tg
for all � 2 E , a 2 A, and g 2 F . Then E becomes a finitely generated projective A Ì F
module with action defined by

� �
�X
g2F

agıg

�
D

X
g2F

.�ag/Tg :

Also, if we restrict the new module to A, we get the original A-module E , with the
action of F forgotten.

Proof. This is exactly the construction of the Green–Julg map. See [9, Proposition 4.5].

Let us first recall the approach of [6], where the authors define the necessary action
of F on the Bott class which allows them to conclude that the Bott class is a projective
module over the crossed product A� Ì F , using Proposition 4.1. Hence assume n (D 2p)
to be even for the moment. Since F D hW i acts on Zn as before, we have W t�W D � .
In order to define an action of F on the Bott class, the authors (in [6]) used the so-called
metaplectic representation of the symplectic matrix T W T �1, where T tJ0T D � as in
equation (3.1). Note that, in this case, q D 0 and hence T D T11. The main idea is to use
the following metaplectic extension:

0 S1 Mpc.n/ Sp.n/ 0; (4.2)

where Sp.n/ is the usual symplectic group, and Mpc.n/ is the complex metaplectic group
(see [6, Section 5]). For our purposes, we do not need much details about the metaplectic
group, but we need to know that it has a (metaplectic) representation on S.Rp/ ([6, Defin-
ition 5.1], also see [8, Chapter 7]). Now, F Š hT W T �1i sits inside Sp.n/. But also we
have the following lift (since H2.F;S1/ is trivial, see [6, p. 158]) possible:

F

0 S1 Mpc.n/ Sp.n/ 0:

The above defines an action of F on S.Rp/ which extends to the necessary completion
(Bott class) of S.Rp/ and it satisfies the conditions of Proposition 4.1 (see [6, Theorem
5.4]). Hence the Bott class becomes a projective module over A� Ì F . In the following,
we shall often write f W for the above action of W on S.Rp/, for f 2 S.Rp/. So from
[6, Equation (5.12)] we have

.f W /Ul D
�
f ˛W .Ul /

�
W; f 2 S.Rp/; l 2 Z2p; (4.3)

which is the condition in Proposition 4.1.
Now, we take a general n, not necessarily even. We have R WD h�.R/;R2GL.n;Z/i�

SO.n;njZ/. Also forW 2 F , we have �.W t / 2 SO.n;njZ/. In this way, F � SO.n;njZ/.
Recall that gI;† D �2p�.R†I /.
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Theorem 4.2. With all the notations introduced before, assume that pf.M �
I / ¤ 0. Let

W 2 GL.n;Z/ be of finite order such that W t�W D � and F WD hW i. Suppose that
gI;†F.gI;†/

�1 �R inside SO.n; njZ/. Then E�I becomes a finitely generated, projective
module over A� Ì F .

Proof. gI;†F.gI;†/�1 �R means �2p�.R†I W
t .R†I /

�1/�2p 2R, noting that the inverse
of �2p is �2p again. Now, .R†I W

t .R†I /
�1/t is a �.R†I /� -symplectic matrix and the

algebras A�.R†I /� and A� are F -equivariantly isomorphic, where the action of F on
A�.R†I /�

is given by identifying F with h.R†I W
t .R†I /

�1/t i. So by passing from W t to
R†I W

t .R†I /
�1 if necessary, we may assume without loss of generality that E�I is an A� -

module.
From �2p�.W

t /�2p 2 R, we have

�2p�.W
t /�2p D

�
S 0

0 .S�1/t

�
; (4.4)

for some S 2 GL.n;Z/. WritingW D
�
W1 W2
W3 W4

�
, whereW1 is the 2p � 2p block, a simple

computation shows that W2 D W3 D 0 and S D
�W �11 0

0 W t
4

�
. So we have

W D

�
W1 0

0 W4

�
: (**)

Writing � D
�
�11 �12
�21 �22

�
as before, W t�W D � gives the following compatibility relations:8̂̂̂̂

<̂̂
ˆ̂̂̂:
W t
1 �11W1 D �11;

W t
1 �12W4 D �12;

W t
4 �21W1 D �21;

W t
4 �22W4 D �22:

(4.5)

Let us first write down equation (3.2), which is

.f Ul /.x/ D e
�
h�T .l/; J 0T .l/=2i

�˝
x; T 00.l/

˛
f
�
x � T 0.l/

�
; (4.6)

more explicitly. Writing l D .l1; l2/ 2 Zn, for l1 2 Z2p , l2 2 Zq , we have

T .l/ D

0@T11 0

0 idq
�21

�22
2

1A�l1
l2

�
D

0B@ T11l1

l2

�21l1 C
�22
2
l2

1CA :
Let J 00 be the matrix obtained by replacing the negative entries of J0 by zeroes. Also, if
Q0 and Q00 are the canonical projections of Rp � cRp to Rp and cRp , respectively, denote

T 011 WD Q
0
ı T11; T 0011 WD Q

00
ı T11:
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Then

e
�˝
� T .l/; J 0T .l/=2

˛�
D e

0B@�
0B@ T11l1

l2

�21l1 C
�22
2
l2

1CA �
0B@J 00 0 0

0 0 idq
0 0 0

1CA
0B@ T11l1

l2

�21l1 C
�22
2
l2

1CA =2
1CA

D e

0B@�
0B@ T11l1

l2

�21l1 C
�22
2
l2

1CA �
0B@ J 00T11l1

�21l1 C
�22
2
l2

0

1CA =2
1CA

D e.�T11l1 � J
0
0T11l1=2/e

�
� l2 � �21l1 � l2 �

�22

2
l2=2

�
D C1.l1/A.l1; l2/;

where C1.l1/ WD e.�T11l1 � J 00T11l1=2/, A.l1; l2/ WD e.�l2 � �21l1 � l2 �
�22
2
l2=2/. Also,

˝
x; T 00.l/

˛
D

*�
x1
x2

�
;

 
T 0011l1

�21l1 C
�22
2
l2

!+
D hx1; T

00
11l1i

�
x2; �21l1 C

�22

2
l2

�
D C2.x1; l1/B.x2; l1; l2/;

f
�
x � T 0.l/

�
D f

�
x1 � T

0
11l1

x2 � l2

�
;

where C2.x1; l1/ WD hx1; T 0011l1i, B.x2; l1; l2/ WD hx2; �21l1 C
�22
2
l2i.

Now, for f 2 S.Rp � Zq/, we define

.f W /.x1; x2/ WD
p

det.W4/.f ]W1/.x1/; (4.7)

where f ] 2 S.Rp/ defined as f ].x0/ D f .x0; W4x2/. Note that here we have used the
metaplectic action ofW1 on f ]. We first want to show that f ! f W extends to a unitary
operator on L2.Rp �Zq/ using the fact that the metaplectic operators are unitary. To this
end, we check that

hf W; giL2 D hf; gW
�1
iL2 ; (4.8)

which follows from the following computation:

hf W; giL2

D

Z
G

.f W /.x1; x2/g.x1; x2/dx

D
p

det.W4/
Z
G

.f ]W1/.x1/g.x1; x2/dx

D
p

det.W4/
Z
G

f ].x1/.g0W
�1
1 /.x1/dx1dx2

�
where g0.x1/ D g.x1; x2/

�
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D
p

det.W4/ det.W4/�1
Z
G

f .x1; x2/g]W
�1
1 .x1/dx1dx2 .change x2 to W �14 x2/

D

Z
G

f .x1; x2/gW �1.x1; x2/dx1dx2

D hf; gW �1iL2 :

We want to show
.f W /Ul D

�
f ˛W .Ul /

�
W D .f UW l /W: (4.9)

From equation (4.3), we already have

.f ]W1/Ul1 D .f
]UW1l1/W1: (4.10)

Now,

.f UW l /
].x1/

D .f UW l /.x1; W4x2/;

D C1.W1l1/A.W1l1; W4l2/C2.x1; W1l1/B.W4x2; W1l1; W4l2/f

�
x1 � T

0
11W1l1

W4x2 �W4l2

�
(4.5)
D C1.W1l1/C2.x1; W1l1/A.l1; l2/B.x2; l1; l2/f

�
x1 � T

0
11W1l1

W4.x2 � l2/

�
D A.l1; l2/B.x2; l1; l2/.g

]UW1l1/.x1/; where g.x1/ D f .x1; x2 � l2/:

So the RHS of (4.9) becomesp
det.W4/

�
.f UW l /

]
�
W1.x1/ D

p
det.W4/A.l1; l2/B.x2; l1; l2/

�
.g]UW1l1/W1

�
.x1/

(4.10)
D

p
det.W4/A.l1; l2/B.x2; l1; l2/.g]W1/Ul1.x1/:

Now, the LHS becomes

.f W /Ul .x/ D C1.l1/C2.x1; l1/A.l1; l2/B.x2; l1; l2/f W

�
x1 � T

0
11l1

x2 � l2

�
D
p

det.W4/C1.l1/C2.x1; l1/A.l1; l2/B.x2; l1; l2/.g]W1/.x1 � T 011l1/

D
p

det.W4/A.l1; l2/B.x2; l1; l2/.g]W1/Ul1.x1/:

Thus we have proved equation (4.9). We finish the proof with the compatibility of the
action with the inner product h�; �iA1 as defined in (3.3):

hf W; gW iA1 D ˛W �1
�
hf; giA1

�
:

This will make sure that the action of F on S.Rp � Zq/ defined through equation (4.7)
has a unique extension to E�I , and hence we can use Proposition 4.1. Now, replacing f by
f W �1, it suffices to check that

hf; gW iA1 D ˛W �1
�
hf W �1; giA1

�
: (4.11)

Note that
hf; giA1.l/ D hgU�l ; f iL2 (4.12)
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for hf; giL2 D
R
G
f .x/g.x/dx, and hence

˛W �1
�
hf; giA1

�
.l/ D

˝
g˛W .U

�
�l /; f

˛
L2
: (4.13)

Now,

hf; gW iA1.l/
(4.12)
D

˝
.gW /U�l ; f

˛
L2

(4.9)
D

Z
Rp�Zq

�
g˛W .U�l /W.x/

�
f .x/dx;

(4.8)
D

Z
Rp�Zq

�
g˛W .U�l /

�
.x/.f W �1/.x/dx;

(4.13)
D ˛W �1

�
hf W �1; giA1

�
.l/;

which is the desired identity.

Remark 4.3. The condition of the above theorem holds if and only if R†I W
t .R†I /

�1 is
of the form (**). However, the condition reveals more information: equation (4.4) really
means that one can define an action of hS t i onA�2p� , and the Morita equivalence between
A� and A�2p� can be lifted to an equivalence between the corresponding orbifolds. This
will appear in a joint work with Ullisch [7].

As an immediate corollary, we have the following:

Corollary 4.4. Let Z and t be as in Section 3.3. With all the notations introduced before,
assume that pf.M �CtZ

I / ¤ 0. Let W 2 GL.n;Z/ be of finite order such that W t�W D � ,
W tZW D Z and let F WD hW i. Suppose that gI;†F.gI;†/�1 � R inside SO.n; njZ/.
Then E�CtZI becomes a finitely generated, projective module over A� Ì F .

Proof. It follows immediately from the preceding theorem (Theorem 4.2) and Theo-
rem 3.7, noting that the isomorphism between A�CtZ and A� is F -equivariant.

The above corollary shows that under the extra assumption W tZW D Z, all the
fundamental projective modules over A�CtZ Š A� become finitely generated, projective
modules over the crossed product.

5. Some applications: Morita equivalence of noncommutative
orbifolds

5.1. Trace of the extended module

Let F be a finite group acting on a C �-algebra A. Also suppose that � is an F -invariant
trace on A. Then we can define a trace �F on A Ì F by

�F
�X
g2F

agıg

�
WD �.ae/:
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Let EF denote the finitely generated, projective A Ì F -module, which is obtained from a
finitely generated, projective A-module E , as in Proposition 4.1.

Lemma 5.1. �F .ŒEF �/D �.ŒE�/
jF j

, where ŒEF � and ŒE� denote the K-theory classes of ŒEF �
and ŒE�, respectively.

Proof. Let pF denote the projection corresponding to EF , and p the projection corres-
ponding to E . Define the canonical injection (regular representation) ‰ from A Ì F to
A˝B.l2.F // by mapping a to

P
g2F g � a ˝ pg (where pg is the projection onto the

functions supported on ¹gº) and by mapping ıg to 1˝ �.g/, where � is the right regular
representation. It is well known that the above map defines an inverse to the Green–
Julg map in F -equivariant K-theory (see e.g. [13, p. 191]). If pF is in A Ì F , let us
write pF D

P
g2F agıg . Then �F .ŒpF �/ D �.ae/. On the other hand, Œ‰.pF /� D Œp� in

K.A˝B.l2.F ///, and hence, �.Œ‰.pF /�/ D �.Œp�/. But �.Œ‰.pF /�/ D jF j�.ae/, using
the above formula of ‰ and the fact that � is F -invariant. Hence �F .ŒpF �/ D �.Œp�/

jF j
. A

similar computation holds when pF is in some matrix algebra over A Ì F .

5.2. Images of the canonical traces of noncommutative orbifolds

Let us come back to the noncommutative orbifolds. As in Example 2.2, take a finite order
matrix W 2 GL.n;Z/ such that W t�W D � . Assume that the order of W is N . We then
have C �.Zn Ì F;!0

�
/ D A� Ì˛ F , F WD hW i.

For A� Ì˛ F , the regular representation ‰ W A� Ì˛ F ,! MN .A� / is given by the
following:

‰

�N�1X
iD0

aiW
i

�
D

0BBBBBB@
a0 a1 a2 � � � aN�1

˛.aN�1/ ˛.a0/ ˛.a1/ � � � ˛.aN�2/

˛2.aN�2/ ˛
2.aN�1/ ˛

2.a0/ � � �
:::

:::
: : :

: : :
: : : ˛N�2.a1/

˛n�1.a1/ ˛N�1.a2/ � � � ˛N�1.aN�1/ ˛
N�1.a0/

1CCCCCCA : (5.1)

The canonical trace Tr on A� is clearly F -invariant. Now, the canonical trace on A� Ì F
is given by

TrF
�N�1X
iD0

aiW
i

�
WD Tr.a0/:

If we identifyA� ÌF inside MN .A� / via the map‰, the trace TrF is the normalised trace
on MN .A� /. This immediately gives

TrF
�

K0.A� Ì F /
�
�
1

N
Tr
�

K0.A� /
�
: (5.2)

So from equation (3.6) we have

TrF
�

K0.A� Ì F /
�
�
1

N

�
ZC

X
0<jI j�n

pf.M �
I /Z

�
:
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Our main theorem (Theorem 4.2) gives sufficient conditions on W so that 1
N

pf.M �
I / 2

TrF .K0.A� Ì F // as we have the following theorem.

Theorem 5.2. With all the notations introduced before, let W 2 GL.n;Z/ be of finite
order such that W t�W D � and F WD hW i. Suppose that gI;†F.gI;†/�1 � R inside
SO.n; njZ/. Then 1

N
pf.M �

I / 2 TrF .K0.A� Ì F //, where N is the order of W .

Proof. If pf.M �
I /¤0, using Theorem 4.2, E�I becomes a projectiveA�ÌF -module. Since

the trace of E�I is pf.M �
I /, use Lemma 5.1. If pf.M �

I / D 0, the statement is obvious.

We now discuss various examples. We observe that the trace of the projection p0 WD
1
N
.1CW CW 2 C � � � CW N�1/ 2 K0.A� Ì F / is 1

N
. Also for an even n with n D 2p,

and I WD .1; 2; : : : ; 2p/, † must be trivial. In this case, gI;†F.gI;†/�1 � R, since
gI;†�.W

t /.gI;†/
�1 D �.W �1/. Hence

1

N
pf.M �

I / D
1

N
pf.�/ 2 TrF

�
K0.A� Ì F /

�
;

for jI j D n D 2p. For an odd n, we of course have 1
N

pf.�/ D 0 2 TrF .K0.A� Ì F //.

Example 5.3 (2-dimensional cases). Let � be a real number. For the 2-dimensional torus
A� , we have actions of F WDhW i, where WDW.2/;W.3/;W.4/;W.6/2SL.2;Z/, on A� as in
Section 4. From the above observations, we have 1

N
and 1

N
pf
��
0 �
�� 0

��
2TrF.K0.A�ÌF //,

where N D 2; 3; 4; 6 for W D W.2/, W.3/, W.4/, W.6/, respectively. But pf
��

0 �
�� 0

��
D � .

Hence
TrF

�
K0.A� Ì F /

�
D

1

N
.ZC �Z/ D

1

N
Tr
�

K0.A� /
�
: (5.3)

In these 2-dimensional cases, the above ranges TrF .K0.A� ÌF // have already been com-
puted in [9].

Example 5.4 (diagonal actions on 4-dimensional tori). First take �1 2 Tn1.R/ and �2 2
Tn2.R/. Let W1; W2 be �1-symplectic and �2-symplectic matrices of order N1 and N2,
respectively. Then clearly W WD

�
W1 0
0 W2

�
is a � WD

�
�1 0
0 �2

�
-symplectic matrix of order

N WD lcm.N1;N2/. Hence F WD hW i acts on A� . Clearly, pf.�/, pf.�1/, pf.�2/ belong to
Tr.K0.A� //. Now, assume that these three terms are non-zero. So n1 and n2 must be even.
Then pf.�/

N
is in TrF .K0.A� Ì F //, from the previous observation. For I D .1; 2; : : : ; n1/

and I D .n1 C 1; n1 C 1; : : : ; n1 C n2/, one can choose R†I D idn1Cn2 and
� 0 idn1

idn2 0

�
,

respectively. Then one easily checks that in both cases, gI;†F.gI;†/�1 �R. Hence pf.�1/
N

,
pf.�2/
N

are in TrF .K0.A� Ì F //.
Let us specialise this example to n1 D n2 D 2. The 4 � 4 matrix � is then given by

� D

0BB@
0 �12 0 0

��12 0 0 0

0 0 0 �34
0 0 ��34 0

1CCA :
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In this case,

Tr
�

K0.A� /
�
D ZC

X
0<jI j�4

pf.M �
I /Z

D ZC pf.M �
.1;2//ZC pf.M �

.3;4//ZC pf.M �
.1;2;3;4//Z

D ZC �12ZC �34ZC �12�34Z:

Let us also take W1;W2 2 SL.2;Z/ of finite order (say N1 and N2, respectively) as in the
previous example. Then F WD hW i acts on A� , where W WD

�
W1 0
0 W2

�
. Using the above,

TrF
�

K0.A� Ì F /
�
D

1

N
Tr
�

K0.A� /
�
;

for N WD lcm.N1; N2/. One may look at [12] for more examples of a similar kind, where
one can compute the ranges of the traces explicitly just like the above.

Example 5.5 (flip actions on n-dimensional noncommutative tori). Let us consider the
flip action (W D� idn) of Z2 on an n-dimensional noncommutative torusA� . In this case,
gI;†�.W

t /.gI;†/
�1 D �.W t /. Hence gI;†F.gI;†/�1 � R trivially, for every I and †.

Hence

TrZ2
�

K0.A� Ì Z2/
�
D
1

2

�
ZC

X
0<jI j�n

pf.M �
I /Z

�
D
1

2
Tr
�

K0.A� /
�
: (5.4)

Note that Examples 5.3 and 5.5 also satisfy the conditions of Corollary 4.4.

5.3. Morita equivalence of noncommutative tori and orbifolds

To obtain results about classification, we will restrict ourselves to simple C �-algebras. We
start with the following definition.

Definition 5.6. A skew symmetric real n�nmatrix� is called non-degenerate if, whenever
x 2 Zn satisfies e.hx; �yi/ D 1 for all y 2 Zn, x D 0.

Let us denote the canonical trace of A� by Tr� . We want to prove the following the-
orem.

Theorem 5.7. Let �1 and �2 be non-degenerate inside Tn. Let W 2 GL.n;Z/ be of finite
order such thatW t�1W D �1 andW t�2W D �2. Also assume that the action of F WD hW i
on Zn is free outside the origin 0 2 Zn. Then A�1 Ì F is strongly Morita equivalent to
A�2 Ì F if and only if there exists a � > 0 such that TrF

�1
and �TrF

�2
have the same range.

It is clear that the actions in Example 5.3, Example 5.5, and the 4-dimensional example
in Example 5.4 are free outside the origin 0 2 Zn. Also in [12, 14], various examples of
W are constructed which have the same property.

The proof of Theorem 5.7 needs some preparation. Let us first recall the following
proposition.
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Proposition 5.8 ([18, Proposition 3.7]). Let A be a simple infinite dimensional separable
unital nuclear C �-algebra with tracial rank zero and which satisfies the universal coef-
ficient theorem. Then A is a simple AH algebra with real rank zero and no dimension
growth. If K�.A/ is torsion free, A is an AT algebra. If, in addition, K1.A/ D 0, then A is
an AF algebra.

Let � 2 Tn be non-degenerate. Then the following are known.

• A� is a simple C �-algebra (even the converse is true: simplicity of A� implies that �
must be non-degenerate) with a unique tracial state [18, Theorem 1.9].

• A� has tracial rank zero [18, Theorem 3.6].

• If ˇ is an action of a finite group on A� which has the tracial Rokhlin property (see [9,
Section 5]), A� Ìˇ F is a simple C �-algebra with tracial rank zero [19, Corollary 1.6,
Theorem 2.6]. Also, A� Ìˇ F has a unique tracial state [9, Proposition 5.7].

• Let W 2 GL.n;Z/ be of finite order such that W t�W D � . Then the action ˛ of
F WD hW i on A� has the tracial Rokhlin property [9, Lemma 5.10 and Theorem 5.5].

• For the action ˛, A� Ì˛ F satisfies the universal coefficient theorem [14, Proposi-
tion 3.1].

• K�.A� Ì˛ F / Š K�.C �.Zn Ì F;!0� // Š K�.C �.Zn Ì F // [9, Theorem 0.3].

For the K-groups of C �.Zn Ì F /, the following result is known.

Theorem 5.9 ([15, Theorem 0.1]). Let n;m 2 N. Consider the extension of groups

1! Zn ! Zn Ì Zm ! Zm ! 1

such that the action of Zm on Zn is free outside the origin 0 2 Zn. Then

K0
�
C �.Zn Ì Zm/

�
Š Zs0

for some s0 2 Z and K1.C �.Zn Ì Zm// Š Zs1 for s1 2 Z. If m is even, s1 D 0.

We are now ready to prove Theorem 5.7.

Proof of Theorem 5.7. The freeness condition and the fact that

K�.A� Ì F / Š K�
�
C �.Zn Ì F /

�
show that the K-groups are torsion free, using Theorem 5.9. Then the above list of results
along with Proposition 5.8 shows that A�1 Ì F and A�2 Ì F are AT algebras.

Assume that there is a � > 0 such that TrF
�1

and �TrF
�2

have the same range. Now, it is
enough to find an isomorphism

g W K0.A�1 Ì F /! K0.A�2 Ì F /

such that �TrF
�2
ıgD TrF

�1
. Indeed, g is then an order isomorphism by [2, Proposition 3.7],

and g.Œ1�/ 2 K0.A�2 Ì F /C. So there is a q 2 N and a projection p 2Mq.A�2 Ì F / such
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that Œp� D g.Œ1�/. Since A�2ÌF is simple, p is full. Then A�1ÌF and pMq.A�2ÌF /p
have isomorphic Elliott invariants of AT algebras, so A�1 Ì F Š pMq.A�2 Ì F /p by
classification ([11], [17, Theorem 5.2]). Clearly, the right-hand side algebra is Morita
equivalent to A�2 Ì F .

Let us now see the existence of the isomorphism g. Denote the ranges of TrF
�1

and
TrF
�2

by R1 and R2, respectively. Since R1 and R2 are finitely generated subgroups of R,
they are free. Also R1 D �R2 implies that they have the same rank. Now, we have the
following exact sequences:

0! ker.TrF�1/! K0.A�1 Ì F /
TrF
�1
��! R1 ! 0;

0! ker.TrF�2/! K0.A�2 Ì F / ��!
TrF
�2

R2 ! 0:

Note that the above sequences split since the K-groups are torsion free. Now, ker.TrF
�1
/

and ker.TrF
�2
/ are finitely generated abelian groups of the same rank. So there exists an

isomorphism  between them. Now, g is defined as  ˚ �, where � is the map between
R1 and R2 given by multiplication with 1

�
. Clearly, �TrF

�2
ıg D TrF

�1
, since the following

diagram commutes:

K0.A�1 Ì F / R1

K0.A�2 Ì F / R2:

TrF
�1

g �

TrF
�2

For the only if part, assume that A WD A�1 Ì F is strongly Morita equivalent to B WD

A�2 Ì F . Let X be an A�B-imprimitivity bimodule. Define a positive tracial functional
�X on B by

�X
�
hx; yiB

�
WD TrF�1

�
Ahy; xi

�
; x; y 2 X:

By [20, Corollary 2.6], TrF
�1

and �X have the same range. Since B has a unique trace TrF
�2

,
�X must be a scalar multiple of that trace.

Now, if TrF
�1

and Tr�1 have the same range up to a factor 1
jF j

, and if the same holds
for TrF

�2
and Tr�2 , we have that TrF

�1
and �TrF

�2
have the same range if and only if Tr�1

and �Tr�2 have the same range, for some � > 0. But the last condition holds if and only
if A�1 is strongly Morita equivalent to A�2 , using Theorem 5.7. This observation gives us
the following corollaries.

Corollary 5.10. Let �1 and �2 be irrational numbers and W one of the matrices W.2/,
W.3/, W.4/, W.6/ as in Section 4 (see also Example 5.3). If F WD hW i, then A�1 Ì F is
strongly Morita equivalent to A�2 Ì F if and only if A�1 is strongly Morita equivalent
to A�2 .

Proof. Since the action of F on Z2 is free outside the origin 0 2 Z2, the result follows
from the tracial range computation in Example 5.3 and Theorem 5.7.
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The above corollary is not new; see [2, Theorem 5.3].

Corollary 5.11. Let �1; �2 2 Tn be non-degenerate. Let Z2 act on A�1 and A�2 by the flip
actions. Then A�1 Ì Z2 is strongly Morita equivalent to A�2 Ì Z2 if and only if A�1 is
strongly Morita equivalent to A�2 .

Proof. It follows similarly as in Corollary 5.10 from the tracial range computation in
Example 5.5, noting that the action of Z2 is free outside the origin 0 2 Zn.

One can definitely build more examples for which similar results can be stated. For
example, a similar result is true for the 4-dimensional example in Example 5.4.

From Theorem 3.1, A� and Ag� are Morita equivalent if g� WD A�CB
C�CD

is well defined
for g 2 SO.n; njZ/. Note that if � is non-degenerate, then A� is simple, and hence Ag�
has to be simple so that g� is non-degenerate. In the case of 2-dimensional tori, we have
even a stronger result due to Marc Rieffel. Rieffel (in [20]) showed that A� and A� 0 are
Morita equivalent if and only if � and � 0 are in the same GL.2;Z/ orbit; that is, � 0 D a�Cb

c�Cd

for some matrix
�
a b
c d

�
in GL.2;Z/.

It is also known that for a non-degenerate � , the fixed point algebra AF
�

is Morita
equivalent to the crossed product algebra A� Ì F (see [23, Proposition]). Hence as a
consequence of Corollary 5.11, we have the following.

Corollary 5.12. Let �1, �2, and Z2 be as in Corollary 5.11. Then AZ2
�1

is strongly Morita
equivalent to AZ2

�2
if and only if A�1 is strongly Morita equivalent to A�2 .

A similar statement is true for the 2-dimensional cases (Example 5.3), which follows
from Corollary 5.10.
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