
J. Noncommut. Geom. 17 (2023), 407–437
DOI 10.4171/JNCG/486

© 2023 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license
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over Lie groupoids and differentiable stacks
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Abstract. We construct and study general and integrable connections on Lie groupoids and differ-
entiable stacks, as well as on principal bundles over them using an Atiyah exact sequence of vector
bundles associated to transversal tangential distributions.

1. Introduction

We develop a general theory of connections for principal bundles over Lie groupoids
and differentiable stacks using Atiyah exact sequences associated to transversal tangen-
tial distributions. The constructions presented here are inspired by the classical work of
Atiyah [4] on connections for fiber bundles in complex geometry.

Given a Lie groupoid X WD ŒX1 � X0� with both X0 and X1 smooth manifolds, such
that the source map s is a submersion, we introduce connections on X as a distribution
H � TX1 transversal to the fibers of the source map s. Such a connection is said to be
integrable or flat if, in addition, the corresponding distribution H is integrable. These
connections (respectively, flat connections) also give rise to connections (respectively, flat
connections) on differentiable stacks under certain compatibility conditions. For the par-
ticular case of Deligne–Mumford stacks, which are presented by étale Lie groupoids and
include descriptions for orbifolds and foliations, such a connection always exists. Indeed,
for a Deligne–Mumford stack a natural tangential distribution is given by the tangent bun-
dle itself.

Now given a Lie group G and a principal G-bundle over a Lie groupoid

X WD ŒX1 � X0�

equipped with such a connection H � TX1, we can define the notion of a connection
on the principal G-bundle. A principal G-bundle over the Lie groupoid X is basically
given by a principal G-bundle ˛ W EG ! X0 and some extra compatibility data reflecting
the groupoid structure. More precisely, a connection for a principal G-bundle over X
corresponds to a splitting of the associated Atiyah exact sequence of vector bundles [4]

0! ad.EG/! At.EG/! TX0 ! 0
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which satisfies the condition of being compatible with the various data of the structures
involved; the details are in Section 5. This then allows us to define the associated cur-
vature and characteristic differential forms for connections on principal bundles over Lie
groupoids.

Furthermore, using adequate groupoid presentations, these constructions extend to a
framework that enables us to define and study connections and characteristic forms for
principalG-bundles over differentiable stacks. In the particular case of Deligne–Mumford
stacks, which are represented by étale Lie groupoids, we develop the theory of connec-
tions intrinsically and construct the Atiyah exact sequence out of the stack data. This
relies on the fact that in the case of Deligne–Mumford stacks, the associated Atiyah exact
sequence is again a sequence of vector bundles in a natural way. These constructions
also correspond to related ones in [8] for the algebraic geometrical context (compare also
with [26]). Though we will work throughout this article mainly in the differentiable set-
ting, we remark that most of the concepts and constructions presented here also work
equally well in the holomorphic and algebraic geometrical setting for the differential
geometry of complex analytic and algebraic stacks. An associated Chern–Weil theory of
characteristic classes for our setting is developed in a related article by the authors [7].
Some of the constructions and results presented here were announced earlier in [9].

Versions of connections and flat connections on differentiable, complex analytic, and
algebraic stacks were also introduced using cofoliations on stacks by Behrend [6]. Inde-
pendently, Tang in [30] defined in a similar fashion flat connections for Lie groupoids,
which he called étalizations. More recently, Arias Abad and Crainic in [2] introduced
general Ehresmann connections for Lie groupoids and relate them to their framework of
homotopy representations of Lie groupoids. Connections for principal bundles over Lie
groupoids using pseudo-connection forms were studied earlier also by Laurent-Gengoux,
Tu, and Xu [24]. They also describe the associated Chern–Weil theory. Herrera and Ortiz
have informed us that they are currently also developing a similar theory for principal 2-
bundles over Lie groupoids involving Atiyah LA-groupoids. We refer the reader also to
other related work on the differential geometry of Lie groupoids and differentiable stacks
[11, 15, 19, 29, 31, 32]. There are also links with earlier work on de Rham theory for sim-
plicial manifolds [10, 16, 17].

Outline and organization of the article. In the first section (Section 2), we introduce
the category of smooth spaces over which our stacks and groupoids are constructed and
present the basic notions of fibered categories, stacks, and groupoids. We also discuss the
relation between differentiable stacks on the one side and Lie groupoids on the other. In
the following section (Section 3), we study principal bundles over differentiable stacks
and Lie groupoids and their categorical interplay. In Section 4, we introduce notions and
basic properties of connections on Lie groupoids and differentiable stacks using vertical
tangential distributions and compare our constructions with other existing frameworks in
the literature. We also construct characteristic differential forms for our general connec-
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tions. In the final section (Section 5), we define and study connections on Lie groupoids as
splittings of associated Atiyah exact sequences. Finally, we apply the theory to study con-
nections on principal bundles over differentiable stacks and give general characterizations
for connections on principal bundles over Deligne–Mumford stacks, which correspond to
étale Lie groupoids.

2. Smooth spaces, groupoids, and stacks

In this section, we will recall the main notions and constructions needed for our set-up. For
a background on the theory of stacks and its main properties, we refer to [5, 6, 18, 21, 27].

2.1. Smooth spaces and fibered categories

We shall refer to any of

• the category of C1-manifolds,

• the category of complex analytic manifolds, and

• the category of smooth schemes of finite type over the field of complex numbers,

as the category S of smooth spaces and smooth maps. The tangent bundle of any smooth
space X will be denoted by TX . A smooth space will mean an object in S, and a smooth
map will refer to a morphism in S which is a submersion, and by a submersion, we mean
a smooth map whose differential restricted to TxX is surjective for every point x of the
domain X . An étale map is a smooth immersion in S (so it is also a submersion).

For a smooth spaceX , the structure sheaf of it will be denoted by OX . A vector bundle
on X will be identified with its sheaf of sections, which is a finitely generated locally
free sheaf of OX -modules. The cotangent bundle of X will be denoted by �1X D T

�X ,
and the p-th exterior power of T �X will be denoted by �pX WD

Vp
T �X . An integrable

distribution on a smooth space X is a subbundle H � TX of the tangent bundle of X
such that its annihilator H? generates an ideal in

L
k�0�

k
X which is preserved by the

exterior differential of the de Rham complex; equivalently, H is closed under the Lie
bracket operation on vector fields.

The big étale site Set on the category S is given by the following Grothendieck topol-
ogy on S. We call a family ¹Ui ! Xº of morphisms in S with target X a covering family
of X if all smooth maps Ui ! X are étale and the total map from the disjoint uniona

i

Ui ! X

is surjective. This defines a pretopology on S generating a Grothendieck topology, which
is known as the big étale topology on S (compare with [3, Exposé II] and [33]). If either
or both of two morphisms U ! X and V ! X in S is a submersion, then their fiber
product U �X V ! X exists.
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Definition 2.1 (Groupoid fibration). A groupoid fibration over S is a category X, together
with a functor

�X W X! S

satisfying the following axioms:

(i) for every morphism V ! U in S, and every object x of X lying over U , there
exists an arrow y ! x in X lying over V ! U ;

(ii) for every commutative triangle

W ! V ! U

in S and all morphisms z! x and y! x in X lying overW ! U and V ! U

respectively, there exists a unique arrow z ! y in X lying over W ! V such
that the composition

z ! y ! x

is the morphism z ! x.

The condition (ii) in Definition 2.1 ensures that the object y over V , which exists by
Definition 2.1 (i), is unique up to a unique isomorphism. Any choice of such an object y
is called a pullback of x via the morphism f W V ! U . We will write as usual y D xjV
or y D f �x.

Let X be a groupoid fibration over S. The subcategory of X consisting of all objects
lying over a fixed object U of S with the morphisms being those lying over the identity
morphism idU is called the fiber or category of sections of X over U . The fiber of X over
U will be denoted by X.U /.

Groupoid fibrations over S form a 2-category in which fiber products exist (see [20,
33]). For two groupoid fibrations

�X W X! S and �Y W Y! S;

the 1-morphisms from X to Y are given by functors � W X! Y such that

�Y ı � D �X:

The 2-morphisms are given by natural transformations between these projection functor
preserving functors.

Example 2.2. Let F WS! .Sets/ be a presheaf, meaning a contravariant functor. We get
a groupoid fibration X, where the objects are pairs of the form .U; x/, with U a smooth
space and x 2 F.U /, while a morphism .U; x/! .V; y/ is a smooth map f W U ! V

such that x D yjF.U/, equivalently, x D F.f /.y/. The projection functor is given by

� W X! S; .U; x/ 7! U:
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Therefore, any sheaf F W S! .Sets/ gives a groupoid fibration over S. In particular,
every smooth space X gives a groupoid fibration X over S as the sheaf represented by X ,
in other words,

X.U / D HomS.U;X/:

To simplify notation, we will identify X with the smooth space X without further clarifi-
cation.

A category X fibered in groupoids over S is representable if there exists a smooth
space X isomorphic to X as groupoid fibrations over S. We call a morphism of groupoid
fibrations X! Y a representable submersion if for every smooth space U and every mor-
phism U ! Y, the fiber product X �Y U is representable, and the induced morphism of
smooth spaces X �Y U ! U is a submersion.

2.2. Stacks over smooth spaces

Now let us recall the definition of a stack [5,6]. We clarify that a stack X here will always
mean a stack over the big étale site Set of smooth spaces.

Definition 2.3 (Stack). A groupoid fibration X over S is a stack if the following gluing
axioms hold with respect to the site Set .

(i) Take any smooth space X in S, any two objects x, y in X lying over X and any
two isomorphisms

�;  W x ! y

over X . If the condition �jUi D  jUi holds for all Ui in a covering ¹Ui ! Xº,
then � D  .

(ii) Take any smooth space X in S, any two objects x; y 2 X lying over X , and any
covering ¹Ui ! Xº with isomorphisms

�i W xjUi ! yjUi

for every i . If the condition �i jUij D �j jUij holds for all i , j , then there exists
an isomorphism � W x ! y with �jUi D �i for all i .

(iii) For any smooth space X in S, any covering ¹Ui ! Xº, any family ¹xiº of
objects xi in the fiber XUi , and any family of morphisms ¹�ij º, where

�ij W xi jUij ! xj jUij

satisfies the cocycle condition �jk ı �ij D �ik in X.Uijk/, there exists an object
x lying over X with isomorphisms

�i W xjUi ! xi

such that �ij ı �i D �j in X.Uij /.

The isomorphism � in Definition 2.3 (ii) is unique by Definition 2.3 (i). Similarly,
from Definition 2.3 (i) and Definition 2.3 (ii), it follows that the object x whose existence
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is asserted in Definition 2.3 (iii) is unique up to a unique isomorphism. All pullbacks
mentioned in Definition 2.3 are only unique up to isomorphism, but the properties do not
depend on particular choices.

In order to be able to do geometry on stacks, we need to compare them with smooth
spaces and extend the geometry to stacks. From now on, we will restrict ourselves to
stacks over the category S of C1-manifolds, but we remark that we have incarnations of
the analogue concepts and constructions for the category S of complex analytic manifolds
as well as smooth schemes of finite type over the complex numbers.

Definition 2.4 (Differentiable stack). A stack X over the site Set is called differentiable
if there exists a smooth space X in S and a surjective representable submersion

x W X ! XI

i.e., there exists a smooth space X together with a morphism of stacks

x W X ! X;

such that for every smooth space U and every morphism of stacks U ! X, the following
two hold:

(1) the fiber product X �X U is representable, and

(2) the induced morphism of smooth spacesX �X U ! U is a surjective submersion.

If X is a differentiable stack, such a surjective representable submersion x W X ! X

is called a presentation or atlas for the stack X. It need not be unique, in other words, a
differentiable stack can have different presentations.

Definition 2.5. A differentiable stack X is a (proper) Deligne–Mumford stack if it has a
(proper) étale presentation.

Orbifolds correspond to proper Deligne–Mumford stacks (see [6, 26]).
The incarnations of these concepts over the site Set of complex analytic manifolds,

respectively, smooth schemes of finite type over C, will be referred to as complex analytic
stacks, respectively, algebraic stacks.

2.3. Lie groupoids and differentiable stacks

Differentiable stacks are also incarnations of Lie groupoids, as we will recall now in detail
(see also [5, 14]).

Definition 2.6 (Lie groupoid). A Lie groupoid X D ŒX1 � X0� is a groupoid internal to
the category S of smooth spaces, meaning the space X1 of arrows and the space X0 of
objects are objects of S and all structure morphisms

s; t W X1 ! X0; m W X1 �s;X0;t X1 ! X1;

i W X1 ! X1; e W X0 ! X1

are morphisms in S (so they are smooth maps). Here s is the source map, t is the target
map, m is the multiplication map, e is the identity section, and i is the inversion map of
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the groupoid. The source map s is a submersion. Using i , this implies that the target map
t is also a submersion.

If s and t are étale, the groupoid X D ŒX1 � X0� is called étale. If the anchor map

.s; t/ W X1 ! X0 �X0

is proper, the groupoid is called a proper groupoid.
A Lie group G is a Lie groupoid ŒG � �� with one object, meaning the space X0 is

just a point in S.

Every Lie groupoid X D ŒX1 � X0� gives rise to the associated tangent groupoid
TX WD ŒTX1 � TX0�.

Example 2.7. Let X be a smooth space. The groupoid fibration X is, in fact, a differen-
tiable stack over S. A presentation is given by the identity morphism idX .

Example 2.8 (Classifying stack). For a Lie group G, let BG be the category which has
as objects all pairs .P; S/, where S is a smooth space of S and P is a principal G-bundle
over S ; a morphism .P; S/! .Q; T / is a commutative diagram

P
'
//

��

Q

��

S // T;

where ' W P !Q is aG-equivariant map. Note that the above diagram is Cartesian. Then
BG together with the projection functor

� W BG ! S; .P; S/ 7! S

is a groupoid fibration over S. We note that BG is in fact a differentiable stack, and it is
known as the classifying stack of G (see also Example 2.11). A presentation is given by
the representable surjective submersion � ! BG, where � is a “point” in S.

Definition 2.9. Let X D ŒX1 � X0� be a Lie groupoid. A (left) X-space is given by an
object P of S together with a smooth map � W P ! X0 and a map

� W Q WD X1 �s;X0;� P ! P; �.; x/ WD  � x;

such that

(i) �. � x/ D t ./ for all .; x/ 2 X1 �s;X0;� P ,

(ii) e.�.x// � x D x for all x 2 X1, and

(iii) .ı � / � x D ı � . � x/ for all .; ı; x/ 2 X1 �s;X0;t X1 �s;X0;� P .

Similarly, we can also define a (right) X-space.

Let X be a differentiable stack with a given presentation x W X ! X. We can associate
to X a Lie groupoid XD ŒX1�X0� as follows: let X0 WDX and X1 WDX �X X with the
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source and target morphisms
s; t W X �X X � X

of X being the first and second canonical projection morphisms. The composition of mor-
phisms m in X is given as projection to the first and third factor

X �X X �X X Š .X �X X/ �X .X �X X/! X �X X:

The morphism X �X X ! X �X X that interchanges the two factors gives the inverse
morphism i for the groupoid, while the unit morphism e is given by the diagonal morphism
X ! X �X X . As a presentation x W X ! X of a differentiable stack is a submersion, it
follows that the source and target morphisms

s; t W X �X X � X;

being induced maps from the fiber product, are also submersions.
In the opposite direction, given a Lie groupoid X, we can associate a differentiable

stack X to it. Basically, this is a generalization of associating to a Lie group G its classi-
fying stack BG (see Example 2.8). For this we now define the following (compare also
with [5]).

Definition 2.10 (Torsors). Let X D ŒX1 � X0� be a Lie groupoid, and let S be a smooth
space. A (left) X-torsor over S is a smooth space P together with a surjective submersion
� W P ! S and a right action of X on P (see the second part of Definition 2.9) satisfying
the condition that � is X-invariant; i.e., �. � p/D �.p/ for all .;p/ 2X1 �s;X0;a P and
the extra condition that for all p;p0 2 P with �.p/D �.p0/, there exists a unique x 2 X1
such that p � x is defined and p � x D p0.

Let � W P ! S and � W Q! T be X-torsors. A morphism of X-torsors from the first
one to the second one is given by a Cartesian diagram of smooth maps

P
'
//

��

Q

��

S // T

(2.1)

such that ' is an X1-equivariant map. Again, there is also a similar notion of a (right)
X-torsor over a smooth space S .

Given an X-torsor P , the map a W P ! X0 is called the anchor map or momentum
map. The surjective submersion � W P ! S is called the structure map.

For a Lie groupoid XD ŒX1 �X0�, let BX denote the category of X-torsors, meaning
the category whose objects are pairs .P; S/, where S is a smooth space and P is an X-
torsor over S . The morphisms .P; S/! .Q; T / are given by Cartesian diagrams as in
(2.1). Then BX is a groupoid fibration over S with a canonical projection functor

� W BX! S; .P; S/ 7! S:

It turns out that BX is, in fact, a differentiable stack, the classifying stack of X-torsors.
The proof of [5, Prop. 2.3] works in any of the three categories S.
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Example 2.11. In the case where the Lie groupoid X D ŒG � �� is a Lie group, an X-
torsor over a smooth space S is simply a G-torsor or principal G-bundle over S . The
associated classifying stack is the classifying stack BG of the Lie group G.

As presentations for a given differentiable stack are not unique, the associated Lie
groupoids might be different. In order to define algebraic and geometric invariants for
differentiable stacks, like cohomology or differential forms, they should, however, be inde-
pendent from the choice of a presentation for the given stack. Therefore, it is important to
know under which conditions two different Lie groupoids give rise to isomorphic differ-
entiable stacks.

Definition 2.12. Let XD ŒX1 � X0� and Y D ŒY1 � Y0� be Lie groupoids. A morphism
of Lie groupoids is a functor � W X! Y given by two smooth maps � D .�1; �0/ with

�0 W X0 ! Y0; �1 W X1 ! Y1

which commute with all structure morphisms of the groupoids.
A morphism � WX! Y of Lie groupoids is an étale morphism if both maps �0 WX0!

Y0 and �1 W X1 ! Y1 are étale.
A morphism � W X! Y of Lie groupoids is a Morita morphism or essential equiva-

lence if

(i) �0 W X0 ! Y0 is a surjective submersion, and

(ii) the diagram

X1
.s;t/
//

�1
��

X0 �X0

�0��0
��

Y1
.s;t/

// Y0 � Y0

is Cartesian, or in other words, X1 Š Y1 �Y0�Y0 .X0 �X0/.

Two Lie groupoids X and Y are Morita equivalent if there exists a third Lie groupoid W
and Morita morphisms

X
�
 �W

 
�! Y :

Theorem 2.13 (Morita equivalence). Let X D ŒX1 � X0� and Y D ŒY1 � Y0� be Lie
groupoids. Let X and Y be the associated differentiable stacks; i.e., X is the classifying
stack BX of X-torsors and Y is the classifying stack BY of Y -torsors. Then the following
three statements are equivalent:

(i) the differentiable stacks X and Y are isomorphic;

(ii) the Lie groupoids X and Y are Morita equivalent;

(iii) there exists a smooth spaceQ together with two smooth maps f WQ! X0 and
g W Q! Y0 and (commuting actions) of X1 and Y1 in such a way that Q is at
the same time a left X-torsor over Y0 via g and a right Y -torsor over X0 via f ;
in other words, Q is a X-Y -bitorsor.
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Proof. For the differentiable category of C1-manifolds, see [5, Thm. 2.2]. It is immediate
to see that the proof works verbatim for any of the other categories S of smooth spaces,
meaning for complex analytic as well as algebraic stacks.

Therefore, different presentations of the same differentiable stack are given by Morita
equivalent Lie groupoids. Conversely, Morita equivalent Lie groupoids present isomorphic
differentiable stacks. The case of étale groupoids presenting Deligne–Mumford stacks is
of particular importance as these can be used naturally also to describe orbifolds and
foliations [12, 13, 25].

3. Principal bundles over differentiable stacks and Lie groupoids

In this section, we will define the notion of a principalG-bundle over a differentiable stack
and over a Lie groupoid.

3.1. Principal bundles over differentiable stacks

Let us start with the definition of principal bundles over differentiable stacks.

Definition 3.1 (Principal bundle over differentiable stack). Let G be a Lie group and X

a differentiable stack. A principal G-bundle or G-torsor EG over X is given by a differ-
entiable stack EG , a morphism of differentiable stacks � W EG ! X, and a 2-Cartesian
diagram

EG �G
� //

p1

��

EG

�

��w�
EG

� // X

such that for any submersion
f W U ! X

from a smooth space U , the pullback by f in the above diagram defines a principal G-
bundle on U . Morphisms � W EG ! FG between two principal G-bundles EG and FG are
defined in the obvious way.

PrincipalG-bundles over a differentiable stack X can also be defined directly by using
a presentation or atlas. In other words, a principalG-bundle EG over a differentiable stack
X is given by a principal G-bundle EG ! X0 for an atlas X0 ! X together with an iso-
morphism of the pullbacks p�1EG

�
�! p�2EG on the fiber product X0 �X X0 satisfying the

cocycle condition on X0 �X X0 �X X0. It turns out that for any submersion f W U!X,
this datum defines a principal G-bundle EG ! U over U , because X0 �X U ! U has
local sections. Therefore, we get a differentiable stack EG and the G-multiplication map
glues and comes with a natural morphism of stacks EG � G ! EG (see [8, 21, 27]). We
can reformulate all this more explicit also as follows: for each smooth atlas u W U ! X,
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we are given a principal G-bundle EG;u over U and for each 2-commutative diagram of
the form

U

u
��

'
// V

v
��

X

(3.1)

with a 2-isomorphism ˛ W u) v ı ', where u, v are smooth atlases, we are given an
isomorphism

�';˛ W EG;u
Š
�! '�EG;v

satisfying the cocycle condition which says that for each 2-commutative diagram of the
form

U

u
  

'
// V

 
//

v

��

W

w
~~

X

together with 2-isomorphisms ˛ W u) v ı ' and ˇ W v) w ı , we have a commutative
diagram

EG;u
� ı';ˇı˛

Š
//

�';˛ Š

��

. ı '/�EG;w

'�EG;v
Š

'�� ;ˇ

// .'� ı  �/EG;w :

If FG is another principal G-bundle over X, then a morphism f W EG ! FG is given
by a morphism fu W EG;u ! FG;u for each smooth atlas u W U ! X such that for any
2-commutative diagram of the form (3.1), we have a commutative diagram

EG;u
fu //

�
EG
';˛ Š

��

FG;u

�
FG
';˛Š

��

'�EG;v
'�fv

// '�FG;v:

The category of principal G-bundles over a differentiable stack X forms in a natural way
a groupoid fibration BunG.X/ over S. In fact, we get the following characterization from
the above (compare also with [8, 21]):

Proposition 3.2. Let X be a differentiable stack and G a Lie group with classifying
stack BG. Giving a principal G-bundle over X is equivalent to giving a morphism of
stacks X! BG and two principal G-bundles over X are isomorphic if and only if the
corresponding morphisms of stacks X! BG are 2-isomorphic.

We consider the groupoid fibration BunG.X/ over S whose objects over a smooth
space U are principal G-bundles EG over X � U and whose morphisms are given by
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pullback diagrams of principal G-bundles. Given two differentiable stacks X and Y, we
also have the groupoid fibration Hom.X; Y/ over S, whose groupoid of sections over a
smooth space U is the groupoid of 1-morphisms or functors

Hom.X;Y/.U / D HomU .X � U;Y � U/:

Let us remark that if in addition X is proper and Y of finite presentation, then Hom.X;Y/
is again a differentiable stack and, in particular, if Y is a Deligne–Mumford stack, then
the Hom stack Hom.X; Y/ is also a Deligne–Mumford stack (compare with [1, 28]). We
can now make the following straightforward observation using Proposition 3.2 (compare
with [8]).

Proposition 3.3. There is an equivalence of groupoid fibrations over S

BunG.X/ Š Hom.X;BG/:

3.2. Principal bundles over Lie groupoids

Let us now recall the general notion of a principal G-bundle over a Lie groupoid (see
[24, 32]).

Given an X-space � W P ! X0 for a Lie groupoid X D ŒX1 � X0�, we have for any
 2 X1 a smooth isomorphism in S

l W �
�1.u/! ��1.v/; x 7!  � x;

where u D s./ and v D t ./. Associated to this X-space is a transformation groupoid
P D ŒQDX1 �s;X0;� P �P �, where the source and target maps are given by s.;x/D x
and t .; x/ D  � x. The multiplication map is given by

.; y/ � .ı; x/ D . � ı; x/;

where y D ı � x. The first projection defines a strict homomorphism of Lie groupoids from
P D ŒQ � P � to X D ŒX1 � X0�.

Definition 3.4 (Principal bundle over Lie groupoid). Let G be a Lie group and X D
ŒX1 � X0� a Lie groupoid. A principal G-bundle or G-torsor over X, denoted by EG WD
Œs�EG � EG �, is given by a principal (right) G-bundle � W EG ! X0, which is also an
X-space such that for all x 2 EG and all  2 X1 with s./ D �.x/, we have

. � x/ � g D  � .x � g/ for all g 2 G:

Let s�EG D X1 �s;X0;� EG be the pullback along the source map s. Then

EG D Œs
�EG � EG �

is in a natural way a Lie groupoid, the transformation groupoid with respect to the X1-
action.
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Example 3.5. Let G and H be Lie groups, and let X D ŒH � X0 � X0� be the trans-
formation groupoid over a smooth space X0. Then a principal G-bundle over X is an
H -equivariant principal G-bundle over X0. In particular, if X D ŒX0 � X0� with both
structure maps s; t being the identity map idX0 , then a principal G-bundle over X is just a
principal G-bundle over X0.

Example 3.6. Let G, H be a pair of Lie groups and X D ŒH � �� the single object
Lie groupoid associated to the Lie group H . Then a left-action of H on G satisfying
h � .gg0/D .h � g/g0 for all h 2H and g;g0 2 G defines a principalG-bundle over X, and
vice versa.

Similarly, we can define vector bundles of rank n over a Lie groupoid X and over
a differentiable stack X. They can be identified with the principal GLn-bundles over X
and X, respectively.

The following theorem generalizes [5, Prop. 4.1] for arbitrary principal bundles and
the proof given below is a variation of the argument for S1-bundles.

Theorem 3.7. Let G be a Lie group, X a differentiable stack, and X D ŒX1 � X0� a Lie
groupoid presenting X. Then there is a canonical equivalence of categories:

BunG.X/ Š BunG.X/;

where BunG.X/ is the category of principal G-bundles over X and BunG.X/ is the cate-
gory of principal G-bundles over X.

Proof. Let us first assume we have given a principal G-bundle � W EG ! X over the
differentiable stack X. Let EG be the pullback of X0! X via � ; in other words, we have
a 2-Cartesian diagram

EG //

��

X0

��

EG
� // X:

This means that EG ! X0 is a principal G-bundle over X0 and EG ! EG is a repre-
sentable surjective submersion. Let EG D Œs�EG � EG � be the associated Lie groupoid,
which comes with an induced morphism of Lie groupoids

EG D Œs
�EG � EG �! X D ŒX1 � X0�

and gives rise to the Cartesian diagram

s�EG //

��

X1

��

EG // X0:
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In other words, we get a pullback diagram of smooth spaces in which the vertical maps are
source maps. This implies that s�EG!EG is a principalG-bundle, and the vertical maps
are morphisms of G-bundles. Therefore, X1 acts on EG and EG becomes an X-space
which actually turns EG D Œs�EG � EG � into a principal G-bundle over the groupoid
X D ŒX1 � X0�.

In fact, we get a functor ‰ W BunG.X/! BunG.X/, which associates the principal
G-bundle EG D Œs�EG � EG � over the Lie groupoid X to the given principal G-bundle
EG ! X.

Now let us assume conversely, that we have given a principal G-bundle

EG D Œs
�EG � EG �

over the Lie groupoid X D ŒX1 � X0�. This means that we have a principal G-bundle
� W EG ! X0, which is also an X-space satisfying the conditions given in Definition 3.4.
Recall that

s�EG D X1 �s;X0;� EG

is the pullback along the source map s, and EG D Œs�EG � EG � is in a natural way a Lie
groupoid. It follows also that s�EG becomes in a natural way a G-bundle over X1, and
we have a morphism of Lie groupoids

EG D Œs
�EG � EG �! X

which respects the G-bundle structures of � W s�EG ! X1 and � W EG ! X0. Let EG WD
BEG be the associated differentiable stack of EG-torsors. The morphism of Lie groupoids
EG!X induces a morphism between the associated differentiable stacks EG!X, which
is representable, as its pullback to X0 is the map � W EG ! X0 between smooth spaces:

EG //

��

EG

��

X0 // X

Furthermore, it follows that the pullback of the morphism of stacks EG ! X along any
morphism U ! X from a smooth space U is a principal G-bundle. Therefore, EG is a
principal G-bundle over the differentiable stack X.

Finally, we get a functor in the opposite direction ˆ W BunG.X/! BunG.X/, which
associates the principal G-bundle EG ! X to the given principal G-bundle

EG D Œs
�EG � EG �

over the Lie groupoid X. It is easy to see that the functors ‰ and ˆ are mutually inverse
and give the desired equivalence of categories.

The following definition allows for yet another alternative description of principal G-
bundles over Lie groupoids.
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Definition 3.8. Let X D ŒX1 � X0� be a Lie groupoid and G a Lie group. A principal
G-groupoid over X is a Lie groupoid P D ŒQ � P � together with a groupoid morphism

G // Q
� //

Qt

��

Qs

��

X1

t

��

s

��

G // P
� // X0

such that both G ! Q
�
�! X1 and G ! P

�
�! X0 are principal G-bundles, and, further-

more, the following conditions hold:

(1) the source and target maps Qs and Qt on Q are G-equivariant,

(2) the identity section Qe W P ! Q is G-equivariant,

(3) the inversion map Qi WQ!Q satisfies the identity Qi.zg/ D Qi.z/g�1 for all z 2Q
and g 2 G, and

(4) the multiplication mapQ �s;X0;t Q!Q isG-equivariant for the diagonal action
of G on Q �s;X0;t Q.

There is an obvious notion of a morphism between principal G-groupoids, and we
can speak of the category BunG;X of principal G-groupoids over X, which yields the
following equivalent characterization of the category of principal G-bundles over a given
Lie groupoid X.

Proposition 3.9. Let G be a Lie group and X D ŒX1 � X0� a Lie groupoid. Then there
is a canonical equivalence of categories

BunG.X/ Š BunG;X;

where BunG.X/ is the category of principal G-bundles over X, and BunG;X is the cate-
gory of principal G-groupoids over X.

Proof. The proof is that for the differentiable category given in [24, Lem. 2.5] and works
equally well in the complex analytic and algebraic context.

Remark 3.10. It can be shown that principal G-bundles over a Lie groupoid

X D ŒX1 � X0�

are also equivalent to generalized homomorphisms from X to the Lie groupoid BG D
ŒG � ��, which is Morita equivalent to the gauge groupoid PGauge WD ŒP � P=G � X0�.
In [24, Prop. 2.13, Prop. 2.14, and Thm. 2.15], this is discussed in the differentiable setting,
but this makes sense again in any of the categories S of smooth spaces.

4. Connections on Lie groupoids and differentiable stacks

In this section, we define and study the notion of connections on Lie groupoids and differ-
entiable stacks.
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4.1. Connections on Lie groupoids and differentiable stacks

Let us start with the general definition of a connection on a Lie groupoid.
Let .X D ŒX1 � X0�; s; t; m; e; i/ be a Lie groupoid. Let

K WD kernel.ds/ � TX1 (4.1)

be the vertical tangent bundle for s. Since the source map s W X1 ! X0 is a submersion,
K is a subbundle of TX1. Fix a distribution on X1 given by a subbundle H � TX1 such
that the natural homomorphism

K ˚H ! TX1 (4.2)

is an isomorphism, so H is a complement of K . Let

dH s WD .ds/jH W H ! s�TX0

be the restriction of ds to H . Note that dH s is an isomorphism because the homomor-
phism in (4.2) is an isomorphism.

Let dt W TX1 ! t�TX0 be the differential of the map t . Consider the homomorphism

� WD dt ı .dH s/
�1
W s�TX0 ! t�TX0: (4.3)

For any y 2 X1, let
�y WD � j.s�TX0/y W Ts.y/X0 ! Tt.y/X0 (4.4)

be the restriction of � to the fiber .s�TX0/y D Ts.y/X0.
We can then define generally the following:

Definition 4.1 (Connection on a Lie groupoid). A connection on a Lie groupoid X D
ŒX1 � X0� is a distribution H � TX1 given by a subbundle complementing K such that

(i) for every x 2 X0, the image of the differential

de.x/ W TxX0 ! Te.x/X1

coincides with the subspace He.x/ � Te.x/X1, and

(ii) for every y; z 2 X1 with t .y/ D s.z/, the homomorphism

�m.z;y/ W Ts.y/X0 ! Tt.z/X0

coincides with the composition �z ı �y (see (4.4)).

A connection on X is said to be flat (or integrable) if the distribution H � TX1 defining
the connection is integrable.

Henceforth, we will denote m.y; z/ D y ı z. Similarly, for the pairs .y; v/; .z; w/ 2
TX1 such that s.y/ D t .z/, dty.v/ D dsz.w/, the composition dm..y; v/; .z; w// in the
induced tangent Lie groupoid TX D ŒTX1 � TX0� will be denoted by .y ı z; v ı w/.

We will now discuss some functoriality properties for our notion of connection on Lie
groupoids.
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Proposition 4.2. Let X D ŒX1 � X0� and Y D ŒY1 � Y0� be Lie groupoids, and let

� D .�1; �0/ W X! Y

be a Morita morphism. Let
H � T Y1

be a distribution that defines a connection on the groupoid Y . Then H induces a connec-
tion on the groupoid X.

Proof. Recall from Definition 2.12 (i) that the map �0 W X0 ! Y0 is a surjective submer-
sion. Hence from Definition 2.12 (ii) it follows that

�1 W X1 ! Y1

is also a surjective submersion. Let

d�1 W TX1 ! T Y1

be the differential of the map �1. Let H � T Y1 be the distribution inducing a connection
on the groupoid Y . Now define

zH WD .d�1/
�1.��1H / � TX1:

Since �1 is a surjective submersion, it follows that zH � TX1 is a distribution and therefore
defines a connection on the groupoid X.

Similarly, as in [6], we can study functorial behavior with respect to horizontal mor-
phisms of Lie groupoids.

Definition 4.3. Let X D ŒX1 � X0� and Y D ŒY1 � Y0� be Lie groupoids and let � D
.�1; �0/ W X ! Y be a morphism. Suppose that H � TX1 defines a connection on X
and L � T Y1 a connection on Y . The morphism � is called horizontal if the differential
d�1 W TX1 ! T Y1 maps H into L.

Proposition 4.4. Let X and Y be Lie groupoids together with an étale morphism � D

.�1; �0/ W X! Y . Then any connection L on Y induces a unique connection H on X
such that � is a horizontal morphism. If the connection L is integrable, then also the
induced connection H is integrable.

Proof. Given a connection L on the groupoid Y , the unique connection H on the groupoid
X is given by the fiber product H WD L �TY1 TX1.

In particular, a connection (respectively, flat connection) on an étale groupoid induces
then a connection (respectively, flat connection) on the associated Deligne–Mumford stack
BX, the classifying stack of X-torsors.
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Example 4.5. Let X D ŒX � X� be the Lie groupoid associated to a smooth space X .
Then kernel.ds/ D ¹0º and the map x 7! HxX WD TxM , x 2 X , defines an integrable
connection HX � TX on X.

Example 4.6. More generally, for an étale Lie groupoid XD ŒX1 �X0�, since the differ-
ential ds W TX1! s�TX0 is an isomorphism, the distribution HX D TX1 is an integrable
connection on the Lie groupoid X.

Example 4.7. Let � W E ! X be a finite rank vector bundle over a smooth space X . We
get a Lie groupoid XD ŒE � X� with the source and target maps both being � . Then any
two composable morphisms belong to the same fiber, and the composition can be defined
as addition of vectors in that fiber. Any connection on the vector bundle � W E ! X

smoothly splits E into the horizontal component and kernel.ds/. This gives a connection
on the associated Lie groupoid X D ŒE � X�. Integrability of one connection implies
integrability of the other.

Example 4.8. LetG be a Lie group. Given a principalG-bundle � WP !X over a smooth
space X , one defines the Atiyah or gauge groupoid PGauge WD ŒP�P

G
� X� by building

the quotient of the groupoid ŒP � P � P � with respect to the diagonal action of G on
P �P . A connection ! on the principal bundle � W P !X gives aG-invariant horizontal
distribution H � TP complementing the kernel. We define a connection HPGauge on the
Lie groupoid PGauge by

HŒp;q� WD
Hp ˚ TqP

Tp;q .p; q/ �G
� TŒp;q�

P � P

G
;

where .p; q/ �G � P � P is the orbit of the element .p; q/ 2 P � P . Integrability of the
connection ! implies integrability of HPGauge .

Remark 4.9. Related constructions of connections and flat connections on groupoids and
on stacks in the algebro-geometric, differentiable, and holomorphic context were also
studied by Behrend in [6]. Flat connections in the differentiable setting for Lie groupoids
were also independently introduced as étalifications by Tang [30]. These constructions
give all rise to subgroupoids of the associated tangent groupoid TX of a groupoid X ,
which in the differentiable category is equivalent to the horizontal paths forming a sub-
groupoid of the path groupoid of X. This is used by Laurent-Gengoux, Stiénon, and Xu in
[23] to define connections in the general framework of non-abelian differentiable gerbes
via Ehresmann connections on Lie groupoid extensions. They also appear as multiplicative
distributions on Lie groupoids in recent work by Drummond and Egea [15] and Trenti-
naglia [31]. Another definition of a general Ehresmann connection for Lie groupoids was
more recently also given and discussed by Arias Abad and Crainic [2].

We will now point out some additional properties of our constructions of connections
for Lie groupoids to highlight the relation with other constructions existing in the literature
and here in particular with those in [2, 6].
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Let H � TX1 be a connection on a Lie groupoid X D ŒX0 � X1�. The connection
defines a groupoid Œs�TX0 � TX0� as follows. Without loss of any information we denote
an element .; s./; v/ of s�TX0 by .; v/, where v 2 Ts./X0. The source, target, and
composition maps are then, respectively, given by

s W .; v/ 7!
�
s./; v

�
;  2 X1; v 2 Ts./X0;

t W .; v/ 7!
�
t ./; � .v/

�
;

.2; v2/ ı .1; v1/ D .2 ı 1; v1/:

(4.5)

The inversion and unit maps are obvious. Note that the composition is well defined because
of condition (ii) in Definition 4.1. Similarly, Œt�TX0 � TX0� is a groupoid with the cor-
responding structure maps given as

s W .; u/ 7!
�
s./; ��1.u/

�
;  2 X1; u 2 Tt./X0;

t W .; u/ 7!
�
t ./; u

�
;

.2; u2/ ı .1; u1/ D .2 ı 1; u2/:

(4.6)

In fact
� W .; v/ 7!

�
; dH s

�1
 .v/

�
7!
�
; dt ı dH s

�1
„ ƒ‚ …

�

.v/
�

in (4.3) defines an isomorphism of Lie groupoids

s�TX0
� //

�� ��

t�TX0

�� ��

TX0
Id // TX0:

(4.7)

Moreover, the condition (ii) in Definition 4.1 implies that

dH s
�1
2ı1

.v/ � dH s
�1
2

�
�1.v/

�
ı dH s

�1
1
.v/ 2 ker.dt2ı1/ (4.8)

for any pair of composable 1; 2 2 X1 and v 2 Ts.1/X0. We denote the corresponding
element in ker.dt2ı1/ by

K.2; 1; v/ WD dH s
�1
2ı1

.v/ � dH s
�1
2

�
�1.v/

�
ı dH s

�1
1
.v/:

The outcome of the above observation is the following lemma.

Lemma 4.10. .dH s
�1; Id/ W Œs�TX0 � TX0� ! ŒTX1 � TX0� defines an essentially

surjective, faithful functor if and only if K.2; 1; v/ vanishes for all pairs of composable
arrows 1; 2 2 X1 and v 2 Ts.1/X0.

Proof. That it is essentially surjective is evident. Now we have

dH s
�1
�
.2; v2/ ı .1; v1/

�
D dH s

�1
�
.2 ı 1; v1/

�
D
�
2 ı 1; dH s

�1
2ı1

.v1/
�
:
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On the other hand, we get

dH s
�1
�
.2; v2/

�
ı dH s

�1
�
.1; v1/

�
D
�
2; dH s

�1
2
.v2/

�
ı
�
1; dH s

�1
1
.v1/

�
D
�
2 ı 1; dH s

�1
2
.v2/ ı dH s

�1
1
.v1/

�
:

Then functoriality is now immediate from the vanishing of the left-hand side in (4.8).
Since dH s

�1 is injective, the functor is also faithful.

Remark 4.11. From the above, we see that K.2; 1; v/ gives an obstruction for the
groupoid ŒH � TX0� to be a subgroupoid of the tangent groupoid TXD ŒTX1 � TX0�.
Indeed, vanishing of the element in (4.8) is equivalent to the necessary and sufficient
condition for a splitting as in (4.2) to yield a subgroupoid, mentioned in [2, Lem. 2.13].
Moreover, (4.7) implies that both diagrams

H //
//

��

TX0

��

X1 //
//
X0

are Cartesian and thus we arrive at the definition of a connection on a Lie groupoid as
given in [6, Def. 2.1]. In conclusion, we see that our definition of a connection on a Lie
groupoid is more general than the one in [6], but more strict than the definition in [2].
In fact, a partition of unity argument shows that any Lie groupoid admits a connection
in the sense of [2]. If such a connection satisfies in addition the conditions (i) and (ii) of
Definition 4.1, then we obtain a connection as defined in this article.

4.2. Making TX0 a vector bundle over X

We will now state another useful geometric interpretation. Let H be a connection on a
given Lie groupoid X D ŒX1 � X0�, and let

� W TX0 ! X0

be the natural projection. Consider the fiber product

Y1 WD X1 �s;X0;� TX0:

Let s0 W Y1 ! TX0 be the projection to the second factor. Define the morphism

t 0 W Y1 ! TX0; .x; v/ 7! �x.v/ 2 Tt.x/X0;

where �x is constructed as in (4.4). Furthermore, let

p W Y1 D X1 �s;X0;� TX0 ! X1

be the projection to the first factor. For any z; y 2 Y1 with t 0.y/ D s0.z/, define

m0.z; y/ WD
�
m
�
p.z/; p.y/

�
; s0.y/

�
:
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Note that s.p.z// D t .p.y//, so m.p.z/; p.y//, is defined. Let e0 be the morphism

e0 W TX0 ! Y1; v 7!
�
e
�
�.v/

�
; v
�
:

Finally, let
i 0 W Y1 ! Y1; .z; v/ 7!

�
i.z/; �z.v/

�
be the involution. It is straightforward to check that .ŒY1 � TX0�; s

0; t 0; m0; e0; i 0/ is a
Lie groupoid. In other words, TX0 is a vector bundle over the groupoid X.

4.3. Characteristic differential forms for connections on X

We will now study the behavior and interpretation of connections on Lie groupoids in
terms of differential forms. Let H be a connection on the Lie groupoid X D ŒX1 � X0�.
Using the canonical decomposition of the tangent space

TX1 D H ˚ kernel.ds/;

we get a projection
^
jTX1 ! ^

jH ,! ^jTX1:

The composition ^jTX1 ! ^jTX1 gives by duality an endomorphism of the space of
j -forms on X1.

For a differential form ! on X1, the differential form on X1 induced by the above
endomorphism for the given connection H will be denoted by H.!/.

Definition 4.12. A differential j -form on the Lie groupoid ŒX1 � X0� is a differential
j -form ! on X0 such that H .s�!/ D H .t�!/.

Induced differential forms for an integrable distribution observe the following basic
property.

Proposition 4.13. Let H be a connection on a Lie groupoid XD ŒX1 � X0� and assume
that the distribution H � TX1 is integrable. Let ! be a differential form on X0 such that
H .s�!/ D H .t�!/. Then H .s�d!/ D H .t�d!/.

Proof. Take a point x 2 X1. Let L be the locally defined leaf of H passing through x. Let

� W L ,! X1

be the inclusion map. Since H .s�!/ D H .t�!/, it follows immediately that ��s�! D
��t�!. Therefore, we have

��s�.d!/ D d��s�! D d��t�! D ��t�.d!/:

But this implies that H .s�.d!//.x/ D H .t�.d!//.x/ and so we conclude that

H
�
s�.d!/

�
D H

�
t�.d!/

�
;

which finishes the proof.
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5. Connections on principal bundles over Lie groupoids and
differentiable stacks

We will now study in detail the notion and interplay of connections on principalG-bundles
over Lie groupoids and differentiable stacks.

5.1. Connections on principal G -bundles over Lie groupoids

Let us start with the groupoid picture. Let .X D ŒX1 � X0�; s; t; m; e; i/ be a Lie
groupoid andG a Lie group. The Lie algebra ofG will be denoted by g. We shall consider
g as a G-module using the adjoint action. Let

˛ W EG ! X0 (5.1)

be a principal G-bundle over X0. The adjoint vector bundle for EG

ad.EG/ WD EG �G g! X0

is the bundle associated to EG for the adjoint action of G on g. The action of G on EG
induces an action of G on the direct image ˛�TEG , where ˛ is the projection as given in
(5.1).

Definition 5.1. The Atiyah bundle for a principal G-bundle EG over X0 is the invariant
direct image

At.EG/ WD .˛�TEG/G � ˛�TEG : (5.2)

Therefore, we have At.EG/ D .TEG/=G (see also [4] for the classical and analogue
notion of the Atiyah bundle in the complex analytic context).

Let
qE W TEG ! .TEG/=G D At.EG/ (5.3)

be the quotient map.
Let Trel � TEG be the relative tangent bundle for the projection ˛ in (5.1). It fits into

the short exact sequence of vector bundles

0! Trel
�0
�! TEG

d˛
��! ˛�TX0 ! 0; (5.4)

where d˛ is the differential of ˛. Using the action of G on EG , the vector bundle Trel !

EG gets identified with the trivial vector bundle EG � g! EG . Therefore, we see that

ad.EG/ D .˛�Trel/
G ;

and so ad.EG/ D .˛�Trel/=G. The map of quotients Trel=G ! .TEG/=G induced by the
inclusion Trel ,! TEG makes ad.EG/ a subbundle of At.EG/. The differential of d˛ in
(5.4) being G-equivariant therefore produces a homomorphism

.d˛/0 W At.EG/! TX0: (5.5)
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Combining these, we obtain the Atiyah exact sequence (see [4])

0! ad.EG/! At.EG/
.d˛/0

���! TX0 ! 0: (5.6)

This exact sequence is the quotient of the exact sequence in (5.4) by the action of G.
Now we can define the general notion of a connection on a principal G-bundle (compare
with [4]).

Definition 5.2. A connection on a principal G-bundle EG over X0 is a splitting of the
Atiyah exact sequence

0! ad.EG/! At.EG/
.d˛/0

���! TX0 ! 0: (5.7)

Giving a splitting of the exact sequence in (5.6) is evidently equivalent to giving a
G-equivariant splitting of the exact sequence in (5.4). Therefore, a connection on EG is a
homomorphism

DEG W TEG ! Trel

such that

• DEG is G-equivariant, and

• DEG ı �0 D IdTrel , where �0 is the homomorphism in (5.4).

Recall that Trel D EG � g. Therefore, any homomorphism DEG W TEG ! Trel satisfying
the above two conditions is a g-valued 1-form yDEG on EG such that the corresponding
homomorphism

yDEG W TEG ! g (5.8)

is G-equivariant for the adjoint action of G on g.
Now we equipEG with the structure of a principalG-bundle on the fixed Lie groupoid

X D ŒX1 � X0�. First we shall use the description of a principal G-bundle over X given
in Definition 3.8. So we have a Lie groupoid EG D ŒQ � P � together with a groupoid
morphism

G // Q
� //

Qt

��

Qs

��

X1

t

��

s

��

G // EG
� // X0

(5.9)

such that both Q
�
�! X1 and EG

�
�! X0 are principal G-bundles, and the four conditions

in Definition 3.8 are satisfied.
Let r be a connection on the principal G-bundle EG ! X0. Let

yr W TEG ! g (5.10)

be the G-equivariant g-valued 1-form on EG as in (5.8) corresponding to r.
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Definition 5.3 (Connection on a principal bundle over a Lie groupoid). A connection
on a principal G-bundle EG D ŒQ � EG � over the Lie groupoid X D ŒX1 � X0� is a
connection r on the principal G-bundle EG ! X0 such that the two g-valued 1-forms
Qs� yr and Qt� yr on Q coincide, where yr is the 1-form yr W TEG ! g associated to the
connection r.

Now we adopt Definition 3.4. Let

EG WD Œs
�EG � EG �

be a principal G-bundle over X as in Definition 3.4. Let

Os W s�EG ! EG and Ot W s�EG ! EG ;

respectively, be the source map and the target map.
The following definition is then evidently equivalent to Definition 5.3.

Definition 5.4. A connection on the principalG-bundle EG D Œs�EG �EG � over the Lie
groupoid X D ŒX1 � X0� is a connection r on the principal G-bundle EG ! X0 such
that the two g-valued 1-forms Os� yr and Ot� yr on s�EG coincide, where yr is the 1-form
yr W TEG ! g associated to the connection r.

Definition 5.5. Let yr be a connection on a principalG-bundle EG D Œs�EG �EG � over
the Lie groupoid X D ŒX1 � X0� given by a connection r on EG . The curvature of yr
is defined to be the curvature of r. In particular, the connection yr is called flat if r is
integrable.

Proposition 5.6. Let X D ŒX1 � X0� and Y D ŒY1 � Y0� be Lie groupoids, and let
� W X! Y be a morphism given by maps

�0 W X0 ! Y0; �1 W X1 ! Y1

(see Definition 2.12). Let
EG WD Œs

�EG � EG �

be a principal G-bundle on Y equipped with a connection yr given by a connection r on
the principal G-bundle EG ! Y0. Then the pulled back connection ��0r on ��EG ! X0
is a connection on the principal G-bundle ��EG over the Lie groupoid X.

Proof. Let s and s0 (respectively, t and t 0) be the source maps (respectively, target maps) of
X and Y , respectively. The two maps s0 ı �1 and �0 ı s fromX1 to Y0 coincide. Similarly,
the two maps t 0 ı �1 and �0 ı t from X1 to Y0 also coincide.

Using this, it is straightforward to check that the connection ��0r on ��EG ! X0 is
a connection on the principal G-bundle ��EG over the groupoid X.

Example 5.7. A connection on a principal G-bundle EG D ŒQ � EG � over the Lie
groupoid XD ŒX � X� is the same as a connection on the (ordinary) principal G-bundle
EG ! X over the smooth space X .
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Example 5.8. Let �0WE!X0 be a vector bundle and �G WEG!X0 a principalG-bundle
over X0. Let X WD ŒE � X0� be the Lie groupoid introduced in Example 4.7. Then EG
is an X-space with respect to the map .v; p/ 7! p, for all .v; p/ 2 E � EG satisfying
�0.v/ D s.v/ D �G.p/. The action of X is obviously compatible with the action of G
on EG , and thus we obtain a principal G-bundle over X. Then any connection on the
(ordinary) principal G-bundle EG ! X0 defines a connection on the principal G-bundle
over X.

Example 5.9. Let EG ! X0 be an H -equivariant principal G-bundle over X0. Let X D
ŒH �X0 � X0� be the transformation groupoid. As in Example 3.5, consider EG ! X0
to be a G-bundle over X. Then a connection 1-form on the (ordinary) principal G-bundle
over X0 is a connection on the G-bundle over X if and only if it is H -invariant and
vanishes on the fundamental vector field generated by the action of H on EG .

Remark 5.10. The definition of a connection on a principalG-bundle over a Lie groupoid
given in this article is less rigid than the one by Laurent-Gengoux, Tu, and Xu [24,
Def. 3.5]. The difference between our approach and the one in [24] becomes clear when
comparing the associated de Rham complexes and Chern–Weil maps, which is discussed
in our follow-up article [7, Sects. 5 and 6]. In particular, it is not hard to see that the
two definitions coincide in the case of principal G-bundles over an étale Lie groupoid
X D ŒX1 � X0� with integrable distribution H D TX1.

The space of connections on a principal G-bundle EG over the Lie groupoid X is an
affine space for the space of all ad.EG/-valued 1-forms on the groupoid.

Henceforth, given a Lie groupoid X D ŒX1 � X0�, we will assume that there exist a
given integrable distribution H � TX1; in other words, we have given a flat connection
on the Lie groupoid X.

Consider now again the Atiyah exact sequence as constructed in (5.6). The Lie bracket
of vector fields defines a Lie algebra structure on the sheaves of sections of all three vector
bundles. The Lie algebra structure on the sheaf of sections of ad.EG/ is linear with respect
to the multiplication by functions on X0, or, in other words, the fibers of ad.EG/ are Lie
algebras.

Let g be again the Lie algebra for the Lie groupG. Recall that ad.EG/D .EG � g/=G

is the vector bundle on X0 associated to principal G-bundle EG for the adjoint action of
G on g. Since this adjoint action of G preserves the Lie algebra structure of g, it follows
that the fibers of ad.EG/ are Lie algebras identified with g up to conjugations.

Given any splitting of the Atiyah exact sequence (5.6)

D W TX0 ! At.EG/;

the obstruction for D to be compatible with the Lie algebra structure is given by a section

K.D/ 2 H 0
�
X0; ad.EG/˝�2X0

�
;

which is an ad.EG/-valued 2-form on the groupoid X.
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Definition 5.11. For a principal G-bundle EG D Œs�EG � EG � over a Lie groupoid
X D ŒX1 � X0� with a connection D, the section K.D/ is called the curvature of the
connection D.

The above constructions readily imply now the following result, which allows for the
development of a general Chern–Weil theory and the construction of characteristic classes.
This will be discussed systematically in [7].

Theorem 5.12. For any invariant form � 2 .Symk.g�//G , the evaluation �.K.D// on the
curvature K.D/ is a closed 2k-form on the Lie groupoid X.

5.2. Connections on principal G -bundles over differentiable stacks

Finally, we shall turn to the stacky picture and study connections for principal G-bundles
on a differentiable stack (compare also with [8]).

Definition 5.13 (Connection on a principal bundle over a differentiable stack). Let EG be
a principal G-bundle on a differentiable stack X. A connection r on EG consists of the
data of a connection ru on each principal G-bundle EG;u, where u W U ! X is a smooth
atlas for X, which pulls back naturally with respect to each 2-commutative diagram of the
form

U

u ""

'
// V

v||

X:

A connection r on EG is flat or integrable if it is in addition integrable on each principal
G-bundle EG;u.

Let us unravel this definition with more details. We can realize the connections for
each atlas u in terms of g-valued 1-forms such that

!EG;u 2 H
0.EG;u; �

1
EG;u
˝ g/

is the corresponding 1-form for the connection ru on EG;u. From the Cartesian diagram

'�EG;v
x'

//

��

EG;v

��

U
'

// V

we get a connection x'�!EG;v on '�EG;v . The condition for the existence of a connection
is then given as follows:

!EG;u D �
�
';˛ x'

�!EG;v :

From now on, we will assume that X is a Deligne–Mumford stack, which in particular
means that the tangent stack TX gives rise to a vector bundle TX ! X over X. For a
general differentiable stack, this is not always the case (see [6, 22, 24]).
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Given a principalG-bundle EG over X, we define the associated Atiyah bundle At.EG/
over X by setting

At.EG/u WD At.EG;u/

for any étale morphism u W U ! X. In addition, for each 2-commutative diagram of the
form

U

u
  

'
// V

v
~~

X;

(5.11)

where u, v, ' are étale morphisms, we can compose the isomorphism

At.EG;u/
Š
�! At.'�EG;v/

with the isomorphism At.'�EG;v/
Š
�! '�At.EG;v/ to get an isomorphism

At.EG/u
Š
�! '� At.EG/v:

Similarly, given a principal G-bundle EG over X, we can define the associated adjoint
bundle ad.EG/ over X arising from the adjoint representation of G by setting (compare
with [8, Sect. 1.4])

ad.EG/ WD EG �
G g;

where ad.EG/u D ad.EG;u/. We then obtain a commutative diagram of vector bundles

0 // ad.EG/u //

��

At.EG/u //

��

T U //

��

0

0 // '� ad.EG/v // '� At.EG/v // '�T V // 0:

which gives a well-defined short exact sequence of vector bundles over the Deligne–Mum-
ford stack X, called the Atiyah exact sequence associated to the principal G-bundle EG ,

0! ad.EG/! At.EG/! TX! 0:

Remark 5.14. In the situation of a general differentiable stack X, similarly as for the
tangent stack, At.EG/ and ad.EG/ will generally not give vector bundles over X.

From the constructions and considerations above, the following proposition now holds:

Proposition 5.15. A principal G-bundle EG over a Deligne–Mumford stack X admits a
connection if and only if its associated Atiyah exact sequence has a splitting.

Finally, we have the following comparison theorem for the existence of a connection
of a principal G-bundle over a Deligne–Mumford stack:
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Theorem 5.16. Giving a connection (respectively, flat connection) on a principal G-
bundle EG over a Deligne–Mumford stack X with étale atlas x W X0 ! X is equivalent to
giving a connection (respectively, flat connection) on the associated principal G-bundle
EG over the groupoid XD ŒX1 �X0�. Giving a connection (respectively, flat connection)
on a principalG-bundle EG D Œs�EG �EG � over an étale Lie groupoid XD ŒX1 �X0�

is equivalent to giving a connection (respectively, flat connection) on the associated prin-
cipal G-bundle EG of EG-torsors over the classifying stack BX of X-torsors.

Proof. This follows from the categorical equivalence of Theorem 3.7 between the cat-
egory BunG.X/ of principal G-bundles over X and the category BunG.X/ of principal
G-bundles over the associated Lie groupoid X D ŒX1 � X0� and the fact that a splitting
of the Atiyah exact sequence of associated vector bundles over the stack X

0! ad.EG/! At.EG/! TX! 0

corresponds to a splitting of the Atiyah exact sequence of associated vector bundles over
the smooth space X0

0! ad.EG/! At.EG/! TX0 ! 0

and vice versa involving the 2-Cartesian diagram

EG //

��

X0

��

EG
� // X

and unraveling the explicit constructions of associated bundles as given in the proof of
Theorem 3.7.

Let us now consider the classifying stack BrG of principal G-bundles with con-
nections. The objects are triples .P; !; S/, where S is a smooth space of S, P is a
principal G-bundle over S , and ! 2 �1.S; g/G is a connection 1-form. A morphism
.P; !; S/! .P 0; !0; S 0/ is given by a commutative diagram

P
'
//

��

P 0

��

S // S 0;

where ' W P ! P 0 is a G-equivariant map and '�!0 D !. Then BrG together with the
projection functor

� W BrG ! S; .P; !; S/ 7! S

is a groupoid fibration over S. We note that BrG is, in fact, a stack as principal G-
bundles glue and connection 1-forms on the principal bundles glue as well (compare also
with [11]).
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Remark 5.17. It is not clear in general if and under which conditions BrG is actually a
differentiable or Deligne–Mumford stack and not just a stack over S.

The above constructions now allow us to characterize principalG-bundles over differ-
entiable stacks equivalently as follows.

Proposition 5.18. Let X be a differentiable stack. Giving a principal G-bundle with con-
nection over X is equivalent to giving a morphism of stacks X! BrG and two principal
G-bundles with connections over X are isomorphic if and only if the corresponding mor-
phisms of stacks X! BrG are 2-isomorphic.

Similarly, as before, we can consider the groupoid fibration BunrG.X/ over S whose
objects over a smooth space U are principal G-bundles EG over X � U with connec-
tions and whose morphisms are given by pullback diagrams of principal G-bundles with
connections as above. From Proposition 5.18, we get therefore the following:

Proposition 5.19. There is an equivalence of groupoid fibrations over S

BunrG.X/ Š Hom.X;BrG/:

Collier–Lerman–Wolbert [11, Thm. 6.4] proved a similar result involving holonomy
and parallel transport for principal G-bundles over stacks.
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