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Symmetries of simple A T -algebras
Yuanhang Zhang

Abstract. Let A be a unital simple AT -algebra of real rank zero. Given an order two automorphism
h: K1(A) — Kj1(A), we show that there is an order two automorphism «: A — A such that axg =
id, @sx1 = h and the action of Z, generated by « has the tracial Rokhlin property. Consequently,
C*(A,Z»,) is a simple unital AH-algebra with no dimension growth, and with tracial rank zero.
Thus, our main result can be considered the Zj-action analogue of the Lin—Osaka theorem. As a
consequence, a positive answer to a lifting problem of Blackadar is also given for certain split case.

1. Introduction

It has been an important issue to find and classify all (or some particular) finite-order auto-
morphisms of a given C*-algebra. Historically, partly because of their intrinsic interest
and partly because of their applications in C *-dynamical systems, these kinds of prob-
lems have attracted considerable attention in the literature (see [4,7,16,17,21-23,25,26,
28,29, 34,41]). One landmark among them is Blackadar’s famous construction of sym-
metries (automorphisms of order 2) on the CAR algebra whose fixed point algebras have
nontrivial Kj-group [4], hence giving a negative answer to one of two questions about
AF-algebras posed by him in [3, 10.11.3]. The other one is a lifting question, which is as
follows.

Question 1.1. Let A be an AF-algebra and o an automorphism of the scaled ordered
group Ko(A) with 6" = id. Is there an automorphism « of A with a9 = 0 and " = id?

More generally, if a certain class of C*-algebras is well understood, one could seek
whether every finite group action on the level of K-theory of a C*-algebra in this class
can be lifted to a group action on the C*-algebra. To be precise, one can consider the
following folklore question [1,39].

Question 1.2. If A belongs to a class of unital simple C *-algebras that is classifiable by
Elliott invariant and o: G — ElI(A) is an action of a finite group on the Elliott invariant
of A, does there exist an action a: G — A with Ell(¢) = ¢?

For the case that A is a unital universal coefficient theorem (UCT) Kirchberg alge-
bra, satisfactory answers to this question have been given. Firstly, Benson, Kumjian, and
Phillips solved this question affirmatively for G = Z, and for unital UCT Kirchberg alge-
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bras A in the Cuntz standard form [2]. Later, this result was extended by Spielberg who
showed this question has an affirmative answer for G = Z,, where p is a prime number,
and for an arbitrary unital UCT Kirchberg algebra [38]. Finally, in [27], this was further
extended by Katsura to actions of finite groups whose Sylow subgroups are cyclic.

Within the setting of A being a unital simple stably finite C *-algebra, compared to the
recent progress in the Elliott classification programme (see, e.g., [19,20,40]), this question
is still at an early stage, and there is much to do. We note that even Question 1.1 appears
to be still open. Recently, Barlak and Szab6 showed that if A is a separable, unital, simple
and nuclear C *-algebra with tracial rank zero which satisfies the UCT, then any action of
a finite group G-action on the Elliott invariant could be lifted to a Rokhlin action of G on
A, provided that A absorbs the UHF-algebra Mg [1, Corollary 2.13].

Our main goal in the present article is to examine Question 1.2 with the setting of
G = Z, and A being a unital, simple AT -algebra of real rank zero. Recall that an AT -
algebra is a C *-algebra which is an inductive limit of C*-algebras that are finite direct
sums of matrix algebras over continuous functions on the circle T. Unital simple AT -
algebras of real rank zero are classified by Elliott using scaled ordered Ky-groups and
K;-groups in [13]. Many C *-algebras of interest (e.g., [6, 8, 35]), including irrational
rotation algebras [14], are in this class.

As we shall see below (Theorem 3.3), for A being a unital simple AT -algebra of real
rank zero, given an order two automorphism /4 : K1(A) — K;(A), we show that there is a
symmetry «: A — A such that a9 = id, ®x1 = h and the action of Z, generated by « has
the tracial Rokhlin property. Consequently, C*(A4, Z,, ) is a simple unital AH-algebra
with no dimension growth, and with tracial rank zero. In fact, in the Z-action setting, Lin
and Osaka show that any unital simple AT -algebra A admits an automorphism « with the
tracial (cyclic) Rokhlin property such that the induced homomorphism «,; on K;(A) is
equal to any given isomorphism of K;(A), and the induced homomorphism o« on Ko(A)
is the identity [32, Theorem 3.5]. Therefore, our aforementioned result could be viewed
as a Z»-action analogue of the Lin—Osaka theorem.

In Section 4, as a variation of Theorem 3.3, we obtain the following: Let 2 be the AF-
algebra whose scaled ordered group Ko () is (G & H,(G+ \ {0}) & H U{(0,0)},g & h),
where (G, G+, g) is the scaled ordered group Ko(B) of a unital simple AF-algebra B, and
H is a countable torsion-free abelian group, h € H.Let o be an order two automorphism
of Ko(2), definedby o(g ® h) = g @ n(h), where g ® h € G & H, and 1 is an order two
automorphism of H. Then, there is a symmetry « of 2 such that @9 = o and the action
of Z, generated by « has the tracial Rokhlin property (Theorem 4.1). It is a generalization
of [43, Theorem 4.1], where 7 is further assumed to be of type I and hence provides a
partial affirmative answer to Question 1.1.

2. Preliminaries

In this section, we will review definitions, elementary facts and important results which
we need in later sections.
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We use the notation Z, for Z/27. If A is a C*-algebra and o : A — A is an auto-
morphism of order two, then we write C*(Z,, A, ), A* for the crossed product and the
fixed point subalgebra of A by the action of Z, generated by «, respectively. Given a C *-
algebra A, and a unitary u € A, we denote by Adu : A — A the continuous linear map
Adu(a) = u*au. Let RR denote the real rank. We take N = {n € Z : n > 0}. Throughout
this paper, an AF-algebra is always assumed to be a non-elementary one.

We shall assume that the reader is familiar with the notions and fundamental properties
of the inductive limits of C *-algebras and those of abelian groups. We shall also assume
that the reader is familiar with K-theory, especially the functionalities of K¢ and K, as
found in [30, 36]. We also assume that the reader is familiar with approximately finite
algebras, or AF-algebras, as inductive limits of finite-dimensional C*-algebras and their
classification [12] in terms of K-theory. The reader may refer to [30] for more details if
required. k copics
2.1. We shall use a™* to denote m as used in [18, 1.1.7 (b)]. For example,

{a~%,b™3} ={a,a.b,b.b}.

2.2. Under the canonical bases of Z" and Z™, we shall identify a group homomorphism
T from Z" — Z™ with its matrix representation 7 = (; ;) € Mpuxn(Z). Set

Tmax=1’naX l‘i',lfifl’l’l,lf < ny,
2J J

and
| T min = min {|; j|, 1 <i <m, 1 <j <n}.
2.3. Define
0, t>0;
V() =
® {1, t <0.

Let A be a homeomorphism of X. For n > 0, define A" as the power # iteration of A; in
particular, A0 = idy.

24. Let A, B be unital C*-algebras and ® : A — B a unital homomorphism. Let us
denote by ®,; : K;(A) — K;(B) the map induced by ®,i = 0, 1.
2.5. Here are some basic K-theory properties of the reflection maps of S”,n =1, 2.
(1) Let (w1, w,) € S', and let A be the reflection map defined by
Awy, wz) = (wy, —w2).

It is well known that Ko(C(S1)) = Z, K1 (C(S1)) = Z, and Awo(m) = m,
As1(n) = —n, form € Ko(C(S1)), n € K{(C(S1)).

(2) Let (wy, ws, w3) € S2, and let A be the reflection map defined by
A’(U)lv wa, w3) = (U)l, wa, _w3)‘

Itis well known that Ko(C(S?)) = Z @ Z, and Ao (m,n) = (m,—n), for (m,n) €
Ko(C(S?)), where the first coordinate of Z @ Z denotes the rank part.
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2.6. Let A =1limg_, o (Ag, @y ) be an inductive limit of C *-algebras. Here, @y is a homo-
morphism from A to Ag1q. We will use @ o, : Ax — A to denote the homomorphism
induced by the inductive limit system. Similarly, the notions could be defined mutatis
mutandis to the setting of an inductive limit of abelian groups.

Definition 2.7. Let G; = &/}, Gy ; and G, = EB;"zzle,j, where G1,; = G»; =~ Z. Let
7; : G — G,,; be the quotient maps. Suppose that ¢ : G; — G,. A partial map of ¢
from G,; to G,,; is the map /) = 71; 0 ¢|g, , induced by . If /) (1) = I, then we
say the multiplicity of partial map ¢@7), denoted by | @7, is I.

Definition 2.8. Let ® be a unital homomorphism from A; = &7}, M1 ;)(C(X;)) to
Ay = @72, My, j)(C(Y;)). For any 7, j, if the partial map ®:7) | the restriction of the

map ® to any direct summands M;(; ;)(C(X;)) and M;» ;y(C(Y;)), has the form

Sol
f—
Jokde,
for some positive integer d(i, j ) and some continuous maps A1, ..., g4, ; : ¥; — X;, then
® is called a diagonal map, and |®®7)| := d(i, j) is called the multiplicity of ®@7).
The following is the Elliott—-Gong classification theorem.

Theorem 2.9 ([15]). Let A and B be two unital simple AH-algebras with slow dimension
growth and with real rank zero. Then, A = B if and only if

(Ko(A), Ko(A)+.[14]. K1(A)) = (Ko(B), Ko(B)+.[18]. K1(B)).

Lastly, we introduce a special case of a useful criterion for an action of Z, to have the
tracial Rokhlin property obtained by Phillips. The reader is referred to Phillips’ seminal
paper [33] for details and more background information about tracial Rokhlin property.

Lemma 2.10 ([34, Lemma 1.8]). Let A be a separable infinite-dimensional simple unital
C*-algebra with tracial rank zero. Let a € Aut(A) satisfy a® = id4. Suppose that for
every finite set F C A and every € > 0, there are mutually orthogonal projections ey, €1
such that

(1) [lae(eo) —enll <&
(2) |leja —aej|| < eforalla € Fand j =0,1;
(3) withe = eg + e, (1 —e) < & for each tracial state T on A.

The action of Z., generated by a has the tracial Rokhlin property.

3. Z,-action analogue of the Lin—Osaka theorem

The purpose of this section is to present Theorem 3.3. We will start with a construction
about the equivalence of two Bratteli diagrams, which proves very useful in our later
constructions.
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Lemma 3.1. Let B be a unital simple AF-algebra. Let {ny}, {cx} be two increasing
sequences of positive integers. Then, B could be written as

B = lim (Bk,‘l—‘k)
k—o00

such that for k € N,
(1) Bx = Migey ® -+ ® My m,), where my > 3ny;
(2) W is diagonal, and each partial map of Wi has a positive multiplicity of at least
(2k + 3)cks
@) Jorl=i=me 1 =] =M, |\pl(ci’j)| = (2k + 3)cks for ng + 1 <i < my,
1 < Jj1. )2 < ng+1, |\IJI((i’j1)| = |1p](€i,.iz)|;
@ Ik, 1) =---=I(k,ng).

Proof. By [30, Proposition 4.7.2 and Lemma 4.7.3], B can be written so that
B = lim (Ck, CDk),
k—o00

where C, = @r 1Mue,r, G = Ko(Cy) is a finite direct sum of I copies of Z with
[y > 2nj and each partial map of @, has a positive multiplicity of at least 2, k € N.
Without loss of generality, we may assume that the connecting map ® is a diagonal
map, k € N. Since B is simple, by passing to a subsequence if necessary, we may further
assume that

|00 = 20 (2K + e

where | <r <[lp,1 <5 <lpyq.Fork € N, set g = (Pg)«o0-

We will first microscope the Bratteli diagram in a suitable way and then telescope it. To
have a quick understanding about the construction, it is useful to draw the corresponding
Bratteli diagrams.

Fix k € N, and let G, = Z™k, where my, 1= I + ny > 3ng.

(a) Forr =1, define 8,9’0 = 1,for1 <i <ny + 1; define 8,9’” =0,for2+n; <

i < my.Foreach2 <r <, define 51(:’0 =1, fori = r + ny; define 8,(:’“ =0,
otherwise. Hence, we define a homomorphism §; from G,’c to Gy.

(b) Forl <i <ng,forl <s <y, define 60" = 2k + 3)cx. Fori = ng + 1,
for 1 <s <y, define 9(’ - |d>(1 | — g 2k + 3)cg. Forng +2 <i <my,

for 1 <s <li4, define 9(' 5) |d>(’ e S)| Consequently, we define a homo-

morphism 6 from Gy to G similarly.

k+1
Fix k € N. It is routine to verify that ¢ = 6 o 0. In fact, forr = 1,1 <s <[44,

nip+1

{(Gk O(Sk)(l,s)| — ZS(I 1)9(1 s) Z 9(1 ,5)

i=1 i=1

= gk + 3ex + [0 — np 2k + 3)ex] = [O8V] = [p);
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for2 <r <Ip,1 <s <lpyq,
|6k o 5k)(r’s)| = 2 :51(:’1)9/8’” = 51(cr’r+nk)9/£r+nkm

i=1

|q>](cr+nk—nk,s)| — |(D](€r,s)| — |(ﬂ]£r’S)|-

Therefore,

81 01 ) 0> Sk Ok Skt1
Gll — G — Gé — G, —>Gl/C — G — Gl/c+1 —> -+ = Ko(B).

For k € N, define ¥x := 8x+1 © 6 as a homomorphism from Gy to Ggq. For 1 <

ifnk’lfj Enk+l+19

lie41 liet1
W =" 080850) = @k +3)cr Y65 = 2k + 3)ersy) = (2k + 3)ex:
s=1 s=1
forl <i <ng,ng41+2=<j < mp41,
Ikt Ikt ' '
(_/*nk+1,_]) — (Zk + 3)Ck-

W =3 00080) = @k +3)er Y85 = 2k + 3)ers |

s=1 s=1

Fori =np+1,1<j <ngs1+1,

L1 L1
|1//]£z,1)| :Z GIEZ’S)SIES-;-]I) ZZ [|q)l(€1,s)| — np(2k +3)Ck]5;(€s_;_]1) — |q>l(€1,l)| — g 2k +3)ck,
s=1 s=1
which is independent of j; fori =nx + 1,ngy1 +2 < j < mpyq,
liet1 L1
|1//]8 ])| — Z 8]8 3)81(€S+11) — Z [|q>]({ S)| —l’lk(2k + 3)Ck]5;(:+]1)
s=1 s=1

— @ | 2k + 3)ex.

Forngy +2<i <my,1<j<npy1+1,

D) B 0956 _ N () o) (l—rend)

L) i,8) o(s,j) _ i—ng,s)o(s,j) _ i—ng,1

Ve 1= 0085 = D10 Vs = o e,
s=1 s=1

which is independent of j; forng +2 <i <my,nx+1 +2 < j < Mg41,

41 Ikt

) _ (i,5) o(s,7) _ (i—ng,s)e(s,j) _
=268 = D198 =
s=1

s=1

|q)l(ci_nk’j_nk+1) |
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Summarizing, for I <i <ng, 1 < j < my4y, |w]£i’j)| = 2k + 3)cg; forng + 1 <
i <mp, 1 < j1,ja < Nggrs |1//]8’]1)| = |1ﬂ,§”’2)|. Since the multiplicity of each part map

of @y is at least 2ny (2k + 3)cy, it follows that
WD > @k +3)cx, 1<i <my, 1<) <myqs, k€N,

Let By =@}, M(1,;), where [(1,i)=h(1,1),for 1<i <ny,and [(1,i) = h(1,i —ny),
for1 +ny <i < mj.Define

Ik +1.5) =Y &k, i)

i=1
inductively. Since for 1 < jy, jo» < ng41,
|w1£l,.11)| — |wlgl,.12)|7 V1 fl < my,

it follows that

myg my
1k + 1,70 =Y [wd ki) =Y [wd Pk i) = 1k + 1. j2).
i=1

i=1
Set By = @ My, k > 2. Fix k € N, and define

: (rii
AP (@) = diag{a™"),

where a € Mygopy, | <7 <y, 1 <i <my. Set Ay = @, A" : Cy — By. Similarly,
define
(i) o g~ 08
0 (a) = diagla™").
wherea € My ), 1 <i <my,1 <5 =< lk+1-Set O = @i,s(_)](ci,s) By — Crqg.
Then, it is standard to check ®; = ®; o A, k € N; hence,

Ay 0, As IcH Ax O Akt
¢C,—B —C—B,—:+— By — Cyyy —> By41---— B.

For k € N, define
v, = Ak+l 0Oy : B — Bk+1.
Then, it is obvious that
B = lim (Bk,‘lfk).
k—o00
Finally, the lemma now follows from the constructions. ]

The following proposition could be found in [43]. It states that any order two auto-
morphism of a countable torsion-free abelian group is actually an inductive limit action.
For the reader’s convenience, we give a detailed proof here (comparing with the original
proof in [43]).
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Proposition 3.2. Let H be a nonzero countable torsion-free abelian group and n an order
two automorphism of H. Then, there are a nondecreasing sequence of positive integers
{nx : k € N} and monomorphisms By : 7™ — Z™+1, order two automorphisms 1y :
2™ — 7"k such that the following diagram commutes:

B B2 B3

7m 72 7,n3 . H
[ T T I
7m B 7 B2 7n Bs Jot

and hence H = limg_, oo (Z"%, By), n = limg_s o0 Nk. Moreover, it can be required that
under the canonical basis of Z."**, ny has the form

Tk

Pk dk
—_—— ——
=g | T[] )]

for suitable nonnegative integers py, qk, 'x such that py + qx + 2ry = ng, k € N.

Proof. Since H is countable, we can write H as H = {eq, e5,...}. Define

Hi =Z[ey.....ex:n(er),....n(ex)],

sofork € N, n(Hy) = Hy, H = limg_, oo (Hg, ), where ¢y is the embedding map from
Hj to Hy 4. Since Hy is finitely generated and torsion-free, there exist a positive integer
ni and an isomorphism y such that y; (Z"*) = Hy. Since Hy C Hy41, we have ng <
Hg+1. Fork € N, define ¢, = XI:—}—I ot o yg. Thus, it is easy to check that the following
diagram commutes:

am Y1 gna V2 7n3 Vs ... limg s 00 (Z", Yg)
le J,XZ lm
31 2 ‘3
H —" H, H, e H
bbb
31 L2 i3
H —" H, H, . H
s 5 L
gm P g V2w V3 limg s 00 (Z™, Yi).

Thus,
lim (Z"%, ) = H.
k—o0

Moreover, 0y := )(,:1 o1 o yg is an order two automorphism of Z"*, k € N, or equiva-
lently, 6 is an involution matrix in M, (Z). By [24, Lemma 1] (or [2, Lemma 2.1]), for
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k € N, there are an invertible matrix S € M, (Z) and nonnegative integers pg, gk, I'x
with
DPrk + gk + 21 = ng
such that
6k = S i Sk,

where
Tk

: 2 0 1 0 1
e | e N
Nk lag{ ) s Ly 5 ) 5 [1 0] ) s |:1 0i| }

Fork € N, set B = Sk+1Vk Sk_l. Thus, it is easy to check that the following diagram
commutes:

gm P gne P g B limg .00 ("%, Br)
o Lo s

g Vg V2 gy P H

lgl l92 lea

g Y gy V2 gy V3 H
ol bs

g P gne P g B limy o0 (Z, B,).

Therefore,
H = lim (Z"%, B).
k—o00

Note that ¢ is injective, so is Y, and then, so is B;. The proposition follows immediately
from the constructions. u

We are now in a position to prove the main result.

Theorem 3.3. Let A be a unital simple AT -algebra with real rank zero. Let h : K{(A) —
K1 (A) be an automorphism with h* = idg, (4). Then, there exists an automorphism o
A — A such that a® = id, axo = id, ax1 = h, and the action of Z, generated by o has the
tracial Rokhlin property. In this case, C*(Z,, A, &) is a unital simple AH-algebra with no
dimension growth, and with tracial rank zero.

Proof. Set X = S!, and let A be the homeomorphism of X defined by A(w1, wy) =
(w1, —w,), where (wy, wo) € S!. It is evident that A% = id. Let z¢ be a fixed point of A
and {x; : i € N} adense set of X. Suppose that K;(A) # 0. (We will make a short remark
for the trivial case K;(A4) = 0 afterwards.)
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We divide the proof into four steps.

Step 1. By Proposition 3.2, there are an increasing sequence of positive integers {ny :
k € N} and monomorphisms B, : Z"k — Z"k+1  order two automorphisms ny, : Z" — 7"k
such that the following diagram is commutative:

gm P g B gy B K1(A)
l’]l lflz lfm l lh
gm P gm P g B Ki(A)

and
Ki(A) = lim (Z", Br), h = lim ng.
k—o00 k—o00
Moreover, under the canonical basis of Z", n; has the form

Tk

Dk 9k 0 1 0 1
P ——
= di ..., —=1,...,—1;
nk dlag{ 9 9 b b b ’[1 0]’ ’[1 0}}

for suitable nonnegative integers py, gk, r'x such that py + qx + 2ry = ng, k € N.
Since Br, Yk := Bk © Nk = Nk+1 © P are monomorphisms from Z" to Z"k+1, write

Bi and yg as

My ol W

1k 1,1 1.2 1L
(k) (k) (k) (k) (k) (k)
b1 by, b2,nk 21 T2 o o
Bk = _ ) ) ) . Yk =
(k) (k) (k) (k) (k) (k)
bnk+1,1 bnk+152 o b"k+1 Mk Tngsi 1 Tmgga2 70 Time

Note that A is a unital simple AT -algebra. Let B be a unital simple AF-algebra such
that

(Ko(B). Ko(B)+.[18]) = (Ko(A). Ko(A)+. [14]).

Set cx = |Bk|max + k, k € N. By Lemma 3.1, we may assume that

B = lim (Bk,\Ifk),
k—o00

where By = Mj,1) ® -+ ® Mk, m,) is a finite-dimensional C *-algebra such that
(1) m = 3ng, 1(k, 1) = --- = I(k,ng);
() [Vklmin = 2k + 3)ck, where Y 1= (Y )«0;
(3) for1 <i <ng, 1 <j <mgqq, |\IJ,(€i’j)| = 2k + 3)cy; for np + 1 <i < my,
LS jida < meens [0 = (W02,
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Similarly, write Yy as

RG] (k) (k) (k) (k) ]
S1,1 S1,2 S1.np S1np+1 S1,my
(k) (k) (k) (k) (k)
$2.1 S22 S2.np S2.np+1 S5, my
_ (k) (k) (k) (k) (k)
Vi = Snjrrn Snger,2 T Sk Snpsrm+l T Smmy
(&) () LW RO )
ng+1+1,1 ngy1+1,2 ngy1+1ng ngy1+1Lng+1 Ngy1+1,mg
() RG) B! () LW
L "my4q,1 myyq,2 Mi+1:1k myyq,ni+1 Mi+1,Mk |

Then, it follows that
(1) for 1 <i <mp, 1= j < mpqrnsyy) = 2k + g

@) forme +1 =i <mp, 1< ji.jo < Mg Sy = 500

3) |wk|min > (2k + 3)Ck-
These will be used again and again.

Step 2. For k € N, define
A = (M) (C(X)) @ -+ @ M) (C(X))) & (Mieng+1) D+ D Migge,my))-

Then,
Ko(Ax) = 2™, Ko(Ar)+ = Z*,  Ki(Ax) = Z™,

where
27 ={(A1 o Amy) €2 22 =0, 1 <0 < my).

We next define two unital monomorphisms @y, O : Ax — Ag+1. Here, we may recall
the notation v(¢) defined in 2.3.
(DFor1 <i <ng.and 1 < j < ngpy,if b1 # 0, define

0 () = diag {(f 0 AVEIVY T, pizg) (i iDe2ker,
£ FRGD) -t f o) £ ()}

if bj(.’l? = 0, define
¢;(f’j)(f) = diag { f(20)™%. f(z0)"2%; f(x1), f(Ax1D):. .. 5 f(xe) £ (A(xe))}s

. (k)
similarly, if r;;" # 0, define

001 (£) = diag {(f 0 ACTV) A, p(zg)y (e D2ker,
F@D, fAGD) i e f(Ale)) )
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if rj.(f) = 0, define
Oy (f) = diag { £(20)™%. f(z0) % f(x1). f(AGxD))i- . fxe)s f(A(xe))-
2)For 1 <i <ng,andng4; + 1 < j < my4,,define

O () = O (f) = diag { £(20)%; f(z0)"%; f(20) %},
(B)Forng +1<i <my, and 1 < j < my4, define

q)](ci,j)(a) — @l(ci,]')(a) = diag {aNV(k,is.i);a~25(k5i,f)}7

where
s®
V(k,l,])z 17 g(kvla.])zj,lT7 1fs](’]§) ISOdd’
s _
yk,i,j)y=2, §&k,i,j)= ”T, ifsj(»’]? is even.
Since forng + 1 <i <my, 1 < j1, jo < Ngy1, sj(fc)l = s](f)l, one could correspondingly

show that <I>,(€i’j1) = CI>](€i’j2).

Set @i = D1<i<my, 1=j<mpy q>l(ci,j)’ Ok = B1<i<m, 1<j<mpqq ®I(ci’j)’ where O will
be used as an auxiliary homomorphism in Step 3. Set C = limg_,o0(Ag, Pr). It is a
standard matter to check that

0k = (Pp)so = Y,  (Pr)s1 = Bk.

Hence,

(Ko(C), Ko(C).[Ic]. K1(C)) = (Ko(A), Ko(A) +. [14]. K1(A)).

Define
7® g = Myg i (C(X)) forl <i <ny

and
n'i(k) A —> Ml(k,i) forng +1 <i <my

to be the quotient maps.
We next show that C is simple. Fix j € N, for a nonzero element f € A4;.

Case 1: ni(j ) (f) # 0 forsomei > nj + 1. As each partial map of ®; has positive multi-
plicity, ®; (f) is full in Aj 1.

Case 2: ni(j)(f) # 0 for some 1 <i < nj. Choose x* € X such that

7 (f)(x*) # 0.
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Since ni(j ) (f) is a continuous map on the compact metric space X, there exists a § > 0
such that
|7 ()0 =2 (]| <

provided that dist(x, x*) < &, where x € X. Choose k € N, k > j, such that

[EXETAES]
2

)
dist (x*,{x; 1 1 <1 < ¢¢}) < >

Now, ®@; 4o (f) is full in Ag4,, where ®; ;45 := P00 D;.

By [9, Proposition 2.1 (iii)], it follows that C is simple.

Next, we will show that RR(C) = 0. Fix j € N, and a unit norm element f" € A;. For
e >0, choose k € N, k > j + 1, such that

| =
N ™

Thus, for any y;, y» € X,

[ (@1 0) =t (@ik(N2)| = 5775

Therefore, by [36, Proposition 3.1.4], RR(C) = 0. By Theorem 2.9,

<é&

C = A.

Step 3. For k € N, recalling that [(k, 1) = --- = [(k, ny), we could define an order two
automorphism py : Ay — A by

pk(f) = (flv"'vfpk;gl OA,,.,,,qu Ok;ﬁl»hl,~~-,];rk»hrk;ank+ly--~7amk),

where

A

f = (fly""fpk;gl»'-'»qu;hlvhl»""hrkvhrk;ank+1’""an'lk) eAk'

In fact, under the canonical basis of Z™*, it is routine — if tedious — to verify that

Pktdk mig—ng
. —— (0 1 o 1| ——
(px)x0 = diag 1,...,1; Lol o 1,01 3 = oy,

and
(or)«1 =Mk, k € N.
Fix k € N. We claim that
Ok+10 Yk = Yk,
or equivalently,
(Pr+1)50l (@) a0 (Ko (A1) = 14 ](@p)u0(Ko(40))-
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This essentially follows from the fact that the first ng4; rows of the matrix ¥ are the
same. More precisely, fix

X1
X2
x=| xp, | € Ko(Ax) =27Z"*.
Xnp+1
L Xmp
Define B _
1
Y2
Y= Ym | = 0k(x) = Vr(x) € Ko(Ag41) = Z"*+1.
ynk+1+1
L ymk+1 .
One has that
- - - - 8 X
Y1 X1 Zz 1°1,i ™
Z RON
Y2 X2 i=12,i""1
_ _ (k)
Yngq - ka Xnp - Zl—l nk+1,txl
1 Xnp+1 (k) ,
Ynpp1+ ng+ Zi:l Sppr1+1,iXi
L Ymiqr L Xmy | mg ‘(k) .
L 2 Smpsr,iNi

Recall thatfor 1 <i <mny, 1 < j < mgyq,
5% = @k + 3)ex,

andfornk+ 1 Sl Emk91§jlaj2 Snk-i-l?

k) _ (k)
Sivd = Sjasic
It follows that
yl — cee — ynk+1’

whence
Ok+1(y) = y.
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Thus,

(Pk+1)%0 ((Pi)x0 (X)) = ok41(9k (%)) = Ok1(Vr (%)) = 041 (¥) =y
= @i (x) = (Pp)xo(x).
Similarly, by observing that the first n; columns of the matrix y are the same, one

could show that
Vkoor =Y, keN.

Consider that pg 1 o ®g. Recall that yx = ng41 o Br.

(a) Forlfifnk,lfjfpk+1,asb() J(lf),
(P41 0 q;k)(l J) — q>(l J)’ ®I(ci,j) _ q)](ci,j)‘
(b) Forl <i <ng, prs1+1<j < prs +qk+1.1fbj(.f§) #0,as —b\) =%,
OE)(f) = diag {(f o A*C) ,))) f(z Yl D+2ker.

f(xl),f(k(xl));... () £ (A(xe))

= diag {(f 0 ACCHEMY I, p (o)~ tbfD2ker,
£, FAED)i - f )y f (M)}

= diag {(f o )L("(b]k>)+1))~|b](;l?|; f(ZO)~(ck—|b}f§’|)+2kck;
S f(AxD)): - f e f(Axe)}

= (pr+1 0 2 (f).

If bJ(.’I? = 0, then rj(,]? = —bj(-’];) =0,
(o410 @) (f)
= diag { f(z0)™. f(20)™2*%: f(x1). f(A(xD): ... 1 f(xe). [ (A(xe,))}

=0y (f).
(©) F&f)l < i( f N, Pr+1+ qe+1 + 1 =< j <ng1. 162 4 (j — pr+1 — G+1), then
= b]+1 ;3 hence,
(Pk+1 o q;k)( i,j) — q>(ls1+1) @(151)
. . k k
i 2/(j — pi+1 — gks1). then s = 5%, - hence,

(Pk+1 Oq)k)(l J) CI)(lj 1) @I(cla])
(d) Forl=<i=<ng,ngy1+1=j <mpy,

(Prg1 © D)) = q’;(:’j) = ®;(€i’j)-
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(e) Forngp+1<i<mp,1=<j<mgs,

(o410 Bp) ) = diag{a™r®D); g~ 280Dy — @)

In summary,

Pr+1 0 Px = O.

In a similar manner, consider that ®; o pg. Recall that y; = B o ng.

(@)

) Forpr +1<i<pr+qr,1<j §nk+1.1fbl(.§) # 0, as —bj(-ﬁ) =r

(ch

0

Forl <i <pg,1 <] f”k+1’aSb](',];) =T
(@ 0 pp) @) = o). O = o).
=r®
It
o (k ~1p® (&
(®k 0 p) I (f) = diag {(fo )t(”(bf’i))ﬂ)) il f(Zo)w(ck_lbf”')Dchk;
FRGD) fO):- s f (M) f e}
and
Of(f) = ding {(f 0 ACCIV) I, f(zg) =l Doker,
LG, FAGD): 5 () (A (xe))
~|p%)
— g {( 0 A0CH )P, eyt
SO0, fAGD))s . f ) f(Axe))
(k) ~|p® (®)
= diag {(f 0 ACEOTV) T, gy~ Dt 2ker,
f(x1), f()t(xl))§ oo (X, f(k(xck))}

(k) _ k) _ () _
If bj’i = 0, then rii = —bj,i =0,

(@ © pi) @ (f)
= diag { f(z0)™%, f(z0)"%%; £ (A(xD)). (X1 1 [ (A(xe)). f(xe))
while
ey ()
= diag { f(20)™%. f(20)"2*%; f(x1). f(A(xD):- . 1 f(xe). f (M)}

For pr +qx + 1 <i <nj, 1 < j <ng41. 124 (0 — pg —Qk),a“,(,]? :b;,]?ﬂ,
(@ 0 pp) ) = RUHLD = @lE)),

Al k k

i 2] — pe —qi).as iy = b

(k0 p) ) = @,({i_l’j) = ®,((i’j).
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(d) Forl <i <ng,ngq1+1=j <mgyq,
(® 0 p) ) = diag { /(20)™%: f(20)™2%: f(z0) %} = OF .
€) Forng+1<i<my,1=<j<mgs,
(@ 0 o)) = o) = @),
Summarizing, except for the case (b'),
(@ 0 pi) ) = O,

Setu; = lg,.Forl <i < pg,and px +gx + 1 <i <ng,1 < j < my4, define

0 177
U+1,i,j = diag {1NC"; |:1 Oi| ; 1~2C"};

for pr +1 <1 < pr +qi, 1 < j < ng41, define

~ka ~Ck
. ~ 0 1 0 1
Uk+1,i,; = diag {1 e [1 0} ; [1 0} };

for pp +1<i < pr + qi,nk+1 +1 = j < mgyy, define

~kcy
. ~ 0 1 ~
Uk+1,,; = diag {1 k; [1 0} i1 26"};

forng +1<i <mg,1 <j <mpqq,

Cro (e
Uk41,,; = diag 1~V(k,131);|:1 01| .

Next, define

Ups1 = (@}7’:11 (@ uks14,7 @ Iieiy) ® 1))
® (875, 41 @ tr10s ® ligeiy)) € A1, k €N

J=ng41+1
Then,
* 2 — —
Uppqg = Uk+1, Upyq = Lapiys Pr+1(Ukg1) = Uy

By comparing (a) ~ (e) and (a’) ~ (e’), it is routine — if tedious — to verify that
@ 0 pr = Adug4g 0 O = Adugig o (pg+10Px), k eN.

Set v; = 1y4,, and define vg4+; = Ug41Pr(vk) € Ax4+1 inductively, k = 1,2, ....
Define
o = Advg o pg.
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Clearly,
ak+loq>k=cl>koak, k € N.
To check that of =idy,, since p; =idy,, it is sufficient to show that py (vi) vk = 14,
Since v1 = ly4,, p1(v1)v1 = 14,. Assume that pg (vg)vr = 14,. We will show that
Pk+1 (W) V1 = 1ag,,-
Indeed,
Pk+1(Vk+ D) Vk+1 = Pre1 (U1 Pre (Vi) )uge41 Pre (Vi)
= Pk+1r+1) Pre+1(Pic (Vi) ) i1 P (Vi)
= g 1Uk41 Pk (i (Vi) )y e +1 Pre (Vi)
= O (pr (Vi) vie)
= Ok (la,)

= 1Ak+1 :

Then, one can easily construct the following commutative diagram:

A =24, B g, B A
bl
A =2 g, =B g, A.

Hence, the sequence of order two automorphisms oy defines
a: A= lim (Ag, ®r) > A = lim (Ag, D)
k—o00 k—o0

which is also a symmetry.

Note that
(@r)x1 = (Pr)x1 = M:
hence,
ax1 = lim (o)« = lim 9 = h.
k—o00 k—o00
Since

(Pk+1) %0l (@) r0(Ko(4r)) = 14 [(@)so(Ko(4r))»  (@k41)x0 = (Pk+1)%0,

it follows that
(1) %0l (@150 (Ko (4)) = 14 |(@1)0(Ko(41))-

Consequently,

50| (B o0)x0 (Ko(4r)) = 14 |(@ o0)s0(Ko(4r)): &k € N,
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Noting that

o0
| (@k.00)x0(Ko(Ai)) = Ko(A).
k=1
we have
Oxp = id.

Step 4. We are now in a position to show that the action of Z, generated by « has the
tracial Rokhlin property. To this end, we fix a finite set F C A :={a :a € A, |a| <1},
and an ¢ > 0. Then, there exists a positive integer k such that

dist (£, P00 (Ar)) < ; forany f € F,

and
3 - £
2k +3 2

Forl <i <ng,1 < j < my4q,define

~kcy ~kcy
. - 1 0 - . - 0 0 ~
ei(,oj) = diag {0 Ck |:0 0i| 10 zck}, el.(,lj) = diag {0 Che, |:0 1] 10 zc"};

forng +1 <i <my,1 < j <mgy1,define

© M1 o0 ~&(k,i,j) W . To 0 ~&(k.i,j)
e ) = diag {O’Vy(k,w); |:() 0:| }’ e = diag {O’V)’(k,w); |:0 1i| }

Define

I !
e = (@7 (@76 ® L)) ® lew))) & (@745 1 (@726} @ L))

[=0,1.

Then, it is easy to check that ey, e; are mutually orthogonal projections of Ay with
Ufq€0Uk 11 = €.
In addition, it is easily seen that
pr+1(er) = er,
and e¢; commutes with @y (Ag), [ =0, 1.
Note that
d+1(e0) = V41 Pk+1(€0)Vk+1
= (uk+1Pr (Vk)) " i1 (€0) 41 Pr (Vi)
= O (Vi) U4y Pk+1(e0)up 1 Pr (Vi)
= O (vi) " up g eotti 1Pk (Vr)
= O (vg)"e1 Dy (vg)
= O (vk)* P (vi)er

=e1.
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Moreover, for any tracial state T on Ag41,

<8
2k+3 2

(14, — €0 — ax41(e0)) = (14, —€0 —e€1) <

Then, by Lemma 2.10, the action of Z, generated by « has the tracial Rokhlin property.
Since A is a unital simple AT -algebra with RR(A) = 0, by [30, Theorem 4.3.5], A
has tracial rank zero. Hence, by [33, Corollary 1.6 and Theorem 2.6], C*(Z,, A, @) is a
unital simple, separable C *-algebra with tracial rank zero. Since A is nuclear and Z is
amenable and compact, it follows from [42, Corollary 7.18] and [10, Proposition 6.1] that
C*(Zy, Ag, o) is nuclear and satisfies the UCT. Hence, by [36, Proposition 2.4.7 (ii)],

C*(Zy, A, a) = k]im (C*(Zz,Ak,Olk), qu)
—00

is also nuclear and satisfies the UCT. Therefore, by [31, Theorem 5.2] and its proof,
C*(Z,, A, o) is a unital simple AH-algebra with no dimension growth. |

Remark 3.4. If we do not insist on the fact that the action of Z, generated by « has the
tracial Rokhlin property, the unitary ux 4, could be constructed in a simpler form which
has less flips, comparing with that we used in Step 3 of the proof of Theorem 3.3.

Remark 3.5. Let A be a unital simple AT -algebra with real rank zero and K; (;f) =0.
Pick a companion algebra A, which is a unital simple AT -algebra with real rank zero, and

(Ko(A4). Ko(A) 1. [14]. K1(4)) = (Ko(A). Ko(A).[1].Z).

Let /1 be the identity map of K;(A). By examining the proof of Theorem 3.3 carefully, it is
straightforward to check that B =~ A, and B is a unital subalgebra of A by embedding By
into Ax. Moreover, one could easily check that « is also a symmetry of B, and axo|k,(B) =
id | g, (B)- Finally, exactly as that in Step 4, the action of Z, generated by « has the tracial
Rokhlin property, and C*(Z,, B, «) is a unital simple AH-algebra with no dimension
growth, tracial rank zero (actually an AF-algebra) as desired. In other words, we finish the
proof of the trivial case of Theorem 3.3.

4. An application to a lifting problem of Blackadar

In this section, we will modify the procedure of the proof of Theorem 3.3 to give a positive
answer to a lifting problem of Blackadar for the split case.

Theorem 4.1. Let A be the AF-algebra whose scaled ordered group Ko() is (isomor-
phic to) .
(G H. (G4 \{0}) ® HU{0® O}, @ h),

where (G,G+, g) is the scaled ordered group {(O(B) of a unital simple AF-algebra B, and
H is a countable torsion-free abelian group, h € H. Let o be an order two automorphism
of Ko(N), defined by 6(g ® h) = g ® n(h), where g ®h € G & H, and 1 is an order
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two automorphism of H. Then, there is an automorphism o of A with axg = o, a? = id
and the action of 7, generated by o has the tracial Rokhlin property.

Consequently, C*(Z», A, «) is a unital simple AH-algebra with no dimension growth,
and with tracial rank zero.

Proof. By Theorem 3.3, we assume that H # {0}. Set X = §2, and let A be the home-
omorphism of X defined by A(wy, wz, w3) = (wy, wa, —w3), where (wy, wo, w3) € S2.
Let zo be a fixed point of A and {x; : i € N} a dense set of X. Paralleled with that of
Theorem 3.3, we will divide the whole proof into four steps.

Step 1. By Proposition 3.2, there are a sequence of positive integers {ny : k € N} and
monomorphisms S : Z" — Z"k+1, order two automorphisms 7 : Z"* — Z"k such that
the following diagram commutes:

7m B g2 B2 73 B3 H
[ e e
7m B 7 B2 73 B3 H

and H =limyg_, o (Z"*, Bi), n=limg_ o0 1. Moreover, under the canonical basis of Z"k,
Nk has the form
Tk
Pk gk
w=ase{ T m ) )]

for suitable nonnegative integers py, gk, 't such that py + qx + 2rp = ng, k € N.
By Lemma 3.1, we may assume that

B = lim (Bk,‘-Ifk),
k—o00

where By = Mjg,1) @ -+ ® Mk m,) is a finite-dimensional C*-algebra and (1)—(4) in
Lemma 3.1 hold. Let g denote (I(k, 1),...,l(k,my)) € Z™*, k € N. Then,

(Ko(Bk), Ko(Br)+, [1g,]) = (Z"*, Z7*, gk).

Set Y 1= (Wx)«0, k € N. Note that ¥, »(gx) = &, k € N. Consider the ordered group
7™k @ 7" with the positive cone

mg
{(Al,...,)tmk;,ul,...,unk) e 7™k @ 7"k A >0, 1<i §mk,2)k,~ > 0}
i=1
U {(mek;ON"k)}.
Then, it is evident that

zm g gm V1©B1 zm @ 72 V2@ M @ 73 @) . >G®H,

which forms an inductive limit system of ordered groups.
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Step 2. Define

Ak = (Ma1ge, 1y (C(X)) @ +++ & Maen) (C(X))) & (Mas(ieong+1) D+ D Moemy))-
Then,
ng myg—ny

s Ko(Ap)=Z®2) - ®ZSL)BLD--DL;

ng mig—ng

* Ko Ap)+=Z®2)+® - D (L SBL)+ DLy &+ ® L4, Where

(Z@Z)+={(k,,u):)teN, nez, 0rl=u=0};
o [lg] = Qlk,1),0,...,20(k,ng),0; 2l (k,ng + 1),...,2l(k,mg)).

Exactly as that in the proof of Theorem 3.3, we define two unital monomorphisms
D, O 1 A — Ak+1. Set A = limk»oo(Ak, Cbk).
For k € N, define ¢ = (®g)«0, and

wp  (Z ®Z)™ @ 2™k — 7k gy 7%
by
wk(klalj’l;”' ;Ankaﬂnk;knk-l—l,---’lmk) = (A'l’"‘?kmk;ula""ﬂnk)'

Then, it is routine to check that wy is a positive homomorphism and bijection, while
w;l is not necessarily positive.
For k € N, consider

Xk = wk_—il-l o(Yr & ng) Ik @ 7 — Z & Z)nk+1 @ ZMk+1 e+t
According to each partial map of ¥, having positive multiplicity, it is routine to check
that y is a positive homomorphism. Moreover,

Vi ® Brx = Wk+10 Yk-
On the other hand, by checking each basis vector of (Z @ Z)"% @ Z™7 "k, it is
straightforward — if tedious — to show that
Wk+1 0 P = (Vi D Pr) 0 wi; (%)

hence,
Ok = frowg, keN.

Therefore, we have the following commutative diagram:

(Z @ Z)(”l) ® 7,(mi1—n1) L (Z & Z)(nz) ® 7,(m2—n2) e o — Ko(A)

T e

7zm @ 7™ 7m @ 7" ‘.- G ®H.
® Y1081 ® Y2®P2 ®
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Since each homomorphism in the above diagram is positive monomorphism, by the

standard intertwining argument, it follows that, via o,
(Ko(A), Ko(A)4) = (G & H.(G+ \ {0}) & H U{0® 0}) = (Ko(), Ko(2)4),
and
o ([14]) = V1,00 ® B1,0o) (@1 ([14,])) = V1,00 B B1.00) (@1 (201))
= (V1,00 ® B1,00) (28k ® Opy) =28 B 0.

Since K1(Ax) = 0, Vk € N, one has K;(4) = 0.

Using the same argument where appropriate in the proof of Theorem 3.3, we conclude

that A is simple and RR(A4) = 0. By Theorem 2.9, A is a simple AF-algebra.

Step 3. For k € N, define order two automorphisms pg : Ay — Ay by
pk(f) = (fl?‘-"fpk;gl O)'»"‘»qu Ok;h’\l»hla-"al:l\rk»hrk;ank+lv~‘-9am1{)a

where

f = (fln--,fpk;gl»uwqu;hl,hlw--»hrk,hrk;ank+1’---samk) e14k~

In fact, it is routine — if tedious — to verify that

dk
2pk
gk:=(pk)*o=dlag{1,...,l;[ _1}[ _1}
Tk
00 10 00 1 0] .,
00 0 1 000 1) ——
1 00 0”771 0 0 Of 77
010 0 0100
For k € N, let
T
P +ar Mk Tk Pk _
~ . —— [0 1 0 1| ——
gk;=d1ag{1,...,1;|:l 0],...,|:1 0];1,...,1;1,...,1;—1,...,—1§
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where
T

DPr+4k Mmi—ng
o :=diagq 1 1; 0 1 0 11, 1 1
k=diagg Lo Ly e gL Ty
Then, 6 is an order two automorphism of the ordered group (Z™« @& Z"*, ZT‘ @ 7).
As in Step 3 of the proof of Theorem 3.3, one could find that

Ok+1 ° Yk = Yk = Yk © Ok.
It is standard to check that
Ok © Wi = Wi © Gk,

SO

Sk+1° Xk = Gk+1© wk_}rl o (Yr @ Br)
= wj}1 ©Ok+1 0 (Vi D Pr)
= i1 © (Ok41 ® Tkt1) © (Y © Br)
= w41 ° (Ok41 0 Y%) & (k41 © Pr))
= wt1 0 (Y 0 0k) ® (Bi © 1))
= w41 ° (Vi ® Br) o (ok  nk)

= Xk © Ok.

Therefore, we have the following commutative diagram:

Zozym ezm ™ 2 Zmezn X ey ez s Zm ez s

ls‘l l&l ls‘z l&z
Zozym ezm ™ 2 Zmezn X ey ezmm s Zm ez s

Note that for each k € N,

Wk+1° Xk = Vi D Pk

Thus, after telescoping the aforementioned commutative diagram, there exists an order
two automorphism & of the ordered group G @ H such that for each k € N, the following
diagram is commutative:

Zme @ Tk Vi ®Br Zmi @ 7 V41,000 Bk +1,00 GaH

lﬁk lak+l l&
Zme @ Tk Vi ®Br Zmi @ 7k Yik+1,00 BBk +1,00 GeaH.
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Fix k € N. By (%),

Ok+1((Wie @ Br)(8k @ 1)) = okct1 (Vi (8k)) ® nit1 (Br (i)
Vi (gk) @ Bic (me(hi)).

It follows that

& (Vk,00(8k) @ Br.co(hi)) = G ((Vk.c0 ® Br.oo) (8k @ hi))
= (Vk,00 D Br,00) (O (gk & hi))
= (Vk+1,00 D Brt1,00) (W @ Br) © 6k) (gk @ hi))
= (Yk+1,00 D Br+1,00) ((Gk+1 © (Vi ® Br))(gk & hi))
= (Vk+1,00 D Br+1,00) (Vi (gk) D B (nic ()
= Yk,00(8k) @ Bk.co (i (1x))
= Vk,00(8k) ® 1(Bk.,00 (k)
0 (Vk,00(8k) @ Pr.co(hr)).

Noting that

U Ykoo(Gr) @ Broo(Hi) = G & H.
k=1

we have
o =o.

Setuy =idg,.Fork e N, 1 <i <my, 1 < j < myy1, define ugyq ; ; exactly as that
in the proof of Theorem 3.3. Next, define

Uk+1 = (697]:11 (®7Z uk+14,5 ® Likiy) @ L))
@ (@)% 1 @ ki1 ® L)), ke N,

J=ngi1+1

Exactly as that in Section 3,
Dy 0o pr = Adugyq 0O = Adugyq 0 pg+1 0 Px  and u,zc_H = lag,,» keN.
Set v; = idy,, and define vg4+1 = ug4+1 Pk (vk) inductively, k = 1,2, . ... Define
ar = Advgopg, keN.

So one can easily construct the following commutative diagram:

[ [ [}
A L Ay — 2 Ay —2 s .. A

l”“ laz lm

)] 03] 03]
A L Ay — Ay ——s A.
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As in the corresponding part of the proof of Theorem 3.3, 0{,% = idy,, k € N. Hence, the
automorphisms «y, define

a: A= lim (Ag, ®r) > A = lim (Ag, D)
k—o00 k—o00
which is a symmetry. Moreover,
axo = lim (ag)«o = lim (pg)xo = lim ¢x = lim 6y =6 = o.
k—o00 k—00 k—00 k—o0

Step 4. Also as in Section 3, the action of Z, generated by « has the tracial Rokhlin
property. Note that the unit of 2 may not come from trivial projections in the AH inductive
limit procedure. Hence, one could note that we have enlarged the algebra in each finite
stage during the construction. Next, we will cut it down.
Since o preserves the scale,
cEeh=genh=goh
Therefore, 77(};) = h. Without loss of generality, we may assume that there exists 7y € 7!

such that 81,00(h1) = h. Since B, is injective and

Broo (11 (11)) = n(B1,00 (1)) = 1(h) = h,
it follows that . y
ni(hy) = hy.
Denote _
hi= A1, Ap 381, g 1 VL, ooy oy V) € 271

Since 771(};1) = hy, we have
GLh=-=0;, =0, and pu; =v;, j=1,...,r1.

By the elementary fact of K-theory (e.g., [37, Exercise 11.2]), there exist rank one pro-
jections P; € M,(C (X)) such that

[Pril=A)eZBZ = KO(C(X))
for] <i < p;and
[Pri]l = (1) € Z®Z = Ko(C(X))

fori = p14+q1+1,p1+qg1+3,...,p1 +¢1 + 2r; — 1, where the first coordinate of
Z & 7 denotes the rank part. Fori = p1 +¢1 +2,p1+q1 +4,...,p1 +q1 + 2rq, set
Pri = Pri-1.

Set

+
Py = (@ipil (P1i & 1Ml(1,1)—1)) @ ( zp;p?il lMl(l,i))

pit+qi1+2r . my
® ( i=pi+qi+1 P ® lMl(l,i)—l) ® ( i=n;+1 lMl(l,i))'
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Then, ) 3
<ﬂ1,oo([P1]) = (V1,00 ® B1,00)(&1 B 1) =g D h,

and
aj(Pr) = p1(Py) = Pr.

Inductively, we define Py as
Pry1 = P (Py), k eN.

Noting that
P1€A?1, oayo®; = djoay,

it follows that P, € Agz; similarly, one has Py € Azk, k € N.

For k € N, let Ay = Py Ax Py. Since Py € A%, it is routine to check that ®; maps
A onto Ay and o maps Ay onto A and is also an order two automorphism of .
Let

A = lim (2[](, qu).
k—o00

Define P = ®; o (Py). Then, it is obvious that A = PAP; hence, + is an AF-algebra.
According to the construction of P, it is easy to check that

(Ko(A), Ko(A)+,[14]) = (G ® H, (G+ \{0}) @ HU{0® 0}, & @ h).

Therefore, by Elliott’s classification theorem of AF-algebras (see, e.g., [30, Theorem
3.4.8]), A = . Again, since

P € AT, a0 @0 = Pgoy,

it follows that P € A%. Therefore, « is an order two automorphism of 2 with a4 = 0.
Finally, noting that P € A%, by [33, Lemma 3.7], we deduce that the Z, action «
of 2 has the tracial Rokhlin property. Hence, by [33, Corollary 1.6 and Theorem 2.6],
C*(Z,, %, @) is a unital simple, separable C *-algebra with tracial rank zero. Since Ay is
nuclear, A = Py Ay Py is a hereditary subalgebra of Ay ; hence, 2y is nuclear. Also, as
the appropriate part in Step 4 of the proof of Theorem 3.3, C*(Z,, %, «) is a unital simple
AH-algebra with no dimension growth. ]

Remark 4.2. Let (G, G4) be a simple dimension group, that is, the ordered group of a
simple AF-algebra B, and let H be a countable torsion-free abelian group. It is not hard
to check that (G & H, (G4 \ {0}) & H U {(0,0)}) is unperforated and satisfies the Riesz
interpolation property. Hence, by the Effros—Handelman—Shen theorem [11], it is a simple
dimension group.

Remark 4.3. Some examples which satisfy the K-theory setup of Theorem 4.1 could be
found in [3, 10.11.3], [7, Section 1], [34, Examples 4.1 and 4.5].
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Corollary 4.4. Let U be a unital simple AF-algebra with a unique tracial state t, and
assume that the following short exact sequence is split:

0 — inf Ko(A) = Ko(A) = 74 (KO(QI)) — 0,

where inf Ko(2) = {x : x € Ko(N), t«(x) = 0}. Let 0 be an order two automorphism
of the scaled ordered Ko(N). Then, there is an automorphism o of A with axg = o and
a? =id.

Proof. Set
H:=infKo(¥), (G.G4,g) = (t«(Ko(X)), 7 (Ko(A)) N R4, 1).
As the short exact sequence is split, Ko(%) = G & H. By [5, Theorem 3.9],
Ko@)t ={gdh:geG, g>0,he HU{0 0}.

Forg®heG® H,setg, @& h; :=0(g & h). We claim that g; = g. Otherwise,
since G is totally ordered, either gy > gor g > g1. If g; > g, then g1 ® hy > g D h.
Since o is order preserving, it follows that

g®h=0(g1®h)>0(g®h)=g1®hi.

This is a contradiction! If g > g7, a similar argument yields the contradiction.
Set 1 := o|g which is an order two automorphism of H. Therefore, for g & h €
GO H,
o(g®h) =g@n(h).

Therefore, by Theorem 4.1, there is an automorphism « of 2 with a9 = o and a? =
id. [

Funding. Yuanhang Zhang’s research is supported in part by the National Natural Sci-
ence Foundation of China (No. 12071174) and the Science and Technology Development
Project of Jilin Province (No. 20190103028JH).

References

[1] S. Barlak and G. Szabd, Rokhlin actions of finite groups on UHF-absorbing C*-algebras.
Trans. Amer. Math. Soc. 369 (2017), no. 2, 833-859 Zbl 1371.46054 MR 3572256

[2] D.J.Benson, A. Kumjian, and N. C. Phillips, Symmetries of Kirchberg algebras. Canad. Math.
Bull. 46 (2003), no. 4, 509-528 Zbl 1079.46047 MR 2011390

[3] B. Blackadar, K-theory for operator algebras. Math. Sci. Res. Inst. Publ. 5, Springer, New
York, 1986 Zbl 0597.46072 MR 859867

[4] B. Blackadar, Symmetries of the CAR algebra. Ann. of Math. (2) 131 (1990), no. 3, 589-623
Zbl 0718.46024 MR 1053492


https://doi.org/10.1090/tran6697
https://zbmath.org/?q=an:1371.46054
https://mathscinet.ams.org/mathscinet-getitem?mr=3572256
https://doi.org/10.4153/CMB-2003-049-7
https://zbmath.org/?q=an:1079.46047
https://mathscinet.ams.org/mathscinet-getitem?mr=2011390
https://doi.org/10.1007/978-1-4613-9572-0
https://zbmath.org/?q=an:0597.46072
https://mathscinet.ams.org/mathscinet-getitem?mr=859867
https://doi.org/10.2307/1971472
https://zbmath.org/?q=an:0718.46024
https://mathscinet.ams.org/mathscinet-getitem?mr=1053492

(5]
(6]

(71

(8]

(9]

(10]

(11]
[12]
(13]
(14]
(15]
(16]
(17]
(18]

(19]

(20]

(21]
(22]
(23]
(24]

(25]

Symmetries of simple AT -algebras 467

B. E. Blackadar, Traces on simple AF C*-algebras. J. Functional Analysis 38 (1980), no. 2,
156-168 Zbl 0443.46037 MR 587906

F. P. Boca, The structure of higher-dimensional noncommutative tori and metric Diophantine
approximation. J. Reine Angew. Math. 492 (1997), 179-219 Zbl 0884.46040 MR 1488068
O. Bratteli, G. A. Elliott, D. E. Evans, and A. Kishimoto, Finite group actions on AF algebras
obtained by folding the interval. K-Theory 8 (1994), no. 5, 443-464 Zbl 0821.46088

MR 1310287

J. W. Bunce and J. A. Deddens, A family of simple C *-algebras related to weighted shift
operators. J. Functional Analysis 19 (1975), 13-24 Zbl 0313.46047 MR 0365157

M. Dadarlat, G. Nagy, A. Némethi, and C. Pasnicu, Reduction of topological stable rank in
inductive limits of C *-algebras. Pacific J. Math. 153 (1992), no. 2, 267-276 Zbl 0809.46054
MR 1151561

S. Echterhoff, W. Liick, N. C. Phillips, and S. Walters, The structure of crossed products of
irrational rotation algebras by finite subgroups of SL>(Z). J. Reine Angew. Math. 639 (2010),
173-221 Zbl 1202.46081 MR 2608195

E. G. Effros, D. E. Handelman, and C. L. Shen, Dimension groups and their affine representa-
tions. Amer. J. Math. 102 (1980), no. 2, 385-407 Zbl 0457.46047 MR 564479

G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite-
dimensional algebras. J. Algebra 38 (1976), no. 1, 29-44 Zbl 0323.46063 MR 397420

G. A. Elliott, On the classification of C*-algebras of real rank zero. J. Reine Angew. Math.
443 (1993), 179-219 Zbl 0809.46067 MR 1241132

G. A. Elliott and D. E. Evans, The structure of the irrational rotation C *-algebra. Ann. of Math.
(2) 138 (1993), no. 3, 477-501 Zbl 0847.46034 MR 1247990

G. A. Elliott and G. Gong, On the classification of C*-algebras of real rank zero. 1. Ann. of
Math. (2) 144 (1996), no. 3, 497-610 Zbl 0867.46041 MR 1426886

G. A. Elliott and H. Su, K-theoretic classification for inductive limit Z, actions on AF alge-
bras. Canad. J. Math. 48 (1996), no. 5, 946-958 Zbl 0869.46037 MR 1414065

T. Fack and O. Maréchal, Sur la classification des symétries des C *-algebres UHF. Canadian
J. Math. 31 (1979), no. 3, 496-523 Zbl 0361.46057 MR 536360

G. Gong, On the classification of simple inductive limit C *-algebras. I. The reduction theorem.
Doc. Math. 7 (2002), 255-461 Zbl 1024.46018 MR 2014489

G. Gong, H. Lin, and Z. Niu, A classification of finite simple amenable Z-stable C *-algebras,
I: C*-algebras with generalized tracial rank one. C. R. Math. Acad. Sci. Soc. R. Can. 42 (2020),
no. 3, 63-450 MR 4215379

G. Gong, H. Lin, and Z. Niu, A classification of finite simple amenable Z-stable C*-algebras,
II: C*-algebras with rational generalized tracial rank one. C. R. Math. Acad. Sci. Soc. R. Can.
42 (2020), no. 4, 451-539 MR 4215380

D. Handelman and W. Rossmann, Product type actions of finite and compact groups. Indiana
Univ. Math. J. 33 (1984), no. 4, 479-509 Zbl 0559.46029 MR 749311

D. Handelman and W. Rossmann, Actions of compact groups on AF C*-algebras. Illinois J.
Math. 29 (1985), no. 1, 51-95 Zbl 0559.46028 MR 769758

R. H. Herman and V. F. R. Jones, Period two automorphisms of UHF C *-algebras. J. Func-
tional Analysis 45 (1982), no. 2, 169-176 Zbl 0511.46057 MR 647069

L. K. Hua and L. Reiner, Automorphisms of the unimodular group. Trans. Amer. Math. Soc. 71
(1951), 331-348 Zbl 0045.30402 MR 43847

M. Izumi, Finite group actions on C *-algebras with the Rohlin property. I. Duke Math. J. 122
(2004), no. 2, 233-280 Zbl 1067.46058 MR 2053753


https://doi.org/10.1016/0022-1236(80)90062-2
https://zbmath.org/?q=an:0443.46037
https://mathscinet.ams.org/mathscinet-getitem?mr=587906
https://doi.org/10.1515/crll.1997.492.179
https://doi.org/10.1515/crll.1997.492.179
https://zbmath.org/?q=an:0884.46040
https://mathscinet.ams.org/mathscinet-getitem?mr=1488068
https://doi.org/10.1007/BF00961400
https://doi.org/10.1007/BF00961400
https://zbmath.org/?q=an:0821.46088
https://mathscinet.ams.org/mathscinet-getitem?mr=1310287
https://doi.org/10.1016/0022-1236(75)90003-8
https://doi.org/10.1016/0022-1236(75)90003-8
https://zbmath.org/?q=an:0313.46047
https://mathscinet.ams.org/mathscinet-getitem?mr=0365157
https://doi.org/10.2140/pjm.1992.153.267
https://doi.org/10.2140/pjm.1992.153.267
https://zbmath.org/?q=an:0809.46054
https://mathscinet.ams.org/mathscinet-getitem?mr=1151561
https://doi.org/10.1515/CRELLE.2010.015
https://doi.org/10.1515/CRELLE.2010.015
https://zbmath.org/?q=an:1202.46081
https://mathscinet.ams.org/mathscinet-getitem?mr=2608195
https://doi.org/10.2307/2374244
https://doi.org/10.2307/2374244
https://zbmath.org/?q=an:0457.46047
https://mathscinet.ams.org/mathscinet-getitem?mr=564479
https://doi.org/10.1016/0021-8693(76)90242-8
https://doi.org/10.1016/0021-8693(76)90242-8
https://zbmath.org/?q=an:0323.46063
https://mathscinet.ams.org/mathscinet-getitem?mr=397420
https://doi.org/10.1515/crll.1993.443.179
https://zbmath.org/?q=an:0809.46067
https://mathscinet.ams.org/mathscinet-getitem?mr=1241132
https://doi.org/10.2307/2946553
https://zbmath.org/?q=an:0847.46034
https://mathscinet.ams.org/mathscinet-getitem?mr=1247990
https://doi.org/10.2307/2118565
https://zbmath.org/?q=an:0867.46041
https://mathscinet.ams.org/mathscinet-getitem?mr=1426886
https://doi.org/10.4153/CJM-1996-049-2
https://doi.org/10.4153/CJM-1996-049-2
https://zbmath.org/?q=an:0869.46037
https://mathscinet.ams.org/mathscinet-getitem?mr=1414065
https://doi.org/10.4153/CJM-1979-055-7
https://zbmath.org/?q=an:0361.46057
https://mathscinet.ams.org/mathscinet-getitem?mr=536360
https://doi.org/10.4171/dm/127
https://zbmath.org/?q=an:1024.46018
https://mathscinet.ams.org/mathscinet-getitem?mr=2014489
https://mathscinet.ams.org/mathscinet-getitem?mr=4215379
https://mathscinet.ams.org/mathscinet-getitem?mr=4215380
https://doi.org/10.1512/iumj.1984.33.33026
https://zbmath.org/?q=an:0559.46029
https://mathscinet.ams.org/mathscinet-getitem?mr=749311
https://doi.org/10.1215/ijm/1256045841
https://zbmath.org/?q=an:0559.46028
https://mathscinet.ams.org/mathscinet-getitem?mr=769758
https://doi.org/10.1016/0022-1236(82)90016-7
https://zbmath.org/?q=an:0511.46057
https://mathscinet.ams.org/mathscinet-getitem?mr=647069
https://doi.org/10.2307/1990696
https://zbmath.org/?q=an:0045.30402
https://mathscinet.ams.org/mathscinet-getitem?mr=43847
https://doi.org/10.1215/S0012-7094-04-12221-3
https://zbmath.org/?q=an:1067.46058
https://mathscinet.ams.org/mathscinet-getitem?mr=2053753

Y. Zhang 468

[26] M. Izumi, Finite group actions on C *-algebras with the Rohlin property. 1. Adv. Math. 184
(2004), no. 1, 119-160 Zbl 1050.46049 MR 2047851

[27] T. Katsura, A construction of actions on Kirchberg algebras which induce given actions on
their K-groups. J. Reine Angew. Math. 617 (2008), 27-65 Zbl 1158.46042 MR 2400990

[28] A. Kishimoto, On the fixed point algebra of a UHF algebra under a periodic automorphism of
product type. Publ. Res. Inst. Math. Sci. 13 (1977/78), no. 3, 777-791 Zbl 0367.46058
MR 0500177

[29] A. Kumjian, An involutive automorphism of the Bunce-Deddens algebra. C. R. Math. Rep.
Acad. Sci. Canada 10 (1988), no. 5, 217-218 Zbl 0669.46028 MR 962104

[30] H. Lin, An introduction to the classification of amenable C*-algebras. World Scientific Pub-
lishing, River Edge, NJ, 2001 Zbl 1013.46055 MR 1884366

[31] H. Lin, Classification of simple C *-algebras of tracial topological rank zero. Duke Math. J.
125 (2004), no. 1, 91-119 Zbl 1068.46032 MR 2097358

[32] H. Lin and H. Osaka, Tracial Rokhlin property for automorphisms on simple AT -algebras.
Ergodic Theory Dynam. Systems 28 (2008), no. 4, 1215-1241 Zbl 1444.46043 MR 2437228

[33] N. C. Phillips, The tracial Rokhlin property for actions of finite groups on C *-algebras. Amer.
J. Math. 133 (2011), no. 3, 581-636 Zbl 1225.46049 MR 2808327

[34] N.C. Phillips, Finite cyclic group actions with the tracial Rokhlin property. Trans. Amer. Math.
Soc. 367 (2015), no. 8, 5271-5300 Zbl 1328.46058 MR 3347172

[35] L F. Putnam, On the topological stable rank of certain transformation group C *-algebras.
Ergodic Theory Dynam. Systems 10 (1990), no. 1, 197-207 Zbl 0667.46045 MR 1053808

[36] M. Rgrdam, Classification of nuclear, simple C *-algebras. In Classification of nuclear C*-
algebras. Entropy in operator algebras, pp. 1-145, Encyclopaedia Math. Sci. 126, Springer,
Berlin, 2002 Zbl 1016.46037 MR 1878882

[37] M. Rgrdam, F. Larsen, and N. Laustsen, An introduction to K -theory for C *-algebras. London
Math. Soc. Stud. Texts 49, Cambridge University Press, Cambridge, 2000 Zbl 0967.19001
MR 1783408

[38] J. Spielberg, Non-cyclotomic presentations of modules and prime-order automorphisms of
Kirchberg algebras. J. Reine Angew. Math. 613 (2007), 211-230 Zbl 1155.46023
MR 2377136

[39] H. Thiel, Future targets in the classification program for amenable C *-algebras. 2017,
https://www.birs.ca/workshops/2017/17w5127/files/

[40] A. Tikuisis, S. White, and W. Winter, Quasidiagonality of nuclear C *-algebras. Ann. of Math.
(2) 185 (2017), no. 1, 229-284 Zbl 1367.46044 MR 3583354

[41] S. Walters, On the inductive limit structure of order four automorphisms of the irrational rota-
tion algebra. Internat. J. Math. 17 (2006), no. 1, 107-117 Zbl 1096.46034 MR 2204842

[42] D. P. Williams, Crossed products of C*-algebras. Math. Surveys Monogr. 134, American
Mathematical Society, Providence, RI, 2007 Zbl 1119.46002 MR 2288954

[43] Y. Zhang, On a lifting question of Blackadar. Ann. Funct. Anal. 9 (2018), no. 4, 485-499
Zbl 1458.46060 MR 3871909

Received 23 April 2021; revised 27 June 2021.

Yuanhang Zhang
School of Mathematics, Jilin University, Changchun 130012, P. R. China;
zhangyuanhang @jlu.edu.cn


https://doi.org/10.1016/S0001-8708(03)00140-3
https://zbmath.org/?q=an:1050.46049
https://mathscinet.ams.org/mathscinet-getitem?mr=2047851
https://doi.org/10.1515/CRELLE.2008.025
https://doi.org/10.1515/CRELLE.2008.025
https://zbmath.org/?q=an:1158.46042
https://mathscinet.ams.org/mathscinet-getitem?mr=2400990
https://doi.org/10.2977/prims/1195189607
https://doi.org/10.2977/prims/1195189607
https://zbmath.org/?q=an:0367.46058
https://mathscinet.ams.org/mathscinet-getitem?mr=0500177
https://zbmath.org/?q=an:0669.46028
https://mathscinet.ams.org/mathscinet-getitem?mr=962104
https://doi.org/10.1142/9789812799883
https://zbmath.org/?q=an:1013.46055
https://mathscinet.ams.org/mathscinet-getitem?mr=1884366
https://doi.org/10.1215/S0012-7094-04-12514-X
https://zbmath.org/?q=an:1068.46032
https://mathscinet.ams.org/mathscinet-getitem?mr=2097358
https://doi.org/10.1017/S0143385707000764
https://zbmath.org/?q=an:1444.46043
https://mathscinet.ams.org/mathscinet-getitem?mr=2437228
https://doi.org/10.1353/ajm.2011.0016
https://zbmath.org/?q=an:1225.46049
https://mathscinet.ams.org/mathscinet-getitem?mr=2808327
https://doi.org/10.1090/tran/5566
https://zbmath.org/?q=an:1328.46058
https://mathscinet.ams.org/mathscinet-getitem?mr=3347172
https://doi.org/10.1017/S0143385700005484
https://zbmath.org/?q=an:0667.46045
https://mathscinet.ams.org/mathscinet-getitem?mr=1053808
https://doi.org/10.1007/978-3-662-04825-2_1
https://zbmath.org/?q=an:1016.46037
https://mathscinet.ams.org/mathscinet-getitem?mr=1878882
https://zbmath.org/?q=an:0967.19001
https://mathscinet.ams.org/mathscinet-getitem?mr=1783408
https://doi.org/10.1515/CRELLE.2007.098
https://doi.org/10.1515/CRELLE.2007.098
https://zbmath.org/?q=an:1155.46023
https://mathscinet.ams.org/mathscinet-getitem?mr=2377136
https://www.birs.ca/workshops/2017/17w5127/files/
https://doi.org/10.4007/annals.2017.185.1.4
https://zbmath.org/?q=an:1367.46044
https://mathscinet.ams.org/mathscinet-getitem?mr=3583354
https://doi.org/10.1142/S0129167X06003370
https://doi.org/10.1142/S0129167X06003370
https://zbmath.org/?q=an:1096.46034
https://mathscinet.ams.org/mathscinet-getitem?mr=2204842
https://doi.org/10.1090/surv/134
https://zbmath.org/?q=an:1119.46002
https://mathscinet.ams.org/mathscinet-getitem?mr=2288954
https://doi.org/10.1215/20088752-2017-0063
https://zbmath.org/?q=an:1458.46060
https://mathscinet.ams.org/mathscinet-getitem?mr=3871909
mailto:zhangyuanhang@jlu.edu.cn

	1. Introduction
	2. Preliminaries
	3. \mathbb{Z}_2-action analogue of the Lin–Osaka theorem
	4. An application to a lifting problem of Blackadar
	References

