
J. Noncommut. Geom. (Online first)
DOI 10.4171/JNCG/495

© 2023 European Mathematical Society
Published by EMS Press

Nonnoetherian singularities and their
noncommutative blowups

Charlie Beil

Abstract. We establish a new fundamental class of varieties in nonnoetherian algebraic geometry
related to the central geometry of dimer algebras. Specifically, given an affine algebraic variety X
and a finite collection of non-intersecting positive dimensional algebraic sets Yi � X , we construct
a nonnoetherian coordinate ring whose variety coincides with X except that each Yi is identified as
a distinct positive dimensional closed point. We then show that the noncommutative blowup of such
a singularity is a noncommutative desingularization, in a suitable geometric sense.

1. Introduction

The primary objectives of this article are (i) to extend the framework of depictions, intro-
duced in [6], to a much larger class of varieties with nonnoetherian coordinate rings;
(ii) to show that noncommutative blowups of these varieties are noncommutative desin-
gularizations, in a suitable sense. This framework was originally developed to provide
the geometric tools needed to understand the representation theory of a class of quiver
algebras called non-cancellative dimer algebras (e.g., [5, 7, 9]). Dimer algebras arose in
string theory [14, 15], and have found wide application to many areas of mathematics
(e.g., [3, 10, 13, 17–19, 22]). Depictions have enabled various notions in noncommuta-
tive algebraic geometry, such as noncommutative crepant resolutions [26], homological
homogeneity [12], and Azumaya loci, to be generalized to tiled matrix algebras that are
not finitely generated modules over their centers [5,7]; we will consider some of these gen-
eralizations here. The underlying ideas of nonnoetherian algebraic geometry also suggest
possible directions towards a new theory of quantum gravity [4, 8].

Throughout, let k be an algebraically closed field, and let R be a subalgebra of an
affine coordinate ring S over k. It is generally believed that nonnoetherian algebras do
not admit concrete geometric descriptions. For example, consider the subalgebras of the
polynomial rings S1 D kŒx; y� and S2 D kŒx; y; z�,

R1 D kŒx�C x.x � 1/.x � 2/S1;

R2 D kŒx
2
� y � z2�C .x2 � y; z � 5/.x � z; y/S2:
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We may ask, informally, what their maximal spectra MaxR “look like”, but such a ques-
tion initially appears hopeless, at least in terms of geometries we can visualize.

We could instead consider the simpler subalgebras

R01 D k C x.x � 1/.x � 2/S1;

R02 D k C .x
2
� y; z � 5/.x � z; y/S2:

Both are of the formRD kC I , where I is an ideal of S . A geometric description of such
subalgebras was introduced in [6]: the maximal spectrum MaxR of R coincides with the
algebraic variety MaxS , except that the zero locus Z.I / �MaxS is identified as a single
“smeared-out” point.

In particular, we may view the variety MaxR01 as A2
k

, with the union of the three lines

Z.x/ D ¹x D 0º; Z.x � 1/ D ¹x D 1º; Z.x � 2/ D ¹x D 2º (1)

identified as a single 1-dimensional point. Similarly, we may view the variety MaxR02 as
A3
k

, with the union of the two curves

Z.x2 � y; z � 5/ and Z.x � z; y/ (2)

identified as a single 1-dimensional point.
These geometric pictures are made precise using depictions and geometric dimension.

A depiction of a nonnoetherian domain R is a finitely generated k-algebra S that is as
close to R as possible, in a suitable geometric sense (Definition 2.1). In particular, if R is
depicted by S , then R and S have equal Krull dimension, and their maximal spectra are
birationally equivalent [6, Theorem 2.5]. Furthermore, the locus where R and S locally
coincide,

US=R WD ¹n 2 MaxS j Rn\R D Snº;

is open dense in MaxS [6, Proposition 2.4].
Algebras of the form R D k C I , with dim S=I � 1, comprise an elementary class

of examples in nonnoetherian algebraic geometry. Two ideals I1; I2 � S are said to be
coprime if I1 C I2 D S ; equivalently, their zero loci in MaxS do not intersect,

Z.I1/ \Z.I2/ D ;:

In this article, we consider the question: given a collection of pairwise coprime ideals

I1; : : : ; In � S;

is there a nonnoetherian ring R for which MaxR coincides with MaxS , except that each
Z.Ii / is identified as a distinct closed point of MaxR? We will show that this question
has a positive answer, with R given by the intersection

R D
\
i

.k C Ii /:

Our first main theorem is the following.
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Theorem A (Propositions 3.3, 3.4, and Theorem 3.14). LetX be an affine algebraic vari-
ety over k with coordinate ring S . Consider a collection of pairwise non-intersecting
algebraic sets Y1; : : : ; Yn of X , where each ideal I.Yi / is proper, nonzero, and non-
maximal. Then the maximal spectrum of the ring

R WD
\
i

�
k C I.Yi /

�
(3)

coincides with X except that each Yi is identified as a distinct closed point. In particular,
the locus US=R � X is given by the intersection of the complements Y ci ,

US=R D
\
i

Y ci :

Furthermore, we have the following:

(i) R is nonnoetherian if and only if there is some i for which dimYi � 1;

(ii) R is depicted by S if and only if for each i , dimYi � 1.

Theorem A answers our initial question in a surprisingly simple way: observe that the
subalgebras R1 and R2 are of the form (3):

R1 D kŒx�C x.x � 1/.x � 2/S1

D .k C xS1/ \
�
k C .x � 1/S1

�
\
�
k C .x � 2/S1

�
and

R2 D kŒx
2
� y � z2�C .x2 � y; z � 5/.x � z; y/S2

D
�
k C .x2 � y; z � 5/S2

�
\
�
k C .x � z; y/S2

�
:

The variety MaxR1 therefore looks exactly like A2
k

, except that each of the three lines
in (1) is identified as a distinct 1-dimensional point. Similarly, MaxR2 looks exactly like
A3
k

, except that each of the curves in (2) is identified as a distinct 1-dimensional point.
To note, it is peculiar that by adjoining to R02 the polynomial x2 � y � z2,

R2 D R
0
2Œx

2
� y � z2�I

the single 1-dimensional point of MaxR02 separates into two distinct 1-dimensional points,
while all other points of MaxR02 are left unchanged.

Theorem A also implies the following generalization of the fact that, given any maxi-
mal ideal n of S , S decomposes as the sum S D k C n.

Corollary B. Let I be a proper non-maximal nonzero radical ideal of S , and set R D
k C I . The following are equivalent:

(i) dimS=I � 1;

(ii) R is nonnoetherian;

(iii) R is depicted by S .
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In particular, R D k C I is noetherian if and only if dimS=I D 0, that is,

I D n1 \ � � � \ n`

for some maximal ideals n1; : : : ;n` 2 MaxS . The implication (ii)) (i) was also shown
by Stafford in [25, Lemma 1.4] using different methods.

In Section 4, we define a sheaf of depictions on an affine scheme X to be a sheaf of
algebras that is a depiction on each principal open set ofX . We show that the sheafification
of a depiction S of R is a sheaf of depictions on SpecR.

In Section 5, we consider nonnoetherian coordinate rings in the setting of noncommu-
tative algebraic geometry. Let S be a finite type normal integral domain, let Y1; : : : ; Yn
be positive dimensional proper subvarieties of MaxS that intersect the smooth locus, and
denote by Ii WD I.Yi / their radical ideals in S . By Theorem A, R WD

T
i .k C Ii / is a

nonnoetherian coordinate ring with n positive dimensional closed points,

mi WD Ii \R 2 SpecR:

Following [20, Section R], we call the endomorphism ring

A WD EndR.RR˚
M
i

mi / (4)

the “noncommutative blowup” of MaxR at the points m1; : : : ;mn. We would like to know
whether A is a desingularization of its center R.

A resolution of a singularity X is a proper birational morphism of schemes Y ! X

such that Y is smooth. If we omit the requirement of properness, then we may say that
Y ! X is a desingularization of X . We note the following:

(a) birationality implies that X and Y have isomorphic function fields,

Frac kŒX� Š Frac kŒY �I

(b) let Spec S be an affine open subset of Y . Then Spec S is smooth over Spec k
at a closed point n 2 Spec S if and only if1 the global dimension of Sn, the
projective dimension of the residue field Sn=n Š k, and the Krull dimension of
Sn all coincide [1, 2, 24],

gldimSn D pdSn
.Sn=n/ D dimSn:

Following Brown and Hajarnavis’s notion of a homologically homogeneous ring [12],
and Van den Bergh’s notion of a noncommutative crepant resolution [26], we say that a
noncommutative algebra A, module-finite over its noetherian center R, is a noncommuta-
tive desingularization of R if the following two conditions hold:

(a0) FracR and A˝R FracR are Morita equivalent,

1Since we are assuming k algebraically closed, Spec S is smooth at n if and only if Sn is regular
[16, Example III.10.0.3].
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(b0) for each closed point m 2 SpecR, the central localization Am WD A ˝R Rm

satisfies
gldimAm D pdAm

.Am=m/ D dimRm:

However, the singularities we are considering here are nonnoetherian, and their non-
commutative blowups are not module-finite over their centers (just as the case for non-
cancellative dimer algebras). Condition (b0) must therefore be modified to allow for this
generality. Such a modification is possible for tiled matrix algebras using the notions of
“cycle algebra” and “cyclic localization”, introduced in [6, 7] (Definition 2.2). In cases
of interest, if the center R is noetherian, then the cycle algebra and center coincide, and
cyclic localization is the same as central localization [6, Theorem 4.1]. We thus replace
(b0) with the following condition:

(b00) Let S be the cycle algebra of A. For each closed point m 2 SpecR and each
minimal prime q 2 SpecS over m, the cyclic localization Aq satisfies

gldimAq D pdAq
.Aq=q/ D dimSq:

Our second main theorem is the following.

Theorem C (Theorem 5.17). LetA be the endomorphism ring in (4) and let S be its cycle
algebra. If each Yi is irreducible, or n D 1, then A is a noncommutative desingularation
of its center R:

• FracR and A˝R FracR are Morita equivalent, and

• for each i 2 Œ1; n� and minimal prime q 2 SpecS over mi , we have

gldimAq D pdAq
.Aq=q/ D dimSq:

Furthermore, the Azumaya locus of A and the noetherian locus US=R of R coincide.

2. Preliminary definitions

Given an integral domain k-algebra S , denote by Max S , Spec S , Frac S , and dim S the
maximal spectrum (or variety), prime spectrum (or affine scheme), fraction field, and Krull
dimension of S , respectively. For a subset I � S , set Z.I / WD ¹n 2 MaxS j n � I º.

Given a (not-necessarily-commutative) k-algebra A and an A-module V , denote by
gldimA and pdA.V / the left global dimension ofA and projective dimension of V , respec-
tively. By module we mean left module, unless stated otherwise.

The following definitions have been instrumental in studying dimer algebras (e.g.,
[5, 7, 9]).

Definition 2.1 ([6, Definition 3.1]). Let S be an integral domain and a finitely generated
k-algebra, and let R be a subalgebra of S .

• We say S is a depiction of R if the morphism

�S=R W SpecS ! SpecR; q 7! q \R
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is surjective and

US=R WD ¹n 2 MaxS j Rn\R D Snº D ¹n 2 MaxS j Rn\R is noetherianº 6D ;:

• The geometric height of p 2 SpecR is the minimum

ght.p/ WD min
®

htS .q/ j q 2 ��1S=R.p/; S a depiction of R
¯
:

The geometric dimension of p is2

gdim p WD dimR � ght.p/:

For brevity, we will often write � for �S=R. To note, if R is depicted by S , then R is
noetherian if and only if R D S [6, Theorem 3.12].

Now let B be an integral domain and k-algebra, and let

A D ŒAij � �Mn.B/

be a tiled matrix ring, that is, each diagonal Ai WD Ai i is a unital subalgebra of B . The
following definitions, with the exception of residue module, were introduced in [7]; the
notion of residue module we are considering here is new.

Definition 2.2 ([7, Definition 3.1]). Set

R WD k
�\
i

Ai
�

and S WD k
�[
i

Ai
�
:

We call S the cycle algebra of A, and in cases of interest,R is the center of A [6, Theorem
4.1]. The cyclic localization of A at a prime q 2 SpecS is the algebra

Aq WD

*266664
A1

q\A1
A12 � � � A1n

A21 A2
q\A2

A2n

:::
: : :

:::

An1 An2 � � � Anq\An

377775
+
�Mn.FracB/:

The residue module Aq=q of A at q is the quotient of Aq by the ideal

Aq

26664
q \ A1 0 � � � 0

0 q \ A2 0
:::

: : :
:::

0 0 � � � q \ An

37775Aq:

2Recall that if S is an integral domain and a finitely generated k-algebra, then for each q 2 SpecS , we
have dimS=q D dimS � ht.q/.
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Remark 2.3. If R D S , that is, Ai D Aj for each i; j , then cyclic localization coincides
with the usual notion of central localization:

Aq Š A˝R Rq and Aq=q Š A˝R Rq=q:

Definition 2.4 ([7, Definition 3.2]). We say A is cycle regular at m 2 MaxR if for each
minimal prime q 2 SpecS over m, we have3

gldim.Aq/ D pdAq
.Aq=q/ D dimSq:

If, in addition, FracR and A˝R FracR are Morita equivalent, then we say A is a non-
commutative desingularization of R.

3. Nonnoetherian coordinate rings with multiple positive dimensional
points

Let S be an integral domain and a finitely generated k-algebra. Let I1; : : : ; In be a col-
lection of proper non-maximal nonzero radical ideals of S such that, for each i 6D j ,
Z.Ii / \Z.Ij / D ;; equivalently, Ii and Ij are coprime: Ii C Ij D S . Unless stated oth-
erwise, we denote by R the algebra

R WD
\
i

.k C Ii /:

Remark 3.1. If some Ij were a maximal ideal of S , then k C Ij D S , whence R DT
i 6Dj .kC Ii /. The assumption that each Ii is proper and nonzero implies that dimS � 1.

Lemma 3.2. Suppose n � 2. For each i 2 Œ1; n�, there are elements a; b 2 R satisfying

a 2 Ii n
�[
j 6Di

Ij
�
; b 2

�\
j 6Di

Ij
�
n Ii ;

and which sum to unity, aC b D 1.

Proof. Fix i 2 Œ1; n�. By assumption, we have

Z.1/ D ; D
[
j 6Di

�
Z.Ii / \Z.Ij /

�
D Z.Ii / \

�[
j 6Di

Z.Ij /
�
D Z

�
Ii C

\
j 6Di

Ij
�
:

Whence
1 2 Ii C

\
j 6Di

Ij :

3In [7], we defined A to be cycle regular at m 2MaxR if, for each minimal prime q 2 SpecS over m
and each simple Aq-module V , we have gldim.Aq/ D pdAq

.V / D dimSq. In this article, we replace the
set of simple Aq-modules V with the residue module Aq=q, which, in our case, is a direct sum of all such
simples (see Propositions 5.14 and 5.15).
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Thus there is some a 2 Ii and b 2
T
j 6Di Ij such that aC b D 1. In particular,

a D 1 � b 2 Ii \
�\
j 6Di

.k C Ij /
�
� R:

It also follows that for each j 6D i ,

a D 1 � b 2 Ii n Ij and b D 1 � a 2 Ij n Ii :

Proposition 3.3. Each ideal Ii \R is a distinct closed point of SpecR.

Proof. Fix i . For each a 2 R � .k C Ii /, there is some ˛i 2 k and bi 2 Ii such that
a D ˛i C bi . In particular, there is an algebra epimorphism

R! k; a 7! ˛i ;

with kernel Ii \R; whence an algebra isomorphism R=.Ii \R/Š k. Furthermore, there
exists some a 2 .Ii \R/ n .

S
j 6Di Ij /, by Lemma 3.2. Thus, for each j 6D i ,

Ij \R 6D Ii \R:

Therefore each Ii \R is a distinct maximal ideal of R.

Proposition 3.4. The locus US=R WD ¹n 2 MaxS j Rn\R D Snº is given by

US=R D
�[
i

Z.Ii /
�c
:

Proof. (i) We first claim that US=R � .
S
i Z.Ii //

c . Indeed, let n 2
S
i Z.Ii /. Then n

contains some Ii . By assumption, Ii is a non-maximal radical ideal of S . Thus there is
another maximal ideal n0 6D n of S which contains Ii . Whence

Ii \R � n \R 6D R and Ii \R � n0 \R 6D R:

But Ii \R is a maximal ideal of R by Proposition 3.3. Therefore

n \R D Ii \R D n0 \R:

Now fix c 2 n n n0. Assume to the contrary that c 2 Rn\R. Then there is some a 2 R
and b 2 R n .n \R/ such that c D a

b
. Whence

a D bc 2 n \R D n0 \R:

In particular, bc 2 n0 with b; c 2 S . Therefore

b 2 n0; (5)
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since c 62 n0 and n0 is a prime ideal of S . But b 2 R and

b 62 n \R D n0 \R:

Whence b 62 n0, a contradiction to (5). Thus c 2 Sn nRn\R. Therefore n 2 U c
S=R

.
(ii) We now claim that US=R � .

S
i Z.Ii //

c .4 Let n 2 .
S
i Z.Ii //

c . For each i , n 6� Ii .
In particular, for each i there is some ci 2 Ii n n. Furthermore, since n is prime, we have

c WD c1 � � � cn 2
�\
i

Ii
�
n n: (6)

Now let a
b
2 Sn, with a 2 S and b 2 S n n. Then by (6),

ac 2 R and bc 2 R n .n \R/:

Thus
a

b
D
ac

bc
2 Rn\R:

Whence
Sn � Rn\R � Sn:

Therefore Rn\R D Sn.

Lemma 3.5. If J is a proper ideal of R and Z.J / \ US=R D ;, then J is contained in
some Ii .

Proof. Suppose the hypotheses hold, and let n 2 Z.J /. Then n 2 U c
S=R

. Whence n 2S
j Z.Ij / by Proposition 3.4. Thus n contains some Ii . Consequently,

Ii \R � n \R 6D R:

Whence Ii \R D n \R since Ii \R 2 MaxR by Proposition 3.3. Therefore

J D J \R � n \R D Ii \R � Ii :

Lemma 3.6. For each i ,
RIi\R D .k C Ii /Ii : (7)

Proof. The lemma is trivial if nD 1, so suppose that n � 2. Fix i 2 Œ1; n�. By Lemma 3.2,
there is some

c 2
�\
j 6Di

Ij
�
\R n Ii :

Let a
b
2 .k C Ii /Ii , with a 2 k C Ii and b 2 .k C Ii / n Ii . Since c is in R, c is in

k C Ii . Thus, since a is also in k C Ii , the product ac is in k C Ii . Furthermore, since c

4This claim was proven in the special case n D 1 in [6, Proposition 2.8].
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is in
T
j 6Di Ij , ac is in

T
j 6Di Ij . Whence, ac is in R. Similarly, bc is in R. But bc is not

in Ii since Ii is a maximal, hence prime, ideal of k C Ii . Consequently,

a

b
D
ac

bc
2 RIi\R:

It follows that
.k C Ii /Ii � RIi\R:

Conversely,

RIi\R D
�\
j

.k C Ij /
�
Ii\R

�

\
j

.k C Ij /Ii\.kCIj / � .k C Ii /Ii\.kCIi / D .k C Ii /Ii :

Therefore (7) holds.

For the following, note that if n1; : : : ;n` are maximal ideals of S , then

I D n1 \ � � � \ n` D
p

n1 � � �n`

is a radical ideal of S satisfying dimS=I D 0.

Lemma 3.7. Suppose that I is a radical ideal of S satisfying dimS=I D 0. Then the ring
R D k C I is noetherian.

Proof. Suppose that R is nonnoetherian. We claim that

dimS=I D dim Z.I /
.I/
D dimU cS=R

.II/
� 1:

Indeed, (I) holds since by Proposition 3.4,

Z.I / D U cS=R: (8)

To show (II), recall [6, Theorem 3.13.2]:5 if R is a nonnoetherian subalgebra of a
finitely generated k-algebra S , and there is some m 2 �.U c

S=R
/ satisfying

p
mS D m,

then
dimU cS=R � 1:

In our case, R D k C I is nonnoetherian and
p
IS D I . Moreover, I is in �.U c

S=R
/: for

n 2 Z.I /, we have

I
(A)
D n \R D �.n/ 2 �

�
Z.I /

� (B)
D �.U cS=R/;

where (A) holds since I is maximal in R, and (B) holds by (8). Therefore (II) holds.

5In the published version of [6, Theorem 3.13.2], S is assumed to be a depiction of R, but this is not
used in the proof of the theorem.
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Proposition 3.8. Suppose that each Ii is a radical ideal of S .

(1) If dimS=Ii D 0 for each i , then R is noetherian.

(2) If dimS=Ii D 0, then the localization RIi\R is noetherian.

Proof. (1) Suppose that dimS=Ii D 0 for each i . Set

Rm WD

m\
iD1

.k C Ii /:

We proceed by induction on m.
By Lemma 3.7, R1 is noetherian. So suppose that Rm is noetherian; we claim that

RmC1 is noetherian.
Indeed, recall that a ring T is noetherian if there is a finite set of elements a1; : : : ; am 2

T such that .a1; : : : ; am/T D T , and each localization Tai WD T Œa
�1
i � is noetherian (e.g.,

[16, Proposition III.3.2]).
By Lemma 3.2, RmC1 contains elements

a 2 ImC1 n
� m[
iD1

Ii
�

and b 2
� m\
iD1

Ii
�
n ImC1 (9)

satisfying aC b D 1. In particular,

.a; b/RmC1 D RmC1:

Furthermore, (9) implies that

RmC1a D Rma and RmC1
b
D .k C ImC1/b : (10)

But Rm is noetherian by assumption, and .k C ImC1/ is noetherian by Lemma 3.7. Thus
the localizations (10) are noetherian. Therefore RmC1 is noetherian, proving our claim.

(2) Now suppose that dimS=Ii D 0. Then the ring kC Ii is noetherian by Lemma 3.7.
Thus the localization .k C Ii /Ii is noetherian. But RIi\R D .k C Ii /Ii by Lemma 3.6.
Therefore RIi\R is noetherian.

Proposition 3.9. Suppose that I is a nonzero radical ideal of S satisfying dimS=I � 1.
Then the ringRD kC I is nonnoetherian and I contains a strict infinite ascending chain
of ideals of R.6

Proof. Since dimS=I � 1, I is a non-maximal ideal of S . Thus there is a maximal ideal
n of S for which n � I . Since I is a maximal ideal of R and I � n, we have

n \R D I: (11)

6This proposition is erroneously claimed as a corollary to [6, Theorem 3.13, published version]. [6,
Theorem 3.13] assumes that S is a depiction of R, but if R is noetherian, then S will not be a depiction
of R. Indeed, in this case the only depiction of R will be itself [6, Theorem 3.12], and R 6D S if I is a
non-maximal ideal of S .
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Furthermore, since I is a radical of S , there are primes p1; : : : ; pn of S such that
I D p1 \ � � � \ pn, by the Lasker–Noether theorem. Fix h 2 n n .p1 [ � � � [ pn/. Then for
f 2 S , we have

f h 2 I ) f 2 I: (12)

Indeed, if f h 2 I , then f h 2 pi for each i . Whence f 2 pi for each i , and therefore
f 2 I .

By assumption, I 6D 0. Fix g 2 I n 0, and consider the chain of ideals of R,

0 � gR � .g; gh/R � .g; gh; gh2/R � � � � � I:

We claim that each inclusion is proper. Indeed, assume to the contrary that there is some
` � 0 and r0; : : : ; r` 2 R such that

gh`C1 D
X̀
jD0

rjgh
j :

Then since S is an integral domain,

h`C1 D
X̀
jD0

rjh
j :

Whence

h`C1 �
X̀
jD1

rjh
j
D r0 2 R: (13)

But h 2 n. Therefore r0 2 n \ R D I by (11). Furthermore, since R D k C I , for each
j 2 Œ0; `� there is some ǰ 2 k and tj 2 I such that rj D ǰ C tj . Since r0 and each tjhj

are in I , (13) yields

t WD h`C1 �
X̀
jD1

ǰh
j
D r0 C

X̀
jD1

tjh
j
2 I � n: (14)

The left-hand side implies that t is a polynomial in kŒh�. Therefore, since k is alge-
braically closed, t splits

t D h`C1 �
X̀
jD1

ǰh
j
D hm.h � ˛1/ � � � .h � ˛`�m/;

where m � 1 and ˛1; : : : ; ˛`�m 2 k n 0. Set f WD .h � ˛1/ � � � .h � ˛`/. By (14) we have
hf D t 2 I . Thus, by (12), f 2 I . Consequently, f 2 n. But this is not possible by
Hilbert’s Nullstellensatz, since ˛1; : : : ; ˛`�m are nonzero scalars, h is in n, and n is a
maximal ideal of S .



Nonnoetherian singularities and their noncommutative blowups 13

Proposition 3.10. Suppose that dimS=Ii � 1 for some i . Then R D
T
i .k C Ii / is non-

noetherian.

Proof. Suppose that dimS=Ii � 1. By Proposition 3.9, Ii contains a strict infinite ascend-
ing chain of ideals of k C Ii ,

J1 � J2 � J3 � � � � � Ii :

(i) We claim that each J` is an R-module. Let r 2 R. Then r 2 k C Ii . Whence
J`r � J` since J` is an ideal of k C Ii , proving our claim.

(ii) Now let a 2
T
j Ij . Then each aJ` is in

T
j Ij � R. Thus each aJ` is an ideal of

R by Claim (i).
Consider the chain of ideals of R,

aJ1 � aJ2 � aJ3 � � � � : (15)

Assume to the contrary that for some `,

aJ` D aJ`C1:

Then for each b 2 J`C1 n J`, there is some c 2 J` such that

ab D ac:

But S is an integral domain. Whence

b D c 2 J`;

a contradiction to our choice of b. Thus the chain (15) is strict. Therefore R is nonnoethe-
rian.

We recall the following elementary facts.

Lemma 3.11. Let R be an integral domain, and let p;m 2 SpecR be ideals satisfying
p � m. Then7

(1) pRm \R D p,

(2) pRm 2 SpecRm.

7We prove Lemma 3.11 for completeness.
(1) It suffices to show that pRm \R � p. Let a

b
2 pRm \R, with a 2 p and b 2 R nm. Then

b �
a

b
D a 2 p:

Thus, since b; a
b
2 R and p is prime in R, we have b 2 p or a

b
2 p. But b 62 p since b 62m and p �m.

Therefore a
b
2 p.

(2) Let a1
b1
; a2
b2
2 Rm, with a1; a2 2 R and b1; b2 2 R nm. Suppose that

a1

b1
�
a2

b2
2 pRm:
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Again let R D
T
i .k C Ii /.

Lemma 3.12. If p 2 SpecR and p � Ii for some i , then

pS \R D p:

Proof. Suppose the hypotheses hold. Let ab 2 pS \ R, with a 2 p and b 2 S . We claim
that ab 2 p. Indeed, by Lemma 3.2 there is some

c 2
�\
j 6Di

Ij
�
\R n Ii :

Then ac 2
T
j Ij since a 2 p � Ii . Thus for any s 2 S ,

acs 2
\
j

Ij � R:

In particular,
acb2 2 R:

Thus, since a 2 p,
.ab/2 � c D a � .acb2/ 2 p:

But c 2 R n p and .ab/2 2 R. Thus .ab/2 2 p since p is prime in R. Therefore ab 2 p,
again since p is prime in R.

Proposition 3.13. The morphism

� W SpecS ! SpecR; q 7! q \R;

is surjective.

Proof. Let p 2 SpecR. We claim that there is some q 2 SpecS such that q \R D p.
(i) First suppose that Z.p/ \ US=R D ;. Then there is some i for which p � Ii , by

Lemma 3.5. Set
t WD p.k C Ii /Ii \ .k C Ii /:

Recall that Ii \R 2 SpecR by Proposition 3.3.

We claim that a1
b1

or a2
b2

is in pRm. Indeed, there is some c 2 p and d 2 R nm such that

a1

b1
�
a2

b2
D
c

d
:

Whence
a1a2d D b1b2c 2 p:

Now d 62 p since d 62m and p �m. Thus a1a2 2 p since p is prime in R. In particular, a1 2 p or a2 2 p;
say a1 2 p. Then a1

b1
2 pRm, proving our claim.
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(i.a) We have p D t \R since

p
.I/
D pRIi\R \R

.II/
D p.k C Ii /Ii \R D p.k C Ii /Ii \ .k C Ii / \R D t \R;

where (I) holds by Lemma 3.11 (1), and (II) holds by Lemma 3.6.
(i.b) We claim that

t 2 Spec.k C Ii / and t � Ii :

By Lemma 3.11 (2),
pRIi\R 2 SpecRIi\R:

Thus by Lemma 3.6,
p.k C Ii /Ii 2 Spec.k C Ii /Ii :

Therefore t 2 Spec.k C Ii /, since the intersection of a prime ideal with a subalgebra is a
prime ideal of the subalgebra.

Furthermore,

t D p.k C Ii /Ii \ .k C Ii / � Ii .k C Ii /Ii \ .k C Ii /
.I/
D Ii ;

where (I) holds by Lemma 3.11 (1) since Ii 2 Spec.k C Ii /.
(i.c) We claim that

p D
S
p

tS \R:

Indeed,

p
.I/
D t \R �

S
p

tS \R
.II/

�
R
p

tS \R

D
R
p

tS \ .k C Ii / \R
(III)
D

R
p

t \R
(IV)
D R
p

p D p;

where (I) and (IV) hold by Claim (i.a); (II) holds since if sn 2 tS and s 2 R, then s 2
R
p
tS \R; and (III) holds by Claim (i.b) together with Lemma 3.12 (with k C Ii in place

of R).
(i.d) Since S is noetherian, the Lasker–Noether theorem implies that there are ideals

q1; : : : ;qm 2 SpecS , minimal over S
p

tS , such that

S
p

tS D q1 \ � � � \ qm:

Thus

p
.I/
D

S
p

tS \R D .q1 \ � � � \ qm/ \R D .q1 \R/ \ � � � \ .qm \R/; (16)

where (I) holds by Claim (i.c). Furthermore, each qj \ R is a prime ideal of R since
qj 2 SpecS and R � S (e.g., [6, Lemma 2.1]).

Assume to the contrary that for each j 2 Œ1;m�,

qj \R 6D p:
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Then for each j there is some
aj 2 .qj \R/ n p:

Whence
a1 � � � am 2

\
j

.qj \R/
.I/
D p;

where (I) holds by (16). But p is prime in R, a contradiction. Thus there is some j for
which

qj \R D p:

Our desired ideal is therefore q WD qj 2 SpecS .
(ii) Now suppose that Z.p/ \ US=R 6D ;; say n 2 Z.p/ \ US=R. Set

q WD pSn \ S:

We claim that
q \R D p and q 2 SpecS:

First observe that

p
.I/
D pRn\R \R

.II/
D pSn \R D pSn \ S \R D q \R;

where (I) holds by Lemma 3.11 (1), and (II) holds since n 2 US=R. Furthermore, since
p 2 SpecR, we have pRn\R 2 Spec.Rn\R/ by Lemma 3.11 (2). Whence pSn 2 SpecSn

since n 2 US=R. Therefore q D pSn \ S 2 SpecS .

Theorem 3.14. Let I1; : : : ; In be a set of proper non-maximal nonzero radical ideals of
S which are pairwise coprime, and set R WD

T
i .k C Ii /. Then

(1) R is nonnoetherian if and only if there is some i for which dimS=Ii � 1,

(2) R is depicted by S if and only if for each i , dimS=Ii � 1.

Proof. (1) The implications) and( are respectively Propositions 3.8 (1) and 3.10.
(2) The morphism � W Spec S ! SpecR is surjective by Proposition 3.13. Further-

more, US=R is nonempty since US=R D .
S
i Z.Ii //

c is an open dense subset of Max S ,
by Proposition 3.4. It thus suffices to show that

U cS=R D
[
i

Z.Ii / � ¹n 2 MaxS j Rn\R is nonnoetherianº; (17)

where the inclusion holds if and only if dimS=Ii � 1 for each i .
Suppose that n 2

S
i Z.Ii /. Then n contains some Ij . Whence n \ R D Ij \ R by

Proposition 3.3. Thus by Lemma 3.6,

Rn\R D RIj\R D .k C Ij /Ij :

� First suppose that dim S=Ij D 0. Then Rn\R D RIj\R is noetherian by Proposi-
tion 3.8 (2). Therefore the inclusion in (17) does not hold.
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� Now suppose that dim S=Ij � 1. Then Ij contains a strict infinite ascending chain
of ideals of k C Ij , by Proposition 3.9. Therefore the localization Rn\R D .k C Ij /Ij
is nonnoetherian. In particular, if dim S=Ii � 1 for each i , then the inclusion in (17)
holds.

Corollary 3.15. If dim S=Ii � 1 for each i , then each of the closed points Ii \ R of
SpecR has positive geometric dimension.

Proof. By Theorem 3.14, S is a depiction of R. Therefore for each i ,

gdim.Ii \R/ � dimS=Ii � 1:

4. Sheaves of depictions

Let .X;O/ be an affine scheme, and setR WDO.X/. We introduce the following definition.

Definition 4.1. A sheaf of depictions zS on .X;O/ is a sheaf of algebras such that on each
principal open set D.a/ � X , a 2 R, the algebra zS.D.a// is a depiction of O.D.a//.

A sheaf M on X is said to be a sheaf of modules if, on each open set U � X , M.U /

is an O.U /-module, and for each inclusion of open sets U � V , the restriction M.V /!

M.U / is an O.V /-module homomorphism. The sheafification of an R-module M is the
sheaf of modules zM defined on each principal open set D.a/ by

zM
�
D.a/

�
WDM ˝O.X/ O

�
D.a/

�
DM ˝R RŒa

�1�;

and on a general open set U by the inverse limit

zM.U / WD lim
 �

D.a/�U

zM
�
D.a/

�
:

In this section, we show that the sheafification of a depiction is a sheaf of depictions.
Let S be an integral domain and k-algebra. For an element a 2 S and ideal I � S , set

Sa WD SŒa
�1� and Ia WD ISŒa�1�.

Lemma 4.2. Fix a 2 S .

(1) If q 2 SpecS and a 62 q, then qa 2 SpecSa.

(2) If n 2 MaxS and a 62 n, then na 2 MaxSa.

Proof. (1) Suppose that q 2 SpecS and a 62 q. Since Sa is a flat S -module, the short exact
sequence 0! q! S ! S=q! 0 induces the short exact sequence

0! q˝S Sa ! S ˝S Sa Š Sa ! S=q˝S Sa ! 0:

Whence
S=q˝S Sa Š Sa=qa: (18)
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But S=q is an integral domain since q is prime. Furthermore, S=q˝ Sa is not the zero
ring since an 62 q for all n � 0. Thus S=q˝ Sa is also an integral domain. Therefore qa
is a prime of Sa, by (18).

(2) Suppose n 2 MaxS and a 62 n. By Claim (1), we have

S=n˝S Sa Š Sa=na 6D 0:

Furthermore, S=n˝ Sa is a field since n is a maximal ideal of S . Consequently, na is a
maximal ideal of Sa.

Let R be a subalgebra of S .

Lemma 4.3. Fix a 2 R. If
�S=R W SpecS ! SpecR

is surjective, then so is
�Sa=Ra W SpecSa ! SpecRa:

Proof. Suppose that �S=R is surjective. Let Qp 2 SpecRa, and set p WD Qp\R. Then p is in
SpecR. Thus there is a prime q 2 SpecS such that q\R D p, by the surjectivity of �S=R.
Furthermore, the ideal qa is in SpecSa, by Lemma 4.2 (1).

We want to show that qa \Ra D Qp, from which the lemma follows.
(i) We first claim that qa \Ra � Qp.
Let g 2 Qp. Then for ` � 0 sufficiently large, a`g is in R. Whence a`g 2 Qp \ R D p.

Thus a`g 2 q. Therefore g D a�`a`g 2 qa.
(ii) We now claim that qa \Ra � Qp.
Let g 2 qa \Ra. Then again for ` � 0 sufficiently large, a`g is in q and R. Thus,

a`g 2 q \R D p D Qp \R:

Consequently, g D a�`a`g 2 Qp.

Proposition 4.4. Fix a 2 R. If S is a depiction of R, then Sa is a depiction of Ra.

Proof. Suppose that S is a depiction of R.
(i) The morphism �Sa=Ra W SpecSa ! SpecRa is surjective by Lemma 4.3.
(ii) Let n 2 MaxSa, and suppose that .Ra/n\Ra is noetherian. We claim that

.Ra/n\Ra D .Sa/n:

Since n is a proper ideal of Sa, we have n 63 a. Therefore

.Ra/n\Ra
.I/
D Rn\R

.II/
D Sn\S

(III)
D .Sa/n;

where (I) and (III) hold since a 2R nn; and (II) holds sinceRn\R D .Ra/n\Ra is noether-
ian and S is a depiction of R.



Nonnoetherian singularities and their noncommutative blowups 19

(iii) Finally, we claim that the locus USa=Ra is nonempty.
Let DS .a/ WD ¹n 2 MaxS j n 63 aº denote the complement of the vanishing locus of

a in MaxS . Then
USa=Ra D US=R \DS .a/ 6D ;

since US=R and DS .a/ are open dense sets of MaxS .

Corollary 4.5. Suppose that S is a depiction of R. Then the sheafification zS of the R-
module S on SpecR is a sheaf of depictions on SpecR.

5. Noncommutative blowups of nonnoetherian singularities

Let S be a normal integral domain and a finitely generated k-algebra. Let Y1; : : : ; Yn be
positive dimensional proper subvarieties of Max S that intersect the smooth locus. For
each i 2 Œ1; n�, denote by Ii WD I.Yi / the corresponding radical ideal of S . Consider the
nonnoetherian coordinate ringR WD

T
i .kC Ii / and its set of positive dimensional closed

points (Proposition 3.3),
mi WD Ii \R 2 SpecR:

Following [20, Section R], we call the endomorphism ring

A WD EndR.RR˚
M
i

mi /

the “noncommutative blowup” of MaxR at the points m1; : : : ;mn. These points are pre-
cisely the nonnoetherian points of R (that is, the points m 2 MaxR for which Rm is
nonnoetherian), by Theorem 3.14 and Proposition 3.4. Our main theorem in this section
is that if either (i) each Yi is irreducible, or (ii) n D 1, then A is a noncommutative desin-
gularization of its center R. Furthermore, S is the cycle algebra of A, and thus A provides
a means to retrieve S from the knowledge of R alone. In particular, R is depicted by the
cycle algebra of A.

In the following lemma, we do not assume S is normal.

Lemma 5.1. Let I be a nonzero ideal of a noetherian integral domain S , and suppose
that I is also an ideal of an overring T � FracS of S . Then T is contained in the integral
closure xS of S .

Proof. Let s 2 I n ¹0º and t 2 T . By assumption, t`s 2 I for each ` � 0. Consider the
ascending chain of ideals of S

sS � .s; ts/S � .s; ts; t2s/S � .s; ts; t2s; t3s/ � � � � :

Since S is noetherian, there is some m � 1 and �0; : : : ; �m�1 2 S such that

tms D

m�1X
jD0

�j t
j s:
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Thus, since S is an integral domain and s 6D 0, we have

tm �

m�1X
jD0

�j t
j
D 0:

Consequently, t is in the integral closure xS of S .

Again let S be a normal finitely generated domain. For brevity, set

Ri WD S \
�\
j 6Di

.k C Ij /
�
:

We include S in the intersection for the case n D 1.

Lemma 5.2. For each i 2 Œ1; n�, we have

HomR.mi ;mi / D HomR.mi ; R/ D R
i :

Proof. (i) We first claim that HomR.mi ; R/ � S .
Indeed, HomS .Ii ; Ii / is the largest overring of S for which Ii is an ideal. Thus, since

S is normal, Lemma 5.1 implies that

HomS .Ii ; Ii / � S: (19)

Let x 2 HomR.mi ; R/ and w 2 I1I2 � � � In. Then x`w is in HomS .Ii ; Ii / for each
` � 1, since wIi � mi . Whence x`w is in S by (19). But since S is a normal noetherian
domain, the same argument given in the proof of Lemma 5.1, with x and w in place of t
and s, shows that x itself is in S .

(ii) We now claim that HomR.mi ; R/ � R.
Consider x 2 HomR.mi ; R/ and y 2 mi . Then for each j 2 Œ1; n�, xy is in k C Ij .

Furthermore, since y is in R, there is a c 2 k and z 2 Ij such that y D c C z 2 k C Ij .
In particular, xz is in Ij , since x is in S by Claim (i). Thus x itself is in k C Ij , since
cx C xz D xy is in k C Ij . But j was arbitrary, and therefore x is in R.

(iii) Finally, we claim that Ri � HomR.mi ;mi /.
Since mi � R � k C Ij for each j , and Ri � S , we have Rimi � R. Furthermore,

Ri � S implies that Rimi � Ii . Therefore Rimi � Ii \R D mi .
(iv) We have

Ri
.I/

� HomR.mi ;mi / � HomR.mi ; R/
.II/

� R � Ri ;

where (I) holds by Claim (iii), and (II) holds by Claim (ii).

Lemma 5.3. Let p;q 2 SpecR be coprime ideals. Then

HomR.p;q/ D q:
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Proof. Since p, q are ideals of R, HomR.p; q/ is isomorphic as an R-module to the
maximum R-module C � FracR satisfying Cp � q. In particular, C � q.

To show the reverse inclusion, let c 2 C . Since p, q are coprime, there is an a 2 p and
b 2 q such that aC b D 1. Whence

c.1 � b/ D ca 2 Cp � q:

But q is prime and 1 � b 62 q. Thus c 2 q. Therefore C D q.

Proposition 5.4. There is an algebra isomorphism

A D EndR.RR˚
M
i

mi / Š

2666664
R m1 m2 � � � mn

R1 R1 m2 � � � mn

R2 m1 R2 � � � mn

:::
:::

:::
: : :

:::

Rn m1 m2 � � � Rn

3777775 : (20)

Proof. Each mi is a prime ideal of R, by Proposition 3.3. Furthermore, for each i 6D j ,
there is some

a 2 Ii \R D mi and b 2 Ij \R D mj

such that a C b D 1, by Lemma 3.2. Thus the set of ideals m1; : : : ;mn are pairwise
coprime. The isomorphism (20) therefore holds by Lemmas 5.2 and 5.3.

Remark 5.5. The endomorphism ring of the right R-moduleR˚
L
i mi is the transpose

of the matrix ring given in (20), and it is not known whether it is cycle regular. (As a right
(resp. left)R-module,R˚

L
i mi may be viewed as an nC 1 column (resp. row) vector.)

Remark 5.6. In the case n D 1, we have m D I (omitting the subscript i ), and the tiled
matrix ring (20) simplifies to

A D EndR.RR˚ I / Š
�
R I

S S

�
:

Proposition 5.7. The cycle algebra of A is S .

Proof. By Proposition 5.4, the cycle algebra of A is zS WD kŒR C R1 C � � � C Rn�. By
Remark 5.6, it suffices to suppose that n � 2.

We first claim that for any subset K � ¹1; : : : ; nº with jKj � 2, we haveX
i2K

\
j2Kn¹iº

Ij D S: (21)

We proceed by induction on jKj. Let K 3 1; 2.
First suppose jKj D 2. Then (21) reduces to I1 C I2 D S , and this holds since I1 and

I2 are coprime ideals of S .
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Now suppose that (21) holds for jKj � N , and let jKj D N C 1. Set K1 WD K n ¹1º
and K2 WD K n ¹2º. Then

S
.I/
D I1 C I2 D I1 \ S C I2 \ S

.II/
D I1 \

� X
i2K1

\
j2K1n¹iº

Ij

�
C I2 \

� X
i2K2

\
j2K2n¹iº

Ij

�
�

X
i2K

\
j2Kn¹iº

Ij � S;

where (I) holds since I1 and I2 are coprime, and (II) holds by induction. This proves our
claim.

Thus,

S D

nX
iD1

\
j 6Di

Ij �

nX
iD1

Ri � zS � S:

Therefore zS D S .

Fix 1 � i � n, and let q 2 SpecS be a minimal prime over mi . Since mi is a maximal
ideal of R, we have

mi D Ii \R D q \R: (22)

Lemma 5.8. Suppose that q 2 SpecS is a minimal prime over mi . Then Ii � q. Conse-
quently, if Ii is prime in S , then Ii D q.

Proof. We first claim that Ii � q. Let a 2 S n q; we want to show that a 62 Ii .
Assume to the contrary that a 2 Ii . By Lemma 3.2, there is some b 2 R that is inT

j 6Di Ij n Ii . Whence, ab 2
T
j Ij �R. Furthermore, since b 2R n Ii , we have b 62 q\R

by (22). In particular, b 62 q. Since a and b are not in q and q is prime, their product ab is
not in q. Thus

a�1 D b.ab/�1 2 Rq\R
.I/
D .k C Ii /Ii ;

where (I) holds by Lemma 3.6. Whence a�1 2 .k C Ii /Ii . But a 2 Ii , and thus a is not
invertible in .k C Ii /Ii , a contradiction. Therefore Ii � q.

Lemma 5.9. For each minimal prime q 2 SpecS over mi and j 6D i , the following hold:

Rq\R D R
j

q\Rj
D mj .k C Ii /Ii D .k C Ii /Ii and mjSq D Sq:

Furthermore, if either Ii is prime in S or n D 1, then

Ri
q\Ri

D Sq and miSq D qSq:

Proof. (i) By Lemma 3.6, we have Rq\RD.kCIi /Ii , and for j 6D i , Rj
q\Rj

D .kCIi /Ii .
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(ii) Let j 6D i . We claim that mj .k C Ii /Ii D .k C Ii /Ii . Fix b 2 mj n Ii . Then b 2
k C Ii since b 2 R. Whence, b�1 2 .k C Ii /Ii . Therefore

1 D bb�1 2 mj .k C Ii /Ii :

(iii) Let j 6D i . We claim that mjSq D Sq. By Lemma 3.2, there is some

b 2 .Ij \R/ n Ii D mj nmi :

Whence b 62 q by (22). Therefore

1 D bb�1 2 mjSq:

(iv) Suppose that Ii is prime in S . We claim that Ri
q\Ri

D Sq. Clearly, Ri
q\Ri

� Sq.
To show the reverse inclusion, suppose that a

b
2 Sq with a 2 S and b 2 S n q. By

Lemma 3.2, there is some c 2 .
T
j 6Di Ij / n Ii . Thus, ac and bc are in

T
j 6Di Ij � R

i . Fur-
thermore, c 62 q since q D Ii , by Lemma 5.8. Whence bc 62 q since q is prime. Therefore

a

b
D
ac

bc
2 Ri

q\Ri
;

proving our claim.
(v) Again suppose that Ii is prime in S . We claim that miSq D qSq. Clearly, miSq �

qSq.
To show the reverse inclusion, let a 2 q D Ii . Fix b 2

T
j 6Di Ij n Ii . Then

ab 2
\
j

Ij � R:

Whence, ab 2 Ii \R D mi . Furthermore, b 2 S n q since q D Ii . Therefore

a D abb�1 2 miSq:

(vi) Finally, suppose that n D 1, in which case m D I (we omit the subscript i ). We
claim that ISq D qSq. The inclusion ISq � qSq follows from Lemma 5.8.

To show the reverse inclusion, let a 2 q. Consider the set of minimal primes over I ,

q1 WD q;q2; : : : ;qm 2 SpecS:

In particular, I D
T
j qj since I is radical.

For each 2� j �m, fix bj 2 qj n q. Then b2 � � �bm 2 S n q since q is prime. Therefore

a D .ab2 � � � bm/.b2 � � � bm/
�1
2
�\
j

qj
�
Sq D ISq:

Set
zR WD .k C Ii /Ii C qSq:

If Ii is prime in S , then by Lemma 5.8 this reduces to

zR D .k C q/q C qSq:
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Lemma 5.10. zR is a subalgebra of Sq.

Proof. Since k C Ii � S , it suffices to show that if a is invertible in .k C Ii /Ii , then a is
also invertible in Sq. So suppose that a 2 .k C Ii / n Ii . Then a D c C ˛, where c 2 k�

and ˛ 2 Ii . But Ii � q by Lemma 5.8. Whence a 2 S n q.

Index the rows and columns of Aq by 0; 1; : : : ; n. Denote by eij 2MnC1.FracS/ the
matrix with a 1 in the ij -th slot and zeros elsewhere, and set ei WD ei i .

Proposition 5.11. Suppose that each Ii � S is prime, or n D 1. Fix p 2 SpecR, and let
q 2 SpecS be a minimal prime over p.

(1) If Rp is noetherian, then the cyclic localization Aq at q is the full matrix ring

Aq DMnC1.Rp/ Š A˝R Rp:

(2) If Rp is nonnoetherian, then p D mi for some i , and

Aq D

2666666666664

zR � � � zR qSq
zR � � � zR

:::
:::

:::
:::

:::

zR � � � zR qSq
zR � � � zR

Sq � � � Sq Sq Sq � � � Sq

zR � � � zR qSq
zR � � � zR

:::
:::

:::
:::

:::

zR � � � zR qSq
zR � � � zR

3777777777775
�MnC1.FracS/;

where the i th row and column are, respectively,

eiAq D
�
Sq � � � Sq

�
D S˚nC1q ;

Aqei D
�
qSq � � � qSq Sq qSq � � � qSq

�t
;

and all other entries are zR.

Proof. (1) Suppose that Rp is noetherian. Then Rp D Sq since S is a depiction of R.
(1.i) We first claim that the diagonal entries of Aq are all Sq. Fix i 2 Œ1; n�. We have

Sq
.I/
D Rq\R

.II/

� Ri
q\Ri

(III)
� Sq;

where (I) holds since S is a depiction of R; (II) holds since R � Ri ; and (III) holds since
Ri � S . Therefore Ri

q\Ri
D Sq.

(1.ii) We now claim that the off-diagonal entries of Aq are also all Sq.
Fix i 2 Œ1; n�, and assume to the contrary that mi � q. Then

mi D mi \R � q \R D p:

Whence mi D p, since mi is maximal. But Rmi
is nonnoetherian by Theorem 3.14 and

Proposition 3.4, contrary to our choice of p. Thus mi 6�q. Hence, there is some a 2mi nq.
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Consequently, 1D aa�1 2miSq. Therefore miSq D Sq. Together with (1.i), this implies
that the off-diagonal entries of Aq in columns 1; : : : ; n are Sq.

Finally, the off-diagonal entries in column 0 are also Sq: since 1 2 Ri and Ri � S , we
have RiSq D Sq.

(2) Follows from Lemmas 5.9 and 5.10.

Fix i 2 Œ1; n� and a minimal prime q 2 SpecS over mi .

Lemma 5.12. Let j 2 Œ0; n�, let P be a projective Aq-module, and let

ı W Aqej ! P

be an Aq-module homomorphism. Suppose that eij 2 Aq. If ı.eij / D 0, then ı � 0.

Proof. Set ƒ WD Aq, and suppose that ı.eij / D 0. Let ` � 1 be minimal such that P is a
direct summand of ƒ˚`. Let a1; : : : ; a` 2 ƒ be such that

ı.ej / D .a1; : : : ; a`/ 2 ƒ
˚`:

Each ak is in ejƒ since

.a1; : : : ; a`/ D ı.ej / D ı.e
2
j / D ej ı.ej / 2 ejƒ

˚`:

Furthermore, each product eijak is zero since

.eija1; : : : ; eija`/ D eij .a1; : : : ; a`/ D eij ı.ej / D ı.eij / D 0:

But eij˛ 6D 0 for all nonzero ˛ in ejƒ. Therefore each ak is zero.

Proposition 5.13. The left global dimension of Aq is bounded above by the Krull dimen-
sion of Sq,

gldimAq � dimSq:

Proof. Set ƒ WD Aq and d WD dimSq � 1. Let V be a ƒ-module. We claim that

pdƒ.V / � d C 1: (23)

It suffices to show that there is a projective resolution P� of V ,

� � � ! P2
ı2
�! P1

ı1
�! P0

ı0
�! V ! 0;

for which the .d C 1/th syzygy ker ıd is a projective ƒ-module [23, Proposition 8.6.iv].
Since ¹e0; : : : ; enº is a complete set of orthogonal idempotents of ƒ, we may assume

that for each ` � 0 and j 2 Œ0; n�, there is some m j̀ � 0 such that

P` D
M

j Wm j̀�1

.ƒej /
˚m j̀ D

M
j Wm j̀�1

M
t2Œ1;m j̀ �

ƒej "t ;

where ej "t generates the t -th ƒej summand of .ƒej /˚m j̀ over ƒ.
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Now eiƒ is a left Sq-module since eiƒei D eiSq. Furthermore, eiƒ is a projective,
hence flat, right ƒ-module. Thus, setting˝ WD ˝ƒ, the sequence of Sq-modules

� � � ! eiƒ˝ P2
1˝ı2
���! eiƒ˝ P1

1˝ı1
���! eiƒ˝ P0

1˝ı0
���! eiƒ˝ V ! 0

is exact. Moreover, each term eiƒ˝ P` is a free Sq-module since

eiƒ˝ P` D
M

j Wm j̀�1

.eiƒ˝ƒej /
˚m j̀ Š

M
j

.eiƒej /
˚m j̀ D

M
j

.eijSq/
˚m j̀ : (24)

It follows that eiƒ˝P� is a free resolution of the Sq-module eiƒ˝V Š eiV . Thus, since
Sq is a regular local ring of dimension d C 1, the .d C 1/th syzygy ker.1˝ ıd / of eiƒ˝
P� is a free Sq-module. Therefore, since ker.1˝ ıd / is a submodule of

L
j eijS

˚mdj
q , for

each j 2 Œ0; n� there is some rj 2 Œ0;mdj � such that

ker.1˝ ıd / Š
M

j W rj�1

.eijSq/
˚rj : (25)

Again since eiƒ is a flat right ƒ-module, the sequence

0! eiƒ˝ ker ıd ! eiƒ˝ Pd
1˝ıd
���! eiƒ˝ Pd�1

is exact. Whence
eiƒ˝ ker ıd D ker.1˝ ıd /: (26)

But (25) and (26) together imply that

ei ker ıd D
M

j W rj�1

.eijSq/
˚rj D ei

M
j

.ƒej /
˚rj D ei

M
j W rj�1

M
t2Œ1;rj �

ƒej "t : (27)

In particular, for each t 2 Œ1; rj � we have ıd .eij "t / D 0. Thus by Lemma 5.12,

ıd .ƒej "t / D 0:

Therefore
ker ıd �

M
j W rj�1

M
t2Œ1;rj �

ƒej "t : (28)

To show the reverse inclusion, fix j 2 Œ0; n� satisfying mdj � 1, and let t 2 Œ1; mdj �.
Suppose that ekj "t 2 ker ıd . Then, since 1 2 ƒik for each k 2 Œ0; n�, we have

ıd .eij "t / D ıd .eikekj "t / D eikıd .ekj "t / D 0:

Whence eij "t 2 ei ker ıd . Thus t 2 Œ1; rj �, by (27). Therefore

ker ıd �
M

j W rj�1

M
t2Œ1;rj �

ƒej "t : (29)

(28) and (29) together imply that ker ıd D
L
.ƒej /

˚rj . Consequently, (23) holds.
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Proposition 5.14. The cyclic localization Aq has precisely two simple modules up to
isomorphism:

V WD Aqei=Aq.1 � ei /Aqei Š Sq=q;

W WD Aqe0=AqeiAqe0 Š
M
j 6Di

kej0 Š . zR=q/
˚n: (30)

Their projective dimensions are, respectively,

pdAq
.V / D dimSq and pdAq

.W / D 1:

Proof. Set ƒ WD Aq.
(i) We claim that the simple ƒ-modules are precisely the modules V and W in (30).

For each j 2 Œ0; n� n ¹iº, there is a (left) ƒ-module isomorphism

ƒe0
�e0j
��! ƒej :

Furthermore, W is simple since for each j; k 2 Œ0; n� n ¹iº, the matrix entry Ajk contains
1 2 R; whence

ejkek0 D ej0 and ekj ej0 D ek0:

(ii) We claim that pdƒ.V / D dimSq. Indeed, we have

dimSq
.I/
D pdSq

.Sq=q/
.II/
� pdƒ.V /

(III)
� dimSq;

where (I) holds since Sq is a regular local ring, and (III) holds by Proposition 5.13. (II)
holds since ifP� is a projective resolution of V overƒ, then eiƒ˝ƒ P� is a free resolution
of V Š Sq=q over eiƒei Š Sq, as shown in (24).

(iii) We claim that pdƒ.W / D 1. Consider the complex

0! ƒei
�ei0
��! ƒe0 ! W ! 0: (31)

The module homomorphism ƒei
�ei0
��! ƒe0 maps onto the kernel of ƒe0 ! W , namely

ƒeiƒe0, since ƒi i D Sq D ƒ
i0. Thus the complex (31) is exact.

Proposition 5.15. The residue module at q decomposes as

Aq=q D V ˚W
˚n (32)

and has projective dimension

pdAq
.Aq=q/ D dimSq:

Proof. Set ƒ WD Aq.
The direct sum decomposition (32) follows from Proposition 5.14, where we view V

and W as columns of the .nC 1/ � .nC 1/ tiled matrix ring ƒ=.q \ƒ/.
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The projective dimension of ƒ=.q \ƒ/ equals the Krull dimension of Sq since

dimSq
.I/
D pdƒ.V /

.II/
� pdƒ

�
ƒ=.q \ƒ/

�
� gldimƒ

(III)
� dimSq:

Indeed, (I) holds by Proposition 5.14; (II) holds by (32), since the projective dimension of
a module M is greater than or equal to the projective dimension of any direct summand
of M ; and (III) holds by Proposition 5.13.

Let A be a k-algebra with prime centerZ, and let m 2MaxZ. Then Am D A˝Z Zm

is said to be Azumaya over its center Zm if Am is a free Zm-module of finite rank, and
the algebra homomorphism

Am ˝Zm A
op
m ! EndZm.Am/

a˝ b 7! .x 7! axb/

is an isomorphism [21, Section 13.7.6], [11, Definition III.1.3]. The Azumaya locus of A
is the set of points m 2 MaxZ for which Am is an Azumaya algebra.

Remark 5.16. It is well known that if Am is free of finite rank over Zm, then Am is
Azumaya if and only if Am=mAm is a central simple algebra over k, if and only if
Am=mAm ŠMn.k/ for some n � 1 (assuming k is algebraically closed).

Theorem 5.17. Let S be a finite type normal integral domain. Let I1; : : : ; In be a set of
proper non-maximal nonzero radical ideals of S such that either n D 1, or the closed sets
Z.Ii / � MaxS are irreducible and pairwise non-intersecting.

SetR WD
Tn
iD1.kC Ii / and consider its nonnoetherian points mi WD Ii \R 2MaxR.

Then

(1) S can be retrieved from R as the cycle algebra of the endomorphism ring

A D EndR.R˚m1 ˚ � � � ˚mn/:

Furthermore, the center of A is R.

(2) The Azumaya locus of A and the noetherian locus US=R of R coincide.

(3) If each Z.Ii / intersects the smooth locus of Max S , then A is a noncommutative
desingularization of its center R:

(a) FracR and A˝R FracR are Morita equivalent, and

(b) for each i 2 Œ1; n� and minimal prime q 2 SpecS over mi , we have

gldimAq D pdAq
.Aq=q/ D dimSq:

Proof. (1) The algebra A has center R by Proposition 5.4, and cycle algebra S by Propo-
sition 5.7.

(2) The noetherian locus US=R ofR is contained in the Azumaya locus of A by Propo-
sition 5.11 (1) and Remark 5.16. Conversely, if n 2MaxS nUS=R, thenA˝R Rn\R is not
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a free Rn\R-module by Proposition 5.4. Whence n \ R 2 MaxR is not in the Azumaya
locus of A.

(3.a) We claim that FracR and A˝R FracR are Morita equivalent. By Theorem 3.14,
S is a depiction of R; in particular, US=R 6D ;. Thus FracR D FracS . Therefore

A˝R FracR D A˝R FracS
.I/
DMnC1.FracS/ DMnC1.FracR/;

where (I) holds by Proposition 5.4. The claim follows.
(3.b) We have gldimAq � dim Sq by Proposition 5.13, and gldimAq � dim Sq by

Proposition 5.14. Furthermore, pdAq
.Aq=q/ D dimSq by Proposition 5.15.

Remark 5.18. The advantage of the noncommutative blowup A over the depiction S is
given by Theorem 5.17 (2): the noetherian locus US=R of R is intrinsic to A since it is
encoded in the representation theory of A. However, in the absence of R, the noetherian
locus is invisible to S . Furthermore, A “sees” both R and S : they appear as the center and
cycle algebra of A, respectively.

Funding. The author was supported by the Austrian Science Fund (FWF) grant P 30549-
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