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Callias-type operators associated to spectral triples

Hermann Schulz-Baldes and Tom Stoiber

Abstract. Callias-type (or Dirac–Schrödinger) operators associated to abstract semifinite spectral
triples are introduced and their indices are computed in terms of an associated index pairing derived
from the spectral triple. The result is then interpreted as an index theorem for a non-commutative
analogue of spectral flow. Both even and odd spectral triples are considered, and both commutative
and non-commutative examples are given.

1. Outline

The Callias index theorem [2, 6, 11, 23] and its even dimensional analogue [10, 22, 25]
give formulas for the index of Dirac operators on non-compact manifolds which are per-
turbed by self-adjoint potentials that act on sections of a finite-dimensional vector bundle
and are invertible at infinity. There are many possible generalizations, for example, one
can allow infinite-dimensional vector bundles as in the Robbin–Salamon theorem [42] or
Hilbert-module bundles of finite type [9, 19]. This paper generalizes in a different direc-
tion, namely the underlying manifold is replaced by a semifinite spectral triple and the
perturbing potentials will be elements of a certain multiplier algebra. In this abstract set-
ting, one can still express the index of a Callias-type operator in terms of an index pairing
derived from the spectral triple. Concretely, if .N ;D;A/ is a semifinite spectral triple with
trace T and a Callias potentialH is a self-adjoint differentiable multiplier of AD C �.A/

which is invertible modulo A (in the sense of Definition 3 below), then the Callias-type
operator �D C {H is T -Fredholm for small enough � > 0 and

T -Ind.�D C {H/ D hŒU �1; ŒD�i;

where U D exp.{�.G.H/C 1// is a unitary defining a K-theory class in K1.A/ for G a
suitable switch function, and { D

p
�1. The precise statement is given in Section 3, for

the case of unbounded H in Section 6. Furthermore, Section 5 states and proves an even
analogue for pairings of an even spectral triple with a potential H having a further sym-
metry. Section 6 then also covers the unbounded even case. Section 8 presents classical
and new examples.
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In the commutative setting one would take for A the algebra of smooth compactly sup-
ported fiberwise compact multiplication operators on sections H of a vector bundle over a
complete Riemannian manifold X , forD a weakly elliptic first-order differential operator
and T D TrL2.X/ ˝ TrH . Results comparable to our main result in that commutative set-
ting with infinite-dimensional vector bundles have been obtained by Kaad and Lesch [28]
and more recently also with less regularity assumptions by van den Dungen [46]. These
proofs rely on previous work on unbounded Kasparov products. In essence, the strategy
in [28, 46] is to prove that a Callias-type operator is an unbounded representative of the
product of a K-homology class defined by a first-order differential operator and a class
in the K1-group over the continuous functions on the manifold defined by a self-adjoint
multiplication operator. As discussed in Section 7 this approach can also be made to work
in the present more general non-commutative setting with some technical limitations.
Instead, here we provide a new and rather elementary proof using semifinite spectral flow
and explicit operator homotopies. Even for the classical case (e.g., [23,25]), the argument
constitutes a considerable simplification of the proof.

In the special case where X is the real line the potential H represents a path of self-
adjoint Fredholm operators and the index coincides with the spectral flow of the family.
This analogy has been carried further by [28, 46] who call the index pairing hŒU �1; ŒD�i a
spectral flow also in higher dimensions, motivated by notions fromKK-theory. We follow
that interpretation and therefore consider the index pairing as a non-commutative analogy
of spectral flow.

2. Callias-type operators with bounded potentials

Let N be a von Neumann algebra with semifinite normal faithful trace T acting on a
Hilbert space H . For the convenience of the reader, several facts about the trace T , the set
KT of T -compact operators and the notion of Breuer–Fredholm or T -Fredholm operators
and their index T -Ind are recalled in Appendix A. An (odd) semifinite spectral triple
.N ; D;A/ [14, 15] consists of an unbounded self-adjoint operator D affiliated with N

and a �-algebra A � N such that

(i) each A 2 A preserves the domain of D and the hence densely defined operator
ŒD;A� extends to a bounded element of N ;

(ii) for each A 2 A the product A.1CD2/�
1
2 is T -compact.

Let A D C �.A/ be the C �-algebra generated by A. By default a spectral triple pro-
duces an index pairing with the K-theory group K1.A/ through [15]

hŒU �1; ŒD�i D T -Ind.PUP C 1 � P / 2 R; (1)

where P D �.D > 0/ and the T -index on the right-hand side is of a T -operator, for any
representative U 2 1C A defining a class in K1.A/. The potentials for our Callias-type
operators will be recruited from a larger algebra:
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Definition 1. Let .N ;D;A/ be a semifinite spectral triple.

(i) The multiplier algebraM.A;N / is the idealizer of A in N , i.e., the largest C �-
subalgebra of N such thatM.A;N /A �A and AM.A;N / �A. Elements of
M.A;N / are also called A-multipliers.

(ii) An A-multiplier H 2 M.A;N / is differentiable with respect to D if H pre-
serves Dom.D/ and ŒD;H� extends to a bounded operator.

(iii) For a self-adjoint differentiable A-multiplierH the associated Callias-type oper-
ator on the domain Dom.D/ is defined by

D�;H D �D C {H; � > 0:

The parameter � can be interpreted as the scale of the non-commutative space quanta.
It plays a prominent role in the following. It will next be useful to pass to a self-adjoint
supersymmetric operator L�;H which, due to the prior works [36, 37, 43], will also be
referred to as the spectral localizer.

Proposition 2. For a self-adjoint A-multiplierH , the adjoint of the Callias-type operator
D�;H is .D�;H /� D �D � {H and the spectral localizer

L�;H D

 
0 D��;H

D�;H 0

!
is self-adjoint on the domain Dom.D/�2. Moreover, D�;H and L�;H are affiliated to N

and M2.N / respectively.

Proof. Note that

L�;H D �

�
0 D

D 0

�
C

�
0 �{H

{H 0

�
:

The first summand is self-adjoint, and the second is a bounded self-adjoint perturbation
leaving the domain Dom.D/�2 invariant. Hence the self-adjointness ofL�;H immediately
follows from the Kato–Rellich theorem and this also implies that .D�;H /� D D�;�H . As
to the last claim, recall that an equivalent condition for the affiliation of an operator T is
that each unitary U 2 N 0 preserves the domain of T and commutes UT U � D T (see,
e.g., [30]).

The following often deals with operators in or affiliated to the matrix algebrasM2.N /

and M2.A/. The former is supplied with the natural trace T ı Tr, but for notational con-
venience we will denote it by the same letter and speak of T -compact and T -Fredholm
operators with no regard for the size of the matrices.
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The following provides a criterion for Callias-type operators to be T -Fredholm:

Definition 3. A self-adjoint A-multiplier H is called asymptotically invertible with re-
spect to A if there is a positive element V 2 A such that H 2 C V > 0 is invertible. An
asymptotically invertible and differentiable self-adjoint A-multiplierH is called a Callias
potential.

In the classical case of a Riemannian manifold X where A D C0.X;K.H // and H
is given by an operator-valued bounded function x 2 X 7! Hx 2 B.H /, the asymptotic
invertibility is indeed equivalent to the uniform invertibility ofHx outside a compact sub-
set K � X , namely there is a positive constant c such that H 2

x � c1 for x 2 X n K.
Proposition 5 shows that V in Definition 3 can always be chosen as a spectral function
ofH itself. This also implies that asymptotic invertibility ofH is equivalent to the invert-
ibility of �.H/ in the quotient algebra M.A;N /=A.

Proposition 4. If H is a Callias potential, then there exists a �0 > 0 such that L�;H and
therefore D�;H , D��;H are T -Fredholm for all � 2 .0; �0�. Moreover, the T -index of the
Callias-type operator given by

T -Ind.D�;H / D T .Ker.D�;H // � T .Ker.D��;H // 2 R

is independent of � 2 .0; �0�.

One may also view T -Ind.D�;H / as the supersymmetric index of L�;H . The proof of
Proposition 4 will use smooth functional calculus of a self-adjoint operator via the well-
known Helffer–Sjöstrand or Dynkin formula [20]. For later use in Section 6, let us recall
the details for a possibly unbounded self-adjoint operatorH . For � 2 R, let ��.R/ denote
the set of smooth functions f W R! R satisfying

j@kf .x/j � Ck.1C x
2/

��k
2 ; k 2 N:

Then there exists for any N > 0 an almost analytic representation QfN of f supported in a
complex set G of the form G D ¹x C {y W jyj < 2

p
1C x2º which coincides with f on

R and
j@xz QfN .z/j � cN zCNC1.1C x

2/
��1�N

2 j=m.z/jN (2)

for a universal constant cN and zCNC1 D
PNC1
kD1 Ck , (see, e.g., [20, Lemma 2.2.1]).

Provided � < 0, the Helffer–Sjöstrand representation

f .H/ D

Z
G

.@xz QfN .z//.H � z/
�1 dz ^ dxz (3)

is a norm-convergent integral for any N � 1 and kf .H/k � cN kf kN where

kf kN D

NX
nD0

Z
R
dxjf .n/.x/j.1C x2/

n�1
2 :

For a complex-valued function f W R! C this can be done for real and imaginary part
separately.
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Proof of Proposition 4. Let � W Œ0;1/! Œ0; 1� be a smooth function with �.0/ D 1 and
vanishing outside Œ0; g

2

2
� We have to show that �.L2�;H / is T -compact for which for-

mula (3) is used with a quasianalytic extension Q�N of �. To control the resolvent of L2�;H ,
let us note that

L2�;H D

�
�2D2 CH 2 0

0 �2D2 CH 2

�
C {�

�
ŒD;H� 0

0 �ŒD;H�

�
:

Now let V and g > 0 be such that H 2 C V � g21. Then with zV D V ˚ V

L2�;H C
zV �

�
g2 � �kŒD;H�k

�
12; (4)

which shows that L2�;H C zV is invertible for � sufficiently small. Now replace the resol-
vent identity into the Helffer–Sjöstrand formula

�.L2�;H / D

Z
G

.@xz Q�N .z//
�
.L2�;H C

zV � z/�1

C .L2�;H C
zV � z/�1 zV .L2�;H � z/

�1
�

dz ^ dxz:

The first summand is �.L2�;H C zV / and thus vanishes if ���0 where �0D g2

2
kŒD;H�k�1.

For the remaining term, applying the resolvent identity again shows

zV .L2�;H � z/
�1
D zV .�2D2

˝ 12� z/�1
�
1C .H 2

˝ 12C {�ŒD;H�˝ �3/.L2�;H � z/
�1
�
:

As zV 2M2.A/, the factor zV .�2D2 ˝ 12 � z/�1 is T -compact due to the definition of
the spectral triple. As KT is a norm closed ideal and the integral in the Helffer–Sjöstrand
formula is norm convergent, this implies that �.L2�;H / is T -compact.

The final claim follows from the fact that � 7!D�;H is continuous in the gap topology
so that the T -index is constant along this path.

The next result is the last technical preparation.

Proposition 5. Let H be a self-adjoint A-multiplier satisfying H 2 C V > g21 for some
V DV �2A. Then for every function f WR!C supported by Œ�g

2
; g
2
� one has f .H/2A.

Proof. Let � W Œ0;1/! Œ0; 1� be a smooth function satisfying �.�/ D 1 for � � g2

4
and

�.�/ D 0 for � � g2. Then �.H 2 C V / D 0 by hypothesis so that the Helffer–Sjöstrand
formula and the resolvent identity imply

�.H 2/ D

Z
G

.@xz Q�N .z//.H
2
C V � z/�1V.H 2

� z/�1 dz ^ dxz:

As V 2 A, this implies �.H 2/ 2 A because A is a norm-closed ideal in M.A;N /. Now
by construction, f .H/ D �.H 2/f .H/ and therefore invoking the ideal property once
again leads to f .H/ 2 A.
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3. Main result for bounded Callias potentials

Proposition 6. Let H be a self-adjoint A-multiplier which is asymptotically invertible
with respect to A and satisfies H 2 C V > g21 for some g > 0 and self-adjoint V 2 A.
LetG W R! R be a smooth non-decreasing odd function taking values �1 below �g

2
and

1 above g
2

. Then the unitary operator

U D e{�.G.H/C1/

defines a class inK1.A/ which does not depend on the functionG. It represents the image
of the spectral projection Œ�.H CA < 0/�0 2 K0.M.A;N /=A/ under the exponential
map inK-theory @0 WK0.M.A;N /=A/!K1.A/ associated to the short exact sequence

0! A!M.A;N /!M.A;N /=A! 0; (5)

namely
ŒU �1 D @0Œ�.H CA < 0/�0:

Proof. By construction, e{�.G.�/C1/ � 1 is supported in Œ�g
2
; g
2
� and one therefore has

U � 1 2 A by Proposition 5. Naturally it defines the class ŒU �1 in K1.A/. The second
claim results from the fact that 1

2
.G.H/C 1/ is a lift of the projection 1� �.H CA < 0/

into M.A;N /.

Clearly one can also replace M.A;N / by any smaller C �-algebra that contains H
and has A as an ideal, since by naturality all computations pull back to the connecting
map of 0! A! C �.H;A/! C �.H;A/=A! 0 where C �.H;A/ D C �.H/CA.

Definition 7. For an asymptotically invertible A-multiplier H , the D-spectral flow is
defined as an index pairing in the sense of (1) by

SfD.H/ D hŒe{�.G.H/C1/�1; ŒD�i 2 R

for any admissible function G as specified in Proposition 6 above.

Let us briefly justify why this definition applied to a particular set-up indeed reduces
to the standard notion of semifinite spectral flow. Let .n; �/ be a semifinite von Neumann
algebra and nT the traceclass elements. Then a differentiable path x 2 R 7! Hx 2 n of
self-adjoint Fredholm operators with invertible limits can be paired with a winding number
1-cocycle to give the spectral flow in the formulation of Wahl [48], see Definition 41 in the
appendix where this is spelled out for a finite interval. This latter spectral flow coincides
with Definition 7 if one chooses

.A;N ; T ;D/ D
�
C1c .R;nT /; L

1.R;n/; T D

Z
dx ˝ �; {@x ˝ 1

�
:

The classical case is obtained when n D B.H / and � D Tr. More generally, for differen-
tiable families x 2 Rd 7! Hx 2 n with odd d , the above definition reduces to a volume
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integral version of a generalized multiparameter spectral flow, see the discussion in Sec-
tion 8.1. Definition 7 further conceptualizes these special cases, and is in the spirit of
[28, Definition 8.9] and [46, Definition 2.18] where a K-theory valued spectral flow is
introduced. The following main result shows that the index of a Callias-type operator is
equal to the spectral flow in the sense of Definition 7:

Theorem 8. Let H be a Callias potential for the semifinite spectral triple .N ;D;A/. Set

�0 D
g2

2kŒD;H�k
; g2 D min �.H 2

CA/: (6)

Then for all � 2 .0; �0/
T -Ind.D�;H / D SfD.H/:

Let us comment that the equality of index and spectral flow in general does not hold
for large values of �. Indeed, a counterexample (withX DR and ADC0.X;K.H //with
an infinite-dimensional fiber Hilbert space H ) can be found in the work of Abbondandolo
and Majer [1, Section 7]. Theorem 8 only concerns the semiclassical regime of small �,
or otherwise stated the limiting index for small �. For unbounded H the situation may be
different. Indeed, the Robbin–Salamon theorem states that for one-dimensional potentials
growing at infinity, all values of � are allowed. This case is covered by Theorem 31 below.

4. Proof of the main result

The first step is to make the Dirac operator invertible which can be achieved by a standard
doubling trick. More precisely, set

zD D

�
D �

� �D

�
; zH D

�
H 0

0 1

�
(7)

for some � > 0 and also define

zD�; zH D �
zD C { zH; QL�; zH D

 
0 zD�

�; zH

zD�; zH 0

!
:

Self-adjointness of QL�; zH follows again from the Kato–Rellich theorem, but the Fredholm
property can depend non-trivially on � and �. In Lemma 11 below, we show that one may
choose � D O.1/ and then � � O.�/. For � D 0 the additivity of the Fredholm index
gives

T -Ind.D�;H / D T -Ind. zD�; zH / (8)

and then the index stays unchanged for non-vanishing � as long as the Fredholm-property
is not violated. It is sufficient to prove the index formula for some sufficiently small �
because it then immediately holds for all � as stated in Theorem 8. The next step is to
express the index pairing as a spectral flow and to separate zD and zH in the 2 � 2 matrix.
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Lemma 9. For anym> 0 and � sufficiently small, the T -index of zD�; zH can be computed
as spectral flow along a straight-line path

T -Ind. zD�; zH / D �Sf

  
� zD zH � {m
zH C {m �� zD

!
;

 
� zD zH C {m
zH � {m �� zD

!!
:

Proof. By conjugation with the unitary matrix C D 1p
2

�
1 {
1 �{

�
, one has

Sf

  
� zD zH � {m
zH C {m �� zD

!
;

 
� zD zH C {m
zH � {m �� zD

!!

D Sf

  
�m � zD C { zH

� zD � { zH m

!
;

 
m � zD C { zH

� zD � { zH �m

!!
and so the claim follows from Proposition 44.

The next step will be to deform the off-diagonal entries (more precisely the path in
the lower left corner from zH C {m to zH � {m) in the matrices on the right-hand side of
Lemma 9 into a unitary, without changing the spectral flow. This will be done by functional
calculus in zH (so for every spectral value � 2R) by homotopically deforming the function

t 2 Œ0; 1� 7! ft;0.�/ D .1 � t /.�C {m/C t .� � {m/ (9)

into
t 2 Œ0; 1� 7! ft;1.�/ D .1 � t /{e

�{ �2G.�/ C t .�{/e{
�
2G.�/: (10)

The second path is constructed to contain a square root of the unitary U D e{�.G.H/C1/

appearing in the image of the exponential map in Proposition 6. The main analytical diffi-
culty that has to be addressed next is that along such a deformation the Fredholm property
has to be maintained. For this purpose, let use the odd spectral localizer

Lo�;f D

 
� zD f. zH/�

f . zH/ �� zD

!
for an arbitrary differentiable function f W R! C. The Fredholm property of Lo

�;f
can

again be checked by formally squaring

.Lo�;f /
2
D

 
� zD2 C jf . zH/j2 �Œ zD;f . zH/��

�Œf . zH/; zD� �2 zD2 C jf . zH/j2

!
;

with the modified commutator by the doubling given by

Œf . zH/; zD� D

�
Œf .H/;D� �.f .1/ � f .H//

��.f .1/ � f .H// 0

�
:

For the control of Œf .H/;D�, let us recall:
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Lemma 10. For every smooth function f , the commutator ŒD; f .H/� extends from
Dom.D/ to a bounded operator with norm bound

kŒD; f .H/�k � zC3kHkkŒD;H�k

where zC3 D C
P3
iD0 kf

.i/k1 is a constant.

Proof. Using the Helffer–Sjöstrand formula (3) for N D 2, one has the norm convergent
integral

ŒD; f .H/� D �

Z
G

.@xzf2.z//.H � z/
�1ŒD;H�.H � z/�1 dz ^ dxz:

and the claimed bound on the commutator follows immediately. An alternative proof can
also be given using kŒD;f .H/�k � k.F f 0/kL1.R/kŒD;H�k where F is the Fourier trans-
form [24, Lemma 10.15].

Using Lemma 10, one obtains

.Lo�;f /
2
� �2�2 C jf . zH/j2 � �kŒf . zH/; zD�k

� �2�2 C jf . zH/j2 � �
�
zC3kHkkŒD;H�k C �kf .H/ � f .1/k

�
: (11)

From this, we will now need to derive a quantitative lower bound on the essential spec-
trum of .Lo

�;f
/2, namely a lower bound on .Lo

�;f
/2 CM2.KT /. For that purpose and the

remainder of the section let us now assume that jH j > 1 mod A which can be achieved
without loss of generality by rescaling H and all other parameters (�, �, m, etc.).

Lemma 11. Associated to a smooth function f 2 C.�. zH/;C/, let zC3 be as in Lemma 10
and set

c1 D min
j�j�1
jf .�/j; c2 D 2kf k1;

and � such that

1
2
c21 C �

2�2 � �
�
zC3kHkkŒD;H�k C �c2

�
> 0; (12)

then .Lo
�;f
/2 is a self-adjoint T -Fredholm operator with spectrum modM2.KT / bounded

from below by 1
2
c21 C �

2�2 � �.Cc3kHkkŒD;H�k C �c2/.

Proof. Due to Lemma 10, there is a constant C > 0 such that

kŒD; f .H/�k � zC3kHkkŒD;H�k:

Moreover, jf .H/j � c1 mod A holds by functional calculus due to the normalization
assumption �.H CA/\ .�1; 1/ D ;. Adding a spectral function V D Q�.H 2/ 2 A for Q�
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a smooth positive function supported in the interval Œ0; c21/ and equal to c21
2

in Œ0; c
2
1

2
�, it

follows from (11)

.Lo�;f /
2
� c21 �

1
2
c21 C �

2�2 � �jŒD; zH�j � ��c2 mod M2.A/

�
1
2
c21 C �

2�2 � �. zC3kHkkŒD;H�k C �c2/ mod M2.A/:

Since .Lo
�;f
/2 is a bounded perturbation of �2 zD2 it follows that A is relatively T -compact

with respect to .Lo
�;f
/2. Hence, arguing as in the proof of Proposition 4, the same lower

bound also holds modulo M2.KT /.

Lemma 12. Let G be any switch function as in Proposition 6 with g D 1, namely G0

supported in .�1; 1/. The straight-line paths in (9) and (10) are homotopic via

s 2 Œ0; 1� 7! ft;s.�/ D .1 � s/ft;0.�/C sft;1.�/

in such a way that (12) computed for fs;t is uniformly bounded from below by a strictly
positive number for any small enough � > 0. Moreover, the functions s 2 Œ0; 1� 7! jf0;sj
and s 2 Œ0; 1� 7! jf1;sj are invertible.

Proof. By construction, the parameter t merely flips the imaginary part

ft;s D <e.f0;s/C
{

2
.1 � 2t/=m.f0;s/:

We consider the homotopy for j�j � 1 where the functions simplify to

ft;s.�/ D sgn.�/.1C .1 � s/j�j/C {m.1 � s/.1 � 2t/

and hence c1 � 1 and c2 � 2.kHk C m/ uniformly in s; t 2 Œ0; 1�. For � and � small
enough, the quantity (12) is therefore obviously bounded from below. Checking pointwise
invertibility for t D 0 and t D 1 is also simple: the imaginary part never changes sign and
only ever vanishes when j�j � 1 where one always has a non-vanishing real part.

Let us now fix �, without restriction, to the value � D 1. Smallness of � is such
that (12) in Lemma 12 holds.

Corollary 13. Let us introduce the unitary zW D �{e{
�
2G.

zH/. Then for � small enough

T -Ind. zD�; zH / D �Sf

  
� zD zW
zW � �� zD

!
;

 
� zD zW �

zW �� zD

!!
:

Proof. Start out with Lemma 9 and note that this straight line path there is given in (9).
As the Fredholm property holds throughout the square .t; s/ 2 Œ0; 1�2 by Lemma 11, the
homotopy invariance of the spectral flow as stated in Proposition 43 (ii) allows to deform
the path (9) into (10) by respecting the invertibility of the end points, see Lemma 12.
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Proof of Theorem 8. As already stated above, it is sufficient to prove the equality for some
� > 0 because then the constancy of the T -index along paths of Fredholm operators allows
to conclude, due to the bound (4). Now let us start out with (8) and then invoke Corol-
lary 13,

T -Ind.D�;H / D �Sf

  
� zD zW
zW � �� zD

!
;

 
� zD zW �

zW �� zD

!!
:

Set zU D e{�.G. zH/C1/ D �e{�G.
zH/. Then by construction, zU D zW 2 and therefore the

adjoint action of the unitary diag.1; zW / transforms the spectral flow to

T -Ind.D�;H / D �Sf

  
� zD 1

1 �� zW zD zW �

!
;

 
� zD zU �

zU �� zW zD zW �

!!
:

The next aim is to replace zW zD zW � by zD by a homotopy

s 2 Œ0; 1� 7! .1 � s/ zW zD zW � C s zD

leading to a homotopy of straight line paths. The difference zW zD zW � � zD D zW Œ zD; zW ��
is a bounded operator by Lemma 10, and therefore, for � small enough, the invertibility of
the end points remains valid along the homotopy as does the lower bound on the essential
spectrum so that the Fredholm property is conserved throughout. Therefore

T -Ind.D�;H / D �Sf

  
� zD 1

1 �� zD

!
;

 
� zD zU �

zU �� zD

!!
:

Now we are in the situation to apply Proposition 47 which gives

T -Ind.D�;H / D T -Ind
�
�. zD > 0/ zU�. zD > 0/C 1 � �. zD > 0/

�
where we took into account that compared to the formulation of Proposition 47 the spectral
projection is flipped, which cancels the factor of �1. The last expression is the index
pairing between zD and zU which is equal to the pairing between the undoubled Dirac
operatorD and zU 	 1, see [17]. Since zU 	 1D U D exp.{�.G.H/C 1//, the expression
is equal to the spectral flow SfD.H/.

5. Even version

A spectral triple is called even if there is a proper self-adjoint unitary  2 N that anti-
commutes with D, but commutes with all elements of A. As matrices with respect to the
projections �˙ D 1

2
. ˙ 1/ induced by the grading  one then has the decompositions

D D

�
0 D�0
D0 0

�
; sgn.D/ D

�
0 F �

F 0

�
; A D

�
AC 0

0 A�

�
;
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for each A 2 A and a partial isometry F . In the following, we denote T˙ D �˙T�˙ for
any operator where such a decomposition makes sense, and also set † D sgn.D/.

For even spectral triples the index pairing with any unitary vanishes, but instead there
is a pairing with K0.A/ given by the skew-corner index [17, 29],

hŒP �0; ŒD0�i D T -IndPC�P�.PCF
�P�/ (13)

where P 2 A� is a projection representing the class ŒP �0 � Œs.P /�0 2 K0.A/ (and the
formulas adapt to matrices in the obvious manner).

Any Callias-type operator in the sense of Definition 1 has a vanishing index since one
hasD�;H D�D��;H . To obtain an even analogue for the index theorem, let us therefore
shift to non-self-adjoint potentials T , which form the off-diagonal part of a doubled poten-
tialH 2M.M2.A/;M2.N //, or, alternatively and more in the spirit of physical systems,
having an extra (so-called chiral) symmetry, the self-adjoint potential H is required to be
a 2� 2matrix that is off-diagonal with respect to a natural extra grading by the third Pauli
matrix J D diag.1;�1/.

Definition 14. An A-multiplier T 2M.A;N / is an even Callias potential if

H D

�
0 T �

T 0

�
2M.M2.A/;M2.N //

is a Callias potential for the spectral triple .M2.N /; D ˝ 12;A ˝ 12/. The associated
even Callias-type operator is

De
�;T D

�
TC �D�0
�D0 �T ��

�
;

acting on the domain Dom.D0/˚ Dom.D�0 /.

Let us note the differentiability of H with respect to D ˝ 1 is equivalent to the dif-
ferentiability of T with respect to D. The asymptotic invertibility of H (contained in the
notion of Callias potential) requires that there is a self-adjoint operator V 2M2.A/ and a
g > 0 such that H 2 C V � g212. Moreover, the off-diagonal nature of J is equivalent to
the (chiral) symmetry

JHJ D �H; J D diag.1;�1/:

Note that also J D JC ˚ J� and then J˙H˙J˙ D �H˙.
Next let us show how De

�;T naturally arises from the Callias operator D�;H as given
in Definition 1. In fact, one readily checks

D�;H D

0BB@
0 {T �C �D�0 0

{TC 0 0 �D�0
�D0 0 0 {T ��
0 �D0 {T� 0

1CCA D …�3�
2

 
0 �.De

�;T �/

De
�;T 0

!
… 3�

2
; (14)
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where

…' D

0BB@
1 0 0 0

0 0 0 e{'

0 e{' 0 0

0 0 1 0

1CCA : (15)

Hence, D�;H is block off-diagonal in an appropriate basis and one of the off-diagonal
entries is indeed De

�;T , hence motivating Definition 14. The above identity also allows
to deduce several analytic properties of De

�;T from corresponding statements for the odd
case. Proposition 2 implies that .De

�;T /
� D De

�;T � , while Proposition 4 shows that De
�;T

is a T -Fredholm operator. The following K-theoretic result now corresponds to Proposi-
tion 6.

Proposition 15. Let T be an even Callias potential such that the associated H 2

M2.M.A;N // satisfies H 2 C V > g212 for some g > 0 and self-adjoint V 2 M2.A/.
For an odd switch functionG WR!R as in Proposition 6, define the following self-adjoint
unitary S 2M2.A

�/ and projection P 2M2.A
�/

S D e�{
�
2G.H/Je{

�
2G.H/; P D

1

2
.12 � S/:

Then the index map @1 WK1.M.A;N /=A/!K0.A/ associated to the exact sequence (5)
gives

ŒP �0 � Œdiag.1; 0/�0 D @0.ŒT �1/:

Proof. This is exactly the definition of the index map.

Note that JHJ D �H implies

S D Je{�G.H/ D e�{�G.H/J:

Definition 16. For an even Callias potential H D �JHJ with off-diagonal entry T , the
D-spectral flow is defined as a skew-corner index pairing (13) by

SfD.T / D hŒP �0; ŒD0�i 2 R;

where P is as in Proposition 15.

Now the main result of this section can be stated.

Theorem 17. Let H be an even Callias potential with off-diagonal entry T and let �0 be
as in (6). Then for all � 2 .0; �0/

T -Ind.De
�;T / D SfD.T /:

The left-hand side can also be understood as the supersymmetric index of the odd
self-adjoint operator �.D ˝ 12/C H (in the sense of [10]), though one may prefer the
formulation in terms of T due to the homomorphism property:
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Corollary 18. If T1,T2 are even Callias potentials then T1T2 is an even Callias potential
with

T -Ind.De
�;T1T2

/ D T -Ind.De
�;T1

/C T -Ind.De
�;T2

/

for small enough � and therefore

SfD.T1T2/ D SfD.T1/C SfD.T2/:

Proof. There is a standard homotopy between
�
T1T2 0
0 1

�
and

�
T1 0
0 T2

�
and it is not difficult

to check that differentiability and asymptotic invertibility are satisfied along such a path.

If the Dirac operator is not invertible, it is again necessary to regularize it by adding a
mass term �. This can in principle be done by the usual doubling procedure (7), but it is
more convenient to work with a unitarily equivalent representation in which the regular-
ized Dirac operator is again off-diagonal, namely by setting

zD D

 
0 zD�0
zD0 0

!
; zD0 D

�
� �D�0
D0 �

�
; z D

�
�C ˚ �� 0

0 ��� ˚ �C

�
;

and

zT D

�
diag.TC; 1/ 0

0 diag.T�; 1/

�
; zH D

 
0 zT �

zT 0

!
:

It is then again possible to decompose zH 2M2.A
�/ as zH D zHC˚ zH� by applying z�˙D

�˙˝ 12 to each matrix entry. As before, the index of the Callias operators does not depend
on � unless the mass term is too large and breaks the Fredholm property. In order to avoid
clumsy notations, let us from now on simply suppose without loss of generality that D is
invertible with a lower bound jDj � �. This also leads to some minor simplification in
Lemma 19 below compared to Lemma 11. From now on, we thus suppress all tildes on
D, H , etc. Moreover, we will assume that a scaling as in Section 4 has been carried out,
assuring that H � 1 mod A.

The proof of Theorem 17 starts out again by applying Proposition 44 which allows to
compute the index of De

�;A as a spectral flow

T -Ind.De
�;T / D Sf

  
�m .De

�;T /
�

De
�;T m

!
;

 
m .De

�;T /
�

De
�;T �m

!!
:

A permutation …0 defined via (15) mixing the spectral eigenspaces of  and J leads to

…�0

 
m .De

�;T /
�

De
�;T �m

!
…0 D

0BB@
m T �C �D�0 0

TC �m 0 �D�0
�D0 0 �m �T ��
0 �D0 �T� m

1CCA :
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Using J˙ D diag.1;�1/ as a matrix also in the mixed eigenspaces, this can be written as

…�0

 
m .De

�;T /
�

De
�;T �m

!
…0 D

�
HC CmJC �D�0 ˝ 12
�D0 ˝ 12 �H� �mJ�

�
;

H˙ D

�
0 T �

˙

T˙ 0

�
:

Hence by the unitary invariance of the spectral flow

T -Ind.De
�;H / D Sf

��
HC �mJC �D�0 ˝ 12
�D0 ˝ 12 �H� CmJ�

�
;

�
HC CmJC �D�0 ˝ 12
�D0 ˝ 12 �H� �mJ�

��
:

(16)
This turns out to be a better starting point for the homotopy arguments. More precisely, the
operators H˙ C J˙m will be deformed within the set of operators of the form f .H˙/C

J˙g.H˙/ to the operator �J˙e{
�
2G.H˙/, along a path that conserves the Fredholm prop-

erty, for details see Lemma 20 below. For that purpose, one needs a Fredholm criterion for
the homotopy of paths which is the next result, a modification of Lemma 11. For a smooth
odd function f W R! R and a smooth function g W R! C satisfying g.��/ D g.�/,
both compactly supported, let us introduce the associated even spectral localizer

Le�;f;g D

�
f .HC/C JCg.HC/ �D�0 ˝ 12

�D0 ˝ 12 �f .H�/ � J�g.H�/

�
:

Due to J˙H˙J˙ D�H˙ and the symmetry of g, one has .J˙g.H˙//� D J˙g.H˙/ and
therefore by the Kato–Rellich theorem also Le

�;f;g
is a self-adjoint operator with domain

Dom.D0/�2 ˚ Dom.D�0 /
�2.

Lemma 19. Let T be an even Callias potential such that H 2 C V � 1 for some V D
V � 2M2.A/. For f and g as above, associated constants

c21 D min
j�j�1

�
jf .�/j2 C jg.�/j2

�
;

as well as zC3 D zC3.f /C zC3.g/ in terms of the constants in Lemma 10, suppose that � is
such that

1
2
c21 C �

2�2 � � zC3kHkkŒD;H�k > 0: (17)

Then .Le
�;f;g

/2 is a self-adjoint T -Fredholm operator with spectrum modKT bounded
from below by 1

2
c21 C �

2�2 � � zC3kHkkŒD;H�k.

Proof. One computes�
Le�;f;g

�2
D

�
jf .HC/j

2 C jg.HC/j
2 C �2D�0D0 �B�

�B jf .H�/j
2
C jg.H�/j

2 C �2D0D
�
0

�
with B D D0.f .HC/C JCg.HC// � .f .H�/C J�g.H�//D0. Noting that�

0 B�

B 0

�
D
�
ŒD; f .H/�C J ŒD; g.H/�

�
;
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one deduces �
Le�;f;g

�2
� c21 C �

2�2 � � zC3kHkkŒD;H�k;

and can conclude the proof by the same arguments as in the proof of Lemma 11.

Lemma 20. The straight-line path

t 2 Œ0; 1� 7! ft;0.�/C Jgt;0.�/ D .1 � t /.� � Jm/C t .�C Jm/

is homotopic to the straight-line path

t 2 Œ0; 1� 7! ft;1.�/C Jgt;1.�/ D .1 � t /.�J /e
�{ �2G.�/ C tJe{

�
2G.�/

via

s 2 Œ0; 1� 7! ft;s.�/C Jgt;s.�/ D .1� s/
�
ft;0.�/C Jgt;0.�/

�
C s

�
ft;1.�/C Jgt;1.�/

�
in such a way that (17) computed for fs;t and gs;t is uniformly bounded from below by
a strictly positive number for any small enough � > 0. Moreover, for t 2 ¹0; 1º the two
paths s 2 Œ0; 1� 7! jft;s.�/j2 C jgt;s.�/j2 are uniformly bounded away from 0.

Proof. In the statement, J is merely used as a symbol to join the two functions fs;t
and gs;t . One expands

jfs;t .�/j
2
C jgs;t .�/j

2
D
�
.1 � s/�

�2
C
�
.1 � 2t/

�
m.1 � s/C s cos

�
�
2
G.�/

���2
C
�
s sin

�
�
2
G.�/

��2
;

which upon substituting the value of G for j�j � 1 reduces to

min
j�j�1

�
jfs;t .�/j

2
C jgs;t .�/j

2
�
D min
j�j�1

�
..1 � s/�/2 C ..1 � 2t/m.1 � s//2 C s2

�
�
1

2
:

The constant zC3 is obviously bounded by compactness. It remains to show that the term
jfs;t .�/j

2 C jgs;t .�/j
2 is invertible for t 2 ¹0; 1º and all �. Invertibility can only fail at

� D 0 since that is the only point where the first and third summand of jfs;t .�/j2 C
jgs;t .�/j

2 have a common zero. But then

jfs;t .0/j
2
C jgs;t .0/j

2
D .1 � 2t/2.m.1 � s/C s/2 D .m.1 � s/C s/2 � min¹m2; 1º;

which by continuity shows the last claim. Let us stress that it is the required invertibility
that effectively fixes the signs of the coefficients of gt;1.

Corollary 21. Set W˙ D e{
�
2G.H˙/. Then, for � small enough,

T -Ind.De
�;H / D Sf

��
�JCW

�
C �D�0 ˝ 12

�D0 ˝ 12 J�W
�
�

�
;

�
JCWC �D�0 ˝ 12
�D0 ˝ 12 �J�W�

��
:
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Proof. Start out with (16), which, with the notations of Lemma 20, can be written out
with diagonal entries f0;0.H˙/C J˙g0;0.H˙/ and f1;0.H˙/C J˙g1;0.H˙/. Now, the
straight line path can be deformed due to Lemmata 19 and 20 combined with the homotopy
invariance of the spectral flow under homotopies with invertible end points. Therefore,
T -Ind.De

�;H / is equal to

Sf

 �
f0;s.HC/C JCg0;s.HC/ �D�0 ˝ 12

�D0 ˝ 12 �f0;s.H�/ � J�g0;s.H�/

�
;�

f1;s.HC/C JCg1;s.HC/ �D�0 ˝ 12
�D0 ˝ 12 �f1;s.H�/ � J�g1;s.H�/

�!
for all s 2 Œ0; 1�. Use this for s D 1. As ft;1.�/ D 0 and gt;1.�/ D �.1 � t /e�{

�
2G.�/ C

te{
�
2G.�/, replacing the definition of W˙, shows the claim.

Lemma 22. For � small enough,

T -Ind.De
�;H / D Sf

��
0 �D�0 ˝ 12

�D0 ˝ 12 0

�
;

�
JCW

2
C �D�0 ˝ 12

�D0 ˝ 12 �J�W
2
�

��
:

Proof. Let us introduce the unitary

U D e{
�
4G.H/ D

�
UC 0

0 U�

�
; U˙ D e

{ �4G.H˙/:

Then U �
˙
J˙ D J˙U˙ again due to J˙H˙J˙ D �H˙, and U 2

˙
D W˙. Applying the

adjoint action of U to the formula in Corollary 21 leads to

T -Ind.De
�;H /

D Sf
��

�JC �D�0 ˝ 12
�D0 ˝ 12 J�

�
;

�
JCW

2
C �U �C.D

�
0 ˝ 12/U�

�U ��.D0 ˝ 12/UC �J�W
2
�

��
:

Now,�
0 U �C.D

�
0 ˝ 12/U�

U ��.D0 ˝ 12/UC 0

�
DU �.D˝ 12/U DD˝ 12CU �ŒD˝ 12;U �:

As ŒD ˝ 12; U � is bounded and then multiplied by �, a homotopy as in the proof of
Theorem 8 allows to remove the commutator so that

T -Ind.De
�;H / D Sf

��
�JC �D�0 ˝ 12

�D0 ˝ 12 J�

�
;

�
JCW

2
C �D�0 ˝ 12

�D0 ˝ 12 �J�W
2
�

��
:

Finally, one can also homotopically remove the diagonal entries �J˙ of the left entry
since these entries are required for neither the invertibility nor the Fredholm property. In
fact, as J.�1C e{�G.H// 2M2.A/ is relatively compact to D, the Fredholm property of
all involved operators can readily be checked.
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Let us now complete the proof under the additional assumption that the spectral triple
.N ;D;A/ is Lipschitz regular, which by definition means that .N ; jDj;A/ is also a spec-
tral triple. Likewise, a self-adjoint A-multiplier is said to be Lipschitz-differentiable if it
is differentiable with respect to both D and jDj. Once the proof is achieved for Lipschitz
regular spectral triples, it will be shown in Lemma 25 below that any spectral triple can be
deformed into a Lipschitz regular one.

For an even spectral triple with grading  consider �˙ D 1
2
. ˙ 1/ and † D sgn.D/.

If the triple is Lipschitz regular, then one can consider the representation � W A ! N

given by �.a/ D �Ca�C C ��†a†��. Then .N ; D; �.A// is again an even spectral
triple because

ŒD; �.A/� D �C†ŒjDj; A��C C ��ŒjDj; A�†��

is bounded if ŒjDj;A� is bounded. The following lemma repackages a similar spectral flow
argument from Section 6 of [43] that eventually connects to the index pairing:

Lemma 23. Let .N ; D;A/ be a Lipschitz regular even spectral triple with invertible
Dirac operator. Assume that S D 1� 2P 2N for a projection P D P0CA where A 2A

with ŒD;A� and ŒjDj;A� bounded and P0 a projection with ŒD;P0�D 0D Œ;P0�, i.e., P0
is the scalar part of P . Setting �.S/ D 1 � 2.P0 C �.A//, one then has

Sf.S; �.S// D Sf.�D C S; �D/

for � small enough.

Proof. We use the family of approximate Dirac-operators .DR/R>0 of Lemma 48. For
arbitrary R > 0 we consider the norm-continuous two-parameter family

.s; t/ 2 Œ0; 1� � Œ0; 1� 7! Ts;t D s�DR C
�
.1 � t /S C t�.S/

�
:

Since .S/2 D 1 D .�.S//2 and DR also anti-commutes with  , one can write

T 2s;t D �
2
jDRj

2
C .1 � t /�ŒDR; S� C t�ŒDR; �.S/�C 1C 2t.1 � t /¹S; �.S/ � Sº:

With the constant c from Lemma 48 a sufficient condition for the invertibility of the end-
points of the homotopy at t 2 ¹0; 1º is therefore

1 � �c.kŒD; S�k C kŒD; �.S/�k/ > 0

and that is clearly the case for small enough �. The differentiability of S implies Œ†; S� 2
KT and thus S � �.S/ D ��†Œ†; S��� is also a T -compact, such that then Ts;t D
Ts;0 mod KT is also Fredholm for all s; t 2 Œ0; 1�.

In conclusion, we have shown

Sf.S; �.S// D Sf.�DR C S; �DR C �.S//;

for arbitrary R > 0 and then, by concatenation,

Sf.�DR C S; �DR C �.S// D Sf.�DR C S; �DR/C Sf.�DR; �DR C �.S//:
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Finally, define the unitaryU D���†�CC�C†�� for which one checks thatUDRU �D
�DR and U�.S/U � D ��.S/ and hence using invariance under unitary conjugation,

Sf.�DR; �DR C �.S// D Sf.��DR;�.�DR C �.S///

D �Sf.�DR; �DR C �.S// D 0:

Lemma 49 concludes the proof since DR converges to D in the gap metric.
Let us also note that formally the argument still makes sense if one directly substitutes

D for DR, except that the homotopy above could then not be Riesz- or gap-continuous
in general, as that would imply that the family at s D 0 also has compact resolvents if D
has a compact resolvent (hence the approximation argument fixes a technical error in the
proof of [43, Lemma 16] where it was tacitly assumed that Riesz-continuity holds).

Proof of Theorem 17. Due to Lemma 25 below, one may assume without loss of general-
ity that T is a Lipschitz differentiable A-multiplier and the Dirac operator D is Lipschitz
regular. Then Lemma 23 can be applied to the expression in Lemma 22, by choosing
S D Je{�G.H/ D diag.JCW 2

C; J�W
2
� / and P0 D

�
1 0
0 0

�
. Thus,

T -Ind.De
�;T / D Sf

��
0 �D�0 ˝ 12

�D0 ˝ 12 0

�
;

�
SC �D�0 ˝ 12

�D0 ˝ 12 �S�

��
D �Sf

��
SC 0

0 �S�

�
;

�
SC 0

0 �FSCF
�

��
D Sf.S�; FSCF �/

where F is the phase of D0. Recalling Proposition 15, Lemma 24 below now implies

T -Ind.De
�;T / D T -IndPC�P�.PCF

�P�/;

which according to (13) and Definition 16 concludes the proof.

Lemma 24. The skew-corner index can also be computed as a spectral flow via

T -IndPC�P�.PCF
�P�/ D Sf.1 � 2P�; F .1 � 2PC/F �/:

Proof. By definition (22) of the skew-corner index,

T -IndPC�P�.PCF
�P�/ D T .Ker.PCF �P�/ \ P�/ � T .Ker.P�FPC/ \ PC/;

while the spectral flow on the right-hand side can be computed from Definition 42 using
only the endpoints

Sf.1 � 2P�; F .1 � 2PC/F �/
D T

�
P� \ .F.1 � PC/F �/

�
� T

�
.1 � P�/ \ .FPCF �/

�
;
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because P� � FPCF � 2 KT follows from ŒP; †� 2 KT which holds in any spectral
triple. Since F is unitary here, one can check that

Ker.PCF �P�/ \ P� D .F.1 � PC/F �/ \ P�

and

Ker.P�FPC/ \ PC D .F �.1 � P�/F / \ PC D F �
�
.1 � P�/ \ .FPCF �/

�
F;

such that taking traces gives the desired equality.

To complete the proof of Theorem 17, it remains to show that the Lipschitz regu-
larity can be assumed without loss of generality. The gist of the argument, going back
to a trick by Kaad [26, Proposition 5.1], is that by replacing the Dirac operator D with
D.1CD2/�

r
2 for some 0 < r < 1, one obtains an equivalent spectral triple which is

Lipschitz regular. It needs to be verified that this construction is compatible with differen-
tiability to ensure that the Callias-type operators stay Fredholm even for the regularized
triple:

Lemma 25. If H is a bounded self-adjoint differentiable multiplier and f 2 ��.R/ for
� < 1, thenH is differentiable with respect to f .D/. Assuming also .1C f 2/�

1
2 2 �ˇ .R/

for some ˇ < 0, one has .f .D/C {/�1A 2KT for each A 2 A and so .f .D/;N ;A/ is
again a spectral triple.

Proof. For the differentiability of H it is enough to verify that there is a core E �

Dom.f .D// for which HE � Dom.f .D// and that Œf .D/; H� extends from E to a
bounded operator. One can use E D Dom.D/ � Dom.f .D// which is preserved by H
by assumption.

Next, let us choose a smooth switch function � equal to 1 on Œ�1; 1� and vanishing
outside .�2; 2/ and regularize fR.�/ D f .�/�.�R�1/. There is for any k 2 N a constant
ck such that j@k�.�/j � ck.1C �2/�

k
2 and then by scaling,

j@kfRj �

kX
mD0

Cm.1C x
2/

��k
2

1

Rk�m
ck�m � yCk.1C x

2/
��k
2

with constants uniformly inR � 1. With an almost analytic continuation QfR;N and  2 E ,
one can then write

ŒfR.D/;H� D

Z
G

.@xz QfR;N .z//Œ.D � z/
�1;H � dz ^ dxz

D �

Z
G

.@xz QfR;N .z//.D � z/
�1ŒD;H�.D � z/�1 dz ^ dxz

and since fR.D/ andH are bounded, the latter expression also holds for all  2H . Since

k.@xz QfR;N .z//.D � z/
�1ŒD;H�.D � z/�1k

� cN zCR;NC1.1C x
2/

��1�N
2 j=m.z/j�2CN kŒD;H�k
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with zCR;NC1 bounded uniformly in R, the integral is also bounded uniformly in R when
substitutingN � 2 and hence supR�1kŒfR.D/;H�k<1. For 2E one also hasH 2E

and the spectral representation shows

Hf.D/ D H lim
R!1

fR.D/ D lim
R!1

HfR.D/ 

and
f .D/H D lim

R!1
fR.D/H :

Hence Œf .D/;H� D limR!1ŒfR.D/;H� for all  2 E which implies that the com-
mutator extends to a bounded operator. Finally, .f .D/C {/�1A 2 KT for H 2 A again
follows from the functional calculus since .f .D/ C {/�1 can be expressed as a norm-
convergent integral of terms .D C z/�1A 2KT .

Assuming that the Dirac operatorD is invertible and let 0 < � < 1, this lemma implies
that for D.�/ D D.1CD2/�

�
2 one has spectral triples .N ; D.�/;A/ and .N ; jD.�/j;A/

(for the latter, note that � 7! j�j.1 C �2/�
�
2 may be replaced by a smooth function as

0 … �.D/). Moreover, any boundedD-differentiable multiplier isD.�/- and jD.�/j-differ-
entiable. Hence, one can replace the spectral triple with a Lipschitz regular one for which
H is Lipschitz differentiable.

Lemma 26. If T is a bounded Callias potential and .D.�//e�;T the even Callias-type oper-
ator obtained from pairing with the Dirac operatorD.�/, then T -Ind..D.�//e�;T / does not
depend on � 2 Œ1

2
; 1� for small enough �.

Proof. Due to the inequality kŒD.�/; T �k � kD��kkŒD; T �k one can choose � so small
that .D.�//e�;T is T -Fredholm for all � 2 Œ1

2
; 1� and then the result follows from homotopy

invariance since the path r 2 Œ1
2
; 1� 7! D.r/ is gap-continuous and T a bounded perturba-

tion.

6. Callias-type operators with unbounded potentials

This section introduces a class of unbounded Callias potentials for which it is possible to
reduce the computation of the index to the bounded case. This then allows to state and
prove unbounded versions of Theorems 8 and 17.

Definition 27. An unbounded A-multiplier T is a closed operator affiliated to N in such
a way that the bounded transform

F.T / D T .1C T �T /�
1
2

is a multiplier in M.A;N / and .1C T �T /�
1
2A is a dense subset of A.

If A and N act non-degenerately on H , thenM.A;N / is the usual multiplier algebra
and T is affiliated to A in the C �-algebraic sense of Woronowicz [49], however, we do
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not ask for that since one may want to pass to proper non-dense subalgebras of A later.
Left multiplication by an unbounded multiplier A 7! TA gives a closed operator from a
dense subset of A to A. Since functional calculus factors through the bounded transform
each C0-function of a self-adjoint multiplier lies in M.A;N /.

Definition 28. A self-adjoint operator H affiliated to N is said to be D-differentiable
(with respect to the self-adjoint operator D) if there is a core E for D such that the fol-
lowing holds for each � 2 R n ¹0º:

(i) .H � {�/�1E � Dom.D/ \ Dom.H/ and D.H � {�/�1E � Dom.H/.

(ii) The operator ŒD;H�.H � {�/�1 extends from E to a bounded operator in N .

If the two conditions hold for some core E , then they also hold for E D Dom.D/ [27,
Proposition 7.3]. The dense subspace DH D .H C {/

�1Dom.D/ is dense in Dom.D/ \
Dom.H/ with respect to the graph norm k kD;H D k k C kD k C kH k. In partic-
ular, the commutator ŒD;H� is also densely defined and symmetric on DH . A bounded
operator H is differentiable if and only if it preserves Dom.D/ and ŒD;H� extends to a
bounded operator.

The above notion of differentiability is chosen precisely such that the self-adjointness
criteria from [27] imply well-definedness of the following:

Proposition 29. For a differentiable A-multiplierH introduce the Callias-type operators

D�;H D �D C {H; D��;H D �D � {H;

on the domain Dom.D/ \ Dom.H/ as well as

L�;H D

 
0 D��;H

D�;H 0

!
;

on the domain .Dom.D/ \ Dom.H//�2. Then L�;H is self-adjoint and therefore D�;H
and D��;H are adjoints to each other.

Since D and H are affiliated to N one can check from the domains that the Callias-
type operators and L�;H are affiliated to N and M2.N / respectively (again, a closed
operator T is affiliated if it commutes with each unitary U 2 N 0).

Definition 30. An unbounded self-adjoint A-multiplier H is asymptotically invertible if
there is a positive self-adjoint element V 2 A such that H 2 C V has a bounded inverse
(which then lies in M.A;N /). A self-adjoint D-differentiable A-multiplier H that is
asymptotically invertible will be called an (unbounded) Callias potential.

The main result is that the index theorem as stated in Theorem 8 extends to unboun-
ded Callias potentials. For the formulation, let us note that Proposition 6 remains valid if
Œ�.H CA< 0/�0 2K0.M.A;N /=A/ is replaced by Œ�.F.H/CA< 0/�0. In particular,
the index pairing hŒe{�.G.H/C1/�1; ŒD�i 2 R is well defined.
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Theorem 31. Let H be a (possibly unbounded) Callias potential for the semifinite spec-
tral triple .N ;D;A/. Then there is a �0 > 0 such that for all � 2 .0; �0�,

T -Ind.D�;H / D hŒe{�.G.H/C1/�1; ŒD�i

and G any switch function chosen as in Proposition 6. More precisely, if there exists some
g > 0 and positive self-adjoint V 2 A such that H 2 C V > g21, one can choose

�0 D kŒD;H�.H C {/
�1
k
�1 g2p

1C g2
:

Such a V exists for all g > 0 if and only if the resolvent of H is A-compact, i.e.,
.H C �{/�1 2 A, in which case all � 2 .0;1/ are allowed and the resolvent of L� is
T -compact.

Let us briefly discuss the last mentioned situation for the classical case of a Riemann-
ian manifold X . Then AD C0.X;K.H // andH is given by an operator-valued bounded
function x 2X 7!Hx 2B.H /. If now x 7!Hx grows at infinity, one can indeed choose g
arbitrarily large and still find V such thatH 2 C V > g21. This is the situation considered
in the work of Robbin and Salamon [42].

Checking the Fredholm property is more difficult in the unbounded case, since there
are domain issues and also the commutator ŒD; H� is not bounded, but only relatively
H -bounded:

Proposition 32. For a Callias potential H there exists some �0 > 0 such that D�;H is
T -Fredholm for all 0 < � � �0. In particular, �0 can be chosen as in Theorem 31.

Proof. As recalled above, DH D .H C {/
�1Dom.D/ is a core for both D�;H and D��;H

and contained in the domain of ŒD;H�. For  2 DH let us consider the quadratic form

h.�D C {H/ ; .�D C {H/ i � hH ;H i C �h ; {ŒH;D� i;

which is estimated as in the proof of [27, Lemma 7.5]

˙h ; {�ŒH;D� i �
�
s C

�2b2

4s

�
h ; i C shH ;H i

for any 0 < s < 1. Assume now thatH 2 C V > g21 for some positive self-adjoint V 2A.
Fixing s D g2

2.1Cg2/
and setting b D kŒD;H�.H C {/�1k one checks that

H 2
C V > g21 �

� s

1 � s
C

�2

4s.1 � s/
b2
�

1

for all 0 � � � �0 D g2

b
p
1Cg2

(which was obtained by maximizing the right-hand side
over all 0 < s < 1).

Substituting that particular choice of s, one has

hD�;H ;D�;H i C .1� s/h ;V i � .1� s/.hH ;H i C h ;V i � g
2
h ; i/ > 0;
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and hence the strict positivity of H 2 C V � g1 implies that D��;HD�;H C .1� s/V ˝ 12
is invertible. A similar argument also yields D�;HD��;H C .1 � s/V > 0.

Also V is T -compact relative to L�;H and thus L2�;H , since

zV .L�;H C {/
�1
D zV .D ˝ �1 C {/

�1
C zV .D ˝ �1 C {/

�1.H ˝ �1/.L�;H C {/
�1;

where zV .D ˝ �1 C {/�1 2M2.KT / and .H ˝ �1/.L�;H C {/�1 since .L�;H C {/�1 is
bounded as an operator from H to Dom.H/. Since KT is an ideal, this completes the
proof.

The last statement in Theorem 31 follows immediately from the above, since one can
take for V a spectral function ofH 2 as in Proposition 5, respectively for each function f 2
Cc.R/ one can find g so large that the proof implies f .H/ 2 A and f .L�/ 2 M2.KT /.
Hence the same holds for all C0-functions.

The dependence of D�;H on � is still gap-continuous and so the index again does
not depend on � as long as it is small enough. Let us now proceed to prove that the
bounded transform maps unbounded Callias potentials to bounded ones with the same
index. This fact immediately concludes the proof of Theorem 31 since one can obviously
write Œe{�.G.H/C1/�1 D Œe

{�.. zGıF /.H/C1/�1 for another switch function zG and then apply
Theorem 8. The technically most difficult part of the proof is to verify the differentiability
of F.H/. For decaying functions the differentiability of spectral functions of H again
follows from the Helffer–Sjöstrand calculus:

Lemma 33. IfH is a self-adjoint differentiable multiplier and f 2 ��.R/ for some � < 0,
then f .H/ preserves the domain ofD and ŒD;f .H/� extends from Dom.D/ to a bounded
operator.

Proof. Since H is D-differentiable one has .H � z/�1 2 Dom.D/ for any  2 E . Let
us estimate

kD.H � z/�1 k � k.H � z/�1D k C k.H � z/�1ŒH;D�.H � z/�1 k

� j=mzj�1kD k C j=m.z/j�1.1C j{ C zjj=m.z/j�1/

� kŒH;D�.H � {/�1kk k;

due to

ŒH;D�.H � z/�1 D ŒH;D�.H C {/�1 C ŒH;D�.H C {/�1.{ C z/.H � z/�1:

Using an extension Qf of f satisfying (2) with N � 2 and � < 0, the integral representa-
tion (3) therefore also converges in the graph norm of D and defines a bounded operator
f .H/ W Dom.D/! Dom.D/. Using

ŒD; f .H/� D �

Z
G

.@xz Qf .z//.H � z/
�1ŒD;H�.H � z/�1 dz ^ dxz;

the boundedness of the commutator follows similarly.
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The following result is morally similar to bounds obtained in [13], but the proof
presented here avoids the use of double operator integrals.

Lemma 34. If H is an unbounded D-differentiable A-multiplier, the bounded transform
F.H/ is also D-differentiable with kŒD; F.H/�k � kŒD;H�.H C {/�1k.

Proof. One needs to check that F.H/ maps a core of D into Dom.D/ and extends from
there to a bounded operator. As recalled below Definition 28,H is also differentiable with
the core E D Dom.D/ and DH D .H C {/

�1Dom.D/ is a core of D.
Applying Lemma 33 (with � D �1) to the smooth function F.H/.H C {/�1, implies

F.H/DH � Dom.D/. It remains to show that the commutator ŒD; F.H/� extends from
DH to a bounded operator. For the commutator one has from the integral representation
of fractional powers (compare [12, Proposition 2.10]) an integral formula

ŒD; F.H/� D
1

�

Z 1
0

1
p
�

�
.1CH 2

C �/�1.1C �/ŒD;H�.1CH 2
C �/�1

�H.1CH 2
C �/�1ŒD;H�H.1CH 2

C �/�1
�
 d�:

It converges absolutely in the norm of H for each  2 Dom.D/. For the bounded self-
adjoint operator T D {.H � {/�1ŒD;H�.H C {/�1, one has

T 2 � kŒD;H�.H C {/�1k2.1CH 2/�1;

and hence
T � jT j � kŒD;H�.H C {/�1k.1CH 2/�

1
2

by operator monotonicity of the square root. Therefore

h ; {ŒD;H� i D h.H C {/ ; T .H C {/ i � kŒD;H�.H C {/�1kh ; .1CH 2/
1
2 i

holds for all  2 DH . On the same domain, one then has

h ; {ŒD; F.H/� i �
kŒD;H�.H C {/�1k

�

Z 1
0

h ; f�.H/ i d�

with the positive continuous function

f�.H/ D
1
p
�

�
.1CH 2

C �/�1.1C �/.1CH 2/
1
2 .1CH 2

C �/�1

CH.1CH 2
C �/�1.1CH 2/

1
2H.1CH 2

C �/�1
�

D

p
1CH 2

p
�.1CH 2 C �/

:

Using the spectral measure � with respect to H , the integral becomesZ 1
0

h ; f�.H/ i d� D
Z

R

Z 1
0

p
1C x2

p
�.1C x2 C �/

d� d� .x/ D �
Z

R
d� .x/ D �;

which shows that the commutator defines a bounded quadratic form and hence has a
bounded extension with kŒD; F.H/�k � kŒD;H�.H C {/�1k.
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Proposition 35. If H is an unbounded Callias potential, then the bounded transform
F.H/ is also a Callias potential. Furthermore, there exists a constant �0 > 0 such that
for all 0 < � � �0

T -Ind.D�;F .H// D T -Ind.D�;H /:

Proof. By assumption there is some self-adjoint V 2 A and g > 0 such that one has that
H 2 C V > g21 > 0 holds. Let � be a smooth non-increasing function which is equal
to 1 on Œ0; g

2

4
/ and vanishes outside Œ0; g2/. We note that the proof of Proposition 5

can be adapted for unbounded A-multipliers since the resolvents .H 2 C V � z/�1 and
.H 2 � z/�1 are readily checked to lie in the norm-closed algebra M.A;N /. Hence one
concludes zV D �.H 2/ lies in A.

The spectral mapping property implies F.H/2 C zV > Qg2 for some positive constant
Qg > 0 and therefore F.H/ is asymptotically invertible. Lemma 34 also shows that F.H/
is differentiable.

To show the equality of indices it is enough to prove that the joint potential given
by H ˚ .�F.H// has index 0, due to the additivity of the index. Consider the modified
potential

yHm D

 
H m zV

m zV �F.H/

!
;

which we check to be a differentiable self-adjoint multiplier with respect to D ˝ 12.
That statement is clear for m D 0 and that yHm is again a multiplier follows easily from
perturbation formulas for the bounded transform (such as [12, Lemma 2.7]). Let E D

Dom.D ˝ 12/, then due to the domain of self-adjointness one has

. yHm � {/
�1E � .Dom.D/ \ Dom.H//˚ Dom.D/ D Dom.D ˝ 12/ \ Dom. yHm/;

and using the resolvent identity to compare with yH0, one also has

D. yHm � {�/
�1E

� D. yH0 � {�/
�1E CD. yH0 � {�/

�1

 
0 m zV

m zV 0

!
. yHm � {�/

�1E � E

since zV preserves Dom.D/ and . yHm � {�/�1 preserves E . Finally, since ŒD; zV � and
ŒD ˝ 12; yH0�. yH0 � {�/�1 extend to bounded operators, another application of the resol-
vent identity implies that ŒD ˝ 12; yHm�. yHm � {�/�1 extends to a bounded operator as
well.

Since yH0 is asymptotically invertible and yHm � yH0 2M2.A/, we have shown that
yHm is a Callias potential for any m � 0. From the above one also sees

max
m2Œ0;1�

kŒD; yHm�. yHm C {/
�1
k <1

such that the proof of Proposition 32 implies that there is some �0 such that D
�; yHm

is
T -Fredholm for all 0 < � � �0 and all 0 � m � 1.
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For any m � 0 one can check that yHm is invertible from the square

. yHm/
2
D

 
H 2 Cm2 zV 2 m.H � F.H// zV

m.H � F.H// zV F.H/2 Cm2 zV 2

!
;

which can be diagonalized in the spectral representation. The off-diagonal part m zV does
not affect the index since it is relatively T -compact with respect to D. Fixing any m > 0,
one has T -Ind.D

�; yHm
/ D 0 for small enough � since D�

�; yHm
D
�; yHm

and similarly
D
�; yHm

D�
�; yHm

become invertible. More precisely, this follows from the proof of Propo-
sition 32, since yH 2

m > c
2
m1 allows one to choose V D 0 there. Since the index does not

depend on m and �,

0 D T -Ind.D
�; yHm

/ D T -Ind.D�;H˚.�F.H// D T -Ind.D�;H / � T -Ind.D�;F .H//;

concluding the proof.

Finally, let us turn to the even unbounded case.

Definition 36. An unbounded A-multiplier T is an even Callias potential ifH D
�
0 T �

T 0

�
is an unbounded Callias potential for the spectral triple .M2.N /; D ˝ 12;A˝ 12/. The
associated even Callias-type operator is defined as

De
�;T D

�
TC �D�0
�D0 �T ��

�
on the domain .Dom.D0/ \ Dom.TC//˚ .Dom.D�0 / \ Dom.T �� //.

The unitary equivalence (14) and the self-adjointness of L�;H again implies thatDe
�;T

is a closed affiliated operator on the stated domain and .De
�;T /

� D De
�;T � . Now, the gen-

eralization of Theorem 17 to unbounded potentials reads as follows:

Theorem 37. Let T be an even Callias potential with H D
�
0 T �

T 0

�
. Then

T -Ind.De
�;T / D

˝
Œ1
2
.1 � Je{�G.H//; ŒD0��0

˛
for each � and G as in Theorem 31.

The proof is immediate from the bounded version and the next result.

Proposition 38. If T is an unbounded even Callias potential, there exists �0 such that
De
�;T is T -Fredholm for all 0 < � � �0 and T -Ind.De

�;T / does not depend on 0 < � � �0.

Also, the bounded transform F.T / D T .1C T �T /�
1
2 is a Callias-admissible potential

with the same index
T -Ind.De

�;T / D T -Ind.De
�;F .T //;

for small enough �.
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Proof. Due to the block decomposition (14),De
�;T is T -Fredholm ifL�;H is T -Fredholm.

Hence the existence of �0 follows from the odd case (Proposition 32).
That F.T / is again a Callias potential is also clear from considerations of the odd case

and the fact that we defined differentiability using a doubling construction. The doubled
Hamiltonian yHm from the proof of Proposition 35 is unitarily equivalent to an off-diagonal
matrix

yHm �

 
0 yT �m
yTm 0

!
;

with the operator

yTm D

�
T �m�.T �T /

m�.T T �/ F.T �/

�
;

which is therefore an even Callias potential and invertible for any m > 0. One argues as
in the odd case that

0 D T -Ind.De

�; yTm
/ D T -Ind.De

�;T˚.�F.T �/// D T -Ind.De
�;T /C T -Ind.De

�;�F.T �//

for small enough �.
Replacing a Callias potential T by �T with j�j D 1, again gives a Callias potential

and since S1 is connected, T -Ind.D�;T / D T -Ind.D�;�T / by homotopy. Conjugating the
potential gives a factor of �1 and thus

T -Ind.De
�;T / D .�1/T -Ind.De

�;�T �/ D T -Ind.De
�;F .T //;

concluding the proof.

7. Comparison with the unbounded Kasparov product

This section outlines how the Callias index arises as an unbounded representative of a
KK-group. For simplicity, it will be assumed that the Dirac operator of the semifinite
spectral triple .A;N ;D/ is invertible (see Section 4 on how to achieve this).

Definition 39. Let A and B be separable C �-algebras. An unbounded Kasparov cycle
.A; E; D/ is a tuple consisting of a countably generated A-B-Hilbert-C �-module E
together with an odd regular self-adjoint unbounded operator D W Dom.D/ � E ! E

such that

(i) A � A is a dense �-subalgebra such that each a 2 A preserves Dom.D/ and the
graded commutator ŒD; a� extends to a bounded operator on E.

(ii) The products a.D � {/�1 are B-compact for all a 2 A.

The remainder of the section considers a semifinite spectral triple .A;N ; D/ with
separable C �-algebra A D A. Such a spectral triple naturally defines an unbounded or
bounded Kasparov cycle if and only if KT is � -unital. Since that condition does not
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generally hold in the semifinite setting one passes [15, 29] to the norm-closed subalgebra
C �KT generated by all �-algebraic combinations of elements

AŒF.D/; B�; ŒF .D/; B�; F.D/AŒF.D/;B�; '.D/A (18)

withA;B 2A, F.D/DD.1CD2/�
1
2 and ' 2 C0.R/. Then .A;C ;F .D// 2KK.A;C/

defines a bounded ungraded Kasparov cycle and C is the smallest C �-algebra for which
this is the case. An important technical point is that the unbounded Kasparov cycle is con-
structed precisely from D and A since only then the Callias operators can be interpreted
as unbounded Kasparov products. In most cases, .A; C ; F .D// is already the bounded
transform of a well-defined Kasparov cycle:

Proposition 40. Set ˛t .A/D e{DtAe�{Dt and let A˛�N be the smallest ˛-invariantC �-
algebra containing A. If A˛ acts non-degenerately on H , then .A˝ C1;C ˝ C2; D�2/
is an unbounded Kasparov cycle.

Proof. The only non-trivial point in Definition 39 is the regular self-adjointness of D
on C or, equivalently, that D is affiliated to C . To prove the latter we derive a better
characterization of the algebra C .

The affiliation of D to N implies that ˛ defines a weak-�-continuous action on N .
Since any A 2 A is differentiable, the identity ˛t .A/ � A D

R t
0
{˛s.ŒD;A�/ ds (with con-

vergence in the weak-�-topology) implies that the orbit under ˛ is norm-continuous, hence
A˛ is still separable and ˛ extends to a strongly continuous R-action on A˛ . Now define
C˛ to be the separable C �-subalgebra of KT spanned by the elements (18), but with A

replaced by A˛ .
One can next form the crossed product algebra A˛ Ì˛ R for which we now recall

some universal properties [41]: There are embeddings {A˛
W A˛ !M.A˛ Ì˛ R/ and

{R W Cc.R/!M.A˛ Ì˛ R/ such that A˛ Ì˛ R is generated by the linear span of
{A˛

.A˛/{R.C0.R//. Furthermore, given a non-degenerate covariant representation .�;U /
on a Hilbert space H , there is a non-degenerate representation .� � U/ W A˛ Ì˛ R!
B.H / for which .� � U/ ı {A˛

D � and ..� � U/ ı {R/.'/ D '.D/ for D the self-
adjoint generator of U . Also {R extends uniquely to Cb.R/ with the same property.

The identical map � W A˛ ! B.H / and U W R! exp.{D�/ trivially form a covari-
ant representation .�;U /. By definition one has .� � U/.A˛ Ì˛ R/ � C˛ since the latter
contains the generators �.a/'.D/. Moreover, one has equality .� � U/.A˛ Ì˛ R/ D C˛ ,
since Œ{R.F /; {A˛

.a/� 2 A˛ Ì˛ R holds for any smooth switch function like F (see,
e.g., [33]).

From the above one concludes that a dense subset of C˛ is given by all elements of the
form

NX
kD1

'k.D/˛tk .Ak/ D

NX
kD1

'k.D/e
{DtkAke

�{Dtk

with '1; : : : ; 'N 2 Cc.R/ and A1; : : : ; AN 2 A. Therefore D is densely defined on C˛
and clearly .D C {/�1C˛ � C˛ is also a norm-dense subset. Hence, D is affiliated to C˛
and regular self-adjoint in the Hilbert-module sense.
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To complete the proof let us show that C˛ D C , for which it is only necessary to verify
'.D/Ae�{Dt 2 C for all ' 2 Cc.R/, t 2 R, A 2 A. Choose approximate units .Bn/n2N

for A and .‰m/m2N for C0.R/. Then

'.D/Ae�{Dt D lim
n!1

'.D/ABne
�{Dt

D lim
n!1

lim
m!1

'.D/ABne
�{Dt‰m.D/;

converges in norm, since theBn and‰m.D/ are approximate units for .� �U/.A˛ Ì˛ R/
as well. That shows that C is norm-dense in C˛ .

Let us now compare our main result for unbounded Callias operators to approaches
using the unbounded Kasparov product (specifically [28, 46] which treat the classical
case). Semifinite spectral triples often arise in non-commutative geometry from an un-
bounded Kasparov cycle .A˝ C1; EB ˝ C2; D�2/ 2 KK�1.A;B/ where B is a sep-
arable C �-algebra that carries a densely defined faithful lower semicontinuous trace T ,
EB a countably generated right B-module and D a regular self-adjoint unbounded oper-
ator on EB . Both A and B act naturally on the Hilbert space H obtained by completing
the submodule of EB for which TB.he; eiEB

/ <1 in the obvious norm. In that situation,
one obtains a semifinite spectral triple .N ; D;A/ with N D B 00 to which TB extends
as a normal semifinite faithful trace T . All examples described in Section 8 below can
be written in that form for some natural algebra B. If A acts non-degenerately, it is com-
pletely general since, as shown above, for any semifinite spectral triple the minimal choice
B D C D EB is available.

If the potentialH is a self-adjoint unbounded A-multiplier with resolvent in A, then it
defines an odd unbounded Kasparov cycle .C;A˝C1;H�2/ 2KK1.C;A/. The Callias
operator H�1 CD�2 on EB should then represent the product class

ŒH�2�˝A˝C1 ŒD�1� 2 KK.C;B/ ' K0.B/;

given some compatibility conditions between H and D which are similar to the differ-
entiability that we impose here (a possible set of conditions may be derived from, e.g.,
[35, Theorem 7.4]). Composing the product class with the homomorphism T� WK0.B/!

C computes the T -index, while applying T� to the product of the bounded transforms
ŒF .H�1/�˝A˝C1 ŒF .D�2/� recovers the index pairing hŒe{�F .H/�1; ŒD�i (see [15]). Since
the bounded and unbounded picture ofKK-theory are isomorphic [26,47], one concludes
that Theorem 31 holds in that special case. For the case of a spectral triple over B.H /, a
more detailed proof can also be found in [7], though compared to our notations the regu-
larity assumptions are formulated in terms of the Cayley transform ofH , which is another
unitary representing the class Œe{�F .H/�1. The even case can be handled similarly with the
product represented by the self-adjoint operator D C H (see [10]).

The KK-theoretic approach has certain advantages, in particular, the class of the
Callias operator may carry finer topological invariants besides the numerical index and
also the associativity of the Kasparov product can then be further applied to prove more
specialized formulas for the index. A severe limitation is that apparently the potential H
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must always be unbounded with A-compact resolvent, i.e., .H C {/�1 2 A which is a
stronger condition than our asymptotic invertibility. That is necessary for the obvious
cycle to define a classKK1.C;A/ in unboundedKK-theory, though there might be more
complicated constructions to handle a bounded potential that is invertible up to A. In the
classical commutative case of potentials on a manifold, one can already treat the larger
class of asymptotically invertible potentials with pointwise compact resolvents by ampli-
fying them with a growing function on the underlying manifold (as it is done in [28, 46]).

8. Examples

8.1. The classical Callias index theorem

The first example, which was already discussed briefly above is the classical geometric
situation with Callias-type operators on a Riemannian manifold X . We will consider a
possibly infinite-dimensional vector bundle E over X with typical fiber isomorphic to
a Hilbert space H0. For D a weakly elliptic first-order differential operator we have a
spectral triple .B.L2.X;H0//;D;C

1
c .X/˝K.H0//. If H D .Hx/x2X is a self-adjoint

fibered operator that is differentiable (with derivative .rHx/x2X bounded relative to H )
and invertible modulo C0.X/˝ K.H0/, then the technical conditions of our index the-
orem can all be verified and it reproduces the result of Kaad and Lesch [28] which used
the Kasparov product. If H0 is finite-dimensional and H invertible outside a compact
set K, there are other ways to compute the index, for example, the original index the-
orem by Callias [11] on Rn expresses the index as an integral over the boundary of a
large enough sphere and more generally the index theorem by Anghel [2] gives a similar
generalization to manifolds with warped ends. In both of these situations, one only needs
to know the potential H on a lower-dimensional submanifold that envelops all singular
points of the potential. Explicitly, in the case X D Rn, n odd, withD the Euclidean Dirac
operator one has

Ind.�D C {H/ �
Z
@BR.0/

Tr..Q dQ/^.n�1// (19)

for Q D H jH j�1 invertible outside BR.0/. In contrast, our index formula with standard
index computations would give a volume integral

Ind.�D C {H/ �
Z

Rn

Tr..U � dU/^n/; (20)

with U D e{�.G.H/C1/ or some other representative with sufficiently fast decaying deriv-
atives.

There is a simple K-theoretical relation between those formulations. Let us assume
thatH is not only invertible up to AD C0.X/, but already up to A0 D C0.K/ forK � X
a compact set. Since A0 is an ideal in A, one then also has H 2 M.A0;N / and so the
exponential map in K-theory gives an element of K1.C0.K//. One can do even better
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since there is a commutative diagram

0 C0.K/ Cb.X/ Cb.X/=C0.K/ 0

0 C0.K
ı/ C.K/ C.@K/ 0

� �

q

r

q

where r is the restriction and � acts as the identity on C0.K/. Hence the naturality of the
exponential map implies

@0Œ�.H CA < 0/�0 D @0Œ�.r.H/ < 0/�0:

This shows that, as expected, the spectral flow SfD.H/ naturally depends only on the
class that r.H/DH j@K defines inK0.C.@K//. For a more detailed examination of those
K-theoretical aspects of Callias-type operators we refer to the work of Bunke [10]. The
equality between the expressions (20) and (19) can be derived from the boundary maps of
K-homology [3], which are dual to the K-theoretic connecting maps, however, in a more
general setting constructing an explicit representative for the odd K-homology class on
C.@K/ that computes the same pairing as the spectral flow can involve subtle geometric
and analytic issues.

In that sense, our main index theorem on Callias-type operators contains only part
of the information of the original theorem by Callias. It is an interesting problem to find
additional analytic and algebraic data from which one can canonically construct a spectral
triple for the boundary class also in the non-commutative case. Partial solutions may be
provided by the construction of relative spectral triples [21].

Another natural question is whether it is possible to reduce the index computation
to a compact hypersurface also in the case of an infinite-dimensional vector bundle. In
general, the answer is negative, though, since due to Kuipers’ theorem any potential H
that is invertible on @K may be homotopic to another potential zH that has the same index
but is flat in the sense that zH j@K D 1 � 2P0 with P0 2 B.H0/ some fixed projection.
Hence the non-trivial index is invisible on @K. One way to evade such counterexamples
is to consider a more restricted class of Callias-type operators, for example, those of the
form H D H0 C V with H0 a fixed self-adjoint operator with compact resolvent and
V W X ! B.H0/ a norm-continuous family of self-adjoint operators. In that case, again
one can compute the index from aK1-class over C �.H0/CC0.K/˝K obtained through
the exponential map from a K0-class over C �.H0/j@K C C.@K/˝ K. It must therefore
be possible to compute the index using only the potential on the boundary, though we are
not aware of any known formulas.

Finally, let us note an interpretation as spectral flow under the additional assump-
tion Hx is invertible for all but finitely many isolated points x0; : : : ; xN 2 X . In that
case, (19) decomposes into a sum of contributions of small spheres around each xi , each
of which is individually integer-valued. This is analogous to the way that usual spectral
flow counts the number of eigenvalue crossings. In physics, one uses such expressions to
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assign topological charges to stable band-touching points and the spectral flow is therefore
the total charge. A particular set-up of this type is considered in [32] where the poten-
tial H is a linear combination of Clifford algebra generators with essentially commuting
coefficients. If the critical points of H are not isolated or H0 is infinite-dimensional the
spectral flow is more difficult to interpret. For even dimensions our analogue of Section 5
can be used to define topological charges for potentials satisfying a chiral symmetry of the
type JHJ D �H .

8.2. The Boutet de Monvel index theorem

The framework of Section 8.1 can be transposed to an even 2n-dimensional complete
Riemannian manifold X . Let then E be a possibly infinite-dimensional vector bundle
over X with typical fiber Hilbert space H0. Furthermore, there is supposed to exist an
involution  D .x/x2X W E ! E and a weakly elliptic first-order differential operatorD
satisfying D D �D and which results in an even spectral triple�

B.L2.X;H0//;D;C
1
c .X/˝K.H0/

�
:

The even Callias potential is then given by a self-adjoint multiplication operator H D
.Hx/x2X on E ˚ E satisfying H D H and JHJ D �H with J D diag.1E ;�1E/

and being invertible modulo C0.X/ ˝ K.H0/. In the grading of  one then has H D
HC ˚H� and both H˙ are off-diagonal in the grading of J with lower left entry T˙.

The set-up of the index theorem of Boutet de Monvel [8, 25] assumes that X is a
strongly pseudoconvex domain in Cn equipped with the Bergmann metric, E is finite-
dimensional and given by the differential forms on X of type .n; p/ graded by the parity
of p and then D is the Dolbeaut operator. Furthermore, HC D H� is supposed to extend
smoothly to the boundary @X . A related setting is obtained by simply choosing X D R2n

with the Euclidean metric andD the associated Dirac operator on E D R2n ˝CN where
CN is the representation space of the Clifford algebra with N generators. Then the index
theorem states [8, 10, 25]

T -Ind.De
�;T / �

Z
@X

Tr.J.Q dQ/^.2n�1//;

where again Q D H jH j�1 and in the case X D R2n one replaces @X by @BR.0/ with
R sufficiently large. The right-hand side is an odd Chern number in the representation
given, e.g., [18]. Theorems 17 and 37 connect T -Ind.De

�;T / to an integral over X rather
than its boundary, and hence do not directly provide the right side. However, in the case of
finite-dimensional fibers one can again argue as in Section 8.1. To determine conditions
under which such a formula holds also with infinite-dimensional fibers remains an open
problem.

8.3. A generalized Robbin–Salamon theorem

As a first non-commutative example we consider a generalized Robbin–Salamon theorem.
Let C be a separable C �-algebra with a densely defined faithful lower semicontinu-



H. Schulz-Baldes and T. Stoiber 560

ous trace � and a strongly continuous automorphic R-action ˛ that leaves � invariant
(everything below directly transposes to Rn-actions). Then the crossed product algebra
AD C Ì˛ R has an induced dual trace T and a dual R-action Ǫ . Let further M be the von
Neumann algebra generated by C in the semicyclic GNS representation for T and H the
corresponding representation space. The regular representation � of A acts on the Hilbert
space L2.R;H / such that ˛ is generated by right translation, i.e., � ı ˛t D Ad.Ut / ı �
with Ut D et@. Then T extends to a semifinite normal faithful trace on the von Neumann
algebra N D �.A/00. Let A be the dense �-subalgebra of elements A 2 A that can be
written in the form �.A/ D

R
R �.f .t//Ut dt with a function f W R! Dom.�/ � A that

is smooth and rapidly decaying in the norm kAk C �.jAj/ and D D �{@ then .N ; D;A/

is a semifinite spectral triple (compare, e.g., [15]). If H is a differentiable self-adjoint
multiplier invertible modulo A, then the index theorem implies that

yT -Ind.�D CH/ D SfD.H/;

and by choosing a representative U 2 1CA of the class Œe{�.G.H/C1/�1, one can compute
the spectral flow [38]

SfD.H/ D hŒU �1; ŒD�i D T ..1 � U �/Œ@; U �/: (21)

The right-hand side is the non-commutative winding number as is expected for an analytic
formula for spectral flow. The appropriate setting for the theorem in [42] is a trivial action
˛ in which case ADC0.R;C/ consists of paths in the von Neumann algebra MD �.C/00.
Since � -traceclass elements are dense in C one has C � K� and hence invertibility of
H 2 M.A/ � Cb.R;M/ modulo A means that H is a continuous path of � -Fredholm
operators. In that case, the right-hand side of (21) computes the usual semifinite spectral
flow, in fact, it is almost exactly the definition of spectral flow for gap-continuous paths
(see Appendix B, note, however, that for an unbounded H to be a multiplier here, it must
describe a Riesz-continuous path).

8.4. Index theorems for topological insulators

Let us now discuss a more complicated non-commutative example coming from the the-
ory of topological insulators [40]. To keep the discussion simple we consider a two-
dimensional example with magnetic field, but no disordered potential. Thus, the observ-
able algebra is the two-dimensional non-commutative torus a� with twisting angle �
generated by two unitaries with the commutation relation v1v2 D e{�v2v1. Let c�.Z/ be
the algebra of sequences which admit limits for ˙1 and c0.Z/ the subalgebra for which
those limits vanish. Let then yA be the C �-algebra generated by c�.Z/ and the unitaries
v1,v2 with the additional commutation relations f v1 D .f ı T1/v1 and f v2 D v2f with
T1 W c�.Z/! c�.Z/ left translation. Each element a 2 yA has a representation as a formal
sum a D

P
x;y2Z fx;yv

x
1v
y
2 . Consider the ideal A � yA of those elements for which the

coefficient functions are in c0.Z/. Then one has an exact sequence

0! A! yA! a� ˚ a� ! 0
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obtained by evaluation at˙1. On a� one can introduce a finite trace � and on A a densely
defined lower semicontinuous trace O� such that

�.vx1v
y
2 / D ıx;0ıy;0; O�.f vx1v

y
2 / D ıx;0ıy;0

X
k2Z

f .k/;

holds for all x;y 2Z and f 2 `1.Z/. Let A be the subalgebra of all
P
x;y2Zfx;yv

x
1v
y
2 2A

for which jfx;y.k/j decays faster than any inverse polynomial in x; y; k. One can repres-
ent yA on the Hilbert space `2.Z2/ in such a way that c�.Z/ acts by multiplication and
v1,v2 as magnetic shifts. Furthermore, there are the two position operators X1,X2 act-
ing on the standard basis of `2.Z2/ by Xiex D xiex . The commutators ŒXi ; �� produce
densely defined derivations on A and a� . As the Dirac operator, let us useD D X2 which
results in a spectral triple .B.`2.Z;C2//;D;A/. One can therefore consider Callias-type
operator with potentials H in the multiplier algebra M.A/. Any such multiplier has a
representationH D

P
x;y2Z hx;yv

x
1v
y
2 with coefficient functions hx;y 2 `1.Z/. Assume

that khx;yk1 decays faster than any inverse polynomial in x;y from which one can check
that anH is bounded and differentiable in our sense. IfH is invertible modulo A, then by
Theorem 8 its index is given by

Ind.�D C {H/ D SfD.H/ D hŒU �1; ŒX2�i;

withU D e{�.G.H/C1/ 2 1CA. In fact, one hasU 2 1CA and this index can be computed
explicitly [39]

hŒU �1; ŒX2�i D O�..1 � U �/ŒX2; U �/:

In physics, the algebra a� describes an observable algebra for two-dimensional tight-
binding models which are invariant under magnetic translations, while M.A/ more gen-
erally allows modulations with respect to the x1-direction. In particular, a self-adjoint
multiplier H 2 yA � M.A/ represents the Hamiltonian for a system with an interface at
the line x1 D 0 between two asymptotic “bulk” Hamiltonians H˙ 2 a� which describe
the local Hamiltonian far away from the interface for x1 ! ˙1. The number SfD.H/
again makes sense as a non-commutative spectral flow: if the flow along the “path” H
connecting the invertible Hamiltonians HC, H� is non-trivial, then H itself cannot be
invertible (“the spectral gap closes”) and this fact only depends on H up to homotopy.

The known results on the bulk-boundary correspondence of such operators form a
close analogue of the Callias index formula. Indeed, for H 2 yA the class ŒU �1 2 K1.A/
of the spectral flow is the image under the exponential map of the class in ŒPC ˚ P�� 2
K0.a� ˚ a� / of the Fermi projections P˙ D �.HC < 0/. It is then known (e.g., [31]) that

h@0ŒP �0; ŒX2�i D hŒP �0; ŒX1 ˝ �1 CX2 ˝ �2�i

D {�.PCŒŒX1; PC�ŒX2; PC��/ � {�.P�ŒŒX1; P��ŒX; P���/

which shows that the index can be computed from the boundaries at ˙1. Compared to
the Callias index formula the situation seems inverted since the boundary now actually
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represents a higher-dimensional space. This is not too unusual since cyclic cohomology is
2-periodic and so dualities can affect the apparent dimensions of cocycles and algebras.

This example can be generalized in different ways. The non-commutative torus does
not really play a role in the arguments. One can construct analogous spectral triples and
bulk-boundary sequences for any twisted crossed product C Ì Rd or C Ì Zd where
the base algebra C admits a densely defined faithful lower semicontinuous trace. When
one generalizes, this naturally leads to semifinite spectral triples, e.g., if one chooses
C D C.K/ for some compact metric space K with measure �, the spectral triple will be
based on the type-I-von Neumann algebraL1.K;�/˝B.`2.Z2//with trace

R
K

d�˝ T .
For higher dimension d > 2 one can also construct spectral triples with Dirac operators
that involve less than d � 1 spatial directions, so that the spectral triple is then naturally
based on a type-II1-von Neumann algebra. Examples for multipliers H with non-trivial
indices can then be given in terms of Hamiltonians of so-called weak topological insulat-
ors, see [43].

A. Semifinite index

Let N be a semifinite von Neumann algebra with a normal semifinite faithful trace T .
This appendix briefly reviews the theory of semifinite index and its continuity properties
[4, 34, 45]. The domain of T is by definition given by NT D ¹A 2 N W T .jAj/ <1º. It
is a �-algebra and an ideal in N . It becomes a Banach-�-algebra when supplied with the
submultiplicative norm kAkT D kAk C T .jAj/ and its C �-completion KT � N is the
algebra of T -compact operators. The quotient N =KT is called the Calkin algebra and the
quotient map will be denoted by � . The T -essential spectrum of A 2 N is then defined
by �ess.A/ D �.�.A// D �.ACKT /.

A possibly unbounded operator T affiliated to N is called T -Fredholm if there is
a continuous function � W Œ0;1/! Œ0; 1� with �.0/ D 1 such that �.T �T / 2 KT and
�.T T �/ 2 KT . This is equivalent to the existence of a pair of operators K; K 0 2 KT

such that T �T CK and T T � CK 0 are invertible. The set of T -Fredholm operators will
be denoted by F .N / and the intersection with the self-adjoint operators by Fsa.N /.

If T 2 F .N /, then also T � 2 F .N / and furthermore the kernel projection Ker.T /
lies in KT . It is important to note that any T -compact projection is automatically T -finite
and therefore one has a well-defined index

T -Ind.T / D T .Ker.T // � T .Ker.T �// 2 R:

The index is invariant under addition of KT perturbations and constant on norm-connect-
ed components of F .N / \N .

An element T 2 PNQ for two projections P;Q 2 N is called P �Q-Fredholm if
T �T and T T � are T -Fredholm in the corner algebras QNQ and PNP respectively.
One then defines more generally the skew-corner index [16] by

T -IndP �Q.T / D T .Ker.T / \Q/ � T .Ker.T �/ \ P /: (22)
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For the study of the spectral flow of unbounded Fredholm operators in Appendix B,
one needs to introduce topologies on Fsa.N /, of which there are several distinct ones
[34, 48]. The most important ones are the Riesz topology and the gap topology, induced
respectively by the metrics

dR W Fsa � Fsa ! R�; dR.T1; T2/ D kF.T1/ � F.T2/k;

where F is the bounded transform, and

dG W Fsa � Fsa ! R�; dG.T1; T2/ D kC.T1/ � C.T2/k

D k.T1 C {/
�1
� .T2 C {/

�1
k;

with C.T /D .T � {/.T C {/�1 the Cayley transform. A sequence of self-adjoint operators
converges in the gap topology if and only if it converges in the norm-resolvent sense.
Hence, if .Tt /t2Œ0;1� is a path in Fsa.N / that is gap-continuous, then .f .Tt //t2Œ0;1� is
therefore a norm-continuous path in N for any f 2 C0.R/. The gap topology is weaker
than the Riesz topology since it does not imply continuity under the bounded transform.

By the theorem of Cordes–Labrousse, all those topologies are equivalent to the norm-
topology when restricting to bounded self-adjoint operators. The gap topology can be
extended to non-self-adjoint Fredholm operators by setting

zDG.T1; T2/ D dG

��
0 T �1
T1 0

�
;

�
0 T �2
T2 0

��
;

and the T -index of unbounded T -Fredholm operators stays constant under gap-continu-
ous homotopies [48, Proposition 5.2].

B. Semifinite spectral flow

This appendix recalls the definition and properties of the spectral flow in a semifinite von
Neumann algebra. For paths of bounded self-adjoint operators this is reviewed in [4]. For
paths of unbounded self-adjoint operators, depending on the notion of continuity, there
are different possible ways to define spectral flow which we now describe in some detail
since it is relevant for the main part of this article. Spectral flow for gap-continuous paths
using the notion of a non-commutative winding number has been introduced in the Hilbert
space setting by [5] and extended to the semifinite setting by [48].

Consider the Banach �-algebra of differentiable paths C 10 .Œ0; 1�;NT / with norm

kf kC D sup
t2Œ0;1�

kf .t/kT C kf
0.t/kT ;

which is dense in the C �-algebra C0.Œ0; 1�;KT / with spectrally invariant inclusion (the
latter follows from the inequality kfgkC � kf kkgkC C kf kC kgk via a standard argu-
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ment using geometric series, see also [44]). The non-commutative winding number de-
fined by

windT W C
1
0 .Œ0; 1�;NT /�C

1
0 .Œ0; 1�;NT /!C; wind.f1; f2/D {

Z 1

0

T .f1.t/f
0
2.t//;

is a cyclic 1-cocycle and therefore pairs with oddK-theory groups. Due to spectral invari-
ance, one has K1.C 10 .Œ0; 1�;NT /// ' K1.C0.Œ0; 1�;KT // and more strongly any class
Œf �1 2 K1.C0.Œ0; 1�;KT // defined by a unitary path f 2 1C C0.Œ0; 1�;KT / can be rep-
resented by a unitary path Qf 2 1C C 10 .Œ0; 1�;NT / such that the real-valued pairing

hŒf �1;windT i D windT . Qf
�
� 1; Qf � 1/

is well defined and does not depend on the choice of representative.

Definition 41 ([48]). Let t 2 Œ0; 1� 7! Tt be a gap-continuous path in Fsa.N / with invert-
ible endpoints. One can always choose a so-called switch functionG WR!R for the path,
which is a smooth function with supp.G0/� .�1;1/,G.˙1/D˙1 and 1�G.Tt /2 2KT

for all t . Then the norm-continuous unitary path t 2 Œ0; 1� 7! e{�.G.Tt /C1/ lies in 1CKT

and the spectral flow

Sf.¹Ttºt2Œ0;1�/ D hŒe{�.G.T /C1/�1;windT i

is well defined and does not depend on the choice of G.

The important technical point here is that e{�G � 1 is a continuous compactly suppor-
tedC0.R/-function which vanishes on the T -essential spectrum. Therefore gap-continuity
is sufficient, but in exchange the endpoints have to be invertible.

For Riesz-continuous paths the spectral flow can also be defined more directly as the
flow of spectrum from the negative to the positive:

Definition 42 ([4]). For projections P;Q 2N with k�.P �Q/k < 1 define the essential
codimension

ec.P;Q/ D T
�
.1 � P / \Q

�
� T

�
.1 �Q/ \ P

�
:

For a Riesz-continuous path t 2 Œ0; 1� 7! Tt in Fsa.N / one can always choose a partition
0 D t0 < t1 < � � � < tKC1 D 1 such that

k�.�.Ts � 0/ � �.Tt � 0//k �
1

2
; 8s; t 2 Œtk ; tkC1�;

holds for all k D 0; : : : ; K. In that case, the spectral flow is given by

Sf.¹Ttºt2Œ0;1�/ D
KX
kD0

ec
�
�.Ttk � 0/; �.TtkC1 � 0/

�
:
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If the endpoints of the Riesz-continuous path are invertible, both notions coincide.
Therefore, the spectral flow for gap-continuous paths is well defined by choosing for each
endpoint a T -compact perturbation Q0;Q1 such that Ti CQi is invertible, and then set-
ting

Sf.¹Ttºt2Œ0;1�/ D Sf
�
¹Tt C .1 � t /Q0 C tQ1ºt2Œ0;1�

�
C Sf

�
¹T0 C tQ0ºt2Œ0;1�

�
C Sf

�
¹T1 C .1 � t /Q1ºt2Œ0;1�

�
;

where the second two terms use the definition for Riesz-continuous paths and only the
former the one for gap-continuous ones. One has the following properties:

Proposition 43. Let t 2 Œ0; 1� 7! Tt and t 2 Œ0; 1� 7! T 0t be gap-continuous paths in
Fsa.N /.

(i) (Triviality) If Tt has a bounded inverse for each t2Œ0;1� then Sf.¹Ttºt2Œ0;1�/D0.

(ii) (Homotopy invariance) If the two paths are connected by a gap-continuous
(respectively Riesz-continuous) homotopy .t; s/ 2 Œ0; 1� � Œ0; 1� 7! Ts;t within
Fsa.N / with T0;t D Tt , T1;t D T 0t and such that the endpoints Ts;0 and Ts;1 are
invertible for each s 2 Œ0; 1�, then

Sf.¹Ttºt2Œ0;1�/ D Sf.¹T 0t ºt2Œ0;1�/:

(iii) (Concatenation) If T1 D T 00, then

Sf.¹Ttºt2Œ0;1� � ¹T 0t ºt2Œ0;1�/ D Sf.¹Ttºt2Œ0;1�/C Sf.¹T 0t ºt2Œ0;1�/;

with � denoting concatenation of paths.

(iv) (Homomorphism)

Sf.¹Tt ˚ T 0t ºt2Œ0;1�/ D Sf.¹Ttºt2Œ0;1�/C Sf.¹T 0t ºt2Œ0;1�/:

For straight-line paths the spectral flow will be abbreviated by

Sf.T0; T1/ D Sf.¹.1 � t /T0 C tT1ºt2Œ0;1�/:

Let us now recall some relations between spectral flow and the T -Fredholm index:

Proposition 44 ([48, Proposition 5.1]). For T a possibly unbounded T -Fredholm oper-
ator and any m > 0,

T -Ind.T / D Sf
��
�m T �

T m

�
;

�
m T �

T �m

��
:

Then there are more specific spectral flow formulas for unitary conjugates [14, The-
orem 4.2].
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Theorem 45. Let D be a self-adjoint invertible T -Fredholm operator affiliated to N . If
U 2 N is a unitary that preserves Dom.D/, ŒD; U � extends to a bounded operator in N

and such that .D C {/�1.U � 1/ 2KT and .D C {/�1ŒD;U � 2KT , then

T -Ind.PUP C 1 � P / D Sf.U �DU;D/

where P D �.D > 0/.

The bounded version of this formula is [4, Section 5].

Proposition 46. If T is a self-adjoint involution and U 2 N a unitary with ŒT;U � 2KT ,
then

T -Ind.PUP C 1 � P / D Sf.T; U �T U /

where P D �.T < 0/.

Theorem 45 requires that ŒD;U �must be relativelyD-compact for the path to be Fred-
holm. While such a condition often is satisfied in applications, it is sometimes inconveni-
ent, e.g., in the setting of spectral triples without smoothness assumptions. We therefore
provide an alternative:

Proposition 47. Let D be a self-adjoint invertible T -Fredholm operator affiliated to N

and U 2N a unitary that preserves Dom.D/, ŒD;U � extends to a bounded operator in N

and .U � 1/.D C {/�1, .U � � 1/.D C {/�1 2KT . Set P D �.D < 0/, then

T -Ind.PUP C 1 � P / D Sf
��
�D 1
1 ��D

�
;

�
�D U �

U ��D

��
holds for all � > 0 so small that �kŒD;U �k < 1.

The proof starts out with a technical lemma:

Lemma 48. Let D be an unbounded self-adjoint invertible operator and H a bounded
self-adjoint operator which preserves Dom.D/ and for which ŒD;H� extends to a bounded
operator. Choose an even smooth function g W R! Œ0; 1� supported in Œ�2; 2� and equal
to 1 on Œ�1; 1�. Set �R D g.R�1D/ and define a net .DR/R>0 of bounded self-adjoint
operators by

DR D D�R CR.1 � �R/sgn.D/:

Then DR converges to D with respect to the gap metric for R !1 and there exists a
universal constant c > 0 such that

kŒDR;H �k � ckŒD;H�k (23)

independent of D, R and H .

Proof. The convergence is readily seen in the spectral representation. For (23) let us first
recall the bound [24, Lemma 10.15]

kŒf .D/;H�k � .2�/�1
�Z

R
jt j yf .t/ dt

�
kŒD;H�k D .2�/�1k yf 0kL1.R/kŒD;H�k
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applicable to smooth functions f 2 C1c .R/ where yf denotes the Fourier transform. By
multiplying with a smooth approximate unit of the Fourier algebra F �1L1.R/ the bound
generalizes to functions f without compact support, but for which f 0 2 C1c .R/. Since
one can writeDR D f .R�1D/ for such a function f 2 C1.R/ a scaling argument there-
fore shows that (23) holds with c D .2�/�1k yf 0kL1.R/.

Proof (of Proposition 47). It is sufficient to prove the result for some � > 0 that is as
small as necessary, since one can then increase � up to the stated value using homotopy
invariance.

By a standard argument ŒP; U � 2 KT [24] and thus Proposition 46 and additivity
imply

T -Ind.PUP C 1 � P /

D Sf
��
�.1 � 2P / 0

0 ��.1 � 2P /

�
;

�
�U �.1 � 2P /U 0

0 ��.1 � 2P /

��
:

The endpoints of the path are invertible and introducing an off-diagonal constant term
only increases the spectral gap, thus

T -Ind.PUP C 1 � P /

D Sf
��
�.1 � 2P / 1

1 ��.1 � 2P /

�
;

�
�U �.1 � 2P /U U �

U ��.1 � 2P /

��
:

To check the Fredholm property along that straight-line homotopy one notes�
�.1 � 2P / � �tU ŒP; U �� s.t C .1 � t /U �/

s.t C .1 � t /U / ��.1 � 2P /

�2
� �2 C s2.1 � 2t/2 mod KT :

The right endpoint at .s; t/D .1; 1/ has a spectral gap in the interval Œ�1; 1� and assuming
� < 1

4
, the gap is not closed if one replaces U �.1 � 2P /U D .1 � 2P / � 2U �ŒP; U � by

1� 2P using an additive perturbation with norm kŒP;U �k � 2. That compact perturbation
also does not affect the Fredholm properties, therefore

T -Ind.PUP C 1 � P /

D Sf
��
�.1 � 2P / 1

1 ��.1 � 2P /

�
;

�
�.1 � 2P / U �

U ��.1 � 2P /

��
:

For arbitrary R > 0 we use the approximation DR of Lemma 48 and consider the norm-
continuous homotopy

.; t/ 2 Œ0; 1� � Œ0; 1� 7! T;t D

�
�DRjDRj

�1 t1C .1 � t /U �

t1C .1 � t /U ��DRjDRj
�1

�
:

We must show that all T;t are Fredholm with invertible endpoints at t 2 ¹0; 1º for
some small enough �. At the left endpoint

T 2;0 D

�
�DRjDRj

�1 1
1 ��DRjDRj

�1

�2
D .�2jDRj

2
C 1/˝ 12
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and at the right

T 2;1 D

�
�DRjDRj

�1 U �

U ��DRjDRj
�1

�2
D .�2jDRj

2
C 1 � �ckD�1k�1kŒD;U �k/12;

with the constant c from (23) and where we used a known estimate for the commutator
with fractional powers [24, (10.58)],�DRjDRj�1; U � � jDRj�1ŒDR; U � � ckD�1k�1kŒD;U �k:
Hence invertibility holds if we assume that � is small enough. The relative compactness
further implies

Œf .D/; U � D f .D/.U � 1/ � .U � 1/f .D/ 2KT

for any function f 2Cc.R/ and since also ŒP;U �2KT one concludes ŒDRjDRj�1;U �2
KT for all  2 Œ0; 1�. Computing T 2;t , one therefore finds�

�DRjDRj
�1 t1C .1 � t /U �

t1C .1 � t /U ��DRjDRj
�1

�2
D
�
�2jDRj

2
C 1C t .1 � t /.U C U � � 2/

�
12 mod KT

� �2 min.kD�1k�2 ; R2 /12 mod KT

where we used kt .1 � t /.U C U � � 2/k � 1. Thus T;t is Fredholm for all ; t 2 Œ0; 1�
and homotopy invariance implies

T -Ind.PUP C 1 � P / D Sf
��
�DR 1

1 ��DR

�
;

�
�DR U �

U ��DR

��
for all R > 0 and some fixed � > 0. The proof is then completed by taking the limit
R!1 as the following Lemma shows.

Lemma 49. (i) Let .Tn/n2N be a sequence of gap-continuous paths TnD .Tn;t /t2Œ0;1�
in Fsa.N / converging uniformly in the gap metric to some path T , i.e.,

lim
n!1

sup
t2Œ0;1�

dG.Tn;t ; Tt / D 0: (24)

If the endpoints of Tn, T are invertible and jTn;t j > g1 mod KT holds for all
t 2 Œ0; 1�, n 2N with some fixed constant g > 0 then the spectral flow is continuous

Sf.¹Ttºt2Œ0;1�/ D lim
n!1

Sf.¹Tn;tºt2Œ0;1�/:

(ii) The convergence condition (24) holds in particular for paths of the form Tn;t D

Dn CHt with .Dn/n2N the sequence of self-adjoint operators affiliated to N that
converges to D with respect to the gap metric and H a norm-continuous path
in Nsa.
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Proof. For (ii) we note the resolvent identity

.D CHt C {/
�1
� .Dn CHt C {/

�1

D
�
1 � .D CHt C {/

�1Ht

��
.D C {/�1 � .Dn C {/

�1
�

�
�
1 �Ht .Dn CHt C {/

�1
�

which implies dG.Tn; T / � .1C kHk/2dG.Dn;D/. Similarly, one estimates

k.T C z/�1 � .S C z/�1k �

�
1C

j{ � zj

j=m.z/j

�2
dG.T; S/

for all z 2 C n R and hence the Helffer–Sjöstrand calculus may be used to show that the
map T 2 Fsa.N / 7! f .T / 2 N is uniformly continuous for each fixed f 2 C1c .R/ in
the sense that

kf .T / � f .S/k � Cf dG.T; S/: (25)

By assumption on Tn there is a gap in the T -essential spectrum which is independent
of n and t . We may therefore also choose the normalizing function G in Definition 41 to
be independent of those parameters. Combining (24) and (25) shows

lim
n!1

sup
t2Œ0;1�

ke{�.G.Tn;t /C1/
� e{�.G.Tt /C1/

k D 0;

i.e., the unitary path determining the spectral flow is norm-convergent. Consequently,
Œe{�.G.Tn/C1/�1 is eventually constant with limit Œe{�.G.T /C1/�1, which implies

Sf.¹Ttºt2Œ0;1�/ D hŒe{�.G.T /C1/�1;windT i D lim
n!1
hŒe{�.G.Tn/C1/�1;windT i

D lim
n!1

Sf.¹Tn;tºt2Œ0;1�/;

so that the proof is concluded.
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