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Finite GK-dimensional pre-Nichols algebras of
(super)modular and unidentified type

Iván Angiono, Emiliano Campagnolo, and Guillermo Sanmarco

Abstract. We show that every finite GK-dimensional pre-Nichols algebra for braidings of diagonal
type with connected diagram of modular, supermodular or unidentified type is a quotient of the dis-
tinguished pre-Nichols algebra introduced by the first-named author, up to two exceptions. For these
two exceptional cases, we provide a pre-Nichols algebra that substitutes the distinguished one in the
sense that it projects onto all finite GK-dimensional pre-Nichols algebras. We build both substi-
tutes as non-trivial central extensions with finite GK-dimension of the corresponding distinguished
pre-Nichols algebra. We describe these algebras by generators and relations and give a basis.

This work essentially completes the study of eminent pre-Nichols algebras of diagonal type
with connected diagram and finite-dimensional Nichols algebra.

1. Introduction

This paper is the third part of a series started in [10] and continued in [15], where we
contribute to the classification of Hopf algebras with finite Gelfand–Kirillov dimension
(abbreviated GKdim) over an algebraically closed field k of characteristic zero.

Due to the vastness of that problem, further restrictions are usually put in place. For
instance, affine Noetherian Hopf algebras with finite GKdim have been studied for more
than two decades. Also, substantial progress has been made towards the classification of
Hopf algebras with small GKdim. See [17, 18, 20, 21, 29, 33] and references therein.

We focus on pointed Hopf algebras with finite GKdim. Our point of view is inspired
by the Andruskiewitsch–Schneider program [12], which was originally set up for studying
finite-dimensional pointed Hopf algebras but has proven itself fruitful also in the finite
GKdim setting, see [2, 5–7, 11] for example.

Recall that a Hopf algebra H is pointed if the coradical (the sum of all simple sub-
coalgebras) is just the group algebra of the group-like elements. In this case, the coradical
filtration is a Hopf algebra filtration so the associated graded object grH is a graded Hopf
algebra. If � denotes the group of group-like elements ofH , the Radford–Majid biproduct
(or bosonization) [30] yields a decomposition grH ' R#k� , where R D

L
n>0R

n is a
coradically graded Hopf algebra in the braided tensor category k�

k�YD of Yetter–Drinfeld
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modules over k� . At this point, we have encountered the three invariants that guide the
ongoing problem of classification of pointed Hopf algebras: the group � of group-like-
elements; the Yetter–Drinfeld module R1, called the infinitesimal braiding; and the dia-
gram R, a Hopf algebra in the category k�

k�YD . This last invariant serves as the entryway
for Nichols algebras into the general problem of classification of pointed Hopf algebras.

Given a Yetter–Drinfeld module V over a group � , we can construct the Nichols
algebra B.V / of V , a coradically graded Hopf algebra in k�

k�YD ; via Radford–Majid’s
biproduct we get a pointed Hopf algebra B.V /#k� . This is a distinguished element in
the class of all pointed Hopf algebras with coradical k� and infinitesimal braiding V for
various reasons. Most importantly for us, if H is in this class, then the subalgebra of the
diagram R generated by V ' R1 is isomorphic to B.V /. In other words, the diagram of a
pointed Hopf algebra with infinitesimal braiding V is a post-Nichols algebra of V , see [8].

Since we are interested in pointed Hopf algebras with finite GKdim, a celebrated res-
ult of Gromov states that the potential groups of group-like elements, assuming finite
generation, necessarily contain a nilpotent subgroup of finite index. A careful analysis of
Nichols algebras over finitely generated nilpotent groups was carried out recently in [2];
in particular, it was explained that much can be afforded with abelian groups.

In this paper, however, the group � will only play an implicit role, since most of the
theory of Nichols algebras can be expressed in the language of braided Hopf algebras.
That being the case, it is customary to study families of braided vector spaces rather than
Yetter–Drinfeld modules over families of groups. We will focus on braided vector spaces
of diagonal type, which correspond to semisimple Yetter–Drinfeld modules over finitely
generated abelian groups. Such a braided vector space V depends on a square matrix q of
non-zero elements in the ground field, so we denote Bq rather than B.V /.

During the last two decades, remarkable progress has been achieved in the study of
Nichols algebras of diagonal type, in which Lie theory plays a fundamental role. Using
the braided adjoint action, one can associate to each Nichols algebra a generalized Cartan
matrix. Moreover, these Nichols algebras are known to have a restricted PBW bases, which
allows to introduce the notion of root systems; using the generalized Cartan matrices, one
can build reflections, that in turn give rise to Weyl groupoids. Using these tools, Hecken-
berger classified all braided vector spaces of diagonal type with finite root system in [24].
From a Lie-theoretic perspective, the list was reorganized in [3] as follows:

˘ Cartan type: these braidings are defined using a Cartan matrix of finite type A� , B� ,
C� ,D� ,E� , F4,G2. Their Nichols algebras are related to the positive part of the small
quantum group, see [12] for more details.

˘ Standard type: this family contains all braidings which are not of Cartan type, but the
Cartan matrix is still constant in the Weyl equivalence class.

˘ Super type: these have root systems which are related to those of finite-dimensional
contragredient Lie superalgebras in characteristic 0.
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˘ (Super)modular type: again associated to Weyl groupoids of finite-dimensional con-
tragredient Lie (super)algebras, but now in (small) positive characteristics.

˘ UFO type: twelve Weyl equivalence classes of braidings, so far unrelated to Lie theory.

Later on, Andruskiewitsch, Angiono and Heckenberger stated the following:

Conjecture 1.1 ([6, Conjecture 1.5]). The root system of a Nichols algebra of diagonal
type with finite Gelfand–Kirillov dimension is finite.

While the converse implication holds due to a routinary argument involving PBW
bases, the conjecture remains open. However, there is strong evidence on its behalf, see
[5, 16]. Assuming the validity of this statement, as we will do throughout this paper, we
deduce that diagrams of pointed Hopf algebras with finite GKdim and infinitesimal braid-
ing of diagonal type correspond precisely to finite GK-dimensional post-Nichols algebras
of braided vector spaces on Heckenberger’s classification [24].

As discussed in [10, §2.6], the problem of classifying these post-Nichols algebras can
be rephrased in the terms of pre-Nichols algebras. The later language better fits our pur-
poses for two reasons. The first one is rather technical: pre-Nichols algebras of V are
certain Hopf quotients of the tensor algebra T .V /; this allows us to define pre-Nichols
algebras by generators and relations. Thus the family of pre-Nichols algebras becomes
partially ordered by projection, determining a poset with minimal element T .V / and
maximal one the Nichols algebra. As explained above, we are interested in describing
the subposet of pre-Nichols algebras with finite GKdim; as an initial step we look for
minimum elements, called eminent pre-Nichols algebras.

There is a more conceptual reason to study pre-Nichols algebras. For each finite-
dimensional Nichols algebra of diagonal type, the first-named author introduced in [14]
the distinguished pre-Nichols algebra, which has finite GKdim among other crucial fea-
tures. A natural question arises: is the distinguished pre-Nichols algebra eminent? For
braided vector spaces of Cartan, super or standard type, that is indeed the case up to very
few exceptions, as shown in [10,15]. Here we complete the work, studying (super)modular
and unidentified types. Summarizing, our main result, after the three papers, is:

Theorem 1.2. Let q be a braiding matrix such that dimBq <1 and the Dynkin diagram
of q is connected. Assume that Conjecture 1.1 holds.

(i) If q is not of type

• Cartan A� or D� with q D �1,

• Cartan A2 with q 2 G03,

• A3.q j ¹2º/ or A3.q j ¹1; 2; 3º/, with q 2 G1,

• g.2; 3/ with any of the following Dynkin diagram

d1 W
�1
ı

�2 �
ı

� �1
ı ; d2 W

�1
ı

� �1
ı

� �1
ı ;

then the distinguished pre-Nichols algebra zBq is eminent.
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(ii) If q is of type A3.q j ¹2º/ or A3.q j ¹1; 2; 3º/, there is an eminent pre-Nichols
algebra �Bq which is a braided central extension of zBq by a polynomial algebra
in one variable.

(iii) If q is of type Cartan A2 with q 2 G03, or of type g.2; 3/ with diagram d1 or d2,
then �Bq is a braided central extension of zBq by a q-polynomial algebra in two
variables.

For braidings of Cartan type A� or D� with q D �1, there are candidates for eminent
pre-Nichols algebras. The GKdim of these candidates are not known yet, see [10, §5].

Proof. For (i), all Cartan cases follow by [10, Theorem 1.3 (a)], except type G2 with
parameter q 2 G04 [ G06, which was treated in [15, Theorem 1.2]. Super and standard
types were also studied in [15, Theorem 1.2]; we cover the other cases in Theorem 3.1.

Now (ii) follows from [15, Theorem 1.2 (2), (3)]. Finally, Propositions 4.2 and 4.3
together with [10, Theorem 1.3 (b)] prove (iii).

The structure of the paper is the following. In Section 2, we fix the notation and recall
general aspects of the theory of Nichols algebras for later use. Section 3 is devoted to
complete the proof of Theorem 1.2 (i), with a case-by-case analysis of the behaviour of the
generators for the defining ideals of Nichols algebras of diagonal type, when considered
as elements of pre-Nichols algebras with finite GKdim. Finally, in Section 4, we introduce
and study the eminent pre-Nichols algebras for the two exceptional cases of type g.2; 3/

described in Theorem 1.2 (iii).

2. Preliminaries

In this section, we recall definitions and general aspects about the theory of Nichols algeb-
ras, with particular interest on the diagonal case. We refer to [32] for the definition of
braided vector spaces and braided Hopf algebras, and to [1, 3, 25, 30] for unexplained
terminology regarding Hopf and Nichols algebras. For preliminaries on GKdim see [28].

Notations

For each � 2N we set I� D¹1; : : : ; �º; we shall write I when no confusion is possible. The
canonical basis of the free abelian group ZI is denoted ¹˛i W i 2 Iº; an element

P
i2I bi˛i

will be denoted as 1b12b2 � � � �b� . Given ˇ D 1b12b2 � � � �b� and  D 1c12c2 � � � �c� , we say
that ˇ �  if and only if bi � ci for all i 2 I; this defines a partial order on ZI that will
be used without further mention.

We work over an algebraically closed field k of characteristic 0. The subgroup of k�

consisting of the N -th roots of unity is denoted by GN , and G0N denotes the subset of
those of order N . The set of all roots of unity is G1.

If A is a Z-graded algebra, we denote by An the degree n-component. The subspace
of primitive elements of a (braided) Hopf algebra H is P .H/.
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2.1. Braided action and braided commutator

Any braided Hopf algebra B admits a left adjoint representation adc W B! EndB,

.adc x/y D m.m˝ S/.id˝c/.�˝ id/.x ˝ y/; x; y 2 B:

Also, the braided bracket Œ�; ��c W B˝B! B is the map given by

Œx; y�c D m.id � c/.x ˝ y/; x; y 2 B:

2.2. Eminent pre-Nichols algebras

In a nutshell, a pre-Nichols algebra of a braided vector space .V; c/ is an N0-graded
braided connected Hopf algebra that contains .V;c/ as the degree-1 component and is gen-
erated (as an algebra) by V . One can show that there exists a unique pre-Nichols algebra
that is moreover strictly graded, which means that the subspace of primitive elements
coincides with V ; this is the Nichols algebra of .V; c/.

There is a more concrete interpretation of these definitions in which one uses the
braiding of V to induce in the tensor algebra T .V / D

L
n>0 V

˝n a structure of braided
Hopf algebra such that the elements of V are primitive. Then one can show that there
exists a (unique) maximal homogeneous Hopf ideal J.V / of T .V / generated by elements
of degree � 2, thus the Hopf quotient B.V / WD T .V /=J.V / is the Nichols algebra of V .

In this concrete interpretation, a pre-Nichols algebra of V is a Hopf quotient B of
T .V / by a braided homogeneous Hopf ideal contained in J.V /. Hence, the identity of
V extends to canonical epimorphisms T .V / � B � B.V /. The family Pre.V / of pre-
Nichols algebras of V is naturally equipped with a partial order. Namely, B1 � B2 if
ker.T .V / � B1/ � ker.T .V / � B2/. Thus T .V / is minimal and B.V / is maximal.

Assume now that V is such that GKdimB.V / <1. Inside Pre.V / we get the (non-
empty) subposet PrefGK.V / containing all finite GK-dimensional pre-Nichols algebras.
Understanding this subposet is a crucial problem in the classification of pointed Hopf
algebras with finite GK-dimension, see [10] for details. As a first step towards this direc-
tion, in [10] the authors introduced the notion of an eminent pre-Nichols algebra �B.V /
of V , which is a minimum of PrefGK.V /. This means that, for any B 2 PrefGK.V /, there
exists a surjective map �B.V / � B of braided Hopf algebras which is the identity on V .
The existence of such minimal object is not warranted, see [10] for concrete examples
related to Lie algebras. However, for the family of braidings of diagonal type with con-
nected diagram, this problem have been addressed in [10, 15]. We will get back to this in
Section 3.

2.3. Nichols algebras of diagonal type

A matrix q D .qij /i;j2I with entries in k� is called a braiding matrix, since it gives rise
to a braided vector space .V; cq/: with a fixed basis .xi /i2I of V , cq 2 GL.V ˝ V / is
determined by

cq.xi ˝ xj / D qijxj ˝ xi ; i; j 2 I: (2.1)
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Such a braiding is called of diagonal type. The (Dynkin) diagram of q is a decorated graph.
The set of vertices is I, each vertex labelled with qi i . There is an edge between vertices
i ¤ j if and only if zqij WD qij qj i ¤ 1, in such case the edge is labelled with this scalar.

The braiding matrix q induces a Z-bilinear form q W ZI � ZI ! k� defined on the
canonical basis by q. j̨ ; ˛k/ WD qjk , j; k 2 I. For ˛; ˇ 2 ZI and i 2 I, we set

q˛ˇ D q.˛; ˇ/; q˛ D q.˛; ˛/; N˛ D ord q˛; Ni D ord q˛i : (2.2)

In the diagonal setting, the Nichols algebra has a compatible N0-grading. Indeed, the
tensor algebra T .V / itself becomes a NI

0-graded algebra by the rule deg xi D ˛i , i 2 I;
moreover, the braided structure induced from that of V is homogeneous,

c.u˝ v/ D q˛ˇv ˝ u; u 2 T .V /˛; v 2 T .V /ˇ ; ˛; ˇ 2 NI
0 :

Since the braided coalgebra structure only depends on the braiding, T .V / becomes an
NI
0-graded braided Hopf algebra. Furthermore, the defining ideal Jq D J.V / turns out

to be homogeneous, thus the Nichols algebra Bq D B.V / is an NI
0-graded braided Hopf

algebra.
If B is an NI

0-graded pre-Nichols algebra of q, the following equalities hold:

Œu; vw�c D Œu; v�cw C q˛ˇvŒu;w�c ; (2.3)

Œuv; w�c D qˇ Œu; w�cv C uŒv; w�c ; (2.4)�
Œu; v�c ; w

�
c
D
�
u; Œv; w�c

�
c
� q˛ˇvŒu;w�c C qˇ Œu; w�cv; (2.5)

for all homogeneous elements u 2 B˛ , v 2 Bˇ , w 2 B .
Given at least two indexes i1; : : : ; ik 2 I, we denote

xi1���ik WD .adc xi1/xi2���ik D xi1xi2���ik � qi1i2 � � � qi1ikxi2���ikxi1 (2.6)

as an element in the tensor algebra or any pre-Nichols algebra.

2.3.1. Classification of arithmetic braidings. In this work, we only consider arithmetic
braiding matrices q, which are those with connected diagram and finite generalized root
system �q; that is, those Nichols algebras admitting a (restricted) PBW basis with finite
set of generators, so �q

C is the set of degrees of a set of generators. This is precisely
the class that was classified in [24], and includes all connected braiding matrices with
finite-dimensional Nichols algebras. Next, we recall two results regarding the shape of the
diagrams for arithmetic braiding matrices q D .qij /i;j2I� .

Lemma 2.1 ([24, Lemma 9 (ii)]). If � D 3 and the root system of q is finite, then

zq12zq13zq23 D 1 and .q11 C 1/.q22 C 1/.q33 C 1/ D 0:

Moreover, if q22; q33 ¤ �1 then q22zq12 D q33zq13 D 1.
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Lemma 2.2 ([24, Lemma 23]). Assume that q has finite root system. Then the diagram of
q does not contain cycles of length larger than 3.

The classification provided by [24] consists on several tables containing the Dynkin
diagram of all arithmetic braidings. Later on, an organization from a Lie-theoretic per-
spective was achieved in [3], giving rise to five families: Cartan, super, standard, (super-)
modular, and unidentified. The task of finding eminent pre-Nichols algebras for the first
three families was achieved in [10, 15], up to two exceptions. Here, we focus on the
remaining families.

2.3.2. Defining relations. An explicit presentation of the Nichols algebras with arith-
metic braidings was achieved in [13, Theorem 3.1], which serves as an implicit guidance
throughout this work and thus deserves a brief review. That result consists in a list of 29
homogeneous relations, each of them accompanied by a very specific set of conditions
on the entries of the braiding matrix q. These conditions determine whether or not the
relation needs to be included in the presentation of Bq.

A conceptual analysis of these relations (and their genesis) yields a separation in three
categories: quantum Serre relations, generalizations of these in up to four generators xi ,
and the so-called powers of root vectors. Throughout this work, we will refer to this par-
ticular set of generators for the ideal Jq simply as the presentation of Bq.

2.3.3. Finite GK-dimensional Nichols algebras. Notice that some arithmetic braidings
depend on parameters that can take any but a small number of non-zero values in the
ground field. In all such cases, the corresponding Nichols algebra is finite-dimensional
precisely when these parameters are roots of unity; otherwise, it is just finite GK-dimen-
sional. This work and the prequels [10, 15] focus on braiding matrices with finite-dimen-
sional Nichols algebras. The task of finding eminent pre-Nichols algebras when these
parameters are not roots of unity will be treated in a sequel.

From this perspective, Conjecture 1.1 states that the classification of Nichols algebras
of diagonal type with connected diagram and finite GKdim is precisely the one in [24].
Several steps towards proving the conjecture have been achieved. Namely, it is known to
be true for braidings of rank � D 2; 3 and of Cartan type, [6,16]. Some proofs in this work
and the prequels [10,15] assume that the conjecture holds. However, the majority of those
proofs belong to the realm where the conjecture is known to be true.

As we assume GKdimBq <1, by [31, Lemma 20] for each i ¤ j 2 I there exists
n 2 N0 such that .adc xi /nC1xj D 0. Then we set

c
q
ij WD �min¹n 2 N0 W .adc xi /nC1xj D 0º

D �min¹n 2 N0 W .nC 1/qi i .1 � q
n
ii zqij / D 0º:

Set also cq
i i D 2. Then C q WD .c

q
ij / is a generalized Cartan matrix and one of the key

ingredients in the definition of the Weyl groupoid of q, cf. [22, 26].

We end this section with two results that will be used several times in Section 3.
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Lemma 2.3 ([6, Proposition 4.16]). If W is a braided vector space of diagonal type with
diagram

1
ı

p q
ı , p ¤ 1, then GKdimB.W / D1.

Lemma 2.4 ([10, Lemma 2.8]). Let R be a graded braided Hopf algebra. If W is a
braided vector subspace of P .R/, then GKdimB.W / � GKdimR.

2.4. Pre-Nichols algebras of diagonal type

We collect preliminaries and notation regarding pre-Nichols algebras for later use.

2.4.1. Distinguished pre-Nichols algebras. Given a connected q with finite-dimension-
al Bq, the distinguished pre-Nichols algebra zBq of q, introduced in [14], is the quotient
of the tensor algebra by the ideal that results from Jq by removing certain powers of root
vectors and including quantum Serre relations that could formerly be deduced from the
power of root vectors. This is a key tool in our search for eminent pre-Nichols algeb-
ras, since it is designed to admit a PBW basis with the same set of generators as that
of Bq, and satisfies GKdim zBq <1. The powers of root vectors that are removed from
the presentation correspond to Cartan roots. These are the elements of �q

C for which the
corresponding PBW generator in zBq has infinite height, see [14, Theorem 11].

2.5. Extensions and Hilbert series of graded braided Hopf algebras

We briefly introduce a tool that will be crucial in Section 4. For more details, see [15, §2.6].
Following [9, §2.5], a sequence of morphisms of braided Hopf algebras

k! A
�
! C

�
! B ! k

is an extension of braided Hopf algebras if � is injective, � is surjective, ker� D C�.AC/
and A D C co� . In this case, we just write A

�
,! C

�
� B .

In our examples, C will be connected (i.e. the coradical of C is k). By [4, Proposi-
tion 3.6], to get extensions of C it is enough to consider a surjective braided Hopf algebra
morphism C

�
� B and set AD C co� . This construction will be enough for our purposes.

2.5.1. Hilbert series. The Hilbert series of an N�
0 -graded object U with finite-dimen-

sional homogeneous components is

HU D

X
˛2N�

0

dimU˛t
˛
2 N0ŒŒt1; : : : ; t� ��;

where t˛ D t
a1
1 � � � t

a�
�

for ˛ D .a1; : : : ; a� /. If U 0 is an N�
0 -graded object, we say that

HU � HU 0 if dimU˛ � dimU 0˛ for all ˛ 2 N�
0 .

The main reason for introducing these concepts is the following result.

Lemma 2.5 ([15, Lemma 2.4]). Fix a Hopf algebra H with bijective antipode. If A
�
,!

C
�

�B is a degree-preserving extension of N�
0 -graded connected Hopf algebras in HHYD

with finite-dimensional homogeneous components, then HC D HAHB .
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3. Defining relations and finite GK-dimensional pre-Nichols algebras

Throughout this section we assume that qD .qij /i;j2I� is a braiding matrix with connect-
ed Dynkin diagram such that dim Bq < 1. In particular, the root system is finite (see
[22, §3]) and each qi i is a root of unity, say of orderNi (necessarilyNi�2 by Lemma 2.3).
Let V q be the braided vector space with basis .xi /i2I� and braiding cq.xi ˝ xj / D

qijxj ˝ xi .

Theorem 3.1. If q is not of type

• Cartan A� or D� with q D �1,

• A2 with q 2 G03,

• A3.q j ¹2º/ or A3.q j ¹1; 2; 3º/, with q 2 G1,

• g.2; 3/ with any of the following Dynkin diagram

d1 W
�1
ı

� �1
ı

� �1
ı ; d2 W

�1
ı

�2 �
ı

� �1
ı ;

then the distinguished pre-Nichols algebra zBq is eminent.

Proof. If q is either of Cartan, super or standard type, then the proof follows by [10,
Theorem 1.3] together with [15, Theorem 1.2]. Hence we reduce to the cases in which q

is of types either modular, supermodular or unidentified.
The presentation of the Nichols algebra of q given in [13, Theorem 3.1] consists on a

list of 29 relations, each of them accompanied by specific conditions on the entries of q

that determine whether or not the relations needs to be included. Following the procedure
in Section 2.4.1, we get a set of relations that give a presentation of the distinguished
pre-Nichols algebra zBq. In the prequels [10,15], we determined sufficient conditions on q

to assure that some of these relations hold in any finite GKdim pre-Nichols algebra of q,
under some mild assumptions. For these relations the only remaining task is to ensure their
validity without any assumption, which is achieved in Lemma 3.3 . Finally, in Section 3.2
we deal with the relations that were not considered in the prequels.

3.1. Relations already considered

In this section, we extend some results established in [10, 15] dropping superfluous as-
sumptions. The organization goes as follows: Each relation is studied in a different item
of Lemma 3.3, where we first fix the elements of I� that support the relation and then write
down the conditions on q that [13, Theorem 3.1] requires for including this relation in the
presentation of Bq. If further hypothesis on q are needed, they are included in a different
sentence. All such relations are NI

0-homogeneous, so we will denote them by xˇ , where
ˇ 2 NI

0 is the degree.
One of the tasks is to check that a relation is primitive in all pre-Nichols algebras with

finite GKdim. The following result will be useful for such proposal.
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Remark 3.2. Let I � J be NI
0-graded Hopf ideals of T .V /, let S be a system of NI

0-
homogeneous generators of J , and put B WD T .V /=I . Consider an homogeneous element
x 2 J , and set Yx D ¹y 2 S W deg.y/ < deg.x/º. If Yx � I , then x 2 P .B/.

Proof. Since J is a coideal and the coproduct is N I
0 -homogeneous, there exist ay, by, cy,

dy, ey, fy 2 T .V / such that

�.x/ D 1˝ xC x˝ 1C
X
y2Yx

ayyby ˝ cy C dy ˝ eyyfy 2 T .V /˝ T .V /: (3.1)

Then we use that y D 0 in B for all y 2 Yx.

In particular, we can apply Remark 3.2 to J D zJq, the defining ideal of the distin-
guished pre-Nichols algebra, and S D Sq the set of generators of zJq introduced in [14],
see Section 2.4.1. This will help us to prove that an element is primitive in a pre-Nichols
algebra by studying its image onto zBq.

Now we provide a refined treatment of some relations already considered in [10, 15].

Lemma 3.3. Let B be a finite GKdim pre-Nichols algebra of q.

(a) Let i; j 2 I� be such that cij D 0. Assume that one of the following hold:

• ord qi i C ord qjj > 4,

• qi iqjj D 1 and there exists k 2 I� � ¹i; j º such that zqikzqjk ¤ 1.

Then xij D 0 in B.

(b) Let i; j 2 I� be such that cij < 0, zq1�cijij ¤ 1. Assume that one of the following
hold:

• the Dynkin diagram of kxi ˚ kxj is different from
q
ı
q�1 q
ı , q 2 G03,

• cij D �1, qi i D qjj D zq�1ij 2 G03, and there exists k 2 I� � ¹i; j º such that
zq2
ik
zqjk ¤ 1.

Then .adc xi /1�cij xj D 0 in B.

(c) Let i; j 2 I� be such that q1�ciji i D 1. Assume that zqij D qi i and one of the
following hold

• qjj ¤ �1,

• cij � �2,

• cij D�1, qi i D�1 and there exists k 2 I� � ¹i; j º such that zqjk ; zq2ikzqjk ¤ 1.

Then .adc xi /1�cij xj D 0 in B.

(d) Let i 2 I� be a non-Cartan vertex. Then xNii D 0 in B.

(e) Let i; j 2 I� be such that qi i D zqij D qjj D �1 and there exists k 2 I� � ¹i; j º
such that either zq2

ik
¤ 1 or zq2

jk
¤ 1. Assume that zq2

ik
zq2
jk
¤ 1. Then x2ij D 0 in B.

(f) Let i; j; k 2 I� be such that qjj D �1, zqik D zqij zqjk D 1 and zqij ¤ ˙1. Assume
that one of the following conditions holds:
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• either qi i D �1 or qkk D �1,

• qi iqkk D 1 and there exists ` 2 I� � ¹i; j; kº such that zqi` ¤ 1 D zqj` D zqk`,

• qi iqkk D 1 and there exists ` 2 I� � ¹i; j; kº such that zq2
j`
¤ 1 D zqi` D zqk`,

• qi iqkk D 1 and there exists ` 2 I� � ¹i; j; kº such that zqk` ¤ 1 D zqj` D zqi`.

Then Œxijk ; xj �c D 0 in B.

(g) Let i; j 2 I� be such that qjj D �1, qi i zqij 2 G03 [G06 and either qi i 2 G03 or
cij � �3. Then Œxi ij ; xij �c D 0 in B.

(h) Let i; j;k 2 I� be such that qi iD˙zqij 2G03, zqikD1 and either�qjj D zqij zqjk D1
or q�1jj D zqij D zqjk ¤ �1. Then Œxi ijk ; xij �c D 0 in B.

(i) Let i; j; k 2 I� be such that zqij ; zqik ; zqjk ¤ 1. Then

xijk � qij .1 � zqjk/xjxik C
1 � zqjk

qkj .1 � zqik/
Œxik ; xj �c D 0 in B:

(j) Let i; j; k 2 I� be such that qi i D qjj D�1, zq2ij D zq
�1
jk
¤ 1 and zqik D 1. Assume

that either q2
kk
¤ 1 or zq3ij ¤ 1. Then ŒŒxij ; xijk �c ; xj �c D 0 in B.

(k) Let i; j; k 2 I� be such that qi i D qjj D �1, zq3ij D zq
�1
jk

and zqik D 1. Then

ŒŒxij ; Œxij ; xijk �c �c ; xj �c D 0 in B:

(l) Let i; j; k 2 I� be such that qjj D zq2ij D zqjk 2 G03 and zqik D 1. Assume that
either qi i ¤ �1 or qkk ¤ �1. Then ŒŒxijk ; xj �c ; xj �c D 0 in B.

(m) Let i; j; k 2 I� be such that qjj D zq3ij D zqjk 2 G04, zqik D 1. Then

ŒŒŒxijk ; xj �c ; xj �c ; xj �c D 0 in B:

(n) Let i; j; k 2 I� be such that qi i D zqij D �1, qjj D zq�1jk ¤ �1 and zqik D 1. Then
Œxij ; xijk �c D 0 in B.

(o) Let i; j;k;`2 I� be such that qkk D�1, qjj zqij D qjj zqjk D 1, zqik D zqil D zqj`D 1
and zq2

jk
D zq�1

k`
D q``. Then ŒŒŒxijk`; xk �c ; xj �c ; xk �c D 0 in B.

(p) Let i; j; k; ` 2 I� and q 2 k be such that q`` D zq�1`k D qkk D zq
�1
jk
D q2 , zqij D

q�1i i D q
3, qjj D �1, zqik D zqi` D zqj` D 1. Then

ŒŒŒxijk ; xj �c ; Œxijk`; xj �c �c ; xjk �c D 0 in B:

(q) Let i; j; k; ` 2 I� be such that qkk D �1, qi i D zq�1ij D q2jj , zqk` D q�1
``
D q3jj ,

zqjk D q
�1
jj , zqik D zqi` D zqj` D 1. Then

ŒŒxijk`; xj �c ; xk �c � qjk.zq
�1
ij � qjj /ŒŒxijk`; xk �c ; xj �c D 0 in B:

(r) Let i; j; k 2 I� be such that ord qi i > 3, zqik D 1, qjj D �1, zqij D q�2i i , zqjk D
q�1
kk
D �q3i i . Then

Œxi ; Œxijk ; xj �c �c D
qij qkj

1 � q�1i i
Œxij ; xijk �c C .qi i C q

2
i i /qij qikxijkxij in B:
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Proof. By [15, Theorem 1.2], if q is of Cartan, super or standard type all items are satis-
fied. The statements (a), (b), (c), (d), (e), (f), (i) and (l) were proved in [15, §3].

Items (k), (m) and (n) have corresponding lemmas in [15, §3], but with extra hypo-
thesis on q. However, we verify by exhaustion that these conditions are satisfied for each
diagram in [24]. For (g), (h), (j), (k), (o), (p), (q) and (r), it remains to prove that xˇ is
primitive to conclude that xˇ D 0 in B. The proof is recursive on the degree ˇ 2 NI

0 . For
the initial step, a relation xˇ of minimal degree (for example the quantum Serre relations)
is primitive in T .V / applying Remark 3.2 with I D 0, hence it is primitive in B. Then xˇ
is annihilated in B by the corresponding result in Lemma 3.3 or Section 3.2. Recall that Sq

denotes the defining set of generators for zJq. Recursively, we assume that every relation
x˛ 2 Sq such that ˛ < ˇ vanishes in B. Let Iˇ be the ideal generated by those x˛ 2 Sq

such that ˛ < ˇ, Bˇ D T .V /=Iˇ : By Remark 3.2 with I D Iˇ , J D zJq, we have that
xˇ 2 P .Bˇ /. By recursive hypothesis, there exists a surjective map Bˇ � B of braided
Hopf algebras: as xˇ 2 P .Bˇ /, we have that xˇ 2 P .B/. Again, by the corresponding
result in Lemma 3.3 or Section 3.2, xˇ D 0 in B.

Remark 3.4. The extra assumptions imposed on the braiding matrix q are in fact neces-
sary. If one of these conditions do not hold, then the corresponding relation is not neces-
sarily zero in all finite GKdim pre-Nichols algebras, as we see in the following cases:

• (a), for A3.q j ¹2º/ with q 2 G1;

• (b), for A2 with q 2 G03;

• (c), (e) and (f), for Cartan A� or D� with q D �1;

• (f), for A3.q j ¹1; 2; 3º/, with q 2 G1;

• (j), for g.2; 3/ with diagram d1;

• (l), for g.2; 3/ with diagram d2.

3.2. Verifying more relations

We study the remaining defining relations of zBq given in [13, Theorem 3.1]. Here B stands
for a pre-Nichols algebra of q such that GKdimB <1.

Let us outline the general strategy. For each one of the lemmas below we assume that
q satisfies the conditions required in [13, Theorem 3.1] for including certain relation xˇ of
degree ˇ 2 NI

0 in the presentation of zBq. Next we suppose that (the image of) xˇ does not
vanish in B and prove that (the image of) xˇ is primitive in B. Thus we get a braided vector
space of diagonal type V q ˚ kxˇ � P .B/ which satisfy GKdim B.V q ˚ kxˇ / < 1
by Lemma 2.4. Now we compute the Dynkin diagram of a suitable chosen subspace of
V q ˚ kxˇ ; this is a straightforward task involving (2.2) and depending only on q and ˇ.
Since we are assuming the validity of Conjecture 1.1, this diagram should belong to the
classification given in [24] and this allows us to arrive at a contradiction. Sometimes we
get a Dynkin diagram that belongs to a class in which the conjecture is known to hold true,
so we do not need any further assumption.
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As in Lemma 3.3, the proofs of the lemmas in this subsection use that the relation
xˇ under consideration is primitive in any pre-Nichols algebra B with finite GKdim.
As argued in the proof of Lemma 3.3, this is demonstrated recursively on ˇ applying
Remark 3.2 for J D zJq and I D Iˇ , the ideal generated by those generators of zJq of
degree < ˇ.

Lemma 3.5. Let i; j; k 2 I� be such that one of the following conditions hold:

(a) zqij D qjj D �1 and qi i D �zq2jk 2 G03, zqik D 1;

(b) qkk D zqjk D qjj D �1 and qi i D �zqij 2 G03, zqik D 1;

(c) qjj D �1, zqij D q�2i i ¤ 1, qkk D zq�1jk D �q
3
i i , zqik D 1;

(d) qi i D qjj D qkk D �1, �zqij D zqjk 2 G03, zqik D 1.

Then ŒŒxij ; xijk �c ; xj �c D 0 in B.

Proof. Suppose that xˇ WD ŒŒxij ; xijk �c ; xj �c ¤ 0 in B.
(a) We have zqiˇ D �qi i ¤ 1 and zqjˇ D zqjk ¤ 1, so the Dynkin diagram of kxi ˚

kxj ˚ kxˇ is a (connected) triangle. Since GKdim B < 1, Lemma 2.1 implies that
zqij zqjˇ zqiˇ D 1, but this means qi i zqjk D 1 which contradicts qi i D �zq2jk 2 G03.

(b) In this case, zqiˇ D �qi i and zqkˇ D �1, so the Dynkin diagram of kxi ˚ kxj ˚
kxk ˚ kxˇ contains a 4-cycle, which contradicts Lemma 2.2.

(c) Since zqiˇ D q�2i i ¤ 1 and zqkˇ D q�1kk ¤ 1, the previous argument applies again.
(d) In this case, qˇˇ D 1 and zqiˇ D�1, so the Nichols algebra of kxi ˚ kxˇ is infinite

GK-dimensional by Lemma 2.3.

Lemma 3.6. Let i; j; k 2 I� be such that qkk D qjj D zq�1ij D zq
�1
jk
2 G09, zqik D 1 and

qi i D q
6
kk

. Then ŒŒxi ij ; xi ijk �c ; xij �c D 0 in B.

Proof. Assume that xˇ WD ŒŒxi ij ; xi ijk �c ; xij �c ¤ 0. Since qˇˇ D q7kk and zqkˇ D q�1kk D
.q7
kk
/�4 the braided subspace W WD kxk ˚ kxˇ � P .B/ is of affine Cartan type A.2/2 .

Thus GKdimB.W / D1 by [5, Theorem 1.2 (a)], a contradiction.

Lemma 3.7. Let i; j; k 2 I� be such that qi i D zq�1ij 2 G09, qjj D zq�1jk D q
5
i i , zqik D 1 and

qkk D q
6
i i . Then

ŒŒxijk ; xj �c ; xk �c D .1C zqjk/
�1qjk ŒŒxijk ; xk �c ; xj �c in B:

Proof. If

xˇ D ŒŒxijk ; xj �c ; xk �c � .1C zqjk/
�1qjk ŒŒxijk ; xk �c ; xj �c ¤ 0;

then W WD kxk ˚ kxˇ � P .B/ has the Dynkin diagram

q
ı
k

q q3

ı
ˇ

where q WD q5i i 2 G09. As this diagram does not appear in [24, Table 1], [5, Theorem
1.2 (b)] assures that GKdimB.W / D1, a contradiction with GKdimB <1.
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Lemma 3.8. Let i; j; k 2 I� be such that qi i D qkk D �1, zqik D 1, zqij 2 G03 and qjj D
�zqjk D ˙zqij . Then

Œxi ; xjjk �c D
1C q2jj

qkj
Œxijk ; xj �c C .1C q

2
jj /.1C qjj /qijxjxijk in B:

Proof. Assume that

xˇ WD Œxi ; xjjk �c �
1C q2jj

qkj
Œxijk ; xj �c � .1C q

2
jj /.1C qjj /qijxjxijk ¤ 0:

As zqˇi D zqˇk D zq2ij , the Dynkin diagram ofW WD kxi ˚kxj ˚kxk ˚kxˇ �P .B/ con-
tains a 4-cycle, so GKdimB.W /D1 by Lemma 2.2. This contradicts GKdimB<1.

Lemma 3.9. Let i; j; k; ` 2 I� be such that zqjk D zqij D q�1jj 2G04 [G06, qi i D qkk D�1,
zqik D zqi` D zqj` D 1 and zq3

jk
D zq`k . Then ŒŒxijk ; Œxijk`; xk �c �c ; xjk �c D 0 in B.

Proof. If xˇ WD ŒŒxijk ; Œxijk`; xk �c �c ; xjk �c ¤ 0, then W D kxi ˚ kxj ˚ kxˇ has the
diagram

q3ql l
ı
ˇ

�1
ı
i

q�1

q�1

q
ı
j
;

q�5

q WD qjj 2 G04 [G06;

which does not have finite root system by Lemma 2.1. This contradicts GKdimB<1.

Lemma 3.10. Let i; j; k; ` 2 I� be such that one of the following hold:

(i) qkk D �1, qi i D zq�1ij D q2jj , zqk` D q�1
``
D q3jj , zqjk D q�1jj and zqik D zqi` D

zqj` D 1;

(ii) qi i D zq
�1
ij D �q

�1
``
D �zqkl , qjj D zqjk D qkk D �1 and zqik D zqi` D zqj` D 1;

(iii) qjj D zq
�1
jk
2 G03, qi i D zq�1ij D q`` D zq

�1
kl
D �qjj , qkk D �1 and zqik D zqi` D

zqj` D 1.

Then ŒŒxijk`; xj �c ; xk �c D qjk.zq�1ij � qjj /ŒŒxijk`; xk �c ; xj �c in B.

Proof. Assume that

xˇ WD ŒŒxijk`; xj �c ; xk �c � qjk.zq
�1
ij � qjj /ŒŒxijk`; xk �c ; xj �c ¤ 0:

(i) This is [15, Lemma 3.24], we included the statement here for completeness.
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(ii) Here, W WD kxi ˚ kxj ˚ kxk ˚ kx` ˚ kxˇ � P .B/ has the Dynkin diagram

�1
ı
ˇ

q�1i i �qi i

qi i
ı
i

q�1i i �1
ı
j

�1 �1
ı
k

�qi i �q�1i i
ı
`
:

This diagram does not appear in [24, Table 4], a contradiction with GKdimB <1.
(iii) Set W D kxj ˚ kxˇ � P .B/, which satisfies GKdimB.kxj ˚ kxˇ / <1 and

thus has finite root system [5, Theorem 1.2 (b)]. The Dynkin diagram is

qjj
ı
j

�qjj qjj
ı
ˇ
;

which does not belong to [24, Table 1], a contradiction.

Lemma 3.11. Let i; j; k 2 I� be such that zqjk D 1, qi i D zqij D �zqik 2 G03. Then

Œxi ; Œxij ; xik �c �c D �qjkqikqj i Œxi ik ; xij �c � qijxijxi ik in B:

Proof. Since kxj ˚ kxi ˚ kxk has finite root system, [24, Table 2] implies that qjj D�1
and qkk 2 ¹�1;�q�1i i º.

Assume that xˇ WD Œxi ; Œxij ; xik �c �c C qjkqikqj i Œxi ik ; xij �c C qijxijxi ik ¤ 0. The
diagram of kxi ˚ kxˇ is

d WD
qi i
ı
i

�q2i i �qkk
ı
ˇ

:

If qkk D �1, then GKdimB.kxi ˚ kxˇ / D 1 by Lemma 2.3. In the case qkk D �q�1i i ,
the root system of d is infinite by [24, Table 1], hence GKdim B.kxi ˚ kxˇ / D 1 by
[5, Theorem 1.2 (b)].

Lemma 3.12. Let i; j; k 2 I� be such that qjj D qkk D zqjk D �1, qi i D �zqij 2 G03 and
zqik D 1. Then Œxi ijk ; xijk �c D 0 in B.

Proof. The degree of Œxi ijk ; xijk �c is ˇ WD 3˛i C 2 j̨ C 2˛k . Since qˇˇ D 1 and zqiˇ D
q2i i ¤ 1, it follows from Lemma 2.3 that Œxi ijk ; xijk �c D 0.

Lemma 3.13. Let i; j 2 I� be such that �qi i ;�qjj ; zqij ; qi i zqij ; qjj zqij ¤ 1. Then the rela-
tion Œxi ; Œxij ; xj �c �c D

.1Cqij /.1�qjj zqij /

.1�zqij /qi iqj i
x2ij holds in B.

Proof. By [23, Corollary 13] the diagram

qi i
ı
i

zqij qjj
ı
j
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cannot be extended to a connected diagram of rank 3 with finite root system. Moreover,
[23, Proposition 9 (i)] warranties that qi i zq2ij qjj D �1 and either qi i 2G03 or qjj 2G03. By
symmetry we can assume qi i 2 G03. If

xˇ WD Œxi ; Œxij ; xj �c �c �
.1C qij /.1 � qjj zqij /

.1 � zqij /qi iqj i
x2ij ¤ 0;

then the Nichols algebra of kxi ˚ kxj ˚ kxˇ � P .B/ has finite GKdim by Lemma 2.4.
Hence its diagram must be disconnected by the previous argument. But zqiˇ D �q�1jj ¤ 1,
a contradiction.

Remark 3.14. The unique braiding matrix q with connected diagram of rank at least 3,
with finite root system and such that 3˛i C 2 j̨ 2 �

q
C is

�1
ı

q�1 q
ı

q�3 q3

ı ; ord q > 3; (3.2)

which is of type G.3/. Furthermore, this is also the unique q such that mij � 3 for some
i; j 2 I3, see [24, Table 2]. Also, for all q in [24, Table 2], 4˛i C 3 j̨ , 5˛i C 3 j̨ , 5˛i C
4 j̨ … �

q
C. We will use these facts frequently in what follows.

Lemma 3.15. Assume that the diagram of q is one of the following:

brj.2; 3/ W
��2

ı
i

� �1
ı
j
; � 2 G09I ufo.9/ W

�
ı
i

��5 �1
ı
j
; � 2 G024I

brj.2; 5/ W
���2

ı
i

��2 �1
ı
j
; � 2 G05I Standard G2 W

�2

ı
i

���1 �1
ı
j
; � 2 G08I

ufo.10/ W
���2

ı
i

˙�3 �1
ı
j
; � 2 G020I ufo.11/ W

�3

ı
i

��4 ���4

ı
j

; � 2 G015I

ufo.11/ W
�3

ı
i

��2 �1
ı
j
; � 2 G015I ufo.12/ W

���2

ı
i

��3 �1
ı
j
; � 2 G07:

Then Œxi ; x3˛iC2 j̨
�c D

1�qi i zqij�q
2
i i zq

2
ij qjj

.1�qi i zqij /qi i
x2i ij in B.

Proof. Notice first that either mij 2 ¹4; 5º or else mij D 3, qjj D �1, qi i 2 G04. For q

of standard type G2, the claim was proved in [15, Lemma 6.8]. For the remaining cases,
suppose that

xˇ WD Œxi ; x3˛iC2 j̨
�c �

1 � qi i zqij � q
2
i i zq

2
ij qjj

.1 � qi i zqij /qi i
x2i ij ¤ 0:

The diagram of kxi ˚ kxj ˚ kxˇ � P .B/ is connected since either zqjˇ ¤ 1 when qjj D
�1, or else zqiˇ ¤ 1 when qjj ¤ �1. This is a contradiction with Remark 3.14.
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Lemma 3.16. Assume that the diagram of q is one of the following:

ufo.7/ W
�x�2

ı
x� �

ı ; � 2 G012; ufo.8/ W
��2

ı
�3 �1

ı ; � 2 G012;

ufo.9/ W
�6

ı
� x�
ı ; � 2 G024; ufo.11/ W

��
ı

�x�3 �5

ı ; � 2 G015;

brj.2; 3/ W
��
ı

�
2

�3

ı ; � 2 G09; G2 W
�
ı

�1 �1
ı ; � 2 G06:

Then Œx3˛iC2 j̨
; xij �c D 0 in B.

Proof. Notice first that in all cases 3˛i C 2 j̨ 2�
q
C but 4˛i C 3 j̨ …�

q
C. For q of type G2,

the claim was proved in [15, Lemma 4.2]. For the five remaining cases, suppose that
xˇ ¤ 0. Consider kxi ˚kxj ˚kxˇ �P .B/. Since zqiˇ D q8i i zq

3
ij ¤ 1 one can verify, case-

by-case, that the diagram of that subspace is connected. But this contradicts Remark 3.14,
since none of these five rank-two diagrams is a subdiagram of (3.2). It must be xˇ D 0.

Lemma 3.17. Assume that the diagram of q is one of the following:

ufo.11/ W
��3

ı
��4 x�4

ı ; � 2 G015; brj.2; 3/ W
�3

ı
x� �1

ı ; � 2 G09:

Then Œxi ij ; x3˛iC2 j̨
�c D 0 in B.

Proof. In these cases, 3˛i C 2 j̨ 2 �
q
C but 5˛i C 3 j̨ … �

q
C. Suppose that xˇ ¤ 0. If q

is of type brj.2; 3/ then zqjˇ D �4 ¤ 1, and for type ufo.11/, zqiˇ D �x�4 ¤ 1. Hence the
diagram of kxi ˚kxj ˚kxˇ �P .B/ is connected, a contradiction with Remark 3.14.

Lemma 3.18. Assume that the diagram of q is one of the following:

ufo.10/ W
�
ı

˙x�3 �1
ı ; � 2 G020; ufo.11/ W

�3

ı
��4 �x�4

ı ; � 2 G015;

ufo.11/ W
�5

ı
�x�2 �1

ı ; � 2 G015; brj.2; 5/ W
�
ı

�2 �1
ı ; � 2 G05:

Then Œx4˛iC3 j̨
; xij �c D 0 in B.

Proof. Both cases have 4˛i C 3 j̨ 2 �
q
C and 5˛i C 4 j̨ 62 �

q
C. Suppose that xˇ ¤ 0. We

check case-by-case that zqiˇ D q10i i zq
4
ij ¤ 1, so the diagram of kxi ˚ kxj ˚ kxˇ � P .B/

is connected, contradicting Remark 3.14. Thus xˇ D 0.

Lemma 3.19. Assume that the diagram of q is one of the following:

ufo.10/ W
�x�2

ı
˙�3 �1

ı ; � 2 G020; ufo.11/ W
�3

ı
��4 �x�4

ı ; � 2 G015:

Then ŒŒxi i ij ; xi ij �c ; xi ij �c D 0 in B.
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Proof. If xˇ ¤ 0, consider kxi ˚ kxj ˚ kxˇ � P .B/, which has connected diagram
since zqˇi D q14i i zq

3
ij ¤ 1. But this diagram has infinite root system, because it does not

appear in [24, Table 2], a contradiction.

Lemma 3.20. Assume that the diagram of q is one of the following:

ufo.9/ W
�x�4

ı
�5 �1

ı ; � 2 G024; ufo.12/ W
��
ı

�x�3 �1
ı ; � 2 G07:

Then Œxi ij ; x4˛iC3 j̨
�c D cqx

2
3˛iC2 j̨

in B, where cq 2 k is given in [13, (3.29)].

Proof. Suppose that xˇ ¤ 0. As zqˇi D q12i i zq
4
ij ¤ 1, the diagram of kxi ˚ kxj ˚ kxˇ �

P .B/ is connected. Also, 5˛i C 4 j̨ belongs to the set of roots of kxi ˚ kxj ˚ kxˇ , so
the Nichols algebra of this space has GKdim D1 by Remark 3.14. A contradiction, thus
xˇ D 0.

Remark 3.21. We note that the validity of Conjecture 1.1 was assumed only for the proofs
of Lemma 3.5 (b), (c), Lemma 3.8 and Lemma 3.10 (ii).

4. Exceptional cases of type g.2 ; 3/

Theorem 3.1 says, in particular, that for a braiding matrix q of modular, supermodu-
lar or unidentified type, the distinguished pre-Nichols algebra zBq is eminent up to two
exceptions. In this section, we present, by generators and relations, eminent pre-Nichols
algebras �Bq for these two exceptions. We show that in both cases �Bq fits in an exact
sequence of braided Hopf algebras Z ,! �Bq � zBq, where Z is a q-polynomial algebra
in two variables. Even though the exposition will not make it explicit, the construction of
these eminent pre-Nichols algebras was, in some sense, recursive. Namely, we start with
a candidate pre-Nichols algebra that covers all finite GKdim pre-Nichols. Then we try to
show that this candidate has finite GKdim by exhibiting a PBW basis; at this point we may
realize that some commutation relation is missing. In that case, we redefine our candidate,
and start again. Luckily, at most two iterations of this process were needed.

The two exceptional diagrams of type g.2; 3/ depend on third-root of unity �; they are

�1
ı

� �1
ı

� �1
ı ; (4.1)

�1
ı

� �
ı

� �1
ı : (4.2)

4.1. Type g.2 ; 3/, diagram (4.1)

Fix a braiding matrix q with diagram (4.1). The distinguished pre-Nichols algebra has the
following presentation:

zBq D T .V /=hx
2
1 ; x

2
2 ; x

2
3 ; x13; ŒŒx12; x123�c ; x2�c ; ŒŒx123; x23�c ; x2�ci:
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Notice that Lemma 3.5 deals with the last two relations, but under extra assumptions which
are not satisfied for this particular q. We will show, in particular, that there is a pre-Nichols
algebra with finite GKdim where these elements do not vanish. Set

xu WD ŒŒx12; x123�c ; x2�c ; xv WD ŒŒx123; x23�c ; x2�c : (4.3)

As x21 , x22 , x23 , x13 are primitive in T .V /, they span a Hopf ideal I WD hx21 ; x
2
2 ; x

2
3 ; x13i

of T .V /. Now xu; xv 2 B WD T .V /=I are primitive elements by Remark 3.2. From
[10, Lemma 2.7] we get that Œx1; xu�c , Œxu; x3�c , Œx1; xv�c and Œxv; x3�c are also prim-
itive in B.

Lemma 4.1. Let B a pre-Nichols algebra of q with finite GKdim. Then

Œx1; xu�c D Œxv; x3�c D Œxu; x3�c D Œx1; xv�c D 0 in B:

Proof. Let xˇ 2 ¹Œx1; xu�c ; Œxv; x3�c ; Œxu; x3�c ; Œx1; xv�cº. Since B � B and xˇ is prim-
itive in B, it is also primitive in B. Assume xˇ ¤ 0 in B. By direct computation, zq1ˇ D
zq3ˇ D 1, zq2ˇ D � and qˇˇ D �1, so the Dynkin diagram of kx1 ˚ kx2 ˚ kx3 ˚ kxˇ �
P .B/ is

�1
ı
ˇ

�

�1
ı
1

� �1
ı
2

� �1
ı
3
;

which is not in [24, Table 3], contradicting GKdimB<1 (we assume Conjecture 1.1).

Now we have a candidate for eminent pre-Nichols algebra,�Bq D T .V /=hx
2
1 ; x

2
2 ; x

2
3 ; x13; Œx1; xu�c ; Œx1; xv�c ; Œxu; x3�c ; Œxv; x3�ci: (4.4)

Notice that this is indeed a braided Hopf algebra, because it is a quotient of the auxiliary
B by an ideal generated by primitive elements.

Proposition 4.2. Let q be of type g.2; 3/ with Dynkin diagram (4.1). Then

(a) The pre-Nichols algebra �Bq defined in (4.4) is eminent, with GKdim�Bq D 6.

(b) Consider

x12232 D Œx123; x23�c ; x1223 D Œx123; x2�c ;

x122332 D Œx123; x1223�c ; x12223 D Œx12; x123�c :

Then a basis of �Bq is given by

B D ¹x
n1
3 x

n2
23x

n3
v x

n4
2 x

n5
12232

x
n6
1223

x
n7
122332

x
n8
123x

n9
u x

n10
12223

x
n11
12 x

n12
1 W

n1; n4; n5; n7; n10; n12 2 ¹0; 1º; ni 2 N0 otherwiseº:
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(c) There is an N3
0 -homogeneous extension of braided Hopf algebras Z,!�Bq� zBq,

where Z is the subalgebra of �Bq generated by xu and xv . The braided adjoint
action of �Bq on Z is trivial, and Z is a q-polynomial algebra in two variables.

Proof. Lemmas 3.3 and 4.1 imply that the projection from T .V / onto each finite GK-
dimensional pre-Nichols algebra B of q factors through �Bq. To finish the proof of (a), we
still need to show that GKdim�Bq D 6. This will be achieved after several steps, where we
will simultaneously prove (b) and (c).

Step 1. The elements xu and xv do not vanish in �Bq.

Proof. We consider the following representation of B, � W B! k4�4,

�.x1/ D

0BB@
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

1CCA ; �.x2/ D

0BB@
0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

1CCA ; �.x3/ D

0BB@
0 1 0 0

0 0 0 0

0 0 0 q13
0 0 0 0

1CCA :
Then �.xu/ ¤ 0, �.xv/ ¤ 0 since the first rows of �.xu/; �.xv/ are not zero; hence
xu; xv ¤ 0 in B. As Bn D �Bnq if n � 6, we have that xu; xv ¤ 0 in �Bq.

Step 2. The adjoint action of �Bq on Z is trivial, and Z has basis ¹xmu x
n
v W m; n 2 N0º.

Proof. In first place, we have xu; xv ¤ 0 by Step 1. By definition of �Bq, .adc xi /xu D
.adc xi /xvD0 for iD1; 3, and Œxu; x2�cD Œxv; x2�cD0 since x22D0 in �B. So .adc x/xu D
.adc x/xv D 0 for every homogeneous element x 2 �Bq of positive degree. Now, since xu
and xv are non-zero primitive elements with quu D qvv D 1, a standard argument shows
that Z is a q-polynomial algebra in the variables xu; xv , see for example Step 1 in the
proof of [10, Lemma 4.10].

Step 3. The linear span of B is �Bq.

Proof. It is enough to check that the subspace I spanned by B is a left ideal of �Bq. From
Œx1; xu�c D Œxv; x3�c D 0 and (2.5) we get the equalities

x312x3 D q
3
13q

3
23x3x

3
12; x1x

3
23 D q

3
12q

3
13x

3
23x1:

From these equalities we obtain the following:

Œx12; x12223�c D 0; Œx12232 ; x23�c D 0: (4.5)

Using (2.5) again and x13 D x21 D x
2
3 D 0 we also get

Œx23; x3�c D Œx123; x3�c D 0; Œx12223; x3�c D �
2q13q23x

2
123;

Œx1; x12�c D Œx1; x123�c D 0; Œx1; x12232 �c D �
2q12q13x

2
123:
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Using the last equality, together with Œxu; x3�c D 0, (2.3) and (2.5), we get

0 D
�
x1; Œxu; x3�c

�
c
D
�
x1; ŒŒx12223; x2�c ; x3�c

�
c

D
�
x1; Œx12223; x23�c C q

2
12q13x2x

2
123 � �

2q13q
2
23x

2
123x2

�
c

D q212q13x12223x123 C �q
2
12q

2
13q23x123x12223 C q

2
12q13x12x

2
123

� �2q212q
3
13q

2
23x

2
123x12

D 2q212q13x12x
2
123 � 2�

2q313q
2
23q

2
12x

2
123x12;

thus x12x2123 D �
2q213q

2
23x

2
123x12. Analogously, x2123x23 D �

2q212q
2
13x23x

2
123. From these

two equalities we deduce the following:

Œx12223; x123�c D 0; Œx123; x12232 �c D 0:

Using the first equation and the first one of (4.5), we get

x2
12223

D x12223.x12x123 � �q13q23x123x12/

D �.x12x123 � �q13q23x123x12/x12223 D �x
2
12223

:

This computation and an analogous one for x12232 imply that x2
12223

D x2
12232

D 0.
Next we check the following equations:

Œx1; x1223�c D q12q32x12223 C .� � 1/q13q23x123x12;

Œx1; x122332 �c D �q12q13x123Œx1; x1223�c C �
2q12q32Œx1; x1223�cx123 D 0:

In a similar way we get the equalities

Œx1223; x2�c D 0; Œx122332 ; x2�c D .1 � �
2/q12q32x

2
1223

;

Œx1223; x3�c D x12223; Œx122332 ; x3�c D 0:

Using the relations involving x122332 we obtain that x2
122332

D 0.
A routinary recursive proof shows that x˛xˇ D q˛ˇxˇx˛ C ordered products of inter-

mediate PBW generators for each pair of roots ˛ < ˇ, so the step is proved.

Step 4. There is a degree-preserving extension of braided Hopf algebras Z ,!�Bq � zBq.
Furthermore, B is a basis of �Bq and GKdim�Bq D GKdim zBq C GKdim Z D 6.

Proof. Let Z0 D �Bco� for �Bq � zBq. Since Z � Z0, from Lemma 2.5 we get

H�Bq
D HZ0H zBq

� HZH zBq

�
1

.1 � t21 t
3
2 t3/.1 � t1t

3
2 t
2
3 /

�
.1C t1/.1C t2/.1C t

2
1 t
2
2 t3/.1C t

2
1 t
3
2 t
2
3 /.1C t1t

2
2 t
2
3 /.1C t3/

.1 � t1t2/.1 � t1t
2
2 t3/.1 � t2t3/.1 � t2t3/

:
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On the other hand, �Bq is spanned by B , so

H�Bq
�

.1C t1/.1C t2/.1C t
2
1 t
2
2 t3/.1C t

2
1 t
3
2 t
2
3 /.1C t1t

2
2 t
2
3 /.1C t3/

.1 � t1t2/.1 � t1t
2
2 t3/.1 � t2t3/.1 � t2t3/.1 � t

2
1 t
3
2 t3/.1 � t1t

3
2 t
2
3 /
:

These inequalities between the Hilbert series say that

H�Bq
D

.1C t1/.1C t2/.1C t
2
1 t
2
2 t3/.1C t

2
1 t
3
2 t
2
3 /.1C t1t

2
2 t
2
3 /.1C t3/

.1 � t1t2/.1 � t1t
2
2 t3/.1 � t2t3/.1 � t2t3/.1 � t

2
1 t
3
2 t3/.1 � t1t

3
2 t
2
3 /
;

so ZDZ0, B is a basis of �Bq and GKdim�Bq DGKdim zBqCGKdim ZD 4C 2D 6.

From these Steps, Proposition 4.2 follows.

4.2. Type g.2 ; 3/, diagram (4.2)

Let q be a braiding matrix with Dynkin diagram (4.2). In this case, the distinguished
pre-Nichols algebra is

zBq D T .V /=hx
2
1 ; x

2
3 ; x13; Œx223; x23�c ; x221; x2223; ŒŒx123; x2�c ; x2�ci:

Notice that Lemma 3.3 (l) deals with the relation xu WD ŒŒx123; x2�c ; x2�c but under extra
assumptions which are not satisfied for this particular q. We will see that xu is not zero in
at least one pre-Nichols algebra with finite GKdim. Set

x1223 D Œx123; x2�c ; x12232 D Œx123; x23�c ;

x12332 D Œx12232 ; x2�c ; xv D Œx123; x1223�c :
(4.6)

Consider the algebra

�Bq D T .V /=hx
2
1 ; x

2
3 ; x13; Œx223; x23�c ; x221; x2223; Œxv; x3�c ;

Œx12332 ; x2�c ; Œx12332 ; x3�ci: (4.7)

Next, we prove that �Bq is an eminent pre-Nichols algebra.

Proposition 4.3. Let q be of type g.2; 3/ with Dynkin diagram (4.2). Then

(a) The algebra �Bq in (4.7) is an eminent pre-Nichols of q, and GKdim�Bq D 6.

(b) A basis of �Bq is given by

B D
®
x
n1
3 x

n2
23x

n3
223x

n4
2 x

n5
12332

x
n6
12232

xn7u x
n8
1223

x
n9
123x

n10
v x

n11
12 x

n12
1 W

n1; n3; n5; n6; n10; n11 2 ¹0; 1º
¯
:

(c) There is an N3
0 -homogeneous extension of braided Hopf algebras Z,!�Bq� zBq,

where Z is the subalgebra of �Bq generated by xu and xv . The braided adjoint
action of �Bq on Z is trivial, and Z is a polynomial algebra in two variables.
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Proof. We proceed in several steps. The first two steps are devoted to verify that the defin-
ing ideal of �Bq is a Hopf ideal, and also that �Bq projects onto an arbitrary pre-Nichols
algebra B with finite GKdim. Consider the following auxiliary algebra:

B WD T .V /=hx21 ; x
2
3 ; x13; x221; x2223; Œx223; x23�c ; Œxv; x3�ci:

Step 1. B is a braided Hopf algebra and the canonical projection T .V /! B induces a
surjective Hopf algebra map � W B! B. Also, xu and xv are primitive.

Proof. Let B0D T .V /=hx21 ;x
2
3 ;x13;x221;x2223; Œx223;x23�ci. As x21 , x23 , x13, x221, x2223

are primitive in T .V /, J D hx21 ; x
2
3 ; x13; x221; x2223i is a Hopf ideal of T .V /. Also,

Œx223; x23�c 2 T .V /=J is primitive by Remark 3.2, so B0 is a braided Hopf algebra. By
Lemma 3.3, the canonical projection T .V / � B induces a surjective Hopf algebra map
B0 � B.

Next, we prove that xv is primitive in B0. Notice that xv D 0 in zBq by [14, Proposi-
tion 15], since it is the braided commutator of two consecutive PBW generators of zBq.
Now we can apply (3.1) to B0 � zBq to see that

�.xv/ � 1˝ xv � xv ˝ 1 2 B0 ˝ hxui C hxui ˝B0:

Thus, taking into account the N3
0 -degree and the fact that x1x3 D q13x3x1, we deduce

that �.xv/ � 1˝ xv � xv ˝ 1 is a linear combination of

xu ˝ x1x3; x1xu ˝ x3; xux1 ˝ x3; x3xu ˝ x1; xux3 ˝ x1;

x1x3 ˝ xu; x3 ˝ x1xu; x3 ˝ xux1; x1 ˝ x3xu; x1 ˝ xux3:

Also, xu is primitive in B0 by Remark 3.2, and using [19] we verify that

Œx1; xu�c D Œxu; x3�c D 0: (4.8)

Thus, we can change the four terms with xux1, x3xu by those terms with x1xu, xux3.
Notice that xu and xv are the superletters associated to the Lyndon words x1x2x3x22 and
x1x2x3x1x2x3x2, respectively, according to the definitions in [27]. By [27, Lemma 8],
the hyperwords in the left-hand side of each non-zero term in�.xv/ must be less than xv .
Thus, the coefficients of xu ˝ x1x3, xux3 ˝ x1 and x3 ˝ x1xu must be zero, so there
exist a; b; c 2 k such that

�.xv/ D 1˝ xv C xv ˝ 1C ax1 ˝ xux3 C bx1xu ˝ x3 C cx1x3 ˝ xu:

As .� ˝ id/�.xv/ D .id˝�/�.xv/ we have that a D b D c D 0. Now, Œxv; x3�c is
primitive in B0 by [10, Lemma 2.7] so B is a braided Hopf algebra.

Finally, suppose that xˇ WD Œxv;x3�c ¤ 0 in B. By inspection, if the diagram of a matrix
q0 is connected and contains (4.2), then q0 is not in [24, Table 3]; thus GKdimBq0 D 1,
assuming Conjecture 1.1. Now, the diagram of kx1 ˚ kx2 ˚ kx3 ˚ kxˇ is connected
since zq2ˇ D �, and we get a contradiction.
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Step 2. Œx12332 ; x2�c , Œx12332 ; x3�c are primitive in B, thus �Bq is a braided Hopf algebra.
The canonical projection T .V /! B induces a surjective Hopf algebra map � W �Bq! B.

Proof. From x221 D x2223 D 0 we get x1x32 D q
3
12x

3
2x1 and x3x32 D q

3
32x

3
2x3. From the

last two equalities we deduce the following:

Œxu; x2�c D ŒŒŒx123; x2�c ; x2�c ; x2�c D x123x
3
2 � q

3
12q

3
32x

3
2x123 D 0: (4.9)

As in the proof of Step 1, we use [27, Lemma 13] to see that Œx12332 ; x2�c and Œx12332 ; x3�c
are primitive, thus �Bq D B=hŒx12332 ; x2�c ; Œx12332 ; x3�ci is a braided Hopf algebra.

Assume that xˇ D Œx12332 ;xi �c ¤ 0, i 2 I2;3. The diagram of kx1˚kx2˚kx3˚kxˇ
is connected since zq2ˇ ¤ 1; the same argument as in Step 1 leads to a contradiction since
we assume Conjecture 1.1.

By Step 2, it is enough to prove that GKdim�Bq <1. To do so, we will see that B is
a basis of �Bq in three steps.

Step 3. The adjoint action of �Bq on Z is trivial, and Z has basis ¹xmu x
n
v W m; n 2 N0º.

Proof. Using GAP, we check that xu; xv ¤ 0 in the pre-Nichols algebra B0 introduced in
the proof of Step 1; hence xu;xv¤ 0 in�Bq since .B0/˛D�B˛q for all ˛� 2˛1C 3˛2C 2˛3.
Therefore, xnu ; x

n
v ¤ 0 for all n 2 N since xu and xv are primitive and quu D qvv D 1;

moreover, ¹xmu x
n
v W m; n 2 N0º is a basis of Z, and Z is a Hopf subalgebra. By (4.8) and

(4.9), .adc xi /xu D 0 for all i 2 I3; hence .adc x/xu D 0 for all x 2 �Bq homogeneous of
degree > 0.

Step 4. �Bq is spanned by B .

Proof. To prove the statement, we will see that the subspace I spanned by B is a left ideal
of �Bq. As x21 D x

2
3 D 0, we also have

x1x12 D �q12x12x1; x1x123 D �q12q13x123x1;

x23x3 D �q23x3x23; x123x3 D �q13q23x3x123:

From .adc x2/3x3 D Œx223; x23�c D 0 we deduce the following equality:

x2223 D x223.x2x23 � �q23x23x2/ D ��
�2.x2x23 � �q23x23x2/x223 D ��

�2x2223:

Hence x2223 D 0.
From x221 D 0 we also have Œx12; x2�c D 0. Using this relation and x21 D 0, we check

that x212 D 0; therefore,

x12x123 D x12.x12x3 � q13q23x3x12/ D �q13q23.x12x3 � q13q23x3x12/x12

D �q13q23x123x12:
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Using the relations already proved, (2.6), (4.6) and (2.5), the following relations also hold:

Œx12; x1223�c D 0; Œx12232 ; x3�c D 0; Œx12332 ; x23�c D 0;

Œx12332 ; x223�c D 0; Œx12232 ; x23�c D 0; Œx12232 ; x223�c D 0:

Similarly,

Œx223; x3�c D �
2q23x

2
23; Œx12; x23�c D .� � 1/q12x2x123 � �q23x1223;

Œx1; x1223�c D .�
2
� 1/q12q13x123x12; Œx1; x12232 �c D .�

2
� 1/q12q13x

2
123;

Œx1223; x3�c D x12232 ; Œx1223; x23�c D �q23x12332 � q12q32x2x12232 :

Next we use (2.5) and Œxv; x3�c D 0 to deduce that Œx123; x12232 �c D 0; also,

x2
12232

D .x123x23 � q123;23x23x123/x12232

D �x12232.x123x23 � q123;23x23x123/ D �x
2
12232

:

Hence x2
12232

D 0. From here we check that Œx12232 ; x12332 �c D 0; in turn, this relation
and Œx12332 ; x2�c D 0 imply that x2

12332
D 0.

Again, we prove recursively that x˛xˇ D q˛ˇxˇx˛ C ordered products of intermediate
PBW generators for each pair of roots ˛ < ˇ, so the step is proved.

Step 5. There is a degree-preserving extension of braided Hopf algebras Z ,!�Bq � zBq.
Furthermore, B is a basis of �Bq and GKdim�Bq D GKdim zBq C GKdim Z D 6.

Proof. The proof is analogous to that of the corresponding step in Proposition 4.2. Indeed,
Step 3 shows that Z is a central Hopf subalgebra of �Bq with basis ¹xmu x

n
v W m;n 2 N0º. If

Z0 WD �Bco� , then Z � Z0 and Lemma 2.5 implies that H�Bq
D HZ0H zBq

� HZH zBq
. On

the other hand, �Bq is spanned by B , so we have an equality between the Hilbert series:

H�Bq
D HZH zBq

D
.1C t1/.1C t1t2/.1C t1t

2
2 t
2
3 /.1C t1t

3
2 t
2
3 /.1C t

2
2 t3/.1C t3/

.1 � t1t2t3/.1 � t1t
2
2 t3/.1 � t

2
1 t
3
2 t
2
3 /.1 � t1t

3
2 t3/.1 � t2/.1 � t2t3/

:

Thus Z D Z0, B is a basis of �Bq and GKdim�Bq D GKdim zBq C GKdim Z D 6.

Now, Proposition 4.3 follows from these Steps.
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