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A quantitative relative index theorem and Gromov’s
conjectures on positive scalar curvature

Zhizhang Xie

Abstract. In this paper, we prove a quantitative relative index theorem. It provides a conceptual
framework for studying some conjectures and open questions of Gromov on positive scalar curva-
ture. More precisely, we prove a �-Lipschitz rigidity theorem for (possibly incomplete) Riemannian
metrics on spheres with certain types of subsets removed. This �-Lipschitz rigidity theorem is
asymptotically optimal. As a consequence, we obtain an asymptotically optimal �-Lipschitz rigid-
ity theorem for positive scalar curvature metrics on hemispheres. These give positive answers to
the corresponding open questions raised by Gromov. As another application, we prove Gromov’s
�n�m inequality on the bound of distances between opposite faces of spin manifolds with cube-
like boundaries with a suboptimal constant. As immediate consequences, this implies Gromov’s
cube inequality on the bound of widths of Riemannian cubes and Gromov’s conjecture on the bound
of widths of Riemannian bands with suboptimal constants. Further geometric applications will be
discussed in a forthcoming paper.

1. Introduction

In the past several years, Gromov has formulated an extensive list of conjectures and open
questions on scalar curvature [9, 10]. This has given rise to new perspectives on scalar
curvature and inspired a wave of recent activity in this area [4–6,9–11,13,18,21,31,36,37].
In this paper, we develop a quantitative relative index theorem that serves as a conceptual
framework for solving some of these conjectures and open questions.

For example, we answer the following conjecture of Gromov in the spin case for all
dimensions with a suboptimal constant.

Conjecture 1 (Gromov’s�n�m inequality, [10, Section 5.3]). Let .X; g/ be an n-dimen-
sional compact connected orientable manifold with boundary and X� a closed orientable
manifold of dimension n �m. Suppose

f WX ! Œ�1; 1�m �X�

is a continuous map, which sends the boundary of X to the boundary of Œ�1; 1�m �X�
and which has nonzero degree. Let @j˙, j D 1; : : : ; m, be the pullbacks of the pairs of
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the opposite faces of the cube Œ�1; 1�m under the composition of f with the projection
Œ�1; 1�m � X� ! Œ�1; 1�m. Assume that for any m hypersurfaces Yj � X that separate
@j� from @jC with 1 � j � m, their transversal intersection Yt � X does not admit a
metric with positive scalar curvature; furthermore, the products Yt � T

k of Yt and k-
dimensional tori do not admit metrics with positive scalar curvature either. If Sc.g/ �
n.n � 1/, then the distances j̀ D dist.@j� ; @jC/ satisfy the following inequality:

mX
jD1

1

`2j
�

n2

4�2
:

Consequently, we have
min
1�j�m

dist.@j� ; @jC/ �
p
m
2�

n
:

Here, if .X; g/ is a manifold with Riemannian metric g, then Sc.g/ stands for the
scalar curvature of g. Sometimes, we also write Sc.X/ for the scalar curvature of g if it is
clear from the context which metric we are referring to. In [10], Gromov gave a proof of
Conjecture 1 in dimension� 8 by the minimal surface method [24–26]. In dimension� 9,
Gromov provided an approach towards a proof of Conjecture 1 based on unpublished
results of Lohkamp [20] or a generalization of Schoen–Yau’s result [26]. He stated that the
above inequalities should be regarded as conjectural in dimension� 9, cf. [10, Section 5.2,
page 250].

The conditions in Conjecture 1 may appear technical at the first glance. The following
special case probably makes it clearer what kind of geometric problems we are dealing
with here.

Conjecture 2 (Gromov’s�n inequality, [10, Section 3.8]). Let g be a Riemannian metric
on the cube I n D Œ0; 1�n. If Sc.g/ � n.n � 1/, then

nX
jD1

1

`2j
�

n2

4�2
;

where j̀ D dist.@j� ; @jC/ is the g-distance between the pair of opposite faces @j� and @jC
of the cube. Consequently, we have

min
1�j�n

dist.@j� ; @jC/ �
2�
p
n
:

One of the key ingredients for the proof of Conjecture 1 is the following quantitative
relative index theorem.

Theorem I (cf. Theorem 3.5). Let Z1 and Z2 be two closed n-dimensional Riemannian
manifolds and �j a Euclidean C`n-bundle1 over Zj for j D 1; 2. Suppose Dj is a C`n-
linear Dirac-type operator acting on �j over Zj . Let zZj be a Galois �-covering space
of Zj and zDj the lift of Dj . Let Xj be a subset of Zj and zXj the preimage of Xj under

1Here C`n is the real Clifford algebra of Rn. See [17, Chapter II.§7 and Chapter III.§10] for more
details on C`n-vector bundles and the Clifford index of C`n-linear Dirac operators.
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the covering map zZj ! Zj . Denote by Nr .Zj nXj / the open r-neighborhood of Zj nXj .
Suppose there is r > 0 such that all geometric data on Nr .Z1nX1/ and Nr .Z2nX2/
coincide, i.e., there is an orientation preserving Riemannian isometry ˆWNr .Z1nX1/!
Nr .Z2nX2/ such thatˆ lifts to an isometric C`n-bundle isomorphismˆW�1jNr .Z1nX1/!
�2jNr .Z2nX2/. Assume that

(1) there exists � > 0 such that

Rj .x/ �
.n � 1/�2

n

for all x 2 Xj , where Rj is the curvature term appearing in D2
j D r

�r CRj ,

(2) and D1 D ˆ�1D2ˆ on Nr .Z1nX1/.

Then there exists a universal constant C > 0 such that if � � r > C , then we have

Ind�. zD1/ � Ind�. zD2/ D 0

in KOn.C �max.�I R//, where Ind�. zDj / denotes the maximal higher index of zDj and
C �max.�IR/ is the maximal group C �-algebra of � with real coefficients.

The numerical estimates in Appendix B show that the universal constant C is� 40:65.
As an application of the above quantitative relative index theorem, we solve Gromov’s
�n�m inequality (Conjecture 1) for all dimensions with a suboptimal constant. More pre-
cisely, we have the following theorem.

Theorem II (cf. Theorem 4.3). Let X be an n-dimensional compact connected spin
manifold with boundary. Suppose f WX ! Œ�1; 1�m is a continuous map that sends the
boundary ofX to the boundary of Œ�1; 1�m. Let @j˙, j D 1; : : : ;m, be the pullbacks of the
pairs of the opposite faces of the cube Œ�1; 1�m. Suppose Yt is an .n � m/-dimensional
closed submanifold (without boundary) in X that satisfies the following conditions:

(1) �1.Yt/! �1.X/ is injective;

(2) Yt is the transversal intersection2 ofm orientable hypersurfaces ¹Yj º1�j�m ofX ,
each of which separates @j� from @jC;

(3) the higher index Ind�.DYt
/ does not vanish in KOn�m.C �max.�IR//, where � D

�1.Yt/.

If Sc.X/ � n.n � 1/, then the distances j̀ D dist.@j�; @jC/ satisfy the following
inequality:

mX
jD1

1

`2j
�

n2�
8p
3
C C 4�

�2 ;
where C is the universal constant from Theorem I. Consequently, we have

min
1�j�m

dist.@j�; @jC/ �
p
m

8p
3
C C 4�

n
:

2In particular, this implies that the normal bundle of Yt is trivial.
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In a subsequent work, with Wang and Yu [30], the author proves Theorem II with the
optimal constant via a different method, hence completely solves Conjecture 1 (in spin
case) and Conjecture 2 for all dimensions. We point out that Cecchini [4] and Zeidler
[36, 37] proved a special case of Theorem II when m D 1 with the optimal constant.

For spin manifolds, the assumptions on Yt in Theorem II above are (stably) equiv-
alent to the assumptions in Conjecture 1, provided that the (stable) Gromov–Lawson–
Rosenberg conjecture holds for � D �1.Yt/. See the survey paper of Rosenberg and
Stolz [23] for more details. The stable Gromov–Lawson–Rosenberg conjecture for � fol-
lows from the strong Novikov conjecture for � , where the latter has been verified for a
large class of groups including all word hyperbolic groups [7], all groups acting properly
and isometrically on simply connected and non-positively curved manifolds [15], all sub-
groups of linear groups [12], and all groups that are coarsely embeddable into a Hilbert
space [34].

As a special case of Theorem II, we have the following theorem, which proves
Gromov’s�n-inequality (Conjecture 2) with a suboptimal constant.

Theorem III. Let g be a Riemannian metric on the cube I nD Œ0;1�n. If Sc.g/� n.n� 1/,
then

nX
jD1

1

`2j
�

n2�
8p
3
C C 4�

�2 ;
where j̀ D dist.@j� ; @jC/ is the g-distance between the pair of opposite faces @j� and @jC
of the cube, and C is the universal constant from Theorem I. Consequently, we have

min
1�j�n

dist.@j�; @jC/ �
8p
3
C C 4�
p
n

:

Proof. Note that the higher index of the Dirac operator on a single point is a generator
of KO0.¹eº/ D Z, hence does not vanish. If X is the cube I n D Œ0; 1�n with the given
Riemannian metric g, then the assumptions of Theorem II are satisfied. Hence the theorem
follows from Theorem II.

As pointed out by Gromov in [10, Section 3.8], Theorem III has the following imme-
diate corollary. Recall that a map 'W .X; g/! .Y; h/ between two metric spaces is said to
be �-Lipschitz if

disth.'.x1/; '.x2// � � � distg.x1; x2/

for all x1; x2 2 X .

Corollary 1.1. Let .X;g0/ be the standard unit hemisphere SnC. IfX admits a Riemannian
metric g such that

(1) there is a �n-Lipschitz homeomorphism 'W .X; g/! .X; g0/,

(2) and Sc.g/ � n.n � 1/ D Sc.g0/,
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then

�n �
2 arcsin

�
1p
n

�
1p
n

�
8p
3
C C 4�

� > 1
4p
3
C C 2�

;

where C is the same universal constant from Theorem I.

As another application of our quantitative relative index theorem, we prove the fol-
lowing �-Lipschitz rigidity theorem for positive scalar curvature metrics on spheres with
certain subsets removed. This gives a positive answer to a corresponding open question of
Gromov, cf. [9, page 687, specific problem].

Theorem IV (cf. Theorem 5.8). Let † be a subset of the standard unit sphere Sn con-
tained in a geodesic ball of radius r < �

2
. Let .X; g0/ be the standard unit sphere Sn

minus †. If a (possibly incomplete) Riemannian metric g on X satisfies that

(1) there is a �n-Lipschitz homeomorphism 'W .X; g/! .X; g0/,

(2) and Sc.g/ � n.n � 1/ D Sc.g0/,

then

�n �

r
1 �

Cr

n2
;

where3

Cr D
8C 2

.�
2
� r/2

and C is the universal constant from Theorem I. Consequently, the lower bound for �n
approaches 1, as n!1.

This �-Lipschitz rigidity theorem is asymptotically optimal in the sense that the lower
bound for �n becomes sharp, as n D dim Sn !1. In the case where n D dim Sn is odd,
an analogue of Theorem IV also holds for subsets that are contained in a pair of antipodal
geodesic balls of radius r < �

6
. We refer the reader to Theorem 5.10 for the precise details.

We point out that when † D ¿, that is, when .X; g0/ is the standard unit sphere Sn itself,
it is a theorem of Llarul that �n � 1 for all n � 2 [19, Theorem A]. Furthermore, when
† is either a single point or a pair of antipodal points, Gromov showed that �n � 1 when
3 � n � 8 [10, Section 3.9].

As a consequence of Theorem IV, we have the following �-Lipschitz rigidity result
for hemispheres. This answers (asymptotically) an open question of Gromov on the sharp-
ness of the constant �n for the �-Lipschitz rigidity of positive scalar curvature metrics on
hemispheres [10, Section 3.8].

3If n D dim Sn is odd, our proof of Theorem IV in fact shows that we can improve Cr to be 4C 2

. �2 �r/
2

instead of 8C 2

. �2 �r/
2 .
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Theorem V (cf. Theorem 5.11). Let .X; g0/ be the standard unit hemisphere SnC. If a
Riemannian metric g on X satisfies that

(1) there is a �n-Lipschitz homeomorphism 'W .X; g/! .X; g0/,

(2) and Sc.g/ � n.n � 1/ D Sc.g0/,

then

�n �
�
1 � sin

�
p
n

�r
1 �

8C 2

�2n

where C is the universal constant from Theorem I. Consequently, the lower bound for �n
approaches 1, as n!1.

The above theorem is asymptotically optimal in the sense that the lower bound for �n
becomes sharp, as n D dim Sn !1. In particular, it improves the lower bound for �n in
Corollary 1.1 when n D dim Sn is large.

A key geometric concept behind the proof of Theorem IV is the following notion of
wrapping property for subsets of Sn.

Definition 1.2. Let Z be a path-connected metric space. A subset † of Z is called
strongly non-separating if ZnN".†/ is path-connected for all sufficiently small " > 0,
where N".†/ is the open "-neighborhood of †.

Definition 1.3 (Subsets with the wrapping property). A subset † of the standard unit
sphere Sn is said to have the wrapping property if † is strongly non-separating and
furthermore there exists a smooth distance-contracting4 map ˆW Sn ! Sn such that the
following are satisfied:

(1a) if n is even, ˆ equals the identity map on N".†/;

(1b) if n is odd, ˆ equals either the identity map or the antipodal map on each of the
connected components of N".†/;

(2) and5 deg.ˆ/ ¤ 1.

Note that the conditions for satisfying the wrapping property in the odd dimensional
case are slightly weaker than those in the even dimensional case. Roughly speaking, a
subset † � Sn has the wrapping property if its geometric size is “relatively small”. For
example, if† is a strongly non-separating subset of the standard unit sphere Sn that is con-
tained in a geodesic ball of radius< �

2
, then† has the wrapping property (cf. Lemma 5.3).

Moreover, a strongly non-separating subset of an odd dimensional sphere that is contained
in a pair of antipodal geodesic balls of radius< �

6
also satisfies the wrapping property (cf.

Lemma 5.5).
Motivated by the theorems of Llarul and Gromov and the results in the current paper,

we conclude this introduction by the following open question.

4Recall that a smooth map WX! Y between Riemannian manifolds is said to be distance-contracting
if it is 1-Lipschitz, that is, k �.v/k � kvk for all tangent vectors v 2 TX .

5For example, if ˆ is not surjective, then clearly deg.ˆ/ D 0 ¤ 1.
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Open Question (Rigidity for positive scalar curvature metrics on Snn†). Let † be a
subset with the wrapping property in the standard unit sphere Sn. Let .X; g0/ be the
standard unit sphere Sn minus †. If a (possibly incomplete) Riemannian metric g on X
satisfies

(1) g � g0,

(2) and Sc.g/ � n.n � 1/ D Sc.g0/,

then does it imply that g D g0?

The paper is organized as follows. In Section 2, we review the construction of some
standard geometric C �-algebras and the construction of higher index. In Section 3, we
prove our quantitative relative index theorem (Theorem 3.4 and Theorem 3.5). Finally, we
apply the quantitative relative index theorem to prove Theorems II–V in Section 4 and
Section 5.

2. Preliminaries

In this section, we review the construction of some standard geometric C �-algebras and
the construction of higher indices (cf. [32]).

LetX be a proper metric space, i.e., every closed ball inX is compact. AnX -module is
a Hilbert space H equipped with a �-representation �WC0.X/! B.H/ of C0.X/, where
B.H/ is the algebra of all bounded linear operators on H . An X -module H is called
non-degenerate if the �-representation of C0.X/ is non-degenerate, that is, �.C0.X//H
is dense in H . An X -module is called ample if no nonzero function in C0.X/ acts as a
compact operator.

Assume that a discrete group � acts freely and cocompactly6 on X by isometries and
HX is a non-degenerate ampleX -module equipped with a covariant unitary representation
of � . If we denote by � and � the representations of C0.X/ and � respectively, this means

�./.�.f /v/ D �.�f /.�./v/;

where f 2C0.X/,  2� , v 2HX and �f .x/D f .�1x/. In this case, we call .HX ;�;�/
a covariant system of .X; �/.

Definition 2.1. Let .HX ; �; �/ be a covariant system of .X; �/ and T a �-equivariant
bounded linear operator acting on HX .

(1) The propagation of T is defined to be the supremum

sup¹dist.x; y/ W .x; y/ 2 supp.T /º;

6More generally, with appropriate modifications, all constructions in this section have their obvious
analogues for the case of proper and cocompact actions instead of free and cocompact actions, cf. [35,
Section 2].
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where supp.T / is the complement of points .x; y/ 2 X �X for which there exist
f; g 2 C0.X/ such that gTf D 0 and f .x/ ¤ 0, g.y/ ¤ 0;

(2) T is said to be locally compact if f T and Tf are compact for all f 2 C0.X/.

We recall the definition of equivariant Roe algebras.

Definition 2.2. Let X be a locally compact metric space with a free and cocompact iso-
metric action of � . Let .HX ; �; �/ be a covariant system. We define CŒX�� to be the
�-algebra of �-equivariant locally compact finite propagation operators in B.HX /. The
equivariant Roe algebra C �r .X/

� is defined to be the completion of CŒX�� in B.HX /

under the operator norm.

There is also a maximal version of equivariant Roe algebras.

Definition 2.3. For an operator T 2 CŒX�� , its maximal norm is

kT kmax WD sup
'

®
k'.T /k W 'WCŒX�� ! B.H/ is a �-representation

¯
:

The maximal equivariant Roe algebra C �max.X/
� is defined to be the completion of CŒX��

with respect to k � kmax.

We know

C �r .X/
�
Š C �r .�/˝K and C �max.X/

�
Š C �max.�/˝K;

where C �r .�/ (resp. C �max.�/) is the reduced (resp. maximal) group C �-algebra of � and
K is the algebra of compact operators.

Furthermore, there are also real versions of reduced and maximal equivariant Roe
algebras, by using real Hilbert spaces instead of complex Hilbert spaces. We shall denote
these algebras by C �r .X/

�
R and C �max.X/

�
R. Similarly, we have

C �r .X/
�
R Š C

�
r .�IR/˝KR and C �max.X/

�
R Š C

�
max.�IR/˝KR;

where C �r .�IR/ (resp. C �max.�IR/) is the reduced (resp. maximal) group C �-algebra
of � with real coefficients and KR is the algebra of compact operators on a real infinite
dimensional Hilbert space.

Let us review the construction of the higher index of a first-order symmetric elliptic
differential operator on a closed manifold. Suppose M is a closed Riemannian manifold.
Let �M be a Galois covering space of M whose deck transformation group is � . Suppose
D is a symmetric elliptic differential operator acting on some vector bundle � over M . In
addition, ifM is even dimensional, we assume � to be Z=2-graded andD has odd-degree
with respect to this Z=2-grading. Let zD be the lift of D to �M .

We choose a normalizing function �, i.e., a continuous odd function �WR! R such
that

lim
x!˙1

�.x/ D ˙1:
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By the standard theory of elliptic operators on complete manifolds, zD is essentially self-
adjoint and F D �. zD/ obtained by functional calculus satisfies the condition

F 2 � 1 2 C �r .
�M/� Š C �r .�/˝K:

In the even dimensional case, since we assume � to be Z=2-graded and D has odd-
degree with respect to this Z=2-grading, we have

D D

�
0 D�

DC 0

�
:

In particular, it follows that

F D

�
0 U

V 0

�
for some U and V such that UV � 1 2 C �r . �M/� and V U � 1 2 C �r . �M/� . Define the
following invertible element:

W WD

�
1 U

0 1

��
1 0

�V 1

��
1 U

0 1

��
0 �1

1 0

�
:

and form the idempotent

p D W

�
1 0

0 0

�
W �1 D

�
UV.2 � UV / .2 � UV /.1 � UV /U

V.1 � UV / .1 � V U /2

�
: (2.1)

Definition 2.4. In the even dimensional case, the higher index Ind�. zD/ of zD is defined
to be

Ind�. zD/ WD Œp� �
��
1 0

0 0

��
2 K0.C

�
r .
�M/�/ Š K0.C

�
r .�//:

Note that if � is the trivial group, then the higher index Ind�. zD/ 2 K0.K/ D Z is
simply the classical Fredholm index Ind.D/ of D, where the latter is defined to be

Ind.D/ WD dim ker.DC/ � dim coker.DC/:

The construction of higher index in the odd dimensional case is similar.

Definition 2.5. In the odd dimensional case, the higher index Ind�. zD/ of zD is defined to
be

Ind�. zD/ WD exp
�
2�i

�. zD/C 1

2

�
2 K1.C

�
r .
�M/�/ Š K1.C

�
r .�//:

The higher index of zD, as a K-theory class, is independent of the choice of the nor-
malizing function �. In particular, if we choose � to be a normalizing function whose
distributional Fourier transform has compact support, then F D �. zD/ has finite propa-
gation and consequently the formula for defining Ind�. zD/ produces an element of finite
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propagation,7 that is, an element in CŒ �M�� , which certainly also defines a K-theory class
in Kn.C �max.�//. We define this class Ind�. zD/ 2 Kn.C �max.�// to be the maximal higher
index of the operator zD.

The higher index of an elliptic operator with real coefficients is defined the same
way, and it lies in KOn.C �r .�IR// or KOn.C �max.�IR//, when the elliptic operator is
appropriately graded (e.g. C`n-graded with respect to the real Clifford algebra C`n). See
[17, Chapter II. §7].

3. A quantitative relative index theorem

In this section, we prove a quantitative relative index theorem (Theorem 3.4 and Theo-
rem 3.5), which serves a conceptual framework for studying some conjectures and open
questions on Riemannian metrics of positive scalar curvature proposed by Gromov in the
past several years [9, 10].

Let Y be a complete n-dimensional Riemannian manifold and � a Euclidean C`n-
bundle over Y . Suppose D is a first-order symmetric elliptic C`n-linear differential oper-
ator acting on � over Y . Recall the following lemma due to Roe [22, Lemma 2.5].

Lemma 3.1. With the same notation as above, suppose there exist � > 0 and a subset
K � Y such that

kDf k � �kf k

for all f 2 C1c .Y nK; �/. Given ' 2 �.R/, assume the Fourier transform O' of ' is sup-
ported in .�r; r/. If  2 C0.Y / has support disjoint from the 2r-neighborhood of K,
then

k'.D/�. /kop � k k sup¹j'.y/j W jyj � �º:

Here �. / is the bounded operator on L2.Y; �/ given by multiplication of  , and k k is
the supremum norm of  .

Roe’s proof of the above lemma makes use of the Friedrichs extension ofD2 on Y nK
in an essential way. In Appendix A, we shall construct analogues of the Friedrichs exten-
sion in the maximal group C �-algebra setting, which allows us to extend Roe’s lemma
above to the corresponding maximal setting (by following essentially the same proof of
Roe [22, Lemma 2.5]).

Let us consider the case where n D dim Y is even. Consider a normalizing function8

�WR! R such that the distributional Fourier transform O� of � is supported on Œ�1; 1�.

7In the odd dimensional case, one can approximate exp.2�i �.
zD/C1
2

/ by a finite propagation element,
since the coefficients in the power series expansion for the function e2�it decay very fast (faster than any
exponential decay, to be more precise).

8A normalizing function is a continuous odd function �WR! R such that limx!˙1 �.x/ D ˙1.
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Let Ft D �.tD/. SinceD is assumed to have odd-degree with respect to the Z=2-grading
on � , we have

D D

�
0 D�

DC 0

�
:

In particular, it follows that

Ft D

�
0 Ut
Vt 0

�
for some Ut and Vt . As in line (2.1), we define

pt D

�
UtVt .2 � UtVt / .2 � UtVt /.1 � UtVt /Ut
Vt .1 � UtVt / .1 � VtUt /

2

�
: (3.1)

The following lemma will be useful in the proof of Theorem 3.4.

Lemma 3.2. With the same notation as above, the following hold for all t > 0.

(1) There exists ˇ > 0 such that kptk � ˇ for all t > 0.

(2) The propagation prop.pt / of pt is � 5t .

(3) If there exist � > 0 and a closed subset K � Y such that

kDf k � �kf k

for all f 2 C1c .Y nK; �/, then there exists � > 0 such that�pt � �1 0

0 0

��
f

 � �

t

for all f 2 C1c .Y nN10t .K/; �/, where N10t .K/ is the 10t -neighborhood of K.

Proof. Clearly, there exists ˛ > 0 such that j�j is uniformly bounded by ˛. Hence both
Ut and Vt have operator norm � ˛. Therefore, part (1) follows from the explicit formula
of pt in line (3.1).

The distributional Fourier transform O� of � is supported on Œ�1; 1�. By the inverse
Fourier transform formula

�.D/ D
1

2�

Z
O�.�/ei�D d�

and the finite propagation of the wave operator ei�D , we see that �.D/ has propagation
no more than 1. Replacing �.x/ by �.tx/, we see that the propagation of �.tD/ is � t . In
particular, Ut and Vt also have propagation � t . Hence, part (2) follows from the explicit
formula of pt in line (3.1). Furthermore, part (3) follows Lemma 3.1. This finishes the
proof.
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Let e be an element in a Banach algebra such that

ke2 � ek < 1=4:

Then the spectrum of e is disjoint from the vertical line ¹1
2
C iy W y 2 Rº. Let † be the

part of spectrum of e that is to the right of the line ¹1
2
C iy W y 2 Rº. Choose a contour

 containing † but disjoint from † and the vertical line ¹1
2
C iy W y 2 Rº. Apply the

holomorphic functional calculus and define

Qe D
1

2�i

Z


z.z � e/�1:

Lemma 3.3. Let p be an idempotent in a Banach algebra with kpk � ˇ. Let es D sp C
.1� s/e for s 2 Œ0; 1�. Suppose e is an element with kek � ˇC 1 and kp � ek< . 1

2ˇC2
/1
4

.
Then the following hold.

(1) We have

ke2s � esk <
1

4

for all s 2 Œ0; 1�.

(2) If we define

Qes D
1

2�i

Z


z.z � es/
�1

as above, then ¹esº0�s�1 is a continuous path of idempotents connecting Qe0 and p.

Proof. Part (1) follows from the following estimate:

ke2s � esk D ke
2
s � pes C pes � p

2
C p � esk

� k.es � p/esk C kp.es � p/k C kp � esk

� .kesk C kpk C 1/kes � pk:

By the definition of holomorphic functional calculus, part (2) is obvious.

Now we are ready to prove the quantitative relative index theorem. Let us first prove
a version of the quantitative relative index theorem for the reduced group C �-algebras.
The maximal version can be proved in exactly the same way, after applying the results of
Appendix A.

Theorem 3.4. Let Z1 and Z2 be two closed n-dimensional Riemannian manifold and
�j a Euclidean C`n-bundle over Zj for j D 1; 2. Suppose Di is a first-order symmetric
elliptic C`n-linear differential operators acting on �j over Zj . Let zZj be a Galois �-
covering space ofZj and zDj the lift ofDj . Let Xj be a subset ofZj and zXj the preimage
ofXj under the covering map zZj ! Zj . Denote byNr .Zj nXj / the open r-neighborhood
of Zj nXj . Suppose there is r > 0 such that all geometric data on Nr .Z1nX1/ and
Nr .Z2nX2/ coincide, i.e., there is an orientation preserving Riemannian isometry
ˆWNr .Z1nX1/! Nr .Z2nX2/ such that ˆ lifts to an isometric C`n-bundle isomorphism
ˆW �1jNr .Z1nX1/ ! �2jNr .Z2nX2/. Assume that



Quantitative relative index and Gromov’s conjectures on psc 621

(1) the restriction of zDj on zXj is invertible in the following sense: there exists � > 0
such that

k zDjf k � �kf k

for all f 2 C1c . zX
o
j ;
z�j /, where zX

o
j is the interior of zXj in zZ;

(2) and D1 D ˆ�1D2ˆ on Nr .Z1nX1/.

Then there exists a universal constant C > 0 such that if � � r > C , then we have

Ind�. zD1/ � Ind�. zD2/ D 0

in KOn.C
�
r .�IR//, where Ind�. zDj / denotes the maximal higher index of zDj and

C �r .�IR/ is the reduced group C �-algebra of � with real coefficients.

Proof. Let us prove the theorem for the case where dimZj is even and � is a Hermitian
C`n-bundle, mainly for the reason of notational simplicity. Here C`n is the complex Clif-
ford algebra of Rn. The proof for the real Clifford bundle case is the same. Also, the proof
for the odd dimensional case is completely similar.9 Now, if � is a Hermitian C`n-bundle
and n is even, it is equivalent to view � as a Hermitian vector bundle with a Z=2-grading,
with respect to which the operators D1 and D2 have odd degree.

We apply the usual higher index construction to zDj (cf. Section 2). Let �WR! R be a
normalizing function such that its distributional Fourier transform is supported in Œ�1; 1�.
Define

F1;t D �.t zD1/ and F2;t D �.t zD2/:

Let pt and qt be the idempotents constructed out of F1;t and F2;t as in line (2.1). Then
for any fixed t > 0, the higher index Ind�. zD1/ 2 K0.C �r .�// is represented by

Œpt � �

�
1 0

0 0

�
;

and the higher index Ind�. zD2/ 2 K0.C �r .�// is represented by

Œqt � �

�
1 0

0 0

�
:

By assumption, there exists � > 0 such that

k zDjf k � �kf k

for all f 2 C1c . zX
o
j ;
z�j /. By a standard rescaling argument, that is, by considering �D1

and �D2 for some appropriate � > 0, we can without loss of generality assume � D 1, cf.
Remark 3.6. By part (3) of Lemma 3.2, there exists � > 0 such that�pt � �1 0

0 0

��
f

 � �

t

9Alternatively, the odd dimensional case can be reduced to the even dimensional case by a standard
suspension argument.
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for all f 2 C1c . zZ1nN10t . zZ1n zX1/; z�1/. Let us define the operator Pt by setting

Pt .f / D

´
pt .f / if f 2 L2.N10t . zZ1n zX1/; z�1/;�
1 0
0 0

�
f if f 2 L2. zZ1nN10t . zZ1n zX1/; z�1/:

In particular, by Lemma 3.3, as long as t D t0 is sufficiently large, then kPt � ptk is
sufficiently small, which implies that

kP 2t � Ptk <
1

4
:

Furthermore, if we define
zPt D

1

2�i

Z


z.z � Pt /
�1

then part (2) of Lemma 3.3 implies that zPt and pt represent the same K-theory class, as
long as t D t0 is sufficiently large.

We apply the same argument above to qt and define

Qt .f / D

´
qt .f / if f 2 L2.N10t . zZ2n zX2/; z�2/;�
1 0
0 0

�
f if f 2 L2. zZ2nN10t . zZ2n zX2/; z�2/:

Similarly, we define
zQt D

1

2�i

Z


z.z �Qt /
�1

Then Lemma 3.3 implies that zQt and qt represent the same K-theory class, as long as
t D t0 is sufficiently large.

Now let us set C D 15t0. Recall that we have already applied a rescaling argument to
reduce the general case to the case where � D 1. Then by assumption, we have

r D � � r > C D 15t0:

It follows from the standard finite propagation of wave operators associated to zD1 and zD2
that pt0 and qt0 coincide as operators10 on

L2.Nr . zZ1n zX1/; z�1/ Š L
2.Nr . zZ2n zX2/; z�2/:

It follows that zPt0 and zQt0 coincide. In particular, we have

Ind�. zD1/ D Œ zPt0 � �
��
1 0

0 0

��
D Œ zQt0 � �

��
1 0

0 0

��
D Ind�. zD2/

in K0.C �r .�IR//. This finishes the proof.

10As far as K-theory classes of pt0 and qt0 are concerned, we can simply ignore the subspaces
L2. zZ1nNr . zZ1n zX1/; z�1/ and L2. zZ2nNr . zZ2n zX2/; z�2/, since pt0 and qt0 act on them as the trivial idem-
potent

�
1 0
0 0

�
respectively.
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By applying the results of Appendix A and the estimates in Example 3.7, the same
proof for Theorem 3.4 also proves the following maximal version of the quantitative rela-
tive index theorem.

Theorem 3.5 (Theorem I). Let Z1 and Z2 be two closed n-dimensional Riemannian ma-
nifolds and �j a Euclidean C`n-bundle over Zj for j D 1; 2. Suppose Dj is a C`n-linear
Dirac-type operator acting on �j overZj . Let zZj be a Galois �-covering space ofZj and
zDj the lift of Dj . Let Xj be a subset of Zj and zXj the preimage of Xj under the covering

map zZj !Zj . Denote byNr .Zj nXj / the open r-neighborhood ofZj nXj . Suppose there
is r > 0 such that all geometric data on Nr .Z1nX1/ and Nr .Z2nX2/ coincide, i.e., there
is an orientation preserving Riemannian isometry ˆWNr .Z1nX1/! Nr .Z2nX2/ such
that ˆ lifts to an isometric C`n-bundle isomorphism ˆW �1jNr .Z1nX1/ ! �2jNr .Z2nX2/.
Assume that

(1) there exists � > 0 such that

Rj .x/ �
.n � 1/�2

n

for all x 2 Xj , where Rj is the curvature term appearing in D2
j D r

�r CRj ,

(2) and D1 D ˆ�1D2ˆ on Nr .Z1nX1/.

Then there exists a universal constant C > 0 such that if � � r > C , then we have

Ind�. zD1/ � Ind�. zD2/ D 0

in KOn.C �max.�I R//, where Ind�. zDj / denotes the maximal higher index of zDj and
C �max.�IR/ is the maximal group C �-algebra of � with real coefficients.

The numerical estimates in Appendix B show that the universal constant C is� 40:65.

Proof. The proof follows the same strategy as that of Theorem 3.4, so we shall be brief.
We claim we can assume without loss of generality that X1 (resp. X2) is a codimension
zero submanifold with corners in Z1 (resp. Z2). Indeed, let ı > 0 be a sufficiently small
constant and U D ¹Ukº be an open cover of Xj consisting of geodesically convex balls
of radius � ı. Note that Xj is closed in Zj , hence compact. It follows that Xj admits a
finite open cover V consisting of finitely many members of U. Without loss of generality,
we assume

V \Xj ¤ ¿

for each member V of V . Denote by Wj the union of all members of V . Then the closure
W j of Wj is contained in N2ı.Xj /. By construction, Wj is an n-dimensional compact
manifold with corners under the metric inherited from Zj . If we replace Xj by Wj and
replace r by r � 2ı, then all assumptions of the theorem are still satisfied, as long as ı is
sufficiently small. Therefore, without loss of generality, we assume that X1 (resp. X2) is
a codimension zero submanifold with corners in Z1 (resp. Z2).
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Let L2C�max
. zZj ; z�j /

� be the associated C �max.�IR/-Hilbert module of sections of z�j
over zZj (cf. line (A.5)). By assumption there exists � > 0 such that

Rj .x/ �
.n � 1/�2

n

for all x 2 Xj . It follows from Proposition A.5 and the proof of Roe’s lemma ([22,
Lemma 2.5]) that if the Fourier transform O' of a function ' is supported in .�a; a/ and
 2 C0. zZj / has support disjoint from the 2a-neighborhood of zXj , then

k'. zDj /�. /k � k k sup¹j'.y/j W jyj � �º:

Here '. zDj / is the bounded operator on L2C�max
. zZj ; z�j /

� obtained by applying functional
calculus, and �. / is the bounded operator on L2C�max

. zZj ; z�j /
� given by multiplication

of  and k k is supremum norm of  . Consequently, we also have the analogues of
Lemma 3.2 and Lemma 3.3 in the current maximal setting. Now the theorem follows by
the exact same proof as the one of Theorem 3.4.

Remark 3.6. In the proof of Theorem 3.4, we have implicitly used the fact that a Dirac-
type operator has propagation speed equal to 1. Recall that the propagation speed of a first
order differential operator D on a Riemannian manifold Z is defined to be

cD WD sup
x2X

cD.x/;

where �D the principal symbol of D and

cD.x/ WD sup¹k�D.x; �/k W � 2 T �x X; k�k D 1º:

If we consider more general elliptic operators D1 and D2 such that both cD1 and cD2
are bounded by �, then the corresponding condition � � r > C in Theorem 3.4 should be
replaced by

� �
r

�
> C:

The following is a typical geometric setup to which Theorem 3.5 applies.

Example 3.7. Let Z be a closed n-dimensional Riemannian manifold and � a Euclidean
C`n-bundle over Z. Suppose D is a C`n-linear Dirac-type operator acting on � over Z.
Let zZ be a Galois �-covering space of Z and zD the lift of D. Let X be a subset of Z and
zX the preimage of X under the covering map zZ ! Z.

By the Lichnerowicz formula, we have

zD2
D r

�
r CR;

where R is a symmetric bundle endomorphism of z� . If D is an actual Dirac operator,
then R D �

4
where � is the scalar curvature of the metric on zZ. By the Cauchy–Schwarz

inequality, we have
h zDf; zDf i � nhrf;rf i
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for all f 2 C1c . zZ; z�/ and n D dimZ. Combining the two formulas above, we see that

n � 1

n
h zDf; zDf i � hRf; f i

for all f 2 C1c . zZ; z�/.
Let zX

o
D zX � @ zX be the interior of zX . If we assume there exists � > 0 such that

R.x/ �
.n � 1/�2

n

for all x 2 zX
o
, then we have

n � 1

n
h zDf; zDf i � hRf; f i � �2hf; f i (3.2)

for all f 2 C1c . zX
o
; z�/. In other words, we have

k zDf k � �kf k (3.3)

for all f 2 C1c . zX
o
; z�/ in this case.

4. Proof of Theorem II

In this section, we apply the quantitative relative index theorem (Theorem 3.5) to prove
Theorem II. In order to make our exposition more transparent, let us first prove the fol-
lowing special case.

Theorem 4.1 (A special case of Theorem II). Suppose M is a closed spin manifold of
dimension n � 1 such that the higher index of its Dirac operator does not vanish in
KOn�1.C

�
max.�1M IR//. If the manifoldM � Œ0; 1� is endowed with a Riemannian metric

whose scalar curvature is � n.n � 1/, then

width.M � Œ0; 1�/ �
8p
3
C C 4�

n
;

where C is the universal constant from Theorem 3.5.

Proof. For simplicity, we shall prove the theorem for the reduced case. In fact, let us
assume that the higher index of the (complexified) Dirac operator on M does not vanish
in Kn�1.C �r .�//. The proof for the maximal case is essentially the same. For the real
case, see Remark 4.2.

Let zX D �M � Œ0; 1� be the universal cover of X D M � Œ0; 1� and zD the associated
C`n-linear Dirac operator on zX . By the discussion in Example 3.7, since the scalar cur-
vature Sc.g/ � n.n � 1/, we have

k zDf k �
n

2
kf k

for all f 2 C1c . zX
o
; z�/, where z� is the associated spinor bundle over zX .
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We prove the theorem by contradiction. Assume to the contrary that

` WD width.X/ >
8p
3
C C 4�

n
:

Denote by @CX DM � ¹1º and @�X DM � ¹0º. Then for any sufficiently small " > 0,
there exists a hypersurface Y in X such that

dist.@CX; Y / �
`

2
� " and dist.@�X; Y / �

`

2
� ":

Let 'WX ! R be a real-valued smooth function such that (cf. [8, Proposition 2.1])

(1) kd'k � 1,

(2) '.x/ � 0 for all x between Y and @�X with dist.x; Y / � 2�
n
C ",

(3) and '.x/ � 4�
n

for all x between Y and @CX with dist.x; Y / � 2�
n
C ".

From now on, let us fix a sufficiently small " > 0 and denote the lift of ' from X to zX
still by '. Define the function

u.x/ D e
n
2 i'.x/

on zX . We have
kŒ zD;u�k D kduk D

n

2
ku � d'k �

n

2
:

Similarly, we also have
kŒ zD;u�1�k �

n

2
:

Consider the following Dirac operator on S1 � zX
o
:

=D D c �
d

dt
C zDt (4.1)

where c is the Clifford multiplication of the unit vector d=dt and

zDt WD t zD C .1 � t /u zDu
�1

for each t 2 Œ0;1�. Here we have chosen the parametrization S1D Œ0;1�=¹0;1º. Let z�Œ0;1� be
the associated spinor bundle on Œ0; 1� � zX

o
and zSt its restriction on ¹tº � zX

o
. Each smooth

section f 2 C1c .Œ0; 1� � zX
o
; z�Œ0;1�/ can be viewed as a smooth family f .t/ 2 C1c .¹tº �

zX
o
; z�t /. The operator =D acts on the following subspace of C1c .Œ0; 1� � zX; z�Œ0;1�/:®

f 2 C1c .Œ0; 1� �
zX

o
; z�Œ0;1�/ W f .1/ D uf .0/

¯
:

From now on, we shall simply write C1c .S
1 � zX

o
; z�/ for the above subspace of sections.

Clearly, we have

=D
2
D �

d2

dt2
C zD2

t C cŒ
zD;u�u�1:
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By using the identity

zDu zDu�1 C u zDu�1 zD D Œ zD;u�Œ zD;u�1�C u zD2u�1 C zD2;

we have
zD2
t D t

zD2
C .1 � t /u zD2u�1 C t .1 � t /Œ zD;u�Œ zD;u�1�: (4.2)

It follows from the assumption Sc.g/ � n.n � 1/ and the estimates in Example 3.7 that
zD2 �

n2

4
on C1c .S

1 � zX
o
; z�/, which implies also u zD2u�1 � n2

4
on C1c .S

1 � zX
o
; z�/,

since u is a unitary. Therefore, we have

zD2
t �

n2

4
� t .1 � t /

Œ zD;u�1�Œ zD;u�
�
n2

4
�
n2

16
D
3n2

16

where the second inequality uses the fact t .1 � t / � 1=4 for all t 2 Œ0; 1�.
Now, for each � > 0, we define the rescaled version of =D to be

=D� D c �
d

dt
C � zDt (4.3)

with � zDt in place of zDt . The same calculation from above shows that

=D
2
� D �

d2

dt2
C �2 zD2

t C �cŒ
zD;u�u�1:

Since zD2
t �

3n2

16
, it follows that

=D
2
� � �

2 3n
2

16
� �

n

2
D
3n2�2

16

�
1 �

8

3n�

�
:

If we want to be explicit about the dependence of =D� on the unitary u, we shall write
=D�;u instead of =D�.

Let v � 1 be the trivial unitary on zX . Define the operator

=D�;v D c
d

dt
C � zD:

A similar (in fact simpler) calculation shows that

=D
2
�;v � �

2 n
2

4

on C1c .S
1 � zX

o
; z�/.

Consider the doubling X DM � S1 D X [@X .�X/ of X , where �X is a copy of X
but with the opposite orientation. Extend11 the Riemannian metric on X to a Riemannian

11To be precise, we fix a copy of X inside of X and equip it with the Riemannian metric given by the
assumption. Then we choose any Riemannian metric on X that coincides with the Riemannian metric on
this chosen copy of X .
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metric on X. The reader should not confuse the copy of S1 appearing in X D M � S1

with the copy of S1 appearing in S1 �Xo
D S1 �M � .0; 1/. Note that the Riemannian

metric on X DM � S1 does not have positive scalar curvature everywhere in general. But
X is a closed manifold, so the usual higher index theory applies. More precisely, by the
construction of u D e

n
2 i' , it extends trivially to a unitary u on zX WD �M � S1 by setting it

to be 1 in zXn zX . Let zDX be the Dirac operator on zX. We define

=D
X
u D c �

d

dt
C zDX

t where zDX
t WD t

zDX
C .1 � t /u zDXu�1:

Similarly, let v � 1 be the trivial unitary on zX and define

=D
X
v D c �

d

dt
C zDX:

Claim. Ind�. =D
X
u / D Ind�. zDM / in Kn�1.C �r .�//; where � D �1M and zDM is the

Dirac operator on �M .

This can be seen as follows. The higher index Ind�. =D
X
u / is independent of the choice

of the Riemannian metric on X, since X D M � S1 is a closed manifold. Furthermore,
if ¹usº0�s�1 is a continuous family of unitaries on X, then Ind�. =D

X
u0
/ D Ind�. =D

X
u1
/ 2

Kn�1.C
�
r .�//. Therefore, without loss of generality, we assume the Riemannian metric

on X D M � S1 is given by a product metric gM C dx2 and assume12 the unitary u on
X is given by the projection map X DM � S1 ! S1 � C. In this case, the operator =DX

u

becomes �
c
d

dt
CDS1

t

� b̋ 1C 1 b̋ zDM
where DS1

t D tD
S1 C .1� t /e2�i�DS1e�2�i� and � is the coordinate for the copy of S1

appearing in XDM � S1. Recall that the index of the operator c d
dt
CDS1

t is equal to the
spectral flow of the family ¹DS1

t º0�t�1, which has index 1 (cf. [1, Section 7]). Therefore,
it follows that

Ind�. =D
X
u / D Ind�. zDM / in Kn�1.C �r .�//:

The same argument also shows that

Ind�. =D
X
v / D 0 in Kn�1.C �r .�//:

We conclude that

Ind�. =D
X
u / � Ind�. =D

X
v / D Ind�. zDM / in Kn�1.C �r .�//:

On the other hand, since we have assumed that

width.X/ >
8p
3
C C 4�

n
;

12This can be achieved by a homotopy of unitaries on X.
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the operators =DX
u and =D

X
v coincide on the r-neighborhood Nr .XnX/ of XnX , where we

have
r >

4C
p
3 n

as long as " chosen at the beginning of the proof is sufficiently small. In particular, we see
that

r

�

r
3n2�2

16

�
1 �

8

3n�

�
> C;

as long as � is sufficiently large. Now it follows from Theorem 3.5 and Remark 3.6 that

Ind�. =D
X
u / � Ind�. =D

X
v / D 0

inKn�1.C �r .�//. We arrive at a contradiction, since Ind�. zDM / ¤ 0 by assumption. This
finishes the proof.

Remark 4.2. Let us discuss how to adjust the proof of Theorem 4.1 for the real case.
Roughly speaking, we replace the imaginary number i D

p
�1 by the matrix I D

�
0 1
�1 0

�
,

while viewing I as a matrix acting on a 2-dimensional Z=2-graded real vector space. For
example, multiplication by the complex number e2�it on a 1-dimensional complex vector
space is replaced by the operator e2�t �I acting on a 2-dimensional Z=2-graded real vector
space. More precisely, let us describe such a modification in terms of Clifford algebras. Let
C`r;s be the real Clifford algebra generated by ¹e1; e2; : : : ; erCsº subject to the following
relations:

ej ek C ekej D

´
�2ıjk if j � r;

C2ıjk if j > r:

To be clear, our convention for the notation of Clifford algebras is consistent with
that of [17]. In particular, C`n WD C`n;0 stands for the Clifford algebra generated by
¹e1; e2; : : : ; enº subject to the following relations:

e2j D �1 and ej ek C ej ek D 0 for all 1 � j; k � n:

In terms of Clifford algebras, we define I D e1e2 in C`0;2. The operator =D in line (4.1)
now becomes

=D D c �
d

dt
C zDt ;

where c 2 C`1;0 is the Clifford multiplication of the unit vector d=dt and

zDt WD t zD C .1 � t /U zDU�1

with U D e2�tI'.x/=`. In particular, the operator =D is a C`nC1;2-linear Dirac-type oper-
ator and its higher index lies in KOn�1.C �max.�IR//: The same remark applies to other
similar operators that appeared in the proof of Theorem 4.1. With these modifications, the
proof for the real case now proceeds in the same way as the complex case.
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Now we are ready to prove Theorem II.

Theorem 4.3 (Theorem II). LetX be an n-dimensional compact connected spin manifold
with boundary. Suppose f WX ! Œ�1; 1�m is a smooth map that sends the boundary of X
to the boundary of Œ�1; 1�m. Let @j˙, j D 1; : : : ; m, be the pullbacks of the pairs of
the opposite faces of the cube Œ�1; 1�m. Suppose Yt is an .n � m/-dimensional closed
submanifold (without boundary) in X that satisfies the following conditions:

(1) �W�1.Yt/! �1.X/ is injective, where � is the canonical morphism on �1 induced
by the inclusion Yt ,! �1.X/;

(2) Yt is the transversal intersection ofm orientable hypersurfaces Yj �X , 1� j �m,
such that each Yj separates @j� from @jC;

(3) the higher index Ind�.DYt
/ does not vanish in KOn�m.C �max.�IR//, where � D

�1.Yt/.

If Sc.X/ � n.n� 1/, then the distances j̀ D dist.@j�; @jC/ satisfy the following inequal-
ity:

mX
jD1

1

`2j
�

n2�
8p
3
C C 4�

�2 :
Consequently, we have

min
1�j�m

dist.@j�; @jC/ �
p
m

8p
3
C C 4�

n
:

Proof. For simplicity, we shall prove the theorem for the complex case, that is, com-
plexified Dirac operators instead of C`n-linear Dirac operators. For the real case, see
Remark 4.2.

We first show that the general case where �W �1.Yt/ ! �1.X/ is injective can be
reduced to the case where �W�1.Yt/! �1.X/ is split injective.13 Let Xu be the universal
cover ofX . Since by assumption �W�1.Yt/!�1.X/ is injective, we can view � D�1.Yt/

as a subgroup of �1.X/. Let X� D Xu=� be the covering space of X corresponding to
the subgroup � � �1.X/. Then the inverse image of Yt under the projection pWX� ! X

is a disjoint union of covering spaces of Yt, at least one of which is a diffeomorphic copy
of Yt. Fix such a copy of Yt in X� and denote it by �Yt. Roughly speaking, the space
X� equipped with the lifted Riemannian metric from X could serve as a replacement of
the original space X , except that X� is not compact in general. To remedy this, we shall
choose a “fundamental domain” around �Yt in X� as follows.

By assumption, Yt � X is the transversal intersection of m orientable hypersurfaces
Yj � X . Let rj be the distance function14 from @j�, that is rj .x/ D dist.x; @j�/. Without

13We say �W �1.Yt/ ! �1.X/ is split injective if there exists a group homomorphism $ W �1.X/ !

�1.Yt/ such that $ ı � D 1, where 1 is the identity morphism of �1.Yt/.
14To be precise, let rj be a smooth approximation of the distance function from @j�.
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loss of generality, we can assume Yj D r�1j .aj / for some regular value aj 2 Œ0; j̀ �. Let
Y �j D p

�1.Yj / be the inverse image of Yj in X� . Denote by rj the lift of rj from X to
X� . Let rrj be the gradient vector field associated to rj . A point x 2 X� is said to be
permissible if there exist a number s � 0 and a piecewise smooth curve cW Œ0; s�! X�
satisfying the following conditions:

(i) c.0/ 2 �Yt and c.s/ D x;

(ii) there is a subdivision of Œ0; s� into finitely many subintervals ¹Œtk ; tkC1�º such
that, on each subinterval Œtk ; tkC1�, the curve c is either an integral curve or a
reversed integral curve15 of the gradient vector field rr ik for some 1 � ik � m,
where we require ik’s to be all distinct from each other;

(iii) furthermore, when c is an integral curve of the gradient vector field rr ik on the
subinterval Œtk ; tkC1�, we require the length of cjŒtk ;tkC1� to be less than or equal
to .`ik � aik �

"
4
/; and when c is a reversed integral curve of the gradient vector

field rr ik on the subinterval Œtk ; tkC1�, we require the length of cjŒtk ;tkC1� to be
less than or equal to .aik �

"
4
/.

Let T be the set of all permissible points. Now T may not be a manifold with corners.
To fix this, we choose an open cover U D ¹U˛º˛2ƒ of T by geodesically convex metric
balls of sufficiently small radius ı > 0. Now take the union of members of U D ¹U˛º˛2ƒ
that do not intersect the boundary @T of T , and denote by Z the closure of the resulting
subset. ThenZ is a manifold with corners which, together with the subspace �Yt � Z, sat-
isfies all the conditions of the theorem, provided that " and ı are chosen to be sufficiently
small. In particular, the intersection Y �j \Z of each hypersurface Y �j with Z gives a
hypersurface of Z. The transversal intersection of the resulting hypersurfaces is precisely�Yt � Z. Furthermore, note that the isomorphism � D �1.Y

�
t
/! �1.X

�/ D � factors
as the composition

�1.Y
�

t
/! �1.Z/! �1.X

�/;

where the morphisms �1.Y �t /! �1.Z/ and �1.Z/! �1.X
�/ are induced by the obvi-

ous inclusions of spaces. It follows that �1.Y �t /! �1.Z/ is a split injection. Therefore,
without loss of generality, it suffices to prove the theorem under the additional assumption
that �W�1.Yt/! �1.X/ is a split injection.

From now on, let us assume �W� D �1.Yt/! �1.X/ is a split injection with a splitting
morphism $ W�1.X/! �1.Yt/ D � . Let zX be the Galois �-covering space determined
by $ W�1.X/! � . In particular, the restriction of the covering map zX ! X on Yt gives
the universal covering space of Yt.

15By definition, an integral curve of a vector field is a curve whose tangent vector coincides with the
given vector field at every point of the curve. A reversed integral curve is an integral curve with the reversed
parametrization, that is, the tangent vector field of a reserved integral curve coincides with the negative of
the given vector field at every point of the curve.
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Without loss of generality, assume Yt is the transversal intersection of m orientable
hypersurfaces Yj � X , 1 � j � m such that each Yj separates @j� from @jC and

dist.@j�; Yj / �
j̀

2
� " and dist.@jC; Yj / �

j̀

2
� "

for some sufficiently small " > 0. Furthermore, without loss of generality, we assume

`1 D min
1�j�m

j̀ :

Let us set

L D
� mX
jD1

`21
`2j

�1=2
:

Assume to the contrary that

mX
jD1

1

`2j
<

n2�
8p
3
C C 4�

�2 :
that is,

1

`21
� L2 <

n2�
8p
3
C C 4�

�2 :
Therefore, we have

min
1�j�m

j̀ D `1 >
L
�
8p
3
C C 4�

�
n

: (4.4)

For each 1 � j � m, let 'j WX ! R be a real-valued smooth function such that (cf. [8,
Proposition 2.1])

(1) kd'j k � 1,

(2) 'j .x/ � 0 for all x between Yj and @j� with dist.x; Y / � 2�L
n
C ",

(3) and '.x/ � 4�L
n

for all x between Yj and @jC with dist.x; Y / � 2�L
n
C ".

Let us fix a sufficiently small " > 0 and denote the lift of 'j from X to zX still by 'j .
Define the function

uj .x/ D exp
� n`1
2L j̀

i'j .x/
�

on zX . We have

kŒ zD;uj �k D kduj k D
n`1

2L j̀

kuj � d'j k �
n`1

2L j̀

and

kŒ zD;u�1j �k �
n`1

2L j̀

:
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Let Tm D S1 � � � � � S1 be the m-dimensional torus. Consider the following differential
operator on Tm � zX

o
:

=D D

mX
jD1

cj
@

@tj
C zDt1;t2;:::;tm

where cj is the Clifford multiplication of the unit vector @
@tj

and zDt1;t2;:::;tm is inductively
defined as follows. We define

zDt1 D t1
zD C .1 � t1/u1 zDu

�1
1

and
zDt1;t2;:::;tk WD tk.

zDt1;:::;tk�1/C .1 � tk/uk.
zDt1;:::;tk�1/u

�1
k

for .t1; : : : ; tm/ 2 Œ0; 1�m. Here we have chosen the parametrization S1 D Œ0; 1�=¹0; 1º.
By the assumption Sc.X/ � n.n � 1/ and the estimates in Example 3.7, we have

zD2
�
n �minx2X Sc. zX/

4.n � 1/
�
n2

4
:

By the calculation in the proof of Theorem 4.1, we have

zD2
t1
D t1 zD

2
C .1 � t1/u1 zD

2u�11 C t1.1 � t1/Œ
zD;u�11 �Œ

zD;u1�:

It follows that
zD2
t1
�
n2

4
�

n2`21
16L2`21

Note that
Œ zDt1 ; u2� D t1Œ

zD;u2�C .1 � t1/u1Œ zD;u2�u
�1
1 ;

which implies that

kŒ zDt1 ; u2�k � kŒ
zD;u2�k �

n`1

2L`2
:

By induction, we conclude that

zD2
t1;:::;tk

�
n2

4
�

� kX
jD1

n2`21
16L2`2j

�
for each 1 � k � m. In particular,

zD2
t1;:::;tm

�
n2

4
�

� mX
jD1

n2`21
16L2`2j

�
D
3n2

16
:

By applying the same rescaling argument as in line (4.3), we conclude that there exists
K > 0 such that

=D
2
� D �

mX
jD1

@2

@t2j
C �2 zD2

t1;:::;tm
C �

mX
jD1

cj
@ zDt1;:::;tm

@tj
�
3n2�2

16
� �Kn

on C1c . zX
o
; z�/.
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Similarly, for each 1 � j � m, we define the operator

=Dj D

mX
iD1

ci
@

@ti
C zDt1;:::;ytj ;:::;tm

where zDt1;:::;ytj ;:::;tm
is defined the same way as zDt1;:::;tj ;:::;tm except that uj is replaced by

the trivial unitary v � 1. More generally, for each subsetƒ � ¹1; 2; : : : ;mº, we define the
operator

=Dƒ D

mX
iD1

ci
@

@ti
C zDƒ

where zDƒ is defined the same way as zDt1;:::;tj ;:::;tm except that uk is replaced by the trivial
unitary v � 1 for every k 2 ƒ. The same argument as above shows that

=D
2
ƒ;� �

3n2�2

16
� �Kn

for all ƒ and �.
Now we consider the doubling X D X [ .�X/ of X and fix a Riemannian metric on

X that extends the metric of X . Of course, this metric on X generally does not satisfy
Sc.X/ � n.n � 1/. Let zX be the corresponding Galois covering of X.

We extend each unitary uj to become a unitary uj on zX as follows. Recall that

uj .x/ D exp
� n`1
2L j̀

i'j .x/
�

on X:

Let Xj be the “partial” doubling of X obtained by identifying the corresponding faces
@k˙ of X and �X for all 1 � k � m except the faces @j˙. The space Xj is a manifold
with corners, whose boundary consists of @C.Xj / and @�.Xj /. Extend the function 'j
on the chosen copy of X to a real-valued smooth function L'j on Xj such that L'j .x/ D 0
in an open neighborhood of @�.Xj / in X and L'j .x/ D 4�L

n
in an open neighborhood of

@C.Xj /. We define the unitary

Luj .x/ D exp
� n`1
2L j̀

i L'j .x/
�

on Xj :

By construction, the unitary Luj D 1 near the boundary of Xj , hence actually defines a
unitary16 on X, which will still be denoted by Luj . Let us denote the lift of Luj to zX by
uj .x/. Then uj is a unitary on zX whose restriction on zX is uj .

We consider the following differential operator on Tm � zX:

=D
X
D

mX
jD1

cj
@

@tj
C zDX

t1;t2;:::;tm

16We do not require kd L'j k � 1 on XnX , where the norm kd L'j k is taken with respect to the Riemannian
metric on X.
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where cj is the Clifford multiplication of the unit vector @
@tj

and zDX
t1;t2;:::;tm

is inductively
defined as follows:

zDX
t1
D t1 zD

X
C .1 � t1/u1 zD

Xu�11

and
zDX
t1;t2;:::;tk

WD tk. zD
X
t1;:::;tk�1

/C .1 � tk/uk. zD
X
t1;:::;tk�1

/u�1k

for .t1; : : : ; tm/ 2 Œ0; 1�m. More generally, for each subset ƒ � ¹1; 2; : : : ; mº, we define
the operator

=D
X
ƒ D

mX
iD1

ci
@

@ti
C zDX

ƒ

where zDX
ƒ is defined the same way as zDX

t1;:::;tj ;:::;tm
except that uk is replaced by the trivial

unitary v � 1 for every k 2 ƒ. See Figure 1 for the case where m D 2.
Let us compute the index X

ƒ�¹1;2;:::;mº

.�1/jƒj � Ind�. =D
X
ƒ/ (4.5)

in KOn�m.C �max.�//, where jƒj is the cardinality of the set ƒ. Since X is a closed man-
ifold, the index in line (4.5) does not change if we deform the unitaries uj through a
continuous family of unitaries. In particular, we can deform the unitaries uj through a
continuous family of unitaries so that each uj becomes trivial (that is, equal to 1) outside
a small neighborhood of the hypersurface Yj in X, where Yj is the doubling of Yj . Now

Ind� . =D
X
¹1;2º/ � Ind� . =D

X
¹2º/

� Ind� . =D
X
¹1º/ Ind� . =D

X
¿/

Figure 1. An illustration of the indices in the m D 2 case where the horizontal (red) lines represent
the unitary u1 and the vertical (blue) lines represent the unitary u2.
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we identify a small tubular neighborhood of Yt in X with an open set in Yt �Tm. By the
usual relative higher index theorem for closed manifolds (cf. [3, 33]) or alternatively the
proof of Theorem 3.4, we can reduce the computation to the corresponding operators on
the closed manifold Yt � Tm. Hence it remains to compute the indexX

ƒ�¹1;2;:::;mº

.�1/jƒj � Ind�
�
=D
Yt�Tm

ƒ

�
where =D

Yt�Tm

ƒ is the obvious analogue of =DX
ƒ. Now to simplify the computation even

further, we deform the metric on Yt � Tm to a product metric. In this case, the operator
=D
Yt�Tm

becomes
mX
jD1

�
cj
@

@tj
C ujD

S1u�1j

� b̋ 1C 1 b̋ DYt

on the space Tm � Yt � Tm, where without loss of generality we can assume uj to be
the smooth function obtained by projecting to the j -component of Tm,

Yt � Tm
! S1 � C:

The operator
Pm
jD1.cj

@
@tj
C ujD

S1u�1j / has index 1 (cf. [1, Section 7]). Therefore, it
follows that

Ind�
�
=D
Yt�Tm�

D Ind�.DYt/ 2 Kn�m.C
�
max.�//:

Similarly, one can show that
Ind�

�
=D
Yt�Tm

ƒ

�
D 0

whenever ƒ is a proper subset of ¹1; 2; : : : ; mº. To summarize, we haveX
ƒ�¹1;2;:::;mº

.�1/jƒj � Ind�. =D
X
ƒ/ D Ind�.DYt/:

On the other hand, we have (cf. line (4.4))

min
1�j�m

j̀ D `1 >
L
�
8p
3
C C 4�

�
n

:

Furthermore, by appropriately choosing the metric on X that extends the metric on X , we
can assume that

suppXnX .uj � 1/ and suppXnX .uk � 1/ are at least
L
�
4p
3
C C 4�

�
n

apart

for all j ¤ k, where suppXnX .uj � 1/ is the support of .uj � 1/ in XnX . Now we apply
the same argument as in the proof of Theorem 3.4 (and Remark 3.6) and iterate the differ-
ence construction from Lemma 4.4 below. It follows thatX

ƒ�¹1;2;:::;mº

.�1/jƒj � Ind�. =D
X
ƒ/ D 0

in Kn�m.C �max.�//. We arrive at a contradiction, since Ind�.DYt/ ¤ 0 by assumption.
This finishes the proof.
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Lemma 4.4 (cf. [14, Section 6]). Let p1 and p2 be two idempotents in a Banach alge-
bra B . Then we have

Œp1� � Œp2� D ŒE.p1; p2/� � ŒE0�

in K0.B/, where

E.p1; p2/ D

0BB@
1C p2.p1 � p2/p2 0 p2p1.p1 � p2/ 0

0 0 0 0

.p1 � p2/p1p2 0 .1 � p2/.p1 � p2/.1 � p2/ 0

0 0 0 0

1CCA (4.6)

and

E0 D

0BB@
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1CCA :
Proof. Consider the invertible element

U D

0BB@
p2 0 1 � p2 0

1 � p2 0 0 p2
0 0 p2 1 � p2
0 1 0 0

1CCA
whose inverse is given by

U�1 D

0BB@
p2 1 � p2 0 0

0 0 0 1

1 � p2 0 p2 0

0 p2 1 � p2 0

1CCA :
A direct computation shows that

E.p1; p2/ D U
�1

0BB@
p1 0 0 0

0 1 � p2 0 0

0 0 0 0

0 0 0 0

1CCAU:
This proves the lemma.

5. Proofs of Theorems IV and V

In this section, we prove Theorems IV and V. Let us first recall the following notion of
subsets with the wrapping property, which was introduced in Definition 1.3.
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Definition 5.1 (Subsets with the wrapping property, cf. Definition 1.3). A subset † of
the standard unit sphere Sn is said to have the wrapping property if † is strongly non-
separating (cf. Definition 1.2) and furthermore there exists a smooth distance-contracting
map ˆWSn ! Sn such that the following are satisfied:

(1a) if n is even, ˆ equals the identity map on N".†/;

(1b) if n is odd, ˆ equals either the identity map or the antipodal map on each of the
connected components of N".†/;

(2) and17 deg.ˆ/ ¤ 1.

Loosely speaking, the class of subsets in Sn with the wrapping property includes all
“reasonable” geometric subsets of Sn whose sizes are “relatively small”. For example,
Lemma 5.3 below gives a sufficient geometric condition for a subset to satisfy the wrap-
ping property. Let us first fix some terminology.

Definition 5.2. Consider the canonical embedding of the unit sphere Sn inside the Euclid-
ean space RnC1. For each unit vector v 2 RnC1, denote by V?v the linear subspace of
RnC1 that is orthogonal to v. We define an equator E of Sn to be the intersection of V?v
and Sn for some unit vector v 2 RnC1.

Lemma 5.3. Let † be a strongly non-separating subset of Sn. If N".†/ is contained in a
geodesic ball of radius < �

2
for some (hence for all) sufficiently small " > 0, then † has

the wrapping property.

Proof. By assumption, for each sufficiently small " > 0, there exists a geodesic ball B of
radius r < �

2
that contains N".†/. Without loss of generality, we assume that there is an

equator E such that B is contained in a hemisphere determined by E and dist.B;E/ > 2".
Let us denote the center of B by x0. Consider all geodesics in Sn of length � � that
originate from x0, that is, all the shortest geodesics starting at x0 and ending at the antipo-
dal point of x0. Now we shall “wrap” the geodesics to define a distance-contracting map
ˆW Sn ! Sn such that ˆ equals the identity map on B and its image ˆ.Sn/ lies in the
hemisphere that contains B . In particular, ˆ is not surjective, hence deg.ˆ/ D 0.

More precisely, let us first consider a smooth function f 0W Œ��
2
; �
2
�! Œ�1; 1� such that

(cf. Figure 2)

(i) f 0 is odd, that is, f 0.�t / D �f 0.t/,

(ii) f 0.t/ D �1 for all t 2 Œ"; �
2
�,

(iii) and f 0.t/ � 0 for all t 2 Œ0; �
2
�.

Define f W Œ��
2
; �
2
�! R by setting

f .s/ D �
�

2
C

Z s

� �2

f 0.t/ dt:

17For example, if ˆ is not surjective, then clearly deg.ˆ/ D 0 ¤ 1.
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�" "

Figure 2. The graph of f 0.

For each shortest geodesic  going from x0 to its antipodal point, we parametrize  by its
arc length so that the intersection point of  with the equator E becomes the origin of the
interval Œ��

2
; �
2
� and x0 becomes ��

2
with respect to the parametrization. Now we define

ˆEWSn ! Sn by setting
ˆE..t// D .f .t// (5.1)

for each t 2 Œ��
2
; �
2
�. For later references, let us call ˆE a wrapping map along the equa-

tor E. For brevity, let us denote it by ˆ. By construction, the wrapping map

ˆWSn ! Sn

is a smooth18 distance-contracting map such that ˆ equals the identity map on B and
ˆ.Sn/ lies in a hemisphere, hence deg.ˆ/ D 0 ¤ 1. This finishes the proof.

Example 5.4. By Lemma 5.3, the following subsets of Sn have the wrapping property:

(a) an open or closed geodesic ball of radius < �
2

,

(b) any compact simplicial complex of codimension� 2 that is contained in a geodesic
ball of radius < �

2
.

For odd dimensional spheres, the following collection of subsets also satisfy the wrap-
ping property.

Lemma 5.5. Let † be a strongly non-separating subset of S2kC1. Let ¹Ej º1�j�2kC2 be
a collection of .2k C 2/ mutually orthogonal equators of S2kC1 so that they divide S2kC1

into 2.2kC2/ regions. If N".†/ is contained in an antipodal pair of such regions for some
(hence for all) sufficiently small " > 0, then † satisfies the wrapping property.

18Due to the specific properties of f , the mapˆ is smooth everywhere. In particular,ˆ is smooth at the
antipodal point of x0.
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Proof. Since by assumption N".†/ is contained in a pair of antipodal regions determined
by the equators ¹Ej º1�j�2kC2, we can choose a wrapping map ˆEj associated to Ej as
defined in line (5.1) for each 1 � j � 2k C 2 such that their composition

ˆ WD ˆE1 ıˆE2 ı � � � ıˆE2kC2

satisfies the desired properties (1b) and (2) in Definition 5.1. This finishes the proof.

Example 5.6. By Lemma 5.5, the following subsets of an odd dimensional sphere S2kC1

have the wrapping property:

(a) a pair of antipodal points on S2kC1,

(b) a pair of antipodal geodesic balls of radius < �
6

in S2kC1.

(c) any compact simplicial complex of codimension � 2 that is contained in a pair of
antipodal geodesic balls of radius < �

6
in S2kC1.

For a given " > 0, the geometry of the "-neighborhood N".†/ of † can be very wild,
in particular at the boundary @N". However, by enlarging or shrinkingN".†/ if necessary,
we can in fact always find small neighborhoods of † that are manifolds with boundary or
manifolds with corners.

Lemma 5.7. Let † be a subset of Sn. Then for any sufficiently small " > 0, there is a
subspace X" � Sn with SnnN2".†/ � X" � SnnN".†/ such that X" is an n-dimensional
compact manifold with corners. Furthermore, if N".†/ is non-separating for all suffi-
ciently small " > 0, then X" can also be chosen to be path-connected for all sufficiently
small " > 0.

Proof. Let U D ¹Uj º be an open cover of N".†/ consisting of geodesically convex balls
of radius � "

2
. Note that N".†/ is closed in Sn, hence compact. It follows that N".†/

admits a finite open cover V consisting of finitely many members of U. Without loss of
generality, we assume

V \N".†/ ¤ ¿

for each member V of V . Denote by W the union of all members of V . Then the closure
W of W is contained in N2".†/.

Define X" to be SnnW . By construction,19 X" is an n-dimensional compact manifold
with corners under the metric inherited from Sn such that

SnnN2".†/ � X" � SnnN".†/:

Furthermore, the above construction shows that if SnnN2".†/ is path-connected, then X"
is path-connected.

19We do not rule out the possibility that X" could be the empty set.
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Now we are ready to prove Theorem IV, which answers positively an open question
of Gromov, cf. [9, page 687, specific problem] and [10, Section 3.9].

Theorem 5.8 (Theorem IV). Let † be a subset of the standard unit sphere Sn contained
in a geodesic ball of radius r < �

2
. Let .X; g0/ be the standard unit sphere Sn minus †.

If a (possibly incomplete) Riemannian metric g on X satisfies that

.1/ there is a �n-Lipschitz homeomorphism 'W .X; g/! .X; g0/,

.2/ and Sc.g/ � n.n � 1/ D Sc.g0/,

then

�n �

r
1 �

Cr

n2

where20

Cr D
8C 2

.�
2
� r/2

and C is a universal constant from Theorem I. Consequently, the lower bound for �n
approaches 1, as n!1.

Proof. We prove the theorem by contradiction. Assume to the contrary that

�n <

r
1 �

Cr

n2
:

To avoid ambiguity, let us denote .X; g0/ by X for the rest of the proof.
Let us first prove the even dimensional case. Recall the C`n-Dirac bundleE0 over Sn,

E0 D PSpin.S
n/ �` C`n (5.2)

where `W Spinn ! End.C`n/ is the representation given by left multiplication. Equip E0
with the canonical Riemannian connection determined by the presentation `WPSpin.Sn/!
End.C`n/. Furthermore, when n is even, E0 carries a natural Z=2-grading E0 D EC0 ˚
E�0 . By the Atiyah–Singer index theorem [2], the index of the twisted Dirac operatorDSn

EC0is nonzero (cf. [19, equation (4.7)]).
We shall give an explicit description of the bundle E0 as a sub-bundle of a triv-

ial vector bundle over Sn so that E0 can be viewed a projection p in Mk.C.S
n// D

Mk.C/˝ C.S
n/, where C.Sn/ is the C �-algebra of continuous functions on Sn. Con-

sider the canonical embedding of the unit sphere Sn inside the Euclidean space RnC1.
Let V D RnC1 �C`nC1 be the canonical C`nC1-Dirac bundle over RnC1. Clearly, V is
a trivial vector bundle. Let us still denote by V the restriction of V on Sn. Then we see
that E0 is a sub-bundle of V . Denote by v the outward unit normal vector field of Sn in

20If n D dim Sn is odd, our proof of Theorem 5.8 in fact shows that we can improve Cr to be 4C 2

. �2 �r/
2

instead of 8C 2

. �2 �r/
2 .
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RnC1. Then E0 is isomorphic to the sub-bundle of V determined by the following Bott
projection21

pn D
ic.v/C 1

2
(5.3)

where c.v/ is the Clifford multiplication of v on V D Sn �C`nC1.
By assumption, † is contained in a geodesic ball Br .x0/ centered at x0 of radius

r < �
2

. Let us define
X" D SnnBo

rC "
2
.x0/

where Bo
rC "

2
.x0/ is the open geodesic ball centered at x0 of radius .r C "

2
/. By the proof

of Lemma 5.3, there exists a smooth distance-contracting map ˆWSn ! Sn such that

(1) ˆ equals the identity map on the .�
2
� r � "/-neighborhood of SnnX";

(2) and deg.ˆ/ ¤ 1.

In order to apply the relative index theorem (Theorem 3.4), we shall view X" as a
(topological) subset of the n-dimensional sphere. Since .X"; g/ is an n-dimensional mani-
fold with boundary, we can extend the Riemannian metric g onX" to a Riemannian metric
on the sphere. Let us denote by S the resulting n-dimensional sphere with this new met-
ric gS. Of course, the metric gS generally does not satisfy the Lipschitz bound and scalar
curvature bound on the complement ofX" in S, when compared to the standard metric g0
on Sn. Consider the (set-theoretic) identity map

1WS! Sn:

The pullback bundles of V by the map 1WS! Sn and the mapˆ ı 1WS! Sn are identi-
cal, since V is a trivial vector bundle with its canonical trivial connection. We shall denote
this pullback bundle on S by W D S �C`nC1 from now on. Let � be the spinor bundle
of .S; gS/.

Let p1 D .1/
�.pn/ and p2 D .ˆ ı 1/�.pn/ be the projections induced from the Bott

projection pn on Sn, by the maps 1 and ˆ ı 1 respectively. By construction, we have
p1 D p2 on the .�

2
� r � "/-neighborhood of SnX". The projections p1 and p2 can be

viewed as endomorphisms of the bundle � ˝W . More precisely, the bundle homomor-
phism 1˝ pj W� ˝W ! � ˝W satisfies that .1˝ pj /

2D 1˝ pj and .1˝ pj /
�D 1˝ pj ,

for j D 1;2. Now consider the twisted Dirac operatorsDpj WD pjDpj . Furthermore, since
n is even, the bundle pjW carries a natural Z=2-grading inherited from the Z=2-grading
on E0. We have

Dpj D

 
0 D�pj
DCpj 0

!
with respect to the decomposition pjW D .pjW /

C ˚ .pjW /
�.

The commutator ŒD;pj � is an endomorphism of the bundle �˝W . Denote by ŒD;pj �x W
.� ˝W /x ! .� ˝W /x the endomorphism at the point x 2 S. A key step of the proof is
the following estimate for the operator norm of ŒD;pj �x for every point x 2 X".

21To be precise, the K-theory class of pn is a nonzero multiple of the actual Bott generator of K0.Sn/.
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For each x 2 X", we can choose a local g0-orthonormal tangent frame ¹e1; : : : ; enº
for TX" and a local g-orthonormal tangent frame ¹e1; : : : ; enº for TX" near x such that
for each 1 � k � n, we have

1�.ek/ D �kek

for some �k � 0. Since 1W .X"; g/! .X"; g0/ is �n-Lipschitz, we have �k � �n for all
1 � k � n. If we write

D D

nX
kD1

c.ek/rek ;

then we have

kŒD;p1�xk D
 nX
kD1

�
�kc.ek/rek ;pn

�
x

:
A similar conclusion holds for p2, since ˆ ı 1W .X"; g/! Sn is also �n-Lipschitz.

Claim 5.9. We have

kŒD;pj �xk �
n � �n

2

for all x 2 X" and for both j D 1; 2.

By the discussion above, we need to estimate nX
kD1

�
�kc.ek/rek ;pn

�
x

 (5.4)

for each x 2 Sn. Recall that v is the outward unit normal vector field of Sn in RnC1. In
particular, at a point x D .x1; x2; : : : ; xnC1/ 2 Sn � RnC1, we have

c.v/x D

nC1X
kD1

xkck

where cj is the Clifford multiplication of the unit vector @
@xj

on V D Sn � C`nC1 from
the right. Since SO.nC 1/ acts transitively on Sn, it suffices to estimate the term in line
(5.4) at the point x D .0; : : : ; 0; 1/ 2 Sn � RnC1. At this point x, after a local coordinate
change if necessary, we have22

nX
kD1

�kc.ek/rek D

nX
kD1

�kck
@

@xk

where ck is the Clifford multiplication of the unit vector @
@xj

on the spinor bundle of Sn

from the left. We conclude that
nX
kD1

�
�kc.ek/rek ;pn

�
x
D
i

2

nX
kD1

�
�kck

@

@xk
; c.v/

�
x
D
i

2

nX
jD1

�kck ˝ ck :

22Here the term @=@xnC1 does not appear, since it is in the normal direction.
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Since kck ˝ ckk D 1 for all 1 � k � n, it follows that nX
kD1

�
�kc.ek/rek ;pn

�
x

 � Pn
kD1 �k

2
�
n � �n

2
:

This proves the claim.
For brevity, let us write p in place of pj in the following estimation. We have

hpDpf;pDpf i D hpDpDpf;pf i

D hpŒD;p�Dpf;pf i C hpD2pf;pf i

D �hDpf; ŒD;p�pf i C hpD2pf;pf i

� �
1

2
hDpf;Dpf i �

1

2
hŒD;p�pf; ŒD;p�pf i C hpD2pf;pf i

�
1

2
hD2pf;pf i �

1

2
hŒD;p�pf; ŒD;p�pf i:

By the inequality in line (3.2), we have

hD2pf;pf i �
n

n � 1

D�
4

pf;pf
E
;

where � WD Sc.g/. It follows that

.pDp/2 �
1

2

� n�

4.n � 1/
� ŒD;p��ŒD;p�

�
on C1c .X

o
"; � ˝ pW /:

Here, C1c .X
o
"; � ˝ pW / is the space of compactly supported smooth sections of the sub-

bundle � ˝ pW � � ˝ W . By assumption, we have � D Sc.g/ � n.n � 1/. It follows
from Claim 5.9 that

kDpj vk � n

r
.1 � �2n/

8
kvk (5.5)

for all v 2 C1c .X
o
"; � ˝ pjW / and for both j D 1; 2. Furthermore, the same conclusion

from line (5.5) also holds for both DCpj and D�pj on C1c .X
o
"; � ˝ pjW /.

Since we have assumed that

�n <

r
1 �

Cr

n2
with Cr D

8C 2

.�
2
� r/2

it follows that ��
2
� r � "

�
n

r
.1 � �2n/

8
> C

for some sufficiently small " > 0. By construction, the operators DCp1 and DCp2 coincide
on the .�

2
� r � "/-neighborhood of SnX". It follows from Theorem 3.4 that

Ind.DCp1/ � Ind.DCp2/ D 0:



Quantitative relative index and Gromov’s conjectures on psc 645

On the other hand, by the Atiyah–Singer index theorem [2], we have

Ind.DCp1/ � Ind.DCp2/ D .1 � deg.ˆ// � Ind
�
DSn

EC0

�
2 K0.K/ D Z:

Since Ind.DSn

EC0
/ ¤ 0 (cf. [19, equation (4.7)]), we conclude that

1 � degˆ D 0:

This contradicts the fact that degˆ ¤ 1. This finishes the proof for the even dimensional
case.

Now let us prove the theorem in the odd dimensional case. Since the key ideas are
similar to the even dimensional case, we shall be brief. Again, consider the canonical em-
bedding of the unit sphere Sn inside the Euclidean space RnC1. Let V D RnC1 �C`nC1
be the canonical C`nC1-Dirac bundle over RnC1. Denote by v the outward unit normal
vector field of Sn in RnC1. Since nC 1 is even in the current case, there is a canonical
Z=2-grading of V induced by the following element:

! D i
nC1
2 c1 � � � cnC1

where cj is the Clifford multiplication by the standard basis element ej 2 RnC1. Let us
write V D V C˚ V � for this Z=2-decomposition. Note that V C and V � are trivial vector
bundles of the same dimension. In particular, we can choose a fixed unitary matrix U 2
Un.C/ to fiberwise identify V C and V �. Then a Bott element vn—a nonzero multiple of
a generator of K1.Sn/ D K1.C.Sn//—is given by the unitary

vn D ic.v/ (5.6)

where c.v/ is the Clifford multiplication of v on V C D Sn �C`CnC1.
Similar to the proof of Theorem 4.1, let us consider the following Dirac-type operator

on S1 � Sn:
=D D c �

d

dt
CDt

where c is the Clifford multiplication of the unit vector d=dt and

Dt WD tD
Sn
C .1 � t /vnD

Snvn
�1 (5.7)

for each t 2 Œ0; 1�. Here we have chosen the parametrization S1 D Œ0; 1�=¹0; 1º. By the
Atiyah–Singer index theorem [2], we have

Ind. =D/ D
Z

Sn
yA.Sn/ ^ ch.vn/ ¤ 0

where yA.Sn/ is the yA-form of Sn and ch.vn/ is the odd dimensional Chern character
of vn.

Let X" and S be as above. Also, denote by W D S �C`CnC1 the pullback bundle of
the trivial bundle V C. Pull back the unitary vn by the maps 1WS! Sn andˆ ı 1WS! Sn
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and denote the resulting unitaries by v1 D 1�.vn/ and v2 D .ˆ ı 1/�.vn/ respectively. By
construction, we have v1 D v2 on the .�

2
� r � "/-neighborhood of SnX".

Consider the Dirac-type operators

=D
X
vj
D c �

d

dt
CDvj ;t

on S1 �S, where
Dvj ;t D tD C .1 � t /vjDv�1j ;

for j D 1; 2. In particular, =DX
v1

and =D
X
v2

coincide on the .�
2
� r � "/-neighborhood of

S1 � .SnX"/. Now the same calculation as in the proof of Theorem 4.1 shows that

=D
2
vj
D �

d2

dt2
CD2

vj ;t
C cŒD; vj �v

�1
j

with
D2

vj ;t
D tD2

C .1 � t /vjD
2v�1j C t .1 � t /ŒD; vj �ŒD; v

�1
j �;

cf. line (4.2). It follows that

D2
vj ;t
�
n2

4
�
n2

4
�2n D .1 � �

2
n/
n2

4
on C1c .S

1
�X"; � ˝W /:

Similar to the rescaling argument from (4.3), for each � > 0, we define the rescaled
version of =Dvj to be

=Dvj ;� D c �
d

dt
C �Dvj ;t :

The same calculation as above shows that

. =Dvj ;�/
2
� �2.1 � �2n/

n2

4
� �

n

2
on C1c .S

1
�X"; � ˝W /:

Now, by applying the quantitative relative index theorem (Theorem 3.4), the rest of
the proof for the odd dimensional case proceeds in the same way as the even dimensional
case. We conclude that

�n �

s
1 �

4C 2

.�
2
� r/2n2

where C is the universal constant from Theorem I. This completes the proof of Theo-
rem 5.8.

In the case where n D dim Sn is odd , the same proof for the odd dimensional case of
Theorem IV in fact also proves the �-Lipschitz rigidity of positive scalar curvature metrics
on Snn†when† is a subset of Sn contained in a pair of antipodal geodesic balls of radius
r < �

6
.
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Theorem 5.10. Let Sn D S2kC1 be an odd dimensional standard unit sphere. Let † be
a subset of the standard unit sphere Sn contained in a pair of antipodal geodesic balls of
radius r < �

6
. Let .X; g0/ be the standard unit sphere Sn minus †. If a (possibly incom-

plete) Riemannian metric g on X satisfies that

(1) there is a �n-Lipschitz homeomorphism 'W .X; g/! .X; g0/,

(2) and Sc.g/ � n.n � 1/ D Sc.g0/,

then

�n �

r
1 �

Cr

n2

where

Cr D
4C 2

.�
6
� r/2

and C is the universal constant from Theorem 3.4.

Proof. By assumption,† is contained in a pair of antipodal geodesic balls of radius r < �
6

.
Let X" � Snn† be the closed subset of Sn with two antipodal open geodesic balls of
radius .r C "

2
/ removed. By the proof of Lemma 5.5, there exists a smooth distance-

contracting map ˆWSn ! Sn such that

(1) ˆ equals either the identity map or the antipodal map on each path component of
the .�

6
� r � "/-neighborhood of SnnX";

(2) and deg.ˆ/ ¤ 1.

We view X" as a (topological) subset of the n-dimensional sphere and extend the
Riemannian metric g on X" to a Riemannian metric on the sphere. Let us denote by S

the resulting n-dimensional sphere with this new metric gS. Moreover, let vn be the Bott
unitary defined in line (5.6).

Similar to the proof for the odd dimensional case of Theorem 5.8, we pull back the
unitary vn by the maps 1WS! Sn and ˆ ı 1WS! Sn and denote the resulting unitaries
by v1 D 1�.vn/ and v2 D .ˆ ı 1/�.vn/ respectively. By construction, we have v1 D˙v2
on the .�

6
� r � "/-neighborhood of SnX".

Consider the Dirac-type operators

=D
X
vj
D c �

d

dt
CDvj ;t

on S1 �S, where
Dvj ;t D tD C .1 � t /vjDv�1j ;

for j D 1; 2. In particular, =DX
v1

and =D
X
v2

coincide on the .�
6
� r � "/-neighborhood of

S1 � .SnX"/, since v1 D ˙v2 on the .�
6
� r � "/-neighborhood of SnX".

Now the rest of the proof proceeds the same way as the proof for the odd dimensional
case of Theorem 5.8. We omit the details. This finishes the proof.
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As a consequence of Theorem 5.8, we have the following �-Lipschitz rigidity theorem
for hemispheres. This answers (asymptotically) an open question of Gromov on the sharp-
ness of the constant �n for the �n-Lipschitz rigidity of positive scalar curvature metrics
on hemispheres [10, Section 3.8].

Theorem 5.11 (Theorem V). Let .X; g0/ be the standard unit hemisphere SnC. If a
Riemannian metric g on X satisfies that

(1) there is a �n-Lipschitz homeomorphism 'W .X; g/! .X; g0/,

(2) and Sc.g/ � n.n � 1/ D Sc.g0/,

then

�n �
�
1 � sin

�
p
n

�r
1 �

8C 2

�2n

where C is the universal constant from Theorem I. Consequently, the lower bound for �n
approaches 1, as n!1.

This theorem is asymptotically optimal in the sense that the lower bound for �n
becomes sharp, as n D dim Sn ! 1. In particular, it significantly improves the lower
bound for �n in Corollary 1.1 when n D dim Sn is large.

Proof of Theorem 5.11. Let Y be the subspace of the standard unit sphere Sn with an
open geodesic ball of radius .�

2
�

�p
n
/ removed. It is not difficult to see there exists a

.1 � sin �p
n
/�1-Lipschitz homeomorphism from SnC to Y . By composing with the map 'W

.X; g/! .X; g0/, we obtain a �n.1 � sin �p
n
/�1-Lipschitz homeomorphism 'W .X; g/!

.Y; g0/. It follows from Theorem 5.8 that

�n

�
1 � sin

�
p
n

��1
�

r
1 �

Cr

n2

where23

Cr D
8C 2

.�
2
� r/2

and r D
�

2
�

�
p
n
:

In other words, we have

�n �
�
1 � sin

�
p
n

�r
1 �

8C 2

�2n
:

This finishes the proof.

23If n D dim Sn is odd, we can set Cr D 4C 2

. �2 �r/
2 instead of 8C 2

. �2 �r/
2 .
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A. Friedrichs extensions in the maximal group C �-algebra setting

In this section, we show the existence of Friedrichs extensions of semibounded symmetric
operators in the maximal group C �-algebra setting.

More precisely, suppose X is an n-dimensional compact spin manifold with boundary
or corners. Let � be the C`n-Clifford bundle over X and D a C`n-linear Dirac-type oper-
ator acting on � . Let zX be a Galois �-covering space of X and z� (resp. zD) the lift of �

(resp. D). By the Lichnerowicz formula, we have

zD2
D r

�
r CR

where R is a symmetric bundle endomorphism of z� . For the rest of this section, let us
assume there exists � > 0 such that

R.x/ �
.n � 1/�2

n

for all x 2 zX .

Definition A.1. We define H 1
0 .
zX

o
; z�/ to be the completion of C1c . zX

o
; z�/ with respect

to the Sobolev norm

kvk1 D

�Z
zX

o
jvj2 C

Z
zX

o
jrvj2

�1=2
: (A.1)

Consider the Friedrichs extension F of zD2 on L2. zX
o
; z�/ with respect to the domain

H 1
0 .
zX

o
; z�/. Let us write

j zDj WD F 1=2: (A.2)

Then it is known that the domain Dom.j zDj/ of j zDj is preciselyH 1
0 .
zX

o
; z�/, cf. [29, Chap-

ter 8, Proposition 1.10]. Note that the space H 1
0 .
zX

o
; z�/ is the Sobolev H 1 space of

sections that vanish on @ zX , i.e., sections that satisfy the Dirichlet boundary condition.
It follows from a standard finite propagation argument that the wave operator eit j zDj asso-
ciated to j zDj has finite propagation, cf. [28, Chapter 2, Section 6].

Let F be a fundamental domain of zX under the �-action and � the characteristic
function of F . Define � to be the  -translation of �, that is,

� .x/ D �.
�1x/:

For a given a 2 R, let us write T D .j zDj C ia/�1. We define

T D � ı T ı �: (A.3)

In the following, we shall fix a length metric l W�!R�0 on � . Then there existA� >0
and B� > 0 such that

A�1� � dist.F ;F / � B� � l./ � A� � dist.F ;F /C B� (A.4)

for all  2 � , where dist.F ;F / is the distance between the two sets F and F measured
with respect to the given Riemannian metric on zX .
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Lemma A.2. Let T D .j zDj C ia/�1 as above. Then there exists a constant C1 > 0 such
that

kTk � C1e
�jaj�A�1� �l./;

for all  2 � , where kTk is the operator norm of the operator

T WL
2. zX

o
; z�/! L2. zX

o
; z�/:

Proof. If a D 0, the lemma is trivial. Without loss of generality, let us assume a > 0,
since the case where a < 0 can be treated exactly the same way. The Fourier transform of
f .x/ D .x C ia/�1 is

Of .�/ D
1
p
2�

Z
R
f .x/e�i�x dx D �i

p
2�e�a��.�/

where � is the unit step function

�.�/ D

´
0 if � < 0;

1 if � � 0:

In particular, Of and all of its derivatives are smooth away from � D 0 and decay exponen-
tially as j�j ! 1.

Let ' be a smooth function on R with 0 � '.x/ � 1 such that '.x/D 1 for all jxj � 2
and '.x/ D 0 for all jxj � 1. For each t > 0, we define ht to be the function on R whose
Fourier transform is

Oht .�/ D '.t
�1�/ Of .�/:

For each fixed t > 0, we apply functional calculus to define the operator R WD ht .j zDj/.
We have

R.v/ D
1
p
2�

Z
R
'.t�1�/ Of .!/ei�j

zDjv d�

for all v 2 L2. zX
o
; z�/. Define

R D � ıR ı �:

We see that there exists a constant C2 > 0 such that

kRk � j�k � kRk � k�k �
1
p
2�

Z
R
'.t�1�/j Of .�/j d� � C2e�at

for all  2 � . By finite propagation of the wave operator eisj zDj, it follows that

T D R

for all but finitely many  2 � . More precisely, we have T D R for all  with l./ �
A� � t C B� . By varying t , it is not difficult to see that there exists a constant C > 0 such
that

kTk � Ce
�a�A�1� �l./

for all  2 � .
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For any given a ¤ 0 2 R, the range R.j zDj C ia/ of j zDj C ia is equal to the whole
space L2. zX

o
; z�/, since j zDj is self-adjoint. In particular, for each f 2 C1c . zX

o
; z�/, there

is v D .j zDj C ia/�1.f / 2 Dom.j zDj/ such that

.j zDj C ia/.v/ D f:

We define L2
C�max.�IR/

to be the completion ofC1c . zX
o
; z�/with respect to the following

Hilbert C �max.�IR/-inner product

hhf1; f2ii WD
X
2�

hf1; f2i 2 C
�
max.�IR/ (A.5)

for all f1; f2 2 C1c . zX
o
; z�/, where

hf1; f2i D

Z
zX

o
hf1.x/; f2.

�1x/i dx:

Let us define
kvkmax WD hhv; vii

1=2

for v 2 L2
C�max.�IR/

.
The following lemma is a consequence of Lemma A.2.

Lemma A.3. If jaj is sufficiently large, then for every f 2 C1c . zX
o
; z�/, the element v D

.j zDj C ia/�1.f / lies in L2
C�max.�IR/

.

Proof. Let ¹�º2� be the characteristic functions as above. We have

v D
X
2�

�v:

Clearly, each �v lies in L2
C�max.�IR/

, since �v is supported on a metric ball of bounded
radius.

By Lemma A.2, a straightforward calculation shows that there exists a constant24

Cf > 0 such that
hv; ˇvi � Cf � e

�jaj�A�1� �l.ˇ/ � kf kL2 ;

where l.ˇ/ is the word length of ˇ and the constant A�1� is defined in line (A.4). Since the
group � has at most exponential growth, that is, there exist numbers K� > 0 and C2 such
that

#¹˛ 2 � W l.˛/ � nº � C2eK� �n

for all n 2 N. It follows that

kvk2max D hhv; vii D
X
ˇ2�

hv; ˇviˇ 2 C �max.�IR/

as long as jaj is sufficiently large. This finishes the proof.

24The constant Cf depends on f . More precisely, the constant Cf depends on the diameter of the
support of f .
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For each a 2 R such that jaj is sufficiently large, consider the operator

j zDjmaxWL
2
C�max.�IR/

! L2
C�max.�IR/

defined by setting j zDjmax.v/ D j zDj.v/ on the domain

Dom.j zDjmax/ D C
1
c .
zX

o
; z�/C .j zDj C ia/�1.C1c .

zX
o
; z�//

where .j zDj C ia/�1.C1c . zX
o
; z�// consists of®

v 2 L2
C�max.�IR/

W v D .j zDj C ia/�1f for some f 2 C1c . zX
o
; z�/

¯
:

As an immediate consequence of Lemma A.3, we see that j zDjmax is well defined. More-
over, j zDjmax is an unbounded symmetric operator, since j zDj is symmetric with respect to
the inner product from line (A.5).

Lemma A.4. For each a 2 R such that jaj is sufficiently large, the closure of j zDjmax is
regular and self-adjoint.

Proof. By construction, the operator .j zDjmax C ia/ has a dense range. By [16, Lem-
mas 9.7 and 9.8], we conclude that the closure of j zDjmax is regular and self-adjoint.

We have the following main result of this section.

Proposition A.5. Suppose X is an n-dimensional compact spin manifold with boundary
or corners. Let � be the C`n-Clifford bundle over X and D a C`n-linear Dirac-type
operator acting on � . Let zX be a Galois �-covering space of X and z� (resp. zD) the
lift of � (resp. D). Let R be the symmetric bundle endomorphism of z� appearing in the
following Lichnerowicz formula:

zD2
D r

�
r CR:

Assume there exists � > 0 such that

R.x/ �
.n � 1/�2

n

for all x 2 zX . Then there exists a self-adjoint Friedrichs extension Fmax of zD2,

FmaxWL
2
C�max.�IR/

! L2
C�max.�IR/

such that the following are satisfied:

(1) kFmax.f /kmax � �
2kf kmax for all f 2 Dom.Fmax/,

(2) and the wave operator eisjDj has finite propagation, where jDj D .Fmax/
1=2.
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Proof. Fix a 2 R such that jaj is sufficiently large. Let j zDjmax be the operator from
Lemma A.4. We denote its closure by jDj. Let us define Fmax D jDj

2. By construction,
the wave operator eisjDj has finite propagation, since eisj zDj has finite propagation, where
j zDj is the operator defined in line (A.2).

To prove the proposition, it suffices to verify

kjDj.f /kmax � �kf kmax

for all v 2 Dom.j zDjmax/ D C
1
c .
zX

o
; z�/C .j zDj C ia/�1.C1c .

zX
o
; z�//. Given

v D f1 C .j zDj C ia/
�1f2

for some f1; f2 2 C1c . zX
o
; z�/, we have

.j zDjmax C ia/v D .j zDj C ia/f1 C f2;

which implies

j zDjmax.v/ D �iav C .j zDj C ia/f1 C f2

D �iaf1 � ia.j zDj C ia/
�1f2 C .j zDj C ia/f1 C f2:

It follows that for each v 2 Dom.j zDjmax/, we have j zDjmax.v/ 2 Dom.j zDjmax/. We con-
clude that

kjDj.v/k2max D hhj
zDjmax.v/; j zDjmax.v/ii

D hhj zDjv; j zDjvii

D hhFv; vii

for all v 2 Dom.j zDjmax/.
Note that Dom.j zDjmax/ D C

1
c .
zX

o
; z�/C .j zDj C ia/�1.C1c .

zX
o
; z�// is contained in

H 1
0 .
zX

o
; z�/, since Dom.j zDj/ D H 1

0 .
zX

o
; z�/. It follows that

hhFv; vii D hh zD2v; vii D hh zDv; zDvii

for all v 2 Dom.j zDjmax/. By definition, we have

zDv D

nX
jD1

c.ej /rej v

for all v 2 Dom.j zDjmax/, where the ej are a local orthonormal basis of TX and c.ej / are
the corresponding Clifford multiplication. By the Cauchy–Schwarz inequality, we have

hh zDv; zDvii D

�� nX
jD1

c.ej /rej v;

nX
jD1

c.ej /rej v

��
� n

nX
jD1

hhc.ej /rej v; c.ej /rej vii
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D n

nX
jD1

hhrej v;rej vii D nhhrv;rvii

for all v 2 Dom.j zDjmax/. Since

hh zDv; zDvii D hh zD2v; vii D hhr�rv; vii C hhRv; vii

for all v 2 Dom.j zDjmax/, it follows that

n � 1

n
hh zDv; zDvii � hhRv; vii �

.n � 1/�2

n
hhv; vii; (A.6)

for all v 2 Dom.j zDjmax/. To summarize, we have showed that

kjDj.v/k2max D hhFv; vii � �
2
hhv; vii

for all v 2 Dom.j zDjmax/. This finishes the proof.

B. An estimate of the universal constant C in Theorem I (by Jinmin
Wang and Zhizhang Xie)

In this appendix, we give a numerical estimate of the universal constant C that appeared in
Theorem I. Part of the numerical computation is done with the assistance of MATLAB. We
would like to thank Li Zhou for many helpful comments on the MATLAB programming.
Throughout this section, we use the following convention of the Fourier transform

Of .�/ D

Z
R
f .x/e�ix� dx

and the inverse Fourier transform

f .x/ D
1

2�

Z
R

Of .�/eix� d�:

B.1. Increasing normalizing functions

Let �WR! Œ�1;1� be a normalizing function, that is, � a continuous odd function such that
limx!˙1 �.x/ D ˙1. In addition, let us assume � is an increasing function in this sub-
section. This additional assumption is not necessary, but it makes the numerical estimates
somewhat easier. The method in this subsection is inspired by the work of Slepian [27].
We will discuss general normalizing functions in the next subsection and carry out some
estimates via a different method.

Note that given " > 0, there exists � > 0 such that

sup
jxj��

j1 � �.x/2j < ":
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Here � has the same meaning as the spectral gap � ofD on a subspace Y nK in Lemma 3.1
and Lemma 3.2. The key step for estimating the universal constant C from Theorem I is
to answer the following minimization question.25

Question B.1. Given " > 0, find the minimum value of � among all normalizing functions
� whose Fourier transform O� is supported on Œ�2; 2�.

Let us set

f D
�0

2
;

where �0 is the derivative of �. Here the factor 1=2 is only introduced as a normalizing
constant. Since � is assumed to be increasing, f is a positive even function such that its
Fourier transform Of is supported on Œ�2; 2� and Of .0/ D 1. As another simplification,26

let us only consider f such that f D h2, where h is a function with its Fourier transform
Oh supported on Œ�1; 1�. Since f D h2, we have Of D Oh � Oh, i.e.,

Of .�/ D

Z
R

Oh.� � �/ Oh.�/ d�:

It follows that
Of .0/ D

Z
R

Oh.��/ Oh.�/ d� D khk2
L2
;

where the second equality uses the fact that h is an even function.
Observe that the minimization question (Question B.1) is essentially equivalent to the

following maximization question.

Question B.2. Given � > 0, find the maximal value ofZ �

��

h2.x/ dx

among all functions hWR!R with khkL2 D 1 such that its Fourier transform is supported
on Œ�1; 1�.

Let c� .x/ be the characteristic function of Œ��; ��, that is,

c� .x/ D

´
1 if jxj � �;

0 if jxj > �:

Then the Fourier transform of c� is given by

Oc� .�/ D
2 sin.��/

�
:

25Alternatively, we can fix the value of the spectral gap � and try to minimize the propagation, that is,
the support of the Fourier transform O�. The two approaches are essentially equivalent.

26Such an simplification does not really affect the final estimates at the end of this subsection.



Z. Xie 656

Note thatZ �

��

f .x/ dx D
Z

R
f .x/c� .x/ dx D

1

2�

Z
R

Of .�/ Oc� .�/ d� D
Z

R

sin.��/
��

Of .�/ d�:

Recall that f D h2. It follows thatZ �

��

f .x/ dx D
Z

R

Z
R

sin.��/
��

Oh.� � �/ Oh.�/ d� d�:

We conclude thatZ �

��

h2.s/ ds D
Z 1

�1

Z 1

�1

sin.�.x C y//
�.x C y/

Oh.x/ Oh.y/ dx dy;

since Oh is supported on Œ�1; 1�.
This naturally leads us to the integral operator T� on L2.Œ�1; 1�/ given by

T� .'/.x/ D

Z 1

�1

sin.�.x C y//
�.x C y/

'.y/ dy

for all ' 2L2.Œ�1;1�/. Observe that T� is a bounded self-adjoint compact operator. Hence
the maximum value of Z �

��

h2

is equal to the largest (absolute) eigenvalue of T� , which is precisely the operator norm
kT�k of T� . Moreover, the maximum is achieved when h is a corresponding eigen-func-
tion of the largest (absolute) eigenvalue of T� . This eigen-function can be numerically
estimated by considering the following iteration

'n D kT�'n�1k
�1
L2
� T� .'n�1/;

with '0 � 1. In particular, 'n converges to an eigen-function of the largest (absolute)
eigenvalue of T� .

The detailed estimates can be carried out as follows.

(1) Given any normalizing function �WR! Œ�1; 1�, let pt be the idempotent from
line (3.1). By Lemma 3.3, we need to estimate the operator norm kptk of pt . It
amounts to estimating the operator norm of the following idempotents:

Pa D

�
a2.2 � a2/ .2 � a2/.1 � a2/a

a.1 � a2/ .1 � a2/2

�
;

for all a 2 Œ�1; 1�. A numerical estimate shows that

sup
a2Œ�1;1�

kPak
2
D sup
a2Œ�1;1�

¹eigenvalues of P�a Paº � .1:04015/
2:

We conclude that
kptk � 1:04015: (B.1)
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(2) Again, by Lemma 3.3 and part (3) of Lemma 3.2, we need to estimate the operator
norm pt � �1 0

0 0

�
on some subspace of Y . This amounts to finding � > 0 such thatPa �

�
1 0

0 0

� D ��.1 � a2/ .2 � a2/.1 � a2/a

a.1 � a2/ .1 � a2/2

�
�

1

.2kPak C 2/

1

4
�

1

.2.1:04015/C 2/

1

4
D

1

16:3212
; (B.2)

for all a with � � jaj � 1. A numerical estimate shows that

� � 0:96978: (B.3)

(3) Now the last step is to find � such that

kT�k D � � 0:96978:

Again a numerical estimate shows that

� � 2:86821:

Now let �WR! Œ�1; 1� be a normalizing function that fulfills the above estimates.
Since the Fourier transform O� is supported on Œ�2; 2�, it follows from the proof of Theo-
rem I (cf. Theorem 3.4) that we can choose r D 2 � 15 D 30. It follows that the universal
constant C in Theorem I satisfies

C � 2:86821 � 2 � 15 D 86:0463:

B.2. An improved estimate

In this subsection, we shall improve our estimate for the universal constant C by consid-
ering general normalizing functions. That is, the normalizing function � is not assumed to
be increasing any more.

Let sgn be the sign function, that is,

sgn.x/ D

´
1 if x � 0;

�1 if x < 0:

Its Fourier transform is given by

csgn.�/ D
Z

R
sgn.x/e�ix� dx D

2

i�
:

Our goal is to solve the following analogue of Question B.1.
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Question B.3. For each function f , let us define

�f .x/ D
1

2�

Z
R
f .�/

2

i�
eix� d�:

For given "1 > 0 and "2 > 0, find the minimum value of � such that there exists an even
function f satisfying the following conditions:

(1) f is supported on Œ�2; 2�,

(2) f .0/ D 1,

(3) "1 < �f .x/ � 1 < "2 for all x � � ,

(4) and �"2 < �f .x/C 1 < �"1 for all x � �� .

Since f is an even function, it follows that �f is an odd function. Furthermore, we
have

lim
x!1

�f .x/ D

Z 1
0

�0f .t/ dt D
c�0
f
.0/

2
D f .0/ D 1:

It follows that, under the above assumptions on f , the function �f is a normalizing func-
tion.

As a simplification, we shall only consider even functions f such that the function
�f takes values in Œ�1:2; 1:2�. Our numerical estimates show that such a simplification
essentially does not result in any loss of generality. Under the extra assumption that �f
takes values in Œ�1:2; 1:2�, the norm estimate in line (B.1) will remain the same. Then,
based on the estimate in line (B.2), we can choose

"1 � 1 � 0:96978 D 0:03022;

and
"2 � 1:02928 � 1 D 0:02928:

Now, to approximate the minimum value of � in Question B.3, we consider the function
f of the form

f .�/ D

nX
kD0

ak cos
�k��
2

�
with real numbers ¹akº0�k�n to be determined. Note that

'k.x/ WD
1

2�

Z
R

cos
�k��
2

� 2
i�
eix� d� D

1

2�

Z 2�kC2x

2�k�2x

2 sin t
t

dt:

So we can write

�f .x/ D

nX
kD0

ak'k.x/: (B.4)
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We see that Condition (2) in Question B.3 becomes the following linear inequality:

0:03022 <

nX
kD0

ak'k.x/ � 1 < 0:02928

for each x � � . This reduces Question B.3 into solving a system of linear inequalities.
If we set n D 5, then a numerical estimate shows that the function

f .�/ � 0:75382052C 0:25425247 cos
���
2

�
C 0:0034679636 cos.��/

� 0:026352193 cos
�3��
2

�
C 0:024841712 cos.2��/

� 0:010030481 cos
�5��
2

�
(B.5)

satisfies the conditions in Question B.3, and we can choose

� � 1:41356

in this case. See Figure 3 for the graph of the corresponding normalizing function �f .
Further numerical estimates show that we can choose

� � 1:3633 if we work with n D 20;

and
� � 1:355 if we work with n D 50:

This suggests that 1:355 is rather close to the actual minimum value of � in Question B.3.
In any case, we conclude the universal constant C in Theorem I satisfies

C � 1:355 � 2 � 15 D 40:65:

-15 -10 -5 5 10 15

-1.0

-0.5

0.5

1.0

Figure 3. The graph of �f when f is the function in line (B.5).
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