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Connes’ integration and Weyl’s laws

Raphaël Ponge

Abstract. This paper deals with some questions regarding the notion of integral in the framework
of Connes’ noncommutative geometry. First, we present a purely spectral theoretic construction of
Connes’ integral. This answers a question of Alain Connes. We also deal with the compatibility of
Dixmier traces with Lebesgue’s integral. This answers another question of Alain Connes. We further
clarify the relationship of Connes’ integration with Weyl’s laws for compact operators and Birman–
Solomyak’s perturbation theory. We also give a “soft proof” of Birman–Solomyak’s Weyl’s law for
negative order pseudodifferential operators on closed manifold. This Weyl’s law yields a stronger
form of Connes’ trace theorem. Finally, we explain the relationship between Connes’ integral and
semiclassical Weyl’s law for Schrödinger operators, including for (fractional) Schrödinger operators
on Euclidean spaces and on noncommutative manifolds. We thus get a neat links between noncom-
mutative geometry and semiclassical analysis.

1. Introduction

The quantized calculus of Connes [19] aims at translating the main tools of the classi-
cal infinitesimal calculus into the operator theoretic language of quantum mechanics. As
an Ansatz the integral in this setup should be a positive trace on the weak trace class
L1;1 (see Section 2). Natural choices are given by the traces Tr! of Dixmier [27] (see
also [19, 39] and Section 2). These traces are associated with extended limits. Following
Connes [19] we say that an operator A 2 L1;1 is measurable when the value of Tr!.A/ is
independent of the extended limit. We then define the NC integral

ª
A to be this value. It

follows from this construction that if A 2 L1;1 is positive, then�
A is measurable and

«
A D L

�
” lim

N!1

1

logN

X
j<N

�j .A/ D L;

where �0.A/ � �1.A/ � � � � are the eigenvalues of A counted with multiplicity.
During the conference “Noncommutative geometry: state of the arts and future pros-

pects”, which was held at Fudan University in Shanghai, China, from March 29–April 4,
2017, Alain Connes asked the following question:
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Question A (Connes). Is it possible to show the existence of a limit for all measurable
operators without using extended limits?

In other words, Connes is stressing the need for a purely spectral theoretic construction
of the integral in noncommutative geometry. A partial answer to this question was given in
a recent preprint of Sukochev–Zanin [68]. However, that paper deals with a special class
of operators and the approach still relies on using extended limits at some intermediate
step. Therefore, this does not provide a fully satisfactory answer to Connes’ question.

In this paper, we observe that we can answer Connes’ question by using a lemma in
the 2012 book of Lord–Sukochev–Zanin [39]. Although the main focus of this book is on
singular traces, the authors establish there an interesting asymptotic additivity result for
sums of eigenvalues of weak trace class operators. Recall if A is a compact operator, its
spectrum can be organized as a sequence of eigenvalues .�j .A//j�0 such that j�0.A/j �
j�1.A/j � � � � , where each eigenvalue is repeated according to its (algebraic) multiplicity.
By [39, Lemma 5.7.5], if A and B are operators in L1;1, thenX

j�N

�j .AC B/ D
X
j�N

�j .A/C
X
j�N

�j .B/C O.1/: (1.1)

This result is related to an eigenvalue characterization of the commutator space
Com.L1;1/. It is also used in [39] to show that an operator A 2 L1;1 is measurable
if and only if it is Tauberian, in the sense that

lim
N!1

1

logN

X
j<N

�j .A/ exists: (1.2)

We take the point of view to start from scratch and work with Tauberian operators from
the very beginning. We define on such operators a functional

ª 0 given by the limit in (1.2).
It easily follows from (1.1) that Tauberian operators form a subspace of L1;1 on which

ª 0
is a positive linear trace, i.e., it satisfies the NC integral’s Ansatz (see Proposition 2.17).
The key result is the equality between this functional and the NC integral as defined above
(Theorem 2.18). In particular, if A is measurable, then«

A D lim
N!1

1

logN

X
j<N

�j .A/: (1.3)

This formula is not stated in [39]. This gives a purely spectral theoretic construction of
Connes’ integral, and hence this answers Connes’ Question.

Further, another interesting consequence of the above result is the spectral invariance
of Connes’ integral. Namely, if two weak trace operators A and B (possibly acting on
different Hilbert spaces) have the same non-zero eigenvalues with same multiplicities,
then one is measurable if and only if the other is, and in this case their NC integrals agree
(see Proposition 2.22).

Another important question regarding Connes’ integral is its compatibility with
Lebesgue’s integral. This is a sensible question since L1;1 is a quasi-Banach ideal, but this
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is not a Banach space or even a locally convex topological vector space. Thus, Bochner
integration and Gel’fand–Pettis integration of maps with values in L1;1 do not make
sense.

Question B (Connes [20]). Can we single out a Dixmier trace that commutes with
Lebesgue’s integral?

We stress that we are seeking for a trace that is defined on all weak trace operators.
Connes [20] actually suggested to use Dixmier traces associated with medial limits in the
sense of Mokobodzki [46]. They are extended limits with the fundamental property to be
universally measurable and to commute with Lebesgue’s integration (see [46]).

We observe that any Dixmier trace Tr! uniquely extends to a linear trace Tr! WL1;1!
C, where L1;1 is the closure of L1;1 in the Dixmier–Macaev ideal (see Lemma 3.1). The
advantage of passing to L1;1 is to work with a Banach space, since the Dixmier–Macaev
ideal is a Banach ideal. Thus, Bochner integration with values in L1;1 makes sense and
commutes with continuous linear forms. We then get for almost free the following com-
patibility result (Proposition 3.2): if .�; �/ is a measure space and A W �! L1;1 is a
measurable map which is integrable as an L1;1-map, then we haveZ

�

Tr! ŒA.x/�d�.x/ D Tr!

�Z
�

A.x/d�.x/

�
:

In particular, if .�;�/ is a finite measure space, then the above result holds for any (essen-
tially) bounded measurable map A W �! L1;1. Furthermore, for such maps and in the
special case of Dixmier traces associated with medial limits, this result is an immediate
consequence of the fundamental property of medial limits alluded above (see Section 3).
This confirms Connes’ suggestion.

As it turns out, there are numerous positive traces on L1;1 that are not Dixmier traces.
Therefore, it is natural to consider a notion of measurability with respect to all positive
traces on L1;1 (see, e.g., [34, 39, 61]). We shall call such operators strongly measurable.
For the sake of completeness we overview their main properties. These operators actually
form a natural domain for the NC integral, in the sense that its restriction to strongly
measurable still satisfies the NC integral’s Ansatz (see Proposition 4.5). We also establish
the spectral invariance of the strong measurability property (see Proposition 4.9).

Strong measurability naturally appears in the context of Connes’ trace theorem [18,
34]. Suppose that .M n; g/ is a closed Riemannian manifold and E is a Hermitian vec-
tor bundle over M . Recall that Connes’ trace theorem asserts that if P W C1.M; E/!
C1.M;E/ is a pseudodifferential operator (‰DO) of order �n, then P is strongly mea-
surable, and we have «

P D
1

n

Z
S�M

trE Œ�.P /.x; �/�dxd�; (1.4)

where �.P / is the principal symbol of P and S�M is the cosphere bundle equipped with
its Liouville measure dxd�. The right-hand side is the noncommutative residue trace
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of P in the sense of Guillemin [32] and Wodzicki [73]. Applying the above result to
P D f�

�n=2
g , where f 2C1.M/ and�g is the Laplace–Beltrami operator on functions,

gives Connes’ integration formula,«
f�
� n2
g D cn

Z
M

f .x/
p
g.x/dx; cn WD

1

n
.2�/�njSn�1j: (1.5)

This shows that the NC integral recaptures the Riemannian measure
p
g.x/dx.

In the special case f D 1, Connes’ integration formula (1.5) is an immediate con-
sequence of the Weyl’s law for the Laplacian �g . Strong measurability does not imply
Weyl’s law. Therefore, we are lead to the following question:

Question C. What is the precise relationship between Weyl’s law and measurability?

This question is closely related to the work of Birman–Solomyak [7, 9–11] on Weyl’s
laws for compact operators in the 70s. This work was partly motivated by the semiclas-
sical analysis of Schrödinger operators, since by the Birman–Schwinger principle [5, 59],
Weyl’s laws for compact operators yield semiclassical Weyl’s laws for Schrödinger oper-
ators. In particular, Birman–Solomyak [7] set up a full perturbation theory. In [9–11], they
further showed that if P is a selfadjoint ‰DO of order �m < 0 with principal symbol
�.P /.x; �/, and we set p D nm�1, then we have the following Weyl’s law:

lim
j!1

j
1
p �˙j .P / D

�
1

n
.2�/�n

Z
S�M

trE
�
�.P /.x; �/

p
˙

�
dxd�

� 1
p

; (1.6)

where ˙�˙0 .P / � ˙�
˙
1 .P / � � � � are the positive and negative eigenvalues of P and

�.P /.x; �/˙ are the positive/negative parts of �.P /.x; �/. We also have a similar result
for the singular values of P (i.e., the eigenvalues of jP j D

p
P �P ) without any selfad-

jointness assumption. Namely,

lim
j!1

j
1
p�j .P / D

�
1

n
.2�/�n

Z
S�M

trE
�
j�.P /.x; �/jp

�
dxd�

� 1
p

; (1.7)

where �0.P / � �1.P / � � � � are the singular values of P .
As it turns out (see Proposition 5.12), any selfadjoint operator A 2 L1;1 satisfying a

Weyl’s law of the form (1.6) for p D 1 is strongly measurable, and we have«
A D lim

j!1
j�Cj .A/ � lim

j!1
j��j .A/: (1.8)

There is a similar result for the absolute value jAj in terms of the singular values of A
(cf. Corollary 5.13). This answers Question C. This also provides a further spectral theo-
retic description of the NC integral for operators satisfying Weyl’s laws. Incidentally, this
shows that the Weyl’s laws (1.6)–(1.7) of Birman–Solomyak provide us with a stronger
form of Connes’ trace theorem (1.4). For instance, if P is any ‰DO of order �n, then its
absolute value jP j is strongly measurable, even though it need not to be a ‰DO.
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The original proof of the Weyl’s laws (1.6)–(1.7) by Birman–Solomyak [7, 9–11] is
arguably a beautiful piece of hard analysis. Unfortunately, the main key technical details
are exposed in a somewhat compressed manner in the Russian article [10], the translation
of which remains unavailable.

Question D. Is there a softer proof of Birman–Solomyak’s Weyl’s laws (1.6)–(1.7)?

We attempt to provide such a proof in Section 6. The approach uses the relationship
between zeta functions and the noncommutative residue to get the Weyl’s laws (1.6)–(1.7)
for inverses of elliptic operators. The perturbation theory of Birman–Solomyak [7, §4] and
the BKS inequality [6] then allow us to get the Weyl’s laws in the general case. We refer
to Section 6 for the full details.

For the sake of completeness we also briefly explain how we can recover the versions
of the Weyl’s laws (1.6)–(1.7) on Rn from their versions on closed manifolds. In particular,
this leads to a stronger form of Connes’ trace theorem on Rn (see Corollary 6.13).

As mentioned above, the Birman–Schwinger principle provides a bridge between
Weyl’s laws for compact operators and semiclassical Weyl’s laws for Schrödinger opera-
tors. As we have related the former to Connes’ integration, we are lead to the following
question:

Question E. What is the precise relationship between Connes’ integral and semiclassical
Weyl’s laws for Schrödinger operators?

We answer to this question in Section 7. First, we re-interpret the Birman–Schwinger
principle in terms of Connes’ integral (see Proposition 7.1). Recall that if H is a non-
negative operator and V D V � isH -form compact, then the abstract form of the Birman–
Schwinger principle [15] relates the counting function of the Schrödinger operatorH C V
to the counting function of the negative part of the Birman–Schwinger operator

H�1=2VH�1=2;

provided 0 is not in the continuous spectrum ofH . Thus, any Weyl’s law of the form (1.6)
for the negative part .H�1=2VH�1=2/� is equivalent to a semiclassical Weyl’s law for the
number of negative eigenvaluesN�.h2H C V / as h! 0C. In terms of the NC integral

ª
,

this takes the form,

lim
h!0C

h2pN�
�
h2H C V

�
D

« �
H�

1
2VH�

1
2
�p
�
: (1.9)

One illustration of this form of the Birman–Schwinger principle is provided by the
semiclassical Weyl’s laws for spectral triples [44, 51]. In the framework of noncommuta-
tive geometry noncommutative manifolds are represented by spectral triples .A;H; D/.
Here A is a unital �-algebra represented by bounded operators H and D is a selfadjoint
(unbounded) operator on H with compact resolvent such that ŒD; a� is bounded for all
a 2 A. Assume further that if a 2 A is positive and invertible in L.H/, then

lim
j!1

j
� 2p �j

�
aD2a

�
D �

�
a�p

�� 2p ;
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where � is a positive linear form on the closure A � L.H/. Here 0 � �0.aD2a/ �

�1.aD
2a/ � � � � are the eigenvalues of aD2a counted with multiplicity. This condition

can be checked by using Tauberian theorems.
Under the above assumption it is shown in [51] that, for any a 2 A, the operator

ajDj�p is strongly measurable. Moreover, for all q > 0 and V D V � 2 A, we have the
semiclassical Weyl’s law,

lim
h!0C

hpN�
�
h2q.D2/q C V

�
D

«
.V�/

p
2q jDj�p:

This improves earlier results of McDonald–Sukochev–Zanin [44]. This encapsulates a
number of semiclassical Weyl’s laws for fractional Schrödinger operators in a variety of
settings (see [51]).

We also look at fractional Schrödinger operators �q C V on Rn, where �q , q <
n=2, is a fractional Laplacian. For potentials in Ln=2q.Rn/ the corresponding semiclas-
sical Weyl’s laws go back to Rozenblum [54, 55]. By using a recent result of Sukochev–
Zanin [69] and the version of Birman–Solomyak Weyl’s laws (1.6)–(1.7) for‰DOs on Rn,
we establish a strong form of Connes’ integration formula on Rn (Theorem 7.15). Namely,
for any Borel function f .x/ such thatZ

jf .x/j log.1C jf .x/j/dx <1 and
Z
jf .x/j log.1C jxj/dx <1; (1.10)

the operator ��n=4f��n=4 and its absolute value satisfy Weyl’s laws of the form (1.6)–
(1.7) with p D 1, and so they are strongly measurable. Moreover, we have«

��
n
4 f��

n
4 D c.n/

Z
f .x/dx; c.n/ WD

1

n
.2�/�njSn�1j: (1.11)

We have a similar formula for j��n=4f��n=4j. This improves a recent result of Lord–
Sukochev–Zanin [40]. The first condition in (1.10) means that f is an LlogL-Orlicz
function. The conditions (1.10) also appeared in [62].

The integration formula (1.11) allows us to reformulate Rozenblum’s semiclassical
Weyl’s laws in terms of the NC integral

ª
(see Corollary 7.17). Namely, if V is any real-

valued potential such that jV jn=2q satisfies the conditions (1.10), then

lim
h!0C

hnN�
�
h2q�q C V

�
D

«
��

n
4 .V�/

n
2q��

n
4 :

All this highlights neat links between the semiclassical analysis of Schrödinger oper-
ators and Connes’ noncommutative geometry. They are usually considered to be different
sub-fields of quantum theory. Therefore, it is somewhat striking to witness interactions
between them.

The remainder of this paper is organized as follows. In Section 2, we deal with Ques-
tion A and give a purely spectral theoretic construction of Connes’ integral. In Section 3,
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we deal with Question B. In Section 4, we describe the main properties of strongly mea-
surable operators. In Section 5, we deal with Question C by relating Connes’ integration
to the Weyl’s laws for compact operators. In Section 6, we give a “soft proof” of Birman–
Solomyak’s Weyl’s laws (1.6)–(1.7); this deals with Question D. In Section 7, we deal with
Question E by explaining several links between Connes’ integral and semiclassical Weyl’s
laws. Finally, in Appendix A, we gather a few results on Hilbert spaces embeddings that
are needed in Section 2.

2. Quantized calculus and NC integral

In this section, we present a purely spectral theoretic construction of Connes’ integral.
After a brief review of weak Schatten classes and Connes’ quantized calculus, we give
two constructions of the NC integral. The first one is given in terms of Dixmier traces and
uses extended limits. The other construction is in terms of Tauberian operators. These two
constructions are shown to give exactly the same notion of NC integral. This will answer
Question A.

2.1. Weak Schatten classes

First, we briefly review the main definitions and properties regarding Schatten and weak
Schatten classes (see, e.g., [30, 65] for further details).

Throughout this paper we let H be a (separable) Hilbert space with inner product h�j�i.
The algebra of bounded linear operators on H is denoted L.H/. The operator norm is
denoted k � k. We also denote by K the (closed) ideal of compact operators on H. Given
any operator T 2 K we let .�j .T //j�0 be its sequence of singular values, i.e., �j .T / is
the .j C 1/-th eigenvalue counted with multiplicity of the absolute value jT j D

p
T �T .

The min-max principle states that

�j .T / D min¹kTjE?kI dimE D j º: (2.1)

We record the following properties of singular values (see, e.g., [30, 65]):

�j .T / D �j .T
�/ D �j .jT j/; (2.2)

�jCk.S C T / � �j .S/C �k.T /; (2.3)

�j .ATB/ � kAk�j .T /kBk; A; B 2 L.H/: (2.4)

The inequality (2.3) is known as Ky Fan’s inequality.
For p 2 .0;1/ the Schatten class Lp consists of operators T 2 K such that jT jp is

trace-class. It is equipped with the quasi-norm,

kT kp WD Tr
�
jT jp

� 1
p D

�X
j�0

�j .T /
p

� 1
p

; T 2 Lp:
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We obtain a quasi-Banach ideal. For p � 1 the Lp-quasi-norm is actually a norm, and so
in this case Lp is a Banach ideal. In any case, the finite-rank operators on H form a dense
subspace of Lp .

For p 2 .0;1/, the weak Schatten class Lp;1 is defined by

Lp;1 WD
®
T 2 KI �j .T / D O.j�

1
p /
¯
:

This is a two-sided ideal. We equip it with the quasi-norm,

kT kp;1 WD sup
j�0

.j C 1/
1
p�j .T /; T 2 Lp;1: (2.5)

For p > 1, the quasi-norm k � kp;1 is equivalent to the norm,

kT k0p;1 WD sup
N�1

N
�1C 1

p

X
j<N

�j .T /; T 2 Lp;1:

Thus, in this case Lp;1 is a Banach ideal with respect to that equivalent norm. In general
(see, e.g., [64]), we have

kS C T kp;1 � 2
1
p
�
kSkp;1 C kT kp;1

�
; S; T 2 Lp;1: (2.6)

In addition, we denote by .Lp;1/0 the closure in Lp;1 of the finite-rank operators. We
have

.Lp;1/0 D
®
T 2 KI �j .T / D o

�
j
� 1p
�¯
:

We note the continuous inclusions,

Lp ¨ .Lp;1/0 ¨ Lp;1 ¨ Lq; 0 < p < q:

In particular, the fact that .Lp;1/0 ¤ Lp;1 means that Lp;1 is not separable.
In the following, we will also denote the Schatten and weak Schatten classes by Lp.H/

and Lp;1.H/ whenever there is a need to specify the Hilbert space.

2.2. Quantized calculus

The main goal of the quantized calculus of Connes [19] is to translate into the Hilbert
space formalism of quantum mechanics the main tools of the classical infinitesimal calcu-
lus.

Classical Quantum

Complex variable Operator on H

Real variable Selfadjoint operator on H

Infinitesimal variable Compact operator on H

Infinitesimal of order ˛ > 0 Compact operator T such that �j .T / D O.j�˛/
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The first two lines arise from quantum mechanics. Intuitively speaking, an infinites-
imal is meant to be smaller than any real number. For a bounded operator the condition
kT k < " for all " > 0 gives T D 0. This condition can be relaxed into the following: For
every " > 0 there is a finite-dimensional subspace E of H such that kTjE?k < ". This is
equivalent to T being a compact operator.

The order of compactness of a compact operator is given by the order of decay of its
singular values. Namely, an infinitesimal operator of order ˛ > 0 is any compact operator
such that �j .T / D O.j�˛/. Thus, if we set p D ˛�1, then T is an infinitesimal operator
of order ˛ > 0 if and only if T 2 Lp;1.

The next line of the dictionary is the NC analogue of the integral. As an Ansatz the
NC integral should be a linear functional satisfying at least the following conditions:

(1) It is defined on a suitable class of infinitesimal operators of order 1.

(2) It vanishes on infinitesimal operators of order > 1.

(3) It takes non-negative values on positive operators.

(4) It is invariant under Hilbert space isomorphisms.

As mentioned above, the infinitesimal operators of order 1 are the operators in the weak
trace class L1;1. Condition (3) means that the functional should be positive. Condition (4)
forces the functional to be a trace, in the sense it is annihilated by the commutator sub-
space,

Com.L1;1/ WD Span¹ŒA; T �I A 2 L.H/; T 2 L1;1º:

More precisely, it would be convenient to adopt the following definition of a trace.

Definition 2.1. If E is a subspace of L1;1 containing Com.L1;1/ and F is another vector
space, then we say that a linear map ' W E! F is a trace if it is annihilated by Com.L1;1/.

To sum up, the NC integral should be a positive trace
ª
WM! C, where M is a suit-

able subspace of L1;1 containing the commutator subspace Com.L1;1/ and infinitesimal
operators of order > 1.

2.3. Eigenvalue sequences and commutators in L1;1

If A is a compact operator on H, then its spectrum can be arranged as a sequence
.�j .A//j�0 converging to 0 such that

j�0.A/j � j�1.A/j � � � � � j�j .A/j � � � � � 0;

where each eigenvalue is repeated according to its algebraic multiplicity, i.e., the dimen-
sion of the root space E�.A/ WD

S
`�1 ker.A � �/`. If � ¤ 0, the algebraic multiplicity

is always finite (see, e.g., [30]). It agrees with the geometric multiplicity whenever A is
normal.

A sequence as above is called an eigenvalue sequence for A. Such a sequence is not
unique. If A� 0, then the eigenvalue sequence is unique and agrees with its singular value
sequence .�j .T //j�0. In general, an eigenvalue sequence need not to be unique.
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In what follows, by .�j .A//j�0, we shall always denote an eigenvalue sequence in the
sense above.

We record the Ky Fan’s inequalities (see, e.g., [30, 65]),ˇ̌̌ X
j<N

�j .A/
ˇ̌̌
�

X
j<N

j�j .A/j �
X
j<N

�j .A/ 8N � 1: (2.7)

The approach of this section is based on the following asymptotic additivity result.

Lemma 2.2 ([39, Lemma 5.7.5]). If A and B are operators in L1;1, thenX
j<N

�j .AC B/ D
X
j<N

�j .A/C
X
j<N

�j .B/C O.1/: (2.8)

Remark 2.3. For B D 0 the above result shows that if .�j .A//j�0 and .�0j .A//j�0 are
two eigenvalue sequences of A, thenX

j<N

�0j .A/ D
X
j<N

�j .A/C O.1/: (2.9)

Remark 2.4 (See [39, Lemma 5.7.1]). Suppose that A D A� 2 L1;1. Let .˙�˙j .A//j�0
be the sequence of positive/negative eigenvalues ofA, that is, �˙j .A/D�j .A

˙/D�j .A
˙/,

where A˙ D 1
2
.jAj ˙ A/ are the positive and negative parts of A. As A D AC � A� we

get X
j<N

�j .A/ D
X
j<N

�
�Cj .A/ � �

�
j .A/

�
C O.1/:

Remark 2.5. Given A 2 L1;1, let <A D 1
2
.AC A�/ and =A D 1

2i
.A � A�/ be its real

and imaginary parts. Then we haveX
j<N

�j .A/ D
X
j<N

�
�j .<A/C i�j .=A/

�
C O.1/:

As �j .<A/ and �j .=A/ are real numbers, we get

<

�X
j<N

�j .A/

�
D

X
j<N

<.�j .A// D
X
j<N

�j .<A/C O.1/;

=

�X
j<N

�j .A/

�
D

X
j<N

=.�j .A// D
X
j<N

�j .=A/C O.1/:

We have the following consequence of Lemma 2.2.

Corollary 2.6. If A 2 Com.L1;1/, thenX
j<N

�j .A/ D O.1/:
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Proof. By definition Com.L1;1/ is spanned by commutators of the form ŒT; A� with
T 2 L.H/ and A 2 L1;1. Any T 2 L.H/ is a linear combination of unitary operators
(see, e.g., [53, Section VI.6]). Thus, Com.L1;1/ is spanned by operators of the form
ŒU; A� D UA � U �.UA/U with A 2 L1;1 and U 2 L.H/ unitary. Combining with the
asymptotic additivity (2.8) of sums of eigenvalues, we see that it is enough to prove the
result for operators of the form A D U �BU � B with B 2 L1;1 and U 2 L1;1 uni-
tary. However, in this case, any eigenvalue sequence for B is an eigenvalue sequence
for U �BU . Therefore, by using (2.8) we getX

j<N

�j .A/ D
X
j<N

�j .U
�BU/ �

X
j<N

�j .B/C O.1/ D O.1/:

The proof is complete.

We have a converse to Corollary 2.6. More precisely, we have the following result.

Proposition 2.7 ([28, 39]). If A and B are operators in L1;1, then

A � B 2 Com
�
L1;1

�
”

X
j<N

�j .A/ D
X
j<N

�j .B/C O.1/: (2.10)

Remark 2.8. Proposition 2.7 is a special case of a deep characterization of the com-
mutator spaces of compact operator ideals due to Dykema–Figiel–Weiss–Wodzicki [28].
However, in the special case of L1;1 the proof is much simpler (see [39, §5.7]).

2.4. The noncommutative integral in terms of Dixmier traces

Let us now recall the construction of the NC integral in terms of Dixmier traces. Our con-
struction deviates a bit from the standard constructions of Dixmier [27] and Connes [19],
since we work on the weak trace class, rather than the Dixmier–Macaev ideal. The ap-
proach is solely based on using the asymptotic additivity property provided by Lemma 2.2.
The exposition is also partly inspired by the construction of Dixmier traces by Connes–
Moscovici [22, Appendix A].

In what follows we denote by `1 the C �-algebra of bounded sequences .aN /N�1 �
C. We also let c0 be the closed ideal of sequences converging to 0. We then endow the
quotient `1=c0 with its quotient C �-algebra structure.

If A 2 L1;1, the Ky Fan’s inequalities (2.7) imply thatˇ̌̌ 1

logN

X
j<N

�j .A/
ˇ̌̌
�

1

logN

X
j<N

�j .A/ � CkAk1;1; (2.11)

where the constant C does not depend on A. (We make the convention that .logN/�1 D 0
for N D 1). Thus, the sequence ¹.logN/�1

P
j<N �j .A/ºN�1 is bounded. Moreover, it

follows from Remark 2.3 that, if .�0j .A//j�0 is another eigenvalue sequence for A, then

1

logN

X
j<N

�0j .A/ D
1

logN

X
j<N

�j .A/C o.1/:
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Thus, the class of ¹ 1
logN

P
j<N �j .A/ºN�1 in `1=c0 does not depend on the choice of

the eigenvalue sequence .�j .A//j�0. Therefore, we have a well-defined map � W L1;1 !
`1=c0 given by

�.A/ D class of
²

1

logN

X
j<N

�j .A/

³
N�1

in `1=c0:

Lemma 2.9. The map � W L1;1! `1=c0 is a positive continuous linear trace. It is anni-
hilated by operators in .L1;1/0, including infinitesimal operators of order > 1.

Proof. Let A 2 L1;1, and let .�j .A//j�0 be an eigenvalue sequence. If c 2 C, then
.c�j .A//j�0 is an eigenvalue sequence for cA, and hence

�.cA/ D class of
²

1

logN

X
j<N

c�j .A/

³
N�1

D c�.A/:

If B 2 L1;1, then it follows from Lemma 2.2 that

1

logN

X
j<N

�j .AC B/ D
1

logN

X
j<N

�j .A/C
1

logN

X
j<N

�j .B/C o.1/:

Thus, �.AC B/ D �.A/C �.B/. In addition, it follows from (2.11) that

k�.A/k � sup
N�1

1

logN

ˇ̌̌ X
j<N

�j .A/
ˇ̌̌
� CkAk1;1: (2.12)

Therefore, we see that � is a continuous linear map.
It is immediate that if A has non-negative eigenvalues, then �.A/ is a positive element

of `1=c0. Thus, � is a positive linear map. Furthermore, it follows from Corollary 2.6
that if A 2 Com.L1;1/, then .logN/�1

P
j<N �j .A/ is o.1/, and hence �.A/ D 0. Thus,

� is a trace. Likewise, if A 2 .L1;1/0, then .logN/�1
P
j<N �j .A/ D o.1/, and hence

�.A/ D 0. Thus, � is annihilated by .L1;1/0. The proof is complete.

Recall that a state on a unital C �-algebra A is a positive linear functional ! W A! C
such that !.1/ D 1. Every state on A is continuous. Moreover, it follows from the Hahn–
Banach theorem that the states separate the points of A. If ! is a state on the quotient
C �-algebra `1=c0, then it lifts to a state lim! W `1 ! C which annihilates c0. Namely,
lim! D ! ı � , where � W `1 ! `1=c0 is the canonical projection. Such a state is called
an extended limit. Conversely, any extended limit uniquely descends to a state on `1=c0.
Therefore, we have a one-to-one correspondence between extended limits and states on
`1=c0.

If lim! is an extended limit, then its positivity implies that, for every real-valued
sequence a D .aN /N�1 2 `1, we have

lim inf aN � lim! a � lim sup aN : (2.13)
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Furthermore, as the states on `1=c0 form a separating family of linear functionals, we
have

lim
N!1

aN D L”
�
a � L 2 c0

�
”

�
lim! a D L 8!

�
: (2.14)

Given any extended limit lim! we define Tr! W L1;1 ! C by

Tr!.A/ D lim!

1

logN

X
j<N

�j .A/; A 2 L1;1:

Thus, if A 2 L1;1, then we have

Tr!.A/ D ! ı �
�²

1

logN

X
j<N

�j .A/

³
N�1

�
D !Œ�.A/�:

Therefore, in view of Lemma 2.9 we immediately obtain the following result.

Proposition 2.10. Tr! W L1;1! C is a positive continuous linear trace. It is annihilated
by operators in .L1;1/0, including infinitesimal operators of order > 1.

Definition 2.11. The trace Tr! W L1;1 ! C is called the Dixmier trace associated with
the extended limit lim! .

Every Dixmier trace satisfies the Ansatz for the NC integral. However, if A 2 L1;1,
the value of Tr!.A/ may depend on the choice of the extended limit. To remedy this we
proceed as follows.

Definition 2.12 (Connes [19]). An operator A 2 L1;1 is called measurable if the value
of Tr!.A/ is independent of the choice of the extended limit. For such an operator, its NC
integral is defined by «

A D lim!

1

logN

X
j<N

�j .A/;

where lim! is any extended limit.

In what follows we denote by M the set of measurable operators. The NC integral then
is a map

ª
WM! C.

Proposition 2.13. The following hold.

(1) M is a closed subspace of L1;1 containing Com.L1;1/ and .L1;1/0. In particu-
lar, all infinitesimal operators of order > 1 are measurable.

(2) The NC integral
ª
WM! C is a positive continuous trace on M. It is annihilated

by operators in .L1;1/0, including infinitesimal operators of order > 1.

Proof. By definition,

M D
\
!;!0

®
A 2 L1;1I Tr!.A/ D Tr!0.A/

¯
;

where ! and !0 range over all states on `1=c0. As the Dixmier traces Tr! are continuous
linear maps, it follows that M is a closed subspace of L1;1.
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By definition the NC integral
ª

agrees with any Dixmier trace Tr! , and so this is a
continuous positive linear functional by Proposition 2.10. Moreover, as the union

Com.L1;1/ [ .L1;1/0

is annihilated by every Dixmier trace, it is contained in M and is annihilated by
ª

. In
particular, the NC integral

ª
is a trace on M. The proof is complete.

Remark 2.14. It follows from (2.13) that, for every extended limit !, if A 2 L1;1 has
real eigenvalues (e.g., if A� D A), then

lim inf
N!1

1

logN

X
j<N

�j .A/ � Tr!.A/ � lim sup
N!1

1

logN

X
j<N

�j .A/:

2.5. A noncommutative integral in terms of Tauberian operators

We shall now present an alternative approach to the NC integral. The approach is to work
with Tauberian operators (see definition below). This approach is inspired by the charac-
terization of measurable operators in terms of Tauberian operators in [39].

We will show in the next subsection that this approach is equivalent to the previous
approach in terms of Dixmier traces. As the 2nd approach involves spectral data only, the
equivalence between the two approaches will answer Question A.

If A 2 L1;1, then it follows from (2.9) that if .�j .A//j�0 and .�0j .A//j�0 are two
eigenvalue sequences for A, then

.logN/�1
X
j<N

�0j .A/ D .logN/�1
X
j<N

�j .A/C o.1/:

This immediately implies the following statement.

Lemma 2.15. Given A 2 L1;1 and L 2 C, the following are equivalent:

(i) .logN/�1
P
j<N �j .A/! L for some eigenvalue sequence .�j .A//j�0 of A.

(ii) .logN/�1
P
j<N �j .A/! L for every eigenvalue sequence .�j .A//j�0 of A.

Definition 2.16 (see, e.g., [39]). Any operator A 2 L1;1 that satisfies the conditions of
Lemma 2.15 is called a Tauberian operator.

In what follows, we denote by T the class of Tauberian operators in L1;1. If A 2 T,
we set « 0

A WD lim
N!1

1

logN

X
j<N

�j .A/;

where .�j .A//j�0 is any eigenvalue sequence for A. Thanks to Lemma 2.15 the above
limit exists for any eigenvalue sequence and its value is independent of the choice of that
sequence.

The following result shows that the map
ª 0
W T ! C has all the properties we are

seeking for the NC integral.
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Proposition 2.17. The following holds.

(1) T is a subspace of L1;1 containing Com.L1;1/ and .L1;1/0.

(2) The map
ª 0
W T ! C is a continuous positive linear trace on T. It is annihilated

by operators in .L1;1/0, including infinitesimals of order > 1.

Proof. It is immediate that if an operator A 2 T is positive, then
ª 0
A � 0. Moreover, if

A 2 T and c 2 C, then .c�j .A//j�0 is an eigenvalue sequence of cA, and hence cA 2 T

with
ª 0
.cA/ D c

ª 0
.A/. If A;B 2 T, then (2.8) implies that

1

logN

X
j<N

�j .AC B/ D
1

logN

X
j<N

�j .A/C
1

logN

X
j<N

�j .B/C o.1/:

Thus,

lim
N!1

1

logN

X
j<N

�j .AC B/ D lim
N!1

1

logN

X
j<N

�j .A/C lim
N!1

1

logN

X
j<N

�j .B/

D

« 0
AC

« 0
B:

That is, ACB 2 T and
ª 0
.AC B/ D

ª 0
AC

ª 0
B . All this shows that T is a subspace of

L1;1 and
ª 0
W T ! C is a positive linear map.

If A 2 .L1;1/0, then �j .A/ D o.j�1/, and so
P
j<N �j .A/ D o.logN/. Combining

this with the Ky Fan’s inequality (2.7) shows that
P
j<N �j .A/ D o.logN/, i.e., A 2 T

and
ª 0
AD 0. Likewise, if A 2 Com.L1;1/, then Corollary 2.6 implies that

P
j<N �j .A/

is 0.1/, and hence is o.logN/. Thus, in this case, too, A 2 T and
ª 0
A D 0. In particular,

this shows that
ª 0 is a trace on T. The proof is complete.

2.6. Equivalence between the two approaches. Spectral invariance

We shall now explain that the two approaches to the NC integral coincide. Namely, we
have the following result.

Theorem 2.18. An operator A 2 L1;1 is measurable if and only if it is Tauberian. More-
over, in this case we have «

A D lim
N!1

1

logN

X
j<N

�j .A/: (2.15)

Proof. This is a direct consequence of (2.14), since it gives�
lim!

1

logN

X
j<N

�j .A/ D L 8!

�
” lim

N!1

1

logN

X
j<N

�j .A/ D L:

The left-hand side exactly means that A 2M and
ª
A D L. The right-hand side exactly

means that A 2 T and
ª 0
A D L. Hence the result.
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Remark 2.19. The characterization of measurable operators in terms of the Tauberian
property is the content of [39, Theorem 9.7.5]. The proof given above is somewhat simpler.
The trace formula (2.15) is not established in [39].

Theorem 2.18 characterizes measurable operators and shows how to compute NC inte-
grals purely in terms of spectral data. In particular, the computation of the NC integral of
some concrete operator only requires the knowledge of its spectrum. This answers Ques-
tion A in the introduction. Incidentally, this shows that .M;

ª
/ depends on the locally

convex topology of H in a somewhat loose sense. In particular, it does not depend on the
choice of the inner product.

We mention a few consequences of Theorem 2.18.

Proposition 2.20. Let A 2 L1;1. Then A is measurable if and only if its real part <A
and its imaginary part =A are both measurable. Moreover, in this case we have

<

�«
A

�
D

«
<A; =

�«
A

�
D

«
=A:

Proof. It follows from Remark 2.5 that

1

logN
<

�X
j<N

�j .A/

�
D

1

logN

X
j<N

�j .<A/C o.1/;

1

logN
=

�X
j<N

�j .A/

�
D

1

logN

X
j<N

�j .=A/C o.1/:

Thus logN�1
P
j<N �j .A/! L as N !1 if and only if

lim
N!1

1

logN

X
j<N

�j .<A/ D <L and lim
N!1

1

logN

X
j<N

�j .<A/ D =L:

Combining this with Theorem 2.18 gives the result.

Proposition 2.21. Let A D A� 2 L1;1. Then A is measurable if and only if

lim
N!1

1

logN

X
j<N

�
�Cj .A/ � �

�
j .A/

�
exists:

Moreover, in this case we have«
A D lim

N!1

1

logN

X
j<N

�
�Cj .A/ � �

�
j .A/

�
:

Proof. It follows from Remark 2.4 that

1

logN

X
j<N

�j .A/ D
1

logN

X
j<N

�
�Cj .A/ � �

�
j .A/

�
C o.1/:

This gives the result.
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Let H0 be another Hilbert space. Theorem 2.18 implies the following spectral invari-
ance result.

Proposition 2.22. Let A 2 L1;1.H/ and A0 2 L1;1.H
0/ have the same non-zero eigen-

values with same multiplicities. Then A is measurable if and only if A0 is measurable.
Moreover, in this case

ª
A D

ª
A0.

Suppose now that � WH0!H is a continuous linear embedding, i.e., it is a linear map
which is one-to-one and has closed range. For instance, any isometric linear map is such an
embedding. Denote by H1 the range of �. By assumption this is a closed subspace of H and
� gives rise to a continuous linear isomorphism � W H! H1 with inverse ��1 W H1 ! H0.
As explained in Appendix A we have a pushforward map �� W L.H0/! L.H/ given by

��A D � ı A ı �
�1
ı �; A 2 L.H0/; (2.16)

where � W H ! H is the orthogonal projection onto H1. In particular, if � is invertible,
then ��AD �A��1. We also know from Proposition A.3 that �� induces a continuous linear
embedding,

�� W L1;1.H
0/! L1;1.H/:

Moreover, by Proposition A.1, if A 2 L1;1.H
0/, then A and ��A have the same non-zero

eigenvalues with same multiplicities. Combining this with Proposition 2.22 we then arrive
at the following statement.

Corollary 2.23. Let A 2 L1;1.H
0/. Then ��A is measurable if and only if A is measur-

able. Moreover, in this case we have «
��A D

«
A:

Denote by M.H/ (resp., M.H0/) the space of measurable operators on H (resp., H0).
Specializing Corollary 2.23 to the case where � is an isomorphism yields the following
invariance result.

Corollary 2.24. Assume � W H! H0 is a continuous linear isomorphism. Then

�M.H/��1 DM.H0/;

and we have «
�A��1 D

«
A 8A 2M.H/:

3. Connes’ integration and Lebesgue’s integration

In this section, we look at the compatibility of Connes’ integral with Lebesgue’s integra-
tion. This will answer Question B.
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3.1. Compatibility of Dixmier traces with Lebesgue’s integration

To address the compatibility of Dixmier traces with Lebesgue’s integration, the main tech-
nical hurdle is the lack of convexity of the weak trace class L1;1. Indeed, L1;1 is a
quasi-Banach ideal, but this is not a Banach space or even a locally convex space. Thus,
Bochner integration, or even Gel’fand–Pettis integration, of maps with values in L1;1
do not make sense. We can remedy this by passing to the closure L1;1 in the Dixmier–
Macaev ideal M1;1. Recall that

M1;1 WD

²
A 2 KI

X
j<N

�j .T / D O.logN/
³
:

This is a Banach ideal with respect to the norm,

kAk.1;1/ D sup
N�1

1

log.N C 1/

X
j<N

�j .A/; A 2M1;1: (3.1)

Note that L1;1 ¨ M1;1 (see [35, 60]).
As L1;1 equipped with the k � k.1;1/-norm is a Banach space, Bochner’s integration

makes sense for maps with values in L1;1. Thus, given a measure space .�; �/, for any
measurable mapA W�!L1;1 we may at least define its Bochner integral

R
�
A.x/d�.x/

as an element of L1;1 provided that
R
�
kA.x/k.1;1/d�.x/ <1.

Lemma 3.1. The trace � W L1;1 ! `1=c0 uniquely extends to a positive linear trace
� W L1;1 ! `1=c0 which is continuous with respect to the Dixmier–Macaev norm (3.1).

Proof. It follows from (2.12) that there is a C > 0, such that, for all A 2 L1;1, we have

k�.A/k � sup
N�1

1

logN

ˇ̌̌ X
j<N

�j .A/
ˇ̌̌
�

1

logN

X
j<N

�j .A/ � CkAk.1;1/:

Thus, the linear map � is continuous with respect to the Dixmier–Macaev norm, and hence
it uniquely extends to a continuous linear map � W L1;1 ! `1=c0. This map is positive
and is a trace. The proof is complete.

Given any state ! on `1=c0, we define the map Tr! W L1;1 ! C by

Tr!.A/ D ! ı �.A/; A 2 L1;1:

Equivalently, Tr! is the unique continuous extension to L1;1 of the Dixmier trace Tr! .
In what follows we let .�;�/ be a measure space.

Proposition 3.2. Let A W �! L1;1 be a measurable map such thatZ
�

kA.x/k.1;1/d�.x/ <1:
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Then, for every extended limit lim! , the function � 3 x ! Tr! ŒA.x/� is integrable, and
we have Z

�

Tr! ŒA.x/�d�.x/ D Tr!

�Z
�

A.x/d�.x/

�
: (3.2)

In particular, if
R
�
A.x/d�.x/ 2 L1;1, thenZ

�

Tr! ŒA.x/�d�.x/ D Tr!

�Z
�

A.x/d�.x/

�
:

Proof. Let lim! be an extended limit. The continuity of Tr! and the fact that A W �!
L1;1 is Bochner-integrable as an L1;1-valued map ensure us that the function Tr! ŒA.x/�
D Tr! ŒA.x/� is integrable, and we haveZ

�

Tr! ŒA.x/�d�.x/ D
Z
�

Tr! ŒA.x/�d�.x/ D Tr!

�Z
�

A.x/d�.x/

�
:

The proof is complete.

Corollary 3.3. Let A W�! L1;1 be a measurable map so that
R
�
kA.x/k.1;1/d�.x/ <

1. Assume that A.x/ is a measurable operator a.e., and
R
�
A.x/d�.x/ 2 L1;1. ThenR

�
A.x/d�.x/ is a measurable operator, and we haveZ

�

�«
A.x/

�
d�.x/ D

« �Z
�

A.x/d�.x/

�
:

3.2. Dixmier traces associated with medial limits

As pointed out by Connes [20] another route to look at the compatibility of Connes’ inte-
gration with Lebesgue’s integration is to use medial limits. These limits were introduced
by Mokobodzki [46]. Namely, by using the continuum hypothesis he proved the following
result.

Lemma 3.4 (Mokobodzki [46]). There exists a state ! W `1=c0!C which is universally
measurable and such that, for any complete finite measure � on `1=c0, we have

!

�Z
ad�.a/

�
D

Z
!.a/d�.a/: (3.3)

Let !med be a state as in the above lemma. The corresponding extended limit is called
a medial limit and is denoted by lim med.

The fundamental property (3.3) implies the following striking feature of medial limits.

Proposition 3.5 ([46]). Given a complete finite measure space .�; �/, let .f`/`�1 a
bounded family in L1.�; �/. Then � 3 x ! lim medf`.x/ is a bounded measurable
function such thatZ

�

�
lim medf`.x/

�
d�.x/ D lim med

Z
�

f`.x/d�.x/:
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In other words, we do not have to worry about the integrability of lim medf`.x/. We
may freely swap the integral sign and the medial limit. Alternatively, if a W �! `1=c0 is
any bounded measurable map, thenZ

�

!medŒa.x/�d�.x/ D !med

�Z
�

a.x/d�.x/

�
: (3.4)

Denote by Tr!med the Dixmier trace associated with the extended limit lim med. Let
A W �! L1;1 be a bounded measurable map. Applying (3.4) to a.x/ D �ŒA.x/� givesZ

!med ı �ŒA.x/�d�.x/ D !med

�Z
�

�ŒA.x/�d�.x/

�
:

Note that !med ı �ŒA.x/� D Tr!med ŒA.x/�, andZ
�

�ŒA.x/�d�.x/ D

Z
�

�ŒA.x/�d�.x/ D �

�Z
�

A.x/d�.x/

�
:

Thus,Z
Tr!med ŒA.x/�d�.x/ D !med ı �

�Z
�

A.x/d�.x/

�
D Tr!med

�Z
�

A.x/d�.x/

�
:

Therefore, in the special case of medial limits, we recover the formula (3.2) as an imme-
diate consequence of the fundamental property (3.3) of those extended limits.

4. Strongly measurable operators

In this section, we look at a stronger notion of measurability and show that we still have a
sensible notion of integral on operators that satisfies this notion of measurability.

4.1. Strong measurability

In what follows we denote by T0 any positive operator in L1;1 so that �j .T0/D .j C 1/�1

for all j � 0. Note that any two such operators are unitary equivalent, and hence agree up
to an element of Com.L1;1/.

Recall that a trace ' W L1;1 ! C is called normalized if '.T0/ D 1. All the Dixmier
traces are normalized traces. However, there are positive normalized traces on L1;1 that
are not Dixmier traces and do not have a continuous extension to the Dixmier–Macaev
ideal M1;1 (see, e.g., [61, Theorem 4.7]). Therefore, it stands for reason to consider a
stronger notion of measurability (see, e.g., [34, 39, 61]).

Definition 4.1. An operator T 2 L1;1 is called strongly measurable when there is L 2 C
such that '.T / D L for every positive normalized trace ' on L1;1. We denote by Ms the
class of strongly measurable operators.
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Remark 4.2. The class of strongly measurable operators is strictly contained in the space
of measurable operators (see [61, Theorem 7.4]).

Lemma 4.3. The space of continuous traces on L1;1 is spanned by normalized positive
traces. In fact, any continuous trace is a linear combination of 4 normalized positive
traces.

Proof. Every positive trace on L1;1 is continuous (see, e.g., [49, Proposition 2.2]). Con-
versely, every continuous trace on L1;1 is a linear combination of 4 positive traces (see
[21, Corollary 2.2]). To complete the proof it is enough to show that every positive trace
is a scalar multiple of a normalized positive trace.

Let ' be a non-zero positive trace. As L1;1 is spanned by its positive cone, there is
a positive operator A 2 L1;1 such that '.A/ > 0. Let .�j /j�0 be an orthonormal basis
of H such that A�j D �j .T /�j for all j � 0. Let T0 be the operator on H such that
T0�j D .j C 1/�1�j . As �j .A/ � kAk1;1.j C 1/�1 we see that A � kAk1;1T0. The
positivity of ' then implies that 0 < '.A/ � kT k1;1'.T0/. Thus, '.T0/ > 0, and so
z' WD '.T0/

�1' is a normalized positive trace. As ' D '.T0/z' we see that every positive
trace is a scalar multiple of a normalized positive trace. The proof is complete.

Lemma 4.3 implies the following characterization of strongly measurable operators in
terms of continuous traces.

Lemma 4.4. Let A 2 L1;1. The following are equivalent:

(i) A is strongly measurable and
ª
A D L.

(ii) '.A/ D '.T0/L for every continuous trace on L1;1.

This implies the following properties.

Proposition 4.5. The following holds.

(1) Ms is a closed subspace of M containing Com.L1;1/ and .L1;1/0. In particular,
every infinitesimal operator of order > 1 is strongly measurable.

(2) The space Ms does not depend on the inner product of H.

(3) Let A 2 L1;1 be such thatX
j<N

�j .A/ D L logN C O.1/: (4.1)

Then A is strongly measurable and
ª
A D L.

Proof. It is immediate that Ms is a subspace of M. Moreover, as condition (ii) of Lem-
ma 4.4 depends only on the topological vector space structure of L1;1, we see that Ms

does not depend on the inner product of H.
Let .A`/`�0 be a sequence in Ms converging to A in L1;1. Set ˛` D

ª
A`. As M is a

closed subspace of L1;1 and
ª

is a continuous linear form, we see that ˛`! ˛ as `!1.
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Let ' be a positive normalized trace on L1;1. We have '.A`/ D
ª
A` D ˛` for all ` � 0.

As ' is a continuous trace, we have

'.A/ D lim
`!1

'.A`/ D lim
`!1

˛` D ˛:

Thus '.A/ D ˛ for every positive normalized trace, and so A is strongly measurable. This
shows that Ms is a closed subspace of M.

Furthermore, if A 2 Com.L1;1/ and ' is a continuous trace on L1;1, then '.A/D 0,
and so by using Proposition 4.4 we deduce that A is strongly measurable. It follows from
Proposition 2.7 that the ideal R of finite rank operators is contained in Com.L1;1/. As
Ms is closed, we deduce that it contains the closure of R in L1;1, i.e., the ideal .L1;1/0.

Finally, let A 2 L1;1 satisfy (4.1). In addition, let T0 be any positive operator in L1;1
such that�j .T0/D .j C 1/�1. Then (4.1) is the right-hand side of (2.10) forBDLT0, and
so A � LT0 2 Com.L1;1/. In particular, given any normalized positive trace ' on L1;1
we have '.A/ D L'.T0/ D L. That is, A 2Ms and

ª
A D L. The proof is complete.

Remark 4.6. Let us call strongly Tauberian any operatorA 2L1;1 satisfying (4.1). In the
same way as in the proof of Proposition 2.17, it follows from Lemma 2.2 that the strongly
Tauberian operators form a subspace of Ms. This is a proper subspace. For instance,
every operator in Com.L1;1/ n Com.L1;1/ is strongly measurable, but is not strongly
Tauberian.

Remark 4.7. As Ms is a subspace of M containing Com.L1;1/, we see that the NC
integral

ª
induces a positive continuous trace on Ms which is annihilated by operators in

.L1;1/0. This restriction also satisfies the Ansatz for the NC integral.

Remark 4.8. We refer to [61, Proposition 7.2] for a characterization of strongly measur-
able operators in terms of eigenvalue sequences.

In what follows we denote by H0 another Hilbert space. We also denote by Ms.H/

(resp., Ms.H
0/) the space of strongly measurable operators on H (resp., H0). We have the

following invariance property of strong measurable operators.

Proposition 4.9. Let A 2 L1;1.H/ and B 2 L1;1.H
0/ have the same non-zero eigen-

values with same multiplicities. Then A is strongly measurable if and only if B is strongly
measurable.

Proof. By assumption any eigenvalue sequence for A is an eigenvalue sequence for B ,
and vice versa. If H0 D H, then combining this with Corollary 2.6 shows that A � B is
an operator in Com.L1;1/, and hence is strongly measurable. As Ms.H/ is a subspace of
L1;1, it follows that A is strongly measurable if and only if B is strongly measurable.

Suppose now that H0 ¤ H. Let U W H! H0 be a unitary isomorphism, and set B 0 D
U �BU . Then B 0 is an operator in L1;1.H/with the same non-zero eigenvalues and same
multiplicities as A and B . Thus, by the first part of the proof, A is strongly measurable if
and only if B 0 is strongly measurable.
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Let ˛U W L.H0/ ! L.H/ be defined by ˛U .T / D U �T U , T 2 L.H/. This is a
�-isomorphism of C �-algebras. It induces an isometric isomorphism ˛U W L1;1.H

0/!

L1;1.H/. By duality we get a one-to-one correspondence ' ! ' ı ˛U between positive
traces on L1;1.H

0/ and positive traces on L1;1.H/. It then follows that B is strongly
measurable if and only if B 0 is strongly measurable. This gives the result when H0 ¤ H.
The proof is complete.

Using the same type of argument that lead to Corollary 2.24 and Corollary 2.23 we
obtain the following consequence of Proposition 4.9.

Corollary 4.10. Let � W H0 ! H be a Hilbert space embedding.

(1) If A 2 L1;1.H
0/, then ��A is strongly measurable if and only if A is strongly

measurable.

(2) If � is an isomorphism, then �Ms.H
0/��1 DMs.H/.

4.2. Connes’ trace theorem

Suppose that .M n; g/ is a closed Riemannian manifold and E is a Hermitian vector bun-
dle. Givenm 2R, we denote by‰m.M;E/ the space ofm-th order classical pseudodiffer-
ential operators (‰DOs)P WC1.M;E/!C1.M;E/. IfP 2‰m.M;E/, then we denote
by �.P /.x;�/ its principal symbol; this is a smooth section of End.E/ over T �M n 0. Any
P 2 ‰m.M;E/ with m � 0 extends to a bounded operator P W L2.M;E/! L2.M;E/.
If in addition m < 0, then we get an operator in the weak Schatten class Lp;1 with
p D njmj�1, i.e., an infinitesimal operator of order 1=p.

Setting ‰Z.M; E/ D
S
m2Z ‰

m.M; E/, let Res W ‰Z.M; E/! C be the noncom-
mutative residue trace of Guillemin [32] and Wodzicki [73]. It appears as the residual
trace on integer-order ‰DOs induced by the analytic extension of the ordinary trace to all
non-integer order‰DOs (see [32,73]). A result of Wodzicki [72] further asserts this is the
unique trace up to a constant multiple on the algebra ‰Z.M; E/ if M is connected and
has dimension n� 2 (see also [37,48]). The noncommutative residue is a local functional.
Namely, if P 2 ‰Z.M;E/, then

Res.P / D
Z
M

trE ŒcP .x/�;

where cP .x/ is an End.E/-valued 1-density which is given in local coordinates by

cP .x/ D .2�/
�n

Z
j�jD1

a�n.x; �/d
n�1�;

where a�n.x; �/ is the symbol of degree �n of P . In particular, if P has order �n, then

Res.P / D .2�/�n
Z
S�M

trE
�
�.P /.x; �/

�
dxd�;

where S�M D T �M=R�C is the cosphere bundle and dxd� is the Liouville measure.
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Proposition 4.11 (Connes’ trace theorem [18, 34]). Every operator P 2 ‰�n.M; E/ is
strongly measurable, and we have «

P D
1

n
Res.P /: (4.2)

Remark 4.12. Connes [18] established measurability and derived the trace formula (4.2).
Kalton–Lord–Potapov–Sukochev [34] obtained strong measurability. We observe that
Connes’ arguments can also be used to get strong measurability.

Suppose that E is the trivial line bundle, and let�g be the Laplace–Beltrami operator
on functions. As an application of Connes’ trace theorem we obtain the following integra-
tion formula, which shows that the noncommutative integral recaptures the Riemannian
volume density.

Proposition 4.13 (Connes’ integration formula [18,34]). For all f 2 C1.M/, the oper-
ator f�

� n2
g is strongly measurable, and we have«

�
� n4
g f�

� n4
g D cn

Z
M

f .x/�.g/.x/; cn WD
1

n
.2�/�njSn�1j; (4.3)

where �.g/.x/ D
p
g.x/dnx is the Riemannian measure.

Remark 4.14. The integration formula (4.3) fails in general for functions in L1.M/

(see [34]). However, as shown by Rozenblum [56] and Sukochev–Zanin [68] (see also
[50]) it actually holds for any function in the Orlicz space LlogL.M/, i.e., measurable
functions f on M such that

R
.1 C jf j/ log.1 C jf j/�.g/ < 1. In particular, it holds

for any f 2 Lp.M/ with p > 1 (see also [34, 38, 40]). In fact, Rozenblum [56] further
extends this result to potentials that are product of LlogL-Orlicz functions and Alfhors-
regular measures supported on a regular submanifold (see also [57]).

Remark 4.15. We refer to [47] for versions of Connes’ trace theorem and Connes’ inte-
gration formulas for Heisenberg pseudodifferential operators on contact manifolds and
Cauchy–Riemann manifolds. We also refer to [41, 42, 49] for extensions of Connes’ trace
theorem and Connes’ integration formula to noncommutative tori. In addition, versions of
Connes’ integration formula for noncommutative Euclidean spaces and SU.2/ are given
in [43].

5. Weyl’s laws and noncommutative integration

In this section, we relate Connes’ integration to the Weyl’s laws for compact operators
studied by Birman–Solomyak [7] and others in the late 60s and early 70s. In particular,
this will exhibit an even stronger notion of measurability of purely spectral nature, and so
this will provide another spectral theoretic interpretation of Connes’ integral.
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5.1. Weyl operators

If A is a selfadjoint compact operator, then as in Remark 2.4 we denote by .˙�˙.A//j�0
its sequences of positive and negative eigenvalues, i.e., �˙j .A/ D �j .A

˙/ D �j .A
˙/,

where A˙ D 1
2
.jAj ˙ A/ are the positive and negative parts of A. We refer to [13, §9.2]

for the main properties of the positive/negative eigenvalue sequences of selfadjoint com-
pact operators. In particular, we have the following min-max principle (cf. [13, Theo-
rem 9.2.4]):

�˙j .A/ D min
²

max
0¤�2E?

˙
hA�j�i

h�j�i
I dimE D j

³
; j � 0:

This implies the following version of Ky Fan’s inequality (cf. [13, Theorem 9.2.8]),

�˙jCk.AC B/ � �
˙
j .A/C �

˙
k .B/; j; k � 0: (5.1)

Definition 5.1. We say that A 2 Lp;1, p > 0, is a Weyl operator if one of the following
conditions applies:

(i) A � 0 and lim j 1=p�j .A/ exists.

(ii) A� D A and lim j 1=p�Cj .A/ and lim j 1=p��j .A/ both exist.

(iii) The real part <A D 1
2
.AC A�/ and the imaginary part =A D 1

2i
.A � A�/ are

both Weyl operators in the sense of (ii).

We denote by Wp;1 the class of Weyl operators in Lp;1. If A 2Wp;1, A � 0, we set

ƒ.A/ D lim
j!1

j
1
p �j .A/:

If A D A� 2Wp;1, we set

ƒ˙.A/ D lim
j!1

j
1
p �˙j .A/:

For an arbitrary operator A 2Wp;1, we define

ƒ˙.A/ D ƒ˙
�
<A

�
C iƒ˙

�
=A

�
:

Remark 5.2. If A D A� 2 Lp;1, then

0 � �˙j .A/ � �j .A/ � .j C 1/
� 1p kAkp;1 8j � 0: (5.2)

In particular, the sequences .j 1=p�˙.A//j�0 are always bounded. If in addition A is a
Weyl operator, then we have

0 � ƒ˙.A/ � kAkp;1: (5.3)
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Remark 5.3. If A D A� 2 .Lp;1/0, then j 1=p�j .A/! 0, and so by using (5.2) we see
that j 1=p�˙j .A/ ! 0 as well. Thus, A 2 Wp;1, and ƒ˙.A/ D 0. More generally, by
taking real and imaginary parts we see that every operator A 2 .Lp;1/0 is contained in
Wp;1 with ƒ˙.A/ D 0. This includes all infinitesimal operators of order > p.

Remark 5.4. Given any selfadjoint compact operator A on H, its counting functions are
given by

N˙.AI�/ WD #
®
j I �˙j .A/ > �

¯
; � > 0:

If A 2 Lp;1, p > 0, then (see, e.g., [63, Proposition 13.1]), we have

lim inf
�!0C

�pN˙.AI�/ D lim inf
j!1

j.�˙j .A//
p;

lim sup
�!0C

�pN˙.AI�/ D lim sup
j!1

j.�˙j .A//
p:

(5.4)

Thus, if A 2Wp;1, then

lim
�!0C

�pN˙.AI�/ D lim
j!1

j.�˙j .A//
p
D ƒ˙.A/p:

In addition, it will be convenient to introduce the following class of operators.

Definition 5.5. Wjp;1j, p > 0, consists of operators A 2 Lp;1 such that jAj 2 Wp;1,
i.e., lim j 1=p�j .A/ exists.

In particular, if A 2Wjp;1j, then

ƒ.jAj/ D lim
j!1

j
1
p�j .A/:

5.2. Birman–Solomyak’s perturbation theory

We recall the main facts regarding the perturbation theory of Birman–Solomyak [7, §4].

Proposition 5.6 (Birman–Solomyak [7, Theorem 4.1]). LetADA� 2Lp;1. Assume that,
for every " > 0, we may write

A D A0" C A
00
" ;

where A0" and A00" are selfadjoint operators in Lp;1 such that A0" 2Wp;1, and

lim sup j
1
p �˙j .A

00
" / � ":

Then A 2Wp;1, and we have

lim
"!0C

ƒ˙
�
A0"
�
D ƒ˙.A/:

We stress that Proposition 5.6 is obtained in [7] as a sole consequence of the Ky Fan’s
inequality (5.1). This result has a number of consequences.
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Corollary 5.7. Wp;1 is a closed subset of Lp;1 on which ƒ˙ WWp;1 ! C are contin-
uous maps.

Proof. We only need to show that if .A`/`�0 is a sequence in Wp;1 converging to A in
Lp;1, then A 2Wp;1, and we have

lim
`!1

ƒ˙.A`/ D ƒ
˙.A/: (5.5)

By taking real and imaginary parts we may assume that the operators A` and A are self-
adjoint.

Thanks to (5.3) we have

sup
`�0

ƒ˙.A`/ � sup
`�0

kA`kp;1 <1:

That is, ¹ƒ˙.A`/º`�0 are bounded sequences. Let ¹ƒ˙.A
p̀
/ºp�0 be convergent subse-

quences. AsA
p̀
!A in Lp;1, given any ">0, there is p" > "�1 such that kA�A

p̀"
k<".

In view of (5.2) this implies that

lim sup j
1
p �˙j .A � A p̀"

/ � kA � A
p̀"
k < ":

AsA
p̀"
2Wp;1 for all " > 0, it follows from Proposition 5.6 thatA 2Wp;1 and we have

ƒ.A/ D lim
"!0C

ƒ˙
�
A

p̀"

�
D lim
p!1

ƒ˙
�
A

p̀

�
:

This shows thatƒ˙.A/ are the unique limit points of the bounded sequences ¹ƒ˙.A`/º`�0.
This gives (5.5). The proof is complete.

Corollary 5.8 (K. Fan [29, Theorem 3]; see also [30, Theorem II.2.3]). Let A 2 Wp;1

and B 2 .Lp;1/0. Then AC B 2Wp;1, and we have

ƒ˙.AC B/ D ƒ˙.A/:

Proof. It is enough to prove the result when A and B are selfadjoint. In this case we know
from Remark 5.3 that lim j 1=p�˙j .B/ D 0. Therefore, the we get the result by applying
Proposition 5.6 to AC B with A0" D A and A00" D B for all " > 0.

As mentioned above, Proposition 5.6 is a sole consequence of the Ky Fan’s inequal-
ity (5.1). As the singular values satisfy the Ky Fan’s inequality (2.3), we similarly have a
version of Proposition 5.6 for singular values (cf. [7, Remark 4.2]). Namely, we have the
following result.
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Proposition 5.9 (Birman–Solomyak [7]). Let A 2 Lp;1. Assume that, for every " > 0,
we may write

A D A0" C A
00
" ;

with A0" 2Wjp;1j and A00" 2 Lp;1 such that

lim sup j
1
p�j .A

00
" / � ":

Then A 2Wjp;1j, and we have

lim
"!0C

ƒ.jA0"j/ D ƒ.jAj/:

By arguing along the same lines as that of the proofs of Corollary 5.7 and Corollary 5.8
we arrive at the following statements.

Corollary 5.10. Wjp;1j is a closed subset of Lp;1 on which the functional A! ƒ.jAj/

is continuous.

Corollary 5.11 (K. Fan [29, Theorem 3]; see also [30, Theorem II.2.3]). If A 2Wjp;1j
and B 2 .Lp;1/0, then AC B 2Wjp;1j, and we have

ƒ˙.jAC Bj/ D ƒ˙.jAj/:

5.3. Measurability of Weyl operators

Suppose that p D 1. We shall now show that every Weyl operator in L1;1 is strongly
measurable and explain how to compute its NC integral in terms of the maps ƒ˙. More
precisely, we shall prove the following result.

Proposition 5.12. Let A 2W1;1. Then A is strongly measurable, and we have«
A D ƒC.A/ �ƒ�.A/: (5.6)

In particular, if A is selfadjoint, then«
A D lim

j!1
j�Cj .A/ � lim

j!1
j��j .A/:

Proof. Let us first show that A is measurable and its integral is given by (5.6). By taking
real and imaginary parts and using Proposition 2.20 we may assume that A is selfadjoint.
In this case we have

lim
N!1

1

logN

X
j<N

�
�Cj .A/ � �

�
j .A/

�
D lim
j!1

j�Cj .A/ � lim
j!1

j��j .A/

D ƒC.A/ �ƒ�.A/:

Combining this with Proposition 2.21 shows that A is measurable and«
A D ƒC.A/ �ƒ�.A/:
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It remains to show that any A 2 W1;1 is strongly measurable. By taking real and
imaginary and their respective positive and negative parts reduces to the caseA� 0, which
we assume from here on. Let .�j /j�0 be an orthonormal basis of H such thatA�j D�j .A/,
and let T0 be the operator on H such that T0�j D .j C 1/�1�j for all j � 0. Note that T0
is strongly measurable.

Set B D A �ƒ.A/T0. For all j � 0, we have

B�j D 
j �j ; where 
j WD �j .A/ �ƒ.A/.j C 1/�1:

Moreover, the fact that j�j .A/! ƒ.A/ implies that j 
j ! 0 as j !1.
Let j � 0. By applying the min-max principle (2.1) and taking E D Span¹�k I k < j º

we get
�j .B/ � kBjE?k D sup

k�j

j
kj:

This implies that j�j .B/ � supk�j j j
kj � supk�j kj
kj. Thus,

lim sup
j!1

j�j .B/ � lim
j!1

sup
k�j

kj
kj D lim sup
j!1

j j
j j D lim
j!1

j j
j j D 0:

This shows that B is in .L1;1/0, and hence is strongly measurable by Proposition 4.5.
As A D B C ƒ.T /T0, it follows that A is strongly measurable as well. The proof is
complete.

Corollary 5.13. Let A 2Wj1;1j. Then jAj is strongly measurable, and we have«
jAj D lim

j!1
j�j .A/: (5.7)

Remark 5.14. Let A 2 L1;1, A � 0. We have

lim inf
j!1

j�j .A/ � lim inf
N!1

1

logN

X
j<N

�j .A/;

lim sup
N!1

1

logN

X
j<N

�j .A/ � lim sup
j!1

j�j .A/:

Combining this with Remark 2.14 shows that, for every extended limit !, we have

lim inf
j!1

j�j .A/ � Tr!.A/ � lim sup
j!1

j�j .A/ 8A 2 L1;1; A � 0:

6. Weyl’s laws for negative order ‰DOs

In the 70s Birman–Solomyak [9–11] established a Weyl’s law for negative order ‰DOs.
Unfortunately, the main key technical details are exposed in a somewhat compressed man-
ner in the Russian article [10], the translation of which remains unavailable.

In this section, after explaining how this implies a stronger version of Connes’ trace
theorem, we shall provide a “soft proof” of Birman–Solomyak’s result. This will answer
Question D.
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6.1. Weyl’s law for negative order ‰DOs

In the following .M n; g/ is a closed Riemannian manifold and E is a Hermitian vector
bundle over M . We keep on using the notation of Section 4.2.

Theorem 6.1 (Birman–Solomyak [9–11]). Let P 2 ‰�m.M; E/, m > 0, and set p D
nm�1. Then P and jP j are Weyl operators in Lp;1, and we have

lim
j!1

j
1
p�j .P / D

�
1

n
.2�/�n

Z
S�M

trE
�
j�.P /.x; �/jp

�
dxd�

� 1
p

; (6.1)

lim
j!1

j
1
p �˙j .P / D

�
1

n
.2�/�n

Z
S�M

trE
�
�.P /.x; �/

p
˙

�
dxd�

� 1
p

.if P � D P /: (6.2)

Remark 6.2. In [9, 10] Birman–Solomyak established the Weyl’s laws above for com-
pactly supported pseudodifferential operators on Rn under very low regularity assump-
tions on the symbols. Furthermore, the symbols are allowed to be anisotropic. This was
extended to classical ‰DOs on closed manifolds in [11].

Remark 6.3. We refer to [1–3,16,25,31,33,56,57], and the references therein, for various
generalizations and applications of Birman–Solomyak’s asymptotics.

Combining Theorem 6.1 for m D n (i.e., p D 1) with Proposition 5.12 provides us
with a stronger form of Connes’ trace theorem (compare Proposition 4.11).

Corollary 6.4. If P 2 ‰�n.M;E/, then P and jP j are both Weyl operators in L1;1, and
hence are strongly measurable. Moreover, we have«

P D
1

n
.2�/�n

Z
S�M

trE
�
�.P /.x; �/

�
dxd�; (6.3)«

jP j D
1

n
.2�/�n

Z
S�M

trE
�
j�.P /.x; �/j

�
dxd�: (6.4)

Remark 6.5. In general, jP j is not a ‰DO, unless P is elliptic. Therefore, formula (6.4)
is not a direct consequence of Connes’ trace theorem.

In what follows we let �E D r�r be the Laplacian of some Hermitian connection r
on E. In particular, �E is (formally) selfadjoint and has principal symbol �.�E / D
j�j2 idEx (where we denote by j � j the Riemannian metric on T �M ).

Specializing Corollary 6.4 to P D ��n=4E u�
�n=4
E , u 2 C1.M;End.E//, leads to the

following refinement of Connes’ integration formula (4.3).

Corollary 6.6. If u 2C1.M;End.E//, then��n=4E u�
�n=4
E and j��n=4E u�

�n=4
E j are both

Weyl operators in L1;1, and hence are strongly measurable. Moreover, we have«
�
� n4
E u�

� n4
E D

1

n
.2�/�n

Z
M

trE Œu.x/�
p
g.x/dx; (6.5)« ˇ̌

�
� n4
E u�

� n4
E

ˇ̌
D
1

n
.2�/�n

Z
M

trE Œju.x/j�
p
g.x/dx: (6.6)
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Remark 6.7. More generally, we have versions of the integration formulas (6.5)–(6.6)
for operators of the form Q�uP , where P and Q are operators in ‰�n=2.M; E/ and
u.x/ is a potential in the Orlicz class LlogL.M; End.E// (see [50, 56]; see also [68]).
In particular, the operators P and Q need not to be negative powers of elliptic opera-
tors. Rozenblum [56] actually establishes the results in the scalar case for potentials of
the form u D h�, where � is an Alfhors-regular measure supported on a regular subman-
ifold † �M and h is a real-valued LlogL-Orlicz function on † with respect to � (see
also [57]). If, in addition, E is a Clifford module, then we may replace�E by =D

2
E , where

=DE is the Dirac operator associated to some unitary Clifford connection on E.

6.2. Proof of Theorem 6.1

We will deduce Theorem 6.1 from the properties of zeta functions of elliptic operators and
their relationship with the noncommutative residue trace. This will clarify the relationship
between Birman–Solomyak’s result and the noncommutative residue. More precisely, we
shall use the following result.

Proposition 6.8 ([32,73]). LetQ 2‰m.M;E/,m> 0, be elliptic and let A 2‰0.M;E/.
The function z! TrŒAjQj�z � has a meromorphic extension to C with at worst simple pole
singularities on † WD ¹km�1I k 2 Z; k � nº in such a way that

ReszD� TrŒAjQj�z � D
1

m
Res.AjQj�� /; � 2 †:

As is well known, the above result implies the following Weyl’s laws.

Corollary 6.9. Let Q 2 ‰m.M;E/, m > 0, be elliptic, and set p D nm�1. We have

lim
j!1

j
1
p�j .Q

�1/ D

�
1

n
.2�/�n

Z
S�M

trE
�
j�.Q/.x; �/j�p

�
dxd�

� 1
p

; (6.7)

lim
j!1

j
1
p �˙j .Q

�1/ D

�
1

n
.2�/�n

Z
S�M

trE
�
�.Q/.x; �/

�p
˙

�
dxd�

� 1
p

.if Q� D Q/:

(6.8)

Proof. The first part is a mere restatement of the Weyl’s law for jQj. Namely, Proposi-
tion 6.8 for A D 1 implies that the function TrŒjQj�s� D

P
j�0 �j .jQj

�1/s has a mero-
morphic extension to the half-space <s > p � 1=m with a single pole at s D p such that

1

m
Res.jQj�p/ D

1

m
.2�/�n

Z
S�M

trE
�
j�.Q/.x; �/j�p

�
dxd�:

By using Ikehara’s Tauberian theorem (see, e.g., [63]) we then obtain the Weyl’s law (6.7).
Suppose now that Q is selfadjoint. Let …0.Q/ be the orthogonal projections onto

kerQ and …˙.Q/ the orthogonal projections onto the positive and negative eigenspaces
of Q. Here …0.Q/ is a smoothing operator, and …˙.Q/ are ‰DOs of order � 0, since

…˙.Q/ D
1

2

�
1 �…0.Q/˙QjQj

�1
�
:
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In particular, �.…˙.Q// D 1
2
.1˙ �.Q/�.jQj�1// D …˙.�.Q//. Therefore, Proposi-

tion 6.8 for A D …˙.Q/ shows that the function TrŒ…˙.Q/jQj�s� D
P
j�0 �

˙
j .Q

�1/s

has a meromorphic extension to the half-space<s > p � 1=m with a single pole at s D p
such that

1

m
Res

�
…˙.Q/jQj

�p
�
D
1

m
.2�/�n

Z
S�M

trE
�
…˙.�.Q//j�.Q/.x; �/j

�p
�
dxd�

D
1

m
.2�/�n

Z
S�M

trE
�
�.Q/.x; �/

�p
˙

�
dxd�:

As above, using Ikehara’s Tauberian theorem gives (6.8). The proof is complete.

We will also need the following version of the BKS inequality.

Lemma 6.10 (Birman–Koplienko–Solomyak [6, Theorem 3]; also [14, Proposition 4.9]).
Let A and B be non-negative selfadjoint operators on H such that A�B 2 Lp;1, p > 0.
Then, given any ˛ 2 .0; 1/, the difference A˛ � B˛ is in L˛�1p;1, and we have

kA˛ � B˛k˛�1p;1 � Cp˛kA � Bk
˛
p;1;

where the constant Cp˛ depends only on p and ˛.

We are now in a position to prove Theorem 6.1.

Proof of Theorem 6.1. Let P 2 ‰�m.M;E/,m > 0, and set p D nm�1. Throughout this
proof we let �E D r�r be the Laplacian of some Hermitian connection on E. In partic-
ular, �.�E / D j�j2 idEx and ��mE 2 ‰�2m.M;E/. Given " > 0 set

A" D

q
P �P C "2��mE :

HereA2" � P
�P D "2��mE 2 Lp=2;1. Therefore, by Lemma 6.10 the differenceA" � jP j

is in Lp;1, and we have

kA" � jP jkp;1 � Cp"
q
k��mE kp=2;1;

where the constant Cp does not depend on ". Thus,

A" ! jP j in Lp;1 as "! 0: (6.9)

LetQ" 2‰m.M;E/ have principal symbol .j�.P /.x;�/j2C "2j�j�2m/�1=2D�.A2"/
�1=2.

In particular, Q" is an elliptic operator. Thus, by Corollary 6.9 the inverse absolute value
jQ"j

�1 is a Weyl operator in Lp;1, and we have

ƒ.jQ"j
�1/ D

�
1

n
.2�/�n

Z
S�M

trE
��
j�.P /.x; �/j2 C "2j�j�2m

� p
2
�
dxd�

� 1
p

���!
"!0

�
1

n
.2�/�n

Z
S�M

trE
�
j�.P /.x; �/jp

�
dxd�

� 1
p

:
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By construction �.jQ"j�2/D �.A2"/, soA2" � jQ"j
�2 is an operator in‰�2m�1.M;E/

and hence is in the weak Schatten class Lq=2;1 with qD 2n.2mC 1/�1 <p. Lemma 6.10
then ensures us that A" � jQ"j�1 is in the weak Schatten class Lq;1, and hence is con-
tained in .Lp;1/0. It then follows from Corollary 5.11 that A" is a Weyl operator in Lp;1,
and we have

ƒ.A"/ D ƒ.jQ"j
�1/ ���!

"!0

�
1

n
.2�/�n

Z
S�M

trE
�
j�.P /.x; �/jp

�
dxd�

� 1
p

:

Combining this with Corollary 5.10 and (6.9) then shows that jP j is a Weyl operator in
Lp;1, and we have

ƒ.jP j/ D lim
"!0

ƒ.A"/ D

�
1

n
.2�/�n

Z
S�M

trE
�
j�.P /.x; �/jp

�
dxd�

� 1
p

:

This proves (6.1).
Suppose now that P � D P . Set B" D 1

2
.A" C P /. It follows from (6.9) that

B" ���!
"!0

1

2
.jP j C P / D PC in Lp;1: (6.10)

In addition, let zQ" 2 ‰m.M;E/ be selfadjoint and have principal symbol�1
2

p
j�.P /.x; �/j2 C "2j�j�2mC

1

2
�.P /.x; �/

��1
D

�1
2
�.jQ"j

�1/C
1

2
�.P /.x; �/

��1
:

As zQ" is elliptic, Corollary 6.9 ensures that zQ�1" is a Weyl operator in Lp;1, and we have

ƒC. zQ�1" / D

�
1

n
.2�/�n

Z
S�M

trE
h�1
2

p
j�.P /.x; �/j2 C "2j�j�2m

C
1

2
�.P /.x; �/

�pi
dxd�

� 1
p

:

In particular,

lim
"!0

ƒC. zQ�1" / D

�
1

n
.2�/�n

Z
S�M

trE
h�1
2
j�.P /.x; �/j C

1

2
�.P /.x; �/

�pi
dxd�

� 1
p

D

�
1

n
.2�/�n

Z
S�M

trE
�
�.P /.x; �/

p
C

�
dxd�

� 1
p

:

By construction, �. zQ�1" / D 1
2
.�.jQ"j

�1/C �.P //. Thus, zQ�1" �
1
2
.jQ"j

�1 C P / is
a ‰DO of order � �.m C 1/, and hence is contained in L Qq;1 with Qq D n.m C 1/�1.
As Qq < p, this implies that zQ�1" �

1
2
.jQ"j

�1 C P / is contained in .Lp;1/0. We know
that jQ"j�1 � A" is in .Lp;1/0 as well. Thus, zQ" agrees with 1

2
.A" C P / D B" up to
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an operator in .Lp;1/0. It then follows from Corollary 5.8 that B" is a Weyl operator in
Lp;1, and we have

ƒC.B"/ D ƒ
C. zQ�1" / ���!

"!0

�
1

n
.2�/�n

Z
S�M

trE
�
�.P /.x; �/

p
C

�
dxd�

� 1
p

:

Combining this with (6.10) and using Proposition 6.1 shows that PC is a Weyl operator in
Lp;1, and we have

ƒ.PC/ D lim
"!0

ƒC.B"/ D

�
1

n
.2�/�n

Z
S�M

trE
�
�.P /.x; �/

p
C

�
dxd�

� 1
p

:

This gives the Weyl’s law (6.2) for the positive eigenvalues of P . We get the Weyl’s
law for the negative eigenvalues by replacing P by �P . This completes the proof of
Theorem 6.1.

Remark 6.11. As mentioned in Remark 6.2, the original version of Birman–Solomyak’s
result on Rn in [9] was established for‰DOs associated with anisotropic symbols. Conse-
quently, we may expect to have a version of Birman–Solomyak’s result for the Heisenberg
calculus [4, 70] and more generally for the pseudodifferential calculus on filtered mani-
folds [45]. In those settings the pseudodifferential operators are defined in terms of an-
isotropic symbols. Note that we already have a noncommutative residue trace for the
Heisenberg calculus (see [47]), as well as for the pseudodifferential calculus on filtered
manifolds (see [26]).

6.3. Weyl’s laws on Euclidean space

For the sake of completeness we briefly explain how we can recover from the Birman–
Solomyak Weyl’s laws (6.12)–(6.13) on closed manifolds their versions for‰DOs on Rn.
In particular, this leads to a strong form of Connes’ trace theorem on Rn.

In what follows we shall say that a ‰DO on Rn (or more generally on any open
manifold) has compact support if its Schwartz kernel has compact support. Equivalently,
there are compact sets Kj � Rn, j D 1; 2, such that

suppPu � K1 8u 2 C1c .R
n/ and suppu \K2 D ; H) Pu D 0: (6.11)

Note that if P has compact support, then its principal symbol �.P /.x; �/ has compact
support with respect to the space variable x.

Theorem 6.12 (Birman–Solomyak [9, 10]). Let P 2 ‰�m.Rn/, m > 0, have compact
support, and set p D nm�1. Then P and jP j are both Weyl operators in Lp;1, and we
have

lim
j!1

j
1
p�j .P / D

�
1

n
.2�/�n

Z
Rn

Z
Sn�1
j�.P /.x; �/jpdxd�

� 1
p

; (6.12)

lim
j!1

j
1
p �˙j .P / D

�
1

n
.2�/�n

Z
Rn

Z
Sn�1

�.P /.x; �/
p
˙
dxd�

� 1
p

.if P � D P /: (6.13)
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Proof. By assumption there is a compactK �Rn satisfying (6.11). We can find a > 0 and
an open set U such thatK � U � U � .�a;a/n. Denote byM the torus Rn=.2aZ/n; this
is a closed manifold. We denote by K1 and U1 the respective images of K and U in M .
The canonical submersion � W Rn nM restricts to a diffeomorphism �jU W U ! U1 and
yields an isometric isomorphism .�IU /� W L

2
K.U /! L2K1.U1/.

Let ' 2 C1c .R
n/ be such that ' D 1 nearK and supp' � U . Define z' 2 C1.M/ by

z' D ' ı .�jU /
�1 on U1 and z' D 0 onM nU1. Note that z' D 1 nearK1. As �jU W U ! U1

is a diffeomorphism, the pushforward operator .�jU /�.PjU / is in ‰�m.U1/, and so we
define an operator in ‰�m.M/ by letting

P1 D z'Œ.�jU /�.PjU /�z':

Note that under the standard trivialization T �M D M � Rn given by the global frame
��.dx

j /, j D 1; : : : ; n, the principal symbol of P1 is given by

�m.P1/.�.x/; �/ D �m.P /.x; �/; x 2 Œ�a; a�n; � 2 Rn n 0: (6.14)

Bearing all this in mind we have the following isometric embeddings/isomorphisms:

L2.Rn/ ���
.�U /�

L2K.U /
�

�����!
.�jU /�

L2K1.U1/ ����!.�U1 /�
L2.M/; (6.15)

where the far left and far right arrows are induced by the inclusions of U and U1 into Rn

and M , respectively. By the very definition of P1 we have

.�U1/�P1 D
�
z'Œ.�jU /�.PjU /�z'

�
jU1
D .�jU /�.PjU / D .�U /�P:

As the embeddings in (6.15) are isometric, it follows from Proposition A.2 that, for all
j � 0, we have

�j .P / D �j .P1/ and �˙j .P / D �
˙
j .P1/ if P � D P :

Combining this with Theorem 6.1 and using (6.14) gives the result.

In particular, formD �n, i.e., p D 1, combining Theorem 6.12 with Proposition 5.12
yields the following strong form of Connes’ trace theorem on Rn.

Corollary 6.13. If P 2 ‰�n.Rn/ is compactly supported, then P and jP j are Weyl oper-
ators in L1;1, and hence are strongly measurable. Moreover, we have«

P D
1

n
.2�/�n

Z
Rn

Z
Sn�1

�.P /.x; �/dxd�; (6.16)«
jP j D

1

n
.2�/�n

Z
Rn

Z
Sn�1
j�.P /.x; �/jdxd�: (6.17)

Remark 6.14. The strong measurability of compact supported‰DOs of order�n and the
formula (6.16) is well known (see [18,34]). The part regarding their absolute values seems
to be new. Once again the absolute value of a negative order ‰DO need not be a ‰DO.
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7. Connes’ integration and semiclassical analysis

In this section, we look at the relationship between Connes’ integration and semiclassical
Weyl’s laws for abstract Schrödinger operators, i.e., we shall answer Question E of the
introduction. This highlights neat links between these two fields within Quantum Theory.

7.1. Birman–Schwinger principle

In what follows we let H be a (densely defined) selfadjoint operator on H with non-
negative spectrum such that 0 is either not in the spectrum or is an isolated eigenvalue
with finite multiplicity. Its quadratic form QH has domain dom.QH / D dom.H C 1/

1
2 .

We denote by HC the Hilbert space obtained by endowing dom.QH / with the Hilbert
space norm,

k�kC D
�
QH .�; �/C k�k

2
� 1
2 D k.1CH/1=2�k; � 2 dom.QH /:

We also let H� be the Hilbert space of continuous anti-linear functionals on HC. Note
that we have a continuous inclusion � W H ,! H� given by

h�.�/; �i D h�j�i; � 2 H; � 2 HC:

The operator .H C 1/ is a unitary isomorphism from HC onto H with inverse

.H C 1/�1=2 W H! HC:

By duality we get a unitary isomorphism .H C 1/�1=2 W H� ! H such that˝
.H C 1/�1=2�j�

˛
D
˝
�; .H C 1/�1=2�

˛
; � 2 H�; � 2 H:

Let V W HC ! H� be a bounded operator. We denote by QV the corresponding
quadratic form with domain HC and given by

QV .�; �/ WD hV �; �i; �; � 2 HC:

We assume that QV is symmetric and H -form compact. The latter condition means that
the operator V W HC ! H� is compact, or equivalently, .H C 1/�1=2V.H C 1/�1=2 is a
compact operator on H.

Our main focus is the operator HV WD H C V . It makes sense as a bounded operator
HV WHC!H�. As the symmetric quadratic formQV isH -form compact, it isH -form
bounded with zero H -bound (see [66, §7.8]). Therefore, by the KLMN theorem (see,
e.g., [52, 58]) the restriction of HV to dom.HV / WD H�1V .H/ is a bounded from below
selfadjoint operator on H whose quadratic form is precisely QH CQV .

It can be further shown that, for all � 62 Sp.H/ [ Sp.HV /, that H and HV have the
same essential spectrum (see, e.g., [66, Theorem 7.8.4]). Thus, as H has non-negative
spectrum, the bottom of the essential spectrum of HV is � 0.
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As HV is bounded from below, we may list its eigenvalues below the essential spec-
trum as a non-decreasing sequence,

�0.HV / � �1.HV / � �2.HV / � � � � ;

where each eigenvalue is repeated according to multiplicity. This sequence may be finite
or infinite, or even empty. We then introduce the counting function,

N.HV I�/ WD #
®
j I �j .HV / < �

¯
; � < inf Spess.HV /: (7.1)

We also set N�.HV / D N.HV I 0/.
Assume further that 0 lies in the discrete spectrum ofH , i.e., 0 is an isolated eigenvalue

of H . Thus, the essential spectrum of H is contained in some interval Œa;1/ with a > 0.
We denote by H�1=2 the partial inverse of H 1=2. Moreover, as H and HV have the same
essential spectrum, it follows that HV has at most finitely many non-positive eigenvalues.

The Birman–Schwinger principle was established by Birman [5] and Schwinger [59]
for Schrödinger operators �C V on Rn, n � 3. Its abstract version [15, Lemma 1.4] (see
also [41, Proposition 7.9]) allows us to relate the number of negative eigenvalues of HV
to the counting functions of the Birman–Schwinger operatorH�

1
2VH�1=2. Note also that

the assumptions on V ensure us that H�
1
2VH�

1
2 is a selfadjoint compact operator. The

Birman–Schwinger principle in the form given in [15, Lemma 1.4] (see also [66]) implies
that

N�
�
H�

1
2VH�

1
2 I 1

�
� N�.HV / � N

�
�
H�

1
2VH�

1
2 I 1

�
C dim kerH: (7.2)

Readers who are unfamiliar with the Birman–Schwinger principle can also find a proof of
the above inequalities in [41].

Proposition 7.1. Assume that H�1=2VH�1=2 2 Lp;1 for some p > 0. We have

lim
h!0C

h2pN�
�
h2H C V

�
D lim
j!1

j��j
�
H�

1
2VH�

1
2
�p
; (7.3)

provided any of these limits exists. In particular, the right-hand side semiclassical limit
exists if and only if the negative part ofH�1=2VH�1=2 is a Weyl operator in Lp;1. More-
over, in this case we have

lim
h!0C

h2pN�
�
h2H C V

�
D

« �
H�

1
2VH�

1
2
�p
�
: (7.4)

Proof. The first equality is a well-known consequence of the inequalities (7.2). It goes
back to Birman–Solomyak (see, e.g., [8, Theorem 10.1] and [12, Appendix 6]). We give a
proof for reader’s convenience. It follows from (7.4) that, as h! 0C, we have

N�
�
h2H C V

�
D N�

�
H C h�2V

�
;

D N�
�
H�

1
2 h�2VH�

1
2 I 1

�
C O.1/; (7.5)

D N�
�
H�

1
2VH�

1
2 I h2

�
C O.1/:
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Combining this with (5.4) we get

lim sup
h!0C

h2pN�
�
h2H C V

�
D lim sup

�!0C
�pN�

�
H�

1
2VH�

1
2 I�

�
D lim sup

j!1

j��j
�
H�

1
2VH�

1
2 I�

�p
: (7.6)

Likewise, we have

lim inf
h!0C

h2pN�
�
h2H C V

�
D lim inf

j!1
j��j

�
H�

1
2VH�

1
2 I�

�p
: (7.7)

This gives (7.3).
In particular, the right-hand side of (7.3) exists if and only if .H�

1
2VH�

1
2 /p� is in

W1;1, i.e., .H�
1
2VH�

1
2 /� is in Wp;1. Moreover, in this case Proposition 5.12 ensures

that .H�
1
2VH�

1
2 /p� is strongly measurable, and we have« �

H�
1
2VH�

1
2
�p
�
D lim
j!1

j��j
�
H�

1
2VH�

1
2
�p
D lim
h!0C

h2pN�
�
h2H C V

�
:

This gives (7.4). The proof is complete.

Remark 7.2. Combining (7.6)–(7.7) with Remark 5.14 shows that, for every extended
limit !, we have

lim inf
h!0C

h2pN�
�
h2H C V

�
� Tr!

h�
H�

1
2VH�

1
2
�p
�

i
� lim sup

h!0C
h2pN�

�
h2H C V

�
:

7.2. Semiclassical Weyl’s laws for spectral triples

We illustrate the Birman–Schwinger principle (7.4) with the semiclassical Weyl’s laws for
spectral triples [44, 51]. In the framework of noncommutative geometry, noncommutative
manifolds are represented by spectral triples. By this we mean a triple .A;H;D/, where A
is a unital �-algebra represented by bounded operators on the (separable) Hilbert space H,
and D is a selfadjoint unbounded operator on H with compact resolvent such that

a.dom.D// � dom.D/ and ŒD; a� 2 L.H/ 8a 2 A: (7.8)

We further say that .A;H;D/ is p-summable, with p > 0, if the partial inverse D�1 is in
Lp;1, i.e., D�1 is an infinitesimal of order 1=p.

The prototype of a spectral triple is given by a Dirac spectral triple

.C1.M/;L2.M; =S/; =D/;

where M n is a closed Riemannian spin manifold, L2.M; =S/ is the Hilbert space of L2-
spinors and =D is the Dirac operator on M acting on spinors. A simpler spectral triple is
.C1.M/;L2g.M/;

p
�g/, where �g is the Laplacian of .M; g/. Both spectral triples are

n-summable.
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In what follows we let .A;H; D/ be a p-summable spectral triple with p > 0. We
denote by A the closure of A in L.H/. If a 2 A is positive and invertible in L.H/, then
the operator aD2a is selfadjoint and has compact resolvent. Thus, its spectrum can be
arranged as a non-decreasing sequence,

�0.aD
2a/ � �1.aD

2a/ � �2.aD
2a/ � � � � ;

where each eigenvalue is repeated according to multiplicity.

Condition 7.3. For every a 2 A which is positive and invertible in L.H/, we have

lim
j!1

j
� 2p �j .aD

2a/ D �Œa�p�
� 2p ; (7.9)

where � W A! C is a given positive linear map.

Remark 7.4. The Weyl’s law (7.9) can often be proved by using Tauberian theorems
(see [51]). Note that in many examples checking it for a ¤ 1 can be done in the same way
as for a D 1.

Under Condition 7.3 it is shown in [51] that, for any q > 0 and a 2 A, we have the
spectral asymptotics,

lim
j!1

j
q
p�j

�
jDj�

q
2 ajDj�

q
2
�
D �

�
jaj

p
q
� q
p ; (7.10)

lim
j!1

j
q
p �˙j

�
jDj�

q
2 ajDj�

q
2
�
D �

�
.a˙/

p
q
� q
p .if a� D a/: (7.11)

For q D p, by combining the asymptotics (7.10)–(7.11) with Proposition 5.12, we
get the following extension to spectral triples of the strong form of Connes’ integration
formula stated in Corollary 6.6.

Proposition 7.5 ([51]). If Condition 7.3 holds, then, for every a2A, the operators ajDj�p

and jDj�p=2ajDj�p=2, along with their absolute values, are Weyl operators in L1;1, and
hence are strongly measurable. Moreover, we have«

ajDj�p D

«
jDj�

p
2 ajDj�

p
2 D �Œa�; (7.12)« ˇ̌

ajDj�p
ˇ̌
D

« ˇ̌
jDj�

p
2 ajDj�

p
2

ˇ̌
D �Œjaj�: (7.13)

Note that (7.10) identifies the linear form � with the NC integral a !
ª
ajDj�p .

Moreover, by combining the spectral asymptotics (7.11) with Proposition 7.1 we arrive at
the following semiclassical Weyl’s laws for spectral triples.

Proposition 7.6 ([51]). Let q > 0. If Condition 7.3 holds, then, for every V D V � 2 A,
we have

lim
h!0C

hpN�
�
h2q.D2/q C V

�
D

«
.V�/

p
2q jDj�p: (7.14)
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Remark 7.7. In [44], McDonald–Sukochev–Zanin obtained spectral asymptotics similar
to (7.10) in the case q D p and a semiclassical Weyl’s law similar to (7.14) in the case
q D 1. This is done by further requiring the spectral triple .A;H; D/ to be p-summable
with p > 2 and to be Lipschitz-regular. Moreover, Condition 7.3 is replaced by a more
stringent Tauberian condition for the zeta functions z ! TrŒazjDj�z �, a 2 A, a � 0.

Examples of spectral triples satisfying Condition 7.3 include spectral triples associated
with the following operators:

(i) Dirac-type operators and square-roots of Laplace-type operators on closed
Riemannian manifolds.

(ii) Dirichlet-to-Neumann operators on boundaries of compact Riemannian mani-
folds.

(iii) Square-roots of Dirichlet and Neumann Laplacians on domains � � Rn with
smooth boundaries.

(iv) Dirac operators and square-roots of magnetic Laplacians on open manifolds
with conformally cusp metrics (see [51]).

(v) Square-roots of Hörmander’s sub-Laplacians on equiregular sub-Riemannian
manifolds (see [51]).

(vi) Square-roots of (flat) Laplacians on noncommutative tori (see [51]).

The spectral asymptotics and semiclassical Weyl’s laws for the examples in (i) and (iii)
are well known. We get the same kind of asymptotics for Dirichlet-to-Neumann operators,
since they are ‰DOs with same principal symbols as square-roots of Laplacians (see,
e.g., [36, 71]). We refer to [51] for a detailed description of these asymptotics for the
examples (iv)–(vi).

Note that on NC tori the semiclassical Weyl’s law (7.14) does not hold for square-roots
of Laplace–Beltrami operators associated with arbitrary Riemannian metrics, including
the conformally flat metrics of [23] (see [42] on this point). Incidentally, those operators
do not provide spectral triples, since the boundedness condition (7.8) need not to hold.
We refer to [42] for the semiclassical Weyl’s laws for Schrödinger operators built out of
powers of Laplace–Beltrami operators in this setting. The approach in [42] is also using
the Birman–Schwinger principle (7.3)–(7.4).

7.3. Semiclassical Weyl’s laws and integration formulas on Euclidean spaces

For the sake of completeness we briefly sketch how the Weyl’s laws (6.13) allow us to
recover the semiclassical Weyl’s laws for Schrödinger operators on Rn withLp-potentials
associated with fractional Laplacians �q , q < n. We will then re-interpret these semi-
classical Weyl’s laws in terms of Connes’ NC integral. Note that if � is the (positive)
Laplacian on Rn then N�.h2�C V / is the number of bound states of h2�C V .

For � > 0 and m 2 R the operator .�C �2/m is the multiplication by .j�j2 C �2/m

in the Fourier variable. For � D 0 and m > �n=2 we define �m=2 as the multiplication
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by j�jm; this is the celebrated fractional Laplacian (see, e.g., [17]). We have the following
consequence of the Cwikel estimates [24].

Proposition 7.8 ([24]). Assume 0< q <n=2, and set r D n=2q. If�� 0 and f 2Lr .Rn/,
then .�C �2/�q=2f .�C �2/�q=2 2 Lr;1, and we have

.�C �2/� q2 f .�C �2/� q2 



r;1
� Cnqkf kLr ;

where the constant Cnq does not depend on � or f .

Let q 2 .0;n=2/ and�� 0, and set r D n=2q. Note that .�C�2/�q=2 is a‰DO on Rn

of order �q whose principal symbol is j�j�q . If f 2 C1c .R
n/ and we pick  2 C1c .R

n/

such that  D 1 near suppV , then it can be shown that

.�C �2/�
1
2 f .�C �2/�

1
2 D  .�C �2/�

1
2 f .�C �2/�

1
2 mod .Lr;1/0: (7.15)

Here  .�C �2/�1=2f .�C �2/�1=2 is a compactly supported ‰DO of order �q on
Rn whose principal symbol is f .x/j�j�q , and so the Weyl’s laws (6.13) apply. In view
of (7.15) and Corollary 5.8 these asymptotics hold for .� C �2/�q=2f .� C �2/�q=2.
Combining this with Corollary 5.7 and the density of C1c .R

n/ in Ln=2.Rn/, and using
Proposition 7.8, we then arrive at the following result.

Proposition 7.9. Let q2.0;n=2/. For any�� 0 and real-valued function f 2Ln=2q.Rn/,
we have

lim
j!1

j
2q
n �˙j

�
.�C �2/�

q
2 f .�C �2/�

q
2
�
D

�
c.n/

Z
f˙.x/

n
2q dx

� 2q
n

; (7.16)

where we have set c.n/ D 1
n
.2�/�njSn�1j.

Remark 7.10. It can be also shown that, for all � � 0 and f 2 Ln=2q.Rn/, we have

lim
j!1

j
2q
n �j

�
.�C �2/�

q
2 f .�C �2/�

q
2
�
D

�
c.n/

Z
jf .x/j

n
2q dx

� 2q
n

;

We are now in the position to recover the semiclassical Weyl’s law for fractional
Schrödinger operators.

Theorem 7.11 (Rozenblum [54,55]). Let q 2 .0; n=2/. For every real-valued potential V
in Ln=2q.Rn/, we have

lim
h!0C

hnN�
�
h2q�q C V

�
D c.n/

Z
V�.x/

n
2q dx: (7.17)

Proof. Even though we have the spectral asymptotics (7.16) for � D 0, we cannot apply
directly the Birman–Schwinger principle (7.3) for H D �q , since 0 is in the continuous
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spectrum. We observe that the proof of the Birman–Schwinger principle (as presented,
e.g., in [15] or [41]) still allows us to get the inequality,

N�
�
�q C V

�
� N�

�
�
� 1
2q V�

� 1
2q I 1

�
:

Therefore, by using the spectral asymptotic (7.16) for � D 0 and arguing as in (7.5) we
get

lim sup
h!0C

N�
�
h2q�q C V

�
� lim
j!1

j��j
�
�
� 1
2q V�

� 1
2q
�
D c.n/

Z
V�.x/

n
2q dx: (7.18)

For � > 0 the Birman–Schwinger principle (7.3) for H D .�C �2/q applies. Together
with (7.16) this gives

lim
h!0C

N�
�
h2q.�C �2/q C V

�
D lim
j!1

j��j
�
.�C �2/�

q
2 V.�C �2/�

q
2
�

D c.n/

Z
V�.x/

n
2q dx:

As �q � .�C �2/q , we have N�.h2q�q C V / � N�.h2q.�C �2/q C V /, and hence

lim inf
h!0C

N�
�
h2q�q C V

�
� lim
h!0C

N�
�
h2q.�C �2/q C V

�
D c.n/

Z
V�.x/

n
2q dx:

Combining this with (7.18) gives the result.

To get integration formulas on Rn, n� 2, we need to use the Orlicz spaceLlogL.Rn/.
Recall it consists of measurable functions f on Rn such thatZ

jf .x/j log.1C jf .x/j/dx <1:

It is a Banach space with respect to the norm

kf kLlogL D inf
®
t > 0I kt�1f log.1C t�1jf j/kL1 � 1

¯
; f 2 LlogL.Rn/:

Note that we have a continuous inclusion of LlogL.Rn/ into L1.Rn/. We are interested
in the subspace

V WD

²
f 2 LlogL.Rn/I

Z
jf .x/j log.1C jxj/dx <1

³
:

This is a Banach space with respect to the norm

kf kV WD kf kLlogL C

Z
jf .x/j log.1C jxj/dx; f 2 V:

In dimension 2, the class V was introduced by Shargorodsky [62].
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We have the following Cwikel-type estimate.

Proposition 7.12 ([69]; see also [67]). If f 2 V, then ��n=4f��n=4 2 L1;1, and we
have 

�� n4 f�� n4 



1;1
� Cnkf kV;

where the constant Cn does not depend on f .

Remark 7.13. A Cwikel-type estimate for the larger Dixmier–Macaev ideal is given
in [40]. That estimate is actually stated for functions in the Lorentz space ƒ1.Rn/. It
seems to be known that the latter space agrees with LlogL.Rn/.

Thanks to Proposition 7.12 we may use the same kind of arguments as those that lead
to Proposition 7.9 to get the following spectral asymptotics.

Proposition 7.14. For every f 2 V, we have

lim
j!1

j�j
�
��

n
4 f��

n
4
�
D c.n/

Z
jf .x/jdx; (7.19)

lim
j!1

j�˙j
�
��

n
4 f��

n
4
�
D c.n/

Z
f˙.x/dx .if f is real-valued/: (7.20)

Combining the spectral asymptotics (7.19)–(7.20) with Proposition 5.12 yields the
following integration formula.

Theorem 7.15. If f 2V, then .1C�/�n=4f .1C�/�n=4 and .1C�/�n=4f .1C�/�n=4

are Weyl operators in L1;1, and hence are strongly measurable. Moreover, we have«
��

n
4 f��

n
4 D c.n/

Z
f .x/dx; (7.21)« ˇ̌

��
n
4 f��

n
4

ˇ̌
D c.n/

Z
jf .x/jdx: (7.22)

Remark 7.16. A version of (7.21) in terms of continuous traces on the wider Dixmier–
Macaev ideal M1;1 is given in [40, Theorem 1.2]. Note that there are many traces on L1;1
that do not extend to M1;1 (see, e.g., [61, Theorem 4.7]). The integration formula (7.22)
is new.

In particular, the integration formula (7.21) allows us to rewrite the semiclassical
Weyl’s law (7.17) in terms of the NC integral.

Corollary 7.17. Let q 2 .0; n=2/. For any real-valued measurable potential V.x/ on Rn

such that jV jn=2q 2 V, we have

lim
h!0C

hnN�
�
h2q�q C V

�
D

«
��

n
4 .V�/

n
2q��

n
4 :



R. Ponge 762

A. Embeddings of Hilbert spaces

In this section, we gather a few basic facts about embeddings of Hilbert spaces and their
actions on Schatten and weak Schatten classes.

Given quasi-Banach spaces E and E0, a continuous linear embedding � W E0 ! E is a
continuous linear map which is one-to-one and has closed range. For instance, any iso-
metric linear map � W E0 ! E is an embedding.

Suppose now that H and H0 are Hilbert spaces, and let � W H0 ! H be a continuous
linear embedding. Denote by H1 the range of �. By assumption this is a closed subspace
of H. The embedding � WH0 !H induces a continuous linear isomorphism � WH0 !H1

whose inverse is denoted ��1 W H1 ! H0. Let � W H! H be the orthogonal projection
onto H1. Then ��1 ı � is a left-inverse of �. More precisely,

.��1 ı �/ ı � D idH0 ; � ı .��1 ı �/ D �:

The pushforward �� W L.H0/! L.H/ is then defined by

��A D � ı A ı .�
�1
ı �/; A 2 L.H0/: (A.1)

In fact, with respect to the orthogonal splitting H D H1 ˚H?1 we have

��A D

�
�A��1 0

0 0

�
: (A.2)

In particular, we see that the pushforward map �� WL.H0/!L.H/ is a continuous embed-
ding. It is also multiplicative, and so we get an embedding of (unital) Banach algebras.

If in addition � is an isometric embedding, then �� W L.H0/! L.H/ is an isometric
embedding as well. In fact, as � W H0 ! H1 is then a unitary operator, and so in view
of (A.2) we have ��.A�/ D .��A/

�. Thus, in this case, �� W L.H0/ ! L.H/ even is an
(isometric) embedding of C �-algebras.

In any case, the pushforward �� W L.H0/! L.H/ maps compact operators on H0 to
compact operators on H. Moreover, in view of (A.2) we have the following result.

Proposition A.1. If A is a compact operator on H0, then A and ��A have the same
non-zero eigenvalues with the same algebraic multiplicities. In particular, any eigenvalue
sequence for A is an eigenvalue sequence for ��A, and vice versa.

Suppose that � WH0!H is an isometric embedding. As mentioned above �� WL.H0/!
L.H/ is an isometric embedding of C �-algebras. Thus, for any A 2 L.H0/ and f 2
C.Sp.A// we have

f .��A/ D

�
�f .A/��1 0

0 0

�
D ��f .A/:

In particular, we have j��Aj D ��jAj. Moreover, A is selfadjoint if and only if ��A is, and
in this case, .��A/˙ D 1

2
.j��Aj ˙ ��A/ D

1
2
.��jAj ˙ ��A/����.A˙/. Combining this with

Proposition A.1 we then arrive at the following statement.
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Proposition A.2. Assume that � W H0 ! H is an isometric embedding, and let A be a
compact operator.

(1) The operators A and ��A have the same non-zero singular values with the same
multiplicity.

(2) If A� D A, then A and ��A have the same positive and negative eigenvalues with
the same multiplicity.

In general, as � W H0 ! H1 is a continuous linear isomorphism, we can pullback the
inner product on H1 to a new inner product on H0, which is equivalent to its original
inner product. With respect to this new inner product the embedding � WH0!H becomes
isometric. Thus, given any compact operator A on H0, the singular value sequence of
��A agrees with the singular value sequence of A with respect to the new inner product
on H0. As this inner product is equivalent to the original inner product of H0, by using the
min-max principle (2.1), we eventually arrive at the following result.

Proposition A.3. Let � W H0 ! H be a continuous linear embedding.

(1) There is c > 0 such that, for every compact operator A on H0, we have

c�1�j .A/ � �j .��A/ � c�j .A/ 8j � 0:

We may take c D 1 when � is an isometric embedding.

(2) Given any p > 0, the operator A is in the class Lp.H0/ (resp., Lp;1.H0/) if and
only if ��A is in Lp.H/ (resp., Lp;1.H/). Moreover, the pushforward map (A.1)
induces continuous linear embeddings,

�� W Lp.H
0/! Lp.H/; �� W Lp;1.H

0/! Lp;1.H/:

These embeddings are isometric whenever � is an isometric embedding.

Remark A.4. Part (2) holds more generally for any symmetrically normed ideal.
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