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The Euler characteristic of a transitive Lie algebroid

James Waldron

Abstract. We apply the Atiyah–Singer index theorem and tensor products of elliptic complexes to
the cohomology of transitive Lie algebroids. We prove that the Euler characteristic of a represent-
ation of a transitive Lie algebroid A over a compact manifold M vanishes unless A D TM , and
prove a general Künneth formula. As applications, we give a short proof of a vanishing result for
the Euler characteristic of a principal bundle calculated using invariant differential forms, and show
that the cohomology of certain Lie algebroids are exterior algebras. The latter result can be seen as
a generalization of Hopf’s theorem regarding the cohomology of compact Lie groups.

1. Introduction

1.1. Euler characteristics of Lie algebras

Let g be a finite dimensional Lie algebra. The Lie algebra cohomology H �.g/ is a finite
dimensional graded vector space concentrated in degrees 0� p � dim g. This permits one
to define the Euler characteristic of g as the alternating sum

�.g/ WD

dim gX
pD0

.�1/p dimHp.g/:

The motivation for this paper is the following theorem and its proof.

Theorem 1.1 (Goldberg [7]). If g is a non-zero finite dimensional Lie algebra, then
�.g/ D 0.

Note that if g D 0, then �.g/ D 1. This result has an interesting history, having been
proven earlier by Chevalley and Eilenberg [5] for the classical Lie algebras using results
on the structure of simple Lie groups; see [25] for a discussion. The proof given in [7] is
purely algebraic and works over any field: one applies the “Euler–Poincaré principle” to
the Chevalley–Eilenberg complex ^�g� and uses the fact that the alternating sum of the
binomial coefficients vanishes. In particular, the proof does not involve the differential but
only the vector spaces appearing in the complex.

For an action of a Lie groupG on a manifoldM , we denote byH �dR;G.M/ the cohomo-
logy of the complex of G-invariant differential forms. Following [22], if the cohomology
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groups Hp
dR;G.M/ are finite dimensional, then we define the Euler characteristic of the

G-action on M by

�.M;G/ WD

dimMX
pD0

.�1/p dimH
p
dR;G.M/

and denote the standard Euler characteristic by �.M/. If G is a Lie group with Lie
algebra g, then Theorem 1.1 and the isomorphism H �dR;G.G/ Š H �.g/ proves the fol-
lowing corollary.

Corollary 1.2. Let G be a positive dimensional Lie group acting on itself via the right
action.

(1) �.G;G/ D 0.

(2) �.G/ D 0 if G is compact.

The second statement is well known and is usually proven using topological argu-
ments, e.g. via the Lefschetz trace formula, the Poincaré–Hopf index theorem or the
vanishing of the Euler class of a parallelizable manifold. Theorem 1.1 can be seen as
providing a purely algebraic explanation of this fact.

1.2. Transitive Lie algebroids

Our first main result is a generalization of Theorem 1.1 and its proof to the case of trans-
itive Lie algebroids, and of Corollary 1.2 to principal bundles. A transitive Lie algebroid
over a smooth manifold M is a smooth vector bundle A over M equipped with a sur-
jective vector bundle morphism a W A! TM and a Lie bracket on �.A/ satisfying an
analogue of the Leibniz rule. Standard examples include finite dimensional real or com-
plex Lie algebras (M D pt), the tangent bundle TM , and the Atiyah algebroid TP=G of
a principal G-bundle P ! M for G a Lie group. There is a notion of representation of
a Lie algebroid on a vector bundle E, to which there are associated cohomology groups
Hp.A;E/. See Section 2 for the precise definitions.

1.3. Main results

IfE is a representation of a transitive Lie algebroidAand the cohomology groupsHp.A;E/
are finite dimensional, then we define the Euler characteristic of E as

�.A;E/ WD

rankAX
pD0

.�1/p dimHp.A;E/:

We write Hp.A/ and �.A/ for E DM �R the standard representation.

Theorem 1. LetA be a real or complex transitive Lie algebroid over a connected compact
manifold M , L D Ker a, and E a representation of A. Then

�.A;E/ D

´
rankE � �.M/ if L D 0;

0 otherwise.
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The proof of Theorem 1 uses the cohomological form of the Atiyah–Singer index
theorem [2] applied to the elliptic complex �.E ˝^�A�/ computingH �.A;E/. We show
that the integrand in the index theorem is equal to the Euler class of M multiplied by the
integer � rankLX

pD0

.�1/p rank^pL�
�

rankE;

which vanishes whenever L ¤ 0 for the same reason as in the proof of Theorem 1.1.
Specialising to the case M D pt recovers Goldberg’s theorem, and to the case A D TM
the computation of the Euler characteristic of a local system.

Corollary 2. LetG be a positive dimensional Lie group and P a principalG-bundle over
a compact manifold M .

(1) The cohomology groups Hp
dR;G.P / are finite dimensional.

(2) �.P;G/ D 0.

(3) �.P / D 0 if G is compact.

The same results hold if��.P /G is replaced by��.P;V /G for V a non-zero finite dimen-
sional real or complex representation of G.

Corollary 2 is a special case of the following more general result which is part of
[22, Theorems 1.1 and 4.1]. The proofs are independent. We understand that this result
was already known to the authors of loc. cit.

Theorem 1.3 (Tang, Yao, and Zhang [22]). LetM be a manifold on which a Lie group G
acts properly and cocompactly.

(1) The cohomology groups Hp
dR;G.M/ are finite dimensional.

(2) If the dimension of M is odd or there exists a nowhere vanishing G-invariant
vector field on M , then �.M;G/ D 0.

Corollary 2 is proved by applying Theorem 1 to the Atiyah algebroid of P . This result
can also be restated in the following equivalent way: ifG,P , andM are as in the statement
and M is considered as a trivial G-space, then

�.P;G/ D �.M;G/ � �.G;G/;

which reduces to Serre’s identity

�.P / D �.M/ � �.G/

[21] if G is compact.
Our second main result is a Künneth theorem for transitive Lie algebroids. Let A resp.

B be a transitive Lie algebroid over a compact manifold M resp. N and let E resp. F be
a representation of A resp. B . The product Lie algebroid

A � B D A� B WD ��MA˚ �
�
NB
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is a Lie algebroid over M � N and the vector bundle E � F WD ��ME ˝ �
�
NF is a rep-

resentation of A� B in a natural way. For the precise details, see the proof of Theorem 3
in Section 3.3.

Theorem 3. With the notation as above, there is an isomorphism of graded vector spaces

H �.A � B;E � F / Š H �.A;E/˝H �.B; F /

which is an isomorphism of graded algebras if E D M � R and F D M � R are the
standard representations.

The proof of Theorem 3 is an application of the Künneth theorem for elliptic com-
plexes stated in [1]; see also [23, Theorem 1.3] and [24, Section 1.4.3]. Specialising to the
case M D pt recovers the Künneth formula for Lie algebras, and to the case A D TM

and B D TN the Künneth theorem for de Rham cohomology with local coefficients. The-
orem 3 answers a question posed by Kubarski in [14], where the result is proven for the
case where A D TM , N D pt, and E and F are the standard representations.

Corollary 4. Let G and H be Lie groups and let P resp. Q be a principal G resp. H
bundle with P=G and Q=H compact. There is an isomorphism of graded vector spaces

H �dR;G.P /˝H
�
dR;H .Q/ Š H

�
dR;G�H .P �Q/;

where G �H acts on P �Q via the diagonal action.

If A is a Lie algebroid, then by a compatible smoothH -space structure we shall mean
a Lie algebroid morphismH WA�A!A for which there exists an element e 2A, called a
unit forH that is contained in the zero section and satisfiesH.e;x/DH.x; e/D x for all
x 2 A. In particular,H makes A into anH -space in the sense of topology [9]. Note that if
H is in fact associative and has inverses, then A is an example of an “LA-groupoid” [15].

Corollary 5. Suppose that A is a transitive Lie algebroid over a connected compact man-
ifoldM and A is equipped with a compatible smoothH -space structureH W A�A! A.
Then H �.A/ is isomorphic to a graded exterior algebra with odd degree generators and
carries the structure of a graded Hopf algebra if H is associative.

If A D TG for G a compact Lie group and H is equal to the derivative of the multi-
plication of G, then H �.A/ D H �dR.G/ and Corollary 5 reduces to the theorem of Hopf
on the cohomology of compact Lie groups [10]. We show in Section 4.3 that if A is trans-
itive, then the existence of an H -structure is fairly restrictive, in particular the fibres of
L D Ker a are necessarily abelian.

1.4. Relation to existing work

Theorem 1 is an extension of the following two theorems which compute the Euler char-
acteristic �.A/ of the standard representation under additional assumptions on M and A.
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Theorem 1.4 (Itskov, Karasev, and Vorobjev [11, Corollary 4.11]). If M is simply con-
nected, then �.A/ D �.g/�.M/, where g D Ker ax for some x 2M .

Theorem 1.5 (Kubarski [14, Proposition 7.6]). If A is transitive unimodular invariantly
oriented, M is oriented, and rankA is odd, then �.A/ D 0.

The proofs of these results are very different to that of Theorem 1: the proof of The-
orem 1.4 uses Mackenzie’s spectral sequence [16], and the proof of Theorem 1.5 uses a
version of Poincaré duality for Lie algebroids; see loc. cit. for the terminology. We note
that the result of [11] holds ifM is noncompact but admits a finite good cover in the sense
of [3]. (The vanishing is not stated explicitly in [11] but follows from the statement in loc.
cit. and Theorem 1.1.)

The following theorem is a slight rephrasing of [18, Theorem 3.1], which is an applic-
ation of the higher index theorem for Lie groupoids proven in [19].

Theorem 1.6 (Pflaum, Posthuma, and Tang [18, Theorem 3.1]). If A is integrable, ori-
ented, and unimodular, then the index of the Euler operator DA is given by

Ind�.DA/ D
Z
M

˝
eA.A/;�

˛
: (1)

Here � is an invariant section of the vector bundle ^topA˝ ^topT �M and eA.A/ D
a�.e.A// is the Lie algebroid Euler class of A, where e.A/ is the standard Euler class of
A and a� W H �dR.M/! H �.A/ is determined by a W A! TM . See loc. cit. for further
details. Under the assumptions of Theorem 1.6, one can deduce Theorem 1 from (1): if
A ¤ TM is transitive, then the left-hand side can be identified with a non-zero multiple
of �.A/, and rankA > dimM implies that e.A/ and therefore eA.A/ and the right-hand
side vanish.

We also mention [12], where an index theorem is proved for certain non-transitive
complex Lie algebroids called “elliptic involutive structures”.

1.5. Organization of the paper

In Section 2, we summarise the relevant definitions concerning Lie algebroids and their
representations. The proofs of Theorems 1 and 3 and of Corollaries 2, 4, and 5 are in
Section 3. In Section 4, we give several examples, including an example showing that
Theorem 1 does not hold for non-transitive Lie algebroids in general, and discuss the
existence of compatible H -structures.

2. Background
We summarise the basic definitions regarding C1 Lie algebroids and their representa-
tions. See [16] for further details. Let M be a smooth manifold. A Lie algebroid over M
is a smooth vector bundle A over M equipped with an R-linear Lie bracket on �.A/ and
a vector bundle morphism a W A! TM , called the anchor, such that the Leibniz rule

Œ�; f � 0� D La.�/.f /�
0
C f Œ�; � 0�
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holds for all �; � 0 2 �.A/ and f 2 C1.M/, where L denotes the Lie derivative. Com-
plex Lie algebroids are defined similarly, replacing TM by its complexification TCM .
Standard examples include finite dimensional real or complex Lie algebras (M D pt), the
tangent bundle TM , and the Atiyah algebroid TP=G of a principalG-bundle P !M for
G a Lie group. These examples are all transitive, meaning that the anchor map is surjective
and there is a short exact sequence

0! L! A! TM ! 0;

where L D Ker a. In fact, L is a locally trivial bundle of Lie algebras. See [16] for the
definition of a morphism of Lie algebroids.

Let A be a Lie algebroid. Associated to A is a cochain complex �.^�A�/ with differ-
ential dA defined analogously to the de Rham differential by

dAf .�/ D La.�/.f /;

dA!.�; � 0/ D La.�/

�
!.� 0/

�
�La.� 0/

�
!.�/

�
� !

�
Œ�; � 0�

�
for f 2 C1.M/, ! 2 �.A�/, and �; � 0 2 �.A/, and extended to �.^�A�/ by

dA.� ^ �0/ D dA� ^ �0 C .�1/p� ^ dA�0

for � 2 �.^pA�/ and �0 2 �.^qA�/.
A representation of A consists of a smooth vector bundle E over M and a flat-A-

connection, which is a linear map

r W �.E/! �.E ˝ A�/

satisfying
r.fe/ D e ˝ dAf C f r.e/ (2)

and r2 D 0, for f 2 C1.M/ and e 2 �.E/, where r is extended to �.E ˝^pA�/ by
the rule

r.e ˝ !/ D r.e/ ^ ! C e ˝ dA!: (3)

The cohomology groups of the cochain complex �.E ˝^�A�/ are denoted byH �.A;E/,
which coincides with the cohomology H �.A/ of �.^�A�/ if E DM �R is the standard
representation with r D dA. Representations and cohomology of complex Lie algebroids
are defined similarly.

In the case that M D pt resp. A D TM , this reduces to Lie algebra cohomology resp.
de Rham cohomology with flat vector bundle coefficients. If A D TP=G is an Atiyah
algebroid, then there is an isomorphism �.^�A�/ Š ��.P /G .

The wedge product makes �.^�A�/ andH �.A/ into graded algebras, and a morphism
of Lie algebroids � W A! B induces morphisms of graded algebras

�� W �.^�B�/! �.^�A�/ and �� W H �.B/! H �.A/:
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3. Proofs of main results

3.1. Proof of Theorem 1

It is shown in [13] that, for x 2M and ˛ 2 T �xM , the symbol complex of �.E ˝^�A�/
at ˛ is

� � � ! Ex ˝^
rA�x

id˝^a�.˛/
�������! Ex ˝^

rC1A�x ! � � � (4)

and is exact for non-zero ˛ if A is transitive. In particular, �.E ˝ ^�A�/ is an elliptic
complex and therefore the cohomology groups Hp.A;E/ are finite dimensional [1].

To calculate �.A;E/, we first reduce to a simpler case. Pulling back to the orientation
double cover multiplies both �.A;E/ and the Euler characteristic �.M/ by 2, complexi-
fication leaves �.A;E/ unchanged, and if dimM is odd, then both the index of any elliptic
complex and �.M/ are equal to 0. We can therefore reduce to the case where M is even
dimensional and oriented and A and E are complex.

Let � denote the symbol class of the elliptic complex �.E ˝^�A�/, �dR the symbol
class of the complexified de Rham complex of M , � W T �M !M the bundle projection,
‰ the Thom isomorphism for T �M , e the Euler class of TM , and T the Todd class of
TCM . Fix a splitting of a W A! TCM . This determines isomorphisms A Š L˚ TCM

and
^
rA� Š

M
pCqDr

^
pL� ˝^qT �CM

with respect to which the symbol complex (4) is

� � � !

M
pCqDr

.Ex ˝^
pL�x/˝^

qT �xM
id˝^˛
����!

M
pCqDr

.Ex ˝^
pL�x/˝^

qC1T �xM ! � � �

It follows that

� D

rankLX
pD0

�
��.E ˝^pL�/

�
� �dRŒ�p�; (5)

where Œ�p� denotes the shift of a complex by p. Using the fact that Œ�1� D �Id (see the
Appendix of [20]), the naturality and multiplicativity of the Chern character and the fact
that the Thom isomorphism is a morphism of H �.M;Q/-modules, we have

‰�1 ch.�/ D ‰�1 ch
� rankLX
pD0

�
��.E ˝^pL�/

�
� �dRŒ�p�

�

D ‰�1
� rankLX
pD0

.�1/p�� ch.E ˝^pL�/ � ch �dR

�

D

rankLX
pD0

.�1/p ch.E ˝^pL�/ �‰�1 ch �dR: (6)
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Substituting (6) into the cohomological form of the Atiyah–Singer index theorem [2] and
using the fact that ‰�1 ch �dR � T D e [2] is a top degree cohomology class gives

�.A;E/ D .‰�1 ch � � T/ŒM �

D

� rankLX
pD0

.�1/p ch.E ˝^pL�/ �‰�1 ch �dR � T

�
ŒM �

D

� rankLX
pD0

.�1/p rank^pL�
�

rankE � eŒM�

D

´
rankE � �.M/ if L D 0;

0 otherwise;

where the last equality follows from the fact that the alternating sum of the binomial
coefficients is zero. This completes the proof of Theorem 1.

Remark 3.1. Note that if one can make sense of dividing by the Euler class, it is possible
to use the equation

‰�1 ch � � e D
rankLX
pD0

.�1/p ch.E ˝^pA�/

to give a proof of Theorem 1 involving only the vector bundles E ˝ ^pA� and not the
symbol � .

Remark 3.2. The map A 7! �.^�A�/ defines a 1-1 correspondence between transitive
real Lie algebroids and real elliptic complexes of the form �.^�V / with differential a
graded derivation. It follows that Theorem 1 solves the index problem for every real
elliptic complex of this type.

3.2. Proof of Corollary 2

The Atiyah algebroid TP=G of P is a transitive Lie algebroid with Ker a ¤ 0. If V is a
non-zero finite dimensional real or complex representation ofG, then the associated vector
bundle P �G V carries a natural flat TP=G-connection defined by r.v/.�/ WD L�.v/,
where �.TP=G/ is identified with �.TP /G and �.P �G V / with C1.P; V /G . It is
shown in [16, Proposition 5.3.11] that there is an isomorphism of cochain complexes

�
�
P �G V ˝^

�.TP=G/�
�
Š ��.P; V /G :

The first two statements of Corollary 2 then follow from Theorem 1 and the third from
the fact that if G is compact, then the inclusion ��.P; V /G ,! ��.P; V / induces an
isomorphism of cohomology groups; see e.g. [8, Section 4.3].

Specialising to the standard one dimensional representation proves the claims for
H �dR;G.P /, �.P;G/, and �.P /. This completes the proof of Corollary 2.
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3.3. Proof of Theorem 3

We will show that there is an isomorphism

�
�
E � F ˝^�.A� B/�

�
Š �.E ˝^�A�/� �.F ˝^�B�/;

where the right-hand side is the outer tensor product of elliptic complexes. The first stat-
ment then follows from the Künneth theorem for elliptic complexes stated in [1]; see also
[23, Theorem 1.3] and [24, Section 1.4.3]. See [16] for products of Lie algebroids and [6]
for pullbacks and tensor products of representations.

Denote by ��M WM �N !M and ��N WM �N !N the two projections. If � 2 �.A/
and � 2 �.B/, then we set � � � WD .pr�M �;pr�N �/ 2 �.A�B/. We use a similar notation
e � f WD pr�M e ˝ pr�Nf for sections of E � F and other outer tensor products of vector
bundles.

The anchor map of A� B is given by the direct sum of the anchor maps of A and B ,
and the Lie bracket is determined by the Leibniz rule and the definition

Œ� � �; � 0 � �0� D Œ�; � 0�� Œ�; �0�:

This implies that with respect to the canonical isomorphisms

^
r .A� B/� Š

M
pCqDr

^
pA� � ^qB�

the differential dA�B on �.^�.A� B/�/ is given by

dA�B.! � ı/ D dA! � ı C .�1/p! � dBı (7)

for ! 2 �.^pA�/ and ı 2 �.^qB�/.
There are flat A � B connections rE on ��ME and rF on ��NF defined via the

natural Lie algebroid morphisms A � B ! A and A � B ! B . As a representation of
A � B , E � F is by definition the tensor product of the representations ��ME and ��NF .
Explicitly, the flat connection rE�F on E � F is determined by the Leibniz rule (2) and

r
E�F .e � f / D rE .e/� f C e � rF .f /; (8)

where the terms on the right-hand side are defined via the identification of .E ˝A�/� F
and E � .F ˝ B�/ with subbundles of E � F ˝ .A� � B�/. It then follows from (3),
(7), and (8) that with respect to the canonical isomorphisms

E � F ˝^r .A � B/� Š
M

pCqDr

.E ˝^pA�/� .E ˝^qB�/

the extension of rE�F to higher exterior powers of .A � B/� is

r
E�F

�
.e ˝ !/� .f ˝ ı/

�
D r

E .e ˝ !/� .f ˝ ı/C .�1/p.e ˝ !/� rF .f ˝ ı/

for e 2 �.E/, f 2 �.F /, ! 2 �.^pA�/, and ı 2 �.^qB�/ as required.
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If E D M � R and F D N � R are the standard representations, then the maps
H �.A/!H �.A�B/ andH �.A/!H �.A�B/ determined by the projectionsA�B!
A and A � B ! B are morphisms of graded algebras and therefore so is the isomorph-
ism of graded vector spaces H �.A/˝H �.B/! H �.A � B/, Œ!�˝ Œı� 7! Œ! � ı�. This
completes the proof of Theorem 3.

Remark 3.3. Theorem 3 continues to hold if M and N are noncompact but the cohomo-
logy groups Hp.A; E/ and H q.B; F / are finite dimensional, in which case they are
Hausdorff topological vector spaces and [23, Theorem 1.3] still applies.

3.4. Proof of Corollary 4

The canonical isomorphism TP � TQŠ T .P �Q/ of Lie algebroids isG �H equivari-
ant and therefore descends to an isomorphism TP=G � TQ=H Š T .P �Q/=.G �H/.
The statement then follows from Theorem 3. This completes the proof of Corollary 4.

3.5. Proof of Corollary 5

The proof of the first statement follows the proof of Hopf’s theorem on the structure
of the cohomology ring of an H -space given in [9, Section 3C]. (Note that in [9] the
term “Hopf algebra” is used to describe a structure closer to that of a bialgebra; see [17,
Remark 20.3.2] for a discussion of this point and chapter 20 of loc. cit. for the definitions
of bialgebras and Hopf algebras.)

Define � to be the composition

H �.A/
H�

��! H �.A � A/
Š
�! H �.A/˝H �.A/;

where H� is the map on cohomology determined by the Lie algebroid morphism H W

A � A! A and the second map is the Künneth isomorphism of Theorem 3. The map �
is a graded algebra morphism as it is a composition of such maps.

The projection " W H �.A/! H 0.A/ is an algebra morphism. Define

HC.A/ WD Ker " D
rankAM
pD1

Hp.A/:

The canonical algebra homomorphism R!H 0.A/ mapping � 2 R to the corresponding
constant function is an isomorphism: if f 2 C1.M/ and .dAf /.�/ D La.�/.f / D 0 for
all � 2 �.A/, then f is constant because a W A! TM is surjective and M is connected.

As e is contained in the zero section of A, the map A! A, x 7! e is a Lie algebroid
morphism. It then follows from the fact that A � A is a product in the category of Lie
algebroids [16] that the map A!A�A, x 7!.x; e/ is a Lie algebroid morphism also. The
same argument as in the H -space case (see [9, the diagram on p. 283]) then shows that

�.!/ � ! ˝ 1 � 1˝ ! 2 HC.A/˝HC.A/

for ! 2 Hp.A/ with p > 0.
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The proceeding discussion shows that H �.A/ and � satisfy the assumptions in the
algebraic form of Hopf’s theorem [10], see [9, Theorem 3C.4] or [4, Section 2.4], which
shows that H �.A/ is an exterior algebra with generators of odd degree.

Now assume that H is associative. Then � is coassociative and H �.A/ together with
� and " WH �.A/!H 0.A/Š R is a bialgebra. It is straightforward to check thatH �.A/
satisfies [17, Definition 21.3.1], and then Proposition 21.3.3 in loc. cit shows that H �.A/
admits a unique antipode and is therefore a Hopf algebra.

4. Examples and further results

4.1. Action Lie algebroids

Let g be a finite dimensional real Lie algebra,M a smooth manifold, and � W g! �.TM/

a Lie algebra homomorphism. The Lie derivative then makes C1.M/ into a g module,
and by evaluation, � determines a linear map

�x W g! TxM for each x 2M:

Proposition 4.1. Assume that M is compact and �x is surjective for all x 2M .

(1) The Lie algebra cohomology groups Hp.g; C1.M// are finite dimensional.

(2)
Pdim g
pD0 dimHp.g; C1.M// D

²
�.M/ if dim g D dimM;

0 else:
Proof. Associated to � W g! �.TM/ is the action Lie algebroid g ËM , for which the
complex �.^�.g ËM/�/ is isomorphic to the Chevalley–Eilenberg complex ^�g� ˝
C1.M/ [16]. Under the assumption on �, the action Lie algebroid is transitive and the
result follows from Theorem 1.

4.2. Non-transitive Lie algebroids

The following example shows that if A is not transitive and Hp.A; E/ is finite dimen-
sional, then �.A;E/ is in general non-zero.

Example 4.2. Let M D R, n 2 N, and p the polynomial function .t � 1/ � � � .t � n/.
Consider the Lie algebroid A WDM �R with anchor map f 7! p@t and Lie bracket

Œf; g� D p

�
f
dg

dt
� g

df

dt

�
:

The complex �.^�A�/ is isomorphic to the non-elliptic complex

C1.R/
p@t
��! C1.R/

which has cohomology groups Ker.p@t / D R and Coker.p@t / Š Rn because @t is sur-
jective and p generates the vanishing ideal of p�1.0/. In particular, �.A/ D 1 � n.

Remark 4.3. One can give an analogous example withM compact by replacing R by S1

and p by any smooth function with n isolated zeros of order 1. In this case, �.A/ D �n
which is not a multiple of �.S1/ D 0.
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4.3. H -structures

Throughout Section 4.3, A denotes a Lie algebroid over M equipped with a compatible
H -structureH WA�A!A and e 2A is a unit forH (see the paragraph above Corollary 5
for the definition). If H covers a smooth map f WM �M !M and e 2 Am, then m is a
unit for f and M is an H -space. The following topological restrictions on H -spaces are
well known; see [9, Section 3.C].

Proposition 4.4. If M is connected, then �1.M/ is abelian. If M is also compact and
positive dimensional, then �.M/ D 0 and H �.M;Q/ is an exterior algebra.

Proposition 4.5. Let g be a Lie algebra. There exists a Lie algebra morphism

H W g � g! g

satisfying H.0; x/ D H.x; 0/ D x for all x 2 g if and only if g is abelian, in which case
the addition map .x; y/ 7! x C y is the unique map satisfying these conditions.

Proof. Suppose thatH W g� g! g is a linear map and writeH.x;y/DH1.x/CH2.y/.
Then H is a Lie algebra morphism if and only if H1 and H2 are Lie algebra morphisms
from g to g whose images commute. The condition H.0; x/ D H.x; 0/ D x is equivalent
to H2.x/ D H1.x/ D x and therefore H1 D H2 D idg. As the images of H1 and H2
commute, we must have that g is abelian.

Remark 4.6. If g is abelian, then H �.g/ D ^�g� and if g is also finite dimensional,
then the Hopf algebra structure associated to the unique H -structure by Corollary 5 is the
standard Hopf algebra structure on an exterior algebra.

Proposition 4.7. If M is connected, then the fibres of L D Ker a are abelian.

Proof. As L is a locally trivial bundle of Lie algebras [16], it is sufficient to show that
Lm is abelian. H restricts to a linear map Am � Am ! Am, and to a morphism of Lie
algebrasLm �Lm!Lm becauseH is a morphism of transitive Lie algebroids. Applying
Proposition 4.5 to this morphism shows that Lm is abelian.

Acknowledgements. We would like to thank Xiang Tang for explaining Theorems 1.3
and 1.6 and for helpful discussions about the results of this paper.
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