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Geometric similarity invariants
of Cowen–Douglas operators

Chunlan Jiang, Kui Ji, and Dinesh Kumar Keshari

Abstract. In 1978, M. J. Cowen and R. G. Douglas introduced a class of operators Bn.�/ (known
as Cowen–Douglas class of operators) and associated a Hermitian holomorphic vector bundle to
such an operator. They gave a complete set of unitary invariants in terms of the curvature and its
covariant derivatives. At the same time, they asked whether one can use geometric ideas to find a
complete set of similarity invariants of the Cowen–Douglas operators. We give a partial answer to
this question. In this paper, we show that the curvature and the second fundamental form completely
determine the similarity orbit of a norm dense class of the Cowen–Douglas operators. As an appli-
cation we show that uncountably many (non-similar) strongly irreducible operators in Bn.D/ can
be constructed from a given operator in B1.D/. We also characterize a class of strongly irreducible
weakly homogeneous operators in Bn.D/.

1. Introduction

Let H and L.H / be a complex separable Hilbert space and the set of all bounded linear
operators on H , respectively. The Grassmannian Gr.n;H / is the set of all n-dimensional
subspaces of the Hilbert space H . For an open bounded connected subset � of the com-
plex plane C, and n 2 N, a map t W �! Gr.n;H / is said to be a holomorphic curve,
if there exist n (point-wise linearly independent) holomorphic functions 
1; 
2; : : : ; 
n
on � taking values in H such that t .w/ D

W
¹
1.w/; : : : ; 
n.w/º, w 2 �. Each holomor-

phic curve t W �! Gr.n;H / gives rise to a rank n Hermitian holomorphic vector bundle
Et over �, namely, Et D ¹.x; w/ 2 H � � j x 2 t .w/º and � W Et ! � is given by
�.x;w/ D w.

In a very influential paper [7], M. J. Cowen and R. G. Douglas initiated a systematic
study of a class of bounded linear operators involving the intrinsic complex geometry.
An operator T acting on H is said to be in the Cowen–Douglas class Bn.�/ of rank n,
associated with an open bounded subset �, if T � w is surjective, dim ker.T � w/ D n
for all w 2 �, and

W
w2� ker.T � w/ D H . M. J. Cowen and R. G. Douglas showed that

each such operator T gives rise to a rank n Hermitian holomorphic vector bundle ET
over �, namely, ET D ¹.x; w/ 2 H �� j x 2 ker.T � w/º and � W ET ! � is given
by �.x;w/ D w.
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Two holomorphic curves t; zT W �! Gr.n;H / are said to be congruent if vector bun-
dles Et and E zT are locally equivalent as a Hermitian holomorphic vector bundle. Fur-
thermore, t and zT are said to be unitarily equivalent (denoted by t �u zT ), if there exists
a unitary operator U.2 B.H // such that U.w/t.w/ D zT .w/, where U.w/ WD U jEt .w/ is
the restriction of the unitary operator U to the fiber Et .w/D ��1.w/. It is easy to see, by
using the Rigidity Theorem in [7], t and zT are congruent if and only if t and zT are unitarily
equivalent. The holomorphic curves t and zT are said to be similarity equivalent (denoted
by t �s zT ) if there exists an invertible operator X 2B.H / such that X.w/t.w/ D zT .w/,
where X.w/ WD XjEt .w/ is the restriction of X to the fiber Et .w/. In this case, we say that
the vector bundles Et and E zT are similarity equivalent.

For an open bounded connected subset � of C, a Cowen–Douglas operator T with
index n induces a non-constant holomorphic curve t W �! Gr.n;H /, namely, t .w/ D
ker.T �w/,w 2� and hence a Hermitian holomorphic vector bundleEt (here, the vector
bundle Et is the same as ET ). Unitary and similarity invariants for the operator T are
obtained from the vector bundleET . To describe these invariants, we need the curvature of
the vector bundle ET along with its covariant derivatives. We recall some of these notions
from [7]. The metric of bundle ET with respect to a holomorphic frame 
 is given by
h
 .w/ D ..h
j .w/; 
i .w/i//

n
i;jD1, w 2 �, where 
.w/ D

W
¹
1.w/; : : : ; 
n.w/º, w 2 �.

The connection compatible with the complex structure and the metric of the vector bundle
ET is canonically determined and locally it is given by the formula h�1
 .

@
@w
h
 / dw (see

[35, Theorem 2.1]). The curvature of the Hermitian holomorphic vector bundle ET is the
.1; 1/ form, namely,

N@
�
h�1
 .w/@h
 .w/

�
D �

@

@ xw

�
h�1
 .w/

@

@w
h
 .w/

�
dw ^ d xw:

Let KT .w/ denote the coefficient of this .1; 1/ form, i.e.,

KT .w/ WD �
@

@ xw

�
h�1
 .w/

@

@w
h
 .w/

�
and we call it the curvature. The curvature KT can be thought of as a bundle map, follow-
ing the definition of the covariant partial derivatives of bundle map, its covariant partial
derivatives KT;w i xwj , i; j 2 N [ ¹0º are given by

(1) KT;w i xwjC1 D
@
@ xw
.KT;w i xwj /;

(2) KT;w iC1 xwj D
@
@w
.KT;w i xwj /C Œh

�1



@
@w
h
 ;KT;w i xwj �.

The curvature and its covariant partial derivatives are complete unitary invariants of an
operator in the Cowen–Douglas class. M. J. Cowen and R. G. Douglas proved in [7] the
following theorem.

Theorem 1.1. Let T and zT be two Cowen–Douglas operators with index n. Then T and
zT are unitarily equivalent if and only if there exists an isometric holomorphic bundle map
V W ET ! E zT such that

V
�
KT;w i xwj

�
D
�
K zT ;w i xwj

�
V; 0 � i � j � i C j � n; .i; j / ¤ .0; n/; .n; 0/:
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In particular, if T and zT are the Cowen–Douglas operators with index one, then
T �u zT if and only if KT DK zT .

Theorem 1.1 says that the local complex geometric invariants are of global nature from
the point of view of unitary equivalence. However, for similarity equivalence, the global
invariants are not easily detectable by the local invariants, such as the curvature and its
covariant derivatives. It is because the holomorphic bundle map determined by invertible
operators is not rigid. In other words, one does not know when a bundle map with local
isomorphism can be extended to an invertible operator in B.H /. In the absence of char-
acterization of equivalent classes under an invertible linear transformation, M. J. Cowen
and R. G. Douglas proposed the following conjecture in [7].

Conjecture. Let D denote the open unit disc. Let T; zT 2 B1.D/ with the spectrums of T
and zT are closure of D (denoted by xD). Then T �s zT if and only if

lim
w!@D

KT .w/

K zT .w/
D 1:

This conjecture turned out to be false (cf. [5, 6]).

The class of Cowen–Douglas operators is very rich. In fact, the norm closure of the
Cowen–Douglas operators contains the collection of all quasi-triangular operators with
spectrum being connected. This follows from the famous similarity orbit theorem given
by C. Apostol, L. A. Fialkow, D. A. Herrero, and D. Voiculescu (cf. [2]). Subsequently,
the Cowen–Douglas operator has been one of the important ingredients in the research of
operator theory (cf. [1, 3, 4, 6, 11, 12, 15, 18, 21, 22, 27, 29–32, 34, 36, 37]).

To find similarity invariants for the Cowen–Douglas operators in terms of geometric
invariants, we need the following concepts and theorems.

Theorem 1.2 (Upper triangular representation theorem, [24]). Let T 2 L.H / be a
Cowen–Douglas operator with index n, then there exists an orthogonal decomposition
H D H1 ˚ H2 ˚ � � � ˚ Hn and operators T1;1; T2;2; : : : ; Tn;n in B1.�/ such that T
takes the following form

T D

0BBBBB@
T1;1 T1;2 T1;3 � � � T1;n
0 T2;2 T2;3 � � � T2;n
:::

: : :
: : :

: : :
:::

0 � � � 0 Tn�1;n�1 Tn�1;n
0 � � � � � � 0 Tn;n

1CCCCCA : (1.1)
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Let ¹
1; 
2; : : : ; 
nº be a holomorphic frame of ET with

H D
_
¹
i .w/; w 2 �; 1 � i � nº;

and ti W �! Gr.1;Hi / be a holomorphic frame of ETi;i , 1 � i � n. Then we can find
certain relations between ¹
iºniD1 and ¹tiºniD1, prescribed in the following equations:


1 D t1;


2 D �1;2.t2/C t2;


3 D �1;3.t3/C �2;3.t3/C t3;

:::


j D �1;j .tj /C � � � C �i;j .tj /C � � � C tj ;

:::


n D �1;n.tn/C � � � C �i;n.tn/C � � � C tn;

(1.2)

where �i;j , (i; j D 1; 2; : : : ; n) are certain holomorphic bundle maps. We expect these
bundle maps to reflect geometric similarity invariants of the operator T . However, it is
far from enough on the coarse relation of the above equations. In particular, to use geo-
metric terms such as curvature and second fundamental form for similarity invariants of
the operator in (1.1), we have to give them more internal structures. For example, we
may assume that Ti;iC1 are nonzero operators and intertwines Ti;i and TiC1;iC1, i.e.,
Ti;iTi;iC1 D Ti;iC1TiC1;iC1, 1 � i � n � 1 (it is denoted by F Bn.�/ (see [19])).

For a 2 � 2 block
�
Ti;i Ti;iC1
0 TiC1;iC1

�
, if Ti;iTi;iC1 D Ti;iC1TiC1;iC1, then the correspond-

ing second fundamental form �i;iC1, which is obtained by R. G. Douglas and G. Misra
(see [10]), is

�i;iC1.T /.w/ D
KTi;i .w/ d xw� kTi;iC1.tiC1.w//k2

ktiC1.w/k2
�KTi;i .w/

�1=2 : (1.3)

Let T; zT have upper-triangular representation as in (1.1) and assume that Ti;i ; TiC1;iC1
and zTi;i ; zTiC1;iC1 have intertwinings Ti;iC1 and zTi;iC1, respectively. If KTi;i DK zTi;i ,
then from (1.3) it is easy to see that

�i;iC1.T /.w/ D �i;iC1. zT /.w/,
kTi;iC1.tiC1.w//k

2

ktiC1.w/k2
D
kzTi;iC1. zTiC1.w//k

2

k zTiC1.w/k2
:

If the upper-triangular representation in (1.1) has such a good internal structure, then a
complete set of unitary (or similarity) invariants of T is obtained in terms of the curvature
and the second fundamental form.

In this paper, we introduce a subset of the Cowen–Douglas operators denoted by
CF Bn.�/ (Definition 2.7). We prove that CF Bn.�/ is norm dense in Bn.�/ (Propo-
sition 2.16). Hence it is meaningful to discuss the geometric similarity invariants for
operators belonging to CF Bn.�/. We would like to point out that similarity results for
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quasi-homogeneous Cowen–Douglas operators have been discussed in [23]. However, the
class CF Bn.�/ is quite different from the class of quasi-homogeneous Cowen–Douglas
operators. For example, if we take an operator T in CF Bn.�/ such that Ti;i D TiC1;iC1,
1 � i � n� 1, or Ti;i is not a homogeneous operator, then T is not a quasi-homogeneous
Cowen–Douglas operator. Also, if we take a homogeneous Cowen–Douglas operator T
(which is quasi-homogeneous by definition) in Bn.�/ for n � 3, then T does not belong
to CF Bn.�/.

Roughly speaking, for operators T in CF Bn.�/, the curvature and the second fun-
damental form give a complete set of similarity invariants. In a joint work with G. Misra
(see [20]), the authors gave a complete set of unitary invariants in terms of the curvature
and the second fundamental form for operators in F Bn.�/. In the general case, the first
and the second authors obtained a complete set of similarity invariants by using ordered
K0-group. However, an orderedK0-group is an algebraic invariant. We expect these alge-
braic invariants to supply more insight in the search of geometric invariants. Recently,
R. G. Douglas, H. Kwon, S. Treil [9,28] and K. Ji [17] use the curvature to describe simi-
larity invariants for a subclass of the Cowen–Douglas operators. Here is one of the results
from [9, 17].

Theorem 1.3. Let T 2 Bn.D/ be an m-hypercontraction and Sz is the multiplication on
the weighted Bergman space. Then T is similar to

Ln
iD1 S

�
z if and only if there exists a

bounded subharmonic function  defined on D such that

trace.KT / � trace.KS�z / D � :

An operator T is said to be homogeneous if �˛.T / is unitarily equivalent to T for each
Möbius transformation �˛ . G. Misra proved the following theorem.

Theorem 1.4 ([26]). Let T1 and T2 be two homogeneous Cowen–Douglas operators with
index one. Then T1 is similar to T2 if and only if T1 is unitarily equivalent to T2, i.e.,
KT1 DKT2 .

The first and the second authors jointly with G. Misra extended the concepts of homo-
geneous operators to quasi-homogeneous operators as follows.

Definition 1.5 ([23]). Let T 2 F Bn.�/ and T has an n � n upper-triangular matrix as
in (1.1). Then the operator T is called a quasi-homogeneous operator, i.e., T 2 QBn.�/,
if each Ti;i is a homogeneous operator in B1.�/ and

Ti;j .tj / 2
_
¹t
.k/
i ; k � j � i � 1º:

For the quasi-homogeneous operators, the curvature and the second fundamental form
completely describe similarity invariants.

Theorem 1.6 ([23]). Let T; S 2 QBn.�/, then´
KTi;i DK zTi;i ;

�i;iC1.T / D �i;iC1. zT /
H) T �s zT if and only if T D zT :
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We point out that even if T is a Cowen–Douglas operator with index one, its spec-
tral picture (see [24, page 8]) is also very complicated. The following theorem, due to
D. A. Herrero, shows its complexity.

Theorem 1.7 ([16]). Let T 2 L.H / be a quasi-triangular operator with connected spec-
tral picture. If there exists a pointw in the Fredholm domain of T such that ind.T �w/D1,
then for any " > 0, there exists a compact operator K with kKk < " such that T CK is
a Cowen–Douglas operator with index one.

It is due to the complexity of the structure of the Cowen–Douglas operators and the
fact that the invertible operator is not an isometric bundle map. Therefore, for any two
Cowen–Douglas operators T and zT with index one, to understand the similarity between
T and zT , we have to explore further the relation between KT and K zT .

We now summarize the content of this paper. In Section 2, we introduce a subclass of
the Cowen–Douglas operators denoted by CF Bn.�/. We prove this class of operators
is norm dense in the set of all of the Cowen–Douglas operators. In Section 3, we study
an important property, named, Property (H). In Section 4, we show that the curvature
and the second fundamental form completely characterize the similarity invariants for all
the Cowen–Douglas operators in CF Bn.�/. In Section 5, we characterize a class of
weakly homogeneous operators in Bn.D/. We also construct uncountably many strongly
irreducible operators (non-similar) in Bn.D/ from a given operator in B1.D/.

2. The operator class CF Bn.�/

In this section, we introduce a subclass of the class of the Cowen–Douglas operators which
is denoted as CF Bn.�/. We show that CF Bn.�/ is norm dense in Bn.�/. We first
recall the definition of the subclass F Bn.�/ of Bn.�/. This class has been studied in
detail in [20].

Definition 2.1. F Bn.�/ is the set of all bounded linear operators T defined on some
complex separable Hilbert space H D H0 ˚ � � � ˚Hn�1, which are of the form

T D

0BBB@
T1;1 T1;2 � � � T1;n

T2;2 � � � T2;n
: : :

:::

Tn;n

1CCCA
where the operator Ti;i W Hi ! Hi , defined on a complex separable Hilbert space Hi ,
1� i � n, is assumed to be inB1.�/ and Ti;iC1 WHiC1!Hi , is assumed to be a nonzero
intertwining bounded operator, namely, Ti;iTi;iC1 D Ti;iC1TiC1;iC1, 1 � i � n � 1.

To define the class CF Bn.�/, we need following definitions.
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Definition 2.2. Let T1 and T2 be bounded linear operators on H . The Rosenblum opera-
tors �T1;T2 and ıT1 are maps from L.H / to L.H / defined as follows:

�T1;T2.X/ D T1X �XT2

and
ıT1.X/ D T1X �XT1;

where X is a bounded linear operator on H .

Definition 2.3 (Property (H)). Let T1 and T2 be bounded linear operators on H . We say
that T1; T2 satisfy the Property (H) if the following condition holds: if X is a bounded
linear operator defined on H such that T1X D XT2 and X D T1Z �ZT2, for some Z in
L.H /, then X D 0.

Remark 2.4. Let T be an operator in B1.�/. If we take T1 D T2 D T , then from [20] it
follows that T1; T2 satisfy the Property (H).

We recall that ¹T º0 denotes the commutant, i.e., ¹T º0 is the set of all bounded linear
operators that commute with T .

Definition 2.5. Let T be a bounded linear operator on H . We say that T is strongly
irreducible if there is no non-trivial idempotent in ¹T º0.

Lemma 2.6. Let T1 and T2 be bounded linear operators on H . Suppose that S1 and S2
are similar to T1 and T2, respectively. If T1; T2 satisfy the Property (H), then S1; S2 also
satisfy the Property (H).

Proof. Since Ti is similar to Si , there exists an invertible operator Xi such that XiTi D
SiXi , 1 � i � 2. Let Y be a bounded linear operator such that S1Y D YS2 and Y D
S1Z �ZS2 for some Z in L.H /. It is easy see that

T1X
�1
1 YX2 D X

�1
1 YX2T2

and

X�11 YX2 D X
�1
1 S1X1X

�1
1 ZX2 �X

�1
1 ZX2X

�1
2 S2X2

D T1X
�1
1 ZX2 �X

�1
1 ZX2T2:

Since T1; T2 satisfy the Property (H), X�11 YX2 D 0 and hence Y D 0. Thus S1; S2 also
satisfy the Property (H). This completes the proof.

Definition 2.7. A Cowen–Douglas operator T with index n is said to be in CF Bn.�/
1,

if T satisfies the following properties:

1Each operator T 2 CF Bn.�/ possesses a flag structure and the entries of T satisfy the commuting
relations. Hence we use the symbol “CF ” to specify the subclass CF Bn.�/.
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(1) T can be written as an n � n upper-triangular matrix form under a topological
direct decomposition of H and diag¹T º WD T1;1 u T2;2 u � � �u Tn;n 2 ¹T º

0. Fur-
thermore, each entry

Ti;j D �i;jTi;iC1TiC1;iC2 � � �Tj�1;j ;

where �i;j 2 ¹Ti;iº0;

(2) Ti;i ; TiC1;iC1 satisfy the Property (H), i.e., ker �Ti;i ;TiC1;iC1 \ ran �Ti;i ;TiC1;iC1 D
¹0º, 1 � i � n � 1.

Using the following concepts and lemmas, we prove that the class CF Bn.�/ is norm
dense in Bn.�/.

Definition 2.8 (Similarity invariant set). Let F D ¹A˛ 2 L.H /; ˛ 2 ƒº. We say F is a
similarity invariant set, if for any invertible operator X ,

XF X�1 D ¹XA˛X
�1
W A˛ 2 F º D F :

Definition 2.9 ([24]). If K.H / denotes the set of all compact operators acting on H

and � W L.H / ! L.H /=K.H / is the projection of L.H / onto the Calkin algebra,
then �e.T /, the essential spectrum of T , is the spectrum of �.T / in L.H /=K.H / and
Cn�e.T / is called the Fredholm domain of T and is denoted by �F .T /. Thus, �e.T / D
�le.T / [ �re.T /, where �le.T / D �l .�.T // (left essential spectrum of T ) and �re.T / D

�r .�.T // (right essential spectrum of T ).
On the other hand, the intersection �lre.T / WD �le.T /\ �re.T / is called Wolf spectrum

and it includes the boundary @�e.T / of �e.T /. Therefore, it is a non-empty compact subset
of C. Its complement Cn�lre.T / coincides with �s�F .T / WD ¹w 2 C W T � w is semi-
Fredholm º. Further, �s�F .T / is the disjoint union of the (possibly empty) open sets
¹�ns�F .T / W �1 � n � C1º, where

�ns�F .T / D ¹w 2 C W T � w is semi-Fredholm with ind.T � w/ D nº:

The spectrum picture of T , denoted by ƒ.T /, is defined as the compact set �lre.T /,
plus the data corresponding to the indices of T � w for w in the bounded components
of �s�F .T /.

Lemma 2.10 ([16]). Let T 2 Bn.�/. Then �p.T �/ D ∅, and �.T / is connected, where
�p.T

�/ denotes the point spectrum of T �.

Lemma 2.11 ([16]). Let T 2L.H /, " > 0, and let T be a quasi-triangular operator such
that

(i) �.T / is connected;

(ii) ind.T � w/ > 0, w 2 �F .T /;

(iii) there exist a positive integer n and w0 2 �F .T / such that ind.T � w0/ D n,

then there exists a compact operator K with kKk < " such that T CK 2 Bn.�/, where
w0 2 � � �F .T /.
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Lemma 2.12 (Voiculescu Theorem, [33]). Let T 2 L.H / and � be a unital faithful �-
representation of a separable C �-subalgebra of the Calkin algebra containing the canon-
ical image �.T / and �.I / on a separable space H�. LetAD �.�.T // and k be a positive
integer. Given ", there exists K 2K.H /, with kKk < ", such that

T �K �u T ˚ A
.1/
�u T ˚ A

.k/;

where A.k/ denotes
Lk
iD1A, and A.1/ denotes

L1
iD1A.

Lemma 2.13 (Special case of the similarity orbit theorem, Apostle, Fialkow, Herrero, and
Voiculescu [2]). Let T and S be in Bn.�/ satisfy the following conditions:

(i) �lre.T / D �lre.S/ and �lre.T / is a perfect set;

(ii) ƒ.T / D ƒ.S/,

where �lre.T / and ƒ.T / denote the Wolf spectrum and spectral picture of T respectively
(see [24, page 8]). Then there exist two sequences of invertible operators ¹Xnº1nD1 and
¹Ynº

1
nD1 such that

lim
n!1

XnTX
�1
n D S; lim

n!1
YnSY

�1
n D T:

Lemma 2.14. Let T 2 Bn.�/, " > 0 and ˆ be an analytic Cauchy domain satisfying

�lre.T / � ˆ � Œ�lre.T /�" WD ¹w 2 C W dist.w; �lre.T // < "º;

then there exists T" 2 Bn.�1/ such that

(i) �lre.T"/ D ˆ and �1 is an open connected subset of �;

(ii) kT � T"k < ".

Proof. Let ı D dist.ˆ; @Œ�lre.T /�"/. By Lemma 2.12, there exist an operator A and an
operator K1 with kK1k < ı

3
, and a unitary operator U such that

U.T CK1/U
�
D A˚ T; where �lre.A/ D �lre.T /:

By [24, Theorem 1.25] and [24, Proposition 1.22], there exists a compact operator K2
with kK2k < ı

3
such that

U.T CK1 CK2/U
�
D

�
N A1;2
0 A1

�
˚ T D B ˚ T;

and �e.B/D �.B/D �e.T /, �lre.B/D �lre.T /, �.A1/D �e.A1/D �e.T /, where B D�
N A1;2
0 A1

�
andN is a diagonal normal operator of uniform infinite multiplicity and �.N /D

�lre.T /.
Let L D

�
M A1;2
0 A1

�
˚ T , where M is a diagonal normal operator of a uniform infinite

multiplication operator with �.M/ D �e.M/ D ˆ. By direct calculation, we can see that

kL � U.T CK1 CK2/U
�
k < " � ı:
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Let T 0" denote U �LU . By Lemma 2.10, we have that �p.T �/ D ∅, then it follows that
�.T 0"/ is connected and �p.T 0�" / D ∅. When " is small enough, we can find w 2 � and
ı1 > 0 such that �1 D Ow;ı1 , the neighborhood of w such that �1 � �.

Applying Lemma 2.11 to T 0" , there is a compact operator K3 with kK3k < " such that
T" D T

0
" CK3 2 Bn.�1/, then T" satisfies all the requirements of the lemma.

Lemma 2.15 ([7]). Let T 2 Bn.�/ and �1 � � be an open connected set. Then

Bn.�/ � Bn.�1/:

Proposition 2.16. CF Bn.�/ is norm dense in Bn.�/.

Proof. First, we shall prove that CF Bn.�/ is a similarity invariant set. For any T 2
CF Bn.�/, by Definition 2.7, there exist n idempotents ¹PiºniD1 such that

(1)
Pn
iD1 Pi D I , PiPj D 0, i ¤ j ;

(2) T D ..Ti;j //n�n, Ti;j D PiTPj D 0, if i > j ;

(3) Ti;iTi;j D Ti;jTj;j , 1 � i; j � n.

Let X be an invertible operator, set Qi WD XPiX�1, 1 � i � n. We have

nX
iD1

Qi D X
� nX
iD1

Pi

�
X�1 D I;

QiQj D X.PiPj /X
�1
D 0; i ¤ j;

QiXTX
�1Qj D XPiX

�1XTX�1XPjX
�1
D XTi;jX

�1
D 0 for i > j;

and

QiXTX
�1QiQiXTX

�1Qj D QiXTX
�1QiXTX

�1Qj

D XPiX
�1XTX�1XPiX

�1XTX�1XPjX
�1

D XPiTPiPiTPjX
�1
D XTi;iTi;jX

�1

D XTi;jTj;jX
�1
D XPiTPjPjTPjX

�1

D QiXTX
�1QjQjXTX

�1Qj :

Thus, under the decomposition H D ranQ1 u ranQ2 u � � � u ranQn, the operator T
admits the upper-triangular matrix representation, i.e.,

XTX�1 D

0BB@
Q1XTX

�1Q1 Q1XTX
�1Q2 Q1XTX

�1Q3 ��� Q1XTX
�1Qn

0 Q2XTX
�1Q2 Q2XTX

�1Q3 ��� Q2XTX
�1Qn

:::
:::

:::
:::

:::
0 ��� 0 Qn�1XTX

�1Qn�1 Qn�1XTX
�1Qn

0 ��� ��� 0 QnXTX
�1Qn

1CCA:
(2.1)
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Note that

QiXTX
�1Qj D XPiX

�1XTX�1XPjX
�1

D XPiTPjX
�1

D XTi;jX
�1

D X�i;jTi;iC1TiC1;iC2; : : : ; Tj�1;jX
�1

D X�i;jX
�1XTi;iC1X

�1XTiC1;iC2X
�1; : : : ; XTj�1;jX

�1

D X�i;jX
�1XPiTPiC1X

�1XPiC1TPiC2X
�1; : : : ; XPj�1TPjX

�1

D X�i;jX
�1QiXTX

�1QiC1QiC1XTX
�1QiC2; : : : ;Qj�1XTX

�1Qj

and

X�i;jX
�1QiXTX

�1Qi D X�i;jX
�1XPiX

�1XTX�1XPiX
�1

D QiXTX
�1QiX�i;jX

�1:

Finally, we will show that the Property (H) remains intact under the similarity transfor-
mation for operators in CF Bn.�/. SinceQiXTX�1Qi DXPiTPiX�1 for 1� i � n, by
Lemma 2.6, QiXTX�1Qi ;QiC1XTX

�1QiC1 satisfy the Property (H). Hence XTX�1

also satisfies the Property (H). Thus XTX�1 belongs to CF Bn.�/. Hence CF Bn.�/

is a similarity invariant set.
Now, by using the similarity orbit theorem, we prove that CF Bn.�/ is norm dense

in Bn.�/.
By Lemma 2.14, we only need to prove that for any T 2 Bn.�/ with �lre.T / D x̂ ,

ˆ is an analytic Cauchy domain, we can find T" 2 CF Bn.�/ such that kT" � T k < ".
Since �lre.T /Dˆ, �s�F .T / only has finite many components denoted by ¹�i ;niºniD1,

where ni D dim ker.T � wi /, for any wi 2 �i , i D 1; 2; : : : ; n. By Lemma 2.15, without
loss of generality, we can assume that �1 D �. Since ˆ is an analytic Cauchy domain,
� is an analytic connected Cauchy domain. Let Hzi .�i / be the multiplication operator
on H2.�i ; d�i / and

B D Hz1.�1/˚

nM
iD2

H .ni /
zi

.�i /˚M;

where �i is a Lebesgue measure and M is a diagonal normal operator such that �.M/ D

�lre.M/D x̂ . Applying Lemma 2.11 to the operator B , there exists a compact operatorK
with kKk < " such that B CK 2 B1.�/. Let

T" D

0BBBBBBBB@

Hz1.�1/ I 0 � � � 0 0

0 Hz1.�1/ I � � � 0 0
:::

: : :
: : :

: : :
:::

:::

0 � � � 0 Hz1.�1/ I 0

0 � � � 0 0 Hz1.�1/ 0

0 � � � � � � 0 0 B CK

1CCCCCCCCA
: (2.2)
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The spectrum pictures of T" and T are the same. Thus, by Lemma 2.13, there exists invert-
ible operators ¹Xnº1nD1 such that limn!1XnT"X

�1
n D T . Since T" is in CF Bn.�/ and

CF Bn.�/ is a similarity invariant set, XnT"X�1n in CF Bn.�/ for all n. This finishes
the proof of this theorem.

Remark 2.17. Let T 2 CF Bn.�/ and T D ..Ti;j //n�n be the n � n upper-triangular
matrix form under a topological direct decomposition of H DH1 u H2 u � � �u Hn. Let
tn be a nonzero section of ETn;n . Set ti WD Ti;iC1.tiC1/, 1 � i � n � 1. It is easy to see
that ti is a section of the vector bundleETi;i . We define �i;iC1.T / D

kTi;iC1.tiC1/k
2

ktiC1k2
and call

it generalized second fundamental form.

Remark 2.18. For any topological direct decomposition of H ,

H D H1 u H2 u � � �u Hn;

there exist n idempotents P1; P2; : : : ; Pn such that
Pn
iD1 Pi D I , PiPj D 0, i ¤ j and

ranPiDHi . Then we can find an invertible operatorX such that ¹QiºniD1D¹XPiX
�1ºniD1

is a set of orthogonal projections with QiQj D 0, i ¤ j . Furthermore,

H D XH1 ˚XH2 ˚ � � � ˚XHn;

where XHi D ranQi . Suppose T 2 CF Bn.�/ has the upper-triangular matrix repre-
sentation according to a topological direct decomposition of H . By the proof of Proposi-
tion 2.16, we see that XTX�1 2 CF Bn.�/ according to an orthogonal direct decompo-
sition of H induced by X above.

From now on, we assume that the operators in CF Bn.�/ have an upper-triangular
matrix representation with respect to an orthogonal direct sum decomposition of H .

3. Sufficient conditions for the Property (H)

In this section, we study the “Property (H)”. This property plays a vital role in our study
on the similarity problem for the operators in the class CF Bn.�/. We would like to know
under what conditions two bounded linear operators in B1.�/ satisfy the Property (H).

Let T1; T2 be bounded linear operators in B1.�/ and X be a bounded operator such
that T1X D XT2 and X D T1Y � Y T2 for some bounded linear operator Y . We would
like to find a sufficient condition, so that X becomes zero. It is well known that Ti �u
.M �z ;HKi /, 1 � i � 2.

First, we discuss a condition that ensures the intertwining operator between T1 and
T2 will be the zero operator. More precisely, if T1X D XT2, then X D 0. A sufficient
condition for this is

lim
w!@�

K1.w;w/

K2.w;w/
D1: (3.1)
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Indeed, when T1X D XT2, there exists a holomorphic function � defined on � such
that X.K2.�; w// D �.w/K1.�; w//. By condition (3.1) and the maximum modulus prin-
ciple, it follows that � D 0 and hence X D 0. For example, we consider S�1 and S�2 , the
adjoints of Hardy shift and Bergman shift, respectively. It is well known that there is no
nonzero bounded linear operator X such that S�2X D XS

�
1 (since limw!@D

.1�jwj2/�2

.1�jwj2/�1
D

limw!@D.1 � jwj
2/�1 D1).

However, it is not clear what would be a sufficient condition for the Property (H) in
terms of reproducing kernels as above. Now we will discuss some criteria to decide when
given operators T1; T2 satisfy the Property (H).

Lemma 3.1 ([14]). Let X; T be bounded linear operators defined on H . If X 2 ker ıT \
ran ıT , then �.X/ D ¹0º.

Lemma 3.2 ([20]). Suppose T1 and T2 are two Cowen–Douglas operators in B1.�/, and
S is a bounded operator that intertwines T1 and T2, i.e., T1S D ST2. Then S is nonzero
if and only if the range of S is dense.

Proposition 3.3. Let T1; T2 be bounded linear operators defined on H . If ker�T2;T1 ¤ ¹0º
and ¹T2º0 is semi-simple, then T1; T2 satisfy the Property (H).

Proof. We want to show that T1, T2 satisfy the Property (H), i.e., ker�T1;T2\ran�T1;T2D0.
Suppose on contrary ker �T1;T2 \ ran �T1;T2 ¤ 0. Let X 2 ker �T1;T2 \ ran �T1;T2 and X is
nonzero. There exists a bounded operatorZ such thatX D T1Z �ZT2 and T1X D XT2.
Since ker �T2;T1 ¤ ¹0º, there exists a nonzero bounded linear operator Y such that Y T1 D
T2Y . We have

YX D Y T1Z � YZT2 D T2YZ � YZT2

and

YXT2 D Y T1X D T2YX:

Thus, YX 2 ker �T2 \ ran �T2 . By Lemma 3.1, it follows that �.YX/ D 0. Since X is
nonzero, by Lemma 3.2, the range of X is dense. Since ¹T2º0 is semi-simple and X ¤ 0,
we have Y D 0. This is a contradiction. This completes the proof.

Proposition 3.4. Let T1;T2 be bounded linear operators on H and S2 be the right inverse
of T2. If limn!1

kT n1 kkS
n
2 k

n
D 0, then the Property (H) holds.

Proof. LetX;Y be linear bounded operators on H such that T1X DXT2 andX D T1Y �
Y T2. We claim that T n1 Y � Y T

n
2 D nT

n�1
1 X for n 2N. In fact, for nD 1, the conclusion

follows from the assumption. For n > 1, we have

T n1 Y � Y T
n
2 D T

n
1 Y � T

n�1
1 Y T2 C T

n�1
1 Y T2 � T

n�2
1 Y T 22 C T

n�2
1 Y T 22 � � � �

C T1Y T
n�1
2 � Y T n2

D T n�11 .T1Y � Y T2/C T
n�2
1 .T1Y � Y T2/T2 C � � �

C .T1Y � Y T2/T
n�1
2
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D T n�11 X C T n�21 XT2 C � � � CXT
n�1
2

D nT n�11 X .or nXT n�12 /:

Thus we get

T n1 YS
n
2 � Y T

n
2 S

n
2 D nT

n�1
1 XSn2

D nXT n�12 Sn2

D nXS2:

Since T n2 S
n
2 D I , we have

Y D T n1 YS
n
2 � nXS2; n 2 N:

Therefore, for n 2 N, we have

kY k D knXS2 � T
n
1 YS

n
2 k

� nkXS2k � kT
n
1 YS

n
2 k

D n
�
kXS2k �

kT n1 YS
n
2 k

n

�
: (3.2)

If X D 0, we are done. Suppose X is nonzero. Since Y is a bounded linear operator,
from equation (3.2), it follows that Y D 0 and hence X D 0. This is a contraction. This
completes the proof.

Proposition 3.5. Let A;B 2 B1.D/ be backward shift operators with weighted sequences
¹aiº

1
iD1 and ¹biº1iD1, respectively. If limn!1 n

Qn
kD1 bkQn
kD1 ak

D1, then the following state-
ments hold:

(i) If X intertwines A and B , i.e., AX D XB , then there exists an ONB ¹eiº1iD1of
H such that the matrix form of X with respect to ¹eiº1iD1 has the form

X D

0BBBBBBBBBB@

x1;1 x1;2 x1;3 � � � x1;n � � �

x2;2 x2;3 � � � x2;n � � �

: : :
: : :

::: � � �

xn�1;n�1 xn�1;n � � �

xn;n
: : :

: : :

1CCCCCCCCCCA
;

where xn;nCj D
Qn�1
kD1 bkCjQn�1
kD1 ak

x1;1Cj , j D 0; 1; 2; : : : , n D 1; 2; : : :

(ii) X 2 ker �A;B \ ran �A;B if and only if X D 0.

Furthermore, if we replace A and B by �.A/ and �.B/, respectively, where � is a univa-
lent analytic function defined on xD, then above conclusions continue to hold.
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Proof. Commuting relation AX D XB forces X to be in upper triangular form. We con-
sider the following equation0BBBBBBBBB@

0 a1 0 � � � 0 � � �

0 a2 � � � 0 � � �

: : :
: : :

::: � � �

0 an�1 � � �

0 an
: : :

1CCCCCCCCCA

0BBBBBBBBBB@

x1;1 x1;2 x1;3 � � � x1;n � � �

x2;2 x2;3 � � � x2;n � � �

: : :
: : :

::: � � �

xn�1;n�1 xn�1;n � � �

xn;n
: : :

: : :

1CCCCCCCCCCA

D

0BBBBBBBBBB@

x1;1 x1;2 x1;3 � � � x1;n � � �

x2;2 x2;3 � � � x2;n � � �

: : :
: : :

::: � � �

xn�1;n�1 xn�1;n � � �

xn;n
: : :

: : :

1CCCCCCCCCCA

0BBBBBBBBB@

0 b1 0 � � � 0 � � �

0 b2 � � � 0 � � �

: : :
: : :

::: � � �

0 bn�1 � � �

0 bn
: : :

1CCCCCCCCCA
;

by comparing the elements in .i; j / position and after a simple calculation, we will get
the statement (i), i.e.,

xn;nCj D

Qn�1
kD1 bkCjQn�1
kD1 ak

x1;1Cj ; j D 0; 1; 2; : : : ; n D 1; 2; : : : (3.3)

Thus we only need to prove statement (ii). Notice that Ae1 D Be1 D 0,Xe1 D x1;1e1 and

AYe1 � YBe1 D Xe1 D x1;1e1:

Since AYe1 D x1;1e1, there exist ˛11 , ˛12 2 C such that Ye1 D ˛11e1 C ˛
1
2e2. From

AYe2 � YBe2 D Xe2 D x1;2e1 C x2;2e2;

it follows that

AYe2 D b1˛
1
1e1 C b1˛

1
2e2 C x1;2e1 C x2;2e2

D .b1˛
1
1 C x1;2/e1 C .b1˛

1
2 C x2;2/e2:

Similarly, we can find ˛21 ; ˛
2
2 ; ˛

2
3 2 C such that

Ye2 D ˛
2
1e1 C ˛

2
2e2 C ˛

2
3e3:

Inductively we see that for any n > 0,

Yen 2
_
¹e1; e2; : : : ; enC1º:
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It follows that the matrix form of Y according to ¹eiº1iD1 is as follows:

Y D

0BBBBBBBBBBBB@

y1;1 y1;2 y1;3 � � � y1;n � � � � � �

y2;1 y2;2 y2;3 � � � y2;n � � � � � �

y3;2 y3;3 � � � y3;n � � � � � �

: : :
: : :

: : :
: : :

: : :

yn�1;n�2 yn�1;n�1 yn�1;n � � �

yn;n�1 yn;n
: : :

: : :
: : :

1CCCCCCCCCCCCA
:

From the equation AY � YB D X , it is easy to see that

yn;n�1 D n

Qn
kD1 bk

anC1
Qn
kD1 ak

x1;1:

By the assumption of the lemma,

lim
n!1

n

Qn
kD1 bkQn
kD1 ak

D1:

So we have x1;1 D 0 and yn;n�1 D 0. By equation (3.3), we get xn;n D 0, n D 1; 2; : : :
Now assume that x1;2 ¤ 0, then it follows that

yn;n D n

Qn
kD1 bkC1

anC1
Qn
kD1 ak

x1;2 C

Qn
kD1 bk

anC1
Qn
kD1 ak

y1;1:

Since A;B 2 B1.D/, there exist d;M0 2 RC such that

min
k
¹jakj; jbkjº > d; max

k
¹jakj; jbkjº < M0:

We have

n

Qn
kD1 bkC1

anC1
Qn
kD1 ak

� n
bnC1

anC1b1

Qn
kD1 bkQn
kD1 ak

�
d

M0b1
n

Qn
kD1 bkQn
kD1 ak

!1:

Notice that Qn
kD1 bk

anC1
Qn
kD1 ak

y1;1

is bounded. If x1;2 ¤ 0, then yn;n !1 as n!1. Thus we have x1;2 D 0. Using equa-
tion (3.3) again, we get xn;nC1 D 0 for any n > 1.

We set E0 WD diag¹y1;1; y2;2; : : : ; yn;n; : : :º, by direct calculation, it is easy to see that
AE0 D E0B and hence

A.Y �E0/ � .Y �E0/B D X:
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So for the sake of simplicity, we continue to denote Y � E0 by Y . In this case, we also
have

yn;nC1 D n

Qn
kD1 bkC2Qn
kD1 ak

x1;3 C

Qn
kD1 bkC1

anC1
Qn
kD1 ak

y1;2:

By a similar argument as above, we have x1;3 D 0. We set

E1 D

0BBBBBBBBB@

0 y1;2 0 � � � 0 � � �

0 y2;3 � � � 0 � � �

: : :
: : :

::: � � �

0 yn�1;n � � �

0 yn;nC1
: : :

1CCCCCCCCCA
:

Thus we have AE1 D E1B and A.Y � E1/C .Y � E1/B D X . We again continue
to denote Y � E1 by Y . By repeating the above process, we see that for any j , we have
xn;nCj D 0. Thus X D 0. This finishes the proof of statement (ii).

At last, we will show the conclusion above continues to hold for �.A/ and �.B/.
Without of loss generality, we can also assume that �.z/ D

P1
nD1 knz

n. Suppose that
there exists a bounded operator X such that �.A/X D X�.B/. By a similar argument, we
have

xn;n D

Qn�1
kD1 bkQn�1
kD1 ak

x1;1; n D 1; 2; : : :

Suppose that �.A/Y � Y�.B/ D X . By direct calculation, we see that

ynC1;n D n

Qn�1
kD1 bkQn�1
kD1 ak

x1;1; n D 1; 2; : : :

Thus we have x1;1 D 0 and yn;n�1 D 0. By equation (3.3), we have xn;n D 0, nD 1; 2; : : :
We set E0 D diag¹y1;1; y2;2; : : : ; yn;n; : : :º, by direct calculation, we have AE0 D E0B
and hence �.A/E0 D E0�.B/ and

�.A/.Y �E0/ � .Y �E0/�.B/ D X:

So for sake of simplicity, we still use Y to denote Y � E0. Now, repeating the proof of
statement (ii), it can also be shown that X is equal to the zero operator.

Corollary 3.6. Let Mi;z be the multiplication operator on the reproducing kernel Hilbert
space HKi , where Ki .z; w/ D 1

.1�z xw/�i
, z;w 2 D, 1 � i � 2. If �2 � �1 < 2, then M �1;z

and M �2;z satisfy the Property (H).

Proof. Let an.�i / denote the coefficient of xwnzn in the power series expansion for
Ki .z;w/, i D 1;2. ThenM �i;z is a backward weight shift withw.�i /n D

p
an.�i /p
anC1.�i /

, i D 1;2.
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By Stirling’s formula (see [23, page 2879]), we have that

nY
kD0

w
.�i /

k
D

p
a0.�i /p
anC1.�i /

� .nC 1/
1��i
2 ; i D 1; 2:

Then we have that Qn
kD0w

.�2/

kQn
kD0w

.�1/

k

� .nC 1/�
�2��1
2 :

If �2 � �1 < 2, then limn!1 n
Qn
kD0w

.�2/

kQn
kD0w

.�1/

k

D1. Thus, by Proposition 3.5,M �1;z andM �2;z
satisfy the Property (H).

4. Similarity of Operators in CF Bn.�/

In this section, we give complete similarity invariants for operators in CF Bn.�/, which
involve the curvature and the second fundamental form. This is quite different from the
case of a quasi-homogeneous operator class (see Theorem 4.12). To prove the main theo-
rem of this section, we need the following concepts and lemmas.

An operator T in L.H / is said to be strongly irreducible if there is no non-trivial idem-
potent operator in ¹T º0, where ¹T º0 denotes the commutant of T , i.e., ¹T º0 D ¹B2L.H / W

TB D BT º. It can be proved that for any T 2B1.�/, T is strongly irreducible. We denote
the set of all the strongly irreducible operators by the symbol “.SI/”.

An operator T in L.H / is said to have finite strongly irreducible decomposition, if
there exist idempotents P1; P2; : : : ; Pn in ¹T º0 such that

1. PiPj D ıijPi for 1�i , j�n < C1, where ıij D

´
0; i ¤ j;

1; i D j I

2.
Pn
iD1 Pi D IH , where IH denotes the identity operator on H ;

3. T jPiH is strongly irreducible for i D 1; 2; : : : ; n.

Every Cowen–Douglas operator can be written as the direct sum of finitely many strongly
irreducible Cowen–Douglas operators (see [24, Chapter 3]). We callP D .P1;P2; : : : ;Pn/
a unit finite strongly irreducible decomposition of T . Let T have a finite .SI/ decompo-
sition and P D ¹PiºniD1 and Q D ¹QiºmiD1 be two unit finite .SI/ decompositions of T .
We say that T has a unique, strongly irreducible decomposition up to similarity if the
following conditions are satisfied:

1. m D n; and

2. there exists an invertible operator X in ¹T º0 and a permutation … of the set
¹1; 2; : : : ; nº such that XQ….i/X�1 D Pi for 1 � i � n.

Lemma 4.1 ([25, Theorem 5.5.12]). Let T be a Cowen–Douglas operator in Bn.�/. The
operator T has a unique .SI/ decomposition.
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Lemma 4.2 ([25, Theorem 5.5.13]). Let T D
Lk
iD1 T

.ni / and zT D
Ls
jD1
zT .mj / be two

Cowen–Douglas operators, where Ti ; zTj 2 .SI/ for any i; j and Ti 6�s Ti 0 , zTj 6�s zTj 0 .
Then T �s zT if and only if k D s and there exists a permutation… such that Ti �s zT….i/
and ni D m….i/, i D 1; 2; : : : ; k.

By Lemma 4.1 and Lemma 4.2, we only need to consider when two strongly irre-
ducible operators in CF Bn.�/ are similar equivalent. The similarity classification for
the general case will follow by Lemma 4.2. Thus, in the following, we will assume
T 2 CF Bn.�/ is a strongly irreducible operator.

Lemma 4.3. Let T 2 CF Bn.�/. Then T is strongly irreducible if and only if Ti;iC1 ¤ 0
for any i D 1; 2; : : : ; n � 1.

Proof. Let T be a strongly irreducible operator in CF Bn.�/. Suppose on contrary that
Tk�1;k D 0 for some k. For i; j with i C 1 � k � j , we have

Ti;j D �i;jTi;iC1TiC1;iC2 � � �Tk�1;k � � �Tj�1;j D 0:

Thus T has the following matrix form:

T D

0BBBBBBBBBBBB@

T1;1 T1;2 � � � T1;k�1 0 0 � � � 0

0 T2;2 � � � T2;k�1 0 0 � � � 0
:::

: : :
: : :

:::
:::

:::
:::

:::

0 0 � � � Tk�1;k�1 0 � � � 0 0

0 � � � 0 0 Tk;k Tk;kC1 � � � Tk;n
0 � � � � � � 0 0 TkC1;kC1 � � � TkC1;n

0 0 � � � � � �
:::

: : :
: : :

:::

0 0 � � � � � � 0 0 � � � Tn;n

1CCCCCCCCCCCCA
: (4.1)

So T is strongly reducible. This is a contradiction to the fact that T is strongly irreducible.
This finishes the proof of the necessary part.

For the sufficient part, suppose that each Ti;iC1 is a nonzero operator. By Defini-
tion 2.7, Ti;i and TiC1;iC1 satisfy the Property (H). Since Ti;iTi;iC1 D Ti;iC1TiC1;iC1,
it follows that Ti;iC1 62 ran �Ti;iTiC1;iC1 . By a same proof of [20, Proposition 2.22], it is
easy to see that T is strongly irreducible.

Lemma 4.4. Let T D ..Ti;j //n�n, zT D .. zTi;j //n�n be operators in CF Bn.�/. If Ti;i D
zTi;i and Ti;iC1 D zTi;iC1, then there exists a bounded operator K such that X D I CK
is invertible and XT D zTX .

Proof. To find K, we need to solve the equation

.I CK/T D zT .I CK/: (4.2)
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We set X WD I CK, where

K D

0BBBBB@
0 K1;2 K1;3 � � � K1;n
0 0 K2;3 � � � K2;n
:::

: : :
: : :

: : :
:::

0 � � � 0 0 Kn�1;n
0 � � � � � � 0 0

1CCCCCA :

From equation (4.2), we have0BBBBB@
I K1;2 K1;3 � � � K1;n
0 I K2;3 � � � K2;n
:::

: : :
: : :

: : :
:::

0 � � � 0 I Kn�1;n
0 � � � � � � 0 I

1CCCCCA
0BBBBB@
T1;1 T1;2 T1;3 � � � T1;n
0 T2;2 T2;3 � � � T2;n
:::

: : :
: : :

: : :
:::

0 � � � 0 Tn�1;n�1 Tn�1;n
0 � � � � � � 0 Tn;n

1CCCCCA

D

0BBBBBB@
T1;1 T1;2 zT1;3 � � � zT1;n

0 T2;2 T2;3 � � � zT2;n
:::

: : :
: : :

: : :
:::

0 � � � 0 Tn�1;n�1 Tn�1;n
0 � � � � � � 0 Tn;n

1CCCCCCA

0BBBBB@
I K1;2 K1;3 � � � K1;n
0 I K2;3 � � � K2;n
:::

: : :
: : :

: : :
:::

0 � � � 0 I Kn�1;n
0 � � � � � � 0 I

1CCCCCA :
(4.3)

To find Ki;j , we take the following steps.

Step 1: For 1 � i � n � 1, by equating the .i; i C 1/th entry of equation (4.3), we have
Ti;iC1 C Ki;iC1TiC1;iC1 D Ti;iKi;iC1 C Ti;iC1, i.e., Ki;iC1TiC1;iC1 D Ti;iKi;iC1. For
1 � i � n � 2, by comparing the .i; i C 2/th entry of equation (4.3), we have

Ti;iC2 CKi;iC1TiC1;iC2 CKi;iC2TiC2;iC2

D Ti;iKi;iC2 C Ti;iC1KiC1;iC2 C zTi;iC2: (4.4)

If Ti;iKi;iC2 D Ki;iC2TiC2;iC2, 1 � i � n � 2, then from equation (4.4) we get

Ti;iC2 CKi;iC1TiC1;iC2 D Ti;iC1KiC1;iC2 C zTi;iC2: (4.5)

Choose Kn�1;n such that Kn�1;nTn;n D Tn�1;n�1Kn�1;n. For 1 � i � n � 2, from equa-
tion (4.5), we get Ki;iC1 which satisfies Ki;iC1TiC1;iC1 D Ti;iKi;iC1.

Step 2: We compare the .i; i C 3/th entry of equation (4.3), we get

Ti;iC3 CKi;iC1TiC1;iC3 CKi;iC2TiC2;iC3 CKi;iC3TiC3;iC3

D Ti;iKi;iC3 C Ti;iC1KiC1;iC3 C zTi;iC2KiC2;iC3 C zTi;iC3: (4.6)
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If Ti;iKi;iC3 D Ki;iC3TiC3;iC3, 1 � i � n � 3, then from equation (4.6) we have

Ti;iC3 CKi;iC1TiC1;iC3 CKi;iC2TiC2;iC3

D Ti;iC1KiC1;iC3 C zTi;iC2KiC2;iC3 C zTi;iC3: (4.7)

Choose Kn�2;n such that Kn�2;nTn;n D Tn�2;n�2Kn�2;n. For 1 � i � n� 3, from equa-
tion (4.7), we get Ki;iC2 which satisfies Ti;iKi;iC2 D Ki;iC2TiC2;iC2.

Step 3: By following the previous steps, suppose we have solvedKi;iCl for 1� i � n� l ,
1 � l � j � 2.

By comparing the .i; i C j /th entry of equation (4.3), we have

Ti;iCj CKi;iC1TiC1;iCj CKi;iC2TiC2;iCj C � � � CKi;iCjTiCj;iCj

D Ti;iKi;iCj C Ti;iC1KiC1;iCj C zTi;iC2KiC2;iCj C � � �

C zTi;iCj�1KiCj�1;iCj C zTi;iCj : (4.8)

If Ti;iCjKi;iCj D Ki;iCjTiCj;iCj , 1 � i � n � j , then from equation (4.8) we get

Ti;iCj CKi;iC1TiC1;iCj CKi;iC2TiC2;iCj C � � � CKi;iCj�1TiCj�1;iCj

D Ti;iC1KiC1;iCj C zTi;iC2KiC2;iCj C � � � C zTi;iCj�1KiCj�1;iCj C zTi;iCj :

(4.9)

ChooseKn�jC1;n such thatKn�jC1;nTn;nD Tn�jC1;n�jC1Kn�jC1;n. For 1� i � n� j ,
from equation (4.9), we get Ki;iCj�1 which satisfies

Ti;iKi;iCj�1 D Ki;iCj�1TiCj�1;iCj�1:

We recall a result from [20], which describes an invertible operator intertwining any
two operators in F Bn.�/.

Proposition 4.5. If X is an invertible operator intertwining two operators T and zT from
F Bn.�/, then X and X�1 are upper triangular.

Lemma 4.6. Let T and zT be operators in CF Bn.�/. Let X be a bounded linear opera-
tor of the form

X D

0BBBBB@
X1;1 X1;2 X1;3 � � � X1;n
0 X2;2 X2;3 � � � X2;n
:::

: : :
: : :

: : :
:::

0 � � � 0 Xn�1;n�1 Xn�1;n
0 � � � � � � 0 Xn;n

1CCCCCA :
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If X zT D TX and X is invertible, then0BBBBB@
X1;1 0 0 � � � 0

0 X2;2 0 � � � 0
:::

: : :
: : :

: : :
:::

0 � � � 0 Xn�1;n�1 0

0 � � � � � � 0 Xn;n

1CCCCCA

0BBBBBB@
zT1;1 zT1;2 0 � � � 0

0 zT2;2 zT2;3 � � � 0
:::

: : :
: : :

: : :
:::

0 � � � 0 zTn�1;n�1 Tn�1;n

0 � � � � � � 0 zTn;n

1CCCCCCA

D

0BBBBB@
T1;1 T1;2 0 � � � 0

0 T2;2 T2;3 � � � 0
:::

: : :
: : :

: : :
:::

0 � � � 0 Tn�1;n�1 Tn�1;n
0 � � � � � � 0 Tn;n

1CCCCCA
0BBBBB@
X1;1 0 0 � � � 0

0 X2;2 0 � � � 0
:::

: : :
: : :

: : :
:::

0 � � � 0 Xn�1;n�1 0

0 � � � � � � 0 Xn;n

1CCCCCA :

Proof. By equating the entries of X zT D TX , we get

Xi;i zTi;i D Ti;iXi;i ; 1 � i � n:

We set Y WD X diag¹X�11;1; X
�1
2;2; : : : ; X

�1
n;nº, and it is easy to see that

Y D

0BB@
I X1;2X

�1
2;2 X1;3X

�1
3;3 ��� X1;nX

�1
n;n

0 I X2;3X
�1
3;3 ��� X2;nX

�1
n;n

:::
:::

:::
:::

:::
0 ��� 0 I Xn�1;nX

�1
n;n

0 ��� ��� 0 I

1CCA:
From T D X zTX�1, we get T Y D Y diag¹X1;1 � � �Xn;nº zT diag¹X1;1 � � �Xn;nº�1 which
is equivalent to0B@

T1;1 T1;2 T1;3 ��� T1;n
0 T2;2 T2;3 ��� T2;n:::
:::

:::
:::

:::
0 ��� 0 Tn�1;n�1 Tn�1;n
0 ��� ��� 0 Tn;n

1CA
0BB@
I X1;2X

�1
2;2 X1;3X

�1
3;3 ��� X1;nX

�1
n;n

0 I X2;3X
�1
3;3 ��� X2;nX

�1
n;n

:::
:::

:::
:::

:::
0 ��� 0 I Xn�1;nX

�1
n;n

0 ��� ��� 0 I

1CCA

D

0BB@
I X1;2X

�1
2;2 X1;3X

�1
3;3 ��� X1;nX

�1
n;n

0 I X2;3X
�1
3;3 ��� X2;nX

�1
n;n

:::
:::

:::
:::

:::
0 ��� 0 I Xn�1;nX

�1
n;n

0 ��� ��� 0 I

1CCA
0B@ T1;1 X1;1 zT1;2X

�1
2;2 ��� ��� X1;1 zT1;nX

�1
n;n

0 T2;2 X2;2 zT2;3X
�1
3;3 ��� X2;2

zT2;nX
�1
n;n

:::
:::

:::
:::

:::
0 0 ��� 0 Tn;n

1CA:
(4.10)

For 1 � i � n � 1, from equation (4.10), we get�
Ti;i Ti;iC1
0 TiC1;iC1

��
I Xi;iC1X

�1
iC1;iC1

0 I

�
D

�
I Xi;iC1X

�1
iC1;iC1

0 I

� 
Ti;i Xi;i zTi;iC1X

�1
iC1;iC1

0 TiC1;iC1

!
;
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which is equivalent to

Ti;iC1 �Xi;i zTi;iC1X
�1
iC1;iC1 D Xi;iC1X

�1
iC1;iC1TiC1;iC1 � Ti;iXi;iC1X

�1
iC1;iC1:

Consider

Ti;i .Ti;iC1 �Xi;i zTi;iC1X
�1
iC1;iC1/ D Ti;iC1TiC1;iC1 �Xi;i

zTi;i zTi;iC1X
�1
iC1;iC1

D Ti;iC1TiC1;iC1 �Xi;i zTi;iC1 zTiC1;iC1X
�1
iC1;iC1

D Ti;iC1TiC1;iC1 �Xi;i zTi;iC1X
�1
iC1;iC1TiC1;iC1

D .Ti;iC1 �Xi;i zTi;iC1X
�1
iC1;iC1/TiC1;iC1:

In other words, .Ti;iC1 �Xi;i zTi;iC1X�1iC1;iC1/ belongs to

ker.�Ti;i ;TiC1;iC1/ \ ran.�Ti;i ;TiC1;iC1/:

Since T satisfies the Property (H), we have

Ti;iC1 D Xi;i zTi;iC1X
�1
iC1;iC1; 1 � i � n � 1:

Hence 0BB@
X1;1 0 0 ��� 0

0 X2;2 0 ��� 0
:::
:::

:::
:::

:::
0 ��� 0 Xn�1;n�1 0

0 ��� ��� 0 Xn;n

1CCA
0BBB@
zT1;1 zT1;2 0 ��� 0

0 zT2;2 zT2;3 ��� 0
:::
:::

:::
:::

:::
0 ��� 0 zTn�1;n�1 0

0 ��� ��� 0 zTn;n

1CCCA
D

0BB@
T1;1 T1;2 0 ��� 0

0 T2;2 T2;3 ��� 0
:::
:::

:::
:::

:::
0 ��� 0 Tn�1;n�1 0

0 ��� ��� 0 Tn;n

1CCA
0BB@
X1;1 0 0 ��� 0

0 X2;2 0 ��� 0
:::
:::

:::
:::

:::
0 ��� 0 Xn�1;n�1 0

0 ��� ��� 0 Xn;n

1CCA:
Corollary 4.7. Let T D ..Ti;j //n�n, zT D .. zTi;j //n�n be any two operators in CF Bn.�/.
Suppose that Ti;j D Ti;iC1TiC1;iC2 � � � Tj�1;j and zTi;j D zTi;iC1 zTiC1;iC2 � � � zTj�1;j for
1 � i < j � n. T is similar to zT if and only ifXi;iTi;i D zTi;iXi;i andXi;iTi;j D zTi;jXj;j ,
where Xi;i 2 L.Hi ; zHi / is an invertible linear operator for 1 � i � n.

Proof. Proof of the sufficient part follows easily. We will sketch here the proof of the
necessary part. By Lemma 4.6, there exist invertible operators X1;1; X2;2; : : : ; Xn;n such
that

Xi;iTi;i D zTi;iXi;i ; 1 � i � n

and
Xi;iTi;iC1 D zTi;iC1XiC1;iC1; 1 � i � n � 1:

For 1 � i < j � n, it is easy to see that

Xi;iTi;j D zTi;jXj;j :
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We state and prove a result that shows the problem of finding invertible intertwining
and U C K intertwining between any two operators in B1.�/ is the same as finding a
bounded linear operator with a relation in terms of the curvature of the given operators.
Let � W E ! � and z� W zE ! � be vector bundles. We set H WD span¹��1.w/ W w 2 �º
and zH WD span¹z��1.w/ W w 2 �º. We say that a bundle map ˆ W E ! zE is a bounded
bundle map ifˆ induces a bounded linear map from H to zH , where H and zH are Hilbert
spaces.

Proposition 4.8. Let T; zT 2 B1.�/. Let A.H / D L.H /=K.H / denote the Calkin alge-
bra, � WL.H /!A.H /. Suppose that KT .w/ �K zT .w/ D

@2

@w@ xw
ln‰.w/,w 2�. Then

we have the following statements:

(1) T is unitarily equivalent to zT if and only if ‰.w/ D j�.w/j2, for some holomor-
phic function � on �.

(2) T is similar to zT if and only if

‰.w/ D
kˆ.t.w//k2

kt .w/k2
C 1;

whereE is a Hermitian holomorphic line bundle,ˆ W ET ! E is a bounded bun-
dle map and t is a nonzero section of the bundle ET .

(3) T �UCK zT if and only if there exists a bounded linear operator X such that
�.X/ D ˛ŒI �, 1 > ˛ > 0 and

‰.w/ D ln
�
kX.t.w//k2

kt .w/k2
C .1 � ˛2/

�
;

where t is a nonzero section of ET .

Proof. First, the statement (1) is well known ([8, page 326]). Then we only need to prove
statement (2) and (3). For statement (2), assume that T is similar to zT , i.e., there exists
a bounded invertible operator Y such that T Y D Y zT . Without loss of generality, we can
assume that Y �Y � I � 0. Otherwise, we can choose some kY instead of Y for some
k > 0. Thus there exists a bounded linear operator X such that Y �Y D I CX�X . Since
T Y D Y zT and Y is invertible, Y.t.�// is a nonzero section of E zT . For w in �, we have

K zT .w/ D �
@2

@w@ xw
ln.kY.t.w/k2/

D �
@2

@w@ xw
ln.kX.t.w//k2 C kt .w/k2/:

Thus we have

KT .w/ �K zT .w/ D
@2

@w@ xw
ln
�
kX.t.w//k2

kt .w/k2
C 1

�
:

Let ˆ W E ! zE be the bounded bundle map which induces a bounded operator X , then
this finishes the proof of necessary part.
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From the given condition, there exists a bounded operator X such that

K zT .w/ D �
@2

@w@ xw
ln.kX.t.w//k2 C kt .w/k2/

D �
@2

@w@ xw
ln.h.I CX�X/.t.w//; t.w/i/

D �
@2

@w@ xw
ln.k.I CX�X/1=2.t.w//k2/:

We set Y WD .I C X�X/1=2. Clearly, Y is an invertible operator and K zT .w/ D

KY TY �1.w/, w 2 �. Thus, zT is unitarily equivalent to Y T Y �1 and hence zT is simi-
lar to T .

Now we give the proof of statement (3). Suppose that Y D U C K is an invertible
operator and Y T D zT Y , where U is a unitary operator and K is a compact operator.
We set zK WD U �K, it is easy to see that Y �Y D I C zK C zK� C zK� zK. We set G WD
zK C zK� C zK� zK. Since G is a self-adjoint compact operator, there exists ¹�kº1kD1 such

that
G D �1In1 ˚ �2In2 ˚ � � � ˚ �kInk ˚ � � � ;

where dim.ker.G ��k//D nk >0 and limk!1�k D 0. Since I CG is a positive operator
and limk!1 �k D 0, there exists 1 > ˛ > 0 such that ˛I CG is positive operator. Now,
set

K1 WD

1M
kD1

�
.˛ � �k/

1
2 � ˛

1
2
�
Ink :

Then K1 is a compact operator. By direct calculation, we have that�
˛
1
2 I CK1

���
˛
1
2 I CK1

�
D ˛I CG:

We set X WD ˛
1
2 I CK1, then we have that �.X/ D ˛

1
2 ŒI � and

X�X C .1 � ˛/I D .I C zK/�.I C zK/:

It follows that

KT .w/ �K zT .w/ D
@2

@w@ xw
ln
�
kX.t.w//k2

kt .w/k2
C .1 � ˛/

�
:

This finishes the proof of the necessary part. The sufficient part will follows from the same
argument as above.

Remark 4.9. R. G. Douglas, H. Kwon and S. Treil proved that for any n-hypercontraction
T 2B1.D/, T is similar to S�z if and only if there exists a bounded subharmonic function‰
defined on D such that KT �KS�z D

@2

@w@ xw
‰. In Proposition 4.8, we gave a concrete

description of such function ‰. In the following, we point out that ‰ is also a bounded
subharmonic function.
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Since ˆ is bounded, it is easy to see that ‰.w/ D ln. kˆ.t.w//k
2

kt.w/k2
C 1/ is a bounded

function. When T is an n-hypercontraction, by the operator model theorem, there exists a
holomorphic bundle E such that

ET D ES�z ˝ E;

where E.w/ D
W
¹DT .t.w/º, DT WD

Pn
kD0.�1/

k
�
n
k

�
T �kT k , and t is a nonzero section

of ET . Thus, we have that

KT .w/ �KS�z .w/ DKE.w/ D �
@2

@w@ xw
ln.kDT .t.w//k2/:

Notice that hD.T /.t.z//;D.T /.t.w//i is a positive semidefinite reproducing kernel (see
[10]), so we have that

�
@2

@w@ xw
ln.kDT .t.w//k2/ < 0;

then it follows that

@2

@w@ xw
ln
�
kˆ.t.w//k2

kt .w/k2
C 1

�
DKS�z .w/ �KT .w/ D

@2

@w@ xw
ln.kDT .t.w//k2/ > 0:

Corollary 4.10. Let T and zT be operators in B1.�/. Suppose that ¹T º0 Š H1.�/. If
there exists �i 2 H1.�/, i D 1; 2 such that

KT .w/ �K zT .w/ D
@2

@w@ xw
ln.j�1.w/j2 C j�2.w/j2/; w 2 �;

then T is similar to zT .

Remark 4.11. It is challenging to decide when an intertwining operator (or a holomor-
phic bundle map) between two Cowen–Douglas operators is invertible. Thus, it is natural
to find the bounded bundle map first before getting such an invertible bundle map. Thus,
Proposition 4.8 gives a way to describe the similarity of two operators inB1.�/ by search-
ing for the bounded bundle map to match with the difference of curvatures. For the U CK
similarity case, by using Proposition 4.8, we see that the bounded operator appear in the
difference of curvature can also be in the form of a unitary operator plus a compact oper-
ator but may not be invertible.

Now we state and prove one of the main theorems of the paper.

Theorem 4.12. Let T and zT be operators in CF Bn.�/. T is similar to zT if and only if
the following statements hold:

(1) KTi;i �K zTi;i D
@2

@w@ xw
ln.�i /, 1 � i � n;

(2) �i
�iC1

�i;iC1.T / D �i;iC1. zT /, 1 � i � n � 1,

where �i D
kˆi .ti /k

2

ktik2
C 1,ˆi WETi;i !Ei is a bounded bundle map, ti is a nonzero section

of bundle ETi;i , Ei is a Hermitian holomorphic line bundle for 1 � i � n.
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Proof. Suppose conditions .1/ and .2/ are satisfied. By Proposition 4.8, there exist invert-
ible operators X1; X2; : : : ; Xn such that

Ti;i D Xi zTi;iX
�1
i ; i D 1; 2; : : : ; n � 1:

Let xT denote the following operator:

xT D

0BBBBBB@
zT1;1 X1T1;2X

�1
2 � � � � � � X1T1;nX

�1
n

0 zT2;2 X2T2;3X
�1
3 � � � X2T2;nX

�1
n

:::
: : :

: : :
: : :

:::

0 0 � � � zTn�1;n�1 Xn�1Tn�1;nX
�1
n

0 0 � � � 0 zTn;n

1CCCCCCA :

By the definition of xT , it follows that xT is similar to T .
We set

A WD

0BBBBBB@
zT1;1 X1T1;2X

�1
2 0 � � � 0

0 zT2;2 X2T2;3X
�1
3 0 0

:::
: : :

: : :
: : :

:::

0 0 � � � zTn�1;n�1 Xn�1Tn�1;nX
�1
n

0 0 � � � 0 zTn;n

1CCCCCCA
and

B WD

0BBBBBB@
zT1;1 zT1;2 0 � � � 0

0 zT2;2 zT2;3 0 0
:::

: : :
: : :

: : :
:::

0 0 � � � zTn�1;n�1 zTn�1;n

0 0 � � � 0 zTn;n

1CCCCCCA :
It is easy to see that

�i;iC1. xT / D �i;iC1.A/; �i;iC1. zT / D �i;iC1.B/; 1 � i � n � 1:

We claim that A is unitarily equivalent to B . In fact, by [20, Theorem 3.6], we only
need to prove the second fundamental form of A and B are same. Clearly, XiC1.tiC1.�//
is a nonzero section of E zTiC1;iC1 ,

�i;iC1.A/.w/ D
kXiTi;iC1X

�1
iC1XiC1.tiC1.w//k

2

kXiC1.tiC1.w//k2

D
kXiTi;iC1.tiC1.w//k

2

kXiC1.tiC1.w//k2

and

�i;iC1.B/.w/ D
kzTi;iC1XiC1.tiC1.w//k

2

kXiC1.tiC1.w//k2
:
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Since

�i .w/ D
kXi .ti .w//k

2

kti .w/k2
; 1 � i � n;

we have

�i;iC1.B/ D �i;iC1. zT /

D
�i .w/

�iC1.w/
�i;iC1.T /

D
kXi .Ti;iC1.tiC1.w///k

2

kTi;iC1.tiC1.w//k2
ktiC1.w/k

2

kXiC1.tiC1.w//k2
kTi;iC1.tiC1.w//k

2

ktiC1.w/k2

D
kXiTi;iC1.tiC1.w//k

2

kXiC1.tiC1.w//k2

D �i;iC1.A/:

Thus, there exists a diagonal unitary operator V D diag¹V1; V2; : : : ; Vnº such that
V �BV D A. We set X WD diag¹X1; X2; : : : ; Xnº, consider

VXTX�1V � D V xT V �

D

0BBBBBBB@

zT1;1 zT1;2 V1X1T1;3X
�1
3 V �3 V1X1T1;4X

�1
4 V �4 ��� V1X1T1;nX

�1
n V �n

0 zT2;2 zT2;3 V2X2T2;4X4V
�
4 ��� V2X2T2;nX

�1
n V �n

0 0 zT3;3 zT3;4 ��� V3X3T3;nX
�1
n V �n

:::
:::

:::
:::

:::
:::

0 0 ��� zTn�2;n�2 zTn�2;n�1 Vn�2Xn�2Tn�2;nX
�1
n V �n

0 0 0 ��� zTn�1;n�1 zTn�1;n

0 0 0 ��� 0 zTn;n

1CCCCCCCA:

By Lemma 4.4, there exist a bounded operator K such that I CK is invertible and

.I CK/VXTX�1V �.I CK/�1 D zT :

Thus T is similar to zT .
On the other hand, suppose that T is similar to zT , i.e., there is an invertible linear oper-

ator X such that TX D X zT . By Proposition 4.5, X is upper triangular. By Lemma 4.6,
we have 0BB@

X1;1 0 0 ��� 0

0 X2;2 0 ��� 0
:::
:::

:::
:::

:::
0 ��� 0 Xn�1;n�1 0

0 ��� ��� 0 Xn;n

1CCA
0BB@
T1;1 T1;2 0 ��� 0

0 T2;2 T2;3 ��� 0
:::
:::

:::
:::

:::
0 ��� 0 Tn�1;n�1 0

0 ��� ��� 0 Tn;n

1CCA

D

0BBB@
zT1;1 zT1;2 0 ��� 0

0 zT2;2 zT2;3 ��� 0
:::
:::

:::
:::

:::
0 ��� 0 zTn�1;n�1 0

0 ��� ��� 0 zTn;n

1CCCA
0BB@
X1;1 0 0 ��� 0

0 X2;2 0 ��� 0
:::
:::

:::
:::

:::
0 ��� 0 Xn�1;n�1 0

0 ��� ��� 0 Xn;n

1CCA:
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It follows that

Xi;iTi;i D zTi;iXi;i ; Xi;iTi;iC1 D zTi;iC1XiC1;iC1:

We set

�i .w/ WD
kXi .ti .w//k

2

kti .w/k2
; 1 � i � n:

By following the same argument as in the sufficient part and from Proposition 4.8, we can
conclude that

KTi;i �K zTi;i D
@2

@w@ xw
ln.�i /

and

�i

�iC1
�i;iC1.T / D

kXiTi;iC1.tiC1/k
2

kXiC1.tiC1/k2
D
kzTi;iC1XiC1.tiC1/k

2

kXiC1.tiC1/k2
D �i;iC1. zT /:

This finishes the proof of the necessary part.

5. Applications

In this section, we construct uncountably many (non-similar) strongly irreducible opera-
tors in Bn.D/, where D (WD ¹z 2 C W jzj < 1º) is the unit disc. We also characterize a
class of strongly irreducible weakly homogeneous operators in Bn.D/. Let Mi;z be the
multiplication operator on a reproducing kernel Hilbert space HKi of holomorphic func-
tions defined on D, 1 � i � n. Suppose ¹Mi;zº

0 DH1.D/ andM �i;z 2 B1.D/, 1 � i � n.
We set

T WD

0BBBBBB@
M �1;z M ��1;2 M ��1;3 � � � M ��1;n

M �2;z M ��2;3 � � � M ��2;n
: : :

: : :
:::

M �n�1;z M ��n�1;n
M �n;z

1CCCCCCA ;

zT WD

0BBBBBBB@

M �1;z M �
z�1;2

M �
z�1;3

� � � M �
z�1;n

M �2;z M �
z�2;3

� � � M �
z�2;n

: : :
: : :

:::

M �n�1;z M �
z�n�1;n

M �n;z

1CCCCCCCA
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and

T1 WD

0BBBBBBBB@

M �1;z M ��1;2 0 � � � � � � 0

M �2;z M ��2;3 0 � � � 0

: : :
: : :

: : :
:::

M �n�2;z M ��n�2;n�1 0

M �n�1;z M ��n�1;n
M �n;z

1CCCCCCCCA
;

zT1 WD

0BBBBBBBBBB@

M �1;z M �
z�1;2

0 � � � � � � 0

M �2;z M �
z�2;3

0 � � � 0

: : :
: : :

: : :
:::

M �n�2;z M �
z�n�2;n�1

0

M �n�1;z M �
z�n�1;n

M �n;z

1CCCCCCCCCCA
:

Assume that �i;iC1, z�i;iC1, 1� i � n� 1, are all nonzero bounded holomorphic func-
tions. Then by Lemma 4.3, it follows that T , zT , T1 and zT1 are all strongly irreducible
operators.

Proposition 5.1. Let T and zT be elements of CF Bn.D/. Then T is similar to zT if and
only if the zeros, along with its multiplicity, of �i;iC1 and z�i;iC1 are the same, and both

�i;iC1

z�i;iC1
and

z�i;iC1

�i;iC1

are elements of H1.D/, 1 � i � n � 1.

Proof. By Lemma 4.4 and Lemma 4.6, T is similar to zT if and only if T1 is similar
to zT1. First, assume that the given conditions are satisfied. We need to show that T1 is
similar to zT1. We set  i;iC1 WD

�i;iC1
z�i;iC1

, 1 � i � n � 1, X1 WDM � 1;2M
�
 2;3
� � �M � n�1;n ,

X2 WDM
�
 2;3

M � 3;4 � � �M
�
 n�1;n

; : : : ; Xn�1 WDM
�
 n;n�1

; Xn WD I . It is easy to see that

X D

0BBBBB@
X1 0 0 : : : 0

0 X2 0 : : : 0
:::

:::
: : :

: : :
:::

0 0 � � � Xn�1 0

0 0 � � � 0 Xn

1CCCCCA
is invertible and T1X D X zT1.

Conversely, suppose that T1 is similar to zT1. So, by Lemma 4.6, there exist invertible
operators X1; X2; : : : ; Xn such that XiMi;z

�
DMi;z

�Xi , 1 � i � n, and XiM ��i;iC1 D
M �
z�i;iC1

XiC1, 1 � i � n � 1. From the commuting relation XiMi;z
�
DMi;z

�Xi and
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¹Mi;zº
0 D H1.D/ , there exists a  i in H1.D/ such that Xi DM � i for 1 � i � n.

Since Xi is invertible,  i is nonzero, and 1
 i

is a bounded holomorphic function. From
XiM

�
�i;iC1

D M �
z�i;iC1

XiC1, we get  i .z/�i;iC1.z/ D z�i;iC1.z/ iC1.z/ for all z in D.
Thus it follows that the zeros, along with its multiplicity, of the functions �i;iC1 and z�i;iC1
are the same and both �i;iC1

z�i;iC1
and

z�i;iC1
�i;iC1

are bounded holomorphic functions on D.

Corollary 5.2. Let Mi;z be the multiplication operator on the reproducing kernel Hilbert
space HKi , where Ki .z; w/ D 1

.1�z xw/�i
, z; w 2 D, 1 � i � n. Suppose that 1 � �i �

�iC1 < �i C 2 for 1 � i � n � 1. We set

T.a1;a2;:::;an�1;m1;m2;:::;mn�1/

WD

0BBBBBBBB@

M �1;z M �
.z�a1/

m1
M ��1;3 � � � M ��1;n�1 M ��1;n

M �2;z M �
.z�a2/

m2
M ��2;4 � � � M ��2;n

: : :
: : :

: : :
:::

M �n�2;z M �
.z�an�2/

mn�2
M ��n�2;n

M �n�1;z M �
.z�an�1/

mn�1

M �n;z

1CCCCCCCCA
and

zT.b1;b2;:::;bn�1;l1;l2;:::;ln�1/

WD

0BBBBBBBBBB@

M �1;z M �
.z�b1/

l1
M �
z�1;3

� � � M �
z�1;n�1

M �
z�1;n

M �2;z M �
.z�b2/

l2
M �
z�2;4

� � � M �
z�2;n

: : :
: : :

: : :
:::

M �n�2;z M �
.z�bn�2/

ln�2
M �
z�n�2;n

M �n�1;z M �
.z�bn�1/

ln�1

M �n;z

1CCCCCCCCCCA
;

where ai ; bi 2 D and mi ; li 2 N for 1 � i � n � 1 and

�i;j

.z � ai /mi .z � aiC1/miC1 : : : .z � aj�1/
mj�1

;

z�i;j

.z � bi /li .z � biC1/liC1 : : : .z � bj�1/
lj�1

are bounded holomorphic functions on D, with 2 � i < j � n, j � i � 2. Therefore
T.a1;a2;:::;an�1;m1;m2;:::;mn�1/ is similar to zT.b1;b2;:::;bn�1;l1;l2;:::;ln�1/ if and only if ai D bi
and mi D li for 1 � i � n � 1.

Let MRob denote the Möbius group of all biholomorphic automorphisms of the unit
disc D.
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Definition 5.3. A bounded linear operator T , defined on a Hilbert space H , is said to be
weakly homogeneous if �.T / � xD and �.T / is similar to T for all � in MRob.

Now we state and prove a result which characterizes a class of weakly homogeneous
operators in Bn.D/. This generalizes [13, Theorem 3.6].

Proposition 5.4. Let Mi;z be the multiplication operator on the reproducing kernel
Hilbert space HKi , where Ki .z; w/ D 1

.1�z xw/�i
, z; w 2 D, 1 � i � n. Suppose that 1 �

�i � �iC1 < �i C 2 for 1 � i � n � 1. We set

T WD

0BBBBBBBB@

M �1;z M � 1;2 M ��1;3 � � � M ��1;n�1 M ��1;n
M �2;z M � 2;3 M ��2;4 � � � M ��2;n

: : :
: : :

: : :
:::

M �n�2;z M � n�2;n�1 M ��n�2;n
M �n�1;z M � n�1;n

M �n;z

1CCCCCCCCA
;

where  i;iC1 2 C.xD/ \ Hol.D/, 1 � i � n � 1, is nonzero and �i;j 2 H1.D/ for 1 �
i < j � n and j � i � 2. The operator T is weakly homogeneous if and only if each
 i;iC1, 1 � i � n � 1, is non-vanishing.

Proof. We set

T1 WD

0BBBBBBBB@

M �1;z M � 1;2 0 � � � � � � 0

M �2;z M � 2;3 0 � � � 0

: : :
: : :

: : :
:::

M �n�2;z M � n�2;n�1 0

M �n�1;z M � n�1;n
M �n;z

1CCCCCCCCA
:

By Corollary 3.6, Lemma 4.4 and Lemma 4.6, it follows that T is weakly homogeneous
if and only if T1 is weakly homogeneous. First, we show the necessary part, i.e., if the
given conditions are satisfied, then T1 is weakly homogeneous. It suffices to show that T �1
is weakly homogeneous. To show this, we consider

X1 DM . 1;2ı�
�1/..��1/0ı�/

 1;2

M . 2;3ı�
�1/..��1/0ı�/

 2;3

� � �M . n�1;nı�
�1/..��1/0ı�/

 n�1;n

C��1 ;

X2 DM . 2;3ı�
�1/..��1/0ı�/

 2;3

� � �M . n�1;nı�
�1/..��1/0ı�/

 n�1;n

C��1 ;

:::

Xn�1 DM . n�1;nı�
�1/..��1/0ı�/

 n�1;n

C��1 ;

Xn D C��1 ;
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where C��1.f / WD f ı ��1, f 2 Hol.D/, � 2MRob. As each Xi , 1 � i � n, is invertible,
so

X� D

0BBBBB@
X1 0 0 : : : 0

0 X2 0 : : : 0
:::

:::
: : :

: : :
:::

0 0 � � � Xn�1 0

0 0 � � � 0 Xn

1CCCCCA
is invertible and note that �.T �1 /X� D X�T

�
1 .

Conversely, assume that T1 is weakly homogeneous. So, by Lemma 4.6, there exist
invertible operators X1; X2; : : : ; Xn such that XiM �i;z D �.M

�
i;z/Xi , 1 � i � n, and

XiM
�
 i;iC1

D �0.M �i;z/M
�
 i;iC1

XiC1, 1 � i � n � 1. We set ti .w/ WD Ki; xw.�/ and ti;� WD
ti ı �

�1, where Ki; xw.z/ D Ki .z; xw/ for z; w 2 D. Since XiM �i;z D �.M �i;z/Xi , there
is a  i in H1.D/ such that Xi .ti .w// D  i .w/ti;�.w/ for all w in D, 1 � i � n. For
1� i � n,Xi is invertible, so  i .w/¤ 0 for all w in D, and 1

 i
is a bounded holomorphic

function. From XiM
�
 i;iC1

D �0.M �i;z/M
�
 i;iC1

XiC1, 1 � i � n � 1, we get

 i .w/ i;iC1. xw/ D  iC1.w/ i;iC1.��1.w//�
0.��1.w//; w 2 D: (5.1)

We claim that  i;iC1, 1 � i � n � 1, is non-vanishing. Suppose on contrary there exists
a point w0 2 D such that  i;iC1.w0/ D 0. Since MRob acts transitively on D, by equation
(5.1), it follows that  i;iC1.w/ D 0 for allw 2D and hence  i;iC1.w/D 0 for allw in xD.
This contradicts that  i;iC1 is a nonzero function. Thus  i;iC1.w/ ¤ 0 for all w 2 D.

Now we show that  i;iC1, 1 � i � n� 1, is non-vanishing on T D ¹z 2 C W jzj D 1º.
Replacing � by a biholomorphic map z 7! ei�z in equation (5.1), we obtain

 i .w/ i;iC1. xw/ D e
i� iC1.w/ i;iC1.ei� xw/; w 2 D; � 2 R: (5.2)

Suppose there exists a point ei�0 such that i;iC1.ei�0/ D 0. Choose a sequence ¹wnº in D
such that wn ! e�i�0 as n!1. From equation (5.2), we get

 i .wn/ i;iC1. xwn/ D e
i� iC1.wn/ i;iC1.ei� xwn/: (5.3)

Since  i;iC1 2 C.xD/ and  i ;  iC1 are bounded above and below on D, from equa-
tion (5.3), as n ! 1, we get  i;iC1.ei.�C�0// D 0 for all � 2 R. Thus  i;iC1 is zero
on at every point of T , and hence  i;iC1 vanishes identically on xD. This again contradicts
the hypothesis that  i;iC1 is a nonzero function. This completes the proof.
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