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Calabi–Yau structures for multiplicative preprojective
algebras

Tristan Bozec, Damien Calaque, and Sarah Scherotzke

Abstract. In this paper, we deal with Calabi–Yau structures associated with (differential graded
versions of) deformed multiplicative preprojective algebras, of which we provide concrete algebraic
descriptions. Along the way, we prove a general result that states the existence and uniqueness of
negative cyclic lifts for non-degenerate relative Hochschild classes.

1. Introduction

Given a quiver Q, that is an oriented graph, one may consider the preprojective algebra
associated to Q over some field k. It can be defined as a quotient of the path algebra k xQ
of the double quiver xQ, obtained by adjoining to each edge e W i! j between two vertices
i and j a reverse edge e� W j ! i . We quotient by a single relation

� D
X
e2Q

Œe; e��;

a signed combination of 2-cycles in xQ. Originally introduced by Gel’fand–Ponomarev [16]
(see also [25]) in a strictly algebraic context, the preprojective algebra turns out bearing
a strong geometric significance. It may indeed be understood as the algebraic structure
underlying the cotangent to the moduli of representations of Q (see [6] for a fully precise
statement). Its representations correspond to the 0-fiber of the moment map associated
to the linear group acting by conjugation at each vertex. This fact has been extensively
used by Lusztig [20], and later Nakajima [22], to geometrically realize quantum groups
and their representations, in particular through the definition of Lagrangian subvarieties
of symplectic quiver moduli.

Multiplicative variants of preprojective algebras have been introduced by Crawley-
Boevey and Shaw [13] in the course of their study of the Deligne–Simpson problem. It is
defined by performing a quotient byY

e2Q

.1C ee�/.1C e�e/�1
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of an appropriate localization of k xQ. These variants turn out to naturally appear in various
areas such as character varieties [4, 13, 27, 36], local systems on Riemann surfaces, and
perverse sheaves on nodal curves [2,3,5,36], or integrable systems [12] among others. The
geometric framework in which multiplicative quiver varieties seem to be better studied
is the one of quasi-Hamiltonian reduction and group-valued moment maps from [1], as
shown by Van den Bergh [34, 35].

Multiplicative preprojective algebras fit both into the quasi-Hamiltonian formalism
and into its non-commutative analogue as developed by Van den Bergh in [35]. In the
first case, group-valued moment maps and the quasi-Hamiltonian formalism have a nice
interpretation within the framework of shifted symplectic geometry of [23], in terms of
Lagrangian morphisms and derived Lagrangian intersections (see [9, 26]).

Using the non-commutative analogue of quasi-Hamiltonian formalism, one obtains
that multiplicative preprojective algebras come equipped with double quasi-Poisson struc-
tures [34]. Furthermore, Fernández and Herscovich have recently proved in [15] that
double quasi-Poisson structures give rise to pre-Calabi–Yau structures in the sense of
Iyudu–Kontsevich–Vlassopoulos [17]1, extending a similar result from loc. cit. for double
Poisson structures.

In the same way as shifted Poisson structures in the sense of [11, 24] arise on the
source of morphisms equipped with a Lagrangian structure [21] (actually, shifted Poisson
structures are conjectured to be equivalent to Lagrangian thickenings), it is expected that
pre-Calabi–Yau structures in the sense of [17] often (if not always) arise on the target of
Calabi–Yau morphisms in the sense of [7].

Hinging on these observations, our goal is to directly construct Calabi–Yau structures
on appropriate algebraic objects, and get back the usual Lagrangian morphisms associated
with group-valued moment maps on moduli spaces. Namely, we do the following:

(1) we first study a Calabi–Yau structure on kŒx˙1�, seen as the multiplicative analog
of kŒx�. Using this Calabi–Yau structure, we obtain using [7] a 1-shifted sym-
plectic structure on moduli of perfect complexes. We show that restricting to the
moduli of representations we recover the usual 1-shifted symplectic structure on
the adjoint quotient which is crucial in the derived symplectic interpretation of the
quasi-Hamiltonian formalism;

(2) we give a 1-Calabi–Yau structure on cospans which allow us to retrieve standard
Lagrangian correspondences when applying the moduli of objects functor Perf.
We recover in particular the Lagrangian correspondence that was shown in [26] to
underlie the fusion product from [1];

(3) we give a relative 1-Calabi–Yau structure on the algebraic counterpart of the
group-valued moment map. This is done via a gluing procedure called fusion;

1We would like to warn the reader that pre-Calabi–Yau structures in loc. cit. are different from the
ones considered e.g. in [6, 32] (the latter being non-commutative pre-symplectic structures, rather than
non-commutative Poisson structures).
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(4) via pushouts of Calabi–Yau cospans, we obtain a 2-Calabi–Yau structure on the
differential graded multiplicative preprojective algebra, defined in Theorem 4.10.
The zero truncation of the differential graded multiplicative preprojective algebra
is the original multiplicative preprojective algebra.

Description of the paper

In Section 2, we provide a short recollection on Calabi–Yau structures, after [7]. We also
show that, in the case of smooth dg-categories sitting in degree 0, the required cyclic lift of
the non-degenerate relative Hochschild class, in the definition of a Calabi–Yau structure
on a morphism, automatically exists and is unique. This extends to the relative case a
result of [14], and is of independent interest; see Theorem 2.5.

Section 3 uses this result to produce 1-Calabi–Yau structures on kŒGm� D kŒx
˙1� and

the cospan defined by kŒx˙1�q kŒy˙1�! khx˙1; y˙1i  kŒz˙1�, denoted by F in this
introduction only. In each case, we define explicit Hochschild classes that we prove to
be non-degenerate. Thanks to Section 2, these admit a unique cyclic lift. We also study
evaluation morphisms kŒx˙1�! k.

In Section 4, using the Calabi–Yau structures of the previous section, we show in The-
orem 4.7 that the multiplicative moment map is 1-Calabi–Yau. The quiver A2 D � ! �
serves as a building block. Again, this structure is made explicit and proven to be non-
degenerate “by hand”, whereas its cyclic lift exists thanks to Section 2. The cospan F

studied earlier then serves in a gluing process (a.k.a. fusion) to extend our result to arbi-
trary quivers. Pushouts along evaluation morphisms yield a 2-Calabi–Yau structure on
a dg-algebra whose 0-truncation is the classical multiplicative preprojective algebra; cf.
Theorem 4.10.

Finally, Section 5 justifies our choices of Hochschild classes defining Calabi–Yau
structures. We prove that when taking Perf, we retrieve standard symplectic structures.
Namely, the 1-shifted symplectic structure on PerfkŒx˙1� matches the one on the derived
loop stack LPerfk . We also prove that the Calabi–Yau structure on F corresponds to a
particular gluing of the boundaries of the pair-of-pants. We conjecture that the structures
we get on our dg-variants of multiplicative preprojective algebras yield standard quasi-
Hamiltonian structures on multiplicative quiver varieties.

Related works

In [3], Bezrukavnikov and Kapranov prove that certain triangulated categories of microlo-
cal complexes on nodal curves have a Calabi–Yau property, which roughly corresponds to
the existence of an almost Calabi–Yau structure according to our terminology. However,
it is not clear if it admits an actual Calabi–Yau (i.e., cyclic) lift. In loc. cit. the authors
mention a dg-version of the multiplicative preprojective algebra and expect that it is a
Calabi–Yau dg-algebra. Our results show that this is indeed true. This expectation was
motivated by the existence of an equivalence of abelian categories between microlocal
sheaves on nodal curves with rational components on the one side, and modules over the
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multiplicative preprojective algebra on the other side. They could not conclude, because
it is not known if a similar equivalence holds for the dg-version of the multiplicative pre-
projective algebra.

A similar approach is considered by Shende and Takeda in their work [29] on Calabi–
Yau structures of topological Fukaya categories. It is possible that, following some sugges-
tions from [29, Sections 7.4 and 7.5], one could potentially recover some of our existence
results in a geometric way, as opposed to the explicit algebraic approach of the present
paper. The obtained Calabi–Yau structures would then deserve to be compared with ours.
The last section of our paper provides tools for such a comparison, that would then
essentially rely on the fact that both approaches are compatible with some gluing/fusion
process; though, the comparison for the A2 building bloc remains to be dealt with.

Yeung [37, Section 5.5] also exhibits a Calabi–Yau structure on the multiplicative
preprojective dg-algebra associated with a star-shaped quiver. It seems that his Calabi–Yau
structure differs from ours, unless one goes through some adic completion (see Remark
3.2).

Finally, Kaplan and Schedler [18] show that the multiplicative preprojective (non dg)
algebra is Calabi–Yau whenever the quiver is connected and contains an unoriented cycle.
They conjecture that it is still Calabi–Yau for every quiver that is connected and not
Dynkin; they also conjecture that, under these assumptions, the multiplicative prepro-
jective algebra and its dg-version are quasi-isomorphic (and they prove this for quivers
satisfying a “strong free product property”). This is consistent with our result, which only
concerns the dg-version, but holds without any assumption on the quiver.

2. Calabi–Yau structures

2.1. Recollection on Calabi–Yau structures

Along this paper, we use the same notation and terminology as in [6]. We recall briefly the
most important information. Note also that in this paper k is a field of characteristic zero.

We denote by Modk the category of cochain complexes over k. A dg-category is a
Modk-enriched category and the category of dg-categories with dg-functors is denoted
by Catk . We refer to [19, 30] for a detailed introduction to dg-categories and their homo-
topy theory.

If M is a model category, we will write M for the corresponding1-category obtained
by localizing along weak equivalences.

We use the notation “Map” to distinguish the space of1-categorical morphisms from
the set of 1-categorical morphisms, for which we use the notation “Hom”. The underlined
versions designate their enriched counterparts (unless otherwise specified, the enrichment
is over complexes). If a category has a symmetric monoidal structure which is closed, we
use upper case letters for the internal enrichment, i.e., HOM and MAP, for categories and
1-categories, respectively.
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Recall the Hochschild chains functor

HH W Catk !Modk I A 7�! A
L
˝
Ae

Aop;

where Ae WD A˝Aop. We write HHi .A/ for the .�i/-th cohomology of HH.A/. Dually,
HHi .A/ is defined as the i -th cohomology of RHomAe .A;A/.

Hochschild chains carry a mixed structure, which is given in the standard explicit
model by Connes’s B-operator. The negative cyclic complex of A, denoted by HC�.A/,
is defined as the homotopy fixed points of HH.A/ with respect to the mixed structure; it
comes with a natural transformation .�/\ W HC� ) HH. As before, HC�i .A/ stands for
the .�i/-th cohomology of HC�.A/.

Recall the inverse dualizing functor

.�/_ WModAe !Modop
Ae

that is given as follows: for a right Ae-module M, and an object a 2 Ob.Aop ˝A/,

M_.a/ WD RHomMod.Ae/op

�
M ı �;Ae.a;�/

�
:

where � is the anti-involution � W Ae z!.Ae/op such that A ı � D Aop.
A dg-category A is smooth if A is a perfect Ae-module. For smooth dg-categories, we

have the equivalences

.�/[ W HH.A/
�
�! RHomModAe

.A_;A/

and

RHomModAe
.A;A/ ' A_

L
˝
Ae

A:

Definition 2.1. Let A be a smooth dg-category.

(1) A class c W kŒn�! HH.A/ such that c[ W A_Œn�! A is an equivalence is called
non-degenerate. Such a non-degenerate Hochschild class is called an almost n-
Calabi–Yau structure on A.

(2) An n-Calabi–Yau structure on A is a class c W kŒn� ! HC�.A/ such that c\ is
non-degenerate.

We now recall (relative) Calabi–Yau structures on morphisms and cospans of dg-
categories, following Brav–Dyckerhoff [7] and Toën [31, Section 5.3].

Definition 2.2. Let A
f
�! C

g
�! B be a cospan of smooth dg-categories.

(1) An almost n-Calabi–Yau structure on this cospan is the data of a homotopy com-
muting diagram

kŒn�
cB //

cA

��

HH.B/

��

HH.A/ // HH.C/



T. Bozec, D. Calaque, and S. Scherotzke 788

such that cA and cB are non-degenerate in the sense of Definition 2.1 (1), and such
that the homotopy HH.f /.cA/ � HH.g/.cB/ is non-degenerate in the following
sense: the induced (homotopy) commuting square

C_Œn�
g_

//

f _

��

�
B_Œn�

� L
˝
Be

Ce
c[B˝id
' B

L
˝
Be

Ce

g˝id

���
A_Œn�

� L
˝
Ae

Ce
c[A˝id
' A

L
˝
Ae

Ce
f˝id

// C

is Cartesian.

(2) An n-Calabi–Yau structure on the cospan is a homotopy commuting diagram

kŒn�
cB //

cA

��

HC�.B/

��

HC�.A/ // HC�.C/

such that the image under .�/\ is an almost n-Calabi–Yau structure.

(3) If AD¿, then we call these (almost) n-Calabi–Yau structures on the morphism g.

Recall that n-Calabi–Yau cospans do compose: after [7, Theorem 6.2], the non-degen-
eracy property is preserved under composition.

We finally note that whenever ADBD¿, an n-Calabi–Yau structure on¿! C ¿
is the same as an .nC 1/-Calabi–Yau structure on C. In particular, the push-out of two n-
Calabi–Yau morphisms automatically inherits an .nC 1/-Calabi–Yau structure.

2.2. Existence and uniqueness of cyclic lifts

Proposition 2.3 ([14, Section 5]). Suppose that B is a smooth dg-category. If B is almost
n-Calabi–Yau, then HHi .B/ ' HHn�i .B/ for every i 2 Z. Furthermore, if B is concen-
trated in degree zero, then

(a) HHi .B/ D 0 for all i 6D 0; 1; : : : ; n;

(b) HC�i .B/ D 0 for all i > n;

(c) the natural map HC�n .B/! HHn.B/ is an isomorphism.

In particular, every almost n-Calabi–Yau structure on B admits an n-Calabi–Yau lift.

Proof. This is essentially [14, Proposition 5.5, Corollary 5.6, and Proposition 5.7]. We
reproduce the proof here for the reader’s convenience.

We have an isomorphism of Be-modules c[ W B_Œn� ' B. It yields

HHn�i .B/ ' HomHo.ModBe /

�
B_Œn�;BŒi �

� c[
' HomHo.ModBe /

�
B;BŒi �

�
' HHi .B/:
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If B is concentrated in degree zero, then its Hochschild homology and cohomology are
concentrated in non-negative degrees, and thus, using the above identifications, HHi .B/D
0 for all i 6D 0; 1; : : : ; n. We then consider the negative cyclic complex, which is given by
taking formal power series in a degree 2 variable u with coefficients in the Hochschild
complex, and differential being given as d � uı, where ı is the mixed differential. The
first page of the spectral sequence associated with the filtration by powers of u reads as
follows:

0 uHH0.B/
uı // u2HH1.B/

uı // � � � unC1HHn.B/

HH0.B/
uı // uHH1.B/

uı // � � � unHHn.B/ 0

HH1.B/
uı // uHH2.B/

uı // � � � 0

:::

HHn.B/ 0 0 � � �

This proves (a) and (b).

Remark 2.4. Under the assumption of Proposition 2.3, the duality isomorphism extends
to Hochschild homology with values in any B-bimodule M: Hi .B;M/ ' Hn�i .B;M/.
Moreover, if both B and M are concentrated in degree 0, then (a) still holds: Hi .B;M/
vanishes for all i ¤ 0; : : : ; n.

Theorem 2.5. Let F W B! C be a functor between smooth dg-categories that are con-
centrated in degree zero. Every almost n-Calabi–Yau structure on F admits a unique
n-Calabi–Yau lift.

Proof. First of all, we know from Proposition 2.3 that the almost n-Calabi–Yau structure
cB 2 HHn.B/ on B uniquely lifts to an n-Calabi–Yau structure c�B 2 HC�n .B/. The other
part of the almost n-Calabi–Yau structure on F is a homotopy from F.cB/ to 0, which
amounts to the choice of a relative lift cF 2 HHnC1.C;B/ of cB. Indeed, HHi .C;B/
is defined as the .�i/-th cohomology of the homotopy cofiber (or, mapping cone) of
HH.B/! HH.C/, so that we have a long exact sequence

� � � ! HHnC1.C;B/! HHn.B/! HHn.C/! HHn.C;B/! � � � :

The non-degeneracy of cF tells us that the nul-homotopic sequence of Ce-modules

C_Œn�! B_Œn�˝Be Ce ' B˝Be Ce ! C

is actually a homotopy fiber sequence. Applying HomHo.ModCe /.�;C/ yields a long exact
sequence

� � � ! HHk.C/! Hk.B;C/ ' Hn�k.B;C/! HHn�k.C/! HHkC1.C/! � � � :
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Hence, using that Hochschild homology and cohomology of C vanishes for negative
indices (because C is concentrated in degree 0), together with the version from Remark 2.4
of the vanishing property (a), we get that the Hochschild homology (and cohomology) of
C vanishes in degrees i 6D 0; : : : ; nC 1. We again look at the first page of the Hochschild-
to-negative cyclic spectral sequence:

0 uHH0.C/
uı // u2HH1.C/

uı // � � � unC2HHnC1.C/

HH0.C/
uı // uHH1.C/

uı // � � � unC1HHnC1.C/ 0

HH1.C/
uı // uHH2.C/

uı // � � �

:::

HHn.C/
uı // uHHnC1.C/ 0 0

HHnC1.C/ 0 0:

Putting this together, we obtain the following morphism of exact sequences:

0 // HC�nC1.C/

�

��

// HC�nC1.C;B/

��

// HC�n .B/
�

��

// HC�n .C/��

��

0 // HHnC1.C/ // HHnC1.C;B/ // HHn.B/ // HHn.C/:

The injectivity of the rightmost arrow follows from the fact that

HC�n .C/ ' ker
�
HHn.C/! uHHnC1.C/

�
;

and it implies that the image of c�B via HC�n .B/! HC�n .C/ vanishes (because the image
of cB through HHn.B/ ! HHn.C/ does so). Therefore c�B lifts to a relative class in
HC�nC1.C;B/. The map from the affine space of relative lifts of c�B to the affine space
of relative lifts of cB is affine and modeled on the linear map HC�nC1.C/! HHnC1.C/,
which is an isomorphism. Using that both affine spaces are non-empty, we get that the map
from relative lifts of c�B to relative lifts of cB is a bijection. Hence we get that a cyclic lift
of cF exists and is unique.

3. Calabi–Yau structures associated with kŒx˙1�

3.1. A Calabi–Yau structure on kŒx˙1�

Let A D kŒx˙1� D kŒGm�. It is the function ring of a smooth affine algebraic variety;
hence 1-Calabi–Yau structures on A are exactly non-vanishing top degree (here, degree 1)
forms. The Calabi–Yau structure we consider on A is, up to a scalar,

˛ WD ddR log.x/ D x�1ddRx:
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In the rest of this subsection, we provide descriptions of this 1-Calabi–Yau structure that
will be convenient for later purposes.

Remark 3.1. Notice that the inverse morphism inv W x 7! x�1 allows to identify .A; ˛/
with .A;�˛/. We also observe that ˛ is invariant under rescaling maps x 7! qx, q 2 k�

(i.e., it is of zero weight for the action of Gm on itself by multiplication).

Remark 3.2. In [37], Yeung also considers a Calabi–Yau structure on kŒz˙1�, which
is different form ours: Yeung’s Calabi–Yau structure is given by ddRz, and is exact, as
opposed to ours. On moduli of representations, the Calabi–Yau structure we consider gives
back the 1-shifted symplectic structure that encodes the quasi-Hamiltonian formalism (see
Section 5); we expect that Yeung’s Calabi–Yau structure rather leads to a linearized ver-
sion of it. As a matter of fact, if one considers the 	-adic completion yA at the kernel 	 of
the evaluation at x D 1, the morphism kŒz�! yA sending z to log.x/ is well defined and
sends the canonical Calabi–Yau structure ddRz on kŒz� to ˛.

3.1.1. The cyclic cycle. We work with the normalized Hochschild complex Cn.A/ D
A ˝ NA˝n, where NA D A=k, with Hochschild differential b. On Cn.A/, the Connes
boundary map is given by

B.x0 ˝ � � � ˝ xn/ D

nX
iD0

.�1/ni1˝ xi ˝ � � � ˝ xn ˝ x0 ˝ � � � ˝ xi�1:

We set
2˛n D .x

�1
˝ x/˝n � .x ˝ x�1/˝n 2 C2n�1.A/;

so that
b.˛n/ D 2.1˝ ˛n�1/ and B.˛n/ D 2n.1˝ ˛n/:

A direct computation then shows that

˛ D
X
k�0

kŠuk˛kC1

satisfies .b � uB/.˛/ D 0.

3.1.2. Proof of non-degeneracy. We want to prove that

˛1 D
1

2
.x�1 ˝ x � x ˝ x�1/

is non-degenerate. First observe that the class of x�1 ˝ x equals the one of �x ˝ x�1

(and thus, the one of ˛1) in HH1.A/ ' �1
A

. Indeed, in (cohomological) degree �1 the
Hochschild homology of A is�1

A
DkŒx˙1�ddRx. The class of a x�1˝x, resp.�x˝x�1,

is computed via the Hochschild–Kostant–Rosenberg (HKR) map a˝ b 7! addRb, and we
find

x�1ddRx; resp. � xddR.x
�1/ D xx�2ddRx D x

�1ddRx:

Hence it is sufficient to prove that the Hochschild 1-cycle x�1 ˝ x is non-degenerate.
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The reduced bar resolution of A is given by

NB.A/ D
M
n�0

�
A˝ NA˝n ˝A

�
Œn�

with the usual differential being given by an alternating sum of products of successive
elements. We also have a smaller resolution

R.A/ D AeŒ1�˚Ae

with differential sending 1˝ 1 to x ˝ 1 � 1˝ x. Its dual is

R.A/_ D Ae
˚AeŒ�1�

with the same formula for the differential.
There is a map R.A/! NB.A/. In degree 0 it is the identity, and in degree�1 it is given

by f ˝ g 7! f ˝ x ˝ g. Using this smaller resolution, we obtain the “small Hochschild
complex”

AŒ1�˚A

with zero differential. It maps inside the standard Hochschild complex as follows: in
degree 0 it is the identity, and in degree �1 it sends f to f ˝ x (this map is in fact a
quasi-inverse to the HKR quasi-isomorphism). In the small Hochschild complex, the class
of interest reads as x�1, and one can show that as a map

R.A/_Œ1�! R.A/ (3.3)

it is nothing but the product with x�1 ˝ 1 (in both degrees), which is an isomorphism of
complexes.

Remark 3.4. We could have proven non-degeneracy first, and then use [14, Proposi-
tion 5.7] (see also Proposition 2.3 above) in order to obtain the existence (and uniqueness)
of a cyclic lift.

3.1.3. Yet another description of the Calabi–Yau structure on kŒx˙1�. For every n-
Calabi–Yau category A, with Calabi–Yau structure c, one can consider the same category
with opposite Calabi–Yau structure�c, and denote it by NA. Then the functor A

`
NA!A

is relative Calabi–Yau.
Let k D ke be the terminal dg-category (e denotes the identity of the single object); it

is obviously 0-Calabi–Yau, with Calabi–Yau structure being e.

Proposition 3.5. There is an equivalence

kŒx˙1� ' k
a
k
`
Nk

k

of 1-Calabi–Yau dg-categories, where the Calabi–Yau structure on the left-hand side is ˛,
and the one on the right-hand side is obtained as a Calabi–Yau push-out.
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Proof. First of all, we introduce the interval dg-category kI : it is the k-linearization of the
category I D 1 z!2with two objects and an isomorphism x between them. Observe that we
have a factorization k

`
k! kI ! k, where the first functor is a cofibration (the inclusion

into kI of its subcategory of objects), and the second functor is a trivial fibration. Hence
our homotopy push-out can be computed as the strict push-out k

`
k
`
k kI ' kŒx˙1�.

We thus get the requested equivalence of dg-categories. It remains to prove that the 1-
Calabi–Yau structures coincide. Thanks to Proposition 2.3, it is sufficient to prove that the
underlying Hochschild classes coincide.

Finally, the 0-cycle e1 � e2 is homotopic to zero in the cofibrant replacement kI of k:
e1 � e2 D b.˛1/, where ˛1 still makes sense for kI .

3.2. Relative Calabi–Yau structures on evaluations kŒx˙1�! k

The pull-back of the closed 1-form ˛ D ddR log.x/ along any k-point

q W A D kŒx˙1�! k

of Gm (i.e., q 2 k�) obviously vanishes. This tells us that the morphism q is relative
pre-Calabi–Yau in the sense of [6]2

Lemma 3.6. The above relative pre-Calabi–Yau structure is non-degenerate.

Proof. One first observes that both .R.A/_Œ1�/ ˝
Ae
ke and R.A/ ˝

Ae
ke are isomorphic to

kŒ1� ˚ k with zero differential. Moreover, after applying ˝
Ae
ke , the isomorphism (3.3)

becomes the multiplication by q�1 on each component. Then recall that k_ D k, so that
the morphism

k_Œ1� D kŒ1�! kŒ1�˚ k D
�
R.A/_Œ1�

�
˝
Ae
ke; resp. R.A/ ˝

Ae
ke D kŒ1�˚ k ! k

is the obvious inclusion, resp. projection. Hence the map

k_Œ1�! fib
�
R.A/ ˝

Ae
ke ! k

�
identifies with the map

kŒ1�
q�1

��! kŒ1� ' fib
�
kŒ1�˚ k ! k

�
:

This proves the non-degeneracy.

3.3. A Calabi–Yau cospan

Our aim is to prove that the cospan

kŒx˙1�
a

kŒy˙1�! khx˙1; y˙1i  kŒz˙1�; (3.7)

where the rightmost map is z 7! xy, is relative Calabi–Yau in the sense of [6].

2We warn again the reader that pre-Calabi–Yau in the sense of [6] (see also [32]) is the non-
commutative analog of pre-symplectic, and differs from the pre-Calabi–Yau notion from [17] that is the
non-commutative analog of a Poisson structure.
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Set ˇ1 D 1
2
.y�1 ˝ x�1 ˝ xy � y ˝ y�1x�1 ˝ x/, which satisfies

˛1.xy/ �
�
˛1.x/C ˛1.y/

�
D b.ˇ1/:

Lemma 3.8. The above homotopy ˇ1 is non-degenerate, and therefore defines an almost
1-Calabi–Yau structure on the cospan (3.7). This almost 1-Calabi–Yau structure lifts
uniquely to a 1-Calabi–Yau structure.

Proof. As a preliminary observation, let us recall on the one hand that B WD khx˙1; y˙1i

also has a small resolution as a B-bimodule:

R.B/ D .Be/˚2Œ1�˚Be

with differential sending .1˝ 1; 0/ to x ˝ 1 � 1˝ x, and .0; 1˝ 1/ to y ˝ 1 � 1˝ y.
Therefore,

R.B/_ D Be
˚ .Be/˚2Œ�1�

with differential sending 1˝ 1 to .x ˝ 1 � 1˝ x; y ˝ 1 � 1˝ y/.
As the maps ˛1.xy/ and ˛1.x/C ˛1.y/ are homotopic via ˇ1, the following diagram

is homotopy commutative

B_Œ1�

��

// A_ ˝
Ae

BeŒ1�
˛1.xy/
' A ˝

Ae
Be

��

.A˚2/_ ˝
Ae

BeŒ1�
˛1.x/C˛1.y/
' A˚2 ˝

Ae
Be // B

where A D kŒx˙1�. Following Section 3.1.2,

A ˝
Ae

Be
' BeŒ1�˚Be;

with differential sending 1˝ 1 to x ˝ 1 � 1˝ x. Hence, we get that the fiber of the map�
BeŒ1�

�˚3
˚ .Be/˚3 ! .Be/˚2Œ1�˚Be

induced by ˛1.xy/ � ˛1.x/C ˛1.y/ is isomorphic to

R.B/_Œ1� D BeŒ1�˚ .Be/˚2:

Then, using Theorem 2.5, we get that ˇ1 lifts to a unique homotopy ˇ between ˛.xy/ and
˛.x/C ˛.y/. Therefore, the cospan (3.7) carries a 1-Calabi–Yau structure. Below we give
an alternative presentation of this cospan.

3.3.1. Another description of the Calabi–Yau cospan. Observe that we have the fol-
lowing (strict) commuting diagram in the category .Catsmk /k=HC� of smooth dg-categories
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equipped with a negative cyclic 0-cycle (in order to lighten the notation, we omit coprod-
ucts):

k k

��

k

k

��

¿

BB

��

k k
k Nk
Nk k

@@^^

  ~~

k ¿:

\\

��

k k

OO

k k

OO

It admits a replacement by a (homotopy coherent) commuting diagram in the1-category
.Catsmk /k=HC� :

kI k NI

��

k

k

��

¿

AA

��

kI k NI
k Nk
Nk k

@@__

  }}

k ¿:

\\

��

kI k NI

OO

k k

OO

Observe that the above diagram strictly commutes in Catk , but that the negative cyclic
0-cycles only match up to homotopy.

By composing horizontal cospans, we obtain a new (homotopy) commuting diagram
in the1-category .Catsmk /k=HC� :

kŒz˙1�

��

¿

88

%%

khx˙1; y˙1i ¿:

ff

xx

kŒx˙1�
`
kŒy˙1�

OO

One can finally see that the vertical cospan of dg-categories coincides with (3.7). Addi-
tionally, we have 1-cycles cz and cx;y in HC�.kŒz˙1�/ and HC�.kŒx˙1�

`
kŒy˙1�/,

respectively, together with a homotopy cx;y;z between their images in HC�.khx˙1;y˙1i/.
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Proposition 3.9. The triple .cx;y ; cz ; cx;y;z/ defines a 1-Calabi–Yau structure on (3.7),
that coincides with the one from Lemma 3.8.

Proof. As we have already seen in Proposition 3.5, the 1-Calabi–Yau structures on

kŒx˙1�
a

kŒy˙1�

match up: cx;y � ˛.x/C ˛.y/.
They also match on kŒz˙1�, but there is a subtlety that is worth noticing. As usual,

according to the uniqueness of cyclic lifts from Proposition 2.3, in order to prove that
cz � ˛.z/, it is sufficient to prove that c\z � ˛.z/\ D ˛1.z/. Now, computed strictly, the
top horizontal push-out gives the k-linearization C of a category with two objects 1, 2 and
two isomorphisms x W 1 z!2 and y W 2 z!1. Of course, we have an equivalence kŒz˙1� z!C ,
sending z to xy. Following a similar calculation as in the proof of Proposition 3.5, we get
on C the Hochschild 1-cycle ˛1.x/C ˛1.y/. Up to a Hochschild boundary, this matches
up with the image of ˛1.z/ through the equivalence given by z 7! xy. Indeed, the formula
for the homotopy ˇ1 still makes sense in C .

It remains to prove that the homotopy cx;y;z matches with ˇ. As the underlying
Hochschild homotopy ˇ1 D ˇ\ is non-degenerate (thanks to Lemma 3.8), according to
the uniqueness of cyclic lifts from Theorem 2.5, it suffices to prove that the underlying
Hochschild homotopies c\x;y;z and ˇ\ D ˇ1 coincide. We already proved it, as ˇ1 is the
homotopy that identifies ˛1.x/C ˛1.y/ with ˛1.z/ in C .

Remark 3.10. Let us put what we have done so far in a more general perspective, by first
recalling from [7, Section 5.1] that for a closed oriented d -manifoldM , the k-linearization
L.M/ WD dg.Sing.M// of the fundamental 1-groupoid of M carries a d -Calabi–Yau
structure. Moreover, in loc. cit. the authors also prove that if N is a compact oriented
.d C 1/-manifold with boundary @N D M , then one gets a d -Calabi–Yau structure on
the natural functor L.M/! L.N /. We conjecture the existence of a symmetric monoidal
.1; n/-category CYsn of n-iterated s-Calabi–Yau cospans, similar to the iterated category
of Lagrangian correspondences sketched in [9], and rigorously constructed in [10]. We
also conjecture that the functor dg.Sing.�// leads to a fully extended oriented TFT in
every dimension: i.e., it should admit an upgrade to a symmetric monoidal .1; n/-functor

Bordorn ! CY0n

for every n (in particular, k is n-dualizable in CY0n). For the above presentation of the
Calabi–Yau cospan structure on khx˙1; y˙1i, we took inspiration from a construction of
the pair-of-pants as a suitable composition of 2-iterated oriented bordisms (see Section 5.2,
where this decomposition of the pair-of-pants is made explicit), and guessed the diagram
one shall write by pretending that the conjecture was known.

Remark 3.11. The Calabi–Yau push-out of this cospan with the evaluation Calabi–Yau
morphism q W kŒz˙1�! k from Section 3.2 gives the Calabi–Yau cospan associated with
the Calabi–Yau isomorphism kŒx˙1�! kŒy˙1� given by x 7! q�1y (see Remark 3.1).
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More precisely, the push-out gives a morphism

kŒx˙1�
a

kŒy˙1�! khx˙1; y˙1i=.xy D q/;

under which the image of ˛1.x/ C ˛1.y/ is identically 0. Then using that inv gives an
isomorphism between the Calabi–Yau structure and its inverse on kŒx˙1� (see Remark 3.1,
again), we obtain the desired Calabi–Yau cospan from kŒx˙1� to kŒy˙1�.

4. Multiplicative preprojective algebras

Consider a quiverQ, which consists in a vertex set V , and an oriented edge set E: to each
edge e we associate a source s.e/ and a target t .e/ in V . We consider its double version
xQD .V; xE D E tE�/, where E� consists in reverse arrows e� W t .e/! s.e/, and extend
� in an involution of xE by setting e�� D e for every e 2 E. We also set ".e/ D 1 and
".e�/ D �1 for all e 2 E. As mentioned in the introduction, Crawley-Boevey and Shaw
introduced in [13] the multiplicative preprojective algebraƒq.Q/, where q 2 .k�/V . It is
given as the quotient of a localization of k xQ by the relationY

e2 xE

.1C ee�/".e/ �
X
v2V

qvev

where ev denotes the length 0 idempotent path at v. It is thus required to invert all 1C ee�

for e 2 E�, which actually amounts to inverting 1 C ee� for all e 2 xE. We denote by
k xQloc the localization of k xQ with respect to these elements.

The definition of ƒq.Q/ a priori requires an ordering on xE, but the resulting quotient
actually does not depend on it (up to isomorphism [13, Theorem 1.4]).

Remark 4.1. We can either view ƒq.Q/ as an algebra, or as a category (with objects the
vertices ofQ, that correspond to the idempotents ofƒq.Q/). There is a Morita morphism
from one to another, so that it does not matter for what we do (see [6, Remark 5.4]).

4.1. Relative Calabi–Yau structure for the A2 quiver

Consider the quiver A2 D .V D ¹1; 2º; E D ¹e W 1! 2º/, with orthogonal idempotents
e1 and e2 satisfying 1 D e1 C e2, and write

a1 D e1 C e
�e and a2 D e2 C ee

�:

Note that

1C e�e invertible, a1 invertible, a2 invertible, 1C ee� invertible;

in which case

.1C e�e/�1 D e2 C a
�1
1 ;

a�12 D e2 � ea
�1
1 e�;

a�11 D e1 � e
�a�12 e;

.1C ee�/�1 D e1 C a
�1
2 :

(4.2)
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Thus in the A2 case, the product in the multiplicative preprojective relation reads

.1C ee�/.1C e�e/�1 D a2 C a
�1
1 D .1C e

�e/�1.1C ee�/:

Denote by B the localization kA2Œa�11 ; a�12 �, and define morphisms �i W kŒx˙1i �! B,
i 2 ¹1; 2º, by setting

�1.x1/ D a
�1
1 and �2.x2/ D a2:

Equalities (4.2) further imply that

a�12 eD ea�11 ; e�a�12 D a
�1
1 e�; e�ea�11 D e1�a

�1
1 ; ee�a�12 D e2�a

�1
2 : (4.3)

4.1.1. The homotopy. Note that �1 maps ˛1 to a1 ˝ a�11 � a
�1
1 ˝ a1, and �2 maps

˛1 to a�12 ˝ a2 � a2 ˝ a
�1
2 , where tensor products are performed over the algebra R D

˚v2V kev . Thus

2
�
�1.˛1/C �2.˛1/

�
D e�e ˝ a�11 � a

�1
1 ˝ e

�e C a�12 ˝ ee
�
� ee� ˝ a�12

C e1 ˝ a
�1
1 � a

�1
1 ˝ e1 C a

�1
2 ˝ e2 � e2 ˝ a

�1
2

D e�e ˝ a�11 � a
�1
1 ˝ e

�e C a�12 ˝ ee
�
� ee� ˝ a�12

C 1˝ .a�11 � a
�1
2 /

as a�1i ˝ ei D a
�1
i ˝ 1D 0 in the normalized Hochschild complex. Direct computations,

helped by (4.3), show that

e�e ˝ a�11 � a
�1
1 ˝ e

�e C a�12 ˝ ee
�
� ee� ˝ a�12

is the image under b of

e� ˝ e ˝ a�11 C a
�1
1 ˝ e

�
˝ e � e� ˝ a�12 ˝ e � a

�1
2 ˝ e ˝ e

�:

Also,

1˝ .a�11 � a
�1
2 / D 1˝ .a�11 � e1 � a

�1
2 C e2/ Œnormalization�

D 1˝ .ee�a�12 � e
�ea�11 / Œ(4.3)�

D �Bb.e� ˝ ea�11 / Œ(4.3)�

D bB.e� ˝ ea�11 /:

Hence �1.˛1/C �2.˛1/ is the image under b of

ˇ1 D
1

2

�
e� ˝ e ˝ a�11 C a

�1
1 ˝ e

�
˝ e � e� ˝ a�12 ˝ e

� a�12 ˝ e ˝ e
�
C B.e� ˝ ea�11 /

�
D
1

2

�
e� ˝ e ˝ �C �˝ e� ˝ e � e� ˝ ��1 ˝ e � ��1 ˝ e ˝ e�

C 1˝ e� ˝ e� � 1˝ ��1e ˝ e�
�

(4.4)

if � D �1.x1/C �2.x2/.
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4.1.2. Non-degeneracy.

Proposition 4.5. The cospan �1 q��2 carries an almost 1-Calabi–Yau structure, that
lifts uniquely to a 1-Calabi–Yau structure thanks to Theorem 2.5.

Proof. Set A D kŒx˙11 �q kŒx˙12 � and u D �1 q ��2. Thanks to the existence of the
homotopy ˇ1 given by (4.4), the following diagram homotopy commutes:

B_Œ1�
u_Œ1�

//

��

A_Œ1� ˝
Ae

Be //

˛1 ˝
Ae

Be

��

cofib
�
u_Œ1�

�
��

fib.u/ // A ˝
Ae

Be u // B

(4.6)

To show the non-degeneracy, we need to prove that the vertical maps in (4.6) are isomor-
phisms. Since A is 1-Calabi–Yau, it is sufficient to prove that the leftmost vertical map is
an isomorphism. Set Ai D kŒx

˙1
i �, and

Be
i D Ai ˝

Ai
e

Be

induced by �i . Using the resolutions from Section 3.1.2, we can replace A ˝
Ae

Be with
the complex

.Be
1 ˚Be

2/Œ1�˚ .B
e
1 ˚Be

2/

with differential

d W .p1 ˝ q1; p2 ˝ q2/ 7! .p1a
�1
1 ˝ q1 � p1 ˝ a

�1
1 q1; p2a2 ˝ q2 � p2 ˝ a2q2/;

where pi ; qi 2 B. A B-bimodule resolution of B is given by

�1.B/
d 0

�! Be:

By [28, Theorem 10.6] (see also [6, Remark 5.4]), we can identify �1.B/ with

B ˝
R
k xE ˝

R
B

and d 0.1˝ v ˝ 1/ D v ˝ 1 � 1˝ v, where R still denotes ˚v2V kev . Here for A2 the
edge set E is simply ¹eº. Hence, u is given by the commutative diagram

Be
1 ˚Be

2

f
//

d

��

B ˝
R
k xE ˝

R
B

d 0

��

Be
1 ˚Be

2 �
// B ˝

R
B:
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where

f .p1 ˝ q1; p2 ˝ q2/ D f1.p1 ˝ q1/ � f2.p2 ˝ q2/;

�.p1 ˝ q1; p2 ˝ q2/ D p1 ˝ q1 � p2 ˝ q2:

Let us give a concrete description of f . We have a k-linear map � W k xE ! B ˝
R
k xE ˝

R
B

which sends a path p D ˛1 � � �˛n, ˛i 2 xE, to

nX
iD1

˛1 � � �˛i�1 ˝ ˛i ˝ ˛iC1 � � �˛n:

This map has a natural Be-linear extension B ! B ˝
R
k xE ˝

R
B, still denoted by �, satis-

fying
�.bb0/ D b�.b0/C �.b/b0:

Then it can be checked that the maps

fi W B
e
i ! B ˝

R
k xE ˝

R
B

are given as Be-linear maps by

f1.1˝ 1/ D �.a
�1/;

f2.1˝ 1/ D ��.a2/:

We then identify fib.u/ with .f; �/.
The resolution of B_ as a Be-module is given by

d 0_ W B ˝
R

B ! B ˝
R
k xE ˝

R
B

1˝ ei ˝ 1 7!
X
˛2 xE

.˛ ˝ ˛� ˝ 1 � 1˝ ˛� ˝ ˛/:

In the A2 case, this just reads

d 0_.1˝ 1/ D e ˝ e� ˝ 1 � 1˝ e� ˝ e C e� ˝ e ˝ 1 � 1˝ e ˝ e�:

The equivalence

g D ˛1 ˝
Ae

Be
W .Be

1 ˚Be
2/Œ1�˚ .B

e
1 ˚Be

2/! .Be
1 ˚Be

2/Œ1�˚ .B
e
1 ˚Be

2/

is induced by the image of ˛1 under �1q��2, and hence by the internal productm with

.a1 ˝ 1 � 1˝ a1; a
�1
2 ˝ 1 � 1˝ a

�1
2 /

on both terms, thanks to Section 3.1.2. The homotopy ˇ1 defined by (4.4) induces a zero
homotopy h of the map

B_Œ1�
ugu_Œ1�
�����! B:



Calabi–Yau structures for multiplicative preprojective algebras 801

With the chosen resolutions, this yields a map

h W B ˝
R

xE ˝
R

B ! B ˝
R

xE ˝
R

B

such that the triangles in the following diagram commute:

B ˝
R

B
d 0_ //

fm�_

��

B ˝
R
k xE ˝

R
B

�mf _

��
h

xx

B ˝
R
k xE ˝

R
B

d 0
// B ˝

R
B;

where �_.1˝ 1/ D .1˝ 1;�1˝ 1/. Now,

f m�_.1˝ 1/ D f m.1˝ 1;�1˝ 1/

D f .a1 ˝ 1 � 1˝ a1; 1˝ a
�1
2 � a

�1
2 ˝ 1/

D a1�.a
�1
1 / � �.a�11 /a1 C �.a2/a

�1
2 � a

�1
2 �.a2/

D ��.a1/a
�1
1 C a

�1
1 �.a1/C �.a2/a

�1
2 � a

�1
2 �.a2/

D �.e� ˝ e ˝ 1C 1˝ e� ˝ e/a�11 C a
�1
1 .e� ˝ e ˝ 1C 1˝ e� ˝ e/

C .e ˝ e� ˝ 1C 1˝ e ˝ e�/a�12 � a
�1
2 .e ˝ e� ˝ 1C 1˝ e ˝ e�/

D hd 0_.1˝ 1/

if (using (4.3))

h.1˝ e ˝ 1/ D a�12 ˝ e ˝ 1 � 1˝ e ˝ a
�1
1 ;

h.1˝ e� ˝ 1/ D 1˝ e� ˝ a�12 � a
�1
1 ˝ e

�
˝ 1:

The homotopy h therefore induces an isomorphism B_Œ1�
�
�! fib.u/ as wished (it is the

leftmost vertical map in (4.6)).

4.2. Fusion

Following [34], we use a fusion procedure to go from theA2 case to the case of an arbitrary
quiver Q D .V; E/. The following endows the “noncommutative group-valued” moment
map for k xQloc D k xQŒ.1C ee

�/�1�e2 xE that defines the multiplicative preprojective alge-
bra, with a Calabi–Yau structure.

Theorem 4.7. There is a 1-Calabi–Yau structure on the morphism

� W
a
v2V

kŒz˙1v �! k xQloc

zv 7!
Y

e2E\t�1.v/

.1C ee�/ �
Y

e2E\s�1.v/

.1C e�e/�1:
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Proof. Denote by Qsep the quiver with same edge set E but vertex set

xE D
®
ve D s.e/; ve� D t .e/

¯
:

It is the disjoint union of jEj copies of A2 that we aim to glue by “fusing” vertices. This
will be done using composition of Calabi–Yau structures by means of push-outs. Thanks
to Section 4.5, we have a 1-Calabi–Yau morphisma

e2E

�
kŒx˙1e �q kŒy˙1e �

�
! kQsep

�
.1C ee�/�1

�
e2 xE

(4.8)

given by xe 7! .es.e/ C e
�e/�1 and ye 7! et.e/ C ee

�.
For each vertex v 2 V , fix a total ordering of all edges of E with target v and the

same with E�. Consider e; f D e C 1 2 E, both with target v. We have a 1-Calabi–Yau
cospan (3.7) given by

kŒy˙1e �
a

kŒy˙1f �! khy˙1e ; y˙1f i  kŒz˙1e;f �

with ze;f 7! yeyf . Similarly, if e�; f � D e� C 1 2 E�, both with target v, we have a
1-Calabi–Yau cospan given by

kŒx˙1e �
a

kŒx˙1f �! khx˙1e ; x˙1f i  kŒz˙1e;f �

with ze;f 7! xexf . Finally, if e D maxE t�1.v/ and f � D minE� t�1.v/, we have a 1-
Calabi–Yau cospan given by

kŒy˙1e �
a

kŒx˙1f �! khy˙1e ; x˙1f i  kŒz˙1e;f �

with ze;f 7! yexf . Proceeding to ordered compositions of cospans, we get a 1-Calabi–Yau
cospan given by

Cv WD k
˝
.y˙1e /e2E\t�1.v/; .x

˙1
e /e2E\s�1.v/

˛
�`

e2E\t�1.v/ kŒy
˙1
e �

�` �`
e2E\s�1.v/ kŒx

˙1
e �

�
33

kŒz˙1v �;

jj

where coproducts and variables are ordered.
Now fix an ordering on V , composing the above yields a cospana

e2E

�
kŒx˙1e �q kŒy˙1e �

�
!

a
v2V

Cv  
a
v2V

kŒz˙1v �

that can be composed with (4.8) in order to get a 1-Calabi–Yau structure on � as expected.

Remark 4.9. Note that this proof is independent of the choice of the function " W xQ !
¹˙1º defining the preprojective multiplicative algebra.
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4.3. Reduction

Consider a family of 1-Calabi–Yau morphisms qv W kŒz˙1v �! k, v 2 V ; that is a collection
q D .qv/v2V 2 .k

�/V . Thanks to Lemma 3.6 and Theorem 4.7, we have a 2-Calabi–Yau
structure on the push-out of �with

`
v2V qv . To compute this push-out, let us use for each

v the kŒz˙1v �-cofibrant replacement of k given by khz0v; z
˙1
v i, where z0v lies in degree �1,

zv in degree 0, and the differential is given by z0v 7! zv � qv . We thus get the following.

Theorem 4.10. For every q 2 .k�/V.Q/, there is a 2-Calabi–Yau structure on the dg-
algebra ‡q.Q/ defined as follows:

• as a graded algebra, ‡q.Q/ is freely generated over k xQloc by the bimodule

.k xQloc/
e
˝
Re
. ˚
v2V

kz0v/I

• the differential sends z0v to� Y
e2E\t�1.v/

.1C ee�/ �
Y

e2E\s�1.v/

.1C e�e/�1
�
� qv:

Remark 4.11. • The zeroth cohomology of ‡q.Q/ is the deformed preprojective alge-
bra ƒq.Q/.

• The dg-algebra ‡q.Q/ coincides with the one of [3, Section 5.C] (in the case of a
nodal curve with rational components), as well as the one of [18, Definition 4.3].

• Theorem 4.10 generalizes [37, Theorem 5.52] from star-shaped quivers to arbitrary
ones.

5. Comparison: moduli of objects

The moduli of objects Perf was introduced by Toën–Vaquié in [33] as a functor

Perf W Catf.t.
k ! dStArt

k

from the 1-category of finite type dg-categories to the 1-category of derived Artin k-
stacks. For a finite-type dg-category A and a commutative differential graded k-algebraB ,
PerfA.B/ WD MapCatk .A;Modperf

B / consists in perfect B-module valued A-modules. In
[23], n-shifted symplectic structures for Artin stack, as well as n-shifted Lagrangian mor-
phisms and correspondences (see also [9]), have been introduced. Calabi–Yau structures
on dg-categories and functors can be considered as non-commutative analogs of shifted
symplectic and Lagrangian structures in the following sense: by [8, Theorem 5.5] (see also
[32]), the moduli stack of objects Perf sends n-Calabi–Yau structures to .2 � n/-shifted
symplectic structures, and can be extended to a functor from n-Calabi–Yau cospans to
.2 � n/-shifted Lagrangian correspondences.
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Another way of producing new shifted symplectic and Lagrangian structures from
old ones was discovered in [23, Theorem 2.5]: it is shown that for an n-shifted sym-
plectic Artin stack X , the mapping stack MAP.�; X/ in dStArt sends (nice enough) d -
oriented Artin stacks to .n� d/-shifted symplectic stacks. By [9, Theorem 4.8], the func-
tor MAP.�; X/ sends (nice enough) d -oriented cospans to .n � d/-shifted Lagrangian
correspondences. Note that the Betti-stack functor, denoted by .�/B , maps d -oriented
manifolds to (sufficiently nice) d -oriented derived stacks.

5.1. Moduli of objects of kŒx˙1�, derived loop stacks, and the adjoint quotient

On the one hand, the 1-Calabi–Yau structure on kŒx˙1� as constructed in Section 3 in-
duces a 1-shifted symplectic structure on the derived stack PerfkŒx˙1�. On the other hand,
PerfkŒx˙1� is equivalent to the derived loop stack LPerfk WD MAP.BZ;Perfk/. Knowing
thatBZ' S1B is 1-oriented, and that Perfk is 2-shifted symplectic (because k is 0-Calabi–
Yau), we obtain, thanks to [23, Theorem 2.5], a transgressed 1-shifted symplectic structure
on LPerfk .

Proposition 5.1. There is an equivalence

PerfkŒx˙1� ' LPerfk

as 1-shifted symplectic derived stacks.

Proof. On the one hand, recall that for every n-shifted symplectic derived stack X , the
derived loop stack LX is equivalent, as an .n� 1/-shifted symplectic derived stack, to the
derived Lagrangian intersection

X �
X� xX

X;

where xX denotes the same derived stack equipped with the opposite n-shifted symplectic
structure. Indeed, the functor MAP..�/B ;X/ is an oriented topological field theory (see [9,
Theorem 4.8]), and as such it sends the gluing of two oriented manifolds along a common
boundary to the corresponding derived Lagrangian intersection. The case of interest for us
is the one of S1, that is obtained by gluing two closed intervals along two points:

S1 ' pt
a

pt
`

pt

pt;

where pt denotes the point with its opposite orientation.
On the other hand, using Proposition 3.5 and the fact that Perf sends compositions

of Calabi–Yau cospans to compositions of Lagrangian correspondences (and, in particu-
lar, Calabi–Yau pushouts to Lagrangian intersections), see [8] and [6, Section 6.1.2], we
obtain that

PerfkŒx˙1� ' Perfk `
k
`
Nk

k ' Perfk �
Perfk�Perfk

Perfk ' LPerfk

as 1-shifted symplectic derived stacks.
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Finally, by restricting ourselves to the open substack consisting of perfect modules
of amplitude 0 and fixed dimension n, we get back the transgressed 1-shifted symplectic
structure on L.BGLn/ (recall that the open embedding BGLn ,! Perfk is a 2-shifted
symplectomorphism). According to [26], this 1-shifted symplectic structure coincides
with the explicit one given on the adjoint quotient

ŒGLn=GLn� ' L.BGLn/

by the quasi-Hamiltonian formalism (see [9, 26]).

Remark 5.2. The 1-Calabi–Yau evaluation morphism

q W kŒx˙1�! k; q 2 k�;

induces a 1-shifted Lagrangian morphism

Perfk ! PerfkŒx˙1�:

We let the reader check that, when restricted on the open substacks of amplitude 0modules
of dimension n, it gives back the Lagrangian morphism

BGLn ! ŒGLn=GLn�

corresponding to the group-valued moment map pt! GLn given by qIdn.

5.2. Moduli of objects of khx˙1; y˙1i, pair of pants, and fusion

Recall the Lagrangian structure on the correspondence

PerfkŒx˙1�`kŒy˙1�  Perfkhx˙1;y˙1i ! PerfkŒz˙1�; (5.3)

given by applying the moduli of objects Perf to the Calabi–Yau cospan (3.7) (see [8, Theo-
rem 5.5]). Using the other description from Section 3.3.1 of the Calabi–Yau cospan (3.7),
and the fact that the functor MAP..�/B ; Perf/ sends pt to Perfk , we obtain an alterna-
tive construction of the Lagrangian correspondence (5.3). This is achieved by applying
MAP..�/B ;Perf/ to the diagram

pt pt

��

pt
pt

��

;

BB

��

pt pt
pt Npt
Npt pt

??__

!!}}

pt ;

\\

��

pt pt

OO

pt pt

OO
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and then horizontally compose correspondences, as Perf sends push-outs to pull-backs.
Here we recall that .�/ denotes the orientation, respectively the symplectic structure, with
inverted sign. A convenient replacement of the above diagram looks as follows:

�

�

�

�

��

�

�

�

�

oo

�

��

//

� �

� �

��

¿

DD

��

//

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�oo //

� �

� �

� �

� � ¿:

ZZ

oo

��

�

�

�

�

OO

�

�

�

�oo

�
OO

//

� �

� �

OO

(5.4)

Taking pushouts along the three horizontal correspondences above yields the 1-oriented
cospan/cobordism

� �

� �

��

¿

BB

��

//

� �

� �

� �

� � ¿:

\\

oo

��

� �

� �

OO

Note that the manifold at the center of the diagram is the pair of pants (see Figure 1).
Using that MAP..�/B ;Perf/ is a fully extended TFT [10], we have that the Lagrangian

correspondence (5.3) is obtained by applying MAP..�/B ;Perf/ to the oriented cobordism
given by the pair of pants; see [9, Theorem 4.8].
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! !

!

� �

� �

� �

� �
!

� �

� �

� �

� �

�

�

�

�

�

�

�

�

Figure 1. The decomposition of the pair of pants corresponding to (5.4), in 3D and 2D.

Hence, when restricting ourselves to the substacks of amplitude zero modules of fixed
dimension n, we get a Lagrangian correspondence

ŒGLn=GLn� � ŒGLn=GLn� 
�
.GLn � GLn/=GLn

�
! ŒGLn=GLn�

that coincides with the one given by applying MAP..�/B ; BGLn/ to the pair of pants
(and using [9, Theorem 4.8]). It was shown by Safronov [26] that composition with this
Lagrangian correspondence gives back the fusion procedure from [1].

Remark 5.5. Notice that Perf sends the conjectural fully dualizable object k in CY0n from
Remark 3.10 to the fully dualizable object Perfk in Lag2n. As a consequence, Perf shall
intertwine the conjectural fully extended TFT from Remark 3.10 with the fully extended
TFT MAP..�/B ;Perfk/ from [10] (see also [9] for a heuristic). What we have done above
is following this guiding idea and applying it in an ad hoc way to the case of the pair-of-
pants.

5.3. Open questions

Before applying reduction, we have a 1-shifted Lagrangian structure on the morphism

Perfk xQloc
! PerfV.Q/

kŒx˙1�
:

Fixing a dimension vector En 2 .Z�0/V.Q/, one can consider the open substacks of dimen-
sion En amplitude 0 modules. This leads to a 1-shifted Lagrangian structure on the mor-
phism �

Rep.k xQloc; En/=GLEn
�
!
�
GLEn=GLEn

�
(note that Rep.k xQloc; En/'DRep.k xQloc; En/). Knowing from Section 5.1 that the 1-shifted
symplectic structure on the target is the standard one on the adjoint quotient, we obtain that
Rep.k xQloc; En/ is a quasi-Hamiltonian GLEn-space. We conjecture that it coincides with the
quasi-Hamiltonian structure on the very same space from [4, 34–36].
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Observe that it suffices to prove the conjecture for the simplest case Q D A2. Indeed,
in the above references the general case is obtained from the A2 one by the fusion process
of [1]. We proceeded in the same way in Section 4.2, and it follows from Section 5.2 that
our fusion procedure coincides with the one of [1] for substacks of amplitude 0 modules.

In order to prove the conjecture for A2, one could try to prove a similar statement
directly at the noncommutative level. To achieve this, one would first have to rigorously
prove that Van den Bergh’s noncommutative quasi-Hamiltonian structures [35] naturally
lead to relative Calabi–Yau structures (as was argued in the introduction).

Finally, we believe that our 1-Calabi–Yau structure on the dg-version of the multiplica-
tive preprojective algebra shall give back the non-degenerate pairing appearing in [3] (in
the case of a nodal curve with rational components) on the one hand, and could probably
be recovered from [29] on the other hand. In both cases, it is very likely that the proof of
the comparison will again go through a reduction to the A2 quiver, using fusion.

Funding. The first and second authors have received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (Grant Agreement No. 768679).
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