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Anick type automorphisms and new irreducible
representations of Leavitt path algebras

Shigeru Kuroda and Tran Giang Nam

Abstract. In this article, we give a new class of automorphisms of Leavitt path algebras of arbitrary
graphs. Consequently, we obtain Anick type automorphisms of these Leavitt path algebras and new
irreducible representations of Leavitt algebras of type .1; n/.

1. Introduction

Given a row-finite directed graph E and any field K, Abrams and Aranda Pino in [3] and
independently Ara, Moreno, and Pardo in [9] introduced the Leavitt path algebra LK.E/.
Abrams and Aranda Pino later extended the definition in [4] to all countable directed
graphs. Goodearl in [17] extended the notion of Leavitt path algebras LK.E/ to all (pos-
sibly uncountable) directed graphsE. Leavitt path algebras generalize the Leavitt algebras
LK.1; n/ of [20] and also contain many other interesting classes of algebras. In addition,
Leavitt path algebras are intimately related to graph C �-algebras (see [22]). During the
past fifteen years, Leavitt path algebras have become a topic of intense investigation by
mathematicians from across the mathematical spectrum. We refer the reader to [1,2] for a
detailed history and overview of Leavitt path algebras.

The study of the module theory over Leavitt path algebras was initiated in [8], in
connection with some questions in algebraic K-theory. As an important step in the study
of modules over a Leavitt path algebra LK.E/, the simple LK.E/-modules have been
investigated in numerous articles; see, e.g., [5, 7, 10, 12, 24].

Although, in general, classification of simple LK.E/-modules seems to be a quite dif-
ficult task, recently there have been obtained a number of interesting results describing
special classes of simple modules for Leavitt path algebras among which we mention, for
example, the following ones. Following the ideas of Smith [21], Chen [12] constructed
two types of simple modules Nw and VŒp� for the Leavitt path algebra LK.E/ of an arbi-
trary graph E by using various sinks w in E and the equivalence class Œp� of infinite paths
tail-equivalent to a fixed infinite path p in E, respectively. Ara and Rangaswamy [10]
generalized Chen’s result and constructed additional classes of non-isomorphic simple
LK.E/-modules N

BH.v/
v , NH.v/

v , and V f
Œc1�

which associated respectively to both infi-
nite emitters v and pairs .c; f / consisting of exclusive cycles c together with irreducible
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polynomials f 2KŒx� n ¹1� xº. They called all these simple modules over LK.E/ Chen
modules. Also, by using the structure of the primitive ideals over the Leavitt path algebra
of an arbitrary graph described in [23], they showed that every primitive ideal of the Leav-
itt path algebra of an arbitrary graph can be realized as the annihilator of a Chen module.
Rangaswamy [24] constructed an additional class of simple LK.E/-modules, Nv1, by
using infinite emitters v. By a different method from those presented in [10], Ánh and
the second author [7] constructed simple LK.E/-modules Sfc associated to pairs .c; f /
consisting of simple closed paths c together with irreducible polynomials f in KŒx�. We
also should mention that Ara and Rangaswamy [10] showed that all simple modules over
the Leavitt path algebra of a finite graph in which every vertex is in at most one cycle are
exactlyNw , VŒp� and V f

Œc1�
Š S

f
c , which are cited above. Koç and Özaydın [19] have clas-

sified all finite-dimensional modules for the Leavitt path algebra LK.E/ of a row-finite
graph E via an explicit Morita equivalence given by an effective combinatorial (reduc-
tion) algorithm on the graph. These obtained results induce our investigation to the study
of simple modules for Leavitt path algebras of graphs having a vertex that is in at least
two cycles. The most important case of this class is the Leavitt path algebra of a rose with
n � 2 petals. It is exactly the Leavitt algebra LK.1; n/ (see, e.g., Proposition 2.6).

As of the writing of this article, there are two known classes of non-isomorphic simple
modules for Leavitt path algebras LK.Rn/ of the rose Rn with n � 2 petals:

• simple modules VŒp� associated to infinite irrational paths p;

• simple modules Sfc associated to pairs .c; f / consisting of simple closed paths c
together with irreducible polynomials f in KŒx�.

The main goal of this article is to construct Anick type automorphisms of Leavitt
path algebras of graphs having finitely many vertices and construct new classes of simple
LK.Rn/-modules by studying the twisted modules of the simple modules Sfc under Anick
type automorphisms of LK.Rn/.

We should recall some history about investigations of automorphisms of graph C �-
algebras and Leavitt path algebras. In his beautiful paper [16], Cuntz initiated systematic
investigations of the automorphism group of On (n � 2). In particular, he showed that
there is a one-to-one correspondence between unitary elements of the Cuntz algebra On
and endomorphisms of On via u 7! �u, where �u.Si / D uSi . The problem is that in gen-
eral there is no easy way of verifying which unitaries u give rise to automorphisms �u.
In [15], Conti and Szymański provided a remedy to this problem for a large class of
endomorphisms related to unitary matrices in Mnk .C/ contained in the UHF-subalgebra.
In [14], motivated by Cuntz’s idea [16], Conti, Hong, and Szymański initiated a system-
atic investigation of endomorphisms of graph C �-algebras C �.E/ of finite graphs E.
They introduced a class of endomorphisms fixing all vertex projections �u of C �.E/ cor-
responding to unitaries u in the multiplier algebra M.C �.E// which commute with all
vertex projections. They studied localized endomorphisms of the graph algebra C �.E/ of
a finite graph E without sinks, that is, endomorphisms �u corresponding to unitaries u
from the algebraic part of the core AF-subalgebra which commute with the vertex pro-
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jections. Then, they obtained a criterion of invertibility of such localized endomorphisms,
and provided a criterion of invertibility of the restriction of a localized endomorphism
to the diagonal maximum abelian subalgebra (MASA), as well as gave combinatorial
criteria for localized endomorphisms corresponding to permutation unitaries to be auto-
morphisms. We should mention that all endomorphisms (hence also automorphisms) are
studied which only point-wise fix the vertex projections. They may well move the diago-
nal MASA. In [11], Avery, Johansen, and Szymański studied permutative automorphisms
of graph C �-algebras C �.E/ and Leavitt path algebras of finite graphs E without sinks
or sources where every cycle has an exit, by introducing a notion of a permutation graph
and use this concept to determine whether a given permutative endomorphism is an auto-
morphism. In [18], motivated by [15], Johansen, Sørensen, and Szymański investigated
polynomial endomorphisms of graph C �-algebras C �.E/ and Leavitt path algebras of
finite graphs E without sinks or sources where every cycle has an exit, by introducing the
coding graph corresponding to each such an endomorphism, and used this concept to give
a criterion for the endomorphism to restrict to an automorphism of the diagonal MASA.
We should note that Szymański et al. [11, 18] focused only on Leavitt path algebras over
integral domains of characteristic 0.

In this article, motivated by the above works, we give a new class of automorphisms of
Leavitt path algebrasLK.E/ of arbitrary graphsE over an arbitrary fieldK, by using spe-
cial pairs .P;Q/ consisting of matrices inMn.LK.E// which commutes with all vertices
in E, where n is an arbitrary positive integer. In particular, if E is a graph having finitely
many vertices, then P is exactly an invertible matrix inMn.LK.E// which commute with
all vertices in E and Q is the inverse of P . These automorphisms fix all vertices, but do
not globally preserve the diagonal MASA in general. It is interesting to note that our auto-
morphisms include analogues of the Anick automorphism of the free associative algebra
Khx1; x2; x3i (cf. [13, p. 343]). The Anick automorphism is well known in the context
of the tame generators problem which asks if the automorphism group of the K-algebra
Khx1; : : : ; xni is generated by the so-called elementary automorphisms. It is notable that,
in 2007, Umirbaev [25] solved this problem in the negative when n D 3 and K is of char-
acteristic zero, by showing that the Anick automorphism cannot be obtained by composing
elementary automorphisms.

The article is organized as follows. In Section 2, we provide a method to construct
automorphisms of Leavitt path algebras of graphs (Theorem 2.2 and Corollary 2.3). Con-
sequently, we obtain Anick type automorphisms of these Leavitt path algebras (Corol-
laries 2.5 and 2.8). In Section 3, based on Corollary 2.8 and the simple modules Sfc
mentioned above, we construct new classes of simple LK.Rn/-modules (Theorems 3.6
and 3.8).

2. Anick type automorphisms of Leavitt path algebras

The aim of this section is to describe automorphisms of Leavitt path algebras of arbitrary
graphs (Theorem 2.2). Consequently, we provide a method to construct automorphisms of
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unital Leavitt path algebras in terms of invertible matrices (Corollary 2.3) and Anick type
automorphisms of these Leavitt path algebras (Corollaries 2.5 and 2.8).

We begin this section by recalling some useful notions of graph theory. A (directed)
graph is a quadrupletE D .E0;E1; s; r/ consisting of two disjoint setsE0 andE1, called
vertices and edges respectively, together with two maps s; r W E1! E0. The vertices s.e/
and r.e/ are referred to as the source and the range of the edge e, respectively. A vertex v
for which s�1.v/ is empty is called a sink; a vertex v is regular if 0 < js�1.v/j <1; a
vertex v is an infinite emitter if js�1.v/j D 1; and a vertex is singular if it is either a sink
or an infinite emitter.

A finite path of length n in a graph E is a sequence p D e1 � � � en of edges e1; : : : ; en
such that r.ei / D s.eiC1/ for i D 1; : : : ; n � 1. In this case, we say that the path p starts
at the vertex s.p/ WD s.e1/ and ends at the vertex r.p/ WD r.en/, we write jpj D n for the
length of p. We consider the elements of E0 to be paths of length 0. We denote by E� the
set of all finite paths inE. An edge f is an exit for a path p D e1 � � � en if s.f /D s.ei / but
f ¤ ei for some 1 � i � n. A finite path p of positive length is called a closed path based
at v if v D s.p/D r.p/. A cycle is a closed path p D e1 � � � en, and for which the vertices
s.e1/; s.e2/; : : : ; s.en/ are distinct. A closed path c in E is called simple if c ¤ dn for any
closed path d and integer n � 2. We denoted by SCP.E/ the set of all simple closed paths
in E.

Definition 2.1. For an arbitrary graph E D .E0; E1; s; r/ and any field K, the Leavitt
path algebra LK.E/ of the graph E with coefficients in K is the K-algebra generated by
the union of the setE0 and two disjoint copies ofE1, sayE1 and ¹e� j e 2E1º, satisfying
the following relations for all v;w 2 E0 and e; f 2 E1:

(1) vw D ıv;ww,

(2) s.e/e D e D er.e/ and e�s.e/ D e� D r.e/e�,

(3) e�f D ıe;f r.e/,

(4) v D
P
e2s�1.v/ ee

� for any regular vertex v,

where ı is the Kronecker delta.

If E0 is finite, then LK.E/ is a unital ring having identity 1 D
P
v2E0 v (see, e.g.,

[3, Lemma 1.6]). It is easy to see that the mapping, given by v 7! v for all v 2 E0, and
e 7! e�, e� 7! e for all e 2 E1, produces an involution on the algebra LK.E/, and for any
path p D e1e2 � � � en, the element e�n � � � e

�
2e
�
1 of LK.E/ is denoted by p�. It can be shown

[3, Lemma 1.7] that LK.E/ is spanned as a K-vector space by®
pq� j p; q 2 F.E/; r.p/ D r.q/

¯
:

Indeed,LK.E/ is a Z-gradedK-algebra:LK.E/D
L
n2ZLK.E/n, where for each n2Z,

the degree n component LK.E/n is the set

spanK
®
pq� j p; q 2 E�; r.p/ D r.q/; jpj � jqj D n

¯
:
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Also, LK.E/ has the following property: if A is a K-algebra generated by a family of
elements ¹av; be; ce� j v 2 E0; e 2 E1º satisfying the relations analogous to (1)–(4) in
Definition 2.1, then there always exists a K-algebra homomorphism ' W LK.E/ ! A

given by '.v/ D av , '.e/ D be , and '.e�/ D ce� . We will refer to this property as the
universal property of LK.E/.

In [16], Cuntz showed that there is a one-to-one correspondence between unitary ele-
ments of the Cuntz algebra On and endomorphisms of On via u 7!�u, where �u.Si /DuSi ,
and provided criteria for these endomorphisms to be automorphisms. In [14], motivated
by Cuntz’s results, Conti, Hong, and Szymański introduced a class of endomorphisms
fixing all vertex projections �u of C �.E/ corresponding to unitaries in the multiplier
algebra M.C �.E// which commute with all vertex projections. Then, they studied local-
ized endomorphisms of the graph algebra C �.E/ of a finite graph without sinks, that
is, endomorphisms �u corresponding to unitaries u from the algebraic part of the core
AF-subalgebra which commute with the vertex projections, and obtained a criterion of
invertibility of such localized endomorphisms, as well as gave combinatorial criteria for
localized endomorphisms corresponding to permutation unitaries to be automorphisms.

Szymański et al. [11, 18] studied permutative automorphisms and polynomial endo-
morphisms of graph C �-algebras C �.E/ and Leavitt path algebras LK.E/, where E is a
finite graph without sinks or sources in which every cycle has an exit, andK is an integral
domain of characteristic 0.

The following theorem provides us with a method to construct automorphisms of
Leavitt path algebras of arbitrary graphs over an arbitrary field.

Theorem 2.2. LetK be a field, n a positive integer,E a graph, and v and w vertices inE
(they may be the same). Let e1; e2; : : : ; en be distinct edges inE with s.ei /D v and r.ei /D
w for all 1 � i � n. Let P D .pi;j / andQ D .qi;j / be elements ofMn.LK.E// such that
wP D Pw, wQ DQw, and wPQ D wQP D wIn. Then the following statements hold.

(i) There exists a unique homomorphism 'P;Q W LK.E/! LK.E/ of K-algebras
satisfying

'P;Q.u/ D u; 'P;Q.e/ D e; and 'P;Q.e
�/ D e�

for all u 2 E0 and e 2 E1 n ¹e1; : : : ; enº, and

'P;Q.ei / D

nX
kD1

ekpk;i and 'P;Q.e
�
i / D

nX
kD1

qi;ke
�
k

for all 1 � i � n.

(ii) If w'P;Q.pi;j / D wpi;j for all 1 � i , j � n, or w'P;Q.qi;j / D wqi;j for all
1 � i , j � n, then 'P;Q is an isomorphism and '�1P;Q D 'Q;P .

Proof. We first note that wpk;i D pk;iw and wqi;k D qi;kw for all k; i (since wP D Pw
and wQ D Qw), and

Pn
kD1wpi;kqk;j D ıi;jw D

Pn
kD1wqi;kpk;j for all i , j , where ı

is the Kronecker delta.
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(i) We define the elements ¹Qu j u 2 E0º and ¹Te; Te� j e 2 E1º of LK.E/ by setting
Qu D u,

Te D

´Pn
kD1 ekpk;i if e D ei for some 1 � i � n;

e otherwise;

and

Te� D

´Pn
kD1 qi;ke

�
k

if e D ei for some 1 � i � n;

e� otherwise:

We claim that ¹Qu; Te; Te� j u 2E0; e 2E1º is a family inLK.E/ satisfying the relations
analogous to (1)–(4) in Definition 2.1. Indeed, we haveQuQu0 D uu0 D ıu;u0uD ıu;u0Qu
for all u; u0 2 E0, showing relation (1).

For (2), we always haveQs.e/Te D Te D TeTr.e/ and Te�Qs.e/ D Te� DQr.e/Te� for
all e 2 E1 n ¹e1; : : : ; enº. For each 1 � i � n, since

vek D ekw D ek ; we�k D e
�
kv D e

�
k ; wpk;i D pk;iw; and wqi;k D qi;kw

for all k, we have

QvQei D v

nX
kD1

ekpk;i D

nX
kD1

ekpk;i D Qei ;

QeiQw D

nX
kD1

ekpk;iw D

nX
kD1

ekwpk;i D

nX
kD1

ekpk;i D Qei ;

QwTe�i D w

nX
kD1

qi;ke
�
k D

nX
kD1

qi;kwe
�
k D

nX
kD1

qi;ke
�
k D Te�i ;

Te�i Qv D

nX
kD1

qi;ke
�
kv D

nX
kD1

qi;ke
�
k D Te�i :

For (3), we obtain that Te�Tf D e�f D ıe;f r.e/ for all e; f 2 E1 n ¹e1; : : : ; enº. For
each f 2 E1 n ¹e1; : : : ; enº and 1 � i � n, we have

Te�i Tf D

nX
kD1

qi;ke
�
kf D 0 and Tf �Te D

nX
kD1

f �ekpk;i D 0;

since e�
k
f D f �ek D 0. For i; j 2 ¹1; : : : ; nº, we have

Te�i Tej D

nX
kD1

nX
lD1

qi;ke
�
kelpl;j D

nX
kD1

nX
lD1

qi;kık;lwpl;j

D

nX
kD1

wqi;kpk;j D ıi;jw D ıi;jQw ;

since e�
k
el D ık;lw and wpl;j D pl;jw.
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For (4), let u be a regular vertex in E. If u ¤ v, thenX
e2s�1.u/

TeTe� D
X

e2s�1.u/

ee� D u D Qu:

Consider the case when u D v, that is, v is a regular vertex. Write

s�1.v/ D ¹e1; : : : ; en; enC1; : : : ; emº

for some distinct enC1; : : : ; em 2 E1 with n � m <1. We note that
nX
iD1

TeiTe�i D

nX
iD1

nX
kD1

nX
lD1

ekpk;iqi;le
�
l D

nX
kD1

nX
lD1

ekw

� nX
iD1

pk;iqi;l

�
e�l

D

nX
kD1

nX
lD1

ek.ık;lw/e
�
l D

nX
kD1

eke
�
k ;

and so, we have X
e2s�1.v/

TeTe� D

mX
iD1

TeiTe�i D

mX
iD1

eie
�
i D v D Qv;

thus showing the claim. Then, by the universal property of LK.E/, there exists a K-
algebra homomorphism 'P;Q W LK.E/! LK.E/, which maps u 7! Qu, e 7! Te , and
e� 7! Te� , as desired.

(ii) Let P 0 and Q0 be elements of Mn.LK.E// obtained from P and Q by apply-
ing the homomorphism 'P;Q, respectively. Assume that w'P;Q.pi;j / D wpi;j for all
1 � i; j � n. Then, since 'P;Q is a K-algebra homomorphism and wPQ D wIn, we
have wP 0Q0 D wIn and wPQ0 D wIn. This implies that

wQ0 D wQPQ0 D QwPQ0 D QwIn D wQIn D wQ;

that means, wqi;j D w'P;Q.qi;j / for all i , j . Similarly, we receive the fact that if wQ0 D
wQ, then wP 0 D wP . Therefore, in any case, we have both wP 0 D wP and wQ0 D wQ.

We claim that 'P;Q'Q;P D idLK .E/. Indeed, it suffices to check that

'P;Q'Q;P .ei / D ei and 'P;Q'Q;P .e
�
i / D e

�
i for all 1 � i � n:

For each 1 � i � n, by definition of 'Q;P , 'Q;P .ei / D
Pn
kD1 ekqk;i D

Pn
kD1 ekwqk;i

and 'Q;P .e�i / D
Pn
kD1 pi;ke

�
k
D
Pn
kD1 pi;kwe

�
k
D
Pn
kD1wpi;ke

�
k

, so

'P;Q'Q;P .ei / D 'P;Q

� nX
kD1

ekwqk;i

�
D

nX
kD1

'P;Q.ek/w'P;Q.qk;i /

D

nX
kD1

nX
lD1

elpl;kwqk;i D

nX
lD1

el

� nX
kD1

wpl;kqk;i

�
D

nX
lD1

elıl;iw D eiw D ei
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and

'P;Q'Q;P .e
�
i / D 'P;Q

� nX
kD1

wpi;ke
�
k

�
D

nX
kD1

w'P;Q.pi;k/'P;Q.e
�
k/

D

nX
kD1

nX
lD1

wpi;kqk;le
�
l D

nX
lD1

� nX
kD1

wpi;kqk;l

�
e�l

D

nX
lD1

ıi;lwe
�
l D we

�
i D e

�
i ;

proving the claim. This implies that 'P;Q is surjective.
We next prove that 'P;Q is injective. To the contrary, suppose there exists a nonzero

element x 2 ker.'P;Q/. Then, by the reduction theorem (see, e.g., [2, Theorem 2.2.11]),
there exist a; b2LK.E/ such that either axbDu¤0, for some u2E0, or axbDp.c/¤0,
where c is a cycle in E without exits and p.x/ is a nonzero polynomial in KŒx; x�1�.

In the first case, since axb 2 ker.'P;Q/, this would imply that u D 'P;Q.u/ D 0 in
LK.E/; but each vertex is well known to be a nonzero element inside the Leavitt path
algebra, which is a contradiction.

So we are in the second case: there exists a cycle c in E without exits such that axb DPm
iD�l kic

i ¤ 0, where ki 2 K, l , and m are nonnegative integers, and we interpret ci as
.c�/�i for negative i and interpret c0 as u WD s.c/. Write c D g1q2 � � �gt , where gi 2 E1

and t is a positive integer. If gi 2E1 n ¹e1; : : : ; enº for all 1� i � t , then 'P;Q.c/D c and
'P;Q.c

�/D c�, so 0¤
Pm
iD�l kic

i D
Pm
iD�l ki'P;Q.c

i /D 'P;Q.axb/D 0 inLK.E/, a
contradiction. Consider the case that there exists a 1� k � t such that gk D ei for some i .
Then, since c is a cycle without exits, we must have nD 1 and k is a unique element such
that gk D e1. Let ˛ WD gkC1 � � � gtg1 � � � gk�1e1. We have that ˛ is a cycle in E without
exits and s.˛/Dw. Since nD 1,P Dp1;1, andQD q1;1 are two elements ofLK.E/with
wp1;1q1;1 D w D wq1;1p1;1, so wp1;1w is also a unit of wLK.E/w with .wp1;1w/�1 D
wq1;1w. Moreover, 'P;Q.wp1;1w/ D 'P;Q.w/'P;Q.p1;1/'P;Q.w/ D w'P;Q.p1;1/w D
wp1;1w and 'P;Q.wq1;1w/D 'P;Q.w/'P;Q.q1;1/'P;Q.w/Dw'P;Q.q1;1/wDwq1;1w.
By [2, Lemma 2.2.7], we have

wLK.E/w D

² hX
iDl

ki˛
i
j ki 2 K; l � h; h; l 2 Z

³
Š KŒx; x�1�

via an isomorphism that sends v to 1, ˛ to x, and ˛� to x�1; and so wp1;1w D a˛s and
wq1;1w D a

�1˛�s for some a 2 K n ¹0º and s 2 Z. If s � 0, then

a˛s D wp1;1w D 'P;Q.wp1;1w/ D 'P;Q.a˛
s/ D a'P;Q.˛/

s

D a
�
'P;Q.gkC1 � � �gtg1 � � �gk�1e1/

�s
D a.gkC1 � � �gtg1 � � �gk�1e1p1;1/

s

D a.gkC1 � � �gtg1 � � �gk�1e1wp1;1w/
s
D asC1˛s.sC1/



Anick type automorphisms and new irreducible representations 819

in wLK.E/w, so s D 0, that is, wp1;1w D aw and wq1;1w D a�1w. If s � 0, then since
'P;Q.wq1;1w/ D wq1;1w, and by repeating the argument described in the first case, we
obtain that s D 0, wp1;1w D aw, and wq1;1w D a�1w. This implies that

'P;Q.c/ D 'P;Q.g1 � � �gk�1e1gkC1 � � �gt / D .g1 � � �gk�1/e1p1;1.gkC1 � � �gt /

D .g1 � � �gk�1e1/wp1;1w.gkC1 � � �gt /D .g1 � � �gk�1e1/aw.gkC1 � � �gt /D ac

and

'P;Q.c
�/ D 'P;Q.g

�
t � � �g

�
kC1e

�
1g
�
k�1 � � �g

�
1 / D .g

�
t � � �g

�
kC1/q1;1e

�
1 .g
�
k�1 � � �g

�
1 /

D .g�t � � �g
�
kC1/wq1;1w.e

�
1g
�
k�1 � � �g

�
1 / D .g

�
t � � �g

�
kC1/a

�1w.e�1g
�
k�1 � � �g

�
1 /

D a�1c�;

so 'P;Q.cl / D alcl for all l 2 Z. We then have

0 ¤

mX
iD�l

kia
ici D

mX
iD�l

ki'P;Q.c
i / D 'P;Q.axb/ D 0

in LK.E/, which is a contradiction.
In any case, we arrive at a contradiction, and so we infer that 'P;Q is injective, thus

'P;Q is an isomorphism with '�1P;Q D 'Q;P , finishing the proof.

Consequently, we obtain a method to construct automorphisms of unital Leavitt path
algebras in terms of invertible matrices.

Corollary 2.3. LetK be a field, n a positive integer,E a graph with finitely many vertices,
and v andw vertices inE (they may be the same). Let e1; e2; : : : ; en be distinct edges inE
with s.ei / D v and r.ei / D w for all 1 � i � n. Let P D .pi;j / be a unit of Mn.LK.E//

with wP D Pw and P�1 D .qi;j /. Then the following statements hold.

(i) There exists a unique homomorphism 'P W LK.E/ ! LK.E/ of K-algebras
satisfying

'P .u/ D u; 'P .e/ D e; and 'P .e
�/ D e�

for all u 2 E0 and e 2 E1 n ¹e1; : : : ; enº, and

'P .ei / D

nX
kD1

ekpk;i and 'P .e
�
i / D

nX
kD1

qi;ke
�
k

for all 1 � i � n.

(ii) If 'P .pi;j / D pi;j for all 1 � i , j � n, then 'P is an isomorphism and '�1P D
'P�1 .

Proof. SincewP DPw, we haveP�1wPP�1DP�1PwP�1, sowP�1DP�1w. Since
PP�1 D In D P

�1P , it is obvious that wPP�1 D wIn D wP�1P . Therefore, the pair
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of the matrices P and P�1 satisfies the conditions analogous to the one of the matrices
P and Q in Theorem 2.2. Then, by Theorem 2.2, we immediately obtain the statements,
thus finishing the proof.

For clarification, we illustrate Theorem 2.2 and Corollary 2.3 by presenting the fol-
lowing example.

Examples 2.4. Let K be a field and R1 the following graph:

R1 D �
v

e

��

:

Then LK.R1/ Š KŒx; x�1� via an isomorphism that sends v to 1, e to x, and e� to x�1.
LetP D e�. We have thatP is a unit ofLK.R1/withP�1D e. Then, by Corollary 2.3, we
obtain the endomorphism 'P defined by v 7! v, e 7! eP D ee� D v, and e� 7! P�1e� D

ee� D v. We have that 'P is not isomorphic and 'P .P / D 'P .e
�/ D v ¤ e� D P in

LK.R1/. This implies that the hypothesis “'P .pi;j / D pi;j for all 1 � i , j � n” in part
(ii) of Corollary 2.3 cannot be removed.

In light of the well-known Anick automorphism (see [13, p. 343]) of the free asso-
ciative algebra Khx; y; zi, we construct Anick type automorphisms of unital Leavitt path
algebras.

Corollary 2.5 (Anick type automorphism). LetK be a field,E a graph with finitely many
vertices, and v and w vertices in E (they may be the same). Let e1 and e2 be two distinct
edges in E with s.ei / D v and r.ei / D w for all i . Let AE .e1; e2/ be the K-subalgebra
of LK.E/ generated by the sets E0, E1 n ¹e2º and ¹e� j e 2 E1 n ¹e1ºº. Then, for any
p 2 AE .e1; e2/ with wp D pw, there exists a unique automorphism �p of the K-algebra
LK.E/ satisfying

�p.e2/ D e2 C e1p; �p.e
�
1 / D e

�
1 � pe

�
2 ;

��1p .e2/ D e2 � e1p; ��1p .e�1 / D e
�
1 C pe

�
2

and �p.q/ D q for all q 2 AE .e1; e2/.

Proof. Let P D
�
1 p
0 1

�
2 M2.LK.E//. We then have that P is a unit of M2.LK.E//

with P�1 D
�
1 �p
0 1

�
. It is clear that �p D 'P , which is described in Corollary 2.3 (i), and

'P .q/ D q for all q 2 AE .e1; e2/. Then, using Corollary 2.3, we immediately receive the
corollary, thus finishing the proof.

Let K be a field and n � 2 any integer. Then the Leavitt K-algebra of type .1I n/,
denoted by LK.1; n/, is the K-algebra

Khx1; : : : ; xn; y1; : : : ; yni=

*
nX
iD1

xiyi � 1; yixj � ıi;j 1 j 1 � i; j � n

+
:
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Notationally, it is often more convenient to view LK.1; n/ as the free associative K-
algebra on the 2n variables x1; : : : ; xn; y1; : : : ; yn subject to the relations

Pn
iD1 xiyi D 1

and yixj D ıi;j 1 (1 � i; j � n); see [20] for more details.
For any integer n � 2, we letRn denote the rose with n petals graph having one vertex

and n loops:

Rn D �v e1ff

e2

ss

e3

��

en

QQ::: :

Then LK.Rn/ is defined to be the K-algebra generated by v, e1; : : : ; en, e�1 ; : : : ; e
�
n ,

satisfying the relations

v2 D v; vei D ei D eiv; ve�i D e
�
i D e

�
i v; e�i ej D ıi;j v; and

nX
iD1

eie
�
i D v

for all 1 � i; j � n. In particular, v D 1LK .Rn/.

Proposition 2.6 ([2, Proposition 1.3.2]). Let n � 2 be any positive integer, K a field, and
Rn the rose with petals. Then LK.1; n/ Š LK.Rn/ as K-algebras.

Proof. We can show that the map ' W LK.1; n/ ! LK.Rn/, given by the extension of
'.1/ D v, '.xi / D ei , and '.yi / D e�i , is a K-algebra isomorphism.

With Proposition 2.6 in mind, for the remainder of this article we investigate the
structure of the Leavitt algebra LK.1; n/ by equivalently investigating the structure of
the Leavitt path algebra LK.Rn/.

Notation 2.7. For any integer n � 2 and any field K, we denote by ARn.e1; e2/ the K-
subalgebra of LK.Rn/ generated by

v; e1; e3; : : : ; en; e
�
2 ; : : : ; e

�
n :

We should mention that by [6, Theorem 1], the following elements form a basis of
the K-algebra ARn.e1; e2/: (1) v, (2) p D ek1 � � � ekm , where ki 2 ¹1; 3; : : : ; nº, (3) q� D
e�t1 � � � e

�
th

, where ti 2 ¹2; 3; : : : ; nº, (4) pq�, where p and q� are defined as in items (2)
and (3), respectively.

The following result provides us with Anick type automorphisms of Leavitt algebras
of type .1; n/.

Corollary 2.8. Let n � 2 be a positive integer, K a field, and Rn the rose with n petals.
Then, for any p 2 ARn.e1; e2/, there exists a unique automorphism �p of the K-algebra
LK.Rn/ satisfying �p.e2/D e2C e1p, �p.e�1 /D e

�
1 �pe

�
2 , ��1p .e2/D e2 � e1p, ��1p .e�1 /

D e�1 C pe
�
2 , and �p.q/ D q for all q 2 ARn.e1; e2/.

Proof. Since vp D p D pv, the corollary immediately follows from Corollary 2.5.
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3. New irreducible representations of LK .Rn/

In this section, we study the twisted modules of the simple LK.Rn/-modules Sfc men-
tioned in Section 1 under Anick type automorphisms of LK.Rn/ introduced in Corol-
lary 2.8. In particular, we obtain new classes of simple LK.Rn/-modules (Theorems 3.6
and 3.8).

Let E be an arbitrary graph. An infinite path p WD e1 � � � en � � � in a graph E is a
sequence of edges e1; : : : ; en; : : : such that r.ei / D s.eiC1/ for all i . We denote by E1

the set of all infinite paths in E. For p WD e1 � � � en � � � 2 E
1 and n � 1, Chen [12]

defines �>n.p/ D enC1enC2 � � � ; and ��n.p/ D e1e2 � � � en. Two infinite paths p, q are
said to be tail-equivalent (written p � q) if there exist positive integers m, n such that
�>n.p/ D �>m.q/. Clearly � is an equivalence relation on E1, and we let Œp� denote the
� equivalence class of the infinite path p.

Let c be a closed path in E. Then the path ccc � � � is an infinite path in E, which we
denote by c1. Note that if c and d are closed paths inE such that c D dn, then c1 D d1

as elements of E1. The infinite path p is called rational in case p � c1 for some closed
path c. If p 2 E1 is not rational, we say p is irrational. We denote by E1rat and E1irr the
sets of rational and irrational paths in E, respectively.

Given a fieldK and an infinite path p, Chen [12] defines VŒp� to be theK-vector space
having ¹q 2 E1 j q 2 Œp�º as a basis, that is, having basis consisting of distinct elements
of E1 which are tail-equivalent to p. VŒp� is made a left LK.E/-module by defining, for
all q 2 Œp� and all v 2 E0, e 2 E1,

v � q D q or 0 according as v D s.q/ or notI

e � q D eq or 0 according as r.e/ D s.q/ or notI

e� � q D �1.q/ or 0 according as q D e�1.q/ or not:

In [12, Theorem 3.2], Chen showed the following result.

Theorem 3.1 ([12, Theorem 3.2]). LetK be a field,E an arbitrary graph, and p;q 2E1.
Then the following holds:

(1) VŒp� is a simple left LK.E/-module;

(2) EndK.VŒp�/ Š K;

(3) VŒp� Š VŒq� if and only if p � q, which happens precisely when VŒp� D VŒq�.

Theorem 3.1 provides us with the following two classes of simple modules for the
Leavitt path algebra LK.E/ of an arbitrary graph E:

• VŒ˛�, where ˛ 2 E1irr ;

• VŒˇ�, where ˇ 2 E1rat .

We note that for any ˇ 2 E1rat , VŒˇ� D VŒc1� for some c 2 SCP.E/. By [5, Theorem 2.8],
we have VŒˇ�D VŒc1�ŠLK.E/v=LK.E/.c � v/ as leftLK.E/-modules; i.e., it is finitely
presented; while VŒ˛� (˛ 2 E1irr ) is, in general, not finitely presented by [7, Corollary 3.5].



Anick type automorphisms and new irreducible representations 823

In [7], Ánh and the second author constructed simple LK.E/-modules Sfc associated to
pairs .f; c/ consisting of simple closed paths c together with irreducible polynomials f in
KŒx�. We will represent again this result in Theorem 3.2 below. To do so, we need some
notions.

Let K be a field, E a graph, and c a closed path in E based at v. Let f .x/ D a0 C
a1x C � � � C anx

n be a polynomial in KŒx�. We denote by f .c/ the element

f .c/ WD a0v C a1c C � � � C anc
n
2 LK.E/:

We denote by KŒc� the subalgebra of LK.E/ generated by v and c. By the Z-grading
on LK.E/, KŒc� is isomorphic to the polynomial algebra KŒx� by the map: v 7! 1 and
c 7! x. We denote by Irr.KŒx�/ the set of all irreducible polynomials in KŒx� written in
the form 1 � a1x � � � � � anx

n.

Theorem 3.2 (cf. [7, Theorems 4.3 and 4.7]). Let K be a field, E an arbitrary graph, c
a simple closed path in E based at v, and f .x/ D 1 � a1x � � � � � anxn an irreducible
polynomial in KŒx�. Then the following holds:

(1) the cyclic left LK.E/-module Sfc generated by z subject to z D .a1c C � � � C

anc
n/z is simple, and its endomorphism ring is isomorphic to KŒx�=KŒx�f .x/.

Moreover,
Sfc Š LK.E/v=LK.E/f .c/;

as left LK.E/modules, via the map z 7! v C LK.E/f .c/;

(2) for any g 2 Irr.KŒx�/ and any simple closed path d inE, Sfc Š S
g

d
as leftLK.E/-

modules if and only if f D g and c1 � d1.

Proof. (1) We note that vz D z and z D cnf1.c/nz for all n � 1, where f1.c/ D a1v C
a2c C � � � C anc

n�1. By the Z-grading on LK.E/, LK.E/v=LK.E/f .c/ ¤ 0. Since
f .c/.vCLK.E/f .c//D f .c/CLK.E/f .c/D 0 inLK.E/v=LK.E/f .c/, there exists
a surjective LK.E/-homomorphism � W S

f
c ! LK.E/v=LK.E/f .c/ such that �.z/ D

v C LK.E/f .c/, and so Sfc ¤ 0.
We claim that Sfc is a simple left LK.E/-module. Indeed, let y be a nonzero ele-

ment in Sfc . Since Sfc D LK.E/z, y may be written in the form y D rz and 0 ¤ r DPm
iD1 ki�i�

�
i 2 LK.E/, wherem is minimal such that ki 2K n ¹0º and �i ; �i 2 E� with

r.�i / D r.�i / for all 1 � i � m. Let n be a positive integer such that j�i � njcj for all
1 � i � m. We then have

y D

� mX
iD1

ki�i�
�
i

�
z D

� mX
iD1

ki�i�
�
i

�
cnf1.c/

nz D

� mX
iD1

ki�i�
�
i c
nf1.c/

n

�
z:

By the minimality ofm, ��i c
n ¤ 0 for all 1� i �m. Then, for each i , there exists ıi 2E�

such that cn D �iıi and r.ıi / D v WD r.c/ D s.c/. This implies that

y D

� mX
iD1

ki�i�
�
i c
nf1.c/

n

�
z D

� mX
iD1

ki�iıif1.c/
n

�
z D

mX
iD1

ki˛if1.c/
nz;
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where ˛i D �iıi .i D 1; : : : ; m/. We note that ˛ic1 D j̨ c
1 in E1 if and only if

˛i D j̨ c
ni for some ni 2 ZC, or j̨ D ˛ic

nj for some nj 2 ZC, and f .c/z D 0 in
S
f
c . Consequently, y may be written in the form y D

Pd
iD1 ˇipi .c/z, where pi .c/’s are

nonzero elements in KŒc�=KŒc�f .c/ and ˇi ’s are paths in E� such that ˇic1’s are dis-
tinct infinite paths in E1, and so there exists a positive integer t such that ��t .ˇic1/’s
are distinct paths in E�. This implies that ��tCj .ˇic1/’s are distinct paths in E� for all
j � 0. Therefore, without loss of generality, we may assume that ��t .ˇ1c1/ D ˇ1cl for
some l � 1. We then have

��t .ˇ1c
1/�y D ��t .ˇ1c

1/�
� dX
iD1

ˇipi .c/z

�
D ��t .ˇ1c

1/�
� dX
iD1

ˇic
lpi .c/f1.c/

lz

�
D p1.c/f1.c/

lz:

Since p1.c/f1.c/l is a nonzero element in KŒc�=KŒc�f .c/ and

KŒc�=KŒc�f .c/ Š KŒx�=KŒx�f .x/

is a field, there exist q and h 2 KŒc� such that qp1.c/f1.c/l D v C hf .c/, and so

q��t .ˇ1c
1/�y D qp1.c/f1.c/

lz D vz C hf .c/z D z:

This implies that z 2 LK.E/y, and hence Sfc D LK.E/z D LK.E/y. Consequently, Sfc
is a simple left LK.E/-module, showing the claim. This implies that � is an isomorphism.

Let ' W Sfc ! S
f
c be a nonzero LK.E/-homomorphism. By the same approach as

above, '.z/may be written in the form 0¤ '.z/D
Pm
iD1 ˇipi .c/z, wherem� 1, pi .c/’s

are nonzero elements in KŒc�=KŒc�f .c/, and ˇi ’s are paths in E� such that ˇic1’s are
distinct infinite paths in E1. If c1 ¤ ˇic1 in E1 for all 1 � i � m, then there exists
a positive integer d such that ��d .c1/ and ��d .ˇic1/’s are distinct paths in E�, and so
.c�/dˇic

d D 0 for all i . This implies that

'
�
.c�/dz

�
D .c�/d'.z/ D .c�/d

� mX
iD1

ˇipi .c/z

�
D .c�/d

� mX
iD1

ˇic
dpi .c/f1.c/

dz

�
D 0:

On the other hand, we have that ' is an automorphism (since ' is nonzero and Sfc is
simple) and .c�/dz D f1.c/dz ¤ 0, and so '..c�/dz/ ¤ 0, a contradiction. This implies
that there exists an i such that ˇic1 D c1 in E1. Without loss of generality, we may
assume that ˇ1c1 D c1. We then have that ˇ1 D ct for some t � 0, and ��d .c1/ D
��d .ˇ1c

1/ and ��d .ˇic1/ (i D 2; : : : ; m) are distinct paths in E�, so ��dCl .c1/ D
��dCl .ˇ1c

1/ and ��dCl .ˇic1/ (i D 2; : : : ; m) are distinct paths in E� for all l � 0.
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Therefore, without loss of generality, we may assume that ��d .c1/ D ��d .ˇ1c1/ D cl

for some l � t , and so

'..c�/lz/ D .c�/l'.z/ D .c�/l .ctp1.c/z C

mX
iD2

ˇipi .c/z/

D .c�/l .clp1.c/f1.c/
l�tz C

mX
iD2

ˇic
lpi .c/f1.c/

lz/

D p1.c/f1.c/
l�tz C

mX
iD2

.c�/lˇic
lpi .c/f1.c/

lz D p1.c/f1.c/
l�tz:

This implies that

'.z/ D '
�
cl .c�/lz

�
D cl'

�
.c�/lz

�
D clp1.c/f1.c/

l�tz;

so '.z/ can be written in the form '.z/ D p.c/z, where

p.c/ 2 KŒc�=KŒc�f .c/ Š KŒx�=KŒx�f .x/:

Conversely, let p.c/ be a nonzero element in KŒc�=KŒc�f .c/. We then have p.c/z ¤
0 in Sfc (since vz D z ¤ 0 and p.c/ is a unit in KŒc�=KŒc�f .c/) and f .c/.p.c/z/ D
.f .c/p.c//z D .p.c/f .c//z D p.c/.f .c/z/ D 0, and so there exists a nonzero LK.E/-
homomorphism � W S

f
c ! S

f
c such that �.z/ D p.c/z. Therefore, we have

EndLK .E/.S
f
c / Š KŒc�=KŒc�f .c/ Š KŒx�=KŒx�f .x/:

(2) Write g.x/ D 1� b1x � � � � � bmxm 2 KŒx� and c D e1 � � � et . Assume that Sg
d

is
the left LK.E/-module generated by z0 subject to

z0 D .b1d C � � � C bmd
m/z0 D dg1.d/z

0:

()) Assume that ' WSfc !S
g

d
is anLK.E/-isomorphism. Then, by the same approach

as above, '.z/ D
Ps
iD1 ˛iaiz

0, where ai ’s are nonzero elements in KŒd�=KŒd �g.d/ and
˛i ’s are paths in E� such that ˛id1’s are distinct infinite paths in E1. If c1 ¤ ˛id1 in
E1 for all 1 � i � s, then there exist a positive integer t such that .c�/t˛id t D 0 for all
1 � i � s. Then, since z0 D dg1.d/z0, so

'.z/ D

sX
iD1

˛iaiz
0
D

sX
iD1

˛iaid
tg1.d/

tz0 D

sX
iD1

˛id
taig1.d/

tz0

and

'
�
.c�/tz

�
D .c�/t'.z/ D

sX
iD1

.c�/t˛id
taig1.d/

tz0 D 0:

On the other hand, we note that .c�/tz D f1.c/
tz ¤ 0 in Sfc , so '..c�/tz/ ¤ 0, since

' is an LK.E/-isomorphism, a contradiction. This implies that c1 D ˛id
1 for some
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1 � i � s, so c1 � d1. Since c and d are simple closed paths in E, we must have
d D cj WD ej � � � ete1 � � � ej�1 for some 1 � j � t .

Let z00 WD e1 � � �ej�1z0 if j ¤ 1 and z00 WD z0 if j D 1. Since z0 D .e1 � � �ej�1/�z00 ¤ 0,
z00 ¤ 0 in Sg

d
D S

g
cj . We then have ej � � � etg.c/z00 D cjg.cj /z0 D dg.d/z0 D 0 in Sg

d
, and

so g.c/z00 D .ej � � � et /�ej � � � etg.c/z00 D 0 in Sg
d

. By item (1), Sg
d

can be also generated
by z00 subject to g.c/z00 D 0.

By repeating approach described in the proof of item (1), we obtain that '.z/ D
p.c/z00, where p.c/ is a nonzero element of KŒc�=KŒc�g.c/. We then have

0 D '.0/ D '
�
f .c/z

�
D f .c/'.z/ D f .c/

�
p.c/z00

�
D
�
p.c/f .c/

�
z00;

and so p.c/f .c/D0 inKŒc�=KŒc�g.c/, by item (1). Since p.c/ is a unit inKŒc�=KŒc�g.c/,
f .c/ 2 KŒc�g.c/. Then, since f is an irreducible polynomial in KŒx�, we must have
f D g.

(() Assume that f D g and c1 � d1. Since c and d are simple closed paths,
d D cj WD ej � � � ete1 � � � ej�1 for some 1 � j � t . Then, by repeating method described
as in the direction ()), we obtain that Sfc Š S

f

d
, thus finishing the proof.

We should mention the following useful remark.

Remark 3.3. Let K be a field, E a graph, and c D e1 � � � et a simple closed path in E
based at v. Let f .x/ 2 Irr.KŒx�/.

(1) We denote by …c the set of all the following closed paths

c1 WD c; c2 WD e2 � � � ete1; : : : ; cn WD ene1 � � � en�1:

By Theorem 3.2, all modules Sfci are isomorphic to each other, and for a simple closed path
d , Sf

d
Š S

f
c if and only if d 2…c . Consequently, if one can represent their isomorphism

class by a simple module Sf…c isomorphic to some Sfci , then Sf…c is well defined and
depends only on the .f;…c/.

(2) If f .x/ D 1 � x 2 KŒx�, then by Theorem 3.2 (1) and [5, Theorem 2.8], we have
S
f
c Š LK.E/v=LK.E/.c � v/ Š VŒc1� as left LK.E/-modules.

(3) It was shown in the proof of Theorem 3.2 that every element y of Sfc may be
written in the form y D

Pn
iD1 ˛ipi .c/z, where ˛i ’s are paths in E such that ˛ic1’s are

distinct infinite paths in E1 and pi .c/’s are nonzero elements of KŒc�=KŒc�f .c/.

We next construct new classes of simple modules for the Leavitt path algebra LK.Rn/
by using Theorem 3.2, Corollary 2.8, and special closed paths in Rn.

Notation 3.4. For any integer n � 2, we denote by Cs.Rn/ the set of simple closed paths
of the form c D ek1ek2 � � � ekm , where ki 2 ¹1; 3; : : : ; nº for all 1 � i �m� 1 and km D 2,
in Rn.

Let c D ek1ek2 � � � ekm 2 Cs.Rn/, p 2 ARn.e1; e2/, and f D 1� a1x1 � � � � � anxn D
1� xf1.x/2 Irr.KŒx�/. We have a leftLK.Rn/-module Sf;pc , which is the twisted module
.S
f
c /

�p , where �p is the automorphism of LK.Rn/ defined in Corollary 2.8. Denoting by
� the module operation in Sf;pc , we have the following useful fact.
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Lemma 3.5. Let K be a field, n � 2 a positive integer, and Rn the rose with n petals.
Let p 2 ARn.e1; e2/ be an arbitrary element, c 2 Cs.Rn/, and f 2 Irr.KŒx�/. Then the
following statements hold:

(1) c � y D cy C ek1 � � � ekm�1e1py for all y 2 Sf;pc ;

(2) .c�/m � z D .c�/mz for all m � 1, where z is a generator of the left LK.E/-
module Sfc which is described in Theorem 3.2.

Proof. (1) By Corollary 2.8, we have �p.c/D c C ek1 � � � ekm�1e1p, so c � y D �p.c/y D
cy C ek1 � � � ekm�1e1py for all y 2 Sf;pc , as desired.

(2) If eki ¤ e1 for all 1 � i � m � 1, then �p.c�/ D c�, and so c� � z D c�z, as
desired. Consider the case that eki D e1 for some 1 � i � m � 1. Let ` be the number
of all elements 1 � i � m � 1 such that eki D e1. We use induction on ` to establish the
claim that �p.c�/c D 1 in LK.Rn/. If ` D 1, there is a unique element 1 � i � m � 1
such that eki D e1. We then have

�p.c
�/ D e�km � � � e

�
kiC1

.e�1 � pe
�
2 /e
�
ki�1
� � � e�k1 D c

�
� e�km � � � e

�
kiC1

pe�2e
�
ki�1
� � � e�k1 ;

and so
�p.c

�/c D .c� � e�km � � � e
�
kiC1

pe�2e
�
ki�1
� � � e�k1/c D 1;

since e�2eki D e�2e1 D 0, as desired. Now we proceed inductively. For ` > 1, let j WD
min¹i j 1 � i � m � 1 and eki D e1º. We have

�p.c
�/ D �p.e

�
km
� � � e�kjC1/.e

�
1 � pe

�
2 /e
�
kj�1
� � � e�k1 :

It is clear that ekjC1 � � � ekm 2 Cs.Rn/. Then, by the induction hypothesis, we obtain that
�p.e

�
km
� � � e�

kjC1
/ekjC1 � � � ekm D 1. This implies that

�p.c
�/c D �p.e

�
km
� � � e�kjC1/.e

�
1 � pe

�
2 /e
�
kj�1
� � � e�k1c

D �p.e
�
km
� � � e�kjC1/ekjC1 � � � ekm D 1;

since e�2ekj D e
�
2e1D 0, thus showing the claim. By induction we get that �p..c�/m/cmD

�p.c
�/mcm D 1 in LK.Rn/ for all m � 1.

By Theorem 3.2, z D cf1.c/z, so z D cmf1.c/
mz and .c�/mz D f1.c/

mz for all
m � 1. We then have

.c�/m � z D �p
�
.c�/m

�
z D �p

�
.c�/m

��
cmf1.c/

mz
�

D
�
�p
�
.c�/m

�
cm
�
f1.c/

mz D f1.c/
mz D .c�/mz

for all m � 1, thus finishing the proof.

We are now in position to provide the first main result of this section.

Theorem 3.6. Let K be a field, n � 2 a positive integer, and Rn the rose with n petals.
Let p and q 2 ARn.e1; e2/ be two arbitrary elements, let c; d 2 Cs.Rn/, and let f; g 2
Irr.KŒx�/. Then the following holds:
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(1) Sf;pc is a simple left LK.Rn/-module;

(2) Sf;pc Š S
g;q

d
as left LK.Rn/-modules if and only if f D g, c D d , and p � q D

rf .c/ for some r 2 LK.Rn/;

(3) for any simple closed path ˛ in Rn, Sf;pc Š S
f
…˛

as left LK.Rn/-modules if and
only if ˛ 2 …c and p D rf .c/ for some r 2 LK.Rn/;

(4) EndLK .Rn/.S
f;p
c / Š KŒx�=KŒx�f .x/;

(5) Sf;pc Š LK.Rn/=LK.Rn/f .�
�1
p .c//.

Proof. (1) It follows from the fact that Sfc is a simple left LK.Rn/-module (by Theorem
3.2) and �p is an automorphism of LK.Rn/ (by Corollary 2.8).

(2) Assume that ' W Sf;pc ! S
g;q

d
is an LK.Rn/-isomorphism. Let z and z0 be gen-

erators of the left LK.E/-modules Sf;pc and Sg;q
d

which are described in Theorem 3.2,
respectively. We then have 0 ¤ '.z/ D

Pt
iD1 ˛iaiz

0 in Sg;q
d

, where ˛i ’s are nonzero
elements of KŒd�=KŒd �g.d/ and ˛i ’s are paths in .Rn/� such that ˛id1’s are distinct
infinite paths in .Rn/1. By Theorem 3.2 and Lemma 3.5, we note that z D ckf1.c/kz and
.c�/k � zD .c�/kz in Sf;pc for all k � 1, and z0D d lg1.d/lz0 and .d�/l � z0D .d�/lz0 in
S
g;q

d
for all l � 1. Therefore, by repeating approach described in the proof of the direction

.)/ of Theorem 3.2 (2), we obtain that c1 � d1 and '..c�/kz/ D az0 for some k � 1
and a nonzero element a 2KŒd�=KŒd �g.d/. Then, since c1 � d1, we have d 2…c , and
so cD d , since c and d 2Cs.Rn/. We also note that '..c�/kC1 � z/D '.c� � ..c�/kz//D
c� � '..c�/kz/ D c� � .az0/ D c�.az0/ D ag1.c/z

0. By induction, we may prove that

'
�
.c�/kCi � z

�
D '

�
.c�/kCiz

�
D ag1.c/

iz0

for all i � 0, where g1.c/0 WD 1LK .Rn/.
In Sf;pc we have z D cmf1.c/mz and .c�/m D f1.c/mz for all m � 1, and c � z D

cz C ek1 � � � ekm�1e1pz D cz C p
0z, where p0 WD ek1 � � � ekm�1e1p 2 ARn.e1; e2/, so

c �
�
.c�/kC1z

�
D c �

�
f1.c/

kC1z
�
D c

�
f1.c/

kC1z
�
C p0

�
f1.c/

kC1z
�

D f1.c/
kz C p0

�
f1.c/

kC1z
�
D .c�/kz C p0

�
.c�/kC1z

�
D .c�/kz C p0 �

�
.c�/kC1z

�
;

since �p.p0/ D p0 (by Corollary 2.8). This implies that

'
�
c �

�
.c�/kC1z

��
D '

�
.c�/kz

�
C '

�
p0 �

�
.c�/kC1z

��
D az0 C p0ag1.c/z

0

D az0 C ek1 � � � ekm�1e1pag1.c/z
0:

On the other hand,

'
�
c �

�
.c�/kC1z

��
D c � '

�
.c�/kC1z

�
D c �

�
ag1.c/z

0
�

D cag1.c/z
0
C ek1 � � � ekm�1e1qag1.c/z

0

D az0 C ek1 � � � ekm�1e1qag1.c/z
0;
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since cag1.c/z0 D acg1.c/z0 and z0 D cg1.c/z0. From these observations, we have

ek1 � � � ekm�1e1pag1.c/z
0
D ek1 � � � ekm�1e1qag1.c/z

0

in Sgc , showing that ek1 � � � ekm�1e1.p � q/ag1.c/z
0 D 0 in Sgc , and hence

.p � q/ag1.c/z
0
D .ek1 � � � ekm�1e1/

�ek1 � � � ekm�1e1.p � q/ag1.c/z
0
D 0

in Sgc . By Theorem 3.2 (1), we have

Sgc Š LK.Rn/=LK.Rn/g.c/;

as leftLK.Rn/-modules, via the map: z 7! 1CLK.Rn/g.c/. Therefore, .p� q/ag1.c/D
bg.c/ for some b 2LK.Rn/. Since ag1.c/ is a unit ofKŒc�=KŒc�g.c/, there exist elements
˛; ˇ 2 KŒc� such that .ag1.c//˛ D 1C ˇg.c/, and so

bg.c/˛ D .p � q/ag1.c/˛ D .p � q/
�
1C ˇg.c/

�
D p � q C .p � q/ˇg.c/:

This implies that
p � q D .b˛ C qˇ � pˇ/g.c/ D rg.c/;

where r WD b˛ C qˇ � pˇ 2 LK.Rn/.
Write f .x/ D 1 � a1x � � � � � asxs . We then have .1 � a1c � � � � � ascs/z D 0 and

..c�/kCs � a1.c
�/kCs�1 � � � � � as.c

�/k/z D .c�/kCs.1 � r1c � � � � � asc
s/z D 0 in

S
f;p
c , and so

ag1.c/
sf .c/z0 D ag1.c/

s.1 � a1c � � � � � asc
s/z0

D ag1.c/
sz0 � a1ag1.c/

s�1z0 � � � � � asz
0

D '
��
.c�/kCs � a1.c

�/kCs�1 � � � � � as.c
�/k
�
z
�
D '.0/ D 0

in Sgc . By repeating the same argument described above, we obtain that f .c/ D rg.c/ for
some 
 2 LK.Rn/. Write 
 D

Pd
iD1 ki˛iˇ

�
i , where ki 2 K n ¹0º and ˛i , ˇi are paths in

Rn. Let m D max¹j˛i j; jˇi j j 1 � i � dº. We then have

.c�/m
cm D

dX
iD1

ki .c
�/m˛iˇ

�
i c
m
2 KŒc�

and

f .c/ D .c�/mcmf .c/ D .c�/mf .c/cm

D .c�/m
� dX
iD1

ki˛iˇ
�
i

�
g.c/cm D

� dX
iD1

ki .c
�/m˛iˇ

�
i c
m

�
g.c/

in KŒc�, and so f D g, since f; g 2 Irr.KŒx�/.
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Conversely, assume that f D g, c D d , and p � q D rf .c/ for some r 2 LK.Rn/.
We use induction to claim that �q.��1p .cm//z D cmz for allm � 1. FormD 1, by Corol-
lary 2.8, ��1p .c/ D ek1 � � � ekm�1e2 � ek1 � � � ekm�1e1p, and so

�q
�
��1p .c/

�
D �q.ek1 � � � ekm�1e2/ � �q.ek1 � � � ekm�1e1p/

D c C ek1 � � � ekm�1e1q � ek1 � � � ekm�1e1p

D c C ek1 � � � ekm�1e1.q � p/

D c � ek1 � � � ekm�1e1rf .c/:

Then, since f .c/z D 0, we have �q.��1p .c//z D cz. For m > 1, we have

�q
�
��1p .cmC1/

�
z D �q

�
��1p .c/��1p .cm/

�
z D �q

�
��1p .c/

�
�q
�
��1p .cm/

�
z

D �q
�
��1p .c/

�
cmz D

�
c � ek1 � � � ekm�1e1rf .c/

�
.cmz/

D cmC1z � ek1 � � � ekm�1e1rf .c/c
mz

D cmC1z � ek1 � � � ekm�1e1rc
mf .c/z D cmC1z;

as desired. This shows that �q.��1p .f .c///z D f .c/z.

We note that since Sf;pc is a simple left LK.Rn/-module, every element of Sf;pc may
be written in the form �p.s/z, where s 2 LK.Rn/. Define ' W Sf;pc ! S

f;q
c as follows:

�p.s/z 7! �q.s/z. We claim that ' is well defined. Indeed, let s and t be two elements
in LK.Rn/ such that �p.s/z D �p.t/z in Sfc . By Theorem 3.2 (1), �p.s � t / D �p.s/ �
�p.t/ D bf .c/ for some b 2 LK.Rn/, so s � t D ��1p .bf .c// D ��1p .b/��1p .f .c//. This
implies that �

�q.s/ � �q.t/
�
z D �q.s � t /z D �q

�
��1p .b/

�
�q
�
��1p

�
f .c/

��
z

D �q
�
��1p .b/

��
f .c/z

�
D 0

in Sfc , thus proving the claim.
It is obvious that ' is a nonzero LK.Rn/-homomorphism (since '.z/ D z), so ' is an

isomorphism.
(3) .)/ Assume that Sf;pc Š S

f
…˛

. We then have Sf;pc Š S
f
˛ . By repeating the same

method described in the proof of the direction .)/ of Theorem 3.2 (2), we obtain that
˛ 2 …c . This implies that Sf;pc Š S

f
c D S

f;0
c , and so p D rf .c/ for some r 2 LK.Rn/,

by item (2).
.(/ It immediately follows from item (2).
(4) Let ' W Sf;pc ! S

f;p
c be a nonzeroLK.Rn/-homomorphism. Since Sf;pc is a simple

left LK.Rn/-module, ' is an isomorphism. Similar to item (2), we have '..c�/kz/ D az
for some nonzero element a 2 KŒc�=KŒc�f .c/ and some positive integer k. Therefore,
'.r � ..c�/kz//D r � .az/ for all r 2 LK.Rn/. Conversely, let a be a nonzero element of
KŒc�=KŒc�f .c/. Since Sf;pc is a simple leftLK.Rn/-module, Sf;pc DLK.Rn/ � ..c

�/kz/.
We claim that the map � W Sf;pc ! S

f;p
c , defined by �.r � ..c�/kz// D r � .az/, is a
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nonzero LK.Rn/-homomorphism. Indeed, assume that r � .c�/kz D s � .c�/kz, where
r; s 2 LK.Rn/. We then have �p.r/f1.c/kz D �p.s/f1.c/kz in Sfc . By Theorem 3.2 (1),
we obtain that .�p.r/ � �p.s//f1.c/k D bf .c/ for some b 2 LK.Rn/, and so r � .az/ �
s � .az/ D �p.r/az � �p.s/az D .�p.r/ � �p.s//az D .�p.r/ � �p.s//ac

kf1.c/
kz D

.�p.r/ � �p.s//f1.c/
kackz D bf .c/ackz D backf .c/z D 0 (since f .c/z D 0), that

means, �.r � ..c�/kz// D �.s � ..c�/kz//. This implies that � is well defined. It is not
hard to check that � is an LK.Rn/-homomorphism. From these observations, we have
EndLK .Rn/.S

f;p
c / Š KŒc�=KŒc�f .c/ Š KŒx�=KŒx�f .x/.

(5) We first note that Sf;pc D LK.Rn/ � z; i.e., every element of Sf;pc is of the form
r � z D �p.r/z, where r 2 LK.Rn/. We next compute annLK .Rn/.z/. Indeed, let r 2
annLK .Rn/.z/. We then have �p.r/z D r � z D 0 in Sfc . By Theorem 3.2 (1), �p.r/ D
bf .c/ for some b 2 LK.Rn/, and so r D ��1p .b/��1p .f .c// D ��1p .b/f .��1p .c//, since
��1p is an endomorphism of the K-algebra LK.Rn/. This implies that

annLK .Rn/.z/ � LK.Rn/f
�
��1p .c/

�
:

Conversely, assume that r 2 LK.Rn/f .��1p .c//; i.e., r D f̌ .��1p .c//, where ˇ 2
LK.Rn/. We then have r � z D �p.r/z D �p.ˇ/f .c/z D 0 (since f .c/z D 0), and so r 2
annLK .Rn/.z/, showing that LK.Rn/f .��1p .c// � annLK .Rn/.z/. Hence annLK .Rn/.z/ D
LK.Rn/f .�

�1
p .c//. This implies that

Sf;pc Š LK.Rn/=LK.Rn/f
�
��1p .c/

�
;

thus finishing the proof.

For clarification, we illustrate Theorem 3.6 by presenting the following example.

Examples 3.7. Let K be a field and R2 the rose with 2 petals. We then have Cs.R2/ D
¹e2; e

m
1 e2 j m 2 Z; m � 1º, and AR2.e1; e2/ is the K-subalgebra of LK.R2/ generated

by v, e1, e�2 , which means that

AR2.e1; e2/ D

´
nX
iD1

kie
mi
1 .e

�
2 /
li j n � 1; ki 2 K; mi ; li � 0

µ
;

where e01 D v D .e
�
2 /
0 and KŒe1� � AR2.e1; e2/. Let f .x/ D 1 � x 2 Irr.KŒx�/. By the

grading on LK.R2/, we always have p ¤ r.1 � c/ for all c 2 Cs.R2/, p 2 KŒe1� n ¹0º,
and r 2 LK.R2/, and so the set®

Sf;pc j c 2 Cs.R2/; p 2 KŒe1�
¯

consists of pairwise non-isomorphic simple left LK.R2/-modules, by Theorem 3.6.
Let p D e1 and q D e1e�2 2 AR2.e1; e2/. We then have

q � p D e1e
�
2 � e1 D e1e

�
2 .1 � e2/;

so Sf;pe2 Š S
f;q
e2 as left LK.R2/-modules, by Theorem 3.6.
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Using Theorems 3.1, 3.2, and 3.6, we obtain a list of pairwise non-isomorphic sim-
ple modules for the Leavitt path algebra LK.Rn/. Before doing so, we need some use-
ful notions. For each pair .f; c/ 2 Irr.KŒx�/ � Cs.Rn/, we define a relation �f;c on
ARn.e1; en/ as follows. For all p; q 2 ARn.e1; en/, p �f;c q if and only if p � q D rf .c/
for some r 2 LK.Rn/. It is obvious that�f;c is an equivalence on ARn.e1; en/. We denote
by Œp� the�f;c equivalent class of p.

Theorem 3.8. Let K be a field, n � 2 a positive integer, and Rn the rose with n petals.
Then, the set®

VŒ˛� j ˛ 2 .Rn/
1
irr

¯
t
®
S
f
…c
j c 2 SCP.Rn/; f 2 Irr

�
KŒx�

�¯
t
®
S
f;p

d
j d 2 Cs.Rn/; f 2 Irr

�
KŒx�

�
; Œ0� ¤ Œp� 2 ARn.e1; e2/= �f;d

¯
consists of pairwise non-isomorphic simple left LK.Rn/-modules.

Proof. All VŒ˛� (˛ 2 .Rn/1irr ) are pairwise non-isomorphic by Theorem 3.1. All Sf…c (c 2
SCP.Rn/, f 2 Irr.KŒx�/) are pairwise non-isomorphic by Theorem 3.2. All Sf;p

d
(d 2

Cs.Rn/, f 2 Irr.KŒx�/, Œ0� ¤ Œp� 2 ARn.e1; e2/= �f;d ) are pairwise non-isomorphic by
Theorem 3.6.

By Theorem 3.1 and 3.6, respectively, Sf…c (c 2 SCP.Rn/, f 2 Irr.KŒx�/) and Sf;p
d

(d 2 Cs.Rn/, f 2 Irr.KŒx�/, Œ0� ¤ p 2 ARn.e1; e2/) are finitely presented. While by
[7, Corollary 3.5], VŒ˛� is not finitely presented for all ˛ 2 .Rn/1irr . Therefore, each VŒ˛� is
neither isomorphic to any Sf…c nor any Sf;p

d
.

By Theorem 3.6 (3), each Sf;p
d

(d2Cs.Rn/, f2Irr.KŒx�/, Œ0�¤Œp�2ARn.e1; e2/=�f;d )
is not isomorphic to any Sf…c (c 2 SCP.Rn/, f 2 Irr.KŒx�/), thus finishing the proof.
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[15] R. Conti and W. Szymański, Labeled trees and localized automorphisms of the Cuntz algebras.
Trans. Amer. Math. Soc. 363 (2011), no. 11, 5847–5870 Zbl 1236.46056 MR 2817412

[16] J. Cuntz, Automorphisms of certain simple C�-algebras. In Quantum fields—algebras, pro-
cesses (Proc. Sympos., Univ. Bielefeld, Bielefeld, 1978), pp. 187–196, Springer, Vienna, 1980
Zbl 0475.46046 MR 601811

[17] K. R. Goodearl, Leavitt path algebras and direct limits. In Rings, modules and representations,
pp. 165–187, Contemp. Math. 480, American Mathematical Society, Providence, RI, 2009
Zbl 1194.16012 MR 2508151

[18] R. Johansen, A. P. W. Sørensen, and W. Szymański, The polynomial endomorphisms of graph
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