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Non-commutative disintegrations: Existence and
uniqueness in finite dimensions

Arthur J. Parzygnat and Benjamin P. Russo

Abstract. Motivated by advances in categorical probability, we introduce non-commutative almost
everywhere (a.e.) equivalence and disintegrations in the setting of C�-algebras. We show that C�-
algebras (resp. W �-algebras) and a.e. equivalence classes of 2-positive (resp. positive) unital maps
form a category. We prove that non-commutative disintegrations are a.e. unique whenever they
exist. We provide an explicit characterization for when disintegrations exist in the setting of finite-
dimensional C�-algebras, and we give formulas for the associated disintegrations.
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1. Introduction and outline

Regular conditional probabilities, optimal hypotheses, disintegrations of one measure over
another consistent with a measure-preserving map, conditional expectations, perfect error-
correcting codes, and sufficient statistics are all examples of a single mathematical notion.
We call this notion a disintegration. Although we only make the connection between our
definition of disintegration and the first three examples listed, relationships to the other
notions are described in [38], and further connections to entropy were made in [16, 17,
40, 41]. In this paper, our primary focus is to provide necessary and sufficient conditions
for the existence and uniqueness of disintegrations in the setting of finite-dimensional
C �-algebras.
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Developing this and related ideas is part of a larger program in extending Bayesian
statistics to the non-commutative setting [17, 20, 38, 39, 42–44] in such a way so that
it is compatible with a recently developed categorical framework for classical statis-
tics [6, 15, 16]. These recent advances in classical categorical functional analysis and
measure theory provide a suitable notion of disintegration [2,6,8,15,21,24,27,52,55,56],
whose diagrammatic formulation can be transferred from a category of probability spaces
to a category of states on C �-algebras. This is achieved by utilizing a fully faithful (con-
travariant) functor from the former to the latter [18,35]. This categorical perspective offers
a candidate for generalizing disintegrations to non-commutative probability theory with-
out relying on the specific measure-theoretic details of classical probability theory. Since
a disintegration is a special kind of Bayesian inverse [6, 20, 38, 44], this article serves as a
step towards a theory of non-commutative Bayesian inversion.

Briefly, the definition of a disintegration of a state ! over another state � consistent
with a unital �-homomorphism F preserving these states is a completely positive unital
map R in the reverse direction that is both state preserving and a left inverse of F modulo
the null space of �. If �-homomorphisms are written as straight arrows! and completely
positive unital maps are written as squiggly arrows // , this definition of a disintegration
can be summarized diagrammatically as

C

A B

!

��

�

��

F

uu

R

55

such that

C

A B

!

��

�

��

R //

and

A

B B

F

��

R

DD

idB //

�

in the category of finite-dimensional C �-algebras and completely positive unital maps.
The right-most diagram commutes almost everywhere (a.e.), in a sense that we make
precise in this article. We introduce and develop non-commutative a.e. equivalence in
order to properly address the uniqueness properties of disintegrations.

The interpretation of completely positive unital maps as quantum conditional prob-
abilities is not new [28], but we take this perspective further and include the relation-
ships between states and partially reversible dynamics analogous to what regular con-
ditional probabilities accomplish in classical statistics. Our core result is Theorem 4.3,
which specializes to the case where A and B are matrix algebras and F sends B 2 B to
diag.B; : : : ; B/. If we express our states ! and � in terms of density matrices � and � ,
respectively, Theorem 4.3 says that a unique disintegration exists if and only if there exists
a density matrix � such that � D � ˝ � . This is closely related to a well-known result on
the existence of state-preserving conditional expectations [47], but our notion generalizes
it due to our weakened assumption of a.e. equivalence (see also [20]).

Our subsequent results are generalizations of this theorem and culminate in Theo-
rem 5.61, which assumes A and B are arbitrary finite-dimensional C �-algebras and F
is an arbitrary unital �-homomorphism. We provide explicit formulas for disintegrations
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and we analyze several examples, including one involving entanglement, which has its
origins in the work of Einstein, Podolsky, and Rosen [11]. In Example 5.57, we show how
the standard classical theorem on the existence and uniqueness of disintegrations (The-
orem 5.1) is a direct corollary of our theorem. We conclude by exploring consequences
of our characterization theorem in the context of measurement in quantum information
theory. Finally, the appendix reviews stochastic maps (Markov kernels) and justifies our
usage of the terminology “disintegration” by showing that the diagrammatic notion agrees
with a general measure-theoretic one.

2. Non-commutative a.e. equivalence

For classical probability spaces, a.e. equivalence specifies the degree of uniqueness of
disintegrations, Bayesian inverses, and conditional distributions. The same is true in the
quantum/non-commutative setting. In this section, we first recall some relevant defini-
tions involving states on C �-algebras and completely positive maps from Paulsen [46] and
Sakai [51] to establish notation and terminology. Afterwards, we define a.e. equivalence
for linear maps between C �-algebras in Definition 2.9. We provide a more computation-
ally useful definition for finite-dimensional C �-algebras in Lemma 2.20. In the rest of this
section, we analyze several properties of a.e. equivalence.

Definition 2.1. A C �-algebra is an algebra A equipped with a unit 1A 2A, an involution
� W A! A, and a norm k � k W A! R such that it is a unital �-algebra, it is closed with
respect to the topology induced by its norm, and it satisfies the C �-identity, which says
ka�ak D kak2 for all a 2A. Given a C �-algebra A, a positive element of A is an element
a 2 A for which there exists an x 2 A such that a D x�x. The set of positive elements in
A is denoted by AC. Given another C �-algebra B, a positive map ' WB // A is a linear
map such that '.BC/ � AC. A linear map ' W B // A is unital if and only if '.1B/ D

1A. A state on a C �-algebra A is a positive linear unital functional ! W A // C. A �-
homomorphism from A to B is a function f WA!B preserving theC �-algebra structure,
namely f is linear, f is multiplicative f .aa0/D f .a/f .a0/, f is unital f .1A/D 1B , and
f .a�/D f .a/� for all a; a0 2A. If ! WA // C and � WB // C are states, then a linear
map ' W B // A is said to be state-preserving whenever ' ı ! D �, and the notation

.B; �/
'
.A; !/ will be used to indicate this.

AllC �-algebras and �-homomorphisms will be unital unless specified otherwise. Note
that positive (and linear) maps onC �-algebras are denoted by squiggly arrows // , while
�-homomorphisms are denoted by straight arrows!.

Example 2.2. For each n 2 N, let Mn.C/ denote the set of n � n complex matrices. The
involution applied to A 2Mn.C/ is given by the conjugate transpose and is written as A�

instead ofA� to be consistent with the standard notation used in quantum theory. A matrix
algebra is a C �-algebra of the form Mn.C/ for some n 2 N. If A is another C �-algebra,
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then Mn.C/˝A ŠMn.A/, the algebra of n � n matrices with entries in A, admits a
C �-algebra structure by matrix operations and a norm that can be obtained in many ways
(cf. Paulsen [46, Chapter 1]).

Our convention for the tensor product (also called the Kronecker product) of matrices
will be 264a11 � � � a1m

:::
:::

am1 � � � amm

375˝
264b11 � � � b1n
:::

:::

bn1 � � � bnn

375

D

26666666666664

a11

264b11 � � � b1n
:::

:::

bn1 � � � bnn

375 � � � a1m

264b11 � � � b1n
:::

:::

bn1 � � � bnn

375
:::

:::

am1

264b11 � � � b1n
:::

:::

bn1 � � � bnn

375 � � � amm

264b11 � � � b1n
:::

:::

bn1 � � � bnn

375

37777777777775
; (2.3)

which is induced by the isomorphism Cm ˝Cn ! Cmn determined by

Ee1˝ Ee1 7! Ee1; : : : Ee1˝ Een 7! Een; Ee2˝ Ee1 7! EenC1; : : : Eem˝ Een 7! Eemn: (2.4)

Here, Eei denotes the standard i -th unit vector in Cn regardless of n.

Definition 2.5. Let A and B be C �-algebras. Given n 2 N, a linear map ' W B // A

is n-positive if and only if idMn.C/ ˝ ' WMn.C/˝B //Mn.C/˝A is positive. The
map ' is completely positive if and only if ' is n-positive for all n 2 N. A completely
positive (unital) map will be abbreviated as a CP (CPU) map.

The Choi–Kraus theorem gives a characterization of completely positive maps between
matrix algebras. This will be used often, so we state it here to set notation [7, 26].

Theorem 2.6. Fix n;m 2N. A linear mapR WMn.C/ //Mm.C/ is completely positive
if and only if there exists a finite collection ¹Ri W Cn ! Cmº of linear maps such that

R D
X
i

AdRi : (2.7)

Here, AdRi .A/ WD RiAR
�
i for all A 2 Mn.C/. The map R is CPU if and only if, in

addition,
P
i RiR

�
i D 1m.

A collection ¹Riº satisfying (2.7) is called a Kraus decomposition for R.

Remark 2.8. The standard assumption in quantum information theory is to work with
completely positive trace-preserving maps instead of unital maps. The former class, typ-
ically called quantum operations/channels (cf. Nielsen and Chuang [32, Section 8.2])
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is used in the Schrödinger representation when transforming physical states, while the
latter is used in the Heisenberg representation when transforming physical observables.
We briefly explain the relationship between the two. A completely positive map R W
Mn.C/ //Mm.C/ is unital if and only if the adjoint map R� WMm.C/ //Mn.C/ is
trace-preserving. The adjoint mapR� is defined with respect to the Hilbert–Schmidt (a.k.a.
Frobenius) inner product on a matrix algebra, which is given by hA;Bi WD tr.A�B/ for all
square matrices (of the same dimension) A and B . Therefore, R� is the unique map satis-
fying hR�.A/;BiD hA;R.B/i for allA2Mm.C/ and allB 2Mn.C/. IfRD

P
i AdRi is

a Kraus decomposition ofR, thenR�D
P
i Ad

R
�
i

is a Kraus decomposition ofR� because
hR�.A/;Bi D hA;R.B/i D

P
i tr.A�RiBR

�
i /D

P
i tr.R�i A

�RiB/D
P
i hR

�
i ARi ;Bi by

the cyclicity of the trace. By a similar argument, hR�.1m/;Bi D h1m;R.B/i D tr.R�.B//
for all B 2 Mn.B/. From this, it follows that R is unital if and only if R� is trace-
preserving.

In particular, if ! W Mn.C/ // C is a state, then its adjoint !� W C //Mn.C/ is
determined by the image !�.1/ of the unit 1 in C, which is positive. Furthermore, since !
is unital, !� is trace-preserving. Hence, tr.!�.1// D 1. In other words, !�.1/ is a trace 1
positive matrix. This is called the density matrix associated to !. Finally, ! D tr.!�.1/ � /
as states on Mn.C/.

We now proceed to defining a.e. equivalence of linear maps on C �-algebras.

Definition 2.9. Let A and B be C �-algebras, let F; F 0 W B // A be two linear maps,
and let ! W A // C be a state on A (or more generally a positive linear functional). Let

N! WD
®
a 2 A W !.a�a/ D 0

¯
denote the null space of !. Since N! is a left ideal of A (see [36, Construction 3.1] for
details), denote the quotient vector space by A=N! . The maps F and F 0 are said to be
equal a.e. with respect to ! or equal !-a.e. if and only if the diagram (in the category of
vector spaces and linear maps)

A=N!B

A

A

F
77

F 0 ''

'' ''

77 77
(2.10)

commutes, i.e., if and only if F.b/� F 0.b/ 2N! for all b 2B. The map A � A=N! in
(2.10) is the quotient map of A onto A=N! . When F and F 0 are equal !-a.e., the notation
F D

!
F 0 will be used.

The justification for the above terminology of a.e. equivalence is explained in the fol-
lowing illustrative example of finite probability spaces (cf. the appendix for terminology).

Example 2.11. Let A WDCX and B WDCY be the commutativeC �-algebras of complex-
valued functions on the finite sets X and Y , respectively, let P W CX // C be a state
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on X , and let F;G W CY // CX be two positive unital maps. Then there exists a unique
probability measure p on X such that

P
x2X '.x/px D P.'/ for all ' 2 CX (see [35,

Section 2.6] for details). Namely, px WD P.ex/, where ex is the function on X defined by
X 3 x0 7! ex.x

0/ WD ıxx0 . Similarly, there exist unique stochastic maps f; g W X // Y

such that �
F. /

�
.x/ D

X
y2Y

 .y/fyx 8 2 CY ; 8x 2 X;

namely
X 3 x 7!

�
Y 3 y 7! fyx WD F.ey/.x/

�
and similarly for G with g. One can show that the null space of P is given by

NP WD
®
' 2 CX

W P.'�'/ D 0
¯
D
®
' 2 CX

W 'jXnNp D 0
¯
D span

� [
x2Np

¹exº
�
;

whereNp �X is the measure-theoretic null space of p and 'jXnNp denotes the restriction
of ' to X nNp . Hence, the quotient CX=NP is isomorphic to functions on X nNp by the
isomorphism

CX=NP ! CXnNp

Œ'� 7! '
ˇ̌
XnNp

:

As a result, the two positive unital maps F;G W CY // CX are equal P -a.e. if and only if
the associated stochastic maps Qf ; Qg W X n Np // Y defined by the restrictions of f and
g to X nNp , respectively, are equal. This precisely means that f D

p
g.

We now proceed to establishing several important facts regarding non-commutative
a.e. equivalence. First, if two maps are a.e. equivalent in terms of some state, then they
pull back that state to the same state.

Lemma 2.12. Let A and B be C �-algebras, let � WB // C be a state (or more generally
a positive functional), and let '; W A // B be linear maps. If ' D

�
 , then

� ı ' D � ı  :

Proof. Let a 2 A. Thenˇ̌
�
�
'.a/ �  .a/

�ˇ̌2
� �

��
'.a/ �  .a/

���
'.a/ �  .a/

��
D 0

by the Cauchy–Schwarz inequality for positive functionals (cf. Fillmore [12, Proposi-
tion 5.2.1]) and because '.a/ �  .a/ 2 N� . Hence, �.'.a// D �. .a//. Since a was
arbitrary, � ı ' D � ı  .

The support of a state will also be useful in when formulating and proving our disin-
tegration theorem.
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Lemma 2.13. Let ! WA // C be a state on a finite-dimensional C �-algebra A (or more
generally a W �-algebra). Then there exists a unique projection P! 2 A (this means that
P �!DP! and P 2!DP!) such that N!DA.1A�P!/. Equivalently, P! is characterized by

!.a/ D !.aP!/ D !.P!a/ D .! ı AdP! /.a/ 8a 2 A: (2.14)

Proof. See Sakai [51, Section 1.14].

Remark 2.15. If A is not a finite-dimensional C �-algebra in Lemma 2.13, then such a
projection P! for a state ! need not exist. Indeed, if A D C.X/, continuous complex-
valued functions on a connected compact Hausdorff space X , then there are no non-trivial
projections and yet there are many states generating non-trivial null spaces. Such a projec-
tion does exist, however, if A is a W �-algebra. Hence, several (but not all) of the results
that follow involving such supports also hold for W �-algebras.

Definition 2.16. Using the same notation from Lemma 2.13, P! is called the support
of !. Its complement will be denoted by P?! WD 1A � P! .

Example 2.17. When A DMn.C/ is a matrix algebra with a state ! WMn.C/ // C,
then ! D tr.� � / for some unique density matrix � 2Mn.C/ (cf. Remark 2.8). In this case,
P?! is the projection onto the zero eigenspace of � and P! satisfies P!� D � D �P! .

Lemma 2.18. Let P be a projection in a C �-algebra (orW �-algebra) B and let B 2 B.
Then BP D 0 implies that B 2 BP?.

Proof. This follows from the fact that every B 2 B can be uniquely expressed as a sum
of four terms

B D .P C P?/B.P C P?/ D PBP C PBP? C P?BP C P?BP?; (2.19)

the non-zero ones of which are linearly independent.

The decomposition (2.19) will be used frequently in this work,1 particularly in con-
junction with the support of a state. For example, we have the following alternative and
computationally useful characterization of a.e. equivalence.

Lemma 2.20. Let A and B be finite-dimensionalC �-algebras, let � WB // C be a state,
and let '; W A // B be linear maps. Let P� 2 B denote the support of � .

(i) Then ' D
�
 if and only if 2 '.A/P� D  .A/P� for all A 2 A.

(ii) If ' D
�
 , then AdP� ı ' D AdP� ı  .

1The usage of such a decomposition is certainly not new. More recently, they have made an appearance
in the study of Pierce and corner algebras, also in the context of conditional expectations [48]. We thank
Chris Heunen for informing us of this reference.

2In the case where A DMm.C/ and B DMn.C/, this says that the two n � n matrices (viewed as
operators on C) '.A/ and  .A/ agree when restricted to the subspace P�Cn � Cn.
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Proof. For the first claim, if ' D
�
 , then '.A/ �  .A/ D BP?

�
for some B 2 B since

N� D BP?
�

by Lemma 2.13. Multiplying by P� on the right gives item (i). Conversely,
if '.A/P� D  .A/P� holds, then .'.A/ �  .A//P� D 0. Hence, '.A/ �  .A/ 2 BP?

�

by Lemma 2.18. Item (ii) follows from item (i) by multiplying '.A/P� D  .A/P� on the
left by P� .

Since CP maps between matrix algebras have particularly simple forms (cf. Theo-
rem 2.6), it will also be useful to have a more quantitative version of Lemma 2.20. To
state it, we first recall a general fact about the relationship between two Kraus decompo-
sitions of a CP map of matrix algebras.

Lemma 2.21. Let ' WMm.C/ //Mn.C/ be a CP map and suppose that
pX
iD1

AdVi D ' D
qX

jD1

AdWj

are two Kraus decompositions of ' with p � q. Then there exists a q � p matrix U that
is a coisometry (meaning UU � D 1q , i.e., the rows of U are orthonormal) such that
Vi D

Pq
jD1 uj iWj for all i 2 ¹1; 2; : : : ; pº. Here uj i denotes the j i -th entry of U .

Proof. The reader is referred to [37, Sections 6 and 7] for any unexplained details and
terminology. First note that every such Kraus decomposition ' D

Pp
iD1 AdVi can be

expressed as a Stinespring representation ' D � ı AdV , where � and V are defined by

Mm.C/ 3 A
�
7�! 1p ˝ A 2Mp.C/˝Mm.C/

and

Cp
˝Cm

Š Cpm
V WDŒ V1���Vp �
���������! Cn;

respectively (and similarly for ' D
Pq
jD1 AdWj and W WD

�
W1 � � � Wq

�
). By the uni-

versal property of Stinespring representations (see [37, Theorem 6.29 and the end of
Section 7]), there exists a coisometry3 Cp U

�! Cq such that the diagram

Cn

Cq ˝Cm

Cp ˝CmV

ii

W

uu
U˝1m

OO

(2.22)

commutes. Writing

U ˝ 1m D

264u111m � � � u1p1m
:::

:::

uq11m � � � uqp1m

375 ;
3Technically, the theorem referenced claims that there exists a partial isometry. However, this partial

isometry can be extended to a coisometry by similar techniques to those employed in [37, Example 7.27
and Theorem 7.30].
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we see that commutativity of (2.22) gives�
V1 � � � Vp

�
D
�
W1 � � � Wq

�
.U ˝ 1n/;

which is the result claimed.

Lemma 2.23. Fix a positive integer n, let � W Mn.C/ // C be a state, and let ' W
Mn.C/ //Mn.C/ be a CPU map such that ' D

�
idMn.C/. Let P� 2Mn.C/ denote the

support of � and let ' have a Kraus decomposition ' D
Pp
iD1 AdVi . Then there exist

complex numbers ¹˛iºi2¹1;:::;pº such that

P�Vi D ˛iP� 8i 2 ¹1; : : : ; pº and
pX
iD1

j˛i j
2
D 1:

Proof. Since ' D
�

idMn.C/, Lemma 2.20 implies that

AdP� ı ' D
pX
iD1

AdP�Vi D AdP� :

Furthermore, Lemma 2.21 implies that there exists a 1�p coisometryU such thatP�Vi D
u1iP� , where u1i is the 1i -th entry of U . Set ˛i WD u1i . Since U is a coisometry, the first
(and only) column of U is a unit vector, i.e.,

Pp
iD1 ju1i j

2 D 1, which proves the claim.

Remark 2.24. Using the notation of Lemma 2.23, P�Vi D ˛iP� says that

Vi D ˛iP� C P
?
� ViP� C P

?
� ViP

?
� : (2.25)

If we choose a basis in which the density matrix ��.1/ is diagonal with its non-zero eigen-
values all appearing on the top left, then (2.25) reads

Vi D

�
˛i1r 0

V bl
i V br

i

�
;

where r is the rank of ��.1/, and where V bl
i is an .n � r/ � r matrix while V br

i is an
.n � r/ � .n � r/ matrix.

It turns out that Lemma 2.23 holds even when the support P� from the equations is
removed (cf. Theorem 2.32). To prove this, it seems convenient to recall the notion of a
pre-Hilbert C �-algebra module due to Paschke [45].

Definition 2.26. Let A be a C �-algebra. A pre-Hilbert A-module is a left4 A-module E

together with a linear-conjugate linear map5 hh � ; � ii W E � E!A satisfying the following
properties:

4Paschke defines a right module structure instead of a left one. This does change some properties, but
we have modified them appropriately. One such property is the Paschke–Cauchy–Schwarz inequality in
(2.29).

5This means that hhs C t; uii D hhs; uii C hht; uii for all s; t; u 2 E . The other properties usually asso-
ciated with sesqui-linearity (with conjugate linearity in the second coordinate) follow from the other
conditions in the definition since the algebra A is unital.
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(i) hhs; sii � 0 for all s 2 E ,

(ii) hhs; tii D hht; sii� for all s; t 2 E ,

(iii) hhas; tii D ahhs; tii for all s; t 2 E and a 2 A, and

(iv) hhs; sii D 0 if and only if s D 0 (this is called non-degeneracy of hh � ; � ii).

hh � ; � ii is called the A-valued inner product on E .

Remark 2.27. It follows from this definition that hhs; atii D hhs; tiia� for all s; t 2 E and
a 2 A.

Lemma 2.28. Let A be a C �-algebra and E a pre-Hilbert module over A. Then

E 3 s 7! kskE WD
p
khhs; siik

defines a norm on E . Furthermore,

hht; siihhs; tii � ktk2Ehhs; sii (2.29)

for all s; t 2 E .

Proof. See Paschke [45, Proposition 2.3] or Fillmore [12, Section 3.14].

Example 2.30. Fix n;m;p 2 N. Let mMn.C/ denote the vector space ofm� n complex
matrices. Set A WDMm.C/ and E WD mMn.C/p , the vector space direct sum of p copies
of mMn.C/. Denote elements of E by EA WD .A1; : : : ; Ap/ so that Ai 2 mMn.C/ for all
i 2 ¹1; : : : ; pº. Define the left A-module structure on E to be B EA WD .BA1; : : : ;BAp/ for
all EA 2 E and B 2 A. Define the A-valued inner product by

E � E 3 . EA; EB/ 7! hh EA; EBii WD

pX
iD1

AiB
�
i : (2.31)

Straightforward matrix algebra shows that E is indeed a pre-Hilbert A-module with these
structures. In fact, E is also a right Mn.C/-module satisfying

hh EAC; EBii D hh EA; EBC �ii 8 EA; EB 2 E and C 2Mn.C/:

However, E is not a (right) pre-Hilbert module with respect to this action.

Theorem 2.32. Fix n2N, let � WMn.C/ //C be a state, and let ' WMn.C/ //Mn.C/
be a CPU map such that ' D

�
idMn.C/. Let ' have a Kraus decomposition 'D

Pp
iD1AdVi .

Then there exist complex numbers ¹˛iºi2¹1;:::;pº such that

Vi D ˛i1n 8i 2 ¹1; : : : ; pº and
pX
iD1

j˛i j
2
D 1:

In particular, ' D idMn.C/.
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Proof. Let P� 2Mn.C/ denote the support of � . In order to proceed avoiding as many
indices and sums as possible, we will first introduce a certain pre-HilbertC �-algebra mod-
ule based on the number p of Kraus operators assumed for '. Set E WDMn.C/p and equip
this with the pre-Hilbert Mn.C/-module structure from Example 2.30. By Remark 2.24,

EV D P� Ę C EV
bl
C EV br; (2.33)

where

Ę WD
�
˛11n; : : : ; p̨1n

�
; EV bl

WD P?�
EV P� ; and EV br

WD P?�
EV P?� :

Note that C Ę D ĘC for all C 2Mn.C/. The identities

hh Ę; Ęii D 1n; hhP� Ę; EV
br
ii D 0; and hh EV bl; EV br

ii D 0 (2.34)

follow directly from the definitions. The fact that ' is unital means that

1n D
X
i

ViV
�
i :

In terms of the Mn.C/-valued inner product, this becomes

1n D hh EV ; EV ii
(2.33)
D hhP� Ę C EV

bl
C EV br; P� Ę C EV

bl
C EV br

ii

(2.34)
D hhP� Ę; P� Ęii„ ƒ‚ …

P�

ChhP� Ę; EV
bl
ii C hh EV bl; P� ĘiiChh EV

bl; EV bl
iiChh EV br; EV br

ii: (2.35)

Since
P� EV

bl
D E0 and P� EV

br
D E0;

it follows that

hh EX; EV bl
iiP� D 0 and hh EX; EV br

iiP� D 0 8 EX 2 E (2.36)

by the properties of the pre-Hilbert module structure (see Remark 2.27). Hence, multi-
plying (2.35) by P� on the right and simplifying gives 0 D hh EV bl; P� Ęii and similarly
hhP� Ę; EV

blii D 0. Furthermore, hh EV bl; P?
�
Ęii D 0 follows immediately from the definition

of EV bl. Putting these two together gives

hh EV bl; Ęii D 0: (2.37)

Hence, the unitality of R condition (2.35) simplifies to

P?� D hh
EV bl; EV bl

ii C hh EV br; EV br
ii: (2.38)

Now, write A 2Mn.C/ as (cf. equation (2.19))

A D P�AP� C P�AP
?
� C P

?
� AP� C P

?
� AP

?
� (2.39)
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in terms of the support P� of � and its orthogonal complement P?
�

. Using this decompo-
sition,

'.A/P� D

pX
iD1

ViAV
�
i P� D hh

EV A; EV iiP�
Rmk 2.27
D hh EV A;P� EV ii

(2.33)
D hh EV A;P� Ęii

(2.31)
D hh EV ; ĘiiAP�

(2.34) & (2.37)
D

�
P� C hh EV

br; Ęii
�
AP�

(2.39)
D
�
P�Chh EV

br; Ęii
��
P�AP�CP

?
� AP�

� (2.36)
D P�AP�Chh EV

br; ĘiiP?� AP� (2.40)

for allA 2Mn.C/. But since ' D
�

idMn.C/, this equals P�AP� CP?� AP� by Lemma 2.20

item (i). Identifying terms, hh EV br; ĘiiP?
�
AP� DP

?
�
AP� for allA 2Mn.C/, i.e., hh EV br; Ęii

acts as the identity on n � n matrices of the form P?
�
AP� . This combined with the fact

that hh EV br; Ęii D P?
�
hh EV br; ĘiiP?

�
implies that

hh EV br; Ęii D P?� : (2.41)

This implies that hh Ę; EV brii�hh Ę; EV brii D P?
�

. Hence, by the Paschke–Cauchy–Schwarz
inequality (Lemma 2.28),

P?� � kĘk
2
Ehh
EV br; EV br

ii
(2.34)
D hh EV br; EV br

ii:

On the other hand, (2.38) entails hh EV br; EV brii � P?
�

by condition (i) in Definition 2.26.
These two inequalities force

hh EV br; EV br
ii D P?� and hh EV bl; EV bl

ii D 0: (2.42)

By non-degeneracy of the Mn.C/-valued inner product on E , this forces EV bl D E0, i.e.,

P�ViP
?
� D 0 8i 2 ¹1; : : : ; pº:

Finally, using these relations and the properties of the Mn.C/-valued inner product,

hhP?� Ę �
EV br; P?� Ę �

EV br
ii

(2.34)
D P?� � hhĘ;

EV br
ii � hh EV br; Ęii C hh EV br; EV br

ii
(2.41) & (2.42)
D 0;

which, by non-degeneracy of the Mn.C/-valued inner product, proves that

EV br
D P?� Ę; (2.43)

i.e.,
P?� ViP

?
� D ˛iP

?
� 8i 2 ¹1; : : : ; pº:

Putting this all together gives

EV D Ę; i.e., Vi D ˛i1n 8i 2 ¹1; : : : ; pº:

The fact that ' D idMn.C/ follows immediately from this result.
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Remark 2.44. It should be stressed how surprising Theorem 2.32 is. Even if � is a pure
state, so that its support is a rank one projection, a.e. equivalence of a CPU map to the
identity is strong enough to enforce equality of that CPU map to the identity, regardless
of how large the dimension of the Hilbert space is. We feel this gives us a precise sense
of how “probability zero” objects (the projection onto the orthogonal complement of the
support of � in this case) in quantum theory cannot be disregarded in the way that they
can be in classical probability theory [23]. Theorem 2.32 has recently been reformulated
as a CP completion problem and substantially generalized in [4].

Remark 2.45. Theorem 2.32 might seem to suggest that if � WMn.C/ // C is a state
and if ';  WMm.C/ //Mn.C/ are two CPU maps, then ' D

�
 implies that ' D  .

The following example shows that this is false in general. Let s 2 ¹1; : : : ; m � 1º and let
� W Mm.C/ // C be the map that takes the trace of the bottom right part of a matrix,
namely

�.A/ WD

mX
iDsC1

ai i ;

where ai i is the i i -th entry of A. Note that this map is positive and therefore CP since the
codomain of � is C (cf. Stinespring [53, Theorem 3]). Note, however, that � is not unital.
Similarly, the trace map tr WMm.C/ // C is CP (but not unital). Now, consider the two
maps

Mm.C/ //Mn.C/

A
'
7�!

1

m
tr.A/1n and

A
 
7��!

1

m
tr.A/P� C

1

m � s
�.A/P?� :

Note that ' and  are not equal. Nevertheless, ' and  are �-a.e. equivalent because
'.A/P� D  .A/P� for all A 2 Mm.C/. A simple calculation shows that  and ' are
unital. Furthermore, they are both completely positive as their p-ampliations are

'p. � / D
1

m
trp. � /˝ 1n and  p. � / D

1

m
trp. � /˝ P� C

1

m � s
�p. � /˝ P

?
� ;

respectively. Here, trp and �p are the p-ampliations of tr and �, which are positive.

Remark 2.46. The conclusion of Theorem 2.32 is false if ' is assumed to only be CP but
not unital. A simple counter-example is the CP map

Mn.C/ //Mn.C/

A
'
7�! AC tr.A/P?� :

Here, ' is �-a.e. equivalent to idMn.C/ but is not equal to it.

Remark 2.47. Using the same notation and assumptions as in Theorem 2.32, if ' is
�-a.e. equivalent to a �-isomorphism, then it equals that �-isomorphism. However, if
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� WMmp.C/ // C is a state and ' WMm.C/ //Mmp.C/ is a CPU map that is �-a.e.
equivalent to a �-homomorphism, then it is not necessarily equal to that �-homomorphism
(unless p D 1). A simple counter-example is '.B/ WD diag.B; tr.B/1m; : : : ; tr.B/1m/
and � the state represented by the density matrix 1

m
diag.1m; 0; : : : ; 0/. Then ' is �-a.e.

equivalent to the �-homomorphism B 7! diag.B; : : : ; B/, but it is not equal to it (unless
m D 1 or p D 1).

The following corollary of Theorem 2.32 is similar to a fact used frequently in the area
of reversible quantum operations (cf. Nayak and Sen [31, the proof of Theorem 2.1]).

Corollary 2.48. Let F WMm.C/ //Mn.C/ andR WMn.C/ //Mm.C/ be CPU maps
with Kraus decompositions

R D

pX
iD1

AdRi and F D

qX
jD1

AdFj :

If R ı F D
�

idMm.C/ for some state � WMn.C/ // C, then there exist complex numbers
¹˛ij ºi2¹1;:::;pº; j2¹1;:::;qº such that

RiFj D ˛ij1m and
X
i;j

j˛ij j
2
D 1:

In particular, R ı F D idMm.C/.

Proof. This follows immediately from Theorem 2.32.

3. Categories of C �-algebras, states, and morphisms

We prove that non-commutative probability spaces,C �-algebras equipped with states, and
a.e. equivalence classes of CPU maps (in fact, 2-positive unital maps) form a category. In
fact, finite-dimensional C �-algebras and a.e. equivalence classes of positive unital maps
form a category. The following Cauchy–Schwarz-type inequality, due to Kadison [25], for
positive unital and 2-positive unital maps is useful in proving many of these claims.

Lemma 3.1. Let A and B be C �-algebras and let ' WA // B be a positive unital map.

(i) If a 2 A is self-adjoint, then '.a/2 � '.a2/.

(ii) If ' is 2-positive, then '.a/�'.a/ � '.a�a/ for all a 2 A.

Proof. See [54, Theorem 1.3.1 and Corollary 1.3.2] and [46, Proposition 3.3].

Proposition 3.2. Let C ;B, and A be C �-algebras, let ! W A // C be a state on A, and
letG;G0 W C // B and F;F 0 WB // A be 2-positive (or Schwarz-positive) unital maps.
If F D

!
F 0 and G D

�
G0, where � WD ! ı F , then F ıG D

!
F 0 ıG0.
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Proof. By assumption, the diagrams

B=N�C

B

B

G
77

G0 ''

'' ''

77 77
and A=N!B

A

A

F
77

F 0 ''

'' ''

77 77
(3.3)

both commute. For the composite, we have

B=N� A=N! :C

B

B

A

A

G
77

G0 ''

F
77

F 0 ''

'' ''

77 77

'' ''

77 77

The left part of this diagram commutes by commutativity of the left diagram in (3.3). It
would be convenient to have a function B=N� ! A=N! to fill in the diagram. In this
regard, let zF ;fF 0 W B=N� ! A=N! be the functions defined by

B=N� 3 Œb�� 7! zF
�
Œb��

�
WD
�
F.b/

�
!

and
B=N� 3 Œb�� 7!

fF 0�Œb��� WD �F 0.b/�! :
To see that zF is well defined, let b 2 N� , i.e., �.b�b/ D 0. Then

!
�
F.b/�F.b/

�
� !

�
F.b�b/

�
D �.b�b/ D 0

by Lemma 3.1 applied to F and the fact that F is state-preserving so that ! ı F D � . A
similar conclusion can be made for fF 0. Since F.b/�F.b/ � 0 and ! is a positive func-
tional, this shows that F.b/ 2 N! , which proves that zF and fF 0 are well defined. In fact,
by commutativity of the right diagram in (3.3), zF DfF 0. Hence, all the subdiagrams in the
diagram

B=N� A=N!C

B

B

A

A

G
77

G0 ''

F
77

F 0 ''

'' ''

77 77

'' ''

77 77

zF //eF 0 //

commute so that F ıG D
!
F 0 ıG0.
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Assuming finite-dimensionality, we can prove more. Although the previous proposi-
tion is enough for the sequel, the following theorem is an interesting result in its own
right.

Theorem 3.4. Let C ;B, and A be finite-dimensional C �-algebras, let ! W A // C be a
state on A, and let G;G0 W C // B and F; F 0 W B // A be positive unital maps with
G D

�
G0 and F D

!
F 0, where � WD ! ı F D ! ı F 0. Then F ıG D

!
F 0 ıG0.

We will break up this proof into several lemmas, some of which are of independent
interest. For the first lemma (the proof of which is immediate), recall that if ' W A // B

is a linear map between C �-algebras, then ' is �-preserving if and only if '.a/� D '.a�/
for all a 2 A. Also, a vector subspace V � B is self-adjoint if and only if v 2 V implies
that v� 2 V .

Lemma 3.5. Let A and B be C �-algebras and let ' W A // B be a linear map. If ' is
�-preserving, then the image is a self-adjoint subspace of B.

Lemma 3.6. Let A and B be finite-dimensional C �-algebras, let � W B // C be a state,
and let ' W A // B be a �-preserving linear map. If ' is �-a.e. equivalent to 0, then
Im.'/ � P?

�
BP?

�
.

Proof of Lemma 3.6. By assumption, Im.'/ � BP?
�

. If '.a/ D P�bP?� C P
?
�
bP?

�
for

some b 2 B, then '.a�/ D '.a/� 2 N� as well by Lemma 3.5. But '.a/� D P?
�
b�P� C

P?
�
b�P?

�
. Hence P?

�
b�P� D 0. By taking the adjoint of this, we get P�bP?� D 0. Thus,

'.a/ D P?
�
bP?

�
for some b 2 B.

Lemma 3.7. Let F W B // A be a positive map between C �-algebras and let P be a
projection in A. If b 2 B, then F.b/ can be uniquely decomposed as

F.b/ D F tl.b/C F tr.b/C F bl.b/C F br.b/;

where

F tl.b/ WD PF.b/P; F tr.b/ WD PF.b/P?;

F bl.b/ WD P?F.b/P; F br.b/ WD P?F.b/P?:

Furthermore, F tr.b/� D F bl.b�/ for all b 2 B and the maps F tl; F br W B // A are
positive.

Proof. The decomposition itself is just (2.19). From this and �-preservation of F ,

F tr.b/� D
�
PF.b/P?

��
D P?F.b/�P D P?F.b�/P D F bl.b�/:

Furthermore, F tl and F br are positive maps since F tl D AdP ı F and F br D AdP? ı F
are composites of positive maps.
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Lemma 3.8. Let .B; �/ and .A; !/ be finite-dimensional C �-algebras equipped with
states and let F W B // A be positive unital and state-preserving. Then

F.P?� BP?� / � P
?
! AP?! :

In particular, F.P?
�

BP?
�
/ � N! .

Proof. Let b 2 P?
�

BP?
�

. First, assume that b is self-adjoint. Then

!
�
F.b/�F.b/

�
D !

�
F.b�/F.b/

�
D !

�
F.b/2

�
� !

�
F.b2/

�
D �.b2/ D �.b�b/ D 0;

where the inequality follows from part (i) of Lemma 3.1, the equality after it follows from
the fact that F is state-preserving, and the final equality follows from b 2N� . This proves
that F.b/ 2 N! for self-adjoint b 2 P?

�
BP?

�
. Hence, F tl.b/ D 0 and F bl.b/ D 0 for b

self-adjoint by Lemma 3.7. Second, assume that b is skew-adjoint. Then b D ib0 for some
self-adjoint b0 2 B (namely, b0 WD �ib). Then

F tl.b/ D F tl.ib0/ D iF tl.b0/ D 0 and similarly F bl.b/ D 0

for skew-adjoint b by the previous fact since F tl and F bl are linear. Since every b can
be decomposed as the linear combination of a self-adjoint and skew-adjoint element, this
proves that F tl and F bl are both equal to the zero map. Finally, for any b 2 P?

�
BP?

�
,

F tr.b/ D F tr�.b�/�� D F bl.b�/� D 0

by Lemma 3.7 and the facts just proved.

Proof of Theorem 3.4. We are required to prove that F.G.c//P! D F 0.G0.c//P! for all
c 2 C . First, note that

F 0
�
G0.c/

�
P! D F

�
G0.c/

�
P! since F D

!
F 0

D F
�
G0.c/P� CG

0.c/P?�
�
P! : (3.9)

Therefore,

F
�
G.c/

�
P! � F

0
�
G0.c/

�
P!

D F
��
G.c/ �G0.c/

�
P� C

�
G.c/ �G0.c/

�
P?�

�
P! by (3.9)

D F
��
G.c/ �G0.c/

�
P?�

�
P! since G D

�
G0

D F
�
AdP?

�

�
G.c/ �G0.c/

��
P! by Lemma 3.6

D AdP?!
�
F
�
AdP?

�

�
G.c/ �G0.c/

���
P! by Lemma 3.8

D 0:

This proves that composition of a.e.-equivalence classes of positive unital maps between
finite-dimensional C �-algebras is well defined.

Remark 3.10. By Lemma 2.13 and Remark 2.15, Theorem 3.4 holds if A;B, and C are
W �-algebras.
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Definition 3.11. A non-commutative probability space is a pair .A; !/, with A a C �-
algebra and ! a state on A. A state-preserving map .B; �/ // .A; !/ is a map (linear,

positive, CP, �-homomorphism, etc.) B
F

A such that � D ! ı F .

Corollary 3.12. The following facts hold.

(i) The collection of non-commutative probability spaces and state-preserving maps
forms a category.

(ii) The collection of non-commutative probability spaces and a.e. equivalence
classes of 2-positive unital maps forms a category.

(iii) The collection of finite-dimensional non-commutative probability spaces (or
non-commutative probability spaces on W �-algebras) and a.e. equivalence
classes of PU maps forms a category.

(iv) The opposite of the category of finite probability spaces and probability-preserv-
ing stochastic maps embeds fully into the category of non-commutative probabil-
ity spaces and state-preserving PU maps. It is an equivalence on the subcategory
of finite-dimensional commutative C �-algebras.

(v) Two probability-preserving stochastic maps are a.e. equivalent if and only if
their associated PU maps are a.e. equivalent.

The functor in item (iv) is uniquely determined by sending a finite set X to the C �-
algebra CX and sending a stochastic map f W X // Y to the PU map CY // CX

uniquely determined by sending the basis vector ey to the function
P
x2X fyxex 2 CX

(cf. Example 2.11).

Proof. This follows from Example 2.11, Proposition 3.2, and Theorem 3.4, as well as
[35, Section 2].

Remark 3.13. Note that when f W X ! Y is a function, the functor from Corollary 3.12
item (iv) produces the �-homomorphism CY ! CX sending ' 2 CY to ' ı f , the pull-
back of ' along f .

Remark 3.14. The diagrammatic definition of a.e. equivalence discussed in Remark A.10
cannot be transferred to our categories of C �-algebras and positive maps. To see this, first
note that the cartesian product of sets also goes to the tensor product of C �-algebras
(up to a natural isomorphism); i.e., the (contravariant) functor sending stochastic maps
to PU maps extends to a monoidal functor (the product of stochastic maps is defined
by the product of the associated probability measures). In particular, the diagonal map
�X WX!X �X becomes the multiplication map CX ˝CX !CX . Therefore, a natural
candidate for A˝A // A would be the linear map that takes the product of the elements.
However, this map is not positive in general. This is closely related to the no-cloning/no-
broadcasting theorem in quantum mechanics [3, 9, 10, 34, 38, 57]. As a result, it is not a
morphism in any of our categories. Our definition of a.e. equivalence in Definition 2.9,
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though not explicitly categorical, gives a direct definition of a.e. equivalence in terms of
null spaces and is suitable for our purposes of non-commutative probability. Nevertheless,
it has recently been proven that this result does agree with the categorical definition of a.e.
equivalence when instantiated in quantum Markov categories [38, Theorem 5.12].

4. Non-commutative disintegrations on matrix algebras

Here, we define optimal hypothesis, disintegration, and regular conditional probability in
the non-commutative setting. In Theorem 4.3, we provide a necessary and sufficient con-
dition for a disintegration to exist on matrix algebras. The state on the initial algebra must
be separable with the induced state as a factor. This result holds for �-homomorphisms of a
special kind. In this same theorem, it is shown that a disintegration is unique whenever one
exists. In the proof, we construct an explicit formula for any disintegration on matrix alge-
bras. Theorem 4.16 covers the more general case of arbitrary �-homomorphisms between
matrix algebras. Briefly, the existence no longer requires the initial state to be sepa-
rable. However, it is separable after a specific unitary operation that transforms the �-
homomorphism to one of the kind discussed in Theorem 4.3.

Definition 4.1. Given a state-preserving �-homomorphism .B; �/
F
�! .A; !/ on C �-

algebras, a hypothesis for .B; �/
F
�! .A; !/ is a CPU map R W A // B such that6 R ı F

D
�

idB . A hypothesis for .B; �/
F
�! .A; !/ is optimal if and only if � ı R D !. A CPU

map R W A // B is a disintegration of ! over � if and only if � ı R D ! holds. A CPU
map R W A // B is a disintegration of ! over � consistent with F if and only if R is a
disintegration of ! over � such that R ı F D

�
idB . More concisely, a disintegration refers

to a disintegration of ! over � consistent with F .

The following example illustrates how Definition 4.1 extends the classical definition
of a disintegration to the non-commutative setting.

Example 4.2. Let X and Y be finite sets (with the discrete � -algebras) with probability
measures p W ¹�º // X and q W ¹�º // Y . Let f W X ! Y be a function and let r W
Y // X be a stochastic map. Let P W CX // C, Q W CY // C, F W CY ! CX , and
R W CX // CY denote the corresponding PU maps (cf. Example 2.11). Functoriality as
discussed after Corollary 3.12 immediately implies the following.

(i) F is state-preserving if and only if f is measure-preserving.

(ii) R is a disintegration ofP overQ consistent withF in the sense of Definition 4.1
if and only if r is a disintegration of p over q consistent with f in the sense
described in the appendix (see also Theorem 5.1 later for a simpler description
in terms of finite sets).

6This definition of hypothesis is a non-commutative generalization of the definition from [1]. In [1],
the definition also requires equality rather than a.e. equality, so our notion is also a weakening in this sense.
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Several natural questions arise when comparing our definition of disintegration to the
one from finite probability spaces, measure-preserving maps, and stochastic maps. First
of all, given a state-preserving �-homomorphism .B; �/

F
! .A; !/, does there exist a dis-

integration R over ! consistent with �? Second, if a disintegration exists, is it unique or
at least unique up to a.e. equivalence? Third, is a disintegration of a �-isomorphism (a.e.
equivalent to) the inverse? All of these are true in the commutative case. Before address-
ing the general case of finite-dimensional C �-algebras, the present section focuses on the
setting of matrix algebras.

Theorem 4.3. Fix n; p 2 N. Let F be the �-homomorphism given by the block diagonal
inclusion

Mn.C/ 3 B
F
7�!

264B 0

: : :

0 B

375 � 1p ˝ B 2Mnp.C/ ŠMp.C/˝Mn.C/ (4.4)

and let .Mn.C/; tr.� � / � !/
F
�! .Mnp.C/; � � tr.� � // be state-preserving. Then the

following facts hold.

(i) A disintegration R of ! over � consistent with F exists if and only if there exists
a density matrix � 2Mp.C/ such that � D � ˝ � .

(ii) When such a � exists, the disintegration is unique and is given by the formula

Mnp.C/ 3 A �

264A11 � � � A1p:::
:::

Ap1 � � � App

375 7! R.A/ WD

pX
j;kD1

�kjAjk

� trMp.C/

�
.� ˝ 1n/A

�
; (4.5)

where Ajk is the jk-th n � n block of A using the isomorphisms Mnp.C/ Š
Mp.Mn.C//ŠMp.C/˝Mn.C/ and trMp.C/ WMp.C/˝Mn.C/ //Mn.C/
is the partial trace, uniquely determined by sending C ˝B 2Mp.C/˝Mn.C/
to tr.C /B . Furthermore, R ı F D idMn.C/.

(iii) When such a � exists, a Kraus decomposition of R is given by

R D AdŒ1n 0 ��� 0 �.
p
�˝1n/

C � � � C AdŒ 0 ��� 0 1n �.
p
�˝1n/

:

As a consequence of uniqueness, we prove all disintegrations on matrix algebras are
strict left inverses of their associated �-homomorphism. Note that uniqueness is meant
in the literal sense, not in the a.e. sense. This is surprising due to Remark 2.45, which
says two a.e. equivalent CPU maps on matrix algebras need not be equal. The additional
conditions for a disintegration are strong enough to imply equality. The following proof
also provides a construction of the density matrix � from R.
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Proof of Theorem 4.3. (i) ()) Suppose that a disintegration R W Mnp.C/ //Mn.C/
exists. Let

R D

n2pX
iD1

Adh
Vi1 � � � Vip

i (4.6)

be a Kraus decomposition of R with Vij 2 Mn.C/ for all i 2 ¹1; : : : ; n2pº and j 2
¹1; : : : ; pº (n2p is the minimal number of Kraus operators needed in this case). For
the moment, let Ri WD Œ Vi1 ��� Vip �. Also note that F has a Kraus decomposition F DPp
jD1 AdFj , where the (adjoint of the) Kraus operators are given by

F
�
j WD

�
0 � � � 1n � � � 0

�
(4.7)

with 1n in the j -th n � n block. By Corollary 2.48, there exist numbers

¹˛ij 2 Cºi2¹1;:::;n2pº; j2¹1;:::;pº

such that
Vij D RiFj D ˛ij1n 8i; j and

X
i;j

j˛ij j
2
D 1 (4.8)

due to the form of our matrices in (4.6) and (4.7). We now impose the condition � ıRD!,
which is equivalent to R�.�/ D �, where

R� D

n2pX
iD1

Ad
R
�
i

(4.9)

is the adjoint of R with respect to the Hilbert–Schmidt inner product (cf. Remark 2.8).
Therefore,

� D R�.�/
(4.9)
D

n2pX
iD1

Ad
R
�
i

.�/
(4.6)
D

n2pX
iD1

2664V
�
i1
:::

V
�
ip

3775 � �Vi1 � � � Vip
�

(4.8)
D

n2pX
iD1

264˛i11n:::
˛ip1n

375 � �˛i11n � � � ˛ip1n
�

D

n2pX
iD1

264 j˛i1j
2� � � � ˛i1˛ip�
:::

:::

˛ip˛i1� � � � j˛ipj
2�

375
(2.3)
D

0B@n2pX
iD1

264 j˛i1j
2 � � � ˛i1˛ip

:::
:::

˛ip˛i1 � � � j˛ipj
2

375
1CA

„ ƒ‚ …
DW�

˝�; (4.10)
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showing that � is separable and has a tensor product factorization with � as a factor. Now,
� 2Mp.C/ is a positive matrix because it is a positive sum of positive operators, namely

� D

n2pX
iD1

264˛i1:::
˛ip

375�˛i1 � � � ˛ip
�
:

Furthermore, (4.8) implies that

tr.�/ D
pX
jD1

n2pX
iD1

j˛ij j
2
D 1;

which shows that � is a density matrix.
(() Conversely, suppose that there exists a density matrix � such that � D � ˝ � .

Define R W Mnp.C/ //Mn.C/ as in (4.5). The map R is linear by construction and
unital since

R.1np/ D

pX
j;kD1

�kj ıjk1p D

pX
j

�jj1p D 1p

because tr.�/ D 1. A similar calculation shows that

R
�
F.B/

�
D

pX
j;kD1

�kj ıjkB D B

for all B 2Mn.C/. Hence, R is actually a left inverse of F . In order for R to preserve
the states, it must be that ! ı R D �; i.e., tr.�A/ D tr.�R.A// for all A 2Mnp.C/. This
follows from

tr.�A/ D tr
�
.� ˝ �/A

�
D tr

0B@
264�11� � � � �1p�

:::
:::

�p1� � � � �pp�

375
264A11 � � � A1p
:::

:::

Ap1 � � � App

375
1CA

D tr

0B@
264
Pp
jD1 �1j�Aj1 � � �

Pp
jD1 �1j�Ajp

:::
:::Pp

jD1 �pj�Aj1 � � �
Pp
jD1 �pj�Ajp

375
1CA

D

pX
j;kD1

�kj tr.�Ajk/ D tr
�
�R.A/

�
:

The final step is to prove that R is CP. This follows from the fact that the partial trace
satisfies a partially cyclic property, namely

trMp.C/

�
.� ˝ 1n/A

�
D trMp.C/

�
A.� ˝ 1n/

�
:
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Thus,

trMp.C/

�
.� ˝ 1n/A

�
D trMp.C/

�
.
p
� ˝ 1n/A.

p
� ˝ 1n/

�
D
�

trMp.C/ ıAdp�˝1n
�
.A/

shows thatR is the composite of two CP maps, and is therefore CP. The claim also follows
from showing that the Choi matrix associated to R is ˆ.R/ D �T ˝ ˆ.idMn.C//, which
is positive (the proof is omitted).

(ii) Suppose that R0 is another disintegration of ! over � consistent with F . Let ¹˛ij º
and ¹˛0ij º be coefficients obtained from Choi’s theorem as in (4.8). Construct the density
matrices � and � 0 as in the proof of part (i) of this theorem. Then � 0 ˝ � D � D � ˝ � ,
i.e., .� � � 0/˝ � D 0. Since � is non-zero, this means that � � � 0 D 0; i.e., � 0 D � . Hence,
each of the entries of � and � 0 are equal; i.e., �jk D � 0jk for all j , k, or in terms of the ˛’s
and ˛0’s,

n2pX
iD1

˛ij˛ik D

n2pX
iD1

˛0ij˛
0
ik 8j; k 2 ¹1; : : : ; pº: (4.11)

Now, let A be a matrix in Mnp.C/ŠMp.Mn.C// as in (4.5) so that each Ajk 2Mn.C/.
Then, after some algebra

R.A/ D

n2pX
iD1

�
˛i11n � � � ˛ip1n

�264A11 � � � A1p
:::

:::

Ap1 � � � App

375
264˛i11n:::
˛ip1n

375
D

pX
j;kD1

 
n2pX
iD1

˛ij˛ik

!
Ajk

(4.11)
D

pX
j;kD1

 
n2pX
iD1

˛0ij˛
0
ik

!
Ajk D R

0.A/;

which shows thatRDR0. Hence, disintegrations are unique when they exist. The fact that
R ı F D idMn.C/ follows from uniqueness of disintegrations and Corollary 2.48.

(iii) The formula for the Kraus decomposition follows from the results just proven and
a Kraus decomposition for the partial trace.

Example 4.12. Let

� WD
1

2

2664
0 0 0 0

0 1 �1 0

0 �1 1 0

0 0 0 0

3775
be the density matrix on C4 corresponding to the projection operator onto the one-dimen-
sional subspace of C2 ˝C2 spanned by the vector7

EuEPR WD
1
p
2

�
Ee1 ˝ Ee2 � Ee2 ˝ Ee1

�
:

7This is the spin EPR state discussed by Nielsen and Chuang in [32, Section 1.3.6].
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Let F WM2.C/!M4.C/ be the map defined by

M2.C/ 3 B 7! F.B/ WD

�
B 0

0 B

�
; (4.13)

which corresponds to the assignment M2.C/ 3 B 7! 12 ˝ B 2M2.C/˝M2.C/ under
the isomorphism from (2.4). Let � be the density matrix on C2 given by � WD 1

2
12.

Let ! WD tr.� � / and � WD tr.� � / be the corresponding states. Then, N� D ¹0º and
.M2.C/; tr.� � / � !/

F
! .M4.C/; � � tr.� � // is state-preserving, but there does not

exist a disintegration of ! over � consistent with F .

Example 4.14. Fix p1; p2; p3; p4 � 0 with p1 C p2 C p3 C p4 D 1, p1 C p3 > 0, and
p2 C p4 > 0. Let

� D

2664
p1 0 0 0

0 p2 0 0

0 0 p3 0

0 0 0 p4

3775 and � D

�
p1 C p3 0

0 p2 C p4

�

be density matrices with associated states given by ! WD tr.� � / and � WD tr.� � /, respec-
tively. Let F WM2.C/!M4.C/ be the diagonal inclusion from (4.13). Then � D ! ı F
and N� D ¹0º. Furthermore, a CPU disintegration R W M4.C/ //M2.C/ of ! over �
consistent with F exists if and only if p1p4 D p2p3. When this holds, the map

R D Adpp1Cp2Œ12 0 � C Adpp3Cp4Œ 0 12 �

is the unique disintegration of ! over � consistent with F . Furthermore, the density matrix
� 2M2.C/ given by

� D

"
p1

p1Cp3
0

0 p4
p2Cp4

#
satisfies � ˝ � D �.

Remark 4.15. Theorem 4.3 reproduces a well-known result in quantum information the-
ory in the special case when the density matrices � and � are invertible (see Example 9.6
in Petz’s text for example [47]).8 The surprising result we have shown is the fact that this
still holds regardless of the sizes of the null-spaces associated to the density matrices and,
moreover, the disintegration is uniquely determined.

The following result is a generalization of Theorem 4.3 on the existence of disinte-
grations to allow for �-homomorphisms F that are not necessary of the block diagonal
form.

8The techniques we have used to prove our results do not use Takesaki’s theorem nor the modular group
(see [47, Theorem 9.2]). Instead, we worked directly with Kraus operators, a familiar tool in the quantum
information theory community. A deeper analysis relating conditional expectations to disintegrations has
recently been presented in [20].
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Theorem 4.16. Fix n;p 2 N. Let .Mn.C/; tr.� � / � !/
F
�! .Mnp.C/; � � tr.� � // be a

state-preserving �-homomorphism. A disintegration of ! over � consistent with F exists
if and only if there exists a unitary U 2Mnp.C/ and a density matrix � 2Mp.C/ such
that F D AdU ı i and U ��U D � ˝ � . Here i WMn.C/!Mnp.C/ is the block diagonal
inclusion (4.4). Furthermore, if a disintegration exists, it is unique.

Proof. For any unital �-homomorphism F W Mn.C/! Mnp.C/, there exists a unitary
U 2Mnp.C/ such that F DAdU ı i (cf. Fillmore [12, Section 1.1.2]). Hence, the diagram

C

Mnp.C/ Mn.C/

!ıAdUDtr.U ��U � /
��

��tr.� � /
��

ioo

commutes. By Theorem 4.3, a disintegration R WMnp.C/ //Mn.C/ of ! ı AdU over
� consistent with i exists if and only if there exists a density matrix � such that U ��U D
� ˝ � . Explicitly, this means that � ıR D ! ıAdU and R ı i D

�
idMn.C/. Setting RU WD

R ı AdU � W Mnp.C/ //Mn.C/ and applying AdU � to the right of � ı R D ! ı AdU
gives � ıRU D !. Similarly, R ı i D

�
idMn.C/ holds if and only if R ıAdU � ıAdU ı i D

�

idMn.C/ holds; i.e., RU ı F D
�

idMn.C/. The map RU is CPU if and only if R is CPU.
Thus, RU defines a disintegration of ! over � consistent with F if and only if U ��U D
� ˝ � . Finally, the uniqueness of RU follows from the uniqueness of R by part (ii) of
Theorem 4.3.

Note that an immediate consequence of this theorem is when F is a �-isomorphism,
then F �1 is the unique disintegration. Thus, a disintegration can be viewed as a general-
ization of time reversal (see also the work [42] for an extension of time-reversal symmetry
to a larger class of morphisms).

Remark 4.17. Theorem 4.16 says that there exists a tensor factorization � ˝ � D U ��U
if and only if a disintegration exists. It is not necessary for � to be separable in this case
(compare this to Theorem 4.3, where � D � ˝ � was separable). In general, U ��U being
separable does not imply that � is separable—the unitary evolution of a separable state
can cause that state to become entangled due to interactions between subsystems.

Remark 4.18. Theorem 4.16 bears a striking resemblance to Theorem 2.1 in the work of
Nayak and Sen [31]. However, there are three main differences. First, they work with com-
pletely positive trace-preserving (not necessarily unital) maps F WMm.C/ //Mn.C/,
where m � n, while we focus on the class of unital �-homomorphisms. Second, they
assume that R WMn.C/ //Mm.C/ is a strict left inverse of F while we initially assume
that R is a left inverse up to a.e. equivalence. We showed that this condition is actually
equivalent for matrix algebras in Corollary 2.48 but we will see that a.e. equivalence is nec-
essary for arbitrary finite-dimensional C �-algebras. Third, and most importantly, Nayak
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and Sen do not require R and F to preserve any specified states while we do. This forces
an additional constraint that our map R must satisfy making it even less obvious whether
such a CP mapR exists. Therefore, it seems that neither of our results subsume each other
but are complementary and cover different situations.

If a deterministic process (a �-homomorphism) evolves a pure state into a mixed state
between matrix algebras, is it possible for there to exist a disintegration that evolves the
mixed state back into the pure state? The following corollary is a “no-go theorem” for
such disintegrations.

Corollary 4.19. Given a state-preserving �-homomorphism�
Mn.C/; tr.� � /

� F
�!

�
Mnp.C/; tr.� � /

�
;

with � pure, if a disintegration exists, then � must necessarily be pure as well.

Proof. By Theorem 4.16, there exist a unitary U 2 Mnp.C/ and a density matrix � 2
Mp.C/ such that F.A/ D U diag.A; : : : ; A/U � and � D U �.� ˝ �/U . Since � is pure,
it is a rank 1 projection operator. Its rank also equals rank.�/ D rank.�/ rank.�/, which
equals 1 if and only if both rank.�/ and rank.�/ are equal to 1. Hence � and � are pure.

Remark 4.20. One might object to the conclusion of Corollary 4.19 and ask a more ele-
mentary question without referring to disintegrations. Namely, does there exist a mixed
state � WMn.C/ // C and a CPU map ' WMm.C/ //Mn.C/ such that � ı ' is a pure
state? The reason to ask such a question is that if its answer is no, then one does not
even need a disintegration for it to be impossible to evolve a mixed state into a pure state.
The following example addresses this. Let ! W Mm.C/ // C be any pure state and let
� WMn.C/ // C be any mixed state. Set '.A/ WD!.A/1n, which is a CPU map satisfying
! D � ı '. Note that this situation is described by the diagram

Mm.C/ C Mn.C/;

C

! //

!
''

Š //

Š
�� �ww

'

$$

i.e., ' factors through C. In this diagram, Š is the unique unital map from C into any
C �-algebra.

5. Disintegrations on finite-dimensional C �-algebras

In the present section, we will extend Theorems 4.3 and 4.16 to the case of �-homomor-
phisms between arbitrary finite-dimensional C �-algebras, which are all isomorphic to



Non-commutative disintegrations 925

finite direct sums of matrix algebras. We begin by analyzing CP maps between such direct
sums in Lemma 5.11, their adjoints with respect to a generalized Hilbert–Schmidt inner
product in Lemma 5.16, and the general form of states on direct sums in Lemma 5.17.
After these preliminary results are established, we study the structure of Kraus decompo-
sitions of hypotheses in Lemmas 5.25 and 5.34. Proposition 5.39 provides a generalization
of the “tracing out” operation for direct sums, i.e., the induced state via pullback from a
�-homomorphism and a state on the target. After all this preparation, our main result, The-
orem 5.45, is provided. Theorem 5.61 generalizes this disintegration theorem to arbitrary
(unital) �-homomorphisms. But first, we recall the classical disintegration theorem.

Theorem 5.1. Let .X;p/
f
�! .Y; q/ be a probability-preserving function. Then the follow-

ing facts hold.

(i) The assignment

X � Y 3 .x; y/ 7! rxy WD

´
pxıyf .x/=qy if qy > 0;

1=jX j otherwise
(5.2)

defines a disintegration r W Y // X of p over q consistent with f .

(ii) The stochastic map r is the unique one up to a set of measure zero with respect to
q satisfying f ı r D

q
idY and r ı q D p; i.e., r D

q
r 0 for any other disintegration

r 0 W Y // X .

(iii) Suppose that f 0 is another measure-preserving function satisfying f D
p
f 0. Let

r be a disintegration of f and let r 0 be a disintegration of f 0. Then r D
q
r 0.

We will omit the details of this proof, which are neither difficult nor new. However,
some of the lemmas used in proving it provide insight into the proof of our main theorem
on non-commutative disintegrations in Theorem 5.45. These lemmas motivate the formula
(5.2) and also assist in proving a.e. uniqueness. They show that a measure-preserving
function .X; p/

f
�! .Y; q/ is surjective onto a set of full measure, and they illustrate that

a hypothesis r W Y // X forces ry to be supported on f �1.¹yº/ for almost all y 2 Y .
This allows us to think of a disintegration more visually as follows (see Figure 1).9 First,
a probability space can be viewed as a finite number of water droplets, each of which
has some volume (probability); the total volume is normalized to one. One can visualize
a morphism .X; p/

f
�! .Y; q/ as combining some of the water droplets, summing their

volumes in the process. A hypothesis is a choice of physically splitting the water droplets
back to the original set, but possibly with different volumes. A perfect splitting of the
water droplets in which the volumes are reproduced exactly is an optimal hypothesis.
From a topologist’s point of view, a hypothesis is a stochastic section of f , which assigns
a probability measure on the fiber (as opposed to a specific element) over each point that
has non-zero q measure.

9We learned this point of view from Gromov [22].
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X

Y

f r

Figure 1. A probability-preserving function f and a disintegration r of f can be depicted in terms
of combining water droplets via f in the vertical direction and splitting them back apart, also in the
vertical direction, via r to reproduce the original configuration. Figure 1 is from [41].

Lemma 5.3. Let r W Y // X be a hypothesis for .X; p/
f
�! .Y; q/. Then the probability

measure ry is supported on f �1.¹yº/ for all y 2 Y nNq .

Lemma 5.4. Let .X;p/
f
�! .Y; q/ be a morphism in FinProb. Then, for each y 2 Y nNq ,

there exists an x 2X such that f .x/D y; i.e., f is surjective onto a set of full q-measure.

Lemma 5.5. Let r W Y // X be a disintegration of .X; p/
f
�! .Y; q/. Then

rxf .x/qf .x/ D px 8x 2 X:

Notation 5.6. Throughout the rest of this section, let

A WDMm1.C/˚ � � � ˚Mms .C/ and B WDMn1.C/˚ � � � ˚Mnt .C/ (5.7)

denote direct sums of matrix algebras. An element EA 2 A will be denoted by a column
vector

EA �

0BB@
A1
:::

As

1CCA
and similarly for elements of B. The vector notation is often used for emphasis. An arbi-
trary linear map ' W A // B will be written in matrix form as

' �

0BB@
'11 � � � '1s
:::

:::

't1 � � � 'ts

1CCA ; (5.8)
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where 'j i WMmi .C/ //Mnj .C/ is a linear map for all i , j . The notation indicates the
action of ' on EA as

'. EA/ D

0B@'11 � � � '1s
:::

:::

't1 � � � 'ts

1CA
0B@A1:::
As

1CA D
0B@
Ps
iD1 '1i .Ai /

:::Ps
iD1 'ti .Ai /

1CA :
Let .B; �/

F
�! .A; !/ be a state-preserving �-homomorphism defined by10

B 3 EB 7! F

0B@
0B@B1:::
Bt

1CA
1CA WD

0BBBBBB@
diag.

c11 times‚ …„ ƒ
B1; : : : ; B1; : : : ;

c1t times‚ …„ ƒ
Bt ; : : : ; Bt /

:::

diag.B1; : : : ; B1„ ƒ‚ …
cs1 times

; : : : ; Bt ; : : : ; Bt„ ƒ‚ …
cst times

/

1CCCCCCA ; (5.9)

where the non-negative integer cij is called the multiplicity of F of the factor Mnj .C/
inside Mmi .C/ (cf. Fillmore [12, Sections 1.1.2 and 1.1.3]). In particular, the dimensions
are related by the formula

mi D

tX
jD1

cijnj 8i 2 ¹1; : : : ; sº: (5.10)

Since F is linear, it also has a matrix representation

F �

0B@F11 � � � F1t
:::

:::

Fs1 � � � Fst

1CA
with Fij WMnj .C/!Mmi .C/ a (not necessarily unital) �-homomorphism for all i , j .

Lemma 5.11. Let A, B, and ' be as in (5.7) and (5.8). Then ' is CP if and only if 'j i is
CP for all i 2 ¹1; : : : ; sº and j 2 ¹1; : : : ; tº. Furthermore, ' is unital if and only if

1nj D

sX
iD1

'j i .1mi / 8j 2 ¹1; : : : ; tº: (5.12)

A Kraus decomposition of 'j i in this case will be expressed as

'j i D

minjX
lj iD1

AdVj i Ilj i ; (5.13)

10We will work with more general �-homomorphisms later, but we will see that all (unital) �-
homomorphisms are unitarily equivalent to ones of this form. Hence, we do not lose much generality
by focusing on these.
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where the Vj i Ilj i W C
mi ! Cnj are linear maps. This allows the unitality condition (5.12)

to be expressed as

1nj D

sX
iD1

minjX
lj iD1

Vj i Ilj iV
�

ji Ilj i
8j 2 ¹1; : : : ; tº: (5.14)

The following facts are easy to check and are analogous to what happens in the usual
matrix algebra case. We include them here for completeness.

Lemma 5.15. Let A WDMm1.C/˚ � � � ˚Mms .C/. Then the assignment

A �A 3 . EA; EA0/ 7! h EA; EA0i WD

sX
iD1

tr.A�iA
0
i /

defines an inner product on A. This is called the Hilbert–Schmidt (a.k.a. Frobenius) inner
product on A.

Lemma 5.16. Let A, B, and ' be as in (5.7) and (5.8). Then there exists a unique linear
map '� W B // A satisfying˝

EB; '. EA/
˛
D
˝
'�. EB/; EA

˛
8 EA 2 A; EB 2 B:

The linear map '� is called the adjoint of '. Furthermore,

'� D

0B@'
�
11 � � � '�t1
:::

:::

'�1s � � � '�ts

1CA ;
where '�j i WMnj .C/ //Mmi .C/ is the usual (Hilbert–Schmidt) adjoint of 'j i .11 In par-
ticular, if ' is a CP map where 'j i has Kraus decomposition as in (5.13), then

'�j i D

minjX
lj iD1

Ad
V
�
ji Ilj i

:

Finally, ' is CPU if and only if '� is CP and trace-preserving in the sense that

h EB; 1Bi D
˝
'�. EB/; 1A

˛
8 EB 2 BI

i.e.,
tX

jD1

tr.Bj / D
sX
iD1

tX
jD1

tr
�
'�j i .Bj /

�
in terms of the components of '� and EB .

11'�j i will be the notation used for the adjoint of 'j i as opposed to the more precise .'j i /�. It is the
adjoint of the ij -th entry of '�, which itself could be denoted by .'�/ij . Hence, .'�/ij D '�j i D .'j i /

�.
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Lemma 5.17. Let � W B // C be a state with B as in (5.7). Then there exists unique
non-negative real numbers q1; : : : ; qt and (not necessarily unique) density matrices �1 2
Mn1.C/; : : : ; �t 2Mnt .C/ such that

tX
jD1

qj D 1 and �. EB/ D

tX
jD1

qj tr.�jBj / 8 EB 2 B: (5.18)

Furthermore, for every j such that qj > 0, the density matrix �j is the unique one satis-
fying these conditions.

Proof. Since � is a state, it is CPU. The adjoint �� W C //Mn1.C/˚ � � � ˚Mnt .C/ of �
is CP and trace-preserving by Lemma 5.16. Let E& WD ��.1/, let &j 2Mnj .C/ denote the
j -th component of E& , and set qj WD tr.&j /. By the trace-preserving condition of ��, the
first equation in (5.18) holds. By the positivity of ��, each &j is a non-negative matrix. If
qj > 0, set

�j WD
&j

qj
:

Otherwise, if qj D 0, then &j is the zero matrix. In this case, let �j be any density matrix.
The conclusions of this lemma follow from these assignments.

Notation 5.19. Due to Lemma 5.17, a state � as above might occasionally be denoted by
� �

Pt
jD1 qj tr.�j � /, where �. EB/ is understood to be given as in (5.18). Furthermore,

the subset Nq WD ¹j 2 ¹1; : : : ; tº W qj D 0º will occasionally be used.

Lemma 5.20. Using the same notation from Lemma 5.17, the support P� of � is given by
the vector of matrices whose j -th component is given by

.P�/j D

´
P�j if qj > 0;

0 if qj D 0;

where P�j is the support of �j on Mnj .C/.

Notation 5.21. Let B be as in (5.7). For each j; k 2 ¹1; : : : ; tº, let

�j WMnj .C/ ,! B and �k W B � Mnk .C/ (5.22)

be the inclusion of the j -th factor and projection of the k-th factor, respectively.

Lemma 5.23. Given A, B, F , �, P� , .P�/k , �j , and �k as in (5.7), (5.9), (5.22), and
Lemma 5.20, a CPU map R W A // B satisfies R ı F D

�
idB if and only if

R.P� /k ı �k ıR ı F ı �j D

´
R.P� /k if k D j;

0 if k ¤ j;
(5.24)

for all j; k 2 ¹1; : : : ; tº. Here, R.P� /k is the right-multiplication map defined by

R.P� /k .Bk/ WD Bk.P�/k 8Bk 2Mnk .C/:
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Proof. The condition R ı F D
�

idB holds if and only if (cf. Lemma 2.20) RP� ıR ı F D

RP� , which holds if and only if RP� ıR ıF ı �j DRP� ı �j for all j 2 ¹1; : : : ; tº. Finally,
this is equivalent to

�k ıRP� ıR ı F ı �j �k ıRP� ı �j

R.P� /k ı �k ıR ı F ı �j R.P� /k ı �k ı �j

8j; k 2 ¹1; : : : ; tº;

which is equivalent to the claim (5.24) because

�k ı �j D

´
idMnk

.C/ if k D j;

0 if k ¤ j;

It may be helpful to visualize the map �k ı R ı F ı �j � .R ı F /kj as the following
composite of CP (not necessarily unital) maps:

Mm1.C/˚ � � � ˚Mms .C/

Mn1.C/˚ � � � ˚Mnt .C/

Mn1.C/˚ � � � ˚Mnt .C/

Mnj .C/

Mnk .C/:

? _
�j

ooF

��

//
R �k

// //

The following is an analogue of Lemma 2.23 to direct sums of matrix algebras.

Lemma 5.25. Using the same notation as in Lemma 5.23 and assuming R ı F D
�

idB ,
write

R D

0B@R11 � � � R1s
:::

:::

Rt1 � � � Rts

1CA and F D

0B@F11 � � � F1t
:::

:::

Fs1 � � � Fst

1CA ;
where the completely positive (not necessarily unital) maps Rki WMmi .C/ //Mnk .C/
and Fij WMnj .C/!Mmi .C/ have Kraus decompositions,12

Rki D

nkmiX
ˇkiD1

AdRki Iˇki and Fij D

minjX
ijD1

AdFij Iij (5.26)

with Rki Iˇki W C
mi ! Cnk and Fij Iij W C

nj ! Cmi linear maps.

12We will see in the text surrounding (5.32) that there exists a Kraus decomposition of Fij such that the
index ij runs from 1 to cij instead of minj D

Pt
kD1 ciknknj . This just means that Fij Iij is zero when

ij exceeds cij .
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(i) For each index k2¹1; : : : ; tºnNq , there exist a collection of complex numbers
¹˛kIi;ˇki ;ikº, indexed by ik2¹1; : : : ; cikº, ˇki2¹1; : : : ;nkmiº, and i2¹1; : : : ; sº,
such that

P�kRki IˇkiFikIik D ˛kIi;ˇki ;ikP�k (5.27)

for all ˇki 2 ¹1; : : : ; nkmiº, ik 2 ¹1; : : : ; nkmiº, i 2 ¹1; : : : ; sº, and

sX
iD1

nkmiX
ˇkiD1

minkX
ikD1

j˛kIi;ˇki ;ik j
2
D 1: (5.28)

(ii) For every pair j 2 ¹1; : : : ; tº and k 2 ¹1; : : : ; tº nNq with j ¤ k,

P�kRki;ˇkiFij;ij D 0

for all ˇki 2 ¹1; : : : ; nkmiº, ij 2 ¹1; : : : ; njmiº, i 2 ¹1; : : : ; sº.

Proof. Computing �k ıR ı F ı �j for j; k 2 ¹1; : : : ; tº gives

�k ıR ı F ı �j D

sX
iD1

Rki ı Fij D

sX
iD1

nkmiX
ˇkiD1

minjX
ijD1

AdRki IˇkiFij Iij : (5.29)

Suppose that qk > 0. Then, (5.24) becomes

RP�k
ı �k ıR ı F ı �j D

´
RP�k

if k D j;

0 if k ¤ j:
(5.30)

(i) In the case k D j , (5.30) entails

AdP�k ı �k ıR ı F ı �k D AdP�k

upon multiplying byP�k on the left. Combining this with (5.29) and Lemma 2.21
(by following a similar proof to that of Lemma 2.23), there exist complex num-
bers ˛kIi;ˇki ;ik satisfying (5.27) and (5.28).

(ii) In the case k ¤ j , (5.30) becomes

AdP�k ı �k ıR ı F ı �j D 0

upon multiplying by P�k on the left. This implies that

P�kRki IˇkiFij Iij D 0

by (5.29) and Lemma 2.21.

At this point, it is helpful to make the conclusions of Lemma 5.25 even more explicit
by further explicating P�kRki IˇkiFij Iij . The Kraus operator Rki Iˇki W C

mi ! Cnk can be
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partitioned into block sums of matrices based on the multiplicity of F in the following
way:

Rki Iˇki D

" nk�.ci1n1/ matrix‚ …„ ƒ
Vki Iˇki I11„ ƒ‚ …
nk�n1 matrix

� � � Vki Iˇki I1ci1„ ƒ‚ …
nk�n1 matrix

� � �

nk�.citnt / matrix‚ …„ ƒ
Vki Iˇki It1„ ƒ‚ …
nk�nt matrix

� � � Vki Iˇki Itcit„ ƒ‚ …
nk�nt matrix

#

due to (5.10). Based on this partitioning, the unitality condition on R reads

1nk D

sX
iD1

minkX
ˇkiD1

tX
jD1

cijX
ijD1

Vki Iˇki Ijij V
�

ki Iˇki Ijij
8k 2 ¹1; : : : ; tº (5.31)

due to (5.14). Furthermore, the definition of F from (5.9) says that

Fij .Bj / D diag.0; : : : ; 0; : : : ; Bj ; : : : ; Bj ; : : : ; 0; : : : ; 0/ 8Bj 2Mnj .C/:

This implies that the (adjoint of the) Kraus operators Fij Iij W C
nj ! Cmi of

Fij WMnj .C/!Mmi .C/

have the partitioned form

F
�
ij Iij

D

" nj�.ci1n1/‚ …„ ƒ
0„ƒ‚…

nj�n1

� � � 0„ƒ‚…
nj�n1

� � �

nj�.cijnj /‚ …„ ƒ
0„ƒ‚…

nj�nj

� � � 1nj � � � 0„ƒ‚…
nj�nj

� � �

nj�.citnt /‚ …„ ƒ
0„ƒ‚…

nj�nt

� � � 0„ƒ‚…
nj�nt

#
;

(5.32)

where the identity matrix 1nj is in the ij -th nj � nj subblock inside the nj � .cijnj /
block indicated (and all other entries are 0). In particular, the index ij runs from 1 to cij
(as opposed to minj ). Therefore, the product Rki IˇkiFij Iij is

Rki IˇkiFij Iij D Vki Iˇki Ijij ; (5.33)

which is an nk � nj matrix. The following result is a generalization of equation (4.8) to
the direct sum case.

Lemma 5.34. Under the same assumptions as in Lemma 5.25, for every k2¹1; : : : ; tºn
Nq , there exist a collection of complex numbers ¹˛kIi;ˇki ;ik º, indexed by ik2¹1; : : : ; cikº,
ˇki 2 ¹1; : : : ; nkmiº, and i 2 ¹1; : : : ; sº, such that

Rki Iˇki

D

" nk�.ci1n1/‚ …„ ƒ
0„ƒ‚…

nk�n1

� � � 0„ƒ‚…
nk�n1

� � �

nk�.ciknk/‚ …„ ƒ
˛kIi;ˇki ;11nk„ ƒ‚ …

nk�nk

� � � ˛kIi;ˇki ;cik1nk„ ƒ‚ …
nk�nk

� � �

nk�.citnt /‚ …„ ƒ
0„ƒ‚…

nk�nt

� � � 0„ƒ‚…
nk�nt

#
;

(5.35)
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for all ˇki 2 ¹1; : : : ; nkmiº; i 2 ¹1; : : : ; sº, and
sX
iD1

nkmiX
ˇkiD1

cikX
ikD1

j˛kIi;ˇki ;ik j
2
D 1: (5.36)

Proof. In analogy to the proof of Theorem 2.32, for every k 2 ¹1; : : : ; tº n Nq , let Ek be
the pre-Hilbert Mnk .C/-module consisting of vectors of nk � nk matrices whose vector
components are labeled by the triple of indices ik , ˇki , i . Let EVk be the vector whose
vector components are the nk � nk matrices Vki Iˇki Ikik . The first case of Lemma 5.25
implies that there exists a vector Ęk 2 Ek whose vector components are constant multiples
of the identity matrix satisfying

EVk D P�k Ęk C
EV bl
k C

EV br
k ;

where
EV bl
k WD P

?
�k
EVkP�k ;

EV br
k WD P

?
�k
EVkP

?
�k
; and hh Ęk ; Ękii D 1nk :

Similarly, for every pair .k; j / 2 ¹1; : : : ; tº � ¹1; : : : ; tº such that j ¤ k and such that
qk > 0, let Ekj be the pre-Hilbert Mnk .C/-module consisting of vectors of nk � nj matri-
ces whose vector components are labeled by the triple of indices ij , ˇki , i . Let EVkj be the
vector of the nk � nj matrices whose components are given by Vki Iˇki Ijij . The second
case of Lemma 5.25 implies that EVkj D EV bl

kj
C EV br

kj
, where

EV bl
kj WD P

?
�k
EVkjP�j and EV br

kj WD P
?
�k
EVkjP

?
�k
:

The equalities
hhP�k Ęk ;

EV br
k ii D hh

EV bl
k ;
EV br
k ii D hh

EV bl
kj ;
EV br
kj ii D 0

all follow immediately from the definitions. Unitality of R takes on the form

1nk D hh
EVk ; EVkii C

tX
jD1;j¤k

hh EVkj ; EVkj ii (5.37)

by (5.31). By expanding out (5.37) and multiplying on the right byP�k , completely similar
arguments to those in the proof of Theorem 2.32, specifically the discussion surrounding
equations (2.35) through (2.37), prove that hh EV bl

k
; Ękii D 0. Hence, the unitality condition

(5.37) simplifies to

P?�k D hh
EV bl
k ;
EV bl
k ii C hh

EV br
k ;
EV br
k ii C

tX
jD1;j¤k

�
hh EV bl

kj ;
EV bl
kj ii C hh

EV br
kj ;
EV br
kj ii

�
(5.38)

analogously to (2.35). Now, computing �k ıR ıF ı �j in terms of the pre-Hilbert module
inner product gives

.�k ıR ı F ı �j /.Aj / D hh EVkjAj ; EVkj ii 8Aj 2Mnj .C/

for all k;j (when j D k, remove one of the indices from EVkk) by (5.33). When j D k, mul-
tiplying this equation on the right byP�k (which equals .P�/k since qk >0) and combining
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this with Lemma 5.23 gives hh EV br
k
; Ękii DP

?
�k

by following an argument exactly analogous
to (2.40) and the text surrounding this equation. Similarly, combining this result with the
Paschke–Cauchy–Schwarz inequality gives P?

�k
� hh EV br

k
; EV br
k
ii. On the other hand, (5.38)

says that P?
�k
� hh EV br

k
; EV br
k
ii. Therefore, following analogous lines of thought to those from

(2.42) to (2.43) gives

EV br
k D P

?
�k
Ęk ; EV bl

k D
E0; EV bl

kj D
E0; and EV br

kj D
E0:

Therefore, EVk D Ęk and EVkj D E0. Expanding out the vector entries coming from the defi-
nitions of Ek and Ekj completes the proof.

Given a state-preserving �-homomorphism .B; �/
F
�! .A;!/, it may be useful to know

how the density matrices associated to � and ! are related. The following fact describes
this relationship. It is a generalization of the “tracing out degrees of freedom” method in
quantum theory.

Proposition 5.39. Let A, B, F , !, and � be as in Notation 5.6, and let

! �

sX
iD1

pi tr.�i � / and � �

tX
jD1

qj tr.�j � / (5.40)

be decompositions of the states ! and � as described in Lemma 5.17. Then the following
facts hold.

(i) For each i 2 ¹1; : : : ; sº, there exists a j 2 ¹1; : : : ; tº such that cij > 0.

(ii) If there exists a j 2 ¹1; : : : ; sº such that cij D 0 for all i 2 ¹1; : : : ; sº, then
qj D 0.

(iii) Finally,

qj�j D

sX
iD1

cijX
ijD1

pi�i Ijj Iij ij 8j 2 ¹1; : : : ; tº; (5.41)

where �i Ijj Iij ij is the nj � nj matrix obtained from �i in the following way.
Sincemi D

Pt
kD1 ciknk , eachmi �mi matrix �i has a block matrix decompo-

sition

�i D

264�i I11 � � � �i I1t
:::

:::

�i It1 � � � �i It t

375 ; (5.42)

where �i Ijk is a .cijnj / � .ciknk/ matrix. This matrix further breaks up into
subblocks

�i Ijk D

264 �i IjkI11 � � � �i IjkI1cik
:::

:::

�i IjkIcij 1 � � � �i IjkIcij cik

375 ;
where �i IjkIij ik is an nj � nk matrix.
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Remark 5.43. The contrapositive of part (ii) of Proposition 5.39 will be used occasion-
ally in certain technical points later. It states that if qj > 0, there exists at least one
i 2 ¹1; : : : ; sº such that cij > 0. In other words, F is injective a.e. This should be compared
to Lemma 5.4. Furthermore, using partial traces, Equation (5.41) becomes

qj�j D

sX
iD1

pi trMcij
.C/.�i Ijj /;

where �i is decomposed as in (5.42).

Proof of Proposition 5.39. (i) Since mi > 0 and mi D
Pt
jD1 cijnj , there must exist a

non-zero cij for some j 2 ¹1; : : : ; tº.
(ii) Suppose that there exists a j 2 ¹1; : : : ; sº such that cij D 0 for all i 2 ¹1; : : : ; sº.

Then Fij .1nj / D 0 for all i 2 ¹1; : : : ; sº. Since ! ı F D � , this shows that �.1nj / D 0.
But �.1nj / D qj tr.�j / D qj so that qj D 0.

(iii) This follows from taking the adjoint of the equation ! ı F D � , which gives

F � ı !� D �� H) F �
�
!�.1/

�
D ��.1/:

Expanding out these expressions and extracting the j -th term gives

qj�j D

sX
iD1

piF
�
ij .�i / 8j 2 ¹1; : : : ; tº: (5.44)

Applying (5.26) and (5.32) gives the desired result.

A consequence of Lemma 5.34 is the following fact regarding the existence and unique-
ness of disintegrations on finite-dimensional C �-algebras. It is a generalization of Theo-
rem 4.3 to direct sums of matrix algebras and is the main theorem of the present work.

Theorem 5.45. Let A, B, F , !, and � be as in Notation 5.6 and Proposition 5.39.

(i) A disintegration R of ! over � consistent with F exists if and only if for each
i 2 ¹1; : : : ; sº and j 2 ¹1; : : : ; tº there exist non-negative matrices �j i 2Mcij .C/
such that13

tr

 
sX
iD1

�j i

!
D 1 8j 2 ¹1; : : : ; tº nNq (5.46)

and

pi�i D diag.q1�1i ˝ �1; : : : ; qt�ti ˝ �t / 8i 2 ¹1; : : : ; sº: (5.47)

(ii) Furthermore, if R0 is another disintegration of ! over � consistent with F , then
R0 D

�
R and

R0j i D Rj i 8i 2 ¹1; : : : ; sº 8j 2 ¹1; : : : ; tº nNq : (5.48)

13Nq was introduced in Notation 5.19.
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(iii) Finally, if such a disintegration R exists, a formula for the j i -th component of
the disintegration is given by

Rj i .Ai / D trMcij
.C/

�
.�j i ˝ 1nj /Ai Ijj

�
(5.49)

for all j 2 ¹1; : : : ; tº n Nq and for all i 2 ¹1; : : : ; sº. Here, Ai Ijj is uniquely
defined by the decomposition as a t � t matrix

Ai �

2664
Ai I11 � � � Ai I1t
:::

:::

Ai It1 � � � Ai It t

3775 ; (5.50)

where the kl-th subblock, Ai Ikl , is a .ciknk/ � .cilnl / matrix.

Proof. Proving the first item will provide proofs of the subsequent claims.
()) Suppose that a disintegration R exists. The condition � ı R D ! is equivalent to

R�.��.1// D !�.1/ by Lemma 5.16. Hence, using the notation from (5.40), this equation
gives

R�
�
��.1/

�
�

0BB@
R�11 � � � R�t1
:::

:::

R�1s � � � R�ts

1CCA
0BB@
q1�1
:::

qt�t

1CCA D
0BB@
p1�1
:::

ps�s

1CCA � !�.1/;
which is equivalent to

pi�i D

tX
jD1

qjR
�
j i .�j / 8i 2 ¹1; : : : ; sº: (5.51)

To compute R�j i .�j /, we can follow an analogous computation to that from (4.10). First,
when qj > 0, we obtain

R�j i .�j / D

njmiX
ǰ iD1

Ad
R
�
ji I ǰ i

.�j /

(5.35)
D

njmiX
ǰ iD1

266666664

0

j̨ Ii; ǰ i ;11nj
:::

j̨ Ii; ǰ i ;cij1nj

0

377777775 �j
�
0 j̨ Ii; ǰ i ;11nj � � � j̨ Ii; ǰ i ;cij1nj 0

�
;

where the top 0 block in the left matrix is a .
Pj�1

kD1
ciknk/ � nj matrix and the bottom 0

block in the left matrix is a .
Pt
kDjC1 ciknk/ � nj matrix. Keeping track of these sizes,
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we obtain

R�j i .�j / D

njmiX
ǰ iD1

26666664
0 0 � � � 0 0

0 j j̨ Ii; ǰ i ;1j
2�j � � � j̨ Ii; ǰ i ;1 j̨ Ii; ǰ i ;cij �j 0

:::
:::

:::
:::

0 j̨ Ii; ǰ i ;cij j̨ Ii; ǰ i ;1�j � � � j j̨ Ii; ǰ i ;cij j
2�j 0

0 0 � � � 0 0

37777775 ; (5.52)

where the top-left 0 matrix is a .
Pj�1

kD1
ciknk/ � .

Pj�1

kD1
ciknk/ matrix and the bottom-

right 0matrix is a .
Pt
kDjC1 ciknk/� .

Pt
kDjC1 ciknk/matrix. Define the cij � cij matrix

�j i to be

�j i WD

njmiX
ǰ iD1

264 j j̨ Ii; ǰ i ;1j
2 � � � j̨ Ii; ǰ i ;1 j̨ Ii; ǰ i ;cij

:::
:::

j̨ Ii; ǰ i ;cij j̨ Ii; ǰ i ;1 � � � j j̨ Ii; ǰ i ;cij j
2

375
so that the ij�ij -th entry of �j i is given by

�j i Iij �ij D

njmiX
ǰ iD1

j̨ Ii I ǰ i ;ij j̨ Ii I ǰ i ;�ij : (5.53)

Notice that �j i is defined only when cij > 0 and when qj > 0. Furthermore, when it is
defined, �j i is a non-negative matrix and

sX
iD1

tr.�j i / D
sX
iD1

njmiX
ǰ iD1

cijX
ijD1

j j̨ Ii; ǰ i ;ij j
2 (5.36)
D 1; (5.54)

which shows that
Ps
iD1 �j i is a density matrix (again, when qj > 0). The sum in (5.54)

is guaranteed to have at least one term due to Remark 5.43. Second, when qj D 0, then
qjR

�
j i .�j / D 0 so that this term does not contribute to the sum in (5.51). Therefore, in

this case, �j i can be chosen to be an arbitrary non-negative matrix provided that cij > 0. If
cij D 0, then �j i does not exist and any expression involving such a �j i should be excluded.
Then,

pi�i D

tX
jD1

qjR
�
j i .�j /

(5.52)
D

264q1�1i ˝ �1 0

: : :

0 qt�ti ˝ �t

375 8i 2 ¹1; : : : ; sº:

Note that this sum after the first equality is not empty by part (i) of Proposition 5.39.
(() For the converse, suppose the non-negative matrices �j i 2 Mcij .C/ satisfying

(5.46) and (5.47) exist. Denote the ij�ij -th entry of �j i by �j i Iij �ij . For each pair of
indices i 2 ¹1; : : : ; sº and j 2 ¹1; : : : ; tº, define R0j i WMmi .C/ //Mnj .C/ in the fol-
lowing way. Write an element Ai 2Mmi .C/ as in (5.50). Then, write Ai Ikl as a cik � cil
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matrix consisting of nk � nl matrices indexed as in Ai IklIik�il . Set14

R0j i .Ai / WD

´Pcij
ij ;�ijD1

�j i I�ij ijAi Ijj Iij �ij if qj > 0;
1
smi

tr.Ai /1nj if qj D 0:
(5.55)

A direct calculation shows that this formula equals (5.49) when j 2 ¹1; : : : ; tº n Nq . Set
R0 W A // B to be the t � s matrix of linear maps whose j i -th entry is R0j i from (5.55).
Then R0 is a disintegration of ! over � consistent with F . The proof of this is similar to
the proof of Theorem 4.3, though one must keep track of indices more carefully. Unitality
of R0 follows from

sX
iD1

R0j i .1mi / D

sX
iD1

cijX
ij ;�ijD1

�j i I�j iij1mi Ijj Iij �ij

D

sX
iD1

cijX
ijD1

�j i Ij iij1nj

D

sX
iD1

tr.�j i /1nj D 1nj

whenever qj > 0 because
Ps
iD1 tr.�j i / D 1. When qj D 0, one obtains

sX
iD1

R0j i .1mi / D

sX
iD1

1

smi
tr.1mi /1nj D 1nj :

We will now show that �j ıR0 ı F D �j for all j satisfying qj > 0. First, note that

.R0 ı F /. EB/ D

0B@R
0
11 � � � R01s
:::

:::

R0t1 � � � R0ts

1CA
0BBBBBB@

diag.

c11 times‚ …„ ƒ
B1; : : : ; B1; : : : ;

c1t times‚ …„ ƒ
Bt ; : : : ; Bt /

:::

diag.B1; : : : ; B1„ ƒ‚ …
cs1 times

; : : : ; Bt ; : : : ; Bt„ ƒ‚ …
cst times

/

1CCCCCCA :
Focusing on the j -th term when qj > 0, one obtains

sX
iD1

R0j i
�

diag.B1; : : : ; B1„ ƒ‚ …
ci1 times

; : : : ; Bt ; : : : ; Bt„ ƒ‚ …
cit times

/
�
D

sX
iD1

cijX
ijD1

�j i Ij iijBj

D

sX
iD1

tr.�j i /Bj D Bj :

14Note that the swapping of the ij and �ij indices in equation (5.55) is not a typo. In addition, note that
if qj > 0 and cij D 0, then the sum in the top case is empty and gives, by definition of an empty sum, 0.
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Although the equality �j ı R0 ı F D �j fails when qj D 0, the equation R0 ı F D
�

idB

still holds. Furthermore, R0 is state-preserving because

!
�
EA
�
D

sX
iD1

tr.pi�iAi /
(5.47)
D

sX
iD1

tX
jD1

qj tr
�
.�j i ˝ �j /Ai Ijj

�
D

sX
iD1

tX
jD1
qj>0

qj tr

 cijX
ijD1;�ijD1

�j i I�ij ij �jAi Ijj Iij �ij

!

(5.55)
D

sX
iD1

tX
jD1
qj>0

qj tr
�
�jR

0
j i .Ai /

�
D .� ıR0/. EA/

for all EA2A. To show thatR0 is CP, it suffices to show that eachR0j i is CP by Lemma 5.11.
This follows from the equality between the formulas (5.49) and (5.55) whenever j 2
¹1; : : : ; tº nNq . The case when j 2 Nq gives a CP map as well since the trace in (5.55) is
a CP map.

Finally, we prove the uniqueness condition (5.48) for disintegrations. The condition
R0 D

�
R is equivalent to

sX
iD1

R0j i .Ai /.P�/j D

sX
iD1

Rj i .Ai /.P�/j 8 EA 2 A; j 2 ¹1; : : : ; tº:

When qj D 0, this equality holds trivially because .P�/j D 0. When qj ¤ 0, Lemma 5.34
guarantees the existence of complex numbers ¹ j̨ Ii; ǰ i ;ij º and Kraus operators ¹Rj i I ǰ i º
for Rj i satisfying the conditions in the statement of that theorem. Therefore, by carefully
working out the matrix operations, one obtains

Rj i .Ai /
Lemma 5.34
D

njmiX
ǰ iD1

cijX
ijD1

cijX
�ijD1

j̨ Ii I ǰ i ;ij j̨ Ii I ǰ i ;�ijAi Ijj Iij �ij

(5.53)
D

cijX
ijD1

cijX
�ijD1

�j i I�ij ijAi Ijj Iij �ij
(5.55)
D R0j i .Ai / 8Ai 2Mmi .C/:

This concludes the proof of the theorem.

Remark 5.56. By applying the trace to both sides of (5.47), one obtains

pi D

tX
jD1

qj tr.�j i / 8i 2 ¹1; : : : ; sº:

An immediate corollary of Theorem 5.45 is the standard existence and uniqueness
theorem of regular conditional probabilities from classical finite probability. We work this
out in full detail as an example.
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Example 5.57. Using the notation from Theorem 5.45, suppose that mi D 1 and nj D 1
for all i , j . Then, �i D 1D �j for all i , j . Furthermore, since eachmi D 1, the multiplicity
is drastically restricted since mi D

Pt
jD1 cijnj . By this equality, for each i , there exists

a unique j such that cij D 1 and all other cik D 0. In other words, there exists a unique
function f W ¹1; : : : ; sº ! ¹1; : : : ; tº such that

cij D ıf .i/j �

´
1 if f .i/ D j;

0 otherwise:

This implies that

F D

264ıf .1/1 � � � ıf .1/t
:::

:::

ıf .s/1 � � � ıf .s/t

375 and F � D

264ıf .1/1 � � � ıf .s/1
:::

:::

ıf .1/t � � � ıf .s/t

375 : (5.58)

Hence,

qj
(5.44)
D

sX
iD1

piF
�
ij .1/

(5.58)
D

sX
iD1

piıf .i/j D
X

i2f �1.j /

pi ; (5.59)

which reproduces the probability-preserving condition .X; p/
f
�! .Y; q/, assuming X D

¹1; : : : ; sº and Y D ¹1; : : : ; tº. In what follows, we will construct, without any additional
assumptions, non-negative matrices �j i 2Mcij .C/ satisfying (5.46) and (5.47) as well as
a disintegration

R D

264r11 � � � r1s
:::

:::

rt1 � � � rts

375 :
This will prove that a disintegration automatically exists in this case. First note that if
j ¤ f .i/, the set Mcij .C/ is just a singleton so that we only have a chance of constructing
�j i when j D f .i/. In this case, cif .i/ D 1 and such a matrix will be a 1 � 1 matrix, i.e.,
a non-negative number. We set

�j i WD

8̂̂<̂
:̂
pi=qj if qj > 0 and j D f .i/;

# if qj D 0 and j D f .i/;

DNE if cij D 0;

(5.60)

where # can be chosen to be any non-negative number. Note that if there exists a j 2
¹1; : : : ; tº for which cij D 0 for all i 2 ¹1; : : : ; sº, then qj D 0 by part (ii) of Proposi-
tion 5.39. For such j , �ij cannot be defined for any i 2 ¹1; : : : ; sº. Nevertheless,

tr

 
sX
iD1

�j i

!
D

sX
iD1

�j i D
X

i2f �1.j /

pi

qj

(5.59)
D 1 8j 2 ¹1; : : : ; sº nNq
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proves (5.46). Secondly, because there exists a unique j for each i such that cij D 1,

diag.q1�1i ˝ �1; : : : ; qt�ti ˝ �t /

D qf .i/�f .i/i D qf .i/

´
pi=qf .i/ if qf .i/ > 0;

# if qf .i/ D 0;

D

´
pi if qf .i/ > 0;

0 if qf .i/ D 0;
8i 2 ¹1; : : : ; sº:

Note that if qf .i/ D 0, then pi D 0 by (5.59). Hence, this proves (5.47). Although this
already proves a disintegration exists via Theorem 5.45, it is fruitful to construct it based
on the proof of Theorem 5.45 and compare it to the classical disintegration from Theo-
rem 5.1. Using the construction of a disintegration from (5.55), we get

rj i
(5.55)
D

8̂̂<̂
:̂
�j i if qj > 0 and cij D 1;

0 if qj > 0 and cij D 0;

1=s if qj D 0;

(5.60)
D

8̂̂<̂
:̂
pi=qj if qj > 0 and j D f .i/;

0 if qj > 0 and j ¤ f .i/;

1=s if qj D 0;

D

´
piıf .i/j =qj if qi > 0;

1=s if qj D 0:

This reproduces formula (5.2) for an ordinary disintegration.

Finally, we end this section with a generalization of Theorems 5.45 and 4.16 by allow-
ing for arbitrary (unital) �-homomorphisms F W B ! A.

Theorem 5.61. Let A, B, F , !, and � be as in Notation 5.6 and Proposition 5.39 except
that F is now an arbitrary (unital) �-homomorphism, but not necessarily of the form (5.9).
Then, a disintegration R exists if and only if there exist unitary matrices Ui 2Mmi .C/
and non-negative matrices �j i 2Mcij .C/ such that Ad EU ı F is of the form (5.9),

tr

 
sX
iD1

�j i

!
D 1 8j 2 ¹1; : : : ; tº nNq;

and

piU
�
i �iUi D diag.q1�1i ˝ �1; : : : ; qt�ti ˝ �t / 8i 2 ¹1; : : : ; sº: (5.62)

Furthermore, any two such disintegrations are unique �-a.e.

Proof. This follows from an argument analogous to the proof of Theorem 4.16.



A. J. Parzygnat and B. P. Russo 942

6. Example: Measurement in quantum mechanics

It is instructive to work out the following example due to its connection with measure-
ment in quantum mechanics (it may be helpful at this point to review Example 2.11 for
notation). We will also avoid using the results of Theorem 5.45 and will instead provide
a self-contained analysis since this is simple enough in this special case. Fix m 2 N, let
A 2 Mm.C/ be a self-adjoint matrix with spectrum �.A/ � R, and let ! D tr.� � / W
Mm.C/ // C be a state. The matrix A induces the �-homomorphism uniquely deter-
mined by

C�.A/ F
�!Mm.C/

e� 7! P�;
(6.1)

where P� is the orthogonal projection onto the � eigenspace associated to A. This pulls
back the state ! to a probability measure q on �.A/ whose evaluation on � 2 �.A/ will
be denoted by q�. The pullback state will be denoted by hq; � i, where h � ; � i is the natural
inner product on C�.A/ induced by the basis ¹e�º�2�.A/. Physically, the number q� is
interpreted as the probability that the state ! takes the value � when the observable A is
measured. If a disintegration R WMm.C/ // C�.A/ exists, it is uniquely determined by
the collection of PU maps R� defined by

Mm.C/
R C�.A/ ev�

��! C

A
R�

7�����������!
˝
e�; R.A/

˛
and indexed by � 2 �.A/. Because these are states on Mm.C/, they uniquely determine a
density matrix �� 2Mm.C/; i.e.,

R� D tr.�� � /; �� � 0; tr.��/ D 1; and R D
X

�2�.A/

ev�� ıR�: (6.2)

Because R must be state-preserving to be a disintegration, this entails

tr.� � / D
˝
q;R. � /

˛ (6.2)
D

X
�2�.A/

q� tr.�� � / H) � D
X

�2�.A/

q���: (6.3)

The other condition for R to be a disintegration is R ı F D
hq; � i

idC�.A/ , which says thatX
�2�.A/

b�e� �R
�
F
� X
�2�.A/

b�e�

��
2 Nhq; � i 8

X
�2�.A/

b�e� 2 C�.A/:

Expanding this out, relabeling indices, and using part (i) of Lemma 2.20 givesX
�2�.A/nNq

b�e� D
X

�2�.A/nNq

� X
�2�.A/

b� tr.��P�/
�
e�:
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Linear independence of the e� then gives the constraints

b� D
X

�2�.A/

b� tr.��P�/ 8� 2 �.A/ nNq :

Since the b’s can be chosen arbitrarily and independently (indeed, set b� WD ı�� for vari-
ous �), we conclude that

tr.��P�/ D ı�� 8�; � 2 �.A/ nNq :

Since �� is a positive matrix, tr.��P�/ D tr.P���P�/ D 0 if and only if P���P� D 0
whenever � ¤ �. In what follows, we will prove that �� D P���P�. To see this, first let
Eu 2 Im.P�/ and Ev 2 Im.P�/, where �; � 2 �.A/ n ¹�º. Then P�; P� � P?� and

0 �
˝
EuC Ev; P?� ��P

?
� .EuC Ev/

˛
D hEu; P?� ��P

?
� Eui C hEu; P

?
� ��P

?
� Evi C hEv; P

?
� ��P

?
� Eui C hEv; P

?
� ��P

?
� Evi

D hEu; P���P� Eui C hEu; P���P� Evi C hEv; P���P� Eui C hEv; P���P� Evi

D 2RehEu; P���P� Evi;

where we have freely used the facts P?
�
EuD P� EuD Eu and P?

�
Ev D P� Ev D Ev together with

the self-adjointness and orthogonality of these projections. Since Eu and Ev can be arbitrary,
positivity of P?

�
��P

?
�

guarantees that P���P� D 0 for all �; � 2 �.A/ n ¹�º. So far,
we have shown that �� D P���P� C P?� ��P� C P���P

?
�

. What is left to show is that
P���P� D 0 for all � 2 �.A/ n ¹�º (which would imply that P���P� D 0 by taking the
adjoint). Now, let Eu 2 Im.P�/ and Ev 2 Im.P�/, where � 2 �.A/ n ¹�º. Positivity of ��
gives

0 �
˝
EuC Ev; ��.EuC Ev/

˛
D 2RehEu; P���P�Evi C hEv; ��Evi

by a similar calculation and using the previous result. Since Eu can be chosen freely, it
can be chosen so that the left term becomes arbitrarily negative unless P���P� D 0. This
concludes the argument that �� D P���P�. Thus, �� and ��0 have mutually orthogonal
supports for � ¤ �0 provided that �; �0 2 �.A/ nNq . Hence, although we have no restric-
tions on �� when � 2 Nq , we still obtain

�
(6.3)
D

X
�2�.A/

q��� D
X

�2�.A/nNq

q��� D
X

�2�.A/nNq

q�P���P�; (6.4)

which agrees with the result (5.47) with respect to a spectral basis, or more accurately
(5.62), in this special case since s D 1 so that there is only one i index and �j D 1 for all
j because �j is a 1 � 1 matrix. Thus, the �j i matrices reduce to the �� matrices. To make
a more explicit connection to quantum information theory, we recall the definition of a
Lüders projection, which is a model for the ensemble of the induced states of a system
after a measurement has taken place [29].
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Definition 6.5. Let � 2Mm.C/ be a density matrix and let A 2Mm.C/ be self-adjoint
with spectrum �.A/. The Lüders projection of � with respect to the measurement of A is
the density matrix

�0 WD
X

�2�.A/

P��P�:

In summary, we have obtained the following theorem based on our above analysis.

Theorem 6.6. Let A 2 Mm.C/ be a self-adjoint matrix with spectrum �.A/, let F W
C�.A/ ! Mm.C/ be as in (6.1), and let ! D tr.� � / W Mm.C/ // C be a state with
hq; � i WD ! ı F the induced state on C�.A/. Then F has a disintegration of ! over hq; � i
consistent with F if and only if � equals its Lüders projection with respect to the measure-
ment of A.

Proof. We will use the same notation as earlier in this section.
()) Assume a disintegration exists. By (6.4), P��P� D q��� for all � 2 �.A/ nNq .

Hence,

�� D
P��P�

q�
D
P��P�

tr.�P�/
8� 2 �.A/ nNq (6.7)

because �� is a density matrix. Furthermore, since a disintegration exists,

�
(6.3)
D

X
�2�.A/nNq

q���
(6.7)
D

X
�2�.A/nNq

q�
P��P�

q�
D

X
�2�.A/nNq

P��P�:

(() Suppose that � equals its Lüders projection; i.e., suppose that

� D
X

�2�.A/

P��P�:

For each � 2 �.A/, set R� WMm.C/ // C to be the linear map defined by

Mm.C/ 3 B 7! R�.B/ WD

8<: tr
�
P��P�
q�

B
�

if q� > 0;
1
m

tr.B/ if q� D 0:
(6.8)

Then the linear map R W Mm.C/ // C�.A/ defined by R WD
P
�2�.A/ ev�

�
ı R� is a

disintegration of F . To see this, first notice that R is positive, which implies that it is CP
since C�.A/ is commutative (cf. Stinespring [53, Theorem 3]). Second,R is unital because

R.1m/ D
X

�2�.A/nNq

R�.1m/e� C
X
�2Nq

R�.1m/e�

(6.8)
D

X
�2�.A/nNq

e� C
X
�2Nq

e� D
X

�2�.A/

e�

since tr.P��P�/ D q� for all � 2 �.A/. To show that R satisfies

R ı F D
hq; � i

idC�.A/ ;
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we will show that R.F.e�// � e� 2 Nhq; � i for all � 2 �.A/. Setting d� WD tr.P�/, the
degeneracy/mutliplicity of � 2 �.A/, we obtain

R
�
F.e�/

� (6.1)
D R.P�/ D

X
�2�.A/nNq

R�.P�/e� C
X
�2Nq

R�.P�/e�

(6.8)
D

X
�2�.A/nNq

ı��e�C
X
�2Nq

d�

m
e�D

8<:e�C
d�
m

P
�2Nq

e� if q�>0;
d�
m

P
�2Nq

e� if q�D0:

Hence, R.F.e�// � e� 2 CNq , which is the null space of hq; � i. Thus, R is a disintegra-
tion.

Appendix: Equivalent definitions of disintegration
In this appendix, we review the definition of a disintegration from measure theory (cf.
Fremlin [14, Definition 452E]). Tables 1 and 2 provide two, a-priori different, definitions
of a disintegration with varying input data and consistency conditions. This appendix
serves to explain how these definitions are related to each other. More precisely, The-
orems A.6 and A.11 state that the definitions in the respective tables are equivalent.
Theorem A.18 says that this diagrammatic definition of a disintegration is equivalent to
the definition of a regular conditional probability (cf. Panagaden [33, Definition 2.1]).

In all that follows, .X; †; �/ and .Y; �; �/ are measure spaces with no additional
assumptions other than � and � are non-negative measures. Furthermore, f W X ! Y

is taken to be measure-preserving so that the pushforward f�� of � along f is �; i.e.,
�.F / D �.f �1.F // for all F 2 �.

Definition A.1. Let .X;†/ and .Y;�/ be measurable spaces. A transition kernel r from
.Y;�/ to .X;†/, written as r W Y // X , is a function r W Y �†! Œ0;1� such that

(i) r.y; � / W †! Œ0;1� is a measure for all y 2 Y and

(ii) r. � ; E/ W Y ! Œ0;1� is measurable for all E 2 †.

The notation ry.E/ WD r.y;E/will be implemented. A transition kernel as above is called
a stochastic map (also Markov kernel) when ry is a probability measure for all y 2 Y .

Transition kernels are generalizations of measurable functions in that they assign to
each point in the source/domain a measure on the target/codomain (cf. Example A.4). If a
function is to be thought of as a deterministic process, then a transition kernel whose asso-
ciated measures are probability measures can be interpreted as a non-deterministic (i.e.,
stochastic) process, where one only knows the probabilities associated with the possible
outcomes of that process.

Example A.2. Let .X; †/ be a measurable space and let ¹�º denote a one element set
with the unique � -algebra. There is a bijection between the set of measures on .X;†/ and
the set of transition kernels ¹�º // X from ¹�º to X . This allows measures to be viewed
as morphisms.
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Definition A.3. Let .X;†/, .Y;�/, and .Z;„/ be measurable spaces. Let � W X // Y

and � W Y // Z be two transition kernels. The composite of � followed by �, written as
� ı � W X // Z, is defined by

X �„ 3 .x;E/ 7! .� ı �/x.E/ WD

Z
Y

�y.E/ d�x.y/:

This equation is known as the Chapman–Kolmogorov equation.

The fact that the composite of transition kernels defines a transition kernel follows
from the monotone convergence theorem [50, Theorem 1.26]. Rather than proving this
here, we will recall techniques from analysis that can be used to prove this when we prove
Theorem A.6.

Example A.4. Let .X; †/ and .Y; �/ be measurable spaces and let � W ¹�º // X be a
measure on X and let f W X ! Y be a measurable function. Then f can be viewed as the
transition kernel f W X // Y given by

X �� 3 .x;E/ 7! fx.E/ WD �E
�
f .x/

�
WD

´
1 if f .x/ 2 E;

0 otherwise:

Furthermore, f ı � is the pushforward f�� of the measure � along the map f because

� 3 E 7! .f ı �/.E/ D

Z
X

fx.E/ d�.x/ D

Z
X

.�E ı f / d�

D

Z
Y

�E d.f��/ D �
�
f �1.E/

�
:

A special case of this occurs for the diagonal map�Y W Y ! Y � Y . This pushes forward
a probability measure q W ¹�º // Y to the diagonal subset

�Y .Y / WD
®
.y; y/ 2 Y � Y W y 2 Y

¯
of Y � Y so that .�Y ı q/.A � B/ D q.A \ B/ for all A; B 2 �. This map is used to
instantiate a categorical formulation of a.e. equivalence (cf. Remark A.10).

Example A.5. Let X; Y , and Z be finite sets equipped with the discrete � -algebra and
suppose that all transition kernels are stochastic maps. Then Definitions A.1 and A.3
reproduce the notion of stochastic matrices including their compositions. Indeed, since
the � -algebra on Y is discrete,

fx.E/ D
X
y2E

fx
�
¹yº

�
so that the probability measure fx is determined by its values on points of Y . We therefore
write fyx WD fx.¹yº/ to denote the yx entry of f in matrix form. Second, the composite

X
f

Y
g
Z sends x 2 X to the probability measure on Z determined by

Z 3 z
.gıf /.x/
7������! .g ı f /zx WD

X
y2Y

gzyfyx :



Non-commutative disintegrations 947

Functional Measure-theoretic Diagrammatic

Data
transition kernel
r W Y // X

transition kernel
r W Y // X

transition kernel
r W Y // X

Conditions

R
X hd�D

R
Y.
R
X hdry/d�.y/

8 measurable h W X! Œ0;1�

�.E/D
R
Y ry.E/d�.y/

8E 2 †

¹�º

X Y

�

��

�

��

r
oo

i.e., r ı � D �
References [19, 49] [5, 14, 30, 56] [8]

Table 1. Three definitions of a disintegration of .X;†;�/ over .Y;�; �/.

Following Example A.4, when Y is a finite set equipped with the discrete � -algebra, the
pushforward of q W ¹�º // Y along �Y W Y ! Y � Y simplifies to

.�Y ı q/.y;y0/ D ıyy0qy :

With these definitions in place, we can compare several definitions of disintegrations.
Table 1 below describes three equivalent definitions of a disintegration of one measure
over another together with a list of references that use said definition.

Theorem A.6. Given a transition kernel Y r
X from a measure space .Y; �; �/ to a

measure space .X;†;�/, the three conditions in Table 1 are equivalent.

Proof. The equivalence between the measure-theoretic definition and the diagrammatic
definition is immediate from the definition of the composition of transition kernels. There-
fore, it suffices to prove the equivalence between the measure-theoretic and functional
definitions. By setting h WD �E withE 2†, the measure-theoretic condition follows from
the functional definition. The only slightly non-trivial part of the proof of this equiva-
lence is showing that the measure-theoretic definition implies the functional one. First, a
straightforward computation, using r ı � D �, shows thatZ

X

s d� D

Z
Y

�Z
X

s dry

�
d�.y/ (A.7)

for all simple functions s W X ! Œ0;1/. The general case for arbitrary measurable h W
X ! Œ0;1� follows from the monotone convergence theorem, though one needs to be
careful about how to choose a monotone sequence of simple functions .sn/ converging
pointwise to h. Such a sequence can be obtained as in the proof of Theorem 2.10 in the
work of Folland [13] (cf. [35, Lemma 4.10]). From such a choice, it follows that

N 3 n 7!

�
Y 3 y 7!

Z
X

sn dry

�
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is a monotone increasing sequence of measurable functions on Y (see [35, equation (4.94)
in the proof of part (iii) of Proposition 4.79] for details). Using all of these facts givesZ

X

h d�

D lim
n!1

Z
X

sn d� by definition of
Z

w.r.t. �

D lim
n!1

Z
Y

�Z
X

sn dry

�
d�.y/ by (A.7) for simple sn

D

Z
Y

lim
n!1

�Z
X

sn dry

�
d�.y/ by the monotone convergence theorem

D

Z
Y

�Z
X

h dry

�
d�.y/ by definition of

Z
w.r.t. ry

for arbitrary measurable h W X ! Œ0;1�.

When one is equipped with the additional datum of a measure-preserving map f W
X ! Y , there is another coherence condition that can be enforced on disintegrations.
This assumption is to demand that a disintegration r W Y // X be consistent with the
map f . From our diagrammatic perspective, this means that r is a (stochastic) section of
f a.e. This is described in Table 2.

Definition A.8. Let .X;†; �/ and .Y;�; �/ be two measure spaces. Two transition ker-
nels f; g W X // Y are said to be �-a.e. equivalent, written as f D

�
g, if and only if for

each F 2 �, there exists a measurable set NF 2 † such that

fx.F / D gx.F / 8x 2 X nNF and �.NF / D 0:

Example A.9. The definition of a.e. equivalence takes a particularly simple form for finite
sets. Let X and Y be finite sets and let � be a measure on X . Let

N� WD ¹x 2 X W �x D 0º

denote the null-set of .X;�/. Two transition kernels f; g W X // Y are �-a.e. equivalent
if and only if ®

x 2 X W fx ¤ gx
¯
� N�:

The notation f D
�
g is used whenever f and g are �-a.e. equivalent. Here, fx ¤ gx means

that fx and gx are different measures on Y ; i.e., there exists a y 2 Y such that fyx ¤ gyx .

Remark A.10. The definition of a.e. equivalence in Definition A.8 is a bit subtle in the
general measure-theoretic case. Another reasonable option would be to say that f and g
are �-a.e. equivalent if and only if there exists an N 2 † such that fx D gx (equality of
measures) for all x 2 X nN and �.N/ D 0. However, this definition is too strong for the
conditions in Table 2 to be equivalent for arbitrary measure spaces. The definition we have
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Measure-theoretic Diagrammatic

Data
transition kernel
r W Y // X

transition kernel
r W Y // X

Conditions
besides r is a
disintegration
of � over �

for each F 2 �
9 �-null set NF 2 �
s.t. ry.f �1.F // D 1
8y 2 .Y nNF /\ F

X

YY

r

ZZ

f

��

idY
oo

�

i.e., f ı r D
�

idY
References [14, 30] [8]

Table 2. Two definitions of a disintegration of .X;†; �/ over .Y;�; �/ consistent with a measure-
preserving measurable map f W X ! Y .

chosen agrees with the diagrammatic definition of Cho and Jacobs [6, Section 5], which
says that the diagram

¹�º

X

X

X �X

X �X

X � Y

� 77

� ''

�X //

�X

//

idX�f
**

idX�g

44

commutes (the product of stochastic maps can be defined using joint probability measures
as is done in [6, Section 2]).

More explicitly, the condition f ı r D
�

idY says that for each F 2 �, there exists a

�-null set MF 2 � such that .f ı r/y.F / D �F .y/ for all y 2 Y nMF . Expanding out
.f ı r/y.F / using Example A.4 and the definition of transition kernels, this is equiva-
lent to ry.f �1.F // D �F .y/ for all y 2 Y nMF . Therefore, it is immediate that the
diagrammatic definition implies that the measure-theoretic one.

Theorem A.11. Let .Y;�;�/ and .X;†;�/ be measure spaces. Given a measure-preserv-
ing measurable map X

f
�! Y , together with a disintegration Y r

X of � over �, the
conditions in Table 2 are equivalent.

Proof. By the comment preceding the statement of this theorem, the equivalence will
follow from proving that the measure-theoretic definition implies the diagrammatic one;
i.e., for each F 2�, there exists a �-null setMF 2� such that ry.f �1.F //D �F .y/ for
all y 2 Y nMF (cf. [14, Proposition 452G]). In more detail, by assumption, there exist
�-null sets NF ; NY nF ; NY 2 � such that

ry.X/ D ry
�
f �1.Y /

�
D 1 8y 2 .Y nNY / \ Y � Y nNY ; (A.12)

ry
�
f �1.F /

�
D 1 8y 2 .Y nNF / \ F; (A.13)
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and

ry
�
f �1.Y n F /

�
D 1 8y 2 .Y nNY nF / \ .Y n F / � Y n .NY nF [ F /:

Therefore,

1 � ry
�
f �1.F /

�
D ry.X/ � ry

�
f �1.F /

�
D ry

�
f �1.Y n F /

�
D 1

8y 2 .Y nNY / \
�
Y n .NY nF [ F /

�
I

i.e.,

ry
�
f �1.F /

�
D0 8y2.Y nNY /\

�
Y n.NY nF [F /

�
�Y n.NY [NY nF [F /: (A.14)

Set
MF WD NF [NY nF [NY ;

which, being the finite union of �-null sets, is �-null. If y 2 .Y nMF / \ F , then, in
particular, y 2 .Y n NF / \ F so that ry.f �1.F // D 1. If y 2 .Y nMF / \ .Y n F / �

Y n .NY [ NY nF [ NY [ F /, then, in particular, y 2 Y n .NY [ NY nF [ F / so that
ry.f

�1.F // D 0. Putting these together,

ry
�
f �1.F /

�
D �F .y/ 8y 2 Y nMF :

Therefore, the measure-theoretic definition implies the diagrammatic one.

Remark A.15. The equality (A.12) says that ry is a probability measure for all y2Y nNY .

A consistent disintegration is also related to the notion of a regular conditional proba-
bility.

Definition A.16. Let .X; †; �/ and .Y; �; �/ be measure spaces and let f W X ! Y

be a measure-preserving map. A regular conditional probability is a transition kernel r W
Y // X for which there exists a �-null set N 2 � such that ry is a probability measure
for all y 2 Y nN and

�
�
E \ f �1.F /

�
D

Z
F

ry.E/ d�.y/ 8E 2 † and 8F 2 �: (A.17)

Theorem A.18. Let .X; †; �/ and .Y; �; �/ be measure spaces and let f W X ! Y be
a measure-preserving map. Then r W Y // X is a regular conditional probability if and
only if it is a disintegration of � over � consistent with f .

Proof. ()) Suppose that r is a regular conditional probability. Then

�.E/ D �.E \X/ D �
�
E \ f �1.Y /

� (A.17)
D

Z
Y

ry.E/ d�.y/ D .r ı �/.E/

for all E 2 †. Now, fix F 2 � and let N 2 � be a �-null set such that ry is a probability
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measure for all y 2 Y nN . Then

R
F
d��.F /

R
F
ry
�
f �1.F /

�
d�.y/�

�
f �1.F /

�
�
�
f �1.F / \ f �1.F /

�
(A.17) withE D f �1.F /

since � D f ı�

: (A.19)

Since ry is a probability measure �-a.e., ry.f �1.F // � 1 for all y 2 .Y nN/\ F so that
the quantity in (A.19) is finite. This allows us to meaningfully take the difference of these
terms. Therefore, (A.19) implies that

R
F
.1� ry.f

�1.F ///d�.y/D 0. Furthermore, since
the integrand is non-negative, there exists a �-null set MF 2 � such that

ry
�
f �1.F /

�
D 1 8y 2

�
Y n .N [MF /

�
\ F:

Hence, f ı r D
�

idY so that r is a consistent disintegration.
(() Conversely, suppose that r is a consistent disintegration. By Remark A.15, ry is

a probability measure �-a.e. Hence,

�
�
E \ f �1.F /

�

R
Y
ry
�
E \ f �1.F /

�
d�.y/

R
F
ry
�
E \ f �1.F /

�
d�.y/

R
F
ry
�
E \ f �1.F /

�
d�.y/

C
R
F
ry
�
E \ f �1.Y n F /

�
d�.y/

R
F
ry
��
E \ f �1.F /

�
[
�
E \ f �1.Y n F /

��
d�.y/

R
F
ry.E/ d�.y/

�Drı�

(A.14) for F

(A.14) for Y nF

ry is countably additive

set theory

for arbitrary E 2 † and F 2 �. This proves that r is a regular conditional probability.

From this perspective, the results in this paper can be viewed as an approach to non-
commutative regular conditional probabilities.
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