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Ring-theoretic blowing down II: Birational
transformations

Daniel Rogalski, Susan J. Sierra, and J. Toby Stafford

Abstract. One of the major open problems in noncommutative algebraic geometry is the classific-
ation of noncommutative projective surfaces (or, slightly more generally, of noetherian connected
graded domains of Gelfand–Kirillov dimension 3). Earlier work of the authors classified the con-
nected graded noetherian subalgebras of Sklyanin algebras using a noncommutative analogue of
blowing up. In a companion paper the authors also described a noncommutative version of blow-
ing down and, for example, gave a noncommutative analogue of Castelnuovo’s classic theorem that
lines of self-intersection .�1/ on a smooth surface can be contracted.

In this paper we will use these techniques to construct explicit birational transformations be-
tween various noncommutative surfaces containing an elliptic curve. Notably we show that Van den
Bergh’s quadrics can be obtained from the Sklyanin algebra by suitably blowing up and down, and
we also provide a noncommutative analogue of the classical Cremona transform.

1. Introduction

Throughout the paper, k will denote an algebraically closed field, which in the introduc-
tion has characteristic zero, and all rings will be k-algebras. A k-algebra R is connected
graded or cg if R D

L
n�0 Rn is a finitely generated, N-graded algebra with R0 D k.

For such a ring R, the category of graded noetherian right R-modules will be denoted
gr-R, with quotient category qgr-R obtained by quotienting out the Serre subcategory of
finite-dimensional modules. We define qgr-R to be smooth (which is synonymous with
nonsingular in our usage) if it has finite homological dimension. An effective intuition is
to regard qgr-R as the category of coherent sheaves on the (nonexistent) space Proj.R/.
Thus, for example, we define qgr-R to be a noncommutative surface if R has Gelfand–
Kirillov dimension GKdimR D 3.

One of the main open problems in noncommutative algebraic geometry is the classi-
fication of noncommutative projective surfaces (or, slightly more generally, of noetherian
connected graded domains of Gelfand–Kirillov dimension 3). This has been solved in
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many particular cases and those solutions have led to some fundamental advances in the
subject; see, for example, [2,7,13,18,21,22] and the references therein. In [1], Artin con-
jectured that, birationally at least, there is a short list of such surfaces, with the generic
case being a Sklyanin algebra. Here, the graded quotient ring Qgr.R/ of R is obtained by
inverting the nonzero homogeneous elements and two such domainsR, S are birational if
Qgr.R/0 ŠQgr.S/0; that is, if they have the same function skewfield (note thatQgr.R/0 is
a division ring). Although no solution of Artin’s conjecture is in sight, it does lead natur-
ally to the question of determining the surfaces within each birational class. We consider
this problem in this paper.

In classical (commutative) geometry, birational projective surfaces can be obtained
from each other by means of blowing up and down (monoidal transformations). The non-
commutative notion of blowing up points on a noncommutative surface has been described
in [21] with a rather more ring-theoretic approach given in [12] and [14]. Moreover, an
analogue of blowing down (contracting) .�1/-curves is defined and explored in the com-
panion paper to this one [15]. The latter paper proves, among other things, that there is
a noncommutative analogue of Castelnuovo’s classic theorem: curves of self-intersection
.�1/ can indeed be contracted in a smooth noncommutative surface.

The next step in understanding noncommutative surfaces is then to determine when
two noncommutative surfaces are birational, and we take steps in this direction in the
present paper. In particular, there are two known classes of generic minimal noncommut-
ative surfaces: Sklyanin algebras themselves, which are thought of as coordinate rings of
noncommutative projective planes, and the noncommutative quadrics defined by Van den
Bergh [22]. (See [16] for discussion of the way in which these are noncommutative min-
imal models.) One of the main aims of this paper is to prove that, given that they have
the appropriate invariants, these algebras can indeed be transformed into each other by
means of blowing up and down; thereby giving a noncommutative version of the classical
birational transform

Blp;p0 P2 Š Blr .P1 � P1/
�p;p0

vv

�r

))

P2 P1 � P1:
�

oo

(1.1)

In this paper, we apply the birational geometry of noncommutative projective sur-
faces as developed in [12, 15] to construct a noncommutative version of (1.1). Doing this
involves developing substantial new methods in noncommutative geometry; in particu-
lar, establishing a noncommutative version of the isomorphism in the top line of (1.1)
involves a recognition theorem for two-point blowups of a noncommutative P2 which is
of independent interest.

In order to state these results formally we need some definitions. We first remark that
as this paper is a continuation of [15] we will keep the same notation as in that paper,
and will therefore refer the reader to that paper for more standard notation. In particular,
given an automorphism � of an elliptic curve E, we always assume that j� j D 1 and, as
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in [15, Section 2], write B D B.E;M; �/ for the twisted homogeneous coordinate ring or
TCR of E relative to a line bundle M. A domain R is called an elliptic algebra if it is a cg
domain, with a central element g 2 R1 such that R=gR Š B.E;M; �/ for some choice of
¹E;M; �º. We say thatE DE.R/ and � D �.R/ are respectively the elliptic curve and the
automorphism associated to R, and deg M is the degree of R. If we loosen our definition
to allow � to be the identity on E, then a commutative elliptic algebra is the same as the
anticanonical ring of a (possibly singular) del Pezzo surface, and the degree of the algebra
is the same as the commutative definition: the self-intersection of the canonical class.

Two examples of elliptic algebras are important to us. The first is the 3-Veronese ring
T D S .3/ of the Sklyanin algebra S D S.E; �/, as defined in [15, (4.2)]. This is called
a Sklyanin elliptic algebra, and the third Veronese is needed to ensure that g 2 T1. The
second, called a quadric elliptic algebra, is the Veronese ring Q.2/ of a Van den Bergh
quadric Q D QVdB D QVdB.E; �;�/ for a second parameter � 2 P1. The latter is con-
structed in [22], and described in more detail in Example 7.1.

In this paper we only consider elliptic algebras R for which qgr-R is smooth. This
is not a restriction for the Sklyanin elliptic algebra S .3/, and also holds for any blowup
or contraction that we construct. But, for each ¹E; �º, it does exclude a discrete fam-
ily of quadrics QVdB.E; �; �/. However, these can easily be dealt with separately; see
Remark 1.7 for the details.

The notions of blowing up an elliptic algebra R at a point p 2 E or blowing down a
line L of self-intersection .�1/ can be found in [15]. In brief, if R is an elliptic algebra of
degree � 2, one can blow up any point p 2 E to obtain a subring Blp.R/. (For notational
reasons, in the body of the paper we will usually write R.p/ in place of Blp.R/.) In
particular, Blp.R/=.g/ D B.E;M.�p/; �/, and so blowing up decreases the degree of
an elliptic algebra by one. This is also what happens in the commutative setting: given
a smooth surface X , the canonical divisor of Blp.X/ is ��pKX C Lp , where Lp is the
exceptional divisor [6, Proposition V.3.3]. Thus the anticanonical ring of the blowup is
a subring of the anticanonical ring of X . In the noncommutative setting, it follows from
the construction that R and Blp.R/ are also birational; indeed we even have Qgr.R/ D

Qgr.Blp.R//.
There is a notion of the exceptional line module Lp of the noncommutative blowup

Blp.R/. Here, a line module is a cyclic R-module with the Hilbert series .1 � s/�2

of kŒx; y�. Moreover, as in the commutative setting, Lp has self-intersection .�1/, where
we are now using the noncommutative intersection notion of intersection theory due to
Mori and Smith [9] and defined by

.L �MSL0/ D
X
n�0

.�1/nC1 dimk Extiqgr-R.L;L
0/:

In [15, Theorem 1.4], we gave a noncommutative version of Castelnuovo’s contraction
criterion: Suppose that R is an elliptic algebra with qgr-R smooth, such that R has a line
module L with .L �MSL/ D �1. Then we can contract L in the sense that there exists a
second elliptic algebra R0, called the blowdown or contraction of R at L, such that qgr-R0
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is smooth, R D Blq.R0/ is the blowup of R0 at some point q 2 E, and L is the exceptional
line module of this blowup.

The main result of this paper is the following noncommutative analogue of the clas-
sical diagram (1.1).

Theorem 1.2 (See Theorem 7.3). Let Q D QVdB.E; ˛; �/ be a Van den Bergh quadric
such that qgr-Q is smooth and pick r 2 E. Then there exist � 2 Aut.E/ with �3 D ˛2 and
p; q 2 E so that the blowups Blr .Q.2// and Blp;q.S.E; �/.3// are isomorphic.

Identify the rings Blr .Q.2// and Blp;q.S.E; �/.3// in Theorem 1.2. As blowups are
inclusions in our setting, the effect of that result is to show that there are inclusions

Q.2/
� Blr .Q.2// D Blp;q.S .3// � S .3/;

for S D S.E; �/. Since we have seen that R and Blx.R/ are always birational, we obtain
the following corollary.

Corollary 1.3. Any Van den Bergh quadric Q with qgr-Q smooth is birational to a
Sklyanin algebra.

We should emphasise that Theorem 1.2 is not the first proof of the birationality of
S .3/ and Q.2/. Indeed, this was announced by Van den Bergh in [19, Theorem 13.4.1]
with complete proofs given in [10]. The proof of Presotto and Van den Bergh is more
geometric than the algebraic one given here. Our argument has the advantage of providing
a more explicit identity, which should also be useful elsewhere.

In order to prove Theorem 1.2, we develop new techniques in noncommutative bi-
rational geometry which are of independent interest. Let Q; r be as in the statement of
Theorem 1.2. The key problem in proving the theorem is to recognise Blr .Q.2// as the
two-point blowup of a Sklyanin algebra. We do this through noncommutative intersection
theory.

In the commutative setting, the surface Blr .P1 � P1/ contains three lines of self-
intersection .�1/. These are the strict transforms L;L0 of the “horizontal” and “vertical”
lines through r on P1 � P1, and the exceptional divisor Lr of the birational morphism
�r from (1.1). Their intersection theory is summarised in Figure 1: L � L0 D 0 while
Lr � L D Lr � L

0 D 1. To realise Blr .P1 � P1/ as a two-point blowup of P2 as in (1.1),
one observes that � ı �r is defined everywhere on Blr .P1 � P1/ and contracts L and L0

to distinct points p;p0 2 P2. Further, � ı �r D �p;p0 realises Lr as the strict transform of
the line through p and p0.

L L'

Lr

Figure 1. The intersection theory of Blr .P1 � P1/.
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Proving Theorem 1.2 requires different techniques, since in the noncommutative con-
text there is no good analogue of an “open set” on which there is a well-defined “morph-
ism”. One way to think about the problem is that we do not have an a priori inclusion of
S .3/ and Q.2/ in the same graded quotient ring. Instead, we prove a recognition theorem
for two-point blowups of Sklyanin elliptic algebras, which roughly says that the corres-
ponding elliptic algebra is characterised by the intersection theory described by Figure 1.
More specifically, we prove the following.

Theorem 1.4 (Theorem 6.1). Let R be a degree 7 elliptic algebra such that qgr-R is
smooth and set E D E.R/ and � D �.R/. Suppose that R has line modules with the
following properties.

(1) There are right line modules L, L0 and Lr satisfying the intersection theory,

(i) .L �MSL/ D .Lr �MSLr / D .L
0
�MSL0/ D �1;

(ii) .L �MSL0/ D 0 while .Lr �MSL/ D .Lr �MSL0/ D 1.

(2) The points where E intersects L and L0 are distinct.

ThenRŠBlp;q.T /, where p¤ q 2E, and T D S .3/ for a Sklyanin algebra S D S.E;�/,
where �3 D � .

To prove Theorem 1.4, we first show that we can iteratively blow down the two linesL
and L0. In order to show that this gives a noncommutative P2, we show how to construct
noncommutative analogues of the twisting sheaves O.1/ and O.�1/. These determine a
so-called principal Z-algebra, from which we can recover the Sklyanin algebra S.E; �/.
Once we have proved Theorem 1.4, it is relatively straightforward to show that Blr .Q.2//

has the necessary intersection theory and hence to prove Theorem 1.2.
A converse to Theorem 1.4 is provided by the following proposition.

Proposition 1.5 (Proposition 8.4). Let T be a Sklyanin elliptic algebra with associated
elliptic curve E, and let p ¤ q 2 E. Then R D Blp;q T satisfies the hypotheses of The-
orem 1.4.

Theorem 1.4 is a useful new technique for understanding noncommutative surfaces.
To demonstrate its utility, we use it to construct a noncommutative version of the Cremona
transform

Cr W P2Ü P2; Œx W y W z� 7! Œyz W xz W xy�;

which factorises as

Blp;q;r P2

zz $$

P2
Cr

// P2

where ¹p; q; rº D ¹Œ1 W 0 W 0�; Œ0 W 1 W 0�; Œ0 W 0 W 1�º.
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We prove our version by showing that the blowup of T D S .3/ at three general points
p; q; r has a hexagon

Lp'

Lp

Lq Lr

Lq'
Lr'

of .�1/ lines, just as happens for the 3-point blowup of P2 in classical geometry. Using
intersection theory and the noncommutative Castelnuovo criterion [15, Theorem 1.4] we
show that each of the .�1/ lines Lp0 , Lq0 and Lr 0 that are not exceptional for the original
blowup can be contracted to give a ring to which Theorem 1.4 applies. This leads to the
following theorem.

Theorem 1.6 (Theorem 9.1 and Remark 9.2). Let T D S .3/ be a Sklyanin elliptic algebra
with associated curve E. Pick distinct points p; q; r 2 E satisfying minor conditions and
let R D Blp;q;r T be the corresponding blowup. Then qgr-R is smooth, and there is a
second elliptic algebra T 0 Š T obtained by blowing down the three lines that are not ex-
ceptional for the original blowup. ThusRDBlp1;q1;r1 T

0 for suitable points p1;q1; r1 2E.

Once again, the first noncommutative analogue of the Cremona transform was an-
nounced in [19] and proved in detail in [11].

Remark 1.7. We end the introduction by commenting on the smoothness hypothesis. As
noted in [18] there do exist quadrics Q D QVdB for which qgr-Q is not smooth. One can
presumably extend the results of this paper to cover these examples, although this will
require a more awkward notion of self-intersection, see [15, Section 6] and [15, Defin-
ition 6.11] in particular. However, for most questions, in particular for those concerned
with birationality, this is unnecessary. Indeed if Q is a quadric for which qgr-Q is not
smooth, then Q has a Morita context to a second quadric zQ such that qgr- zQ is smooth.
More precisely, there exists a .Q.2/; zQ.2//-bimodule M , finitely generated and of Goldie
rank one on each side, such that Q.2/ D End zQ.2/.M/ and zQ.2/ D EndQ.2/.M/. This is
proved by combining [16, Lemma 6.6 and Corollary 6.1] following results from [18, 20].
ClearlyQ and zQ are birational and so one can use zQ to test birationality questions forQ.
Thus, for example, Corollary 1.3 immediately extends to the non-smooth case.

Corollary 1.8. Any Van den Bergh quadric Q is birational to a Sklyanin algebra.

2. The noncommutative geometry of elliptic algebras

In this section, we consider properties of the category qgr-R, whereR is an elliptic algebra.
We start however with some basic results and notation. As mentioned in the introduction,
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this paper is a continuation of [15], and so we refer the reader to that paper for basic
notation. We fix an algebraically closed ground field k. All algebras and schemes will be
defined over k, and all maps will be k-linear unless otherwise specified. We begin with a
few comments about the elliptic algebras defined in the introduction. We emphasise that
throughout the paper we only consider elliptic algebras R for which qgr-R is smooth.

Notation 2.1. Let R D
L
n�0Rn be such an algebra, with central element 0 6D g 2 R1

such that R=gR D B D B.E;M; �/ is a TCR over the elliptic curve E. Except when
stated to the contrary, we always assume that j� j D 1 and that degR � 3. If M is a
graded R-module, the g-torsion submodule of M consists of elements annihilated by
some power of g, and g-torsionfree has the obvious meaning. Finally, we note that, by
[14, Proposition 2.4], an elliptic algebra R is always Auslander–Gorenstein and Cohen–
Macaulay (CM) in the sense of [15, Definition 2.1].

Fix an elliptic algebra R as above. Since GKdim.R/ D 3, recall that a graded mod-
ule M is Cohen–Macaulay (CM) if ExtiR.M;R/ D 0 for all i ¤ 3 � GKdim.M/, while
M is maximal Cohen–Macaulay (MCM) if in addition GKdim.M/ D 3.

For an elliptic algebra R, let Gr-R be the category of all graded right R-modules, with
quotient category Qgr-R obtained by quotienting out direct limits of finite-dimensional
modules. Let � W Gr-R ! Qgr-R be the natural map, although we will typically abuse
notation and simply denote �M byM for anyM 2 Gr-R. By the adjoint functor theorem,
� has a right adjoint ! W Qgr-R! Gr-R. A gradedR-moduleM is called saturated if it is
in the image of the section functor !. By [4, (2.2.3)], this is equivalent to Ext1R.k;M/D 0.
The subcategory of finitely generated (hence noetherian) modules in Gr-R is denoted gr-R;
similarly, qgr-R D �.gr-R/ is the subcategory of noetherian objects in Qgr-R. Below we
will write

X D qgr-R:

Note that qgr-B ' cohE by [3].
Certain standard localisations of R will be important. If M 2 gr-R, let

M ı D .M ˝R RŒg
�1�/0:

By [15, Lemma 6.8], the hypothesis that qgr-R is smooth holds if and only if Rı has
finite global dimension. The image of an element or set under the canonical surjection
R! B is written x 7! x. Let R.g/ be the Ore localisation RC�1, where C is the set of
homogeneous elements ofRX gR. ThenR.g/=R.g/gŠQgr.B/. A rightR-submoduleM
of R.g/ is g-divisible ifM \ gR.g/ DMg, and henceM ŠM=Mg. This is equivalent to
R.g/=M being g-torsionfree. If M;M 0 � R.g/ are g-divisible, then so is HomR.M;M

0/,
by [13, Lemma 2.12].

Let M D
L
nMn 2 Gr-R. We say M is left (right) bounded if Mn D 0 for n� 0

(respectively n� 0). IfM 2 gr-R thenM is left bounded. It is clear from calculating with
a resolution by finite rank graded free modules that ExtiR.M;N / is left bounded for all i
whenM;N 2 gr-R. Given k 2N, the shifted moduleMŒk� is defined byMŒk�n DMnCk .
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Set HomX.M; N / D
L
n HomX.M; N Œn�/ and define ExtiX.M; N / similarly. We let

H i .X; M/ D ExtiX.R; M/ denote the i -th (sheaf) cohomology of M . By [14, The-
orem 5.3], R satisfies the Artin–Zhang � condition which, by [4, Corollary 4.6], implies
that ExtiX.M;N / is finite-dimensional for all i .

Suppose that M 2 gr-R is g-torsionfree and N 2 gr-B . We often use the facts that

ExtiR.M;N / Š ExtiB.M=Mg;N / and ExtiX.M;N / Š Extiqgr-B.M=Mg;N /: (2.2)

See [15, Lemma 4.7].
With this background in hand, we now prove some needed preliminary results. First,

we show that maximal Cohen–Macaulay g-divisible submodules ofR.g/ have a nice char-
acterization.

Proposition 2.3. Let M � R.g/ be a nonzero g-divisible finitely generated module over
an elliptic algebra R. Then M is MCM if and only if M is a saturated B-module.

Proof. We first claim that M is MCM over R if and only if M is MCM over B . Apply
HomR.�;R/ to the exact sequence 0! R

�g
�! R! B ! 0 and consider the correspond-

ing long exact sequence

� � � ! ExtiR.M;R/Œ�1�
�g
�! ExtiR.M;R/! ExtiB.M;B/! ExtiC1R .M;R/Œ�1�! : : :

(2.4)
where we have used (2.2). Note that GKdim.M/ D 3 and GKdim.M/ D 2. If M is
MCM over R then it follows from (2.4) that M is MCM over B . Conversely, if M
is MCM over B , then for all i � 1 multiplication by g gives a surjection of right R-
modules ExtiR.M;R/Œ�1�! ExtiR.M;R/. Since ExtiR.M;R/ is left bounded, this forces
ExtiR.M;R/ D 0. So M is MCM over R, and the claim is proved.

To finish the proof we show that for any finitely generated graded B-submodule
N � Qgr.B/, N is MCM over B if and only if N is saturated. By multiplying by a
homogeneous element of B to clear denominators we can assume that N � B . If N is
saturated, then B=N is pure of GK dimension 1. The critical B-modules of dimension 1
are the shifted point modules [14, Lemma 2.8] and so B=N has a finite filtration with
factors that are shifted point modules. Since a point module is CM by [15, Lemma 3.3],
B=N is CM of GK dimension 1. Now, ExtiB.N;B/ Š ExtiC1B .B=N;B/ D 0 for i � 1, so
N is MCM of GK dimension 2. Conversely, if N is not saturated, then there is a graded
module N 0 with N ¤ N 0 � B , where N 0=N is finite-dimensional and N 0 D !�.N/ is
saturated. Since N 0 is MCM by the argument above, ExtiB.N

0; B/ D 0 for i � 1. Hence
Ext1B.N;B/ Š Ext2B.N

0=N;B/. But using that B is AS Gorenstein of dimension 2, we
get Ext2B.N

0=N;B/ ¤ 0. Thus Ext1B.N;B/ ¤ 0 and N is not CM.

Note that a MCM R-module M is automatically reflexive: that is,

HomR.HomR.M;R/;R/ DM:

This follows from the Gorenstein spectral sequence [8, Theorem 2.2].
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Next, we show that Ext groups in the categories gr-R and X D qgr-R are equal in
certain circumstances.

Proposition 2.5. Let M;N 2 gr-R.

(1) If N is saturated and has zero socle, then HomR.M;N / D HomX.M;N /.

(2) If N � R.g/ is g-divisible and MCM, then Ext1R.M;N / D Ext1X.M;N /.

Proof. (2) We claim that Ext2R.k; N / D 0. Consider the exact sequence 0! NŒ�1�
�g
�!

N ! N ! 0 and the corresponding exact sequence

Ext1R.k; N /! Ext2R.k; N /Œ�1�! Ext2R.k; N /: (2.6)

Suppose that Ext1R.k; N / ¤ 0. Let N � P represent a nonzero class ˛ in this extension
group, where P=N Š k. Necessarily N is essential in P . If P is not a B-module, then
Pg ¤ 0. Since Ng D 0, in this case Pg Š k. By essentiality, Pg \ N ¤ 0. This con-
tradicts the fact that N � Qgr.B/, so that N has no socle. Hence P 2 gr-B . This shows
that ˛ 2 Ext1B.k; N / D 0, because N is saturated by Proposition 2.3. This contradiction
proves that Ext1R.k; N / D 0.

Now (2.6) implies that there is a graded injective vector space map Ext2R.k;N /Œ�1� ,!
Ext2R.k; N /. However, Ext2R.k; N / is finite-dimensional by the � condition. This forces
Ext2R.k; N / D 0 as claimed.

Next note that Ext1R.k; N / D 0, since g-divisibility implies that N is a saturated
R-module. Thus ExtiR.M=M�n; N / D 0 for i D 1; 2 and for all n 2 Z. Given that
Ext1X.M;N / D limn!1 Ext1R.M�n; N /, the result follows from the standard long exact
sequence.

(1) Again Ext1R.k; N / D 0 since N is saturated, and HomR.k; N / D 0 since N has
no socle. Now an argument analogous to the proof of part (2) gives the result.

Notation 2.7. Since line modules play a vital role in noncommutative monoidal trans-
formations, we recall some of their properties from [15, Section 5]. If L is a right (left)
line module, then L_ D Ext1R.L; R/Œ1� is a left (right) line module, referred to as the
dual line module. Moreover, L Š L__. There is a unique right (left) ideal J of R such
that L Š R=J , and, since Ext1R.L; R/1 D k, a unique module M � Qgr.R/ such that
R � M with M=R Š LŒ�1�. We refer to J as the line ideal of L and M as the line
extension of L. Note that line ideals and line extensions are MCM, and thus reflexive
by [15, Lemma 5.6 (2)]. Further, the line ideal of L_ is the reflexive dual of the line
extension of L [15, Lemma 5.6 (3)].

For M;N 2 X, following Mori and Smith, one defines the intersection number

.M �MSN/ D
X
n�0

.�1/nC1 dimk Extiqgr-R.M;N /

(see [9, Definition 8.4] or [15, Definition 6.1]). The following result follows easily from
this definition.
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Lemma 2.8. Let 0 ! M 0 ! M ! M 00 ! 0 be a short exact sequence in X and let
N 2 X. Then

.M �MSN/ D .M 0 �MSN/C .M 00 �MSN/

and
.N �MSM/ D .N �MSM 0/C .N �MSM 00/:

The intersections between lines are especially important. By [15, Lemma 6.8 and
Corollary 6.6] and the fact that X D qgr-R is smooth, we get the following identities.
If L;L0 are R-line modules, then

.L �MSL0/ D grk Ext1R.L;L
0/ � grk HomR.L;L

0/

D grk Ext1X.L;L
0/ � grk HomX.L;L

0/; (2.9)

where grkV denotes the torsionfree rank of V as a kŒg�-module.
Next, we give several versions of Serre duality for X. In the next two results, for a

vector space V , the notation V � means the usual vector space dual Homk.V;k/.

Lemma 2.10. The space X has cohomological dimension cd X D 2 in the sense that
ExtiX.R; / D 0 for i � 3. Further, RŒ�1� is the dualizing sheaf for X in the sense of
[23, (4-4)]. Finally,

ExtiX. ; RŒ�1�/ Š Ext2�iX .R; /�; for all i . (2.11)

Proof. By [15, Proposition 4.3], R is AS Gorenstein, in the sense of [15, Definition 2.1].
Thus there exists e 2Z so that ExtiR.k;R/D ıi;3kŒe� in gr-R. Then by [23, Corollary 4.3],
RŒ�e� is the dualizing sheaf for X, and ExtiX. ; RŒ�e�/ Š Ext2�iX .R; /�. Using (2.2)
we have a long exact sequence

� � � ! ExtiX.R;RŒ�1�/! ExtiX.R;R/! Extiqgr-B.B;B/! � � � :

Together with the fact that B is the dualizing sheaf for qgr-B , (equivalently, OE is the
dualizing sheaf for cohE) this implies that e D 1.

For g-torsionfree modules we have the following stronger version of this result.

Proposition 2.12. Assume thatN 2 grR is g-torsionfree. Then ExtiX.N; /D 0 for i � 3.
For 0 � i � 2, ExtiX.N; /� and Ext2�iX . ; N Œ�1�/ are naturally isomorphic functors
from X ! Mod-k.

Proof. We first show that if G 2 X is g-torsion, then Ext�2
X
.N;G/ D 0. Since G is

noetherian there is some n such that Ggn D 0 and, by induction, it suffices to prove that
Ext�2

X
.N; G/ D 0 holds when Gg D 0. Let i � 2 and let B D R=Rg. By (2.2) we have

ExtiX.N;G/ Š Extiqgr-B.N=Ng;G/, which is zero since qgr-B ' coh.E/ for the elliptic
curve E.
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Now let F 2 X be noetherian and g-torsionfree. Let i � 3. As in the proof of [15,
Lemma 6.8], ExtiX.N; F / is g-torsionfree and hence by [15, Lemma 6.2] the natural map

ExtiX.N; F /! ExtiX.N; F /˝kŒg� kŒg; g�1� Š ExtiRı.N
ı; F ı/˝k kŒg; g�1�

is injective. AsRı is CM, the proof of [15, Lemma 6.8] implies thatRı has gldimRı � 2.
Thus ExtiX.N; F / D 0.

Let M 2 X be arbitrary; then there is an exact sequence 0! G ! M ! F ! 0

in X, where G is g-torsion and F is g-torsionfree. From the previous two paragraphs, we
see that Ext�3

X
.N;M/ D 0.

By (2.11), we have Ext2X.N; RŒ�n � 1�/
� Š HomX.R; N Œn�/. Thus, if N ¤ 0 then

Ext2X.N; / ¤ 0. Let C D
L
n�0 Ext2X.N;RŒ�n�/

�, which is a right R-module. Using
(2.11), we compute that

C Š
M
n�0

HomX.R;N Œn � 1�/ D !�N Œ�1��0:

By Proposition 2.5, HomX.N;R/ and Ext1X.N;R/ are left bounded. Therefore, by [23,
Theorem 2.2],

ExtiX. ; C / Š ExtiX. ; N Œ�1�/

is naturally isomorphic to Ext2�iX .N; /�.

We remark that, as X is smooth, it is surely the case that hd X D 2 and so Proposi-
tion 2.12 will hold for all modules in X; however, we have not been able to prove this.

Given a Z-graded vector space M D
L
nMn, write M � for the graded dual M � DL

nHomk.M�n;k/. The previous result has the following immediate extension to graded
Ext groups.

Corollary 2.13. Let N 2 gr-R be g-torsionfree. For all M 2 gr-R and 0 � i � 2,

ExtiX.N;M/� Š Ext2�iX .M;N /Œ�1�

as graded vector spaces.

We also have the following corollary for intersection numbers of lines.

Corollary 2.14. If L;L0 are R-line modules, then

(1) .L �MSL0Œk�/ D .L �MSL0/ for all k 2 Z.

(2) Moreover, .L �MSL0/ D .L0 �MSL/ D .L_ �MS.L0/_/ D ..L0/_ �MSL_/.

Proof. (1) This is [15, Proposition 6.4 (1)].
(2) The first and third equalities follow from Proposition 2.12, together with part (1).

The second equality follows from [15, Lemma 5.6 (4)] and (2.9).

Finally, we compute the cohomology of a line module.
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Lemma 2.15. Let LR be a line module. For all n 2 Z, we have

dimH 0.X; LŒn�/ D max.nC 1; 0/; dimH 1.X; LŒn�/ D max.�n � 1; 0/;

and
H 2.X; LŒn�/ D 0:

Thus .R �MSLŒn�/ D �n � 1 and .LŒn� �MSR/ D �n.

Proof. First, HomX.L;R/ D HomR.L;R/ D 0 by Proposition 2.5. As L is Goldie tor-
sion, H 2.X; LŒn�/ D 0 follows from (2.11). Thus, by again using Proposition 2.5 and
[15, Lemma 5.6(1)],

dimk Ext1X.LŒn�; R/ D dimk Ext1gr-R.LŒn�; R/ D dimk Ext1R.L;R/�n

D

´
�n n � 0;

0 else.

By (2.11), we have dim Ext2X.LŒn�; R/ D dim HomX.R;LŒn � 1�/. Note that a line mod-
ule L is saturated and g-torsionfree [15, Lemmata 5.2 and 5.6 (5)]. In particular, L has
zero socle. By Proposition 2.5,

dimk HomX.R;LŒn � 1�/ D dimk Homgr-R.R;LŒn � 1�/ D

´
n n � 0

0 else:

Now using (2.11) and the definition of the intersection product, all of the claims follow.

3. Twisting sheaves for elliptic algebras of degree nine

In this section and the next, we study elliptic algebras R of degree 9 and develop a the-
ory which will allow us to recognise when such an algebra is a Sklyanin elliptic algebra
T D S .3/ for S D S.E; �/.

If T is such a Sklyanin elliptic algebra, then qgr-T ' qgr-S , and as qgr-S is a noncom-
mutative projective plane, it has objects ¹O.k/ j k 2 Zº which play the role of the Serre
twisting sheaves on P2. The objects O.k/ correspond to the right T-modules

L
n2ZS3nCk ;

in particular, we have the T -modulesH D
L
n�1 S3n�1 andM D

L
n�0 S3nC1. Ignoring

degree shifts, it is easy to check that EndT .H/ D EndT .M/ D T , while H� D TS1; and
M � D TS2. Here, we have returned to the standard notation H� D HomT .TS1; T /, etc.
Similarly, HomT .H; M/ D MH� D S1TS1 D H and HomT .M; H/ D M . Consider
H ˚ T ˚M as a column vector and EndT .H ˚ T ˚M/ as a subalgebra of M3�3.S/.
Taking Hilbert series of the above, and with the correct degree shifts, it follows routinely
that

hilbEndT .H ˚ T ˚M/ D

0BBB@
1C7sCs2

.1�s/3
6sC3s2

.1�s/3
3sC6s2

.1�s/3

3C6s
.1�s/3

1C7sCs2

.1�s/3
6sC3s2

.1�s/3

6C3s
.1�s/3

3C6s
.1�s/3

1C7sCs2

.1�s/3

1CCCA : (3.1)
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The main result of this section, Proposition 3.3, gives sufficient conditions for a de-
gree 9 elliptic algebra T to have right modules H;M for which (3.1) holds, and hence
such that their images in qgr-T play the role of O.�1/ and O.1/.

Before stating that result, we need a few observations from [3]. Given an elliptic
algebra T , set B D T=gT D B.E;N ; �/; thus B D

L
Bn, where Bn D H 0.E;Nn/

and Nn D N ˝ � � � ˝ N �n�1 , under the notation F � D ��F for a sheaf F 2 coh.E/.
The isomorphism classes of B-point modules are in one-to-one correspondence with the
closed points of E; explicitly, if p 2 E has skyscraper sheaf Op Š OE=	p , then p 2 E
corresponds to the point module Mp D

L
n�0H

0.E;Op ˝ Nn/ Š B=Ip for the point
ideal Ip D

L
n�0H

0.E;	p ˝Nn/ � B . The images �.Mp/ of the point modules Mp
are the simple objects in Qgr-B . We will also frequently use the fact thatMpŒn��nŠM�np

for any n (see, for example, [15, (3.1)]). Of course simple objects in B-Qgr are also para-
meterised by closed points of E, and we denote these left point modules by M `

p , where
M `
p WD

L
n�0H

0..Op/
�n�1 ˝Nn/.

If M is a g-torsionfree right T -module such that �.M=Mg/ has finite length with
composition factors �.Mp1/; : : : ; �.Mpn/, we say that the divisor ofM is DivM D p1 C
� � � C pn. In particular, if L is a line module then DivL is a single point. Finally, graded
vector spaces V;V 0 are called numerically equivalent, written V � V 0, if hilbV D hilbV 0.
We often write V � hilbV .

Notation 3.2. Let T be an elliptic algebra of degree 9, with B D T=gT D B.E;N ; �/.
We will be interested in the following three conditions on T .

(i) T has a g-divisible right ideal H with

H D
M
n�0

H 0.E;Nn.�a � b � c//

for some points a; b; c 2 E, such that hilbEndT .H/ D hilbT .

(ii) T has a g-divisible right module M with T �M � T.g/ such that

M D
M
n�0

H 0.E;Nn.d C e C f //

where d; e; f 2 E, such that hilbEndT .M/ D hilbT .

(ii)0 T has a g-divisible left ideal H_ with

H_ D
M
n�0

H 0.E;Nn.��
�nd � ��ne � ��nf //

where d; e; f 2 E, and such that hilbEndT .H_/ D hilbT .
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Proposition 3.3. Let T be an elliptic algebra of degree 9, set B D T=gT D B.E;N ; �/

and consider the conditions (i), (ii) and (ii)0 of Notation 3.2.

(1) Assume that (i), (ii) hold and set N .1/ D H , N .2/ D T , N .3/ DM . Then

HomT .N .i/; N .j // D HomB.N .i/; N .j // for all i; j 2 ¹1; 2; 3º: (3.4)

Moreover, (3.1) holds; that is,

hilb
�

HomT .N
.j /; N .i//

�
ij
D

0BBB@
1C7sCs2

.1�s/3
6sC3s2

.1�s/3
3sC6s2

.1�s/3

3C6s
.1�s/3

1C7sCs2

.1�s/3
6sC3s2

.1�s/3

6C3s
.1�s/3

3C6s
.1�s/3

1C7sCs2

.1�s/3

1CCCA : (3.5)

(2) Conditions (ii) and (ii)0 are equivalent. Indeed, M satisfies (ii) if and only if
H_ D HomT .M;T / satisfies (ii)0. Similarly,H_ satisfies (ii)0 if and only ifM D
HomT .H

_; T / satisfies (ii).

Proof. (1) The N .i/ are g-divisible by hypothesis, and hence, by [13, Lemma 2.12], so is
each HomT .N

.i/;N .j //. By hypothesis, we may writeN .i/ D
L
n�0H

0.E;Gi ˝Nn/t
n

where G1DOE .�a� b� c/, G2DOE , and G3DOE .d C eCf /. Then [15, Lemma 2.3]
implies that

HomB.N .j /; N .i// D
M
n�0

H 0.E; .G �
n

j /�1Gi ˝Nn/t
n
� k.E/Œt; t�1I �� (3.6)

for all i; j . Further, a straightforward calculation, using [15, Lemma 2.2], shows that
hilb.HomB.N .j /; N .i///ij is equal to .1 � s/ times the matrix on the right hand side
of (3.5). Since HomT .N

.j /; N .i// is g-divisible, this shows that equality in the .i; j /-
entry of (3.5) is equivalent to having HomT .N .j /; N .i// D HomB.N .j /; N .i//. Thus we
just need to prove (3.4).

Using (2.2), there is an exact sequence

0! HomT .N
.j /; N .i//Œ�1�

�g
�! HomT .N

.j /; N .i//

! HomB.N .j /; N .i//
˛
�! Ext1T .N

.j /; N .i//Œ�1� (3.7)

and so for each i; j it is sufficient to prove that Ext1T .N
.j /; N .i// D 0. Now each N .i/ is

g-divisible, and it is easy to see that N .i/ is saturated by hypotheses (i), (ii). So each N .i/

is MCM by Proposition 2.3. Therefore, by Proposition 2.5 and Corollary 2.13, we have

Ext1T .N
.j /;N .i//D Ext1X.N

.j /;N .i//D Ext1X.N
.i/;N .j //�Œ1�D Ext1T .N

.i/;N .j //�Œ1�:

Thus for each .i; j / we have Ext1T .N
.j /; N .i// D 0 if and only if Ext1T .N

.i/; N .j // D 0.
By assumption, T � EndT .M/� EndT .H/ and so (3.4) holds when i D j . Trivially,

Ext1T .T;N
.i//D 0, and so Ext1T .N

.i/; T /D 0 also holds for all i . (This also follows from
the CM property of N .i/.) As

Ext1T .M;H/ D 0 ” Ext1T .H;M/ D 0;

in order to prove part (1), it just remains to prove that Ext1T .M;H/ D 0.
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Since Ext1T .M; T / D 0, we have the exact sequence

0! HomT .M;H/! HomT .M; T /
ˇ
�! HomT .M; T=H/! Ext1T .M;H/! 0: (3.8)

We would like to understand the Hilbert series of HomT .M; T=H/. For this, we consider
also the following exact sequence, where we are applying (2.2),

0! HomT .M; T=H/Œ�1�
�g
�! HomT .M; T=H/! HomB.M; T =H/! � � � (3.9)

First we prove that HomB.M; T =H/0 D 0. By (i), there is a surjection ˇ W T =H �
Ma. But any nonzero, degree 0 map � W M ! T =H is surjective, since T =H is cyclic.
Thus � D ˇ ı � gives a surjection � WM �Ma. Since M is saturated, it clearly follows
from the equivalence qgr-B ' cohE that ker � D

L
n�0H

0.E;Nn.d C e C f � a//.
Therefore, by [15, Lemma 2.2], ker � is generated in degree 0. On the other hand, by
construction, .ker �/0 D .ker �/0 and so ker � D ker � . This is impossible, so no such �
can exist. Thus HomB.M; T =H/0 D 0, as desired.

Now, .T =H/�1 is filtered by the shifted point modules .M�.a//Œ�1�, .M�.b//Œ�1�,
and .M�.c//Œ�1�. Since hilbHomB.M;Mp/ D 1=.1 � s/ for any point p such that
HomB.M;Mp/ ¤ 0, it follows that hilbHomB.M; T =H/ � .3s/=.1 � s/. Using (3.9),
we then get hilbHomT .M; T=H/ � .3s/=.1 � s/

2.
Now, hilbHomB.M;H/ D .3s C 6s2/=.1 � s/2, by (3.6). So, considering (3.7) for

.j; i/ D .3; 1/, gives the upper bound hilbHomT .M;H/ � .3s C 6s
2/=.1 � s/3. On the

other hand,

.3s/=.1 � s/2 C .3s C 6s2/=.1 � s/3 D .6s C 3s2/=.1 � s/3 D hilbHomT .M; T /;

where the last equality follows since we have already proven that the .3; 2/ entry of
(3.5) is correct. By considering the first three terms of (3.8) and the upper bounds for
hilbHomT .M; T=H/ and hilbHomT .M;H/, this forces both bounds to be equalities. In
particular,

hilbHomT .M;H/ D .3s C 6s
2/=.1 � s/3 D hilbHom.T / � hilb.M; T=H/

and so the first three terms of (3.8) form a short exact sequence. Thus Ext1T .M;H/ D 0,
and the proof of part (1) is complete.

(2) Suppose that hypothesis (ii) holds and define H_ D M � D HomT .M; T /. Since
M is MCM, it is reflexive, so M D HomT .H

_; T /. It follows that

EndT .M/ D ¹x 2 Qgr.T / j xM �M º D ¹x j H
_xM � T º

and, similarly, EndT .H_/ D ¹y 2 Qgr.T / j H
_y � H_º D ¹y j H_yM � T º. Thus

EndT .M/DEndT .H_/. Since EndT .M/�T by assumption, we also get EndT .H_/�T .
Since T is g-divisible, the module P DM=T is g-torsionfree. By hypothesis (ii),

P=Pg DM=B � .2C s/=.1 � s/
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is filtered by the shifted right point modules M�.d/Œ�1� Š .Md /�1;Me , and Mf . There-
fore, [15, Lemma 5.4] applies to P . By that lemma, if N D Ext1T .P; T /, then N=Ng is
filtered by the shifted left point modules M `

��1d
, M `

��2e
Œ�1�, and M `

��2f
Œ�1�. Now con-

sider the exact sequence

0! H_ ! T
ˇ
�! N ! Ext1T .M; T /;

and note that Ext1T .M; T / D 0 was proved within the proof of part (1). ThusN Š T=H_,
and so N=Ng Š B=H_, as H_ is g-divisible. Since we know the point modules in a
filtration of N=Ng, this forces H_ D

L
n�0H

0.E;Nn.��
�nd � ��ne � ��nf //. Thus

(ii) implies (ii)0.
The converse (ii)0) (ii) is proved similarly, using the left-sided versions of [15, Lem-

mata 4.5 and 5.4]. The relevant exact sequence is

0! T ! HomT .H
_; T /! Ext1T .T=H

_; T /! 0;

where there is no extra Ext1 term to worry about. We leave the details to the reader.

4. Recognition I: Recognising Sklyanin elliptic algebras

We continue to consider when an elliptic algebra T of degree 9 can be shown to be
the 3-Veronese of a Sklyanin algebra. Let T be such an elliptic algebra with T=gT Š
B.E;N ; �/, and recall that we are always assuming that qgr-T is smooth. Suppose, fur-
ther, that T has right modules H and M satisfying the conditions from Notation 3.2.
The main result of this section is that, under an additional condition on Div T=H and
DivM=T , T D S .3/ is the 3-Veronese of a Sklyanin algebra S D S.E; �/. Note that, as
discussed at the beginning of Section 3, this also implies that T Š EndT .H/Š EndT .M/.
Neither of these conclusions is obvious a priori.

To explain the condition on the divisors of T=H and M=T , suppose for the moment
that T is a Sklyanin elliptic algebra; that is, T D S .3/ where S is the Sklyanin algebra with
S=gS DB.E;L;�/ and L3DL˝L� ˝L�2 ŠN . If 0¤ x 2 S1DH 0.E;L/ vanishes
at a;b; c 2E, thenH WD xS2T satisfiesH D

L
n�1H

0.E;Nn.�a� b � c//. Recall that
the isomorphism class of an invertible sheaf onE is determined by its degree and its image
under the natural map from PicE ! E [6, Example IV.1.3.7]. Thus LŠ OE .aC b C c/

and so
N Š OE .�

�1aC b C c/˝3: (4.1)

Further, if we set H_ D TS2x then H_ D
L
n�1H

0.E;N .���nd � ��ne � ��nf //,
for d D �a, e D �b, and f D �c. Thus

OE .�aC b C c/ Š OE .d C e C f /: (4.2)

The following theorem, which is the main result of this section, shows that the neces-
sary conditions (4.1), (4.2) for T to be a Sklyanin elliptic algebra are also sufficient.



Ring-theoretic blowing down II: Birational transformations 1061

Theorem 4.3. Let T be an elliptic algebra of degree 9, such that qgr-T is smooth, and with
T=Tg Š B.E;N ; �/. Suppose that T satisfies the conditions from Notation 3.2, where
the points a; b; c; d; e; f satisfy (4.1) and (4.2). Then T Š S .3/, where S Š S.E; �/ is a
Sklyanin algebra with �3 D � .

We prove this theorem by means of Z-algebras. Recall that a Z-algebra is a k-algebra
A of the form

L
.i;j /2Z�ZAi;j such that Ai;jAk;` D 0 if j ¤ k, and Ai;jAj;` � Ai;`. The

Z-algebra A is lower triangular if Aij D 0 for all i < j , and connected if An;n D k for
all n.

We say that a homomorphism � W A! A of a Z-algebra A has degree d if �.Ai;j / �
AiCd;jCd for all i; j . The Z-algebra A is called d -periodic if it has an automorphism of
degree d . A 1-periodic Z-algebra A is also called principal. Given any Z-graded algebra
B D

L
n2Z Bn, we can form a Z-algebra A D yB by putting Aij D Bj�i for all i; j ,

with the natural multiplication induced by the multiplication of B . Clearly yB is principal.
Conversely, if a Z-algebra A is principal then there exists a Z-graded algebra B such
that A Š yB , by [17, Proposition 3.1]; further, the multiplication on B is determined by
the given degree 1 automorphism of A. Given a Z-algebra A, m 2 Z and d � 2, the
corresponding d -th-Veronese ofA is the Z-algebraA0 DA.d/ whereA0i;j DAmCdi;mCdj ,
with multiplication induced by the multiplication in A. Clearly A has d distinct d -th-
Veronese algebras, depending on the choice ofm. We call the Z-algebraA a quasi-domain
if for all 0 ¤ x 2 Ai;j ; 0 ¤ y 2 Aj;k , we have 0 ¤ xy 2 Ai;k . If B is a Z-graded domain,
the corresponding principal Z-algebra yB is a quasi-domain.

Consider the Sklyanin algebra S D S.E; �/ with its factor TCR B D B.E;L; �/ D

S=gS for an invertible sheaf L of degree 3 and the central element g 2 S3, as described
in [15, (4.2)]. Then S has a graded presentation S Š k¹x1; x2; x3º=.r1; r2; r3/, where
deg xi D 1 and deg rj D 2 for each i; j . So B has a graded presentation B Š

k¹x1; x2; x3º=.r1; r2; r3; r4/, where r4 corresponds to the central element g and hence
deg r4 D 3. We now give a Z-algebra version of this observation; more specifically, we
study Z-algebras satisfying the following properties.

Assumption 4.4. Let A be a connected lower triangular Z-algebra which is a quasi-
domain. Assume there is an ideal of I which is generated by elements ¹0¤ gn 2 AnC3;n j
n 2 Zº, such that there is a degree 0 isomorphism � W A=I Š yB , where B D B.E;L; �/
for some elliptic curve E, invertible sheaf L of degree 3, and translation automorphism
� 2 Aut.E/. Let � be the degree 1 automorphism of A=I corresponding under � to the
canonical degree 1 automorphism of yB . Finally, we can identify .A=I /n;n�1 DAn;n�1 for
all n and we assume that gnx D �3.x/gn�1 for all x 2 An;n�1 under this identification.

Proposition 4.5. Let A be a Z-algebra satisfying Assumption 4.4. Then there is a graded
ring S and a degree 0 isomorphism  W yS ! A, such that either

(i) S D S.E; �/ is a Sklyanin algebra, or else

(ii) S D BŒz�, where z is a degree 3 indeterminate.
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Moreover, the principal automorphism � of A=I lifts to a principal automorphism z� of A,
which corresponds under  to the canonical principal automorphism of yS .

Remark 4.6. Although we have a blanket assumption that qgr-R is smooth for an elliptic
algebra R, we note for use elsewhere that Proposition 4.5 and its proof hold without any
smoothness assumptions. It is also worth noting that qgr-BŒz� is not smooth (see the final
step in the proof of Theorem 4.3).

Proof. First, since hilbB D .1C s C s2/.1 � s/�2, we have dimk.A=I /nCm;n D 3m for
m � 1, while dimk.A=I /n;n D 1. Because of the relations gnx D �3.x/gn�1, the ideal I
is generated by the ¹gnº as a right ideal of A. Then, since A is a quasi-domain, we easily
get dimkAnCm;n D

�
mC2
2

�
for all m � 0.

Let F D khV i be the free algebra on a 3-dimensional k-space V , and fix surjections

F ! S.E; �/ D F=.r1; r2; r3/! B D B.E;L; �/ D F=.r1; r2; r3; r4/

as above, where r1; r2; r3 are quadratic relations and r4 is cubic. Then we get induced
surjective maps of Z-algebras  W yF ! yS.E; �/ and � W yS.E; �/ ! yB . Let A0 be the
sub-Z-algebra of A generated by ¹AnC1;n j n 2 Zº, and let � W A0! A=I be given by the
natural inclusion A0! A followed by the natural surjection A! A=I . The isomorphism
� W A=I ! yB gives an isomorphism

A0nC1;n D AnC1;n D .A=I /nC1;n
�
�! yBnC1;n D yFnC1;n

for each n. Then there is a clearly unique surjection of Z-algebras � W yF ! A0 with
��� D � .

We claim that � factors through yS.E; �/. Since I is generated in degrees .nC 3; n/,
we have isomorphisms

A0nC2;n D AnC2;n D .A=I /nC2;n
�
�! yBnC2;n

for each n. (The first equality follows since B is generated in degree 1, which forces
AnC2;nC1AnC1;n D AnC2;n since A agrees with yB in low degree.) Thus �� is an iso-
morphism in degree .n C 2; n/. It follows that � must kill the same degree .n C 2; n/
relations that � does. This shows that there is a map � W yS.E; �/!A0 such that � D � ;
in other words, � factors as claimed. Now � D ��� D ��� and since  is surjective,
� D ���.

To distinguish it from the elements gn 2 A, let h 2 S.E; �/3 be the image of the
degree 3 relation r4 2 F and let hn D h 2 yS.E; �/nC3;n. Since h is central in S.E; �/,
we have

yS.E; �/nC4;nC3hn D hnC1
yS.E; �/nC1;n; for all n 2 Z: (4.7)

Since the image of �.hn/ in A=I is 0, we have �.hn/ 2 I . As I is generated by the
elements ¹gnº, this forces �.hn/D �ngn for some scalars �n 2 k. Using that A is a quasi-
domain, applying � to (4.7) shows that �n D 0 ” �nC1 D 0. By induction, if some
�i D 0 then �n D 0 for all n.
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Consider the case that �n ¤ 0 for all n 2 Z. In this case, we have gn 2 A0 for all n.
Since A=I is generated by ¹.A=I /nC1;n j n 2 Zº, and I is generated by the gn, clearly
A is generated as an algebra by ¹AnC1;n j n 2 Zº and ¹gn j n 2 Zº. Thus A D A0 in this
case and � is a surjection yS.E; �/! A. As

dimkAnCm;n D

�
mC 2

2

�
D dimk S.E; �/m D dimk

yS.E; �/nCm;n

for all n � Z and m � 0, � is a degree 0 isomorphism from yS.E; �/ to A. So (i) holds
with  D �. There is a unique principal automorphism z� of A corresponding under  to
the canonical degree 1 automorphism of yS.E; �/. The identity � D ��� implies that z�
lifts the given automorphism � of A=I .

Otherwise, �n D 0 for all n 2 Z. In this case, �.hn/ D 0 for all n, and so � factors
through yB to give a map � W yB!A0 such that �� D �. Then � D ���D ���� and since �
is surjective, ���D 1 yB . In particular, the surjection � W yB! A0 must be an isomorphism,
and then so is � W A0 ! A=I .

Let z be a central indeterminate of degree 3 and let zn D z 2 bBŒz�nC3;n. We claim
that we can extend the isomorphism .��/�1 W yB ! A0 to a homomorphism  W bBŒz�! A

by defining .zn/ D gn. For each n 2 Z, define a map V ! yBnC1;n by the identifica-
tion V D yFnC1;n

� 
��! yBnC1;n. Write the image of v 2 V under this map as vn. To show

that  is well defined, we need to check that .znC1vn/ D gnC1.��/�1.vn/ is equal to
.vnC3zn/ D .��/

�1.vnC3/gn for all n 2 Z and v 2 V . But this follows from the equa-
tion gnC1x D �3.x/gn, since � intertwines � with the canonical principal automorphism
of yB .

Similarly to the first case, A is generated by A0 and the gn, so that  is surjective, and
comparing Hilbert series, we see that  is an isomorphism. Thus case (ii) holds. Again,
there is a unique principal automorphism z� of A corresponding under  to the canonical
degree 1 automorphism of bBŒz�. If � W bBŒz�! yB is the canonical surjection, by the defin-
ition of  we have � D �� . From this equation it follows similarly to the first case that
z� lifts �.

In order to apply the proposition above, we need to be able to recognise when a Z-
algebra is 1-periodic and isomorphic to yB for a TCR B . The next lemma will help us to
do this. It is useful to consider Z-algebras of the following form.

Definition 4.8. Let K D k.E/ for an elliptic curve, let � 2 Autk.K/, and consider the
skew-Laurent ring Q D KŒt; t�1I ��. We call a Z-algebra A standard if

(i) it is connected, lower triangular, and generated by ¹AnC1;n j n 2 Zº;

(ii) each piece Ai;j has the form Vi;j t
di;j � Q for some finite-dimensional k-

subspace Vi;j � K and di;j 2 Z; and

(iii) for each i � j � k the multiplication map Ai;j ˝ Aj;k ! Ai;k is given by the
multiplication in Q.
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It is easy to see that once the ring Q D KŒt; t�1I �� is fixed, given arbitrary choices of
Vnt

dn with Vn � K and dn 2 Z for each n 2 Z, there is a unique standard Z-algebra A
with AnC1;n D Vntdn .

We show now that every standard Z-algebra is isomorphic to one where each graded
piece is contained in K and no automorphism is involved in the multiplication.

Lemma 4.9. Fix K and � as in Definition 4.8. Let A be a standard Z-algebra associated
to this data. Then there is a standard algebra zA with zAnC1;n � K for all n and a degree 0
isomorphism A Š zA.

Proof. Write AnC1;n D Vnt
dn where Vn � K. Let e1 D 0, for each n � 2 let en D

�
Pn�1
iD1 di , and for n � 0 let en D

P0
iDn di . Let zA be the unique standard Z-algebra

with zAnC1;n D �enC1.Vn/ � K for each n. Write Ai;j D Vi;j t
di;j and zAi;j D Wi;j for

each i; j with i � j , for some Vi;j ;Wi;j � K. We have di;i D 0 because A is connected.
We claim that the map � WA! zA, given on the graded pieceAi;j D Vi;j tdi;j ! zAi;j D

Wi;j by the formula vtdi;j 7! �ei .v/, is an isomorphism of Z-algebras. It is not obvious
that � actually has image in zA, but it is at least a function from A to the Z-algebra which
has every piece equal to K. Thus we first check � is a homomorphism and then it will be
clear that it lands in zA.

Given u 2 Vi;j and v 2 Vj;k , we have x D utdi;j 2 Ai;j and y D vtdj;k 2 Aj;k . Then
�.x/�.y/ D �ei .u/�ej .v/ while

�.xy/ D �.u�di;j .v/tdi;jCdj;k / D �ei .u�di;j .v// D �ei .u/�eiCdi;j .v/:

Thus to see that � is a homomorphism, we need ei C di;j D ej for all i � j . Note that
dnC1;n D dn by definition and that di;j D di�1 C � � � C dj for all i > j since Ai;j D
Ai;i�1 � � �AjC1;j . By the definition of the en we also have di�1 C � � � C dj D �ei C ej .
Thus � is a homomorphism, so �.AnC1;n/ D zAnC1;n by definition. Since A is generated
as an algebra by the ¹AnC1;nº and zA is generated by the zAnC1;n, the homomorphism �

does have image in zA and is even surjective. Then, � is an isomorphism since it is injective
on each graded piece by definition.

We are now ready for the proof of Theorem 4.3, for which we need the following
notation.

Notation 4.10. Let T be an elliptic algebra of degree 9 with T=Tg Š B.E;N ; �/ that
satisfies conditions (i) and (ii) of Notation 3.2. Thus, we have right T -modules N .1/ D

H � N .2/ D T � N .3/ DM . Set

E D EndT .N .1/
˚N .2/

˚N .3// D
�

HomT .N
.j /; N .i//

�
ij
:

Define a Z-algebra S by S3mCi;3nCj D .Ei;j /m�n, for allm;n2Z and i; j 2 ¹1;2;3º,
where the multiplication is induced from that in E. Let ' W S! S be the degree 3 auto-
morphism given by the identifications S3mCi;3nCj D .Ei;j /m�n D S3mC3Ci;3nC3Cj .
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Proof of Theorem 4.3. We assume Notation 4.10. Assume in addition that the points a, b,
c, d , e, f in Notation 3.2 (i), (ii) satisfy (4.1) and (4.2).

The main step is to show that S satisfies the hypotheses of Proposition 4.5. For any
n 2 Z we have SnC3;n D EndT .N .i/; N .i//1 (for some i ), which contains the element g.
Thus we set gnD g 2SnC3;n for each n. Note that the multiplication in S is induced by the
multiplication in T.g/; in particular, S is a quasi-domain. Let I be the ideal of S generated
by ¹gn j n 2 Zº. Since all of the N .i/ are g-divisible, so is each HomT .N

.j /; N .i// by
[15, Lemma 4.4]. Thus given i; j 2 ¹1; 2; 3º and m; n 2 Z with m � n � 3 we have

I3mCi;3nCj � S3mCi;3.nC1/Cjg3nCj D HomT .N
.j /; N .i//m�n�1g

D HomT .N
.j /; N .i//m�n \ gT.g/:

Conversely, since each gn is a copy of g and the multiplication of S is induced by multi-
plication in T.g/, clearly I3mCi;3nCj � gT.g/. Thus

I3mCi;3nCj D HomT .N
.j /; N .i//m�n \ gT.g/:

We see that S WD S=I is the Z-algebra with S3mCi;3nCj D .Ei;j /m�n for i; j 2 ¹1; 2; 3º
where, by Proposition 3.3,

Ei;j D HomT .N .j /; N .i// D HomB.N .j /; N .i//:

Clearly the multiplication in S is induced by the multiplication in k.E/Œt; t�1I �� D
T.g/=gT.g/.

As in the proof of Proposition 3.3, for each i we can write

N .i/ D

M
n�0

H 0.E;Gi ˝Nn/t
n;

where G1 D OE .�a � b � c/, G2 D OE , and G3 D OE .d C e C f /, and then

HomB.N .j /; N .i// D
M
n�0

H 0.E; .G �
n

j /�1Gi ˝Nn/t
n
� k.E/Œt; t�1I ��

for all i; j 2 ¹1; 2; 3º. In particular,

S3nCi;3nCi�1 D

8̂̂<̂
:̂
H 0.E;N .���1.d/ � ��1.e/ � ��1.f / � a � b � c//t; i D 1;

H 0.E;OE .aC b C c//; i D 2;

H 0.E;OE .d C e C f //; i D 3:

It is now easy to see that S is generated as an algebra by ¹SnC1;n j n 2 Zº, using [15,
Lemma 2.2]. We have now checked that S is a standard algebra in the sense of Defini-
tion 4.8.

We would like to show now that S is isomorphic to yC where C D B.E;L; �/,
with L some sheaf of degree 3 and � 2 Aut.E/ such that �3 D � . Let L be any sheaf
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of degree 3 and � any automorphism for the moment, and write C D B.E;L; �/ DL
n�0H

0.E;Ln/u
n � k.E/Œu; u�1I ��. We use Lemma 4.9 to change S and yC to iso-

morphic standard algebras involving only multiplication in k.E/. Writing SnC1;nD Vntdn

with Vn � k.E/, we have dn D 1 when n is a multiple of 3, dn D 0 otherwise. Thus by
the proof of Lemma 4.9 there is a degree 0 isomorphism S Š D, where D is the standard
algebra with DnC1;n D ��bn=3c.Vn/ D H 0.E;Dn/ where the sheaf Dn is given by

Dn D ŒN .���1.d/ � ��1.e/ � ��1.f / � a � b � c/��
�.n=3/

n � 0 mod 3;

Dn D ŒOE .aC b C c/�
��.n�1/=3 n � 1 mod 3;

Dn D ŒOE .d C e C f /�
��.n�2/=3 n � 2 mod 3:

Similarly, writing yCnC1;n D Wnu, where Wn D H 0.E;L/ for all n, we get a degree 0
isomorphism yC ! F for the standard algebra F with FnC1;n D ��n.Wn/ D H 0.E;Fn/,
where Fn D L��n .

Now it is easy to see that if for all n 2 Z there is an isomorphism of sheaves Fn ŠDn,
then there will be a degree 0 isomorphism F Š D. Let

L D D0 D N .���1.d/ � ��1.e/ � ��1.f / � a � b � c/:

We now show that we can choose � so that Fn D L��n Š Dn for all n 2 Z.
To have Fn Š Dn for n D 1; 2, we need that L��1 Š D1 D OE .aC b C c/, and

L��2 ŠD2 D OE .d C eC f /. Fix a group operation˚ on E and let t 2 E be such that
� W E ! E is given by x 7! x ˚ t . (Such t exists because � is infinite order.) Let

P
W

PicE! E be the natural map, so
P

OE .a1C � � � C an/D a1˚ � � � ˚ an. Two invertible
sheaves M;M0 on E are isomorphic if and only if deg M D deg M0 and

P
M D

P
M0.

Equations (4.1) and (4.2) are equivalent toX
N ˚ 3t D 3a˚ 3b ˚ 3c (4.11)

and
a˚ b ˚ c ˚ t D d ˚ e ˚ f: (4.12)

Since the group structure on an elliptic curve is divisible, we can choose s 2 E such that
3s D t ; then the translation automorphism �.x/ D x ˚ s satisfies �3 D � . From (4.12)
and (4.11) we obtain

a˚ b ˚ c 	 t D
X

N 	 d 	 e 	 f 	 a	 b 	 c ˚ 3t D
X

L;

and thus L��1 Š O.aC b C c/ D D1. Then by (4.12),

L��2
Š D��1

1 Š OE .�aC �b C �c/ Š OE .d C e C f / Š D2;

as needed.
Fix these choices of � and L and the isomorphisms Dr Š Fr for r D 0; 1; 2 given

above. Then for each n 2 Z, writing n D 3q C r with r 2 ¹0; 1; 2º we get an induced
isomorphism Dn D D��q

r Š F ��3q

r Š Fn. We conclude that for the choice of � and L
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as above, there are degree 0 isomorphisms of Z-algebras S=I D S Š D Š F Š yC . Let
� be the degree 1 automorphism of S that corresponds under this chain of isomorphisms
to the canonical principal automorphism of yC .

In order to apply Proposition 4.5, the last hypothesis that remains to be checked is that
identifying SnC1;n D SnC1;n, we have gnC1x D �3.x/gn for all x 2 SnC1;n. Since by
construction SnC1;n and SnC4;nC3 are naturally identified, and gn is equal to the copy of
the central element g in SnC3;n for each n, the needed equation amounts to showing that
�3 W SnC1;n ! SnC4;nC3 is simply the natural identification for each n; in other words,
showing that �3 D ' on degree .nC 1; n/ elements. In other words, we must show for all
n that the diagram

SnC1;n // SnC1;n // yCnC1;n

SnC4;nC1 // SnC4;nC1 // yCnC4;nC1

commutes, where the horizontal arrows are the maps constructed above.
Let n D 3q C r , where 0 � r � 2. Let ˛n W DnC1;n ! FnC1;n be such that the map

SnC1;n ! yCnC1;n is given by the composition

SnC1;n D Vnt
dn

��q

��! DnC1;n
˛n
�! FnC1;n

�n

�! yCnC1;n:

Now, by construction, ˛n is induced by pullback from our choice of ˛r : in other words,
˛n D �

�q˛r�
q . Thus the composition SnC1;n! yCnC1;n is � r˛r and depends only on the

residue of n mod 3, as we need.
We may now apply Proposition 4.5 to S. We get immediately from that proposition

that there is a degree 0 isomorphism  W yS ! S, where S is either the Sklyanin algebra
S.E; �/ or else BŒz�. In addition, the canonical principal automorphism of yS corresponds
under this isomorphism to a degree 1 automorphism z� of S, which lifts the automorphism
� of S=I . Since �3 D ' on elements in SnC1;n, we see that .z�/3 D ' as automorphisms
of S.

By construction there is a 3-Veronese S.3/, where

S.3/m;n D S3mC2;3nC2 D HomT .T; T /m�n D Tm�n:

By the definition of the multiplication in S we have an identification of Z-algebras
S.3/ D yT . Moreover, the degree 3 automorphism ' of S induces a principal automorphism
' of S.3/ which is just the canonical principal automorphism of yT under this identification.
It follows from [17, Proposition 3.1] that there is an isomorphism of Z-graded algebras
S .3/ Š T .

To conclude the proof we just need to rule out the case S D BŒz�. In this case T D
B.3/Œz�, where z now has degree 1. By the smoothness assumption, T ı has finite global
dimension. On the other hand, T ı D T Œz�1�0 Š B.E;N ; �/, which has infinite global
dimension (use the proof of [12, Theorem 5.4]). Thus this case does not occur.
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Remark 4.13. We remark that we do not know of a degree 9 elliptic algebra T (with
qgr-T smooth) which is not isomorphic to an algebra S as in Theorem 4.3. However, we
do not see how to prove that (4.1) and (4.2) always hold.

5. Iterating blowing down

Our ultimate goal is to give a recognition theorem for 2-point blowups of a noncommutat-
ive P2. In order to do this, we need to study the process of iterating blowing down, and we
do that in this section. Throughout the section, we continue to have a standing assumption
that qgr-R is smooth for any elliptic algebra R.

Our first result is more general: we study how to “blow down” a reflexive right ideal of
an elliptic algebra. For motivation, suppose that T D S .3/ is the 3-Veronese of a Sklyanin
algebra S D S.E; �/. Let p ¤ q 2 E, and consider how we would construct the right
T -module H in Proposition 3.3 from the blowup R D T .p C q/. Besides the line mod-
ules that come from blowing up p and q, there is a third R-line module constructed as
follows. Let x 2 S1 be the line that vanishes at p; q. Then xS2 � R1 and one may com-
pute that R=xS2R is a line module. If we let J D xS2R, then J1T DH . The next lemma
generalises this process.

Lemma 5.1. Let R be an elliptic algebra with R=gR D B D B.E;M; �/, and fix a line
moduleLDR=J satisfying .L �MSL/D�1. LetK �R be a g-divisible MCM right ideal,
generated in degree 1 as an R-module, with dimkK1 � 2.

Let zR be the blowdown of R at L, as constructed by [15, Theorem 1.4]. As in [15,
(8.1)], let

zK D
X
˛

®
N˛ j K � N˛ � Qgr.R/ with N˛=K Š LŒ�i˛� for some i˛ 2 Z

¯
:

Then:

(1) We have hilbExt1R.L;K/ D s
i=.1� s/2, for i 2 ¹0; 1; 2º; thus hilb zK D hilbK C

si=.1 � s/3. Also, i D 0 if and only if K D J . In any case, zK D HomR.J;K/R.

(2) zK is a g-divisible MCM right zR-module.

(3) If i D 1 or i D 2 then zK is also generated in degree 1 as a right zR-module. In
particular, if i D 2 then zK D K1 zR. If i D 0 then zK D zR.

Proof. We first note that sinceK is MCM it is reflexive, and so zK DHomR.J;K/R holds
by [15, Lemma 8.2]. Also, by Proposition 2.3 K is a saturated B-module.

(1) As vector spaces, Ext1R.L;K/ Š HomR.J;K/=K. Note that

J D
M
n�0

H 0.E;Mn.�p//;

for p D DivL. Similarly, since K is saturated, K D
L
n�0H

0.E;Mn.�D// for some
effective divisor D. If D D 0, then K0 ¤ 0, a contradiction. The g-divisible proper right
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ideal K cannot contain g, and so the hypothesis dimk K1 � 2 implies that dimk K1 � 2

as well. In conclusion, we have 0 < degD � deg M � 2.
Now [15, Lemma 2.3] gives

HomB.J ;K/ D
M
n�0

H 0.E;Mn.�D C �
�n.p///:

Thus hilbHomB.J ;K/=K D sj =.1� s/;where either j D 0 ifDD p or j D 1 otherwise.
By [15, Lemma 4.4 (1)], HomR.J;K/ is g-divisible since J and K are, and so

hilbŒHomR.J;K/=K�=.1 � s/ D hilbHomR.J;K/=K D hilbExt1R.L;K/:

We have K � HomR.J;K/ � HomB.J ;K/. Since J is a line ideal, it is g-divisible
and reflexive by [15, Lemma 5.6 (2)]. Thus [15, Lemma 4.8] applies and shows that
HomR.J;K/ is equal in large degree to HomB.J ; K/. Since hilb EndR.J / D hilbR by
[15, Theorem 7.1],

EndR.J / D EndB.J / D B.E;M.�p C ��1.p//; �/

is a full TCR, and HomR.J;K/ is a right module over this ring. Using degD � degM� 2

as mentioned above, M.�DC ��1.p// has degree at least 3. By [15, Lemma 2.3], for any
i � 1we have HomB.J ;K/i EndB.J /DHomB.J ;K/�i . This equation also clearly holds
for i D 0 in case D D p and J D K. Now if for some i � j we have HomR.J;K/i D

HomB.J ; K/i , then we will have HomR.J;K/�i D HomB.J ; K/�i by multiplying on
the right by EndR.J /. We conclude that the actual value of hilbHomR.J;K/=K must be
si=.1 � s/ for some i � j . This implies that HomR.J;K/ D K C HomB.J ; K/�i . By
g-divisibility we have hilbHomR.J;K/=K D hilbExt1R.L;K/ D s

i=.1 � s/2.
Now the case i D 0 can occur only if j D 0, in which case D D p and J D K,

and also HomR.J; K/0 ¤ 0. But HomR.J; K/ � HomR.J; R/, and we know by [15,
Lemma 5.6 (3)] that HomR.J; R/0 D k. If kJ � K then J � K. Since J and K are
g-divisible and J D K this forces J D K.

Assume now that J ¤ K and so i � 1. Now zK is a right zR-module by [15, Corol-
lary 8.5], so zK must be a right module over zR D B.E;M.��1.p//; �/. If i > 2, then

zK1 zR1 D H
0.E;M1.�D//H

0.E;M�
1.�
�2.p///

D H 0.E;M2.�D C �
�2.p/// ª H 0.E;M2.�D// D K2 D zK2;

a contradiction. Thus i D 1 or i D 2. Clearly the case i D 1 occurs if HomR.J;K/1 ¥ K1,
while i D 2 occurs if HomR.J;K/1 D K1.

The Hilbert series of zK follows directly from hilbExt1R.L;K/ D s
i=.1 � s/2 and

[15, Lemma 8.2].
(2) As noted above, zK is a right zR-module. Write zR D B 0 D B.E;N ; �/, where N D

M.��1.p//.
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If i D 0, then K D J and so zK D Hom.J; J /R D zR, which is certainly g-divisible
and MCM. If i � 1, then

zK D K C HomB.J ;K/�iR D K C HomB.J ;K/i EndB.J /R

D K C HomB.J ;K/i zR:

If i D 1 then zKi D H 0.E;M.�D C ��1.p/// D H 0.E;N .�D//, while if i D 2,
then we have zKi D H 0.E;M2.�D C �

�2.p/// D H 0.E;N2.�D � �
�1.p///. Using

[15, Lemma 2.3], in either case we get

zK D K C
M
n�i

H 0.E;Mn.�D C �
�i .p/C � � � C ��n.p///: (5.2)

It follows from (5.2) that hilb zK D hilbK C si=.1 � s/2. On the other hand, we showed
hilb zK D hilbK C si=.1 � s/3 in part (1). This forces hilb zK D hilb. zK/=.1 � s/ and thus
zK is g-divisible.

Further, considering the formula for zKi from above (5.2), either i D 1 and zK DL
n�0H

0.E;Nn.�D//, or else i D 2 and zK D
L
n�0H

0.E;Nn.�D � �
�1.p///. In

either case, zK is saturated as a B 0-module. Thus zK is MCM by Proposition 2.3.
(3) When i D 1 or 2, then zK is generated in degree 1 as a right zR-module, by the cal-

culations in part (2) and [15, Lemma 2.3]. Since zK is g-divisible, zK is therefore generated
in degree 1 as a zR-module by the graded Nakayama lemma. When i D 2, zK1 D K1 by
construction and so zK D K1 zR.

By combining Lemma 5.1 with results from [15], we get the following useful charac-
terizations of the intersection numbers of two distinct lines.

Lemma 5.3. Let R be an elliptic algebra with degR � 3. Let L 6Š L0 be line modules,
with line ideals J and J 0, respectively. Assume that .L �MSL/ D �1. Then

.L �MSL0/ D 1 ” dim HomR.J; J
0/1 D dimR1 � 2 ” HomR.J; J

0/1 D J
0
1;

while

.L �MSL0/ D 0 ” dim HomR.J; J
0/1 D dimR1 � 1 ” HomR.J; J

0/1 ¤ J
0
1:

Proof. By [15, Lemma 5.6], line ideals are g-divisible, MCM, and generated in degree 1,
and so we can apply Lemma 5.1 with K D J 0. Since L 6Š L0, we have J 0 ¤ J and
so, in the notation of Lemma 5.1, i D 1 or i D 2. Examining the proof of that lemma,
hilbHomR.J; J

0/=J 0 D si=.1 � s/2. Thus if i D 1 we have

hilbHomR.J; J
0/ D hilbR � 1=.1 � s/;

and so dim HomR.J; J
0/1 D dimR1 � 1 ¤ dimJ 01. If i D 2 then

hilbHomR.J; J
0/ D hilbR � .1C s/=.1 � s/:
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Thus dim HomR.J; J
0/1 D dimR1 � 2 D dim.J 0/1 and so HomR.J; J

0/1 D .J
0/1. This

gives the second equivalence on each line.
Since qgr-R is smooth, J ı and .J 0/ı are projective by [15, Remark 7.2]. Thus by

[15, Theorem 7.6], we have .L �MSL0/ D 1 if and only if hilbR � hilbHomR.J; J
0/ D

.1C s/=.1 � s/. Since .L �MSL0/ 2 ¹0; 1º in any case by [15, Lemma 7.4], this gives the
first equivalence on each line.

The following technical lemma will also help us in our analysis of intersection num-
bers of lines.

Lemma 5.4. Let R be an elliptic algebra with line modules L D R=J , L0 D R=J 0,
with L 6Š L0. Let K be a reflexive graded right R-submodule of Qgr.R/. Suppose that
HomR.J;K/1 � HomR.J

0; K/1. Then HomR.J;K/1 D K1.

Proof. Since L 6Š L0, we have J ¤ J 0. Given x 2 HomR.J;K/1, then x.J C J 0/ � K.
Let I WD J C J 0. Since R=J is a line module, it is 2-critical and so J ¤ J 0 forces
GKdim R=I � 1. Then xI � K implies that GKdim.xR C K/=K � 1, but since K
is reflexive, this forces x 2 K by [15, Lemma 4.5]. Consequently, we conclude that
HomR.J;K/1 � K1. The reverse inclusion is immediate.

We now study the process of blowing down two lines in succession. Recall thatU � V
if U; V are graded vector spaces with hilbU D hilbV . Similarly, U � hilbU .

Lemma 5.5. Fix an elliptic algebra R with R=gR D B.E;M; �/. Let Lp D R=Jp and
LqDR=Jq be line modules for R with .Lp �MSLp/D.Lq �MSLq/D�1, where DivLpDp
and DivLq D q. Suppose further that .Lp �MSLq/ D 0.

(1) Let zR be the blowdown of R along the line Lp . Let zJq be the blowdown to zR of
the right ideal Jq . Then zLq D zR= zJq is a line module over zR with Div zLq D q.
Moreover, .zLq �MS zLq/D �1; in particular, we can blow down zLq starting from zR
to obtain a ring T .

(2) We have .Lq �MSLp/ D 0 and so part (1) also applies with the roles of p and q
reversed, leading to a ring T 0. Then T 0 D T ; thus the order in which one blows
down the two lines is irrelevant.

Proof. (1) Note that the conditions on the intersection numbers force Lp 6Š Lq ; thus
Jp ¤ Jq . Applying Lemma 5.1 with J D Jp and K D Jq , as in the proof of Lemma 5.3,
the condition .Lp �MSLq/ D 0 means we are in the case i D 1. Then Lemma 5.1 shows
that

hilb zJq D hilbJq C s=.1 � s/3 D hilb zR � 1=.1 � s/3 C s=.1 � s/3

D hilb zR � 1=.1 � s/2:

Thus zLq D zR= zJq is a line module for zR as claimed.
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Note that JqD
L
nH

0.E;Mn.�q//. Thus zJqD
L
n�0H

0.E;Nn.�q//, where zRD
B 0DB.E;N ; �/with N DM.��1.p//, as it was calculated in the proof of Lemma 5.1 (2).
This shows that Div zLq D q.

By [15, Corollary 9.2], zR is again an elliptic algebra for which qgr- zR is smooth. Next
we want to show that .zLq �MS zLq/ D �1 which, by [15, Remark 7.2 and Theorem 7.1], is
equivalent to End zR. zJq/ � zR.

By [15, Lemma 2.3], we have

End zR. zJq/ � EndB 0. zJq; zJq/ D B.E;N .�q C ��1.q//; �/:

Since zJq is g-divisible by Lemma 5.1, End zR. zJq/ is also g-divisible, and it suffices to
prove that the inclusion above is an equality. Since the TCR B.E;N .�q C ��1.q//; �/ is
generated in degree 1, it is enough to show that

dimk End zR. zJq/1 D dimk zR1 D dimkR1 C 1 D dimk EndR.Jq/1 C 1:

Now we claim that EndR.Jq/ � End zR. zJq/. Recalling that zJq D HomR.Jp; Jq/R, if
xJq � Jq , then xHomR.Jp;Jq/�HomR.Jp;Jq/ since x HomR.Jp; Jq/Jp � xJq � Jq .
Therefore, x HomR.Jp; Jq/R � HomR.Jp; Jq/R as well, proving the claim. Thus it suf-
fices to show that EndR.Jq/1 ¤ End zR. zJq/1.

Suppose, instead, that EndR.Jq/1 D End zR. zJq/1. Since zJq � End zR. zJq/, certainly

. zJq/1 D HomR.Jp; Jq/1 � EndR.Jq/1 D HomR.Jq; Jq/1:

Since we know that Jp ¤ Jq , Lemma 5.4 gives HomR.Jp; Jq/1 D .Jq/1. But then the
hypothesis .Lp �MSLq/ D 0 contradicts Lemma 5.3.

(2) We have .Lp �MSLq/ D .Lq �MSLp/ by Corollary 2.14, so we can indeed apply part
(1) with the roles of p and q reversed to produce a ring T 0. We know that T and T 0 are
elliptic of degree at least 3 and so generated as algebras in degree 1, so it suffices to prove
that T1 D T 01. The argument of part (1) showed that HomR.Jp; Jq/1 ª EndR.Jq/1. Since
we saw that dim End zR. zJq/1 D dim EndR.Jq/1 C 1, this implies that

End zR. zJq/1 D EndR.Jq/1 C HomR.Jp; Jq/1 D EndR.Jq/1 C . zJq/1:

Now, by [15, Theorem 8.3], since T is the blowdown of zR along the line zLq D zR= zJq ,
we have T D End zR. zJq; zJq/ zR, so in particular T1 D End zR. zJq/1 C zR1. Similarly, zR1 D
EndR.Jp/1 CR1. Thus

T1 D zR1 C End zR. zJq/1 D zR1 C . zJq/1 C EndR.Jq/1 D zR1 C EndR.Jq/1
D R1 C EndR.Jp/1 C EndR.Jq/1:

A symmetric argument shows that T 01 is equal to the same vector space.

We next ask when we can begin with a line ideal of an elliptic algebra R and blow
down twice to obtain a right ideal with the properties of the right ideal H D xS2T in a
Sklyanin elliptic algebra. Note that we do not assume that degR D 7.
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Lemma 5.6. Let R be an elliptic algebra with three line modules Lp D R=Jp , Lq D
R=Jq , Lr D R=Jr , where DivLp D p, DivLq D q, DivLr D r with p ¤ q. Assume that

(a) .Lz �MSLz/ D �1 for all z 2 ¹p; q; rº;

(b) .Lp �MSLq/ D 0; and

(c) .Lp �MSLr / D .Lq �MSLr / D 1.

As in Lemma 5.5, blow down R along Lp to obtain a ring zR, and then blow down zR
along zLq to obtain a ring T . Let K D .Jr /1T . Then K is a g-divisible MCM right ideal
of T with hilbK D hilb T � .1C 2s/=.1 � s/2, Div T=K D r C ��1.p/C ��1.q/, and
EndT .K/ � T .

Proof. We first show that K D .Jr /1T is precisely the right ideal obtained by blowing
down the right ideal Jr to the ring zR and then blowing down the resulting right ideal
to T . This will produce the desired Hilbert series for K automatically, and the value of
Div.T=K/ will also follow immediately.

By [15, Remark 7.2 and Theorem 7.6], hypothesis (c) is equivalent to

hilbHomR.Jp; Jr / D hilbHomR.Jq; Jr / D hilbR � .1C s/=.1 � s/:

We have Ext1R.Lp; Jr / D HomR.Jp; Jr /=Jr so hilbExt1R.Lp; Jr / D s
2=.1 � s/2. In this

case, Jr satisfies the hypotheses of Lemma 5.1 with i D 2. Thus if zR is the blowdown of
R along Lp , then we may apply Lemma 5.1 to obtain a right ideal zJr of zR, which satisfies
hilb zJr D hilb zR � .1C s/=.1 � s/2 and zJr D .Jr /1 zR. Moreover, Lemma 5.1 shows that
zJr is again g-divisible, MCM, and generated in degree 1 as an zR-module. Write zLq D
zR= zJq . If we now blow down zR along zLq using Lemma 5.5, obtaining the ring T , then
Lemma 5.1 again applies to blow down the right ideal zJr to a right idealK of T . We have
hilbExt1

zR
.zLq; zJr / D s

i=.1 � s/2, for i 2 ¹0; 1; 2º, or equivalently hilbHom zR. zJq; zJr / D
hilb zRC .si � s � 1/=.1 � s/2. Now if i D 0 then zJq D zJr , which is not true since zJr is
not a line ideal; so i 2 ¹1; 2º.

We claim that i D 2. Suppose that x 2Hom zR. zJq; zJr /1. Since . zJq/1 D HomR.Jp; Jq/1
by Lemma 5.1 (i), x HomR.Jp; Jq/1 � . zJr /2 D ŒHomR.Jp; Jr /R�2. The assumption on
the Hilbert series of HomR.Jp; Jr / implies that HomR.Jp; Jr /1 D .Jr /1. Thus

ŒHomR.Jp; Jr /R�2 D HomR.Jp; Jr /2 C .Jr /1R1 D HomR.Jp; Jr /2:

Hence xHomR.Jp; Jq/1Jp � Jr . Let I DHomR.Jp; Jq/1Jp , a rightR-module contained
in Jq . Looking at the images in R, since HomR.Jp; Jq/1 D H

0.E;M.�q C ��1.p///

and Jp D
L
n H

0.E;Mn.�p//, one sees that I�2 D .Jq/�2. Since Jq is g-divisible
and Jq and I agree in large degree, this implies that GKdim Jq=I � 1. But now since
Jr is reflexive, by [15, Lemma 4.5] it follows that xI � Jr implies that xJq � Jr . Thus
x 2 HomR.Jq; Jr /1. This proves that Hom zR. zJq; zJr /1 D HomR.Jq; Jr /1 and so the proof
of Lemma 5.1 implies that i D 2 as claimed.
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Thus by Lemma 5.1, again, K D . zJr /1T D .Jr /1 zRT D .Jr /1T , and hilb K D
hilb T � .1C 2s/=.1 � s/2. Now T=gT D B.E;N ; �/ for N DM.��1.p/C ��1.q//,
and

K D .Jr /1T D H
0
�
E;N .�r � ��1.p/ � ��1.q//

�M
n�0

H 0.E;N �
n /

D

M
n�1

H 0
�
E;Nn.�r � �

�1.p/ � ��1.q//
�
:

Thus DivT=K D r C ��1.p/C ��1.q/. The right ideal K is also g-divisible and MCM
by Lemma 5.1.

It remains to prove that EndT .K/ � T . Since K D .Jr /1T , clearly HomT .K;K/ D

HomR.Jr ; K/. Consider the exact sequence

0! EndR.Jr /! HomR.Jr ; K/! HomR.Jr ; K=Jr /! Ext1R.Jr ; Jr /! � � � :

Since .Lr �MSLr / D �1, it follows that Ext1R.Jr ; Jr / D 0 by [15, Theorem 7.1]. We have
calculated K above, and it easily follows from [15, Lemma 2.3] that hilb EndT .K/ D
hilb T . Since K is g-divisible, EndT .K/ is g-divisible; thus it suffices to prove that
EndT .K/ D EndT .K/. Since EndT .K/ is a TCR generated in degree 1, it will suffice to
show that dimk EndT .K/1 � dimk EndR.Jr /1 C 2. Thus from the exact sequence above,
we need to prove that dimk HomR.Jr ; K=Jr /1 � 2.

Now K=Jr contains the R-submodule zJr=Jr , where hilb zJr=Jr D s2=.1 � s/3 by
Lemma 5.1. Then by [15, Lemma 8.2], zJr=Jr Š

L
i�2 LpŒ�i � as right R-modules. In

particular, K=Jr contains a submodule isomorphic to LpŒ�2�. Now we could have done
all of part (1) by blowing down in the other order, as we saw in Lemma 5.5. In partic-
ular, if R0 is the blowdown of R along Lq , then .Jr /1R0 is the blowdown of the right
ideal Jr to the ring R0. Since T contains R0 we see that K=Jr also contains Œ.Jr /1R0�=Jr
which is isomorphic to

L
i�2 LqŒ�i �. Thus K=Jr also contains a submodule isomorphic

to LqŒ�2�.
By hypothesis (c) and [15, Theorem 7.6],

HomR.Jr ; LpŒ�2�/1 ¤ 0 6D HomR.Jr ; LqŒ�2�/1:

Note that 0 6D � 2 HomR.Jr ; LpŒ�2�/1 provides a surjection Jr Œ�1� ! LpŒ�2�, since
both modules are generated in degree 2; following � by the embedding of LpŒ�2� in
K=Jr gives a nonzero element �p 2 HomR.Jr ; K=Jr /1. Similarly, we get 0 6D �q 2

HomR.Jr ;K=Jr /1 from LqŒ�2� ,!K=Jr . Now the image of �p is isomorphic to LpŒ�2�
and the image of �q is isomorphic to LqŒ�2�, while Lp 6Š Lq by hypothesis (b). Thus �p
and �q are linearly independent. Thus dimk HomR.Jr ; K=Jr /1 � 2 as required.

6. Recognition II: Two-point blowups of Sklyanin elliptic algebras

The goal of this section is to prove Theorem 1.4 from the introduction, which we state
here in full detail.
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Theorem 6.1. Let R be a degree 7 elliptic algebra with R=gR Š B.E;M; �/ and such
that qgr-R is smooth. Suppose that R satisfies the following:

(1) there are right line modules Lp D R=Jp , Lq D R=Jq and Lr D R=Jr satisfying:

(a) .Lx �MSLx/ D �1 for x 2 ¹p; q; rº;

(b) .Lp �MSLq/ D 0;

(c) .Lr �MSLy/ D 1 for y 2 ¹p; qº;

(2) p D DivLp ¤ Div q D Lq .

Then R Š T .��1p C ��1q/, where T is the 3-Veronese of the Sklyanin algebra S.E; �/
for some � 2 AutE with �3 D � .

We begin, however, with a weaker recognition theorem for 2-point blowups which
follows quickly from the results of the previous section and from Theorem 4.3.

Proposition 6.2. Let R be an elliptic algebra that satisfies the hypotheses and notation of
Theorem 6.1, with DivLr D r , and in addition assume that

M.��1p C ��1q/ Š OE .�
�1p C ��1q C ��1r/˝3: (6.3)

Then R Š T .��1p C ��1q/, where T is the 3-Veronese of the Sklyanin algebra S.E; �/
for some � 2 AutE with �3 D � .

Proof. All the hypotheses of Lemma 5.5 hold, and we can apply [15, Theorem 1.4] to
successively blow down Lp and Lq to obtain an elliptic algebra T . By [15, Theorems 7.1
and 8.3], R Š T .��1p C ��1q/ is the iterated blowup of T at ��1p and ��1q; thus
T=gT Š B.E;N ; �/ for N D M.��1p C ��1q/. We will show that T is a Sklyanin
elliptic algebra.

Lemma 5.6 shows that if H D .Jr /1T , then H is a g-divisible MCM right ideal of
T with H D

L
n�0H

0.E;Nn.�a � b � c//, where a D r , b D ��1p and c D ��1q.
Moreover, EndT .H/ � T . Thus condition (i) of Notation 3.2 is satisfied.

By Corollary 2.14, the left line modules L_p , L_q , L_r satisfy the same intersection the-
ory asLp;Lq;Lr ; that is, they satisfy the hypotheses from Theorem 6.1 (i) (a)–(c). We can
therefore use the left hand analogue of the first paragraph of this proof to blow down the
left line modules L_p and L_q . By [15, Theorem 8.3], this gives the same ring T . Further,
H_ D TJ_r is a left ideal of T with H_ D

L
n�0H

0.E;Nn.��
�nd � ��ne � ��nf //

for some d; e; f , and EndT .H_/ � T . Thus we also have condition (ii)0 of Notation 3.2.
By Proposition 3.3 (2), M D HomT .H

_; T / satisfies condition (ii).
To compute d; e; f , note that by [15, Lemma 5.4],

.J_r /1 D H
0.E;M.���2r// D H 0.E;N .���2r � ��1p � ��1q//:

So we can take d D ��1r , e D p, and f D q. Thus

OE .�aC b C c/ D OE .� r C �
�1p C ��1q/ Š OE .�

�1r C p C q/ D OE .d C e C f /
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and (4.2) is satisfied. Note that (4.1) follows directly from (6.3). Finally, by [15, The-
orem 9.1], T is an elliptic algebra with qgr-T smooth. Thus all hypotheses of Theorem 4.3
are satisfied. By that theorem we have T Š S .3/, where S D S.E;�/ is a Sklyanin algebra
for some � with �3 D � .

We will now use the intersection theory developed in Section 2 to prove Theorem 6.1;
in other words, we will show that the final condition (6.3) of Proposition 6.2 is superfluous.

For the rest of the section assume that R is a degree 7 elliptic algebra satisfying the
hypotheses of Theorem 6.1. In addition, set X D qgr-R, let B D R=Rg Š B.E;M; �/

and let L D Lr and J D Jr . Let r D DivL. Fix a group law ˚ on E and let � be given
by translating by t 2 E. We will show under these hypotheses that (6.3) is automatic, or,
equivalently, that X

M D 2p ˚ 2q ˚ 3r 	 7t: (6.4)

We will prove this by constructing two different R-submodules of Qgr.R/, which we will
show are isomorphic. Factoring out g will give us (6.4).

To understand our strategy, consider for a moment the projective surface X which is
the blowup of P2 at the points p ¤ q. We use � to denote linear equivalence of divisors
onX . The exceptional linesLp andLq , together with the pullbackH of a line in P2, form
a basis for the divisor group Div.X/. The third .�1/ line on X is the strict transform L

of the line through p and q, and we have L � H � Lp � Lq . Further, the canonical class
K D KX satisfies K � �3H C Lp C Lq � �3L � 2Lp � 2Lq . Thus

OX .2LC Lp C Lq/ Š OX .�L � Lp � Lq �K/: (6.5)

We want to show that R Š T .��1p C ��1q/, so R deforms the anticanonical coordinate
ring of X . The sheaves in (6.5) should therefore deform to give graded R-modules. We
will construct in Lemma 6.7 an R-module Z that corresponds to OX .2L C Lp C Lq/,
and in Lemma 6.9 a module Y corresponding to OX .�L�Lp �Lq/, and then show that
Z Š Y Œ1�.

We note the following easy result.

Lemma 6.6. LetM � R.g/ be reflexive, and let L be a shifted line module. If 0!M !

N
˛
�! L! 0 is a nonsplit extension in Gr-R, then N is Goldie torsionfree and may be

regarded as a submodule of R.g/.

Proof. This is similar to the proof of [15, Lemma 8.2 (1)]. Let Z be the Goldie torsion
submodule of N . Since M is Goldie torsionfree, Z \M D 0 and so ˛ gives an injection
Z ,! L. By definition, N=Z is Goldie torsionfree and there is an exact sequence 0!
M !N=Z! L=˛.Z/! 0, which is necessarily nonsplit. IfZ Š ˛.Z/ is nonzero, then
as L is 2-critical, GKdimL=˛.Z/ � 1. But by [15, Lemma 4.5], Qgr.R/=M is 2-pure, a
contradiction. Thus Z D 0.

Now we obtain that M ! N is an essential extension in Gr-R; else there is a nonzero
submodule P of N such that P \M D 0, so that P is isomorphic to a submodule of
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N=M Š L and so is Goldie torsion, a contradiction. Thus we may regard N as a sub-
module of the graded quotient ring Qgr.R/ of R. Since Qgr.R/=R.g/ is g-torsion, we get
N � R.g/.

Lemma 6.7. Let M be the line extension of L. There are right R-modules M � N �
Z � R.g/ so that N is MCM, N=M Š Lp ˚ Lq , and Z=N Š L.

Proof. We first constructN . By definition of the line extension, we have an exact sequence
of graded modules 0 ! R ! M ! LŒ�1� ! 0. Let y 2 ¹p; qº. By Lemma 2.15,
.Ly �MSR/ D 0. Thus by assumption, Lemma 2.8, and Corollary 2.14, .Ly �MSM/ D

.Ly �MSR/C .Ly �MSL/ D 1. By definition,

.Ly �MSM/ D � dim HomX.Ly ;M/C dim Ext1X.Ly ;M/ � dim Ext2X.Ly ;M/

and so Ext1X.Ly ;M/ ¤ 0. By [15, Lemma 5.6 (3)], M is g-divisible and MCM. By Pro-
position 2.5, Ext1gr-R.Ly ;M/ ¤ 0. Thus there is a nonsplit extension

0!M ! Ny ! Ly ! 0

of graded R-modules, and by Lemma 6.6 we have Ny � R.g/.
By construction, Ny D

L
n�0H

0.E;Mn.�
�1r C y//. Thus

hilbNy=.1 � s/ D .2C 5s/=.1 � s/3 D .1C 5s C s2/=.1 � s/3 C .1C s/=.1 � s/2

D hilbNy ;

and so Ny is g-divisible.
Certainly,M �Np \Nq ; we claim thatNp \Nq DM . We prove this by induction on

degree: to start we have .Np \Nq/�1DM�1D 0. So suppose thatMk D .Np \Nq/k . As
Np andNq are g-divisible, so isNp \Nq : thus .Np \Nq/kC1 \ gR.g/D g.Np \Nq/k D
gMk . Now,

.Np \Nq/kC1 � .Np \Nq/kC1

D H 0.E;MkC1.�
�1r C p// \H 0.E;MkC1.�

�1r C q//

D H 0.E;MkC1.�
�1r//;

where the last equality is because p ¤ q. Thus .Np \Nq/kC1 �M kC1 and as

.Np \Nq/kC1 \ gR.g/ D g.Np \Nq/k D gMk DMkC1 \ gR.g/

we have .Np \Nq/kC1 �MkC1. This proves that Np \Nq DM .
Now let N D Np CNq . We have

hilbN=M D hilbNp C hilbNq � 2 hilbM D hilbLp ˚ Lq :
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There is a surjection Np=M ˚Nq=M Š Lp ˚ Lq� N=M . Comparing Hilbert series,
we get Lp ˚ Lq Š N=M . Note that

N D
M
n�0

H 0.E;Mn.�
�1r C p C q//: (6.8)

From (6.8) it is easy to see that hilbN D hilbN=.1 � t /, so thatN is g-divisible. It is also
clear from (6.8) that N is saturated, so N is MCM by Proposition 2.3.

As before, we have

.L �MSN/ D .L �MSR/C .L �MSL/C .L �MSLp/C .L �MSLq/ D 1

and so Ext1X.L;N / D Ext1gr-R.L;N / ¤ 0, using Proposition 2.5. Thus, as before, there is
a nonsplit extension 0! N ! Z ! L! 0, and by Lemma 6.6, Z � R.g/.

Lemma 6.9. Let J be the line ideal of L. There is a MCM graded right ideal Y of R such
that Y � J with J=Y Š LpŒ�1�˚ LqŒ�1�.

Proof. As we noticed in the proof of Proposition 6.2, the left line modules L_p ; L
_
q ; L

_

have the same intersection theory as the line modulesLp;Lq;Lr . We may therefore prove
a left handed version of Lemma 6.7, to obtain MCM left modules M_ and N_ with
M_=RŠL_Œ�1� andN_=M_ŠL_p ˚L

_
q ; in fact,M_D J �DHomR.J;R/. Applying

HomR.�; R/ to the exact sequence 0! M_ ! N_ ! L_p ˚ L
_
q ! 0 gives an exact

sequence
0! .N_/� ! .M_/� ! .Lp ˚ Lq/Œ�1�! 0;

where we have used that Ext1R.N
_; R/ D 0 as N_ is MCM, and that .L_x /

_ Š Lx by
[15, Lemma 5.6].

Finally, noting that .M_/� D J �� D J , the lemma holds for Y D .N_/�.

Proposition 6.10. LetZ;Y be as constructed in Propositions 6.7 and 6.9. ThenZ Š Y Œ1�
as right R-modules.

Proof. Since hilbR D .1C 5s C s2/=.1 � s/3, we first note that

hilbZ D hilbRC .3C s/=.1 � s/2 D .4C 3s/=.1 � s/3;

and
hilbY D hilbR � .1C 2s/=.1 � s/2 D .4s C 3s2/=.1 � s/3:

Thus hilbZ D hilbY Œ1�.
Now using the construction of Z and Y and Lemma 2.8, we compute:

.Z �MSY Œ1�/ D .R �MSRŒ1�/C ..LŒ�1�˚ L˚ Lp ˚ Lq/ �MSRŒ1�/

� .R �MS.LŒ1�˚ Lp ˚ Lq//

� ..L˚ L˚ Lp ˚ Lq/ �MS.L˚ Lp ˚ Lq//:

Note that we have used Corollary 2.14 (1) to remove the shifts in the final term.
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We next want to compute .R �MSRŒ1�/. By Proposition 2.5, HomX.R; R/ D R for
X D qgr-R and Ext1X.R;R/ D 0. Thus, (2.11) gives

dim Ext2X.R;RŒ1�/ D dim HomX.RŒ1�; RŒ�1�/ D 0

and hence

.R �MSRŒ1�/ D � dim HomX.R;RŒ1�/ � dim Ext2X.R;RŒ1�/ D � dimR1 D �8;

as desired. By Lemma 2.15,

..LŒ�1�˚ L˚ Lp ˚ Lq/ �MSRŒ1�/ D 5 and .R �MS.LŒ1�˚ Lp ˚ Lq// D �4:

Finally, our intersection theory assumptions give

..L˚ L˚ Lp ˚ Lq/ �MS.L˚ Lp ˚ Lq// D 2;

so .Z �MSY Œ1�/ D �8C 5C 4 � 2 D �1. Thus HomX.Z; Y Œ1�/˚ Ext2X.Z; Y Œ1�/ ¤ 0.
By Proposition 2.12 we have dim Ext2X.Z; Y Œ1�/ D dim HomX.Y Œ1�; ZŒ�1�/. The

module Z is certainly saturated (for example, since N and Z=N Š L are) and so
HomX.Y Œ1�; ZŒ�1�/ D dim HomR.Y Œ1�; ZŒ�1�/ by Proposition 2.5 (1). Note that for
all n � 0 we have dimZn�1 < dimZn; this can be seen either by directly computing
the formula for dimZn or by noting that the analogous property holds both for hilbR
and hilbZ=R. Thus dim Y Œ1�n D dimZn > dimZn�1 D dimZŒ�1�n for all n � 0 and
there are no degree 0 injective maps from Y Œ1�! ZŒ�1�. Since Y and Z are both Goldie
rank 1 and torsionfree, all nonzero maps must be injective, so Ext2X.Z; Y Œ1�/ D 0. Thus
HomX.Z; Y Œ1�/ D HomR.Z; Y Œ1�/ ¤ 0, where we have used Proposition 2.5 and that Y
is saturated again.

As above, all nonzero elements of HomR.Z; Y Œ1�/ are injective, but as hilb Z D
hilbY Œ1�, any injective map must be an isomorphism. Thus Z Š Y Œ1� in gr-R.

Proof of Theorem 6.1. We must show that given the hypotheses of Theorem 6.1, condition
(6.4) follows. Let Z; Y be the modules constructed above. By construction,

Z=Zg D
M
n�0

H 0.E;Mn.�
�1r C r C p C q//

and
Y Œ1�=Y Œ1�g D

M
n�0

H 0.E;MnC1.�r � �
�1p � ��1q/�

�1

/:

By Proposition 6.10, M.�r � ��1p � ��1q/�
�1
Š O.��1r C r C p C q/; equivalently,X

M 	 r 	 p 	 q ˚ 6t D 2r ˚ p ˚ q 	 t;

establishing (6.4). Thus by Proposition 6.2, we obtain the result.
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7. Transforming a noncommutative quadric surface to a
noncommutative P 2

Here we will prove Theorem 1.2 from the introduction: if one blows up a point on a
smooth noncommutative quadric and then blows down two lines of self-intersection .�1/,
one obtains a noncommutative P2. As was discussed in the introduction, this is a non-
commutative version of the standard commutative result (1.1). In this section, we will
also assume that char k D 0. This is simply because [20] and [18, Section 10] make that
assumption; we conjecture that our results hold in arbitrary characteristic.

For the reader’s convenience we recall the definition of the Van den Bergh quadrics.

Example 7.1. Let A denote a 4-dimensional Sklyanin algebra; thus A is the k-algebra
with 4 generators x0; : : : ; x3 and 6 relations

x0xi � xix0 D ˛i .xiC1xiC2 C xiC2xiC1/; x0xi C xix0 D xiC1xiC2 � xiC2xiC1;

where i 2 ¹1; 2; 3º mod 3 and the ˛i satisfy ˛1˛2˛3 C ˛1 C ˛2 C ˛3 D 0 and ¹˛iº \
¹0;˙1º D ;. The ring A has a two-dimensional space of central homogeneous elements
V � A2. The factor A =A V Š B.E;A; ˛/, where E is an elliptic curve, with a line
bundle A of degree 4, and ˛ is an automorphism. We always assume that j˛j D 1. Fix
an arbitrary group law ˚ on E. The automorphism ˛ is then translation by a point in E,
which will be denoted by a.

Given 0 6D � 2 V , the Van den Bergh quadric is QVdB DQVdB.�/ D A =A�. Then
qgr-QVdB.�/ is smooth for generic�, with a precise description of the smooth cases given
by [18, Theorem 10.2]. We always assume below that� is chosen so that qgr-QVdB.�/ is
smooth. As was discussed in Remark 1.7 and is stated explicitly in Corollary 7.4 below,
this implies the birationality result for arbitrary quadrics.

Let A D A =A� as above. Fix a basis element g 2 A2 for the image of Z.A/2 in A2.
As usual, we write x for the image of x 2 A under the map A 7! A=gA D B.E;A; ˛/.
Note that T 0 WD A.2/ is an elliptic algebra, called a quadric elliptic surface. Moreover,
qgr-T 0 ' qgr-A is again smooth and T 0=gT 0 Š B.E;A; ˛/.2/ Š B.E;P ; �/, where P D

A˝A˛ and � D ˛2.

Basic Facts 7.2. We recall some facts about ADQVdB, mostly drawn from [18]. Identify
A1DA1DH 0.E;A/. Given an effective divisorD onE, set V.D/DH 0.E;A.�D//�

A1 D A1. For any point p 2 E, A=V.p/A is a point module for A. These are usually the
only point modules for A, although for a discrete family of � there will exist one extra
point module. These extra modules are described, for example, in [16, Lemma 6.6] and
will play no further rôle in the present discussion. An analogous result holds on the left,
and V.p/A1 D ¹x 2 A2 j x 2 H 0.E;A2.�p//º D A1V.˛p/ (use [15, Remark 3.2]).

Similarly, let L be a line module over A. Then there are points p; t on E so that
L D A =V.p C t /A; and any two points p; t 2 E give a line module (see [18, (10.3)]).
There are two points z; z0 2 E so that p ˚ t 2 ¹z; z0º , � 2 V.p C t /A (this is proved
for left line modules in [18, (10.3)], but by [15, Remark 3.2], again, the same result holds
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for right line modules). Thus for fixed �, t , there are two points p; q 2 E so that y 2
¹p; qº ” � 2 V.y C t /A. By [18, Theorem 10.2], p ¤ q ” z ¤ z0 ” qgr-A
has finite homological dimension; thus this will always be the case under our assumption
on �. If � 2 V.y C t /A then A=V.y C t /A Š A =V.y C t /A is also a line module
over A. In particular,

if y 2 ¹p; qº, then A=V.y C t /A is a line module,

and we write Iy D V.yC t /A for the corresponding line ideal ofA. Using [18, (10.3)] and
[15, Remark 3.2], one can even describe q in terms of p, which we leave to the interested
reader.

The rest of this section is devoted to the proof of the following theorem.

Theorem 7.3. Assume that char k D 0 and let T 0 DQ.2/ for a Van den Bergh quadricQ
such that qgr-Q is smooth. Keep the notation, and in particular the point t 2 E (which
determines ¹p; qº � E) from Basic Facts 7.2.

Then there exists � 2 Autk.E/ with �3 D � so that T 0.t/ Š T .��1p C ��1q/, where
T Š S .3/ is the 3-Veronese of the Sklyanin algebra S D S.E; �/.

As was noted in Corollary 1.8, this theorem can also be applied to quadrics Q for
which qgr-Q is not smooth. More precisely, combining the theorem with the discussion
from Remark 1.7 gives the following corollary.

Corollary 7.4. Any Van den Bergh quadric Q defined over a field of characteristic zero
is birational to a Sklyanin algebra.

We will prove Theorem 7.3 by appealing to Theorem 6.1, so the proof will be through
a series of lemmata to show that R D T 0.t/ satisfies the hypotheses of that result. We note
thatR1 D V.t/A1, since point ideals of A are generated in degree 1. To match the notation
of Theorem 6.1, let M D P .�t /, so R D B.E;M; �/.

We first construct the three lines on R. Two of the lines are induced from the two
rulings on A. For y 2 ¹p; qº, let Ky D .Iy/.2/ D V.y C t /A1T 0.

Lemma 7.5. Let y 2 ¹p; qº and let Jy WD .Ky/1R, for R D T 0.t/. Then Jy is a line ideal
of R.

Proof. The proof is similar to the proof of [12, Theorem 5.2]. We consider Jy D
V.y C t /A1T

0.t/ as a subspace of A.2/ which depends on t , and still write R D T 0.t/.
(Note that since we always have y ˚ t 2 ¹z; z0º, therefore y also varies with t .) By [12,
Lemma 3.1],

Jy D V.y C t /A1R D
M
n�0

H 0.E;Mn.�y// (7.6)

is a point ideal of R, and so

hilbJy � hilbR � 1=.1 � s/2 D hilbT 0 � s=.1 � s/3 � 1=.1 � s/2;

with equality if and only if Jy is g-divisible.
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Suppose now that y ¤ ��j t for any j � 0, that is, 2t 62 ¹�j z; �j z0 j j 2 Zº. Let
K D Ky and let J D Jy D K1R. We claim for all n � 0 that, first, Kn \ Rn D Jn, and,
second, this has codimension nC 1 in Rn. Both are trivial for n D 0; 1. So assume it is
true for n. Note that K is g-divisible (since T 0=K is g-torsionfree), as is R. By induction,
then, we have K \RnC1 \ gT 0 D gK \ gRn D gJn. By induction, this is codimension
nC 1 in gRn.

Working modulo g, we have

H 0.E;MnC1.�y// D KnC1 \RnC1 � KnC1 \RnC1 � JnC1 D H
0.E;MnC1.�y//:

Thus all are equal, and this vector space clearly has codimension 1 in RnC1. Since J �
K \R, the claim is proved.

Thus for fixed n � 1, we have dim.Jy/n D dimT 0n �
�
nC1
2

�
� .nC 1/ for a dense set

of t 2 E. By lower semi-continuity, hilbJy � hilbT 0 � s=.1 � s/3 � 1=.1 � s/2 for all
t 2 E. Combined with the first paragraph, this proves the lemma.

We thus obtain two line modules Ly WD R=Jy for y 2 ¹p; qº for R coming from
the two rulings on A. Since (7.6), respectively Basic Facts 7.2, implies that DivLy D y,
respectively z ¤ z0, hypothesis (2) of Theorem 6.1 holds.

Let r D �.t/. The third line module comes from the blowup R D T 0.t/ � T 0. By con-
struction this produces an exceptional line module L D Lr such that .R C T 01R/=R Š
LŒ�1� and .R C RT 01/=R Š L

_Œ�1�, where the divisor of Lr is r , as the notation sug-
gests. See [15, Theorems 8.3 and 8.6] for the details. Write Lr D R=Jr . Then Jr D
.R C RT 01/

� WD HomR.R C RT
0
1; R/ by [15, Lemma 5.6]. For future reference we note

that [15, Lemma 5.6] also implies that J � D R C RT 01. The line ideal Jr also has the
following explicit description.

Lemma 7.7. The equation Jr D V.r/V .˛�1r/R holds.

Proof. Certainly,

T 01V.r/V .˛
�1r/R D A1A1V.r/V .˛

�1r/ D V.˛�2r/A1V.˛
�2r/A1R

D V.t/A1V.t/A1R � R:

Thus V.r/V .˛�1r/R � Jr . On the other hand,

V.r/V .˛�1r/R D
M
n�1

H 0.E;Mn.�˛
�2.r///;

which has Hilbert series hilbR� 1=.1� t /. Thus hilbV.r/V .˛�1r/R � hilb�1=.1 � t /2.
Since Jr is a line ideal, we conclude that Jr D V.r/V .˛�1r/R as claimed.

Lemma 7.8. The category qgr-R is smooth and .Lr �MSLr / D �1.
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Proof. Set J D Jr ; thus J � D RCRT 01 from the discussion above. Hence

JJ � � J1T
0
1 D V.r/A1V.r/A1 D T

0.r/2:

Recall that N ı D NŒg�1�0 for an R-module N . Thus J ı.J �/ı D T 0.r/ı. Thus J ı is
projective by the Dual Basis Lemma. By [15, Theorem 8.6], EndR.J / D T 0.r/ and so
.Lr �MSLr / D �1 follows from [15, Theorem 7.1]. By our choice of �, qgr-A ' qgr-T 0

has finite homological dimension. As pdimLır D 1, it follows that qgr-R is smooth by
[15, Theorem 9.1].

The next result verifies hypothesis (1) (c) of Theorem 6.1.

Lemma 7.9. Let y 2 ¹p; qº. Then .Lr �MSLy/ D 1 and HomR.Jr ; Jy/ � hilbR � 1Cs
1�s

.

Proof. First, note that .Jy/1T 0 D Ky is g-divisible, while .Jr /1T
0 � .Jr /1T

0
1T
0 D

T 0.r/2T
0 � g2T 0 (as calculated in Lemma 7.8) and so .Jr /1T 0 is not. Thus Jr ¤ Jy

and so Lr 6Š Ly . By Lemma 5.1, Ext1R.Lr ; Jy/ � si=.1 � s/2 for i 2 ¹0; 1; 2º, where
i 6D 0 since Jr ¤ Jy .

Let zJy be the right ideal of T 0 given by applying Lemma 5.1 to blow down Jy at Lr .
By that lemma,

zJy D HomR.Jr ; Jy/R � HomR.Jr ; R/R D T
0:

(For the final equality, see [15, Lemma 8.2].) If i D 1, then from Lemma 5.1, T 0= zJy �
1=.1 � s/2 � R=Jy . As T 0 has no left line modules by [16, Lemma 6.14], this is impos-
sible. So i D 2.

Now as we saw in the proof of Lemma 5.1, i D 2 implies that

s2=.1 � s/2 � Ext1R.Lr ; Jy/ � hilbHom.Jr ; Jy/=Jy
D hilbHom.Jr ; Jy/ � .hilbR � 1=.1 � s/2/

since Jy is a line ideal in R. Thus hilbHom.Jr ; Jy/ D hilbR � .1C s/=.1 � s/. Since
qgr-R is smooth and .Lr �MSLr / D �1 by Lemma 7.8, it therefore follows from [15,
Remark 7.2 and Theorem 7.6] that .Lr �MSLy/ D 1.

Corollary 7.10. Let y 2 ¹p; qº. Then HomR.Jy ; Lr / � s
�1=.1 � s/2.

Proof. By Corollary 2.14 and Lemma 7.9, .Ly �MSLr /D 1. Now use Lemma 7.8 combined
with [15, Remark 7.2 and Theorem 7.6].

Together with Lemma 7.8, the next result verifies hypothesis (1) (a) of Theorem 6.1.

Lemma 7.11. Let y 2 ¹p; qº. Then .Ly �MSLy/ D �1.
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Proof. By [15, Theorem 7.1] and Lemma 7.8, it suffices to show that hilb EndR.Jy/ �
hilbR. We saw in the proof of Lemma 7.9 that Ext1R.Lr ; Jy/ � s

2=.1 � s/2. Recall that
Ky D .Iy/

.2/, so that Ky is generated in degree 1 as a right ideal of T 0. By Lemma 7.5,
.Jy/1 D .Ky/1 and Jy D .Jy/1R. Then applying Lemma 5.1 to blow down Jy along Lr ,
we obtain zJy D .Jy/1T

0 D Ky , since i D 2. By [15, Lemma 8.2 (2) (4)], Ky=Jy ŠL
i�2Lr Œ�i � and Ext1R.Lr ; Ky/ D 0.
As Ky=Jy is Goldie torsion we have the exact sequence

0! EndR.Ky/! HomR.Jy ; Ky/!
M
i�2

Ext1R.Lr Œ�i �; Ky/; (7.12)

and the final term in (7.12) is zero by the above paragraph. Thus HomR.Jy ; Ky/ D

EndR.Ky/ D EndT 0.Ky/. This is the 2-Veronese of EndA.Iy/, and it follows from [20]
(see [16, Lemma 5.7] for the explicit statement) that EndT 0.Ky/ is the TCR of a degree 8
line bundle on E and that EndT 0.Ky/ � T 0. In particular, dimk EndT 0.Ky/1 D 9.

We also have the exact sequence

0! EndR.Jy/! HomR.Jy ; Ky/!
M
i�2

HomR.Jy ; Lr Œ�i �/: (7.13)

By Corollary 7.10, hilb
L
i�2 HomR.Jy ; LŒ�i �/ D s=.1 � s/

3, and so (7.13) induces an
exact sequence

0! EndR.Jy/1 ! EndR.Ky/1 ! k:

Consequently, dimk EndR.Jy/1 is 8 or 9. On the other hand, by (7.6), EndB.Jy/ D
B.E;M.�y C ��1.y//; �/, and so

dimk EndR.Jy/1 � 1C dimk EndB.Jy/1 D 8:

Thus dimk EndR.Jy/1 D 8 and so .EndR.Jy//1 D EndB.Jy/1. Since EndB.Jy/ is
a TCR, it follows that EndR.Jy/ D EndB.Jy/. Finally, as EndR.Jy/ is g-divisible and
hilbEndR.Jy/ D hilbR, it follows that hilbEndR.Jy/ � hilbR, as required.

The next result proves hypothesis (1) (b) of Theorem 6.1.

Lemma 7.14. Let y ¤ x 2 ¹p; qº. Then .Ly �MSLx/ D 0.

Proof. By [15, Lemma 7.4], .Ly �MSLx/ 2 ¹0; 1º. By [15, Theorem 7.7], .Ly �MSLx/ D 0

” hilbHomR.Jy ; Jx/D hR �
1
1�s

. Similarly, as Lx 6Š Ly , [15, Theorem 7.6] implies
that .Ly �MSLx/D 1 ” hilbHomR.Jy ; Jx/D hR �

1Cs
1�s

. Thus it suffices to prove that
dimk HomR.Jy ; Jx/1 � dimR1 � 1 D 7. But

V.x C s/V .˛�1s/.K�y /0.Jy/1 � V.x C s/V .˛
�1s/T 01 D V.x C s/A1V.s/A1 D .Jx/2;

and so HomR.Jy ; Jx/1 � V.x C s/V .˛
�1s/.K�y /0. By the discussion after [16, (6.13)],

dim.K�y /0 D 2. Since V.x C s/V .˛�1s/.K�y /0 is a product of spaces of global sections,
it is therefore easy to compute that its dimension is 2C 3C 2D 7. The result follows.



Ring-theoretic blowing down II: Birational transformations 1085

Proof of Theorem 7.3. We have proved that R satisfies all of the hypotheses of Theo-
rem 6.1, from which Theorem 7.3 follows.

8. A converse result

In this short section, we prove Proposition 1.5 from the introduction, thereby giving the
converse to Theorem 1.4.

We will need some preliminary results. The following result gives a method for prov-
ing that a right ideal is a line ideal, without explicitly calculating its Hilbert series.

Lemma 8.1. Let R be an elliptic algebra. Suppose that I � R is a right ideal and that
I is a point ideal in B D R=gR. If I � 6D R, then I is a line ideal. In particular, I is
g-divisible.

Proof. We first show that I is g-divisible. So, let JD QID¹x 2R j xgn 2 I for some n� 1º
be the g-divisible hull of I and suppose that I ¤ J . We first claim that J ¥ I . Indeed, pick
a homogeneous element a 2 J X I of minimal degree. If J D I , then a D b C gc, where
b 2 I with degb� dega. Since gc 2 J and J is g-divisible, c 2 J . The minimality of dega
implies that c 2 I and hence a 2 I , giving the required contradiction. Hence J ¥ I . As I
is a point ideal, R=I is 1-critical and so R=J is finite-dimensional. As gR \ J D gJ , it
follows that GKdimR=J � 1. SinceR is CM (see Notation 2.1), this implies that J �DR.

As I � 6D R, we may pick a homogeneous element x 2Qgr.R/XR such that xI � R.
As J is finitely generated, gmJ � I and hence xgmJ �R for somem� 1. Since J �DR,
we conclude that xgm 2R. Thus x D yg�r for some y 2R and r � 1, where we may also
assume that y 62 gR. However, this implies that yI D grxI � grR � gR. Since y 62 gR
and gR is a completely prime ideal, it follows that I � gR, contradicting the fact that
I 6D 0. This proves that I is indeed g-divisible.

Finally, as gI D gR \ I and hilb R=I D .1 � s/�1 it follows that hilb R=I D
.1 � s/�2, as required.

Let S D S.E; �/ be a Sklyanin algebra, where j� j D 1, and write

S=.g/ D B.E;L; �/ DW B

for some degree 3 invertible sheaf L on E.

Definition 8.2. Let X � Sm be a subspace. We say that X is defined by vanishing con-
ditions on E if X D H 0.E;Lm.�p1 � � � � � pn// for some p1; : : : ; pn 2 E, and X �
gSm�3. Note that if X is defined by vanishing conditions on E, where n < deg Lm, then
dimkX is immediately determined to be dimk Sm � n D

�
mC2
2

�
� n.

For a; b1; : : : ; bn 2 E write

W.a/ D H 0.E;L.�a// � S1

and
V.b1 C � � � C bn/ D H

0.E;L2.�b1 � � � � � bn// � S2:
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Recall from [12, Lemma 4.1] that S1W.a/DW.��1a/S1, a fact that will be used without
further comment. Similarly, we will use [12, Lemma 3.1] to compute products in B
without comment.

We next investigate products of the spaces above and when they are defined by van-
ishing conditions. We say a; b; c 2 E are collinear if there is an x 2 S1 that vanishes at
a; b; c; equivalently, if L Š OE .aC b C c/.

Lemma 8.3. Let a; b; c 2 E.

(1) If c ¤ ��2b, then W.b/W.c/ and W.b/W.c/S1 are defined by vanishing con-
ditions on E; in particular, W.b/W.c/ D V.b C ��1c/, dimW.b/W.c/ D 4,
and dim W.b/W.c/S1 D 8. On the other hand, dim W.b/W.��2b/ D 3 and
dimW.b/W.��2b/S1 D 7.

(2) V.b C c/S1 D S1V.�b C �c/, and this space is defined by vanishing conditions
on E. Moreover, V.a C b C c/S1 is defined by vanishing conditions on E if and
only if a; b; c are not collinear, while S1V.a C b C c/ is defined by vanishing
conditions on E if and only if �a, �b, �c are not collinear.

(3) W.a/V.b C c/ is defined by vanishing conditions on E if and only if ��2a 62
¹b; cº; otherwise dimW.a/V.b C c/ D 6. Similarly V.aC b/W.c/ is defined by
vanishing conditions on E if and only if �c 62 ¹a; bº, else dimV.aC b/W.c/D 6.

Proof. .1/ The dimensions of these spaces are given in [12, Lemmata 4.1 and 4.6] while,
from the proof of [12, Lemma 4.1], W.b/W.c/ is defined by vanishing conditions. The
other claims follow easily.

.2/ The first sentence follows from (1) once one notes that at least one of V.b C c/ D
W.b/W.�c/ or V.b C c/ D W.c/W.�b/ must hold.

For the second sentence, we prove the first claim, as the other follows symmetrically.
If a;b; c are collinear then V.aC bC c/D xS1 for some x 2 S1. Thus V.aC bC c/S1D
xS2 and dimV.aC b C c/S1 D 6; in particular, this space is not equal to ¹x 2 S3 j x 2
H 0.E;L3.�a � b � c//º which has dimension 7.

It therefore suffices to prove that dimV.aC b C c/S1 D 7 if a; b; c are not collinear.
Indeed, since dimV.aC b C c/S1 D 6, it is enough to show that g 2 V.aC b C c/S1.

Let V D V.a C b C c/ and let d 2 E X ¹��1a; ��1b; ��1cº. We claim that g 2
V W.d/. To see this, write W.d/ D kx C ky where wy C xz D 0 and ¹w; xº is a basis
of W.�2d/. Then Vy \ Vz D Ywy where

Y D ¹r 2 S1 j rW.�
2d/ � V º:

Since �d 62 ¹a; b; cº, clearly Y D W.a/\W.b/\W.c/ D 0, since a; b; c are not collin-
ear. Thus dim V W.d/ D 6. As V W.d/ D H 0.E;L3.�a � b � c � �

�2d//, which has
dimension 5, we have g 2 V W.d/ � VS1, as required.

.3/ By symmetry it suffices to determine dimW.a/V.b C c/, for which we follow
the proof of [12, Lemma 4.6]. Let ¹w; xº be a basis of W.a/ and let ¹y; zº be a basis of
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W.��2a/ so that wy C xz D 0. Then wS \ xS D wyS D xzS and so

wV.b C c/ \ xV.b C c/ D wyY for Y D ¹r 2 S1 j W.��2a/r � V.b C c/º:

If ��2a 2 ¹b; cº then without loss of generality b D ��2a and Y D W.�c/. In this case

dimW.a/V.b C c/ D 2 dimV.b C c/ � dimY D 6:

Otherwise, dimY D 1 and dimW.a/V.b C c/ D 7.

We can now prove the converse to Theorem 1.4.

Proposition 8.4. Let T be a Sklyanin elliptic algebra with associated elliptic curve E,
and let p ¤ q 2 E. Then R WD T .p C q/ satisfies the hypotheses of Theorem 1.4.

Proof. Certainly, R is a degree 7 elliptic algebra. We now change our earlier notation and
write Lp for the exceptional line module obtained from writing R as the blowup at p
of T .q/, with line ideal Jp . This differs from the notation in the earlier sections since now,
by [12, Lemma 9.1], DivLp D �.p/.

Define Lq D R=Jq analogously. Write T D S .3/ where S is a Sklyanin algebra with
S=.g/ D B.E;L; �/. Let �3 D � and write T=.g/ D B.E;M; �/. By our standing con-
ventions on elliptic algebras, � and hence also � have infinite order.

Let x 2 S1 generateH 0.E;L.�p � q// and let Ix D xS2R�R. It is easy to calculate
that Ix is a point ideal in B , associated to the third point of E where x vanishes. We claim
that Ix is a line ideal in R. To see this, define U D V.p C q/V .��1p C ��1q/ � S4 and
note that

US2 D V.p C q/V .�
�1p C ��1q/S2 D V.p C q/S1V.p C q/S1 D R2;

by Lemma 8.3 (2). Then .Ux�1/.Ix/1DUx�1xS2DUS2 �R. Moreover, ifUx�1 �R1
were to hold, then U � R1x, which is not true by looking at the images in S=.g/. Thus
we can choose y 2 Ux�1 X R such that yIx � R. By Lemma 8.1, Ix is a line ideal, as
claimed. Write Ix D Jr , with Lr D R=Jr for the corresponding line module Lr , where
r D Div.Lr / 2 E.

By [5, Proposition 4.5.3], gldimRı <1 and so by [15, Lemma 6.8], qgr-R is smooth.
We have .Jp/1 D ¹z 2 R1 j T .q/1z � Rº since T .q/1R=R Š LpŒ�1� by [15, The-
orem 8.3]. Since

W.q/S2W.�p/V.�p C �q/ D W.q/W.�p/S1V.p C q/S1 � R2;

we have W.�p/V.�p C �q/ � .Jp/1. However, from Lemma 8.3 (3) we see

dimW.�p/V.�p C �q/ D dim.Jp/1;

so
Jp D W.�p/V.�p C �q/R: (8.5)
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From this and Lemma 8.3 (2) we get

.Jp/1T1 D W.�p/V.�p C �q/T1 D W.�p/S2V.�p C �q/S1 3 g
2:

It follows that GKdimT T=JpT D 1, and so the T -module double dual .JpT /�� D T , by
the CM condition on T (see Notation 2.1). On the other hand, .JrT /�� D .xS2T /�� D
xS2T . Therefore

HomR.Jp; Jr / � HomT .JpT; JrT /

� HomT ..JpT /
��; .JrT /

��/ D HomT .T; xS2T / D xS2T:

Consequently, HomR.Jp; Jr /1 D xS2 D .Jr /1 and by Lemma 5.3 and Corollary 2.14,
.Lr �MSLp/ D 1. Likewise, .Lr �MSLq/ D 1.

Let X D W.�q/W.�q/S1. Then

W.p/S2X D W.p/W.�q/S1W.q/S2 � R1W.q/S2:

From the discussion before Lemma 7.7, J �p D RT.q/1 C R and J �q D RT.p/1 C R.
Therefore, X � HomR.J

�
q ; J

�
p /1 D HomR.Jp; Jq/1. As dimX D 7 by Lemma 8.3 (1), it

follows from Lemma 5.3 that .Lp �MSLq/ D 0.
Since qgr-R is smooth, [15, Proposition 1.3 (2)] implies that

.Lp �MSLp/ D .Lq �MSLq/ D �1:

It is easy to calculate that EndR.Jr /D xT .��2pC ��2q/x�1, which has the same Hilbert
series as R, and so .Lr �MSLr / D �1, by [15, Theorem 7.1].

9. The noncommutative Cremona transform

In this section, we use Theorem 1.4 to give a noncommutative version of the classical
Cremona transform. Recall that if X is the blowup of P2 at three non-collinear points
a; b; c, then X contains a hexagon of .�1/ lines, given by the three exceptional lines and
the strict transforms of the lines through two of a; b; c; further, blowing down the strict
transforms of the lines gives a birational map from P2Ü P2. The next theorem is our
version of this construction.

Theorem 9.1. Let T D S .3/ be a Sklyanin elliptic algebra with associated elliptic curve
E D E.T /. Let p; q; r 2 E be distinct points such that �p, �q, �r are not collinear
in P .S�1 /. Set R D T .p C q C r/. Then qgr-R is smooth, and there is a subring T 0 Š T
of T.g/ such that R D T 0.p1; q1; r1/ for points p1; q1; r1 2 E.

Assume that �x, �y, �z are not collinear in P .S�1 /, for any x; y; z 2 ¹p; q; rº, includ-
ing possible repetitions. Then the 6 points ¹p; q; r; p1; q1; r1º are pairwise distinct.
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Lp'

Lp

Lq Lr

Lq'
Lr'

Figure 2. The lines on qgr-R.

Remark 9.2. As will be apparent from the proof, R contains a hexagon of lines of self-
intersection .�1/, as described in Figure 2. Then T 0 is obtained by blowing down the three
lines in R that are not exceptional for the first blowup.

The proof of this theorem will be through a series of subsidiary results that will take the
whole section. The strategy is to first show that R has six line modules of self-intersection
.�1/, each of which can be contracted. After constructing these line modules over R
and computing their intersection theory (see Figure 2), we then contract one of these
lines to give an overring yR of R. We then compute the intersection theory of yR (see
Proposition 9.10) and show that yR satisfies the hypotheses of Theorem 1.4. Thus, by that
result, we can then contract two further line modules to give a ring isomorphic to T .

As usual, write S=.g/ D B.E;L; �/, and T=.g/ D B.E;M; �/ where M D L3 WD

L˝ ��L˝ �2�L and � D �3. Fix a group law˚ onE so that three collinear points sum
to zero and define p0 WD 	 q 	 r , q0 WD 	 p	 r , and r 0 WD 	 p	 q. We continue to use
the notations W.a/ and V.aC b/ from Definition 8.2.

We first construct the six lines on R. Let Lp be the exceptional line module obtained
by writing R as the blowup of T .q C r/ at p, with line ideal Jp . Likewise, construct
Lq D R=Jq and Lr D R=Jr .

Lemma 9.3. Let x 2 S1 define the line through q; r and define Jp0 D xW.�p/S1R. Then
Lp0 WD R=Jp0 is a line module with divisor p0 D DivLp0 .

Proof. It is easy to check by using [12, Lemma 3.1] that Jp0 is a point ideal in R. Let

U D V.p C q C r/V .��1q C ��1r/ � S4:

Then using Lemma 8.3 (2) we have

Ux�1.Jp0/1 D V.p C q C r/V .�
�1q C ��1r/W.�p/S1

D V.p C q C r/S1V.q C r/W.�
2p/ � R2:

If Ux�1 � R, then U � Rx, which is not true by considering the images in S . Thus
J �p0 ¥ R and so Jp0 is a line ideal by Lemma 8.1. Since p0˚ q˚ r D 0, clearly x vanishes
at these three points and so p0 D DivLp0 as Jp0 is the point ideal of p0.
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Likewise, we construct Lq0 , with divisor q0, and Lr 0 , with divisor r 0. We caution the
reader that, by [12, Lemma 9.1], DivLp D �.p/ and similarly forLq andLr . On the other
hand, DivLp0 D p0 and similarly for Lq0 and Lr 0 .

Lemma 9.4. The six lines Lp , Lq , Lr , Lp0 , Lq0 , Lr 0 all have self-intersection .�1/.

Proof. ForLp ,Lq , andLr this follows from [15, Theorem 1.4]. We give the proof forLp0 .
By [15, Theorem 7.1], it is enough to show that hilb EndR.Jp0/ D hilbR, and for this it
suffices to prove that dim EndR.Jp0/1 � dimR1.

Using Lemma 8.3 and the fact that dimT .�p C ��2q C ��2r/1 D 7, we calculate

.xT .�p C ��2q C ��2r/1x
�1/ � .xW.�p/S1/

D xT .�p C ��2q C ��2r/1W.�p/S1

D xW.�p/V.��1q C ��1r/W.�p/S1 � xW.�p/T .�
�1p C ��1q C ��1r/1S1

D xW.�p/S1T .p C q C r/1 D .xW.�p/S1/R1:

Thus xT .�p C ��2q C ��2r/1x�1 � EndR.Jp0/1 and dim EndR.Jp0/1 � dim T .�p C

��2q C ��2r/1 D dimR1, as required.

Since by hypothesis �p, �q, �r are not collinear, it follows from Lemma 8.3 (2) that
V.�p C �q C �r/S1 is defined by vanishing conditions on E, in the sense of Defini-
tion 8.2. We now give explicit generators of Jp , Jq , and Jr . It suffices to do this for Jp .

Lemma 9.5. We have the identities

.Jp/1 D W.�p/V.�p C �q C �r/ and Jp D W.�p/V.�p C �q C �r/R:

Proof. Let C D W.�p/V.�p C �q C �r/ � R1. By the discussion before Lemma 7.7,
HomR.Jp;R/ DW J

�
p D RV.q C r/S1 CR. Note that R1 � V.q C r/S1 and so .J �p /1 D

V.q C r/S1. Thus

.J �p /1C D V.q C r/W.�
2p/S1V.�p C �q C �r/:

As R1 is defined by vanishing conditions on E, both V.q C r/W.�2p/ and S1V.�p C
�q C �r/ are contained in R1, and so .J �p /1C � R2 and C � .Jp/1. Since dim C �

dimC D 5 D dim.Jp/1, we see that C D .Jp/1. The fact that Jp D .Jp/1R follows from
[15, Lemma 5.6 (2)].

Lemma 9.6. The category qgr-R is smooth.

Proof. Using the fact that �p, �q, �r are not collinear, we compute

.JpJ
�
p /2 � W.�p/V.�p C �q C �r/V .q C r/S1 (by Lemma 9.5)

D W.�p/V.�p C �q C �r/S1V.�q C �r/ (by Lemma 8.3 (2))

� W.�p/gV.�q C �r/ (by Lemma 8.3 (2))

3 g2 (by Lemma 8.3 (3),

using that p 62 ¹q; rº):
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Therefore, by the Dual Basis Lemma, J ıp is projective. Since q ¤ r , qgr-T .q C r/ is
smooth by [5, Proposition 4.5.3] and so by [15, Theorem 9.1] qgr-R is smooth as well.

Lemma 9.7. We have the identities

(1) .Lp �MSLq/ D .Lp �MSLr / D .Lq �MSLr / D 0.

(2) HomR.Jp; Jq/1 D W.�q/V .�q C �r/.

Proof. (1) We compute .Lp �MSLq/. By Lemma 8.3 (3), dimW.�q/V .�q C �r/ D 6 D

dimR1 � 1, therefore, by Lemma 5.3, it suffices to prove that W.�q/V .�q C �r/ �
HomR.Jp; Jq/1. We compute

W.�q/V .�q C �r/.Jp/1

D W.�q/V .�q C �r/W.�p/V .�p C �q C �r/ (by Lemma 9.5)

� W.�q/V .�p C �q C �r/S1V.�p C �q C �r/

� .Jq/1R1 D .Jq/2 (by Lemma 9.5):

(2) This follows from the proof of part (1), combined with Lemma 5.3.

Lemma 9.8. We have

(1) .Lp �MSLp0/ D .Lq �MSLq0/ D .Lr �MSLr 0/ D 0.

(2) Moreover, HomR.Jp; Jp0/1 D xS2.

(3) Similarly, .Lp0 �MSLq0/ D .Lp0 �MSLr 0/ D .Lq0 �MSLr 0/ D 0.

Proof. (1), (2) We compute .Lp �MSLp0/. Recall that x 2 S1 defines the line through q; r;p0

and that Jp0 D xW.�p/S1R. Since .J �p /1 � T1, the calculation in the proof of Lemma 9.6
shows that g22JpT1. Thus GKdimT=JpT �1 and so, by [15, Lemma 4.5 (1)], .JpT /� WD
HomT .JpT; T / D T . Hence

HomR.Jp; Jp0/ � HomT .JpT; Jp0T / � HomT ..JpT /
��; .Jp0T /

��/

� HomT .T; xS2T / D xS2T:

SinceR1 is defined by vanishing conditions onE, Lemmata 9.3 and 8.3 (2) imply that

xS2.Jp/1 D xS2W.�p/V.�p C �q C �r/ D .xW.�p/S1/.S1V.�p C �q C �r//

� .Jp0/1R1:

Thus xS2 � HomR.Jp; Jp0/1 and hence HomR.Jp; Jp0/1 D xS2. By Lemma 5.3, it fol-
lows that .Lp �MSLp0/ D 0.

(3) We show that .Lp0 �MSLq0/ D 0. As in part (1), Jp0 D xW.�p/S1R while Jq0 D
yW.�q/S1R, where y defines the line through p; q0; r . By Lemmata 5.3 and 8.3 (3) it is
enough to show that

yW.�q/V .��1q C ��1r/x�1 � HomR.Jp0 ; Jq0/1:
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This follows from a familiar computation,�
yW.�q/V .��1q C ��1r/x�1

�
.xW.�p/S1/

D yW.�q/S1.V .q C r/W.�
2p// � yW.�q/S1R1 D .Jq0/2;

as required.

The final piece of intersection theory needed is to determine the lines that intersect
with multiplicity 1.

Lemma 9.9. If a ¤ b 2 ¹p; q; rº, then .La0 �MSLb/ D 1.

Proof. Without loss of generality, we compute .Lp0 �MSLq/. Write zR D T .q C r/, which
is the blowdown of R at Lp . By Lemmata 9.7 and 9.8 (1), .Lp �MSLq/D 0D .Lp �MSLp0/.
Thus by Lemma 5.5 (1), we may blow down the line ideals Jq and Jp0 at Lp , to obtain
line ideals zJq and zJp0 in zR such that the line modules zLq D zR= zJq and zLp0 D zR= zJp0 again
have self-intersection .�1/.

By Lemmata 5.1 (3) and 9.7 (2), zJq D HomR.Jp; Jq/1 zR D W.�q/V .�q C �r/ zR.
Note that by (8.5), zLq is the exceptional line module that comes from writing zR as the
blowup of T .r/ at q. Likewise, by Lemmata 5.1 (2) and 9.8 (2), zJp0DHomR.Jp; Jp0/1 zRD

xS2 zR. Thus zLp0 is the line module denoted by Lr in the proof of Proposition 8.4.
Finally, Proposition 8.4 shows that .zLp0 �MS zLq/ D 1 and so .Lp0 �MSLq/ D 1 by Pro-

position 9.10 below.

We can now almost complete the proof of Theorem 9.1, modulo proving one final
result.

Proof of Theorem 9.1. Lemmata 9.7, 9.8, 9.4, and 9.9 together establish that R has a
hexagon of .�1/ lines with the intersection theory indicated in Figure 2. We will use
these computations without further comment.

Since .Lp0 �MSLp0/ D �1 we may, by [15, Theorem 8.3], blow down Lp0 to obtain an
overring yR of R so that R D yR.��1.p0//. By that result, yR is a degree 7 elliptic algebra
while, by [15, Theorem 9.1], qgr- yR is smooth.

Now .Lp0 �MSLq0/ D .Lp0 �MSLp/ D .Lp0 �MSLr 0/ D 0 while Lq0 , Lp , Lr 0 have self-
intersection .�1/. So, by Lemma 5.5 there are induced yR-line modules yLq0 , yLp , and yLr 0 ,
each of which has self-intersection .�1/. Moreover, Div yLq0 D q0 and Div yLr 0 D r 0 while,
by construction, q0 D 	 p 	 r ¤ r 0 D 	 p 	 q. Thus, by Proposition 9.10 below,
. yLq0 �MS yLr 0/ D .Lq0 �MSLr 0/ D 0 and .yLp �MS yLq0/ D .yLp �MS yLr 0/ D 1.

Therefore, after appropriately renaming the line modules, yR satisfies the hypotheses
of Theorem 1.4 and thus there is an overring T 0 of yR such that T 0 Š T and yR D
T 0.��1q0 C ��1r 0/. In other words, R D T .p1; q1; r1/, for p1 D ��1.p0/, q1 D ��1.q0/
and r1 D ��1.r 0/.

It remains to check that the 6 points ¹p; q; r; p1; q1; r1º are distinct, under the addi-
tional assumption that �x, �y, �z are not collinear for any x; y; z 2 ¹p; q; rº chosen with
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possible repetition. This is a routine computation, combining the definition of p0; q0; r 0

with the hypotheses of the theorem and the fact that points x; y; z 2 E are collinear if and
only if x ˚ y ˚ z D 0. We leave details to the reader.

In order to complete the proof of Theorem 9.1, it remains to prove the following result,
which generalises Lemma 5.5 (1). The point of the result is that contracting a line L does
not affect the interaction of other lines which are disjoint from L, as one would hope.

Proposition 9.10. LetR be an elliptic algebra such that qgr-R is smooth and letL;Lp;Lq
be line modules with line ideals J; Jp; Jq respectively, with DivLp D p and DivLq D q.
(We allow Lp Š Lq here.) Assume that

(1) .L �MSL/ D �1;

(2) for x 2 ¹p; qº, .Lx �MSLx/ D �1;

(3) for x 2 ¹p; qº, .L �MSLx/ D 0.

Let zR be the blowdown of R along the line L. As in Lemma 5.5 (1), for x 2 ¹p; qº let zJx
be the blowdown to zR of Jx , and let zLx D zR= zJx , which by Lemma 5.5 is a line module
over zR. Then

.zLp �MS zLq/ D .Lp �MSLq/;

where the intersection product on the left hand side is in qgr- zR, and on the right hand side
is in qgr-R.

Remark 9.11. We note that the proposition still holds without hypothesis (2), although
the proof is more complicated and is omitted.

Proof of Proposition 9.10. Write r D DivL, and let R=gR D B.E;M; �/. Throughout
the proof a statement involving x is being asserted to hold for both x D p and x D q.

First, if Lp Š Lq , then obviously zLp Š zLq . In this case, since .Lp �MSLp/ D �1, we
have .zLp �MS zLq/D .zLp �MS zLp/D �1 by Lemma 5.5, as required. So from now on we can
and will assume that Lp 6Š Lq and hence Jp ¤ Jq . Note that L 6Š Lx and hence J 6D Jx
by comparing hypotheses (1) and (3).

Case I. Assume that r 6D �j .q/ for j � 0.
The point of this assumption is that it allows us to prove the following.

Sublemma 9.12. Keep the hypotheses of the proposition and assume that r 6D �j .q/ for
j > 0. Then zJq \R D Jq .

Proof. Since J 6D Jq , we have i � 1 in Lemma 5.1. Hence zJq 6D zR by part (3) of that
lemma. Write X WD zJq \ R � N � zJq , where N=X is some finitely generated graded
R-submodule of zJq=X with GKdim.N=X/ � 1. Then GKdim.N CR/=R D 1 and so, as
R is reflexive, [15, Lemma 4.5] implies that N � R and hence N D X . Therefore, zJq=X
is 2-pure as an R-module.
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By [15, Lemma 8.2], Z WD zJq=Jq D
L
i2I LŒ�ai �, where ai � 0 for all i . Let Y WD

X=Jq , which embeds in Z. Now apply [15, Proposition 8.1]: since Z=Y Š zJq=X is 2-
pure, there is an internal direct sum Z D Y ˚ .

L
i2J LŒ�ai �/ for some subset J of I,

and thus Y Š
L
i2IXJ LŒ�ai �. Now Y D X=Jq � R=Jq Š Lq is a submodule of a line

module and is also isomorphic to a direct sum of shifts of line modules. Comparing Hilbert
series, there must be only one line module in the sum, so Y Š LŒ�c� for some c � 0.

Finally, LŒ�c� Š Y embeds in the line module R=Jq Š Lq , and by [15, Lemma 5.5]
this forces r D �j .q/ for some j � 0. Necessarily, j > 0 since otherwise LŠ Lq , which
we have excluded. So r D �j .q/ for some j > 0, contradicting the hypothesis of the
sublemma.

We now return to the proof of the proposition. Suppose first that zLp Š zLq . Then
zJp D zJq and hence, by the sublemma, Jp � zJp \R D zJq \R D Jq . Since hilbR=Jp D
1=.1� s/2 D hilbR=Jq this forces Jp D Jq ; a contradiction. We conclude that zLp 6Š zLq .
Since .Lp �MSLp/ D �1, we also have .zLp �MS zLp/ D �1 by Lemma 5.5. In particular,
Lemma 5.3 implies that .Lp �MSLq/ 2 ¹0; 1º and .zLp �MS zLq/ 2 ¹0; 1º.

By Lemma 5.1 (1),

HomR.Jp; Jq/. zJp/ D HomR.Jp; Jq/.HomR.J; Jp/R/ � HomR.J; Jq/R D zJq :

Thus HomR.Jp; Jq/ � Hom zR. zJp; zJq/.
Suppose next that .Lp �MSLq/ D 0 but .zLp �MS zLq/ D 1. First, recall that dim zR1 D

dimR1 C 1 by [15, Theorem 8.3]. By Lemma 5.3, twice, .Jq/1 ¤ HomR.Jp; Jq/1 with
dim HomR.Jp; Jq/1 D dimR1 � 1 while Hom zR. zJp; zJq/1 D . zJq/1 with

dim Hom zR. zJp; zJq/1 D dim zR1 � 2 D dimR1 � 1:

It therefore follows from the last paragraph that

HomR.Jp; Jq/1 D Hom zR. zJp; zJq/1 D . zJq/1 D HomR.J; Jq/1:

Now since J ¤ Jp , Lemma 5.4 implies that HomR.Jp; Jq/1 D .Jq/1. By Lemma 5.3 this
contradicts .Lp �MSLq/ D 0.

Finally, assume that .Lp �MSLq/ D 1 but .zLp �MS zLq/ D 0. By Sublemma 9.12, zJq \R
D Jq and so

Hom zR. zJp; zJq/ \R � HomR. zJp \R; zJq \R/

� HomR.Jp; zJq \R/ D HomR.Jp; Jq/:

In particular, using Lemma 5.3,

.Hom zR. zJp; zJq/ \R/1 � HomR.Jp; Jq/1 D .Jq/1:

Further, the same lemma shows that dim.Hom zR. zJp; zJq//1 D dim zR1 � 1. Since dimR1 D
dim zR1 � 1, we get dim.Hom zR. zJp; zJq/\R/1 � dim zR1 � 2, while dim.Jq/1 D dimR1 �
2 D dim zR1 � 3. This is a contradiction.

Therefore, the only possibility is that .Lp �MSLq/D .zLp �MS zLq/ and Case I is complete.
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Case II. Assume that r D �j .q/ for some j > 0.
This part of the proof will actually work whenever r 6D �j .q/ for j < 0. This case will

parallel that of Case I, except that we will pass from right to left modules.
Write Lr D L and let y 2 ¹r; p; qº and x 2 ¹p; qº. By [15, Lemma 5.6], L_y D

Ext1R.Ly ; R/Œ1� is a left line module, and we write Ny D L_y Š R=Ky for the left line
ideal Ky . The relationship between the left line ideal Ky and right line ideal Jy is most
easily expressed in terms of the R-linear duals.

Sublemma 9.13. Let J be a right line ideal and K a left line ideal in R. Then R=K Š
.R=J /_ if and only if HomR.J;R/1 D HomR.K;R/1.

Proof. By [15, Lemma 5.6 (3)],R�M DHomR.J;R/ is the unique extension ofR up to
isomorphism such thatM=RŠ .R=J /_Œ1�. In particular, if .R=J /_ŠR=K thenM1K �

R and so HomR.J; R/1 � HomR.K; R/1; the other inclusion follows analogously. The
converse is similar.

By Corollary 2.14, the L_y satisfy the same intersection theory as the Ly . Similarly,
since L__y Š Ly by [15, Lemma 5.4], we also have L_x 6Š L

_
r . The left hand analogue of

[15, Lemma 8.2] defines left modules zKx by attaching all possible copies of L_r on top
ofKx . Crucially, by [15, Theorem 8.3], blowing down R on the left along L_r leads to the
same overring zR as blowing down R along L. In particular, zKx is a left line ideal of zR
and, by the left-right analogue of Lemma 5.5, zNx D zR= zKx is a line module for zR.

The analogue of Sublemma 9.12 is the following.

Sublemma 9.14. Assume that r 6D �j .q/ for j < 0. Then zKq \R D Kq .

Proof. By [15, Lemma 5.4], DivL_r D ��2.r/ and DivL_x D ��2.x/. Using [15, Re-
mark 3.2], the left hand analogue of [15, Lemma 5.5] asserts that, if L_r Œ�a� embeds into
L_q for some a � 1, then ��2.r/ D DivL_ D ��j .DivL_q / D �

�j�2.q/ for some j � 0.
Therefore, the proof of Sublemma 9.12 will also work here, provided that this observation
is used in place of the final paragraph of that proof.

We claim that zNx WD zR= zKx Š .zLx/
_, where the dual is taken with respect to the

ring zR. By Sublemma 9.13, since R=Kx Š .R=Jx/_, we have X WD HomR.Jx ; R/1 D

HomR.Kx ; R/1, where dimX D dimR1 C 1. If X � zR, then HomR.Jx ; R/1 � zR1 D

HomR.J; R/1. Since J ¤ Jx , Lemma 5.4 gives X D HomR.Jx ; R/1 D R1, which is
a contradiction. Now choose z 2 X such that X D kz C R1. Then zX WD kz C zR1 has
dim zX D dim zRC 1, because z 62 zR. By a similar argument to the one used earlier in Case I,
we have HomR.Jx ;R/ � Hom zR. zJx ; zR/ and HomR.Kx ;R/ � Hom zR. zKx ; zR/. Thus zX �
Hom zR. zJx ; zR/ and since zJx is a right line ideal in zR, dim Hom zR. zJx ; zR/1 D dim zR1 C 1,
so zX D Hom zR. zJx ; zR/1. An analogous argument on the left gives zX D Hom zR. zKx ; zR/1.
By Sublemma 9.13, zR= zKx Š . zR= zJx/_ D .zLx/_, as claimed.
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Now follow the proof of Case I on the left to prove that .Np �MSNq/ D . zNp �MS zNq/.
Since zNx Š .zLx/_, it therefore follows from Corollary 2.14, twice, that

.zLp �MS zLq/ D
�
.zLp/

_
�MS.zLq/

_
�
D . zNp �MS zNq/ D .Np �MSNq/

D .L_p �MSL_q / D .Lp �MSLq/;

and the proof is complete.

Acknowledgements. We would like to thank Colin Ingalls, Shinnosuke Okawa, Dennis
Presotto and Michel Van den Bergh for useful discussions and comments.

Funding. This material originated in work supported by the National Science Foundation
under Grant No. 0932078 000, while the authors were in residence at the Mathematical
Sciences Research Institute (MSRI) in Berkeley, California, during the spring semester of
2013. We would like to thank both institutions for their support.

References

[1] M. Artin, Some problems on three-dimensional graded domains. In Representation theory and
algebraic geometry (Waltham, MA, 1995), pp. 1–19, London Math. Soc. Lecture Note Ser.
238, Cambridge Univ. Press, Cambridge, 1997 Zbl 0888.16025 MR 1477464

[2] M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of
elliptic curves. In The Grothendieck Festschrift, Vol. I, pp. 33–85, Progr. Math. 86, Birkhäuser,
Boston, MA, 1990 Zbl 0744.14024 MR 1086882

[3] M. Artin and M. Van den Bergh, Twisted homogeneous coordinate rings. J. Algebra 133
(1990), no. 2, 249–271 Zbl 0717.14001 MR 1067406

[4] M. Artin and J. J. Zhang, Noncommutative projective schemes. Adv. Math. 109 (1994), no. 2,
228–287 Zbl 0833.14002 MR 1304753

[5] S. Crawford, Singularities of noncommutative surfaces. Ph.D. thesis, University of Edinburgh,
2018

[6] R. Hartshorne, Algebraic geometry. Grad. Texts in Math. 52, Springer, New York, 1977
Zbl 0367.14001 MR 0463157

[7] D. S. Keeler, D. Rogalski, and J. T. Stafford, Naïve noncommutative blowing up. Duke Math.
J. 126 (2005), no. 3, 491–546 Zbl 1082.14003 MR 2120116

[8] T. Levasseur, Some properties of noncommutative regular graded rings. Glasgow Math. J. 34
(1992), no. 3, 277–300 Zbl 0824.16032 MR 1181768

[9] I. Mori and S. P. Smith, Bézout’s theorem for non-commutative projective spaces. J. Pure Appl.
Algebra 157 (2001), no. 2-3, 279–299 Zbl 0976.16033 MR 1812056

[10] D. Presotto, Symmetric noncommutative birational transformations. J. Noncommut. Geom. 12
(2018), no. 2, 733–778 Zbl 1403.14009 MR 3825200

[11] D. Presotto and M. Van den Bergh, Noncommutative versions of some classical birational
transformations. J. Noncommut. Geom. 10 (2016), no. 1, 221–244 Zbl 1371.14005
MR 3500820

[12] D. Rogalski, Blowup subalgebras of the Sklyanin algebra. Adv. Math. 226 (2011), no. 2, 1433–
1473 Zbl 1207.14004 MR 2737790

https://doi.org/10.1017/cbo9780511525995.002
https://zbmath.org/?q=an:0888.16025
https://mathscinet.ams.org/mathscinet-getitem?mr=1477464
https://doi.org/10.1007/978-0-8176-4574-8_3
https://doi.org/10.1007/978-0-8176-4574-8_3
https://zbmath.org/?q=an:0744.14024
https://mathscinet.ams.org/mathscinet-getitem?mr=1086882
https://doi.org/10.1016/0021-8693(90)90269-T
https://zbmath.org/?q=an:0717.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=1067406
https://doi.org/10.1006/aima.1994.1087
https://zbmath.org/?q=an:0833.14002
https://mathscinet.ams.org/mathscinet-getitem?mr=1304753
https://zbmath.org/?q=an:0367.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=0463157
https://doi.org/10.1215/S0012-7094-04-12633-8
https://zbmath.org/?q=an:1082.14003
https://mathscinet.ams.org/mathscinet-getitem?mr=2120116
https://doi.org/10.1017/S0017089500008843
https://zbmath.org/?q=an:0824.16032
https://mathscinet.ams.org/mathscinet-getitem?mr=1181768
https://doi.org/10.1016/S0022-4049(00)00012-8
https://zbmath.org/?q=an:0976.16033
https://mathscinet.ams.org/mathscinet-getitem?mr=1812056
https://doi.org/10.4171/JNCG/290
https://zbmath.org/?q=an:1403.14009
https://mathscinet.ams.org/mathscinet-getitem?mr=3825200
https://doi.org/10.4171/JNCG/232
https://doi.org/10.4171/JNCG/232
https://zbmath.org/?q=an:1371.14005
https://mathscinet.ams.org/mathscinet-getitem?mr=3500820
https://doi.org/10.1016/j.aim.2010.08.009
https://zbmath.org/?q=an:1207.14004
https://mathscinet.ams.org/mathscinet-getitem?mr=2737790


Ring-theoretic blowing down II: Birational transformations 1097

[13] D. Rogalski, S. J. Sierra, and J. T. Stafford, Classifying orders in the Sklyanin algebra. Algebra
Number Theory 9 (2015), no. 9, 2055–2119 Zbl 1348.14006 MR 3435812

[14] D. Rogalski, S. J. Sierra, and J. T. Stafford, Noncommutative blowups of elliptic algebras.
Algebr. Represent. Theory 18 (2015), no. 2, 491–529 Zbl 1331.14004 MR 3336351

[15] D. Rogalski, S. J. Sierra, and J. T. Stafford, Ring-theoretic blowing down. I. J. Noncommut.
Geom. 11 (2017), no. 4, 1465–1520 Zbl 1453.14007 MR 3743230

[16] D. Rogalski, S. J. Sierra, and J. T. Stafford, Some noncommutative minimal surfaces. Adv.
Math. 369 (2020), article no. 107151 Zbl 1453.14008 MR 4091890

[17] S. J. Sierra, G-algebras, twistings, and equivalences of graded categories. Algebr. Represent.
Theory 14 (2011), no. 2, 377–390 Zbl 1258.16047 MR 2776790

[18] S. P. Smith and M. Van den Bergh, Noncommutative quadric surfaces. J. Noncommut. Geom.
7 (2013), no. 3, 817–856 Zbl 1290.14003 MR 3108697

[19] J. T. Stafford and M. van den Bergh, Noncommutative curves and noncommutative surfaces.
Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 2, 171–216 Zbl 1042.16016 MR 1816070

[20] M. Van den Bergh, A translation principle for the four-dimensional Sklyanin algebras.
J. Algebra 184 (1996), no. 2, 435–490 Zbl 0876.17011 MR 1409223

[21] M. Van den Bergh, Blowing up of non-commutative smooth surfaces. Mem. Amer. Math. Soc.
154 (2001), no. 734 Zbl 0998.14002 MR 1846352

[22] M. Van den Bergh, Noncommutative quadrics. Int. Math. Res. Not. IMRN (2011), no. 17,
3983–4026 Zbl 1311.14003 MR 2836401

[23] A. Yekutieli and J. J. Zhang, Serre duality for noncommutative projective schemes. Proc. Amer.
Math. Soc. 125 (1997), no. 3, 697–707 Zbl 0860.14001 MR 1372045

Received 21 July 2021.

Daniel Rogalski
Department of Mathematics, UCSD, La Jolla, CA 92093-0112, USA; drogalsk@math.ucsd.edu

Susan J. Sierra
School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, UK; s.sierra@ed.ac.uk

J. Toby Stafford
School of Mathematics, The University of Manchester, Manchester M13 9PL, UK;
toby.stafford@manchester.ac.uk

https://doi.org/10.2140/ant.2015.9.2055
https://zbmath.org/?q=an:1348.14006
https://mathscinet.ams.org/mathscinet-getitem?mr=3435812
https://doi.org/10.1007/s10468-014-9506-7
https://zbmath.org/?q=an:1331.14004
https://mathscinet.ams.org/mathscinet-getitem?mr=3336351
https://doi.org/10.4171/JNCG/11-4-9
https://zbmath.org/?q=an:1453.14007
https://mathscinet.ams.org/mathscinet-getitem?mr=3743230
https://doi.org/10.1016/j.aim.2020.107151
https://zbmath.org/?q=an:1453.14008
https://mathscinet.ams.org/mathscinet-getitem?mr=4091890
https://doi.org/10.1007/s10468-009-9193-y
https://zbmath.org/?q=an:1258.16047
https://mathscinet.ams.org/mathscinet-getitem?mr=2776790
https://doi.org/10.4171/JNCG/136
https://zbmath.org/?q=an:1290.14003
https://mathscinet.ams.org/mathscinet-getitem?mr=3108697
https://doi.org/10.1090/S0273-0979-01-00894-1
https://zbmath.org/?q=an:1042.16016
https://mathscinet.ams.org/mathscinet-getitem?mr=1816070
https://doi.org/10.1006/jabr.1996.0269
https://zbmath.org/?q=an:0876.17011
https://mathscinet.ams.org/mathscinet-getitem?mr=1409223
https://doi.org/10.1090/memo/0734
https://zbmath.org/?q=an:0998.14002
https://mathscinet.ams.org/mathscinet-getitem?mr=1846352
https://doi.org/10.1093/imrn/rnq234
https://zbmath.org/?q=an:1311.14003
https://mathscinet.ams.org/mathscinet-getitem?mr=2836401
https://doi.org/10.1090/S0002-9939-97-03782-9
https://zbmath.org/?q=an:0860.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=1372045
mailto:drogalsk@math.ucsd.edu
mailto:s.sierra@ed.ac.uk
mailto:toby.stafford@manchester.ac.uk

	1. Introduction
	2. The noncommutative geometry of elliptic algebras
	3. Twisting sheaves for elliptic algebras of degree nine
	4. Recognition I: Recognising Sklyanin elliptic algebras
	5. Iterating blowing down
	6. Recognition II: Two-point blowups of Sklyanin elliptic algebras
	7. Transforming a noncommutative quadric surface to a noncommutative P^2 
	8. A converse result
	9. The noncommutative Cremona transform
	References

