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Cosimplicial monoids and deformation theory of tensor
categories

Michael Batanin and Alexei Davydov

Abstract. We introduce the notion of n-commutativity (0 � n � 1) for cosimplicial monoids in a
symmetric monoidal category V, where n D 0 corresponds to just cosimplicial monoids in V, while
nD1 corresponds to commutative cosimplicial monoids. When V has a monoidal model structure,
we endow (under some mild technical conditions) the total object of an n-cosimplicial monoid with
a natural and very explicit EnC1-algebra structure.

Our main applications are to the deformation theory of tensor categories and tensor functors. We
show that the deformation complex of a tensor functor is a total complex of a 1-commutative cosim-
plicial monoid and, hence, has an E2-algebra structure similar to the E2-structure on Hochschild
complex of an associative algebra provided by Deligne’s conjecture. We further demonstrate that
the deformation complex of a tensor category is the total complex of a 2-commutative cosimplicial
monoid and, therefore, is naturally an E3-algebra. We make these structures very explicit through a
language of Delannoy paths and their noncommutative liftings. We investigate how these structures
manifest themselves in concrete examples.
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1. Introduction

There are two categories naturally associated to any symmetric monoidal category V.
Namely, the category of monoids Mon.V/ and its subcategory of commutative monoids
Com.V/. Generally speaking, due to the classical Eckman–Hilton argument, one cannot
define a natural intermediate subcategory of monoids in between them without going to
the realm of higher categories.
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Nevertheless, we argue in this paper that in some specific symmetric monoidal cat-
egory one can have nontrivial intermediate subcategories of n-commutative monoids for
every 0 � n � 1, where n D 0 corresponds to monoids, while n D 1 corresponds
to commutative monoids. These intermediate structures have essentially set theoretical
description, yet they model EnC1-algebras, which is a higher categorical or homotopy
theoretical concept.

More precisely, let � be the category of nonempty finite ordinals with nondecreasing
maps. A cosimplicial monoid in V is a cosimplicial object in the category of monoids in
V that is a functor E W �!Mon.V/. Similarly, a commutative cosimplicial monoid is a
cosimplicial object in the category Com.V/. Note that a cosimplicial monoid (a commut-
ative cosimplicial monoid) in V is the same thing as a monoid (commutative monoid) in
the category of cosimplicial objects in V with respect to the pointwise symmetric mon-
oidal structure.

To give a precise definition of an n-commutativity, we need to introduce a measure
of complexity of interleaving between two maps of finite ordinals. Let � W Œp� ! Œm�,
� W Œq�! Œm� be two maps in �. A shuffling of the pair � , � of length n is a decomposition
of their images into disjoint unions:

Im.�/ D A1 [ � � � [ As; A1 < � � � < As;

Im.�/ D B1 [ � � � [ Bt ; B1 < � � � < Bt ;

s C t � 1 D n;

which satisfy either

A1 � B1 � A2 � B2 � � � � or B1 � A1 � B2 � A2 � � � � :

The signA�B means here that any element ofA is less than or equal to any element of B .
We say that the linking number of the pair .�; �/ is n if n is the minimal number for

which there exists a shuffling of length n. A cosimplicial monoid E W �! Mon.V/ is
n-commutative if for any two maps between finite ordinals: � W Œp�! Œn�, � W Œq�! Œn�

whose linking number is less than or equal to n, the images of E.�/ and E.�/ commute
in E.n/ (Definition 2.14).

Let Mon.V/�n be the category of n-commutative cosimplicial monoids. We have an
infinite sequence of inclusions:

Com.V/� DMon.V/�1 ! � � � !Mon.V/�n ! � � � !Mon.V/�0 DMon.V/�:

Our first result about n-cosimplicial monoids relates this tower to the tower of categories
of algebras of the little n-cubes operads. Namely, if V is equipped with a model structure
satisfying some mild technical conditions and ı W�! V is a standard object of simplices
in V, the total complex Totı.E/ of a cosimplicial n-commutative monoid in V has a natural
EnC1-algebra structure, that is a structure of algebra over an operad weakly equivalent to
the little .nC 1/-cubes operad (Theorem 2.45).
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A nice feature of this EnC1-algebra structure is that it is very combinatorially expli-
cit. This is related to the aforementioned fact that cosimplicial monoids are essentially
set theoretical objects. We take advantage of this nature and describe explicitly the main
structural operations (Steenrod [i -products and Poisson bracket) on the total complex of
an n-commutative cosimplicial algebra E (Theorem 2.56) as signed linear combinations
of certain explicit operations on E. The terms are compositions of cosimplicial coface
maps and multiplication in E. The combinatorics selecting the terms is controlled by lift-
ings of complexity n of smooth Delannoy paths on a commutative rectangular lattice. A
Delannoy path on the commutative p � q-rectangular lattice is a path which starts at the
point .0; 0/ and ends at the point .pC 1; qC 1/, such that every step on this path adds 1 or
0 to one (or both) of the coordinates. That is only North and East or North-East directions
of movement are allowed. Such a path is called smooth if it does not have right angle
corners. A lifting of such path  is a path on the noncommutative p � q lattice descend-
ing to  under the quotient map making the lattice commutative. Such noncommutative
path has complexity k if it changes direction exactly k times. For n D 2, the formula for
the bracket which we obtain reproduces the Gerstenhaber-type bracket found earlier in
[11, 26].

The set of Delannoy paths is a very rich combinatorial object which appears naturally
in many areas of mathematics (see [1] for a survey and a long bibliography). To the extent
of our knowledge, this paper is the first appearance of Delannoy paths in homotopy theory.
We want to stress a rare and satisfactory feature of the construction – that the resulting
formulas forEnC1-brackets are very explicit – with all the terms and their signs controlled
by a rather well-understood combinatorics. The formulas we obtain seem to be new even
for n D 1, that is for total complexes of commutative algebras – a classical setting for
Steenrod operations [23–25].

In the second part of the paper, we deal with our main examples of n-commutative
cosimplicial monoids, the deformation complexes of tensor functors and of tensor cat-
egories introduced by the second author in [11,12] and independently by Yetter and Crane
in [6, 26].

We show that the deformation complex of a tensor functor has a natural structure of a
1-commutative cosimplicial monoid (Section 3.1) and that the deformation complex of the
identity functor of a tensor category is 2-commutative (Section 3.2). We also show that the
corresponding brackets control the obstructions to extending the first-order deformations
(Sections 3.5 and 3.6).

Deformation complexes of symmetric categories and functors exhibit features of both
EnC1- (for n D 2; 1) and E1-algebras (Section 3.3). In addition to the brackets, their
cohomology possesses a Hodge-type decomposition. After looking at the combinatorics
of such symmetric cosimplicial monoids (Section 2.11), we get a partial result on the
interplay of these two structures (Theorem 2.72).

We illustrate our results with examples coming from symmetric categories of repres-
entations of Lie algebras (Section 4). We show that in characteristic zero the 1-bracket on
the cohomology of the forgetful functor is the classical Schouten bracket. We also show
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that the 2-bracket on the cohomology of the identity functor is trivial in characteristic zero
(Theorem 4.14). This of course is in the total agreement with the very general predic-
tion of M. Kontsevich on deformations of identity morphisms [20]. In finite characteristic,
the 2-bracket is nontrivial (Example 4.15). We are planning to examine the case of finite
characteristic systematically in a future work.

2. Cosimplicial monoids

2.1. Cosimplicial monoids and paths operads

Let � be the category of nonempty finite ordered sets with nondecreasing maps. Denote
by Œn� D ¹0; 1; : : : ; nº the ordered set of nC 1 elements. Denote by @in W Œn�! ŒnC 1�

the increasing monomorphism, which does not take the value i 2 Œn C 1�. Denote by
� in W Œn�! Œn � 1� the nondecreasing epimorphism, which takes twice the value i 2 Œn�.
Graphically, @in and � in are

ı � � � ı ı � � � ı

ı � � � ı ı ı � � � ı

0 i�1 i n

0 i�1 i iC1 nC1

�� �� �� ��

ı � � � ı ı � � � ı

ı � � � ı � � � ı

0 i iC1 n

0 i n�1

�� �� �� ��

correspondingly.
Let Cat be the category of small categories. We say that an object m of a small cat-

egory A is weakly initial if the Hom set A.m;a/ is nonempty for any a 2 A. Duallym 2 A
is weakly terminal if it is weakly initial in Aop .

Let Cat�;� be the subcategory of Cat whose objects are small categories with distin-
guished weakly initial and weakly terminal objects and whose morphisms are functors
which preserve these objects.

For each pair 0 � i < j , the finite linear poset i < i C 1 < � � � < j freely generates
an object hi; j i of Cat�;� (called an interval) with the initial object i and the terminal
object j . We will denote by Nk W k ! k C 1 a generating morphism of this category. The
interval h0; ni will be denoted simply by hni.

The full subcategory of Cat�;� spanned by the categories hni, n � 1, is called the
category of intervals Int.

Joyal’s duality is the isomorphism of categoriese. / W �! Intop; fŒn� D hnC 1i:
We will need an explicit description of the effect of this isomorphism on morphisms of �.

Let � W Œm�! Œl � be a morphism in �. We define a map z� W hl C 1i ! hmC 1i as a
functor which on the generator Ni W i ! i C 1 is equal tomi !Mi C 1 provided i 2 Im.�/
with mi D min¹j 2 ��1.i/º and Mi D max¹j 2 ��1.i/º. If i is not in the image of �,
we put z�.Ni/ D id.
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Example 2.1. Here is a picture of the Joayl dual of a map � W Œ3�! Œ2� (in solid arrows):

� ı � ı � ı � ı �

� ı � ı � ı �
$$ $$ �� ��

WW dd dd GG

with the intervals h4i (at the top) and h3i (at the bottom) represented by solid dots and the
Joyal dual map z� W h3i ! h4i (in dotted arrows) going upwards.

Let VD .V;˝; I / be a symmetric monoidal category. Let Mon.V/ be the category of
monoids in V and Com.V/ the category of commutative monoids in V.

Definition 2.2. A cosimplicial monoid in V is a cosimplicial object in the category of
monoids in V that is a functor

E W �!Mon.V/; E.n/ D E
�
Œn�
�
:

A commutative cosimplicial monoid is a cosimplicial object in the category Com.V/.

We are going to construct a coloured operad M in Set whose algebras are cosimplicial
commutative monoids. First observe that for any n1; : : : ; nk � 0 the Cartesian product in
Cat hn1 C 1i � � � � � hnk C 1i has unique initial and terminal objects.

Definition 2.3. The paths operad M has natural numbers as colours. The set of operations
is

M.n1; : : : ; nk In/ D Cat�;�
�
hnC 1i; hn1 C 1i � � � � � hnk C 1i

�
;

and the operad substitution maps being induced by Cartesian product and composition in
Cat�;�.

Example 2.4. An element of M.p;qIm/ can be understood as a path (possibly with some
“stops”) in a commutative .pC1/�.qC1/ lattice which goes from .0; 0/ to .pC1; qC1/
along North to East directions:

ı ı ı ı ı ı �

ı ı ı ı ı ı ı

ı ı ı ı � � ı

ı ı ı ı ı ı ı

� ı ı � ı ı ı

2

//

GG //

GG

In this picture, the corresponding path is � W h5i ! h6i � h4i. Black dots correspond to
images of objects of the interval h5i. The parts of the path between dots correspond to
images of the generating morphisms in h5i. The label 2 near the middle dot indicates
that the generator N2 is mapped by � to the identity morphism of .5; 2/ (so, the preimage
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��1.id.5;2//D ¹id2; N2; id3º). Since the number of different identities in this preimage is 2,
we will say that the path has two stops at this point. The dots without labels are those
objects .x; y/ for which ��1.id.x;v// is a singleton. We will say that the path has one stop
in these points. This path has 0-stops in all other points.

Theorem 2.5. The category of algebras of M in any cocomplete symmetric monoidal
category .V;˝; I / is isomorphic to the category of cosimplicial commutative monoids
in V.

Proof. Observe that the underlying category of M is isomorphic to � by the Joyal duality.
Any coloured operad with value in a cocomplete symmetric monoidal category induces
a symmetric multitensor structure (standard Day–Street convolution) on the category of
covariant presheaves on underlying category. The category of algebras of the operad M

is isomorphic to the category of commutative monoids with respect to this multitensor
structure [13].

In the case of M, we have a multitensor on V�:

�k W .V�/k ! V�;

given by the coend formula

�k.X1; : : : ; Xk/.n/ D

Z n1;:::;nk2�

M.n1; : : : ; nk In/˝X1.n1/˝ � � � ˝Xk.nk/:

Now last coend is equal toZ n1;:::;nk2�

Cat�;�
�
hnC 1i; hn1 C 1i � � � � � hnk C 1i

�
˝X1.n1/˝ � � � ˝Xk.nk/

'

Z n1;:::;nk2�

Cat�;�
�
hnC 1i; hn1 C 1i

�
� � � � � Cat�;�

�
hnC 1i; hnk C 1i

�
˝X1.n1/˝ � � � ˝Xk.nk/

'

Z n1;:::;nk2� �
�
�
Œn1�; Œn�

�
� � � � ��

�
Œnk �; Œn�

��
˝X1.n1/˝ � � � ˝Xk.nk/:

Using the fact that the tensor product˝ commutes with colimits on both sides along with
Fubini’s theorem for coends and Yoneda’s lemma, we see that the last coend is isomorphic
to X1.n/ ˝ � � � ˝ Xk.n/. Hence, the Day–Street convolution is equal to the pointwise
tensor product of cosimplicial objects. Commutative monoids with respect to this multi-
tensor structure are exactly commutative cosimplicial monoids in V.

More explicitly, writing (by Joyal’s duality) a functor f 2 Cat�;�.hnC 1i; hn1C 1i �
� � � � hnk C 1i/ as a collection of functors fi 2 Cat�;�.hnC 1i; hni C 1i/ ' �.Œni �; Œn�/,
one can see that an element of M.n1; : : : ; nk I n/ corresponds to the following operation
on the underlying collection of a commutative cosimplicial monoid E W �!Mon:

E.n1/˝ � � � ˝E.nk/
E.f1/˝���˝E.fk/
�����������! E.n/˝ � � � ˝E.n/

�n
�! E.n/;
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where E.fi / W E.ni /! E.n/ is the cosimplicial map corresponding to fi and �n is the
product of the monoid E.n/.

Let now M.0/ D M � Ass be the product in the category of symmetric coloured
operads, where Ass is the 1-coloured Set-operad for monoids. By definition,

M.0/.n1; : : : ; nk In/ D Cat�;�
�
hnC 1i; hn1 C 1i � � � � � hnk C 1i

�
�†k ;

and the operadic composition is induced by the operadic composition in M by the first
variable and the operadic composition on symmetric groups †k in the second variable.

Theorem 2.6. The category of algebras of M.0/ in any cocomplete symmetric monoidal
category V is isomorphic to the category of cosimplicial monoids in V. The natural pro-
jection M.0/ ! M is an operadic morphism which induces the forgetful functor from
commutative cosimplicial monoids to cosimplicial monoids.

Proof. It is not hard to see that Day–Street convolution for M.0/ is the symmetrisation of
Day–Street convolution for M (see [13, p. 61]). So, the result follows.

For example, if E is a cosimplicial monoid in abelian groups (that is a cosimplicial
ring), then an element

˛ D .�; �/ D .f1; : : : ; fk I �/ 2M.0/.n1; : : : ; nk In/

corresponds to the following operation:

˛.�/ W E.n1/˝ � � � ˝E.nk/! E.n/;

˛.x1 ˝ � � � ˝ xk/ D E.f� .1//.x� .1// � � � � �E.f� .k//.x� .k//;
(1)

where � is the multiplication in E.n/.

Remark 2.7. It is clear from the description of algebras of M and M.0/ that

M D �˝BV Com; M0
D �˝BV Ass

and the map q WM.0/!M is 1˝BV �, where � WAss! Com is the canonical morphism
of operads.

Here ˝BV is the Boardman–Vogt tensor product [5]. In fact, Theorems 2.5 and 2.6
admit an obvious generalisation for computing C ˝BV Com and C ˝BV Ass for an arbit-
rary small category C , considered as an operad with unary operations only.

2.2. Linking numbers and n-commutative cosimplicial monoids

Let � W Œp�! Œm�, � W Œq�! Œm� be two maps in �. A shuffling of �; � of length n is a pair
of decompositions of their images into disjoint unions:

Im.�/ D A1 [ � � � [ As; A1 < � � � < As;

Im.�/ D B1 [ � � � [ Bt ; B1 < � � � < Bt ;

s C t D nC 1;
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which satisfy one of the inequalities (of ordered sets)

A1 � B1 � A2 � B2 � � � � or B1 � A1 � B2 � A2 � � � � :

A choice of one of the inequalities is a part of the shuffling.
Note also that in general js � t j � 1, so the last term in any decomposition is either Bt

or As .

Example 2.8. Let � D � D id W Œ2�! Œ2�. Here are all shufflings of this pair.

(1) A1 D ¹0º, A2 D ¹1º, A3 D ¹2º, B1 D ¹0º, B2 D ¹1º, B3 D ¹2º,

A1 � B1 � A2 � B2 � A3 � B3:

(2) A1 D ¹0º, A2 D ¹1º, A3 D ¹2º, B1 D ¹0º, B2 D ¹1º, B3 D ¹2º,

B1 � A1 � B2 � A2 � B3 � A3:

(3) A1 D ¹0º, A2 D ¹1º, A3 D ¹2º, B1 D ¹0; 1º, B2 D ¹2º,

A1 � B1 � A2 � B2 � A3:

(4) A1 D ¹0; 1º, A3 D ¹2º, B1 D ¹0º, B2 D ¹1º, B3 D ¹2º,

B1 � A1 � B2 � A2 � B3:

(5) A1 D ¹0º, A2 D ¹1º, A3 D ¹2º, B1 D ¹0º, B2 D ¹1; 2º,

A1 � B1 � A2 � B2 � A3:

(6) A1 D ¹0º, A2 D ¹1; 2º, B1 D ¹0º, B2 D ¹1º, B3 D ¹2º,

B1 � A1 � B2 � A2 � B3:

(7) A1 D ¹0º, A2 D ¹1; 2º, B1 D ¹0; 1º, B2 D ¹2º,

A1 � B1 � A2 � B2:

(8) A1 D ¹0; 1º, A2 D ¹2º, B1 D ¹0º, B2 D ¹1; 2º,

B1 � A1 � B2 � A2:

Definition 2.9. We say that the linking number lk.�; �/ of two nondecreasing maps � W
Œp�! Œm�, � W Œq�! Œm� is equal to n if n is the smallest number for which there exists a
shuffling of � and � of length n.

Note that for any shuffling of � and � the cardinality of the intersection of their images
is bounded as follows: j Im.�/ \ Im.�/j � s C t � 1 and, hence,ˇ̌

Im.�/ \ Im.�/
ˇ̌
� lk.�; �/:

Observe also that the linking number depends only on the images of the morphisms �
and � . That is we have the following.
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Lemma 2.10. Let � W Œp�! Œm�, � W Œq�! Œm� be two maps in � and let

Œp�! Œp0�
� 0

�! Œm�; Œq�! Œq0�
� 0

�! Œm�

be their respective epi-mono factorisations. Then

lk.�; �/ D lk.� 0; � 0/:

Example 2.11. The monomorphism �m;n W Œn�! ŒmC n�, which does not take the values
nC 1; : : : ; nCm, and the monomorphism �m;n W Œm�! ŒmC n�, which does not take the
values 0; : : : ; m � 1, have the linking number one. Graphically, �m;n and �m;n are

ı � � � ı

ı � � � ı ı � � � ı

0 n

0 n nC1 nCm

�� ��

ı � � � ı

ı � � � ı ı � � � ı

0 m

0 n�1 n nCm

�� ��

correspondingly.
Note that �m;n can be written as the composite @nCmnCm�1 � � � @

nC2
nC1@

nC1
n , while �m;n

coincides with @n�1mCn�1 � � � @
1
mC1@

0
m.

Example 2.12. The monomorphism � im;n W Œn�! ŒmC n � 1�, which does not take the
values i C 1; : : : ; i Cm � 1, and the monomorphism � im;n W Œm�! ŒmC n � 1�, which
does not take the values 0; : : : ; i � 1 and i C m C 1; : : : ; m C n � 1, have the linking
number two. Graphically, � im;n and � im;n are

ı � � � ı ı � � � ı

ı � � � ı � � � ı � � � ı

0 i iC1 n

0 i iCm nCm�1

�� �� �� ��

ı � � � ı

ı � � � ı � � � ı � � � ı

0 m

0 i iCm nCm�1

�� ��

correspondingly.
Note that � im;n can be written as the composition @iCm�1nCm�2 � � � @

iC2
nC1@

iC1
n , while � im;n

coincides with @nCm�1nCm�2 � � � @
iCmC2
nCiC1 @

iCmC1
nCi @i�1nCi�1 � � � @

1
nC1@

0
n.

Example 2.13. In Example 2.8, the linking number lk.id; id/D 3. Similarly, one sees that
for id W Œn�! Œn� the linking number lk.id; id/ is nC 1 so, there exist pairs of maps with
any linking number greater than or equal to 1.

The above discussion on linking numbers allows us to define a sequence of notions
intermediate between cosimplicial monoids and commutative cosimplicial monoids.
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Definition 2.14. Let n � 1. We call a cosimplicial monoid E in a symmetric monoidal
category V n-commutative if for any morphisms � W Œp�! Œn�, � W Œq�! Œn� in � with
lk.�; �/ � n the diagram

E.p/˝E.q/
E.�/˝E.�/

//

cE.p/;E.q/

��

E.n/˝E.n/

�

��

E.q/˝E.p/
E.�/˝E.�/

// E.n/˝E.n/
�

// E.n/

commutes. Here cE.p/;E.q/ is the braiding in V and � is the product of the monoid E.n/.

For convenience, we also call an arbitrary cosimplicial monoid without any commut-
ativity requirement 0-commutative.

Remark 2.15. It follows from this definition and Example 2.13 that in an n-commutative
cosimplicial monoid the components E.m/ for m < n are commutative monoids.

Remark 2.16. In [14], a slightly different definition of n-commutative cosimplicial com-
plexes of monoids is given.

2.3. Operad for n-commutative cosimplicial monoids

We are going to construct a tower of operads M.0/ !M.1/ !M.2/ ! � � � !M, where
M.n/ has n-commutative cosimplicial monoids as its category of algebras.

Firstly, we would like to reformulate the linking number of two morphisms in � in
terms of a property of operations in the paths operad M.

Let f W hmC 1i ! hp C 1i be a functor. We say that the generator Ni W i ! i C 1 in
hmC 1i is in the support set supp.f / if f .Ni/ ¤ id. Let � W hmC 1i ! hpC 1i � hq C 1i
be a path in M. Composing with the corresponding projections, we have then two functors
�1 W hmC 1i ! hp C 1i and �2 W hmC 1i ! hq C 1i in Int with the supports A and B
correspondingly.

Definition 2.17. A shuffling of � of length n is a decomposition of the supports sets A
and B into disjoint unions of nonempty sets

A D A1 [ � � � [ As; A1 < � � � < As;

B D B1 [ � � � [ Bt ; B1 < � � � < Bt ;

s C t D nC 1; js � t j � 1;

which satisfies one of the inequalities

A1 � B1 � A2 � B2 � � � � ; (2)

B1 � A1 � B2 � A2 � � � � : (3)

A choice of one of the inequalities is a part of the shuffling.
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Definition 2.18. The linking number lk.�/ of a path � is the smallest n for which there
exists a shuffling of � of length n.

As in case of linking numbers of cosimplicial operators, we haveˇ̌
supp.�1/ \ supp.�2/

ˇ̌
� lk.�/:

Immediately from Joyal’s duality, we have the following.

Lemma 2.19. Let � W Œp�! Œm� and � W Œq�! Œm� in � and let z� W hmC 1i ! hp C 1i
and z� W hmC 1i ! hq C 1i be their Joyal’s dual functors. Let also

f�� W hmC 1i ! hp C 1i � hq C 1i
be the composite

hmC 1i
ı
�! hmC 1i � hmC 1i

.z�;z�/
���! hp C 1i � hq C 1i:

Then
lk.�; �/ D lk.f��/:

We realise M.n/ as a quotient of M.0/. For this we introduce a relation on M.0/.p;qIk/.
Let .�; �/ be an element of M.0/.p; qI k/:

� W hk C 1i ! hp C 1i � hq C 1i and � 2 †2 D ¹e; tº:

We say that .�; e/ is n-equivalent to .�; t/ if lk.�/ � n.
Let M.n/ be the quotient of M.0/ by the equivalence relation generated by n-equival-

ence relation. More precisely, M.n/ is the following pushout in the category of N-coloured
operads in Set:

F U.M.0//
F.b/

//

��

F.B/

��

M.0/ q.n/
//M.n/;

where F is the free operad functor on a collection, U is the forgetful functor, B is the
quotient of the collection U.M.0// by the equivalence relation generated by n-equivalence
relation, and b W U.M.0//! B is the quotient map.

Theorem 2.20. The category of n-commutative cosimplicial monoids is equivalent to the
category of M.n/-algebras.

Proof. Obvious from construction.

Remark 2.21. The description of M.n/ above is not explicit and we do not know if there
is a better description of this operad for 0 < n <1.
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Let i < j , � be a path and let �ij be the composite

hnC 1i
�
�! hn1 C 1i � � � � � hnk C 1i

projij
���! hni C 1i � hnj C 1i:

The following lemma will be useful for us in understanding of M.n/-action.

Lemma 2.22. Let .�; �/ be an element of M.0/ and let i , j be two consecutive numbers
in � D .: : : ; i; j; : : :/, such that lk.�ij / � n. Then .�; �/ is n-equivalent to the .�; � 0/,
where � 0 is obtained from � by permuting i and j .

Proof. It is enough to prove that .�; �/ and .�; � 0/ produce the same action on an n-
commutative cosimplicial monoid in Set. But this easily follows from the formula for this
action (1).

The following simple result relates the paths operad and the lattice paths operad of
Batanin and Berger [3]. In the following sections, we will generalise this theorem to all
n > 0. The reader is referred to Appendix A for main facts about the lattice path operads.

Theorem 2.23. There are operadic morphisms p WL!M and p.1/ WL.1/!M.0/ which
make the following square commutative:

L.1/ //

��

M.0/

��

L //M:

(4)

Proof. The morphism p is induced by the natural symmetric monoidal transformation
� � � ! �� � from funny tensor product to Cartesian product in Cat.

The morphism of operads

p.1/ W L.1/.n1; : : : ; nk In/!M.n1; : : : ; nk In/ �†k

is determined by two projections

L.1/.n1; : : : ; nk In/! L.n1; : : : ; nk In/!M.n1; : : : ; nk In/

and
$ .1/

W L.1/.n1; : : : ; nk In/! †k :

It is a morphism of operads due to Lemma A.9 and it obviously fits in the commutative
square (4).

2.4. Lifting of paths, complexity, and linking numbers

To generalise Theorem 2.23 to all filtration, we will first reformulate the definition of
linking numbers in terms of liftings of paths to lattice paths of corresponding complexity.
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Definition 2.24. Let � W hmC 1i ! hp C 1i � hq C 1i be a path in M. We will say that
a lattice path  W hmC 1i ! hp C 1i � hq C 1i is a lifting of � if its composite with the
canonical projection to hp C 1i � hq C 1i is �.

Lemma 2.25. Let � W hm C 1i ! hp C 1i � hq C 1i be a path. There is a one-to-one
correspondence between shufflings of � and liftings of �. Under this correspondence, the
shufflings of length n correspond to liftings of complexity n and vice versa.

Proof. Given a fixed shuffling, we construct a lifting out of it. Without loss of generality,
we assume that our shuffling is such that the inequality (2) for decomposition is satisfied.
We then define

 .Ni/ D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�
�1.Ni/; id

�
ı
�
id; �2.Ni/

�
; Ni 2 A and Ni … B;�

id; �2.Ni/
�
ı
�
�1.Ni/; id

�
; Ni … A and Ni 2 B;

.id; id/ ı .id; id/; Ni … A and Ni … B;�
�1.Ni/; id

�
ı
�
id; �2.Ni/

�
; Ni 2 Ak and Ni 2 Bk ;�

id; �2.Ni/
�
ı
�
�1.Ni/; id

�
; Ni 2 AkC1 and Ni 2 Bk :

In reverse direction, given a lifting  W hmC 1i ! hp C 1i � hq C 1i of � we define
a shuffling as follows. Two generating morphisms Ni and i C j in supp.�1/ D A belong to
the same element in decomposition of A D A1 [ � � � [ As if the composite

 .i/
 .Ni/
���!  .i C 1/

 .iC1/
�����! � � �

 .iCj /
�����!  .i C j C 1/

has no more than two corners in hp C 1i � hq C 1i. The same applies for the set B D
supp.�2/.

Example 2.26. Following Example 2.8, let � D � D id W Œ2�! Œ2�. The corresponding
path � is the diagonal path ı W h3i ! h3i � h3i as in the following picture:

ı ı ı ı

ı ı ı ı

ı ı ı ı

ı ı ı ı
1

1

1

1

??

??

??

Let us choose the shuffling of length 5 of this path as in part (1) of Example 2.8:

A1 D ¹N0º; A2 D ¹N1º; A3 D ¹N2º;

B1 D ¹N0º; B2 D ¹N1º; B3 D ¹N2º;

with
A1 � B1 � A2 � B2 � A3 � B3:
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Then the corresponding lifting has complexity 5 and is presented graphically as fol-
lows:

ı ı ı ı

ı ı ı ı

ı ı ı ı

ı ı ı ı
1

1

1

1

1

0

0

0

//

OO //

OO //

OO

For the shuffling from the part (8) of Example 2.8, the corresponding lifting is of com-
plexity 3:

ı ı ı ı

ı ı ı ı

ı ı ı ı

ı ı ı ı1

1

1

1

0

0

0

OO // //

OO

OO //

2.5. Delannoy paths

A path � W hn C 1i ! hp C 1i � hq C 1i is called surjective if for any generator Ni the
arrow �.Ni/ D .t; s/, where t and s are either one of the generators Nj or an identity. In
other words, this is a path whose each movement adds 0 or 1 to each coordinate.

Lemma 2.27. For each path � W hnC 1i ! hp C 1i � hq C 1i, there is a canonical fac-
torisation

hnC 1i
�0

�! hp0 C 1i � hq0 C 1i ! hp C 1i � hq C 1i

such that �0 is surjective and lk.�0/ D lk.�/.

Proof. We can take Joyal’s dual to the projections �1 and �2 then take their epi-mono fac-
torisations and product of their Joyal’s duals again. The result now follows from Lemmas
2.10 and 2.19.

Definition 2.28. A surjective path is sharp if �.Ni/ ¤ .Ns; Nt / for all i , t , s.

A path � is called injective if �.Ni/ ¤ .id; id/ for any 0 � i � n. That is, such path has
only 1 or 0 stops.

Lemma 2.29. For each path � W hnC 1i ! hp C 1i � hq C 1i, there is a canonical fac-
torisation

hnC 1i ! hn0 C 1i
�0

�! hp C 1i � hq C 1i

such that �0 is injective and lk.�0/ D lk.�/.
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Proof. Indeed, if �.Ni/ D .id; id/, we then send it to id in hn0 C 1i. In other words, we
construct a shorter path with exactly the same stopping points, where we “cut off” all
nontrivial loops in �. Since generators Ni with �.Ni/ D .id; id/ do not contribute to the
supports sets of �1 and �2, the linking number does not change.

Definition 2.30 ([1]). A surjective and injective path is called a Delannoy path.

A Delannoy path � W hn C 1i ! hp C 1i � hq C 1i has a low corner at the point
.sC 1; t/ if there exists 0� i � n such that �.Ni/D .Ns; id/ and �.i C 1/D .id; Nt /. It has an
upper corner at .t C 1; s/ if there exists 0� i � n such that �.Ni/D .id; Nt / and �.i C 1/D
.Ns; id/. A Delannoy path which does not have low or upper corners is called smooth. That
is, smooth paths are “opposite” to sharp paths which have all possible corners.

Example 2.31. This is an example of a sharp Delannoy path (on the left) and a smooth
path (on the right):

ı ı ı ı ı ı �

ı ı ı ı ı ı �

ı ı ı � � � �

ı ı ı � ı ı ı

� � � � ı ı ı// // //

OO

OO // // //

OO

OO ı ı ı ı ı ı �

ı ı ı ı ı ı �

ı ı ı ı � � ı

ı ı ı � ı ı ı

� � � ı ı ı ı// //

??

?? //

??

OO

Lemma 2.32. Let � W hnC 1i ! hp C 1i � hq C 1i be a sharp path. Then

(1) supp.�1/ \ supp.�2/ D ;,

(2) supp.�1/ [ supp.�2/ D ¹N0; : : : ; Nnº if � is Delannoy,

(3) there is a unique lifting  of �,

(4) the linking number of � is equal to complexity of  .

Proof. Obvious from definitions.

Lemma 2.33. Let � W hnC 1i ! hpC 1i � hqC 1i be a Delannoy path. Then there exists
a factorisation

hnC 1i ! hn0 C 1i
�0

�! hp C 1i � hq C 1i

such that �0 is sharp and lk.�0/ D lk.�/.

Proof. Let  be a lifting of � of complexity lk.�/. Let ¹Ni1; : : : ; Nikº, k � lk.�/ be a subset
of generators of hnC 1i which get sent by  to the composites of the form .Ns; id/ ı .id; Nt /
or .id; Nt / ı .Ns; id/ (these are exactly corners of  which are cut in �). Let n0 D nC k and
let ı W hnC 1i ! hn0 C 1i be defined as follows:

ı. Nj / D

8̂̂̂̂
<̂
ˆ̂̂:
Nj ; 0 � j < i1;

j Cm; im < j < imC1;

im Cm � 1 ı im Cm; j D im;

j C k; ik < j < nC 1;
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and  0 W hn0 C 1i
�0

�! hp C 1i � hq C 1i is the lattice path defined on generators by

 0.j Cm/ D  . Nj / for im < j < imC1;

 0.im Cm � 1/ D .Ns; id/;  0.im Cm/ D .id; Nt / if  .Nim/ D .Ns; id/ ı .id; Nt /;

 0.im Cm � 1/ D .id; Nt /;  0.im Cm/ D .Ns; id/ if  .Nim/ D .id; Nt / ı .Ns; id/:

It is obvious from the construction that we have a factorisation of the lattice path  as

hnC 1i
ı
�! hn0 C 1i

 0

�! hp C 1i � hq C 1i:

Then the composite

�0 W hn0 C 1i
 0

�! hp C 1i � hq C 1i ! hp C 1i � hq C 1i

is a sharp path and we have a factorisation of � as ı followed by �0. It is also obvious that
lk.�0/ D lk.�/.

Lemma 2.34. Any path � W hnC 1i ! hp C 1i � hq C 1i admits a factorisation

hnC 1i ! hn0 C 1i
�0

�! hp0 C 1i � hq0 C 1i ! hp C 1i � hq C 1i

such that �0 is sharp Delannoy and lk.�0/ D lk.�/.

Proof. We use Lemmas 2.27, 2.29, and 2.33 consecutively.

The following lemma describes the relations of shuffle paths and linking numbers of
their images under p W L!M.

Lemma 2.35. Let
 W hnC 1i ! hn1 C 1i � � � � � hnk C 1i

be a shuffle lattice path. Then

(1) the projection �ij .p. // is a sharp Delannoy path for any 1 � i < j � k,

(2) the following is true

supp
�
�i
�
p. /

��
\ � � � \ supp

�
�i
�
p. /

��
D ;;

supp
�
�1
�
p. /

��
[ � � � [ supp

�
�k
�
p. /

��
D ¹N0; : : : ; Nnº;

where �i is the projection on i -th coordinate,

(3) lk.�ij .p. /// D cij . /.

Proof. Easily follows from Lemmas 2.32.

We will need several lemmas about smooth paths’ behaviour.
This lemma connects our notion of linking numbers to Steenrod–McClure–Smith

notion of overlapping subdivisions.
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Lemma 2.36. Let � W hnC 1i ! hp C 1i � hq C 1i be a smooth path. Thenˇ̌
supp.�1/ \ supp.�2/

ˇ̌
D lk.�/:

Proof. It is clear that for a smooth path there exists a minimal shuffling for which any two
consecutive terms have exactly one element in their intersection. This proves the state-
ment.

Remark 2.37. This lemma shows that for any smooth path � with lk.�/ D m the set of
generating morphisms ¹N0; : : : ; Nnº admits an overlapping partition withmC 1 pieces in the
sense of [24, Definition 2.3].

Similar to the sharp case, there is a useful factorisation involving smooth paths. Such
a factorisation is not unique though.

Lemma 2.38. For any Delannoy path � W hnC 1i ! hp C 1i � hq C 1i, there exists (not
necessary unique) a factorisation

� W hnC 1i
�0

�! hp0 C 1i � hq0 C 1i ! hp C 1i � hq C 1i

such that �0 is smooth and lk.�0/ D lk.�/.

We will show that there is a factorisation of the Delannoy path which decreases the
number of corners by one but does not change the linking numbers. We can then repeat
this procedure until we get a Delannoy path without corners.

Proof. Indeed, suppose that � W hnC 1i ! hp C 1i � hq C 1i has a corner at some point.
We can assume that this is a low corner such that �.Ni/ D .Ns; id/ and �.i C 1/ D .id; Nt /.
We then construct a new path �0 W hnC 1i ! hp C 2i � hq C 1i by

�0. Nj / D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
�. Nj /; 0 � j � i;

.s C 1; Nt /; j D i C 1;

.aC 1; Nb/; j > i C 1; �.j / D .a; b/; a ¤ id;

.idkC1; Nb/; j > i C 1; �.j / D .idk ; b/:

For example, given a Delannoy path as on the left, the procedure applied to the first left
corner produces a path as on the right

ı ı ı ı ı ı �

ı ı ı ı ı ı �

ı ı ı � � � �

ı ı ı � ı ı ı

� � � � ı ı ı// // //

OO

OO // // //

OO

OO ı ı ı ı ı ı �

ı ı ı ı ı ı �

ı ı ı � � � �

ı ı ı � ı ı ı

� � � ı ı ı ı// //

??

OO // // //

OO

OO
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Now the map @sC1 W hp C 2i ! hp C 1i which sends s C 1 to the identity and other
generating morphisms to the generating morphisms provides a factorisation of �:

hnC 1i
�0

�! hp C 2i � hq C 1i
@sC1�1
�����! hp C 1i � hq C 1i:

Clearly, the linkage numbers of � and �0 are equal.

Corollary 2.39. Any path � W hnC 1i ! hp C 1i � hq C 1i admits a factorisation

hnC 1i ! hn0 C 1i
�0

�! hp0 C 1i � hq0 C 1i ! hp C 1i � hq C 1i

such that �0 is smooth path and lk.�0/ D lk.�/.

Proof. It follows easily from Lemmas 2.34 and 2.38.

We will use Lemma 2.34 and Corollary 2.39 to obtain two slightly different descrip-
tions of the operad M.n/. These descriptions will be very useful later.

Definition 2.40. A sharp n-commutative cosimplicial monoid is a cosimplicial monoid
which satisfies the n-commutativity condition with respect to any pair of maps in � rep-
resented by a sharp Delannoy path.

Similarly, a smooth n-commutative cosimplicial monoid is a cosimplicial monoid
which satisfies the n-commutativity condition with respect to any pair of maps in � rep-
resented by a smooth path.

Let .�; �/ be an element of M.0/.p; qI k/. We say that .�; �/ is sharply n-equivalent
to .�; ��/ if � is a sharp Delannoy path and lk.�/ � n. We say that .�; �/ is smoothly
n-equivalent to .�; ��/ if � is a sharp path and lk.�/ � n.

Let M
.n/
sh be an operad constructed as a quotient of M.0/ by the equivalence relation

generated by sharp n-equivalence relation and let M
.n/
sm be an operad constructed as a

quotient of M.0/ by the equivalence relation generated by smooth n-equivalence relation.

Theorem 2.41. The operads M
.n/
sh , M

.n/
sm , and M.n/ are canonically isomorphic.

Proof. It is obvious that there is a morphism M
.n/
sh !M.n/ and so every n-commutative

cosimplicial monoid is a sharp n-commutative cosimplicial monoid. To prove that M
.n/
sh !

M.n/ is an isomorphism it is enough to show that a sharp n-commutative cosimplicial
monoid E in Set is also an n-commutative cosimplicial monoid. For that, let

� W hk C 1i ! hp C 1i � hq C 1i

be a path such that lk.�/ D n. By Lemma 2.34, we have a factorisation

hk C 1i ! hk0 C 1i
�0

�! hp0 C 1i � hq0 C 1i ! hp C 1i � hq C 1i;

where �0 is sharp and lk.�/ D lk.�0/. Then the images of two elements from E.p/ and
E.q/ commute in E.k0/ and, hence, in E.k/.

The result for smooth case follows from Corollary 2.39 by a similar argument.
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2.6. Smooth paths with linking numbers one and two

It is instructive and will be useful in applications to see what Theorem 2.41 gives us for n
equal one and two.

There are exactly two smooth paths of complexity 1 on a rectangle. The first one is
given by a map �m;n W hmC nC 1i ! hmC 1i � hnC 1i, sending

i 7!

´
.i; 0/; 0 � i � m;

.mC 1; i �m/; mC 1 � i � mC nC 1:
(5)

It has a (unique, formC n> 0) lifting hmC nC 1i! hmC 1i� hnC 1i of complexity 1.
Graphically,

ı ı : : : ı ı

ı ı ı ı

ı ı ı ı

ı ı : : : ı ı

:::
:::

// //

OO

OO

??

Here the path �m;n is in dotted arrows and its lifting is in unbroken arrows with the multi-
plicity of the corner point being zero and the multiplicities of all other points being one.

The other path �tn;m goes around boundary of the rectangle in the clockwise direction.
Observe that the Joyal dual to the projection on the first coordinate of the path �n;m is the
map �n;m in � introduced in Example 2.11. The Joyal dual to the second projection is
�n;m. The same applies to the path �tn;m. By Corollary 2.39 and Theorem 2.41, we have
the following lemma.

Lemma 2.42. For any two maps in � � W Œp�! Œr�, � W Œq�! Œr� with linking number
one, there are n and order preserving maps � W Œp�! Œn�,  W Œq�! Œr � n� such that
� D �r�n;n� and � D �r�n;n .

Thus a cosimplicial monoid is 1-commutative if and only if it satisfies 1-commutativity
condition with respect to all maps �n;m and �n;m.

A typical smooth path with linking number two has the following form:

ı ı : : : ı ı ı : : : ı ı

ı ı ı ı ı ı ı

ı ı ı ı ı ı ı

ı ı : : : ı ı ı : : : ı ı

:::
:::

:::

// //

OO

OO // //

??

??

(6)
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where the bottom diagonal map goes from .i; 0/ to .i C 1; 1/. Again it is not hard to see
that the Joyal duals for the corresponding projections are � im;n and � im;n and we have the
following lemma.

Lemma 2.43. For any two maps in � � W Œp�! Œr � 1�, � W Œq�! Œr � 1� with linking
number two, there are i , m, and order preserving maps � W Œp�! Œr �m�,  W Œq�! Œm�

such that � D � im;r�m� and � D � im;r�m .
Thus a 1-commutative cosimplicial monoid is 2-commutative if and only if it satisfies

2-commutativity condition with respect to all maps � in;m and � in;m.

2.7. Lattice paths action on n-commutative cosimplicial monoids

Theorem 2.44. There are morphisms of operads p.n/ W L.n/ !M.n�1/, n � 1 making
the following diagram commutative:

L.1/

p.1/

��

// L.2/

p.2/

��

// � � � // L.n/

p.n/

��

// � � � // L

p.1/

��

M.0/ //M.1/ // � � � //M.n�1/ // � � � //M:

Proof. We construct a map of collections p.n/ as follows:

L.n/.n1; : : : ; nk Im/
p�$ .n/

�����!M.0/.n1; : : : ; nk Im/
q.n�1/

����!M.n�1/.n1; : : : ; nk Im/:

The first map in this composite is not an operadic map for n > 1, so we will need to prove
that the composite is a map of operads.

Let ıi be the usual operadic circle product. We have to prove then that the composite
.p�$ .n//. ıi !/ is .n� 1/-equivalent to the composite .p�$ .n//. /ıi .p�$

.n//.!/

for any lattice paths. Due to Lemma 2.32 point (3), Theorem 2.41, and Lemma A.15, it
will be enough to prove this statement for two shuffle paths  and !.

Without loss of generality, we can also assume that $. / D id and $.!/ D id. This
is because we can apply appropriate permutations to  and !. Moreover, we will assume
that i D 1. This is because substitution to the i -th variable affects the first movement order
of the variables i; i C 1; : : : ; k only. So, i D 1 is the most general case.

Now, the first movement order and pairwise linking numbers of projection depend
only on the sketch of the path  ıi !. Before we proceed, let us consider an example.

Let ! of complexity 2 has the following presentation: t D t1t2t3t2t1. It is easy to see
that all pairwise complexity indices are 2 as well. And $.t/ D .123/.

Let  be such that sk1. /D .s/1 D s1s2s3s2s1s1s1s1. Then again$.s/D .123/ and
any pairwise complexity is 2.

Then after substitution to the first variable, we have the following sketch:

.s/1 ı t D .t1/s2s3s2.t2/.t3/.t2/.t1/ D s1s4s5s2s2s3s2s1:

Then $..s/1 ı t / D .14523/ ¤ .12345/.
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But the complexities of

c24
�
.s/1 ı t

�
D c25

�
.s/1 ı t

�
D c34

�
.s/1 ı t

�
D c35

�
.s/1 ı t

�
D 1 < 2:

Thus in M.0/ the pairs .p. ı1 !/; .12345// and .p. ı1 !/; .14523// are 1-equivalent
by Lemma 2.22.

We will see that such behaviour holds in general. That is if the first movement order on
a pair of indices changes on opposite after substitution, then the corresponding complexity
index also drops and so the resulting elements of M.0/ are .n � 1/-equivalent.

Here is a general recipe of how to compute the complexity index cij ..s/1 ı t / in �k. It
is not hard to see that for t 2 FM.d/ and d < i < j � d Cm� 1 the complexity cij .s ı1
.t// is equal to ci�d j�d .s/. And if 1� i < j � d , the complexity is cij .s ı1 .t//D cij .t/.
A nontrivial case is where 1 � i � d and d C 1 < j � d Cm � 1. This corresponds to
the case where sj�d ¤ s1 is one of the variables in the sketch s and ti is a variable from t .

Then we do the following:

(1) out of the expansion .s/1, we construct a new sketch expansion .s0/1 by putting
all variables except for s1 and sj�d to be e and then do reduction by variable sj�d
only;

(2) in the shuffle path t , we put all variables except for ti to be e and then obtain a
word t 0 on variables e and ti ;

(3) we insert p-th letter from t 0 to the p-th copy of s1 in .s0/1;

(4) we renumber, do reduction, and obtain a sketch on two variables s2 and s1;

(5) the number of letter of this sketch minus one is exactly cij ..s/1 ı t /.
Let us see how it works in the example above. And suppose we have to compute the

index c24..s/1 ı t / D c24.s1s4s5s2s2s3s2s1/. Then we do the following:

(1) .s0/1 D s1s2es2s1s1s1s1 D s1s2s1s1s1s1;

(2) t 0 D et2et2e;

(3) .s0/1 ı t 0 D es2t2et2e D s2s1;

(4) c24..s/1 ı t / D c.s2s1/ D 1.

In general, let a sketch expansion .s/1 of complexity n have the following form:

s1 � � � s1„ ƒ‚ …
l

Os2 Os3 � � � Osi � � � Osp � � � s1 � � � s1 � � � ;

where

(1) $.s/ D id,

(2) there is no other s1 in the interval between bold letters,

(3) Osj is the first appearance of sj in s.

Let t 2 FM.d/ be such that the composite .s/1 ı t is defined. The only possibility to
have an inverse order in $..s/1 ı t / for a variable sj ; j � d and s2Cd ; : : : ; spCd is if tj



M. Batanin and A. Davydov 1188

appears in t in a place l C b for some b > 0. We want to compute cj iCd ..s/1 ı t /. Then
after making the first two steps described above, we obtain an expansion

.s0/1 D s1 � � � s1„ ƒ‚ …
l

Osi s1 � � � s1 � � �

and the word
t 0 D e � � � e„ƒ‚…

>l

tj � � � :

Since the complexity c1i .s/� n, the number of variables of s1 in s0 cannot exceed n=2C 1
(if n is even) or .nC 1/=2 (if n is odd) and the number of variables si in s0 is strictly less
than n=2C 1 (if n is even) or less than or equal to .nC 1/=2 (if n is odd).

Then after the substitution and reduction, we have a sketch from �k.2/ which starts
from s2 (which corresponds to the variable siCd ) followed by s1 (which corresponds to sj )
and the number of occurrences of s1 variable cannot exceed the number of s1 variables in
s0 minus one. So the overall number of letters in this word cannot exceed .n=2C1�1/C
.n=2C 1 � 1/ D n (if n is even) and .nC 1/=2C .nC 1/=2 � 1 D n if n is odd. So the
complexity of .s0/1 ı t 0 cannot exceed n � 1 as was claimed.

Now the result follows from iterated application of Lemma 2.22.

2.8. The little n-cubes operad action

Let now .V;˝; I / be a symmetric monoidal model category. Recall that a standard system
of simplices in .V;˝; I / is a cosimplicial object ı in V satisfying the following properties
[4, Definition A.6]:

(i) ı is cofibrant for the Reedy model structure on V�,

(ii) ı0 is the unit object I of V and the simplicial operators Œm�! Œn� act via weak
equivalences ı.m/! ı.n/ in V, and

(iii) the simplicial realisation functor j � jı D .�/˝� ı W V�op ! V is a symmetric
monoidal functor whose structural maps

jX jı ˝ jY jı ! jX ˝ Y jı

are weak equivalences for Reedy-cofibrant objects X; Y 2 V�op

.

Recall also that the totalisation of a cosimplicial object X W �! V with respect to ı
is given by the end

Totı.X/ D
Z
Œn�2�

X.n/ı.n/:

Let also P be an N-coloured operad in Set whose underlying category is �. The
operad CP .ı/ is the single colour operad whose degree n component is

CP .ı/.n/ D Totı
�
˝
n
P .ı; : : : ; ı/

�
;

where ˝n
P

is the n-th convolution tensor product of P . The operad CP .ı/ acts on ı-
totalisation Totı.X/ of a P -algebra X [3].
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We therefore have the following theorem.

Theorem 2.45. (1) The totalisation Totı.E/ of an .n� 1/-commutative cosimplicial
monoid E in V has a natural CM.n�1/.ı/-algebra structure.

(2) By restriction, this totalisation is also a CL.n/.ı/-algebra.

(3) If L is strongly ı-reductive, then Totı.E/ is naturally an En-algebra.

Proof. This follows promptly from Theorem 2.44 and [3, Theorem 4.8].

Corollary 2.46. The totalisation Totı.E/ of an .n�1/-commutative cosimplicial monoid
E has a natural structure of en-algebra in any of the following cases:

(1) V is the category of topological spaces with Quillen model structure and ıtop.k/,
k � 0 is the geometric realisation of the representables �.k/ W Set�op

! Set,
k � 0;

(2) V is the category of chain complexes over a commutative ring and ı.k/, k � 0 is
the chain complex of simplicial chains of C�.�.k//;

(3) V is the category of chain complexes over a commutative ring and ı.k/, k � 0 is
the chain complex of normalised simplicial chains Nor�.�.k//.

Proof. It follows from [3, Example 4.10] and [2, Appendix] that in all these cases the
condition of strong reductivity of L is satisfied.

2.9. Steenrod [i -products and Poisson bracket

In this section, we consider case (3) of Corollary 2.46 in more details. Without loss of
generality, we can assume here that our base commutative ring is Z, so we work in the
category of abelian groups. As it was stated, ı.k/ in this case consists of the integer nor-
malised simplicial chains of �.k/. For convenience, let us denote the operad CL.n/.ı/ as
jL.n/j, so that jL.n/jc.k/ means the c-th term of the cochain complex jL.n/j.k/ in the
operadic degree k. Similarly, we introduce notation jM.n�1/j for the operad CM.n�1/.ı/.

We are going to describe more explicitly the components of the operad jL.n/j. By
definition, this chain complex is the normalised cosimplicial totalisation of the cosimpli-
cial chain complex˝k

L.n/.ı; : : : ; ı/. Even more explicitly, jL.n/jc.k/ is the intersection of
kernels of codegeneracy operators in the productY

m�0

M
mDn1C���nk�c

Z.n/.n1; : : : ; nk Im/;

where Z.n/.n1; : : : ; nk Im/ is the free abelian group generated by L.n/.n1; : : : ; nk Im/

quotient by images of simplicial degeneracies [2, Section 3].
We can explain how the simplicial operators work in terms of labelled lattice paths.

The action of a face operator @si , 0 � i � ns , 1 � s � k can be seen as follows. In the
hypercube hn1 C 1i � � � � � hnk C 1i take the “layer”

hn1 C 1i � � � � � hi; i C 1i„ ƒ‚ …
s

� � � � � hnk C 1i
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and “collapse” it. This will produce a hypercube

hn1 C 1i � � � � � hnsi � � � � � hnk C 1i:

If hn1 C 1i � � � � � hnk C 1i was labelled according to the lattice path  , then hn1 C 1i �

� � � � hnsi � � � � � hnk C 1i acquires a labelling which is the result of adding the labels of
the vertices with the s-th coordinates iC1 to the labels of the vertices with s-coordinates i .

Analogously, a simplicial degeneracy works by “expansion” of the corresponding
layer and labelling 0 all new points (see [2, Section 2.4] for examples).

Cosimplicial coface and codegeneracy operators do not change the hypercube and the
path. A coface just adds 1 to the corresponding label whereas a codegeneracy subtracts 1
(see [2, Section 2.5]).

It is not hard to see from this description of simplicial operators that a lattice path is
degenerate if it has a stop labelled 0 at some internal point (but may have non-zero stops
in the corners).

We then take a normalised cosimplicial totalisation of the corresponding cosimplicial
abelian group. The differential is the usual sum of alternating coface operators and we
also take intersection of kernels of all codegeneracies. A lattice path is in this intersection
if all stops at internal points are labelled 1. Since we want it to be a degenerate path, it is
necessary and sufficient for this label to be 1 at internal point. But such a path also has
to have 0 labels at any corner since if it is greater than 0 the corresponding codegeneracy
can never produce a degenerate path after subtracting 1 from this label. We will call such
lattice path normal. Let nlp.n/m .n1; : : : ; nk/� jL

.n/jm.k/ be the set of normal lattice paths
of complexity equal exactly n.

Definition 2.47. A lattice path  W hmC 1i ! hp C 1i � hq C 1i is called smooth if its
image p. / is a smooth path in M.

Let slp.n/m .p; q/ be the set of all smooth lattice paths of complexity exactly n.

Lemma 2.48. The following is true:

(1) any smooth path � such that lk.�/D n has at least one normal lifting of complex-
ity n;

(2) if  is a lifting of � with lk.�/ D n and c. / > n then  is not normal;

(3) the set nlp.n/m .p; q/ is nonempty only if m D p C q � nC 1;

(4) the set slp.n/m .p;q/ consists of all normal liftings of smooth paths in M with linking
numbers exactly n.

Proof. First part of the lemma is immediate from the definitions.
Any normal path can be completed to a shuffle path by adding 1 to all labels 0. The

complexity of these two paths remains the same. For a fixedm� 0, the set of shuffle paths
of all complexities hkC 1i ! hpC 1i� hqC 1i is in one-to-one correspondence with the
set of all .p; q/-shuffles, hence, it is nonempty if and only if k D p C q C 1. Complexity
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n paths have exactly n-corners. To get back a normal path, we have to substruct 1 from the
labels in the corners. Hence, for the set of normal lattice paths nlp.n/m .p;q/ to be nonempty,
it is necessary that m D p C q C 1 � n.

Remark 2.49. The condition m D p C q � nC 1 does not guarantee that there exists a
normal or smooth path with this m, thus the implication (3) cannot be inverted.

Remark 2.50. Due to the points (3) and (4) of the lemma, it is tempting to skip the sub-
scriptm in the notations for nlp.n/m .p;q/ and slp.n/m .p;q/. But we leave these notations like
they are because of convenience to remember the number m in some formulas involving
summations over different p and q.

Call a lattice path from nlp.n/.p; q/ even if its first movement order is .12/ and odd
otherwise. Let nlp.n/Cm.p; q/ be the set of even paths and nlp.n/�m.p; q/ the set of odd paths.
Analogously, one can give a similar definition for smooth lattice paths. Let slp.n/Cm.p; q/
be the set of even smooth lattice paths and slp.n/�m.p; q/ the set of odd smooth lattice paths.

Definition 2.51. The sign sgn. / of a lattice path  is the sign of the shuffle permutation
�. �/ determined by the shuffle path  � (see Lemma A.13).

Lemma 2.52. For a lattice path  W hmC 1i ! hpC 1i � hq C 1i, the following is true:

sgn. / D .�1/.p�1/.q�1/ sgn. t /;

where  t is obtained from  by the action of involution in L, i.e.

hmC 1i
 
�! hp C 1i � hq C 1i

�
�! hq C 1i � hp C 1i:

Proof. We can assume from the beginning that  is a shuffle path. We can also assume
that  is an odd path. Let 0D j0 < j1 < � � � < jl < jlC1 D pC 1 be the first coordinates
of the points where the change of directions takes place. Let also 0 D i0 < i1 < � � � <

il < ilC1 D q C 1 be the second coordinates of the points where the change of directions
happens:

ı � � � ı � � � ı � � � �

:::
:::

:::
:::

ı � � � � � � � � � � � ı

:::
:::
:::

:::
:::

� � � � � � � � ı � � � ı

:::
:::

:::
:::

:::

� � � � ı � � � ı � � � ı
j1 j2

i1

i2

OO

OO // //

OO

OO // //

OO
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We then have the following formula for the number of inversions in �. /:

inv. / D
lX
sD0

.isC1 � is/
�
.p C 1/ � js

�
:

Analogously, we have

inv. t/ D

lX
sD0

.jsC1 � js/
�
.q C 1/ � jsC1

�
:

The sum of these numbers modulo 2 is

lX
sD0

.pC 1/.isC1C is/C

lX
sD0

.qC 1/.jsC1C js/C

lX
sD0

isjsCjsC1jsC1 D .pC 1/.qC 1/:

The results follow.

Let now A be an algebra of L.n/.

Definition 2.53. Let 0 � i � n � 1. The Steenrod product x [i y 2 A.p C q � i/ 0 �
i � n� 1, x 2 A.p/, y 2 A.q/ in the normalised totalisation of A is given by the formula

x [i y D
X

 2nlp.iC1/Cm .p;q/

.�1/.p�1/.q�1/ sgn. / .x ˝ y/;

where  .x ˝ y/ is the value of  on x ˝ y.

Consider also the following operation of degree .n � 1/ on Tot.A/:


 .n�1/.x ˝ y/ D x [n�1 y � .�1/
n.�1/.p�1/.q�1/y [n�1 x:

Lemma 2.54. The operation 
 .n�1/ is equal to the operation given by the following for-
mula:


 .n�1/.x ˝ y/ D
X

 2nlp.n/Cm.p;q/

.�1/.p�1/.q�1/ sgn. / .x ˝ y/

C

X
 2nlp.n/�m.p;q/

.�1/.n�1/ sgn. / .x ˝ y/:

Proof. This follows promptly from Lemma 2.52.

Theorem 2.55. For n � 2, the degree 1 � n map


 .n�1/ W A.p/˝ A.q/! A.p C q � nC 1/

induces a Poisson bracket operation on H�.A/.
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Proof. The proof of this formula depends on the combinatorics of L.n/. We will use
the following fact about it proved in [2, Theorem 3.10]. Let Br.n/.k/ be the normal-
ised simplicial normalisation of the k-simplicial abelian group L.n/.�1; : : : ; �k ; 0/ with
the induced differential. One can define an operadic composition on this collection. This
operad is called the normalised brace operad of complexity n. There is an operad map
(whiskering) w W Brn ! jL.n/j. Theorem 3.10 in [2] states that this map is a quasi-
isomorphism of operads. Moreover, for each k � 0, there is a quasi-isomorphism of chain
complexes

Br.n/.k/
w
�! jL.n/

j.k/
i
�! j PL.n/

j.k/;

where j PL.n/j.k/ is the un-normalised cosimplicial realisation of the cosimplicial chain
complex˝k

L.n/.ı; : : : ; ı/. This composite admits a retraction

proj W j PL.n/
j.k/! Br.n/.k/;

which is also a quasi-isomorphism. In fact, the proof of this theorem in [2] consists exactly
in proving that proj is a quasi-isomorphism. For this, j PL.n/j.k/ is expressed as a total
complex of a double chain complex and Br.n/.k/ as its left column. The retraction is the
projection on the left column of this double chain complex.

Explicitly the differentials in this double chain complex look as follows. Given a lattice
path of complexity n,

 W hmC 1i ! hp C 1i � hq C 1i;

the horizontal differential (which comes from the cosimplicial differential) is equal to

.�1/n�1
mC1X
iD0

.�1/iıi ;

where ıi . / is the same path as except that the label x at the point .i/ becomes xC 1.
There are also two differentials @1 and @2.

@1. / D .�1/nCq�1
pC1X
iD0

.�1/i@1i . / and @2. / D

qC1X
iD0

.�1/i@2i . /;

where @2i collapses the i -th row and @1i collapses the i -th column.
The vertical differential in the double chain complex is the sum ı C @, where @ D

@1 C @2.
To prove our theorem, it suffices to show that there is a cocycle in jL.n/j.2/, mapped

by proj to a generator of the cohomology group Hn�1.Br.n/.2// D Z.
Consider the following linear combination of lattice paths for each m � 0:

�.n�1/m D

X
pCqDmCn�1

� X
 2nlp.n/Cm.p;q/

.�1/.p�1/.q�1/ sgn. / 

C

X
 2nlp.n/�m.p;q/

.�1/.n�1/ sgn. / 
�
: (7)
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This gives an element �.n�1/ of the total complex of the double complex. The fact that
proj.�/ is a generator ofHn�1.Br.n/.2// follows immediately as this projection is exactly
the chain in Br.n/.2/ of degree n � 1 corresponding to the generator in the cohomology
group of the chains complex of the standard globular subdivision of the sphere Sn�1

(see [24]).
Now we have to prove that �.n�1/ is a cocycle.
Let  2 nlp.n/Cm.p; q/ be a normal path. Recall that the horizontal cosimplicial differ-

ential ıs. / adds 1 to the corresponding label. Thus it creates a point labelled by 2. We
have two possibilities for the location of this point. It either belongs to a horizontal piece
of the path as in the picture below or to a vertical piece:

ı � � � ı � � � �

:::
:::

:::

ı � � � � � � � ı

:::
:::

:::

� � � � ı � � � ı
i pC1

j

qC1

2
// //

(8)

Assume the first (the argument in the second case is completely analogous).
Let the coordinates of the point be .i; j /. It divides the path  into two parts. The

first part is starting at .0; 0/ and ending at .i; j /, and the second is going from .i; j / to
.p C 1; q C 1/. Both parts are normal paths. Suppose also that the complexity of the first
path is n1 and the second has complexity n2, n1 C n2 D n. By Lemma 2.48 applied to the
first path, we have that the number of non-zero stops along this path is m1 D .i � 1/C
.j � 1/ � n1 C 1.

Hence, the s D m1 C 1 D i C j � n1. And ıs. / enters the alternating sum with the
coefficient .�1/n�1.�1/s D .�1/n�n1CiCj�1 D .�1/nCiCj�1. The last equality takes
place since n1 is an even number. This in turn is because the path is even and approaches
.i; j / from the left. We thus described the effect of horizontal differential to  . Hence, the
overall sign of this path in the formula (7) is .�1/.p�1/.q�1/CnCiCj�1 sgn. /.

The vertical differential applied to a path from  2 nlp.n/Cm.p C 1; q/ can also create
a path as in (8) above and there is exactly one such normal path  i . Locally, around the
point .i; j /, it has the form

ı � � � ı ı � � � �

:::
:::

:::
:::

ı � � � � � � � � ı

:::
:::

:::
:::

� � � � ı ı � � � ı
i iC1 pC2

j

qC1

// // //
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The differential @1i sends this path to the path ıs. /. We need to show that @1i enters the
alternating sum with the sign opposite to the one of ıs. /. This sign is easy to compute.
It is .�1/p.q�1/.�1/nCq�1.�1/i .�1/j sgn. /. This is because sgn. i / D .�1/j sgn. /
since the shuffle �. �i / contains extra j inversions comparing to �. �/. Then the overall
sign is .�1/p.q�1/CnCqCiCj�1 sgn. / which is obviously opposite to

.�1/.p�1/.q�1/CnCiCj�1 sgn. /:

We need to check that for odd paths a similar property holds. But this is reduced to the
even paths again due to Lemma 2.52.

Finally, the vertical differential in the bicomplex has components which reduce the
number of corners in a lattice path or create corners with the label 1. It is not too hard (but
rather long) to check that those components cancel each other (it is quite obvious modulo
2 but requires some signs verification in the spirit above in general).

Let now E be an .n � 1/-commutative cosimplicial monoid.

Theorem 2.56. The Steenrod product [i on the normalised totalisation of E is given by
the formula:

a [i b D
X

 2slp.iC1/Cm .p;q/

.�1/.p�1/.q�1/ sgn. /p.n/. /.a˝ b/;

0 � i � n � 1; a 2 E.p/; b 2 E.q/;

where p.n/. /.a˝ b/ is the action of the operation p.n/. / on a˝ b (see (1)).
For n � 2, the degree .1 � n/ bracket,

ˇ.n�1/ W E.p/˝E.q/! E.p C q � nC 1/;

is given by

ˇ.n�1/.a˝ b/ D a [n�1 b � .�1/
nC.p�1/.q�1/b [n�1 a

D

X
 2slp.n/Cm.p;q/

.�1/.p�1/.q�1/ sgn. /p.n/. /.a˝ b/

C

X
 2slp.n/�m.p;q/

.�1/.n�1/ sgn. /p.n/. /.a˝ b/: (9)

Proof. Since the action of jL.n/j on Tot.E/ is factorised through jM.n�1/j by application
of Lemma 2.48, we see that it is sufficient to show that if a lattice path  is normal but
its projection is not a smooth path in M, then it is a degenerate element in jM.n�1/j and
hence the action of p.n/. / vanishes.

Indeed, p.n/. / is a non-smooth path only if there are two successive points on the
path  labelled 0. In this case, its image in jM.n�1/j is clearly in the image of a simplicial
degeneracy which “expands” the corresponding row or column in the commutative lattice.
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Example 2.57. Below we present a normal lattice path (on the left), whose image is
not a smooth path. Solid dots correspond to the label 1, empty dots to the label 0. The
corresponding path (on the right) can be obtained by expansion of the first row and, hence,
is degenerate:

ı ı ı ı �

ı ı ı ı �

ı ı � � ı

� ı ı ı ı//

OO // // //

OO

OO ı ı ı ı �

ı ı ı ı �

ı ı � � ı

� ı ı ı ı

77 //

??

OO

Remark 2.58. Theorem 2.56 shows that the total complex of an .n � 1/-commutative
monoid is somewhat special among algebras of the lattice path operad L.n/. For instance,
there are more nontrivial terms in the classical formula for the Gerstenhaber bracket on
Hochschild complex than for the analogous bracket on the deformation complex of a
monoidal functor.

2.10. Chain operations of low complexity

In this section, we write explicitly the Steenrod [i -products on an n-cosimplicial monoid
for n D 0; 1; and 2 in terms of smooth path action. Cosimplicial monoids in this sec-
tion means cosimplicial monoids in the symmetric monoidal category of modules over
a commutative ring. We consider this category as a full monoidal subcategory of chain
complexes concentrated in the degree 0, thus, all formulas from the previous section make
sense.

The operation [0 is defined in any cosimplicial monoid and we simply refer to it as
the [-product. The degree 1 bracket ˇ.1/ will also be denoted by ¹-; -º, while we will use
¹¹-; -ºº for the degree 2 bracket ˇ.2/.

Consider first a very low dimensional example.

Example 2.59. Let ı W h1i ! h1i � h1i. Graphically,
ı ı

ı ı

??

The path ı has just two liftings h1i ! h1i � h1i

ı ı

ı ı

OO // ı ı

ı ı//

OO

which both have complexity 1. This gives two operations .ı; e/¤ .ı; t/ in M.0/. Let E be
a cosimplicial monoid. To read off the operations E.0/˝E.0/! E.0/ corresponding to
.ı; e/; .ı; �/, write ı W h1i ! h1i � h1i as the composite

h1i
ı // h1i � h1i

.z�;z�/
// h1i � h1i
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with z� D z� D 1h1i. Clearly, the Joyal dual maps are � D � D 1Œ0�. Thus the operations

E.0/˝E.0/! E.0/

are the direct and the reverse products in E.0/. The direct product coincides with the [-
product in this case. If E is a 1-commutative cosimplicial monoid, then a [ b D b [ a
since .ı; e/ and .ı; t/ are 1-equivalent and so determine the same operation in M.1/.

In general, there exactly two smooth paths of linking number one on a rectangle (see
formula (5) in Section 2.6). The path �n;m is even and �tn;m is odd. Thus the cup product

a [ b D .�1/.n�1/.m�1/.@nCm � � � @nC2@nC1/.a/ � .@0/
n.b/; a 2 E.n/; b 2 E.m/

as expected. This is the only nontrivial Steenrod product in general (i.e. 0-commutative)
cosimplicial monoid.

In a 1-commutative monoid, we will have one more product a [1 b and, hence, the
first nontrivial bracket operation.

Example 2.60. Consider the map

ı W h2i ! h2i � h2i;

sending 0 7! .0; 0/, 1 7! .1; 1/, 2 7! .2; 2/. This is the only smooth path with linking
number one on this square. Graphically,

ı ı ı

ı ı ı

ı ı ı
1

1

1

??

??

The map ı has four liftings h2i ! h2i � h2i

ı ı ı

ı ı ı

ı ı ı1

1

10

0
OO //

OO // ı ı ı

ı ı ı

ı ı ı
1

1

1

0

0
//

OO

OO // ı ı ı

ı ı ı

ı ı ı1

1

1

0

0
OO // //

OO ı ı ı

ı ı ı

ı ı ı1

1

1

0

0

//

OO //

OO

which all have complexity � 2. Only two middle liftings have complexity 2 so they come
as images of the elements of L.2/ (which are exactly liftings  1 and  2 exhibited) and
give two distinct elements .ı; e/ and .ı; t/ of M.1/. Of course, .ı; e/ D .ı; t/ in M.2/.

Let now E be a 1-commutative cosimplicial monoid.
To read off the operations E.1/˝E.1/! E.1/ corresponding to .ı; e/; .ı; �/, write

ı W h2i ! h2i � h2i as the composite

h2i
ı
�! h2i � h2i

.z�;z�/
���! h2i � h2i
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with z� D z� D 1h2i. Clearly, the Joyal dual maps are � D � D 1Œ1�. Thus these two opera-
tions

E.1/˝E.1/! E.1/

are the direct and the reverse products and the a [1 b D ab.
Then the degree 1 bracket ˇ.1/.a ˝ b/ D ¹a; bº on a 1-commutative E.1/ coincides

with the algebra commutator
¹a; bº D ab � ba:

Indeed, in this case we have only two summands in the formula (9) which correspond to
two middle paths.

Example 2.61. Consider ˇ.1/ WE.2/˝E.1/!E.2/. It is determined by liftings of com-
plexity 2 of the smooth paths

� W h3i ! h3i � h2i:

There are exactly three paths like this all with a unique lifting
ı ı ı ı

ı ı ı ı

ı ı ı ı

�0 D

// //

OO

OO //

<<

<< ı ı ı ı

ı ı ı ı

ı ı ı ı

�2 D

//

OO

OO // //

<<

<<

ı ı ı ı

ı ı ı ı

ı ı ı ı

�1 D

OO // // //

OO

<<

<<

The first path has$.�0/D .12/ and�.��0/D .12453/ even. So its entry to the formula
is a@0.b/. For the second path, we again have the corresponding shuffle even and its entry
is a@2.b/. Finally, for the third path, the $.�1/ D .21/ and �.��1/ D .41235/ is odd so it
enters with .�1/0.�1/@1.b/a. Thus the bracket operation is

¹a; bº D a
�
@0.b/C @2.b/

�
� @1.b/a:

In general, we get the following formula for ˇ.1/ W E.p/˝E.q/! E.p C q � 1/. A
typical even smooth lattice path of complexity 2 is shown in (6).

It is not hard to see that the parity of the corresponding shuffle is

.�1/.qC1/.p�iC1/ D .�1/.qC1/.pC1/�i.qC1/:

Let us denote its action on a˝ b by a ıi b. We also have corresponding odd paths whose
action on a˝ b we denote by b ıi a. Then the formula (9) gives

¹a; bº D

pX
iD1

.�1/.p�1/.q�1/.�1/.qC1/.pC1/�i.qC1/a ıi b

�

qX
iD1

.�1/.qC1/.pC1/�i.pC1/b ıi a:
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We then obtain

¹a; bº D

pX
iD1

.�1/i.q�1/a ıi b � .�1/
.p�1/.q�1/

qX
iD1

.�1/i.p�1/b ıi a: (10)

Remark 2.62. To get a bracket on the Hochschild complex of an algebra, we can apply
Theorem 2.55 instead and obtain exactly the classical formula for Gerstenhaber bracket
on Hochschild complex.

Finally, consider the case of 2-commutative cosimplicial monoids.

Example 2.63. All liftings of the map ı W h3i ! h3i � h3i

ı ı ı ı

ı ı ı ı

ı ı ı ı

ı ı ı ı
1

1

1

1

??

??

??

to h3i ! h3i � h3i have complexity � 3. The complexity 3 liftings are

ı ı ı ı

ı ı ı ı

ı ı ı ı

ı ı ı ı
1

1

1

1

0

0

0

//

OO

OO // //

OO ı ı ı ı

ı ı ı ı

ı ı ı ı

ı ı ı ı1

1

1

1

0

0

0

OO // //

OO

OO //

The corresponding operations

E.2/˝E.2/! E.2/

on a 2-commutative cosimplicial monoid are the direct and the reverse product and

a [2 b D .�1/
.2�1/.2�1/ab D �ab:

The degree 2 bracket
ˇ.2/ W E.2/˝E.2/! E.2/

on a 2-commutative E coincides with the opposite to the algebra commutator

¹¹a; bºº D ba � ab:
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Example 2.64. There are four smooth lattice paths h4i ! h4i � h3i of complexity 3:

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

�0 D

// //

OO

OO // //

OO

??

??

??

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

�2 D

//

OO

OO // // //

OO

??

??

??

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

�1 D

OO // // //

OO

OO //

??

??

??

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

�3 D

OO // //

OO

OO // //

??

??

??

The dotted paths represent corresponding smooth paths. Thus the corresponding opera-
tions

E.3/˝E.2/! E.3/

on a 2-commutative cosimplicial monoid E are sending a ˝ b 2 E.3/˝E.2/ to a@0.b/,
a@2.b/, @1.b/a, @3.b/a, respectively.

The degree 2 bracket ˇ.2/ W E.3/˝E.2/! E.3/ is given by

¹¹a; bºº D ˇ.2/.a˝ b/ D a
�
@0.b/C @2.b/

�
�
�
@1.b/C @3.b/

�
a: (11)
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Example 2.65. There are eight smooth lattice paths h5i! h4i� h4i of complexity 3, four
of each are even:

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

�40 D

// //

OO

OO // //

OO

OO

??

??

??

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

�13 D

//

OO

OO

OO // // //

OO

??

??

??

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

�20 D

// //

OO

OO

OO // //

OO

??

??

??

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

�42 D

//

OO

OO // // //

OO

OO

??

??

??
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Another four odd paths can be obtained from the above by rotation by 180ı and the ori-
entation change (which also coincides with the symmetry along the diagonal in this case).
The corresponding even operationsE.3/˝E.3/!E.4/ on a 2-commutative cosimplicial
monoid E are sending a˝ b 2 E.3/˝E.3/ to

@2.a/@0.b/; @4.a/@0.b/; @4.a/@2.b/; @1.a/@3.b/;

respectively.
The degree 2 bracket ˇ.2/ W E.3/˝E.3/! E.4/ is given by

¹¹a; bºº D @2.a/@0.b/C @4.a/@0.b/C @4.a/@2.b/ � @1.a/@3.b/

C @2.b/@0.a/C @4.b/@0.a/C @4.b/@2.a/ � @1.b/@3.a/: (12)

2.11. Symmetric cosimplicial monoids and Hodge decomposition

Let Fin� be the skeletal category of pointed finite sets. The objects of it are finite ordinals
Œn� D ¹0; : : : ; nº, where we consider 0 as a based point, and morphisms are any maps
which preserve base points. There is a functor D W Int! Fin� defined by

D
�
hni
�
D Œn � 1�

and for an interval map � W hni ! hmi:

D.�/.i/ D �.i/ if �.i/ ¤ m and D.�/.i/ D 0 otherwise:

Let � D Finop� be the Segal category. We have then the following functor Cop:

�
f.�/
��! Intop

Dop

��! � :

Remark 2.66. This functor is the opposite to the functor C described by Loday in [22,
p. 221], hence the name.

Definition 2.67. A symmetric cosimplicial monoid is a functor E W � !Mon.V/.

Proposition 2.68. A symmetric cosimplicial monoid is a cosimplicial monoid E W �!
Mon.V/ (the underlying cosimplicial monoid) equipped with the following extra structure.
The components E.n/ come equipped with symmetric group actions Sn ! Autmon.E.n//

by monoid automorphisms, such that

tn � � � t1@0 D @nC1 ti@i D @i ;

and

@i tj D

8̂̂̂̂
<̂
ˆ̂̂:
tj @i i > j C 1;

ti�1ti@i�1 i D j C 1;

tiC1ti@iC1 i D j;

tjC1@i i < j;

�i tj D

8̂̂̂̂
<̂
ˆ̂̂:
tj�i i > j C 1;

�i�1 i D j C 1;

�iC1 i D j;

tj�1�i i < j;

where ti is the transposition .i; i C 1/.
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Proof. The restriction along Cop provides the cosimplicial structure. The rest of the struc-
ture is a presentation of � in terms of generators and relations.

Remark 2.69. One can also consider braided cosimplicial monoids as functors E W Ğ!
Mon.V/, where Ğ D Vinop� is the opposite to the category of pointed vines [21]. The
presentation of braided cosimplicial monoids is similar to the symmetric case. It is suffi-
cient to replace symmetric groups by braid groups.

Definition 2.70. A symmetric (braided) cosimplicial monoid is n-commutative if its un-
derlying cosimplicial monoid is n-commutative.

Let now V be a symmetric tensor category over a field of characteristic zero.
Dualising the arguments from [22, Section 6.4], we can see that the symmetric group

actions on the components E.n/ of a symmetric cosimplicial monoid give rise to the so-
called Hodge decomposition of the cohomology

Hn.E/ D Hn;0.E/˚ � � � ˚Hn;n.E/:

The decomposition is compatible with the cup product

[ W Hm;s.E/˝Hn;t .E/! HmCn;sCt .E/:

In particular, the top components Hn;n.E/ are the cohomology of the sub-complex of
C �.E/ of its anti-symmetric elements. Recall that an element a 2 E.n/ is anti-symmetric
if ti .a/D�a for i D 1; : : : ; n� 1; equivalently �.a/D sgn.�/a for an arbitrary permuta-
tion � 2 Sn.

Here we give a more explicit description of Hn;n.E/. For an element a 2 E.n/ of a
symmetric cosimplicial monoid, denote

Oai D ti � � � t1@0.a/ 2 E.nC 1/:

For example, Oa0 D @0.a/ and Oan D @nC1.a/.

Definition 2.71. We say that an element a 2 E.n/ of a symmetric cosimplicial monoid is
poly-primitive if

@i .a/ D Oai�1 C Oai ; i D 1; : : : ; n:

Denote by P n.E/ � E.n/ the subspace of anti-symmetric poly-primitive elements.

Theorem 2.72. LetE be a symmetric cosimplicial monoid in a symmetric tensor category
V over a field of characteristic zero. Then the following hold.

(1) The top component of the Hodge decomposition is the subspace of anti-symmetric
poly-primitive elements

Hn;n.E/ D P n.E/:

(2) IfE is k-commutative for k � 2, then the top degree component of the bracket ˇ.k/

Pm.E/˝ P n.E/! PmCn�k.E/

is zero.
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Proof. First note that poly-primitive elements of a symmetric cosimplicial monoid are
cocycles of its cochain complex. Indeed,

@.a/ D @0.a/ � @1.a/C � � � C .�1/
n@n.a/C .�1/

nC1@nC1.a/

D Oa0 � . Oa0 C Oa1/C � � � C .�1/
n. Oan�1 C Oan/C .�1/

nC1
Oan

D 0:

In particular, P n.E/ � Zn;n.E/.
Now note that P n.E/ \ Bn.E/ D 0. Indeed, observe that altn @ D 0, where altn W

E.n/! E.n/ is the anti-symmetrisation

altn D

P
�2Sn

sgn.�/�

nŠ
:

Since ti@i D @i , we have altn @i D 0 for i D 1; : : : ;n. Since tn � � � t1@0D @nC1, we have that
altn @0D .�1/n altn tn � � � t1@0D .�1/n altn @nC1, which gives altn @D 0. Since aD altn.a/
for any a 2 P n.E/, writing a D @.b/ for a 2 P n.E/ \ Bn.E/, we get

a D altn.a/ D altn @.b/ D 0:

Finally, the anti-symmetrisation of a cocycle is poly-primitive. That follows from the
formula

.@0 � @1 C t1@0/
X
�2Sn

sgn.�/� D
� X
�2SnC1;��1.1/<��1.2/

sgn.�/�
� nC1X
iD0

.�1/i@i :

For example,

.@0 � @1 C t1@0/.1 � t1/ D .1C t2t1 � t2/.@0 � @1 C @2 � @3/:

Thus the anti-symmetrisation induces a map Zn.E/! P n.E/ giving an identification
P n.E/ D Hn;n.E/.

For a proof of the second part of the theorem, observe that for a k-commutative E we
have altmCn�k ˇ.k/.a; b/ D 0, a 2 Pm.E/, b 2 P n.E/. Here are some low dimensional
examples of this behaviour.

Let a; b 2 P 2. Then t1.ab/ D t1.a/t1.b/ D ab and so alt2.ab/ D 0. Thus

alt2 ¹¹a; bºº D alt2Œa; b� D alt2.ab � ba/ D 0:

For a 2 P 2, b 2 P 3, the 2-bracket (11) is the commutator

¹¹a; bºº D Œ Oa0 C Oa1 C Oa2; b�:

Since t2. Oa0b/ D Oa0b, we have alt3Œ Oa0; b� D 0. The same applies for the other terms

alt3 ¹¹a; bºº D alt3Œ Oa0 C Oa1 C Oa2; b� D alt3Œ Oa0; b�C alt3Œ Oa1; b�C alt3Œ Oa2; b� D 0:
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Let a; b 2 P 3. The 2-bracket (12) takes the form

¹¹a; bºº D Oa1 Ob0 C Oa2 Ob0 C Oa3 Ob0 C Oa3 Ob1 C Oa3 Ob2 � Oa0 Ob2 � Oa0 Ob3 � Oa1 Ob2 � Oa1 Ob3

C Ob1 Oa0 C Ob2 Oa0 C Ob3 Oa0 C Ob3 Oa1 C Ob3 Oa2 � Ob0 Oa2 � Ob0 Oa3 � Ob1 Oa2 � Ob1 Oa3:

Since t24. Oa1 Ob0/ D Oa1 Ob0, we have alt4. Oa1 Ob0/ D 0. The same applies for the other terms.
In general, the k-bracket ˇ.k/.a; b/ can be written as a sum of terms OaI ObJ (or ObJ OaI ).

There is always i and j such that tij . OaI / D �OaI and tij . ObJ / D �ObJ . Thus ti . OaI ObJ / D
OaI ObJ and altmCn�k. OaI ObJ / D 0.

Remark 2.73. Part (2) of Theorem 2.72 states that in characteristic 0 the higher brackets
are always trivial on the top component of the Hodge decomposition. It will be useful
for calculations in Section 4.2. It does not mean, in general, that the higher bracket is
identically zero because it can be nontrivial on other Hodge components.

3. Deformation cohomology of tensor categories

For a tensor functor F W C ! D define its n-th tensor power by

F˝n W C � � � � � C ! D ; F˝n.X1; : : : ; Xn/ D F
�
X1˝

�
X2˝

�
� � � .Xn�1˝Xn/ � � �

���
:

For n D 0, denote
F˝0 W Vectk ! D ; F˝0.V / D V ˝ I;

where I 2 D is the unit object.

3.1. Deformation complex of a tensor functor

Following [11, 12], consider the structure of a cosimplicial complex on the collection

E.F /.n/ D End.F˝n/; n � 0

of endomorphism algebras of tensor powers of a monoidal functor F .
More precisely, the image of the coface map

@i W End.F˝n/! End.F˝nC1/ i D 0; : : : ; nC 1

of an endomorphism
a 2 End.F˝n/

has the following specialisation on objects X1; : : : ; XnC1 2 C :

@i .a/X1;:::;XnC1 D

8̂̂<̂
:̂
�.1F.X1/ ˝ aX2;:::;XnC1/�

�1; i D 0;

F.˛i /
�1.aX1;:::;Xi˝XiC1;:::;XnC1/F.˛i /; 1 � i � n;

 .aX1;:::;Xn ˝ 1F.XnC1// 
�1; i D nC 1:
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Here � is the tensor structure constraint

F.X1/˝F
�
X2˝

�
� � � .Xn˝XnC1/ � � �

��
! F.X1/˝

�
X2˝

�
� � � .Xn˝XnC1/ � � �

��
I

˛i (for 1 � i � n) is the unique composition of associativity constraints

X1˝
�
X2˝

�
� � � .Xn˝XnC1/ � � �

��
! X1˝

�
X2˝

�
� � � ˝ .Xi ˝XiC1/˝

�
� � � .Xn˝XnC1/ � � �

���
I

and � is the unique composition of associativity and tensor structure constraints

F
�
X1˝

�
X2˝

�
� � � .Xn�1˝XnC1/ � � �

���
! F

�
X1˝

�
X2˝

�
� � � .Xn�1˝Xn/ � � �

���
˝F.XnC1/:

The specialisation of the image of the codegeneration map

�i W End.F˝n/! End.F˝nC1/ i D 0; : : : ; n � 1

is
�i .a/X1;:::;Xn�1 D aX1;:::;Xi ;I;XiC1;:::;Xn�1 :

The zero component of this complex is the endomorphism algebra EndD.I / of the unit
object I of the category D , which can be regarded as the endomorphism algebra of the
functor F˝0.

The coface maps
@i W EndD.I /! End.F /; i D 0; 1

have the form

@0.a/X D �F.X/.a˝ 1F.X//�
�1
F .X/; @1.a/X D �F.X/.1F.X/ ˝ a/�F.X/

�1
I (13)

here �F.X/ W I˝F.X/! F.X/ and �F.X/ W F.X/˝I ! F.X/ are the structural iso-
morphisms of the unit object I .

The components End.F˝n/ of the cosimplicial object E.F / are monoids under the
composition. It is straightforward to verify that the cosimplicial maps �i and @j are homo-
morphisms of monoids. Thus we have the following.

Proposition 3.1. The maps �i and @j make E.F / a cosimplicial monoid.

Definition 3.2. The (normalised) total cochain complex .E�.F /; @/ D Totı.E.F // is
called the (normalised) deformation complex of the tensor functor F . Its cohomology
H�.F / is the deformation cohomology of the tensor functor F .

Example 3.3. The space of 1-cocycles Z1.F / coincides with the space

Der.F / D
®
a 2 End.F / j F �1X;Y aX˝YFX;Y D 1F.X/˝aY C aX˝1F.Y /; X; Y 2 C

¯
of derivations (or primitive endomorphisms) of F .
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The subspace of 1-coboundaries

B1.F / � Z1.F /

corresponds to the subspace Derinn.F / of inner derivations of F . The first cohomology
H 1.F / is the space OutDer.F / D Der.F /=Derinn.F / of outer derivations of F .

Theorem 3.4. The cosimplicial monoid E.F / is 1-commutative.

Proof. By Lemma 2.42, we need to show that the images E.�n;m/.a/; E.�n;m/.b/ com-
mute for any a 2 E.F /.n/ and b 2 E.F /.m/. By Example 2.11,

E.�m;n/.a/ D @
nCm
nCm�1 � � � @

nC2
nC1@

nC1
n .a/ D a˝1m

and
E.�m;n/.a/ D @

n�1
mCn�1 � � � @

1
mC1@

0
m.b/ D 1n˝b:

Clearly, a˝1m commutes with 1n˝b by the naturality of the tensor product.

Corollary 2.46 implies the following.

Corollary 3.5. The deformation complex E�.F / of a tensor functor F is an E2-algebra.

The [-product on the deformation complex E�.F / takes the form

.a [ b/X1;:::;Xm;XmC1;:::;XmCn

D .�1/.m�1/.n�1/�.aX1;:::;Xm˝bXmC1;:::;XmCn/�
�1; a 2 Em.F /; b 2 En.F /:

Here � D FX1˝���˝Xm;XmC1˝���˝XmCn is the coherence isomorphism

F.X1˝ � � �˝Xm/˝F.XmC1˝ � � �˝XmCn/! F.X1˝ � � �˝XmCn/:

The [-product induces an associative multiplication on the cohomology

[ W Hm.F /˝Hn.F /! HmCn.F /:

The induced [-product on cohomology is super-commutative

b [ a D .�1/jajjbja [ b:

The Steenrod [1-product is equal to

a [1 b D a ı b D

mX
iD1

.�1/.n�1/ia ıi b;

where

.a ıi b/X1;:::;Xm;XmC1;:::;XmCn�1 D .1F.X1˝���˝Xi�1/˝bXi ;:::;XiCm�1˝1F.XiCm˝���˝XmCn//

� aX1;:::;Xi�1;Xi˝���˝XiCm�1;XiCm;:::;XmCn�1 :



M. Batanin and A. Davydov 1208

Thus according to the formula (10), the bracket operation on chain level is given by:

¹a; bº D a ı b � .�1/.n�1/.m�1/b ı a; a 2 Em.F /; b 2 En.F /:

which induces the 1-bracket on the cohomology

¹ ; º W Hm.F /˝Hn.F /! HmCn�1.F /:

Example 3.6. The bracket ¹; º on E1.F / coincides with the commutator

¹a; bº D ab � ba:

It induces the Lie algebra structure on the space

Z1.F / D Der.F / D
®
˛ 2 End.F / j ˛X˝Y D 1X˝˛Y C ˛X˝1Y

¯
of tensor derivations of a tensor functor F . The subspace

B1.F / D InnDer.F / D
®
˛X D a1X � 1Xa j a 2 End.I /

¯
of inner derivations is a Lie ideal in Der.F / and the cohomology H 1.F / D OutDer.F /
is a Lie algebra.

Let now F W C !D and G WD !K be tensor functors. The composition of natural
endomorphisms defines a pairing of cosimplicial monoids

E.G/.n/˝E.F /.n/! E.G ı F /.n/: (14)

The pairing gives rise to the mixing cup product on the cohomology

[ W Hm.G/˝Hn.F /! HmCn.G ı F /:

The associativity of composition implies that the pairing (14) is determined by the homo-
morphisms of cosimplicial monoids

E.G/; E.F /! E.G ı F /: (15)

As a result, the mixing cup product is also determined by the ring homomorphisms

H�.G/; H�.F /! H�.G ı F /: (16)

The homomorphisms of cosimplicial monoids (15) make the homomorphisms (16) com-
patible with the brackets, i.e. homomorphisms of Gerstenhaber algebras. Moreover, since
the pairing (14) implies that the images of (15) commute, we have®

H�.G/; H�.F /
¯
D 0

in H�.G ı F /.
In particular, when F D G D Id , the bracket operation on deformation complex of

an identity functor is cohomologically trivial. We will see in the next section that in this
case we have a secondary bracket which can be nontrivial.
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3.2. Deformation complex of a tensor category

Definition 3.7. The deformation complex E�.C/ of the tensor category C is the deform-
ation complex of the identity functor IdC W C ! C .

The cosimplicial complex E.IdC / D E.C/ has a higher amount of commutativity.

Theorem 3.8. The cosimplicial complex E.C/ of a tensor category C is 2-commutative.

Proof. By Lemma 2.43, it is sufficient to show that the images E.�/.a/, E.�/.b/ com-
mute for any maps � D � im;n and � D � im;n and any a 2 E.C/.n/ and b 2 E.C/.m/. By
Example 2.12,

E.� im;n/.a/ D @
iCm�1
nCm�2 � � � @

iC2
nC1@

iC1
n .a/

and

E.� im;n/.b/ D @
nCm�1
nCm�2 � � � @

iCmC2
nCiC1 @

iCmC1
nCi @i�1nCi�1 � � � @

1
nC1@

0
n.b/ D 1i˝b˝1n�i�2:

By naturality of a, the evaluation�
@iCm�1nCm�2 � � � @

iC2
nC1@

iC1
n .a/

�
X1;:::;XmCn�1

D aX1;:::;Xi ;XiC1˝���˝XiCm;XiCmC1;:::;XmCn�1

commutes with the evaluation

.1i˝b˝1n�i�2/X1;:::;XmCn�1

D 1X1˝ � � �˝1Xi˝bXiC1;:::;XiCm˝1XiCmC1˝ � � �˝1XmCn�1 :

Now Corollary 2.46 implies the following.

Corollary 3.9. The deformation complex E�.C/ of a tensor category C is anE3-algebra.

Example 3.10. The degree 2 bracket ¹¹�;�ºº W Z2.C/˝Z1.C/ ! Z1.C/ is zero. The
degree 2 bracket ¹¹�;�ºº W Z2.C/˝Z2.C/! Z2.C/ is the opposite to the commutator
with respect to the product in E2.C/

¹¹a; bºº D ba � ab:

3.3. Deformation complex of a symmetric functor

Let F W C ! D be a tensor functor. Assume that the category C is braided. For i D
1; : : : ; n� 1 define a monoid automorphism ti W End.F˝n/! End.F˝n/ by assigning to
a 2 End.F˝n/ the composite

F.X1˝ � � �˝Xn/

F.1c�1XiC1;Xi
1/

��

F.X1˝ � � �˝Xn/

F.X1˝ � � �˝XiC1˝Xi˝ � � �˝Xn/
aX1;:::;XiC1;Xi ;:::;Xn

//F.X1˝ � � �˝XiC1˝Xi˝ � � �˝Xn/:

F.1cXiC1;Xi 1/

OO
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A standard argument shows that ti and tj commute, whenever ji � j j > 1 and that

ti tiC1ti D tiC1ti tiC1:

Thus we have an action of the braid groupBn on End.F˝n/. Moreover, these actions have
the following properties with respect to the cosimplicial structure.

Lemma 3.11.

ti@i D @i ; @i tj D

8̂̂̂̂
<̂
ˆ̂̂:
tj @i i > j C 1;

ti�1ti@i�1 i D j C 1;

tiC1ti@iC1 i D j;

tjC1@i i < j;

�i tj D

8̂̂̂̂
<̂
ˆ̂̂:
tj�i i > j C 1;

�i�1 i D j C 1;

�iC1 i D j;

tj�1�i i < j:

Proof. Follows directly from the definition. For example, the identity ti@i D @i is implied
by the naturality of natural transformations in End.F˝n/. The identity @2t1 D t1t2@1 is a
consequence of one of the hexagon axioms for the braiding:

.@2t1/.a/X1;X2;X3

D t1.a/X1;X2˝X3

D F.cX2˝X3;X1/aX2˝X3;X1F.cX2˝X3;X1/
�1

D F.cX2;X1˝1/F.1˝cX3;X1/aX2˝X3;X1F.1˝cX3;X1/
�1F.cX2;X1˝1/

�1

D F.cX2;X1˝1/.t2@1/.a/X2;X1;X3F.cX2;X1˝1/
�1

D .t1t2@1/.a/X1;X2;X3 :

The identity �1t1 D �2 follows from the unit normalisation condition for the braiding:

.�1t1/.a/X D t1.a/I;X D F.cX;I /aX;IF.cX;I /
�1
D aX;I D �2.a/X :

Let F W C ! D be a tensor functor into a braided category D . For i D 1; : : : ; n � 1,
define a monoid automorphism ti W End.F˝n/! End.F˝n/ by assigning a 2 End.F˝n/
to the composite

F.X1˝ � � �˝Xn/

��

F.X1˝ � � �˝Xn/

F.X1/˝ � � �˝F.Xn/

1˝c�1
F .XiC1/;F .Xi /

1

��

F.X1/˝ � � �˝F.Xn/

OO

F.X1/˝ � � �˝F.XiC1/˝F.Xi /˝ � � �˝F.Xn/

��

F.X1/˝ � � �˝F.XiC1/˝F.Xi /˝ � � �˝F.Xn/

1˝cF.XiC1/;F .Xi /1

OOOO

F.X1˝ � � �˝XiC1˝Xi˝ � � �˝Xn/
aX1;:::;XiC1;Xi ;:::;Xn

// F.X1˝ � � �˝XiC1˝Xi˝ � � �˝Xn/:

OO

As above, the automorphisms ti satisfy the defining relations of the braid group Bn.
Among compatibilities between the braid group action and the cosimplicial structure in
this case we have the following.
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Lemma 3.12. Let F W C ! D be a tensor functor into a braided category D . Then the
following is true in End.F˝n/

tn � � � t1@0 D @nC1:

Proof. This follows from the naturality and the hexagon axioms for braiding:

tn � � � t1@0.a/X1;:::;XnC1

D .1˝cF.XnC1/;F .X1// � � � .cF.XnC1/;F .Xn/˝1/

� @0.a/XnC1;X1;:::;Xn.cF.XnC1/;F .Xn/˝1/
�1
� � � .1˝cF.XnC1/;F .X1//

�1

D cF.XnC1/;F .X1˝���˝Xn/.1˝aX1;:::;Xn/c
�1
F .XnC1/;F .X1˝���˝Xn/

D aX1;:::;Xn˝1 D @nC1.a/X1;:::;XnC1 :

Note that for a braided tensor functor F W C !D between braided categories the two
braid group actions on E.F /.n/ coincide. Thus we have the following.

Proposition 3.13. The cosimplicial monoidE.F / of a symmetric tensor functor F W C !
D is a symmetric cosimplicial monoid (in the sense of Section 2.11).

3.4. The change of scalars

Here we discuss the change of scalars of a tensor category from the point of view of
enriched category theory (see [19]).

Let A be a commutative k-algebra. For a k-linear category C denote by CA the cat-
egory with the same objects as C and with hom spaces CA.X; Y / D C.X; Y /˝kA. For a
k-linear functorF WC!D denote byFA WCA!DA theA-linear functorFA.X/DF.X/
with the effect on morphisms FX;Y˝1 W C.X; Y /˝kA! C.F.X/; F.Y //˝kA.

Proposition 3.14. The canonical homomorphism End.F /˝kA ! End.FA/ is an iso-
morphism.

Proof. Let ˛ W FA ! FA be a natural transformation. Let l W A! k be a k-linear map.
For an object X 2 C , consider the composite ˛.l/X D .I˝l/.˛X / 2 C.X; X/, where
˛X 2 C.X; X/˝kA is the specialisation of ˛. The components ˛.l/X 2 C.X; X/ are
specialisations of natural transformations ˛.l/ W F ! F . Indeed, the naturality condition
.f˝1/˛X D ˛Y .f˝1/ for a morphism f W X ! Y gives f ˛.l/X D ˛.l/Y f (assuming
that l.1/ is invertible).

Corollary 3.15. The canonical homomorphism E�.F /˝kA! E�.FA/ is an isomorph-
ism.

The change of scalars allows us to look at sets of tensor structures as functors Algk!

�et , which we will, following [18], consider as functors of points of moduli spaces of such
structures. From this point of view, deformations of tensor structures are tangent spaces to
the corresponding functor of points.
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Denote by A2 D AŒ"j"2 D 0� the algebra of dual numbers over k.
The tangent space TxX of a functor of points X W Algk ! �et at a point x 2 X.k/

is the fibre X.f /�1.x/ of the map X.f / W X.A2/! X.k/ corresponding to the homo-
morphism f W A2 ! k sending " to zero.

Denote A3 D kŒ"j"3 D 0�. Denote by g W A3 ! k the homomorphism sending " to
zero.

The (first) tangent coneQxX � TxX of a functor of pointsX WAlgk! �et at a point
x 2 X.k/ is the image in TxX of the fibre X.g/�1.x/ under the map X.A3/! X.A2/

corresponding to the homomorphism A3 ! A2 sending " to ".

3.5. Deformation theory of tensor functors

Here we show how 1- and 2-brackets on low dimensional cohomology appear in deform-
ation theory of tensor functors.

Recall that an automorphism a W F ! F of a tensor functor F W C ! D is tensor if

aX˝Y D aX˝aY ; X; Y 2 C :

Tensor automorphisms are closed under the composition and form a group Aut˝.F /.

Example 3.16. Let c 2 AutD.F.I // be an automorphism of the identity object of D .
Then @0.c/@1.c/�1 is a tensor automorphism of F , which we call an inner automorph-
ism (here @0.c/ and @1.c/ are as in (13)). Note that inner automorphisms form a normal
subgroup InnAut˝.F / in Aut˝.F /. We denote the quotient group Out˝.F /.

An endomorphism a W F ! F of a tensor functor is a tensor derivation if

˛X˝Y D ˛X˝1C 1˝˛Y ; X; Y 2 C :

It is straightforward to see that the commutator of tensor derivations is a tensor derivation.
Denote by Der.F / the Lie algebra of tensor derivations of F .

Example 3.17. Let c 2 EndD.F.I // be an endomorphism of the identity object of D .
Then @0.c/ � @1.c/ is a tensor derivation of F , which we call an inner derivation. Note
that inner derivation forms a Lie ideal InnDer.F / in Der.F /. We denote the quotient Lie
algebra OutDer.F /.

Here for a tensor functor F W C !D , we consider the following group valued functor
of points Algk ! G rp:

A 7! Aut˝.FA/; InnAut˝.FA/; Out˝.FA/

which allow us to look at

Aut˝.F /; InnAut˝.F /; Out˝.F /

as proalgebraic groups.



Cosimplicial monoids and deformation theory of tensor categories 1213

Proposition 3.18. The Lie algebras

Z1.F / D Der.F /; B1.F / D InnDer.F /; H 1.F / D OutDer.F /

are the tangent Lie algebras of the proalgebraic groups

Aut˝.F /; InnAut˝.F /; Out˝.F /

correspondingly.
The commutator Lie bracket is the degree 1 bracket on Z1.F /.

Proof. A tensor automorphism of F overA2D kŒ"j"2D 0�, which descents to the identity
under the reduction A2 ! k has the form 1C "˛, with ˛ being a tensor derivation of F .
The standard computation over A3 D kŒ"j"3 D 0� shows that the group commutator of
1C "˛ C � � � and 1C "ˇ C � � � has the form 1C "2Œ˛; ˇ�.

For a functor F W C ! D between tensor categories denote by Tens.F / the set of
isomorphism classes of tensor structures on F . The change of scalars makes it a functor
of points

A 7! Tens.FA/:

Proposition 3.19. The second cohomology H 2.F / is the tangent space to the moduli
space Tens.F / of tensor structures of F .

The tangent cone to the moduli space h2.F / is the set of solutions

¹�; �º D 0:

Proof. Write a modification to the tensor constraint of the identity functor as

1C "� C "2�.2/ C � � � :

The tangent equation (the coefficient equation for ") to the pentagon equation is

@0.�/C @2.�/ � @1.�/ � @3.�/ D 0;

which coincides with the coboundary condition @.�/ D 0.
The second tangent equation (the coefficient equation for "2) to the pentagon equation

is
@2.�/@0.�/ � @1.�/@3.�/ D @.��

.2//;

which coincides with ¹�; �º D @.�2�.2//.

3.6. Deformation theory of tensor categories

Recall from [9] that a tensor autoequivalenceF WC!C is soft if it is isomorphic as a plain
functor to the identity functor IdC . It is straightforward to see (e.g. [11]) that the compos-
ition of soft autoequivalences is soft and that a quisi-inverse to a soft autoequivalence is
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also soft. Denote by Aut1˝.C/ the group of isomorphism classes of soft autoequivalences
of C . The change of scalars makes it a group valued functor of points

A 7! Aut1˝.CA/:

Proposition 3.20. The Lie algebra .H 2.C/; ¹¹; ºº/ is the tangent Lie algebra of the proal-
gebraic group Aut1˝.C/.

Proof. By Proposition 3.19, the tangent space at the identity of Aut1˝.C/ is H 2.C/. Note
that the group commutator in Aut1˝.C/ of two soft autoequivalences with the tensor con-
straints

1C "� C � � � ; 1C " C � � �

is a soft autoequivalence with the tensor constraint 1C "2¹¹�;  ºº, where ¹¹�;  ºº is the
degree 2 bracket on H 2.C/.

For a k-linear category denote by Tens.C/ the set of equivalence classes of tensor
structures on C . The change of scalars makes it a functor of points

A 7! Tens.CA/:

Proposition 3.21. The third cohomologyH 3.C/ is the tangent space to the moduli space
Tens.C/.

Let k be a field of characteristic not 2. The tangent cone to the moduli space h3.C/ is
the set of solutions

¹¹˛; ˛ºº D 0:

Proof. Write a modification to the associativity constraint as

1C "˛ C "2˛.2/ C � � � :

The tangent equation to the pentagon equation is

@0.˛/C @2.˛/C @4.˛/ � @1.˛/ � @3.˛/ D 0;

which coincides with the coboundary condition @.˛/ D 0. Let now

1C "˛ C � � � ; 1C "ˇ C � � �

be two modifications to the associativity constraint. Write a modification to the tensor
constraint of the identity functor as 1 C "� C � � � : The tangent equation to the tensor
constraint equation is

@0.�/C @2.�/ � @1.�/ � @3.�/ D ˛ � ˇ;

which coincides with the coboundary condition @.�/ D ˛ � ˇ.
The second tangent equation to the pentagon equation is

@2.˛/@0.˛/C @4.˛/@0.˛/C @4.˛/@2.˛/ � @1.˛/@3.˛/ D @.�˛
.2//;

which coincides with ¹¹˛; ˛ºº D @.�2˛.2//.
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Proposition 3.22. The obstruction for � 2 H 2.C / to deform the tensor structure on the
identity functor IdC compatible with the deformation of the associativity of C corres-
ponding to ˛ 2 H 3.C/ is

¹¹�; ˛ºº D ¹�; �º:

Proof. Write a modification to the associativity constraint as

1C "� C "2�.2/ C � � � ; 1C "˛ C � � � :

The second tangent equation to the tensor constraint condition is�
@0.�/C @2.�/

�
˛ C @0.�/@2.�/ D ˛

�
@1.�/C @3.�/

�
C @3.�/@1.�/ � @.�

.2//;

which coincides with ¹¹�; ˛ºº D ¹�; �º C @.� � � /.

4. Examples

4.1. Modules over bialgebra

Here we reproduce the computations from [11] for deformation complexes of the forgetful
and the identity functors on the category of modules over a bialgebra. We then write the
1- and 2-brackets on them explicitly.

LetH be a bialgebra with coproduct� WH !H ˝H and counit " WH ! k. Denote
by H - Mod the tensor category of H -modules.

Let F W H - Mod! Vect be the forgetful functor.
We start by computing the algebras of endomorphisms of tensor powers of F (see

[11]).

Lemma 4.1. The algebra of endomorphisms E.F /.n/ D End.F˝n/ of the n-th power of
the forgetful functor is isomorphic to the tensor power H˝n of the bialgebra.

The isomorphism is exhibited by two mutually inverse maps:

H˝n ! End.F˝n/;

which associate to an element x 2 H˝n the endomorphism of multiplication by x, and

End.F˝n/! H˝n; a 7! aH;:::;H ;

which sends an endomorphism to its specialisation on the regular H -module H .

Proof. Clearly, the map
H˝n ! End.F˝n/;

defined in the statement of the lemma is a homomorphism of algebras. All we need to do
is to prove that this is an isomorphism.
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Recall a well-known fact that the forgetful functor has the right adjoint

Vect! H - Mod; V 7! H ˝ V

computing the free H -module on a vector space V . Similarly, the n-th power of the for-
getful functor considered as a functor from Deligne’s tensor power

Rn W H
˝n- Mod D .H - Mod/�n F˝n // Vect

has the right adjoint

Vect! H˝n- Mod; V 7! H˝n ˝ V:

The algebra of its endomorphisms is

End.Rn/ D EndH˝n.H
˝n/ D .H˝n/op:

The adjunction identifies the endomorphism algebra End.F˝n/ with the opposite of the
endomorphism algebra End.Rn/. Finally, it is straightforward to see that the isomorphism

End.F˝n/! End.Rn/op D H˝n

is the specialisation on the regular H -module H .

Proposition 4.2. The cosimplicial complex E.F / of the forgetful functor F W H - Mod!
Vect is isomorphic to the bar complexH˝� ofH with coface maps @in WH

˝n�1!H˝n

given by

@i .h1 ˝ � � � ˝ hn/ D

8̂̂<̂
:̂
1˝ h1 ˝ � � � ˝ hn; i D 0;

h1 ˝ � � � ˝�.hi /˝ � � � ˝ hn; 1 � i � n;

h1 ˝ � � � ˝ hn ˝ 1; i D nC 1

and codegeneration

�i .h1 ˝ � � � ˝ hnC1/ D h1 ˝ � � � ˝ ".hi /˝ � � � ˝ hnC1:

Proof. Direct computation of the effect of coface and codegeneration maps on endo-
morphisms given by multiplication with elements of H˝n provides the result.

The deformation complex of the forgetful functor F W H - Mod ! Vect is the co-
Hochschild complex of H [8, Appendix], i.e. the complex C �.H/ D .H˝�; @/ with the
differential @ W H˝n ! H˝nC1 defined by

@.a/ D 1˝ aC

nX
iD1

.�1/i .id˝i�1 ˝�˝ id˝n�i�1/.a/C .�1/nC1.a˝ 1/:
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The cup product on the co-Hochschild complex C �.H/ is

[ W Cm.H/˝ C n.H/! CmCn.H/; a [ b D a˝b:

The homotopy for commutativity is

a ı b D

mX
iD1

.�1/.n�1/ia ıi b;

where
a ıi b D .id˝i�1˝�.n�1/˝id˝m�i /.a/.1˝i�1˝b˝1˝m�i /;

where �.n�1/ W H ! H˝n is the iterated coproduct and a 2 H˝m, b 2 H˝n.
The 1-bracket

¹a; bº D a ı b � .�1/.n�1/.m�1/b ı a; a 2 H˝m; b 2 H˝n:

Example 4.3. The first cohomology

H 1.F / D
®
a 2 H j �.a/ D 1˝aC a˝1

¯
D Prim.H/

coincides with the space of primitive elements of H . The 1-bracket on H 1.F / is the
commutator bracket.

The following was proved in [11].

Proposition 4.4. The cosimplicial complex E.H - Mod/ is isomorphic to the subcomplex
of the bar complex of H , which consists of H -invariant elements (the subcomplex of
centralisers CH˝n.�.H// of the images of diagonal embeddings).

Proof. The isomorphism from Lemma 4.1

H˝n ! End.F˝n/;

sending an element x 2 H˝n to the endomorphism of multiplication by x, induces an
isomorphism

CH˝n
�
�.H/

�
! End.Id˝nH - Mod/:

The cohomologyH�.H - Mod/ can be computed via the equivariant spectral sequence

E
p;q
2 D Hp

�
H;H

q

ch
.H/

�
H) HpCq.H - Mod/ (17)

with the second leave occupied by Sweedler’s cohomology Hp.H; H
q

ch
.H// with the

coefficients in the co-Hochschild cohomology ofH considered with the adjointH -action.
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4.2. Lie algebras

Let g be a Lie algebra. Let U.g/ be its universal enveloping algebra. Denote by

Rep.g/ D U.g/- Mod

the tensor category of g-representations.
The following was shown in [17].

Proposition 4.5. Let the characteristic of the ground field k be zero. Let F W Rep.g/!
Vect be the forgetful functor. Then the natural homomorphism

ƒ�.g/ D ƒ�
�
H 1.F /

�
! H�.F / (18)

induced by the multiplication in H�.F / is an isomorphism.

Note that the inverse to (18) sends a cocycle

x 2 Zn.F / � U.g/˝n

to its anti-symmetrisation
altn.x/ D

X
�2Sn

.�1/��.x/:

It is a fact independent of the characteristic of k that the first cohomology coincides with
the space of primitive elements of the universal enveloping algebra

H 1.F / D Prim
�
U.g/

�
D
®
x 2 U.g/ j �.x/ D x˝1C 1˝x

¯
and that altn.x/ 2 ƒn.H 1.F // for x 2 Zn.F /. Moreover, the map

Zn.F /
altn
��! ƒn

�
H 1.F /

�
is surjective. Indeed, for xi 2 Prim.U.g// the indecomposable tensor x1˝ � � � ˝xn is a
cocycle and its anti-symmetrisation is x1 ^ � � � ^ xn.

Remark 4.6. Note that the forgetful functor F W Rep.g/! Vect is symmetric and thus,
by Section 2.11, its cohomology possesses a Hodge decomposition. Proposition 4.5 says
that Hn.F / D Hn;n.F / D ƒn.g/.

Remark 4.7. Let k be the field of characteristic p. Then the p-th power of any primitive
element is primitive: xp 2 Prim.U.g// for x 2 Prim.U.g//. This shows that Prim.U.g//
contains the direct sum of infinitely many copies of g.

Moreover, for x 2 Prim.U.g// the following is well defined:

@

�
xp

p

�
D
1

p

p�1X
iD1

C
p
i x

i
˝xp�i

and is a symmetric 2-cocycle, i.e.

alt2

�
@

�
xp

p

��
D 0:
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Recall (from e.g. [16]) the Schouten bracket on ƒ�.g/:

¹x1 ^ � � � ^ xs; y1 ^ � � � ^ ytº

D

X
i;j

.�1/iCj Œxi ; yj � ^ x1 ^ � � � ^ bxi ^ � � � ^ xs ^ y1 ^ � � � ^ byj ^ � � � ^ yt ;
where Oz means that z does not occur in the product.

Remark 4.8. The Schouten bracket ¹x; y1 ^ � � � ^ ytº is the result of the adjoint action of
x on y1 ^ � � � ^ yt :

¹x;y1 ^ � � � ^ ytº D Œx; y1�^ � � � ^ yt C y1 ^ Œx; y2�^ � � � ^ yt C � � � C y1 ^ � � � ^ Œx; yt �:

Proposition 4.9. Let the characteristic of the ground field k be zero. Then the 1-bracket
on H�.F / D ƒ�g coincides with the Schouten bracket.

Proof. Follows from the biderivation property of the bracket and the fact that onH 1.F /D

g the bracket is the Lie bracket of g.

Example 4.10. The Schouten bracket on r 2 ƒ2.g/ with itself has the form

¹r; rº D Œr23; r13�C Œr23; r12�C Œr13; r12�:

Here r23 D 1˝r etc. The Maurer–Cartan equation ¹r; rº D 0 is known as the classical
Yang–Baxter equation [15].

The following was proved in [8, Appendix] (see also [10]).

Proposition 4.11. Let the characteristic of the ground field k be zero. Then the homo-
morphism

ƒ�.g/g ! H�
�
Rep.g/

�
induced by the multiplication in H�.F /, where F WRep.g/! Vect is the forgetful func-
tor, is an isomorphism.

Proof. The spectral sequence (17) takes the form

E
p;q
2 D Hp

�
g; ƒq.g/

�
H) HpCq

�
Rep.g/

�
;

where Hp.g; ƒq.g// is the cohomology of g with coefficients in the adjoint module
ƒq.g/. The g-invariant splitting ƒq.g/! Zq.F /, sending x1 ^ � � � ^ xq to 1

qŠ
x1 ^ � � � ^

xq , guarantees the collapse of the equivariant spectral sequence on the first page.

Remark 4.12. Proposition 4.11 says that the Hodge decomposition of the cohomology of
the identity functor on Rep.g/ is Hn.Rep.g// D Hn;n.Rep.g// D ƒn.g/g.

Corollary 4.13. The cohomologyH�.Rep.g// coincides with the kernel of the 1-bracket
on H�.F /, where F W Rep.g/! Vect is the forgetful functor.
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Proof. Since H�.F / is multiplicatively generated by H 1.F /, the kernel of the 1-bracket
on H�.F / is the common kernel of the derivations ¹x;�º on H�.F / for all x 2 g D

H 1.F /. According to Remark 4.8, this common kernel is nothing but the subspace of
g-invariants of H�.F /.

Theorem 4.14. Let k be a field of characteristic zero. The 2-bracket on H�.Rep.g// is
zero.

Proof. Follows from Remark 4.12 and Theorem 2.72.

In finite characteristic, the 2-bracket on H�.Rep.g// is far from being trivial.

Example 4.15. Let k be a field of characteristic 3. Let gD hx; y; zi be the 3-dimensional
Heisenberg algebra over k:

Œx; y� D z; Œx; z� D Œy; z� D 0:

The 2-cocycles x ^ z, y ^ z are g-invariant. Their 2-bracket

¹¹x ^ z; y ^ zºº D Œx ^ z; y ^ z� D Œx; y�˝z2 C z2˝Œx; y� D z˝z2 C z2˝z D @

�
z3

3

�
has a nontrivial cohomology class in H 2.Rep.g//. This computation has an interesting
similarity with [7, Example 6.6].

A. Lattice paths, shuffles, and sketches

A.1. Lattice paths operad and its filtration

Here we define the lattice path operad, introduced in [3].
Recall that the category Cat has exactly two closed symmetric monoidal structures: the

Cartesian structure and the so-called funny product structure. Funny tensor product A �B

of two small categories has the Cartesian product of objects sets of A and B as objects,
but morphisms are generated by the expressions .f; id/ and .id; g/, where f W a! a0 in
A and g W b ! b0 in B . We then factorise by relations

.f; id/ ı .id; g/ ı .id; g0/ D .f; id/ ı .id; g ı g0/

and
.f 0; id/ ı .f; id/ ı .id; g/ D .f 0 ı f; id/ ı .id; g/

and similarly on the other side. The result is that in A � B there are two different morph-
isms .f; id/ ı .id; g/ and .id; g/ ı .f; id/ from .a; b/ to .a0; b0/ unless one of f or g is the
identity. From this definition, it is clear that there is a natural morphism A �B ! A �B ,
which identifies .f; id/ ı .id; g/ and .id; g/ ı .f; id/.
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Remark A.1. It is often easier to understand tensor product through its internal Hom.
The internal Hom-functor for the product � is given by the category whose objects are
functors from A to B and whose morphisms are the set of all transformations (not neces-
sary natural) from F to G.

Observe that if a 2A and b 2B are terminal (or weakly terminal) objects, then .a;b/2
A � B is, in general, only weakly terminal. The same applies for initial objects. So, the
tensor product � restricts to the category Cat�;�.

The lattice paths operad L is a symmetric coloured operad in Set with natural numbers
as its set of colours and whose space of operations

L.n1; : : : ; nk In/ D Cat�;�.hnC 1i; hn1 C 1i � � � � � hnk C 1i/;

with the operad substitution maps being induced by tensor and composition in Cat�;�.
The underlying category of L is � since by Joyal’s duality

L.nIm/ D Cat�;�
�
hnC 1i; hmC 1i

�
D �.m; n/:

Recall that similar to the Cartesian product, the funny product � admits two natural
projections:

A
prA
��! A � B

prB
��! B:

Hence, for any two 1 � i < j � k, there is a projection

�ij W hn1 C 1i � � � � � hnk C 1i ! hni C 1i � hnj C 1i

from a hypercube to a square. Let  be a lattice path and let  ij be the composite

hnC 1i
 
�! hn1 C 1i � � � � � hnk C 1i

�ij
��! hni C 1i � hnj C 1i:

Definition A.2. A lattice path

 W hnC 1i ! hp C 1i � hq C 1i

has c corners if the morphism in hp C 1i � hq C 1i given by the composite

h1i ! hnC 1i
 
�! hp C 1i � hq C 1i

has exactly c generators of the form .f; id/ ı .id; g/ or .id; f / ı .g; id/ in which both f
and g are not equal to the identities.

Remark A.3. It is easy to see that this number c does not depend on the presentation of
the composite above. This number is exactly the number of changes of directions of the
lattice path.

Definition A.4. The complexity index of the lattice path  is

c. / D max
i<j

cij . /;

where cij . / is the number of corners of the lattice path  ij .
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Definition A.5 ([3]). The operad L.n/ is the suboperad of L which consists of the lattice
paths of complexity less than or equal to n.

Thus the operad L has an exhaustive filtration by suboperads

� D L.0/
� L.1/

� � � �L.n/
� � � � � L:

We will also need the following description of the lattice paths introduced in [2]. A
lattice path from L.n/.n1; : : : ; nk Im/:

 W hmC 1i ! hn1 C 1i � � � � � hnk C 1i;

has its “shape” in L.n/.n1; : : : ; nk I 0/ as the result of the composition

 W h1i ! hmC 1i ! hn1 C 1i � � � � � hnk C 1i:

To reconstruct this path back, it is enough to add positive integer label (called multipli-
city) to each vertex of the lattice. We add label p > 1 to a vertex v if the full preimage
 �1.idv/ contains exactly p � 1 generators ¹N0; : : : ; Nmº or, equivalently, exactly p identity
morphisms. We assign label 1 if this preimage contains only one identity and 0 if such a
preimage is empty. Informally, we think about the labelling as the time the path “spends”
at v along its way from minimum point to the maximum.

Remark A.6. According to this definition, the label of the endpoints of the path is greater
or equal to 1. This is different from the agreement adopted in [2]. Their labelling is
obtained from ours by subtracting 1 from the endpoints labels. This is because in [2] it
was convenient to take into account the number of internal points along the path.

Yet another small difference is that we label all points on the lattice, not only the points
along the path. Of course, if v is not on the path, its label is 0, so the information is exactly
the same. But we prefer to label all points because it is a little bit easier to see the action
of simplicial operators on a lattice path this way.

A.2. First movement order and paths of complexity 1

In this section, we investigate a natural map from the set of lattice paths to the symmetric
groups, which we call the first movement order.

We identify an element of the symmetric group †k with a linear order on the set
¹1; : : : ; kº. A lattice path

 W hnC 1i ! hn1 C 1i � � � � � hnk C 1i

determines such a linear order by a simple rule: an element i 2 ¹1; : : : ; kº is less than
j 2¹1; : : : ; kº if the move in the direction i appears in  before a move in the direction j .

More formally, we can define this as a map

$ W L.n1; : : : ; nk In/! L.0; : : : ; 0I 0/:

Indeed, the set L.0; : : : ; 0I 0/ is the set of nondecreasing paths on a unit box from

.0; : : : ; 0/! .1; : : : ; 1/
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which go on the edges. Such a path is completely determined by the choice of linear order
on the set of directions ¹1; : : : ; kº.

Example A.7. A lattice path  W h1i ! h1i � h1i � h1i with $. / D .321/
ı ı

ı ı

ı ı

ı ı

??

OO //

Here the path is the sequence of vertices .0; 0; 0/, .0; 0; 1/, .0; 1; 1/, .1; 1; 1/ of the cube.

It is straightforward that L.0; : : : ; 0I0/ is the single colour suboperad of L isomorphic
to Ass.

Formally, the map $ is induced by precomposition of the unique morphism of inter-
vals h1i ! hnC 1i and composition with the product hn1 C 1i � � � � � hnk C 1i ! h1i �

� � � � h1i, where hni C 1i ! h1i is the interval map, which sends any 0 < a � ni C 1 to 1
(or, in terms of generators, it sends N0 to N0 and any other generators to the identity of 1).

The following obvious lemma is useful.

Lemma A.8. The value of the first movement order map $ on the composite

hnC 1i ! hn0 C 1i
 
�! hn01 C 1i � � � � � hn0k C 1i

 1����� k
�������! hn1 C 1i � � � � � hnk C 1i

is equal to $. /.

Lemma A.9. The restriction of the map$ to the lattice paths of complexity 1 is a map of
coloured operads

$ .1/
W L.1/

! Ass:

Proof. It is not hard to see that for any  W hnC 1i ! hp C 1i � hq C 1i of complexity 1
there is a unique map h1i ! h1i � h1i making the following diagram commutative:

hnC 1i // hp C 1i � hq C 1i

h1i //

OO

h1i � h1i:

OO

In fact, this bottom lattice path can be obtained as the composite

h1i ! hnC 1i ! hp C 1i � hq C 1i ! h1i � h1i:

It follows easily then that$ restricted to the lattice paths of complexity 1 respects operadic
composition.

Similarly, define $ .c/ as a restriction of $ to the lattice paths of complexity no more
than c. The following example shows that for c > 1 the corresponding map$ .c/ WL.c/!

Ass is not a map of operads.
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Example A.10. Let c D 2 and let a W h2i ! h2i � h2i be the lattice path of complexity 2
as on the picture below:

ı ı ı

ı ı ı

ı ı ı
1

1

1

0

0
//

OO

OO //

Then $ .2/.a/ D .12/ the identity permutation. Consider the operadic multiplication of a
and two unary operations b W h2i ! h1i, where b.1/ D 0 and id W h2i ! h2i. The result is
the lattice path c

h2i
a
�! h2i � h2i

b�id
���! h1i � h2i

given by the picture
ı ı

ı ı

ı ı

1

1

0

0

OO

OO //

Clearly, $ .2/.c/ D .21/ because the first movement is by the second coordinate. On
the other hand, the result of multiplication in Ass of $ .2/.a/ D .12/ and $ .2/.b/ D

$ .2/.id/ D 1 is the permutation .12/ ¤ $ .2/.c/.

A.3. Shuffles and lattice paths

Definition A.11. A lattice path

 W hnC 1i ! hn1 C 1i � � � � � hnk C 1i

is a shuffle path if for any 0 � i � n the morphism  .Ni/ is one of the generators of the
form .id; : : : ; id; Nj ; id; : : : ; id/, where 0 � j � ns for 1 � s � k.

Lemma A.12. Shuffle-paths form a suboperad �h of the lattice path operad.

Relations to classical shuffles.

Lemma A.13. Any shuffle-path  determines a permutation �. / of ¹0; 1; : : : ; nº as
follows:

�. /.i/ D j C .n1 C 1/C .n2 C 1/C � � � C .ns�1 C 1/;

where Nj is on s-th place in  .Ni/ D .id; : : : ; id; Nj ; id; : : : ; id/. This formula establishes
a one-to-one correspondence between .n1 C 1; : : : ; nk C 1/-shuffles and elements from
�h.n1; : : : ; nk In1 C � � � C nk C k � 1/.

Proof. This is classical [22].
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Lemma A.14. .1/ For any factorisation of a lattice path

hnC 1i ! hn0 C 1i
 0

�! hn1 C 1i � � � � � hnk C 1i;

c. 0/ D c. /, and $. / D $. 0/.
.2/ Any lattice path  W hnC 1i ! hn1 C 1i � � � � � hnk C 1i admits a unique factor-

isation

hnC 1i ! hn� C 1i
 �

��! hn1 C 1i � � � � � hnk C 1i; (19)

where  � is a shuffle path.

Proof. First part of the lemma is obvious.
For the second part, we construct hnC 1i

˛
�! hn� C 1i as follows. Let us identify the

ordinal Œn� with the naturally ordered set ¹N0; : : : ; Nnº. For each Ni 2 supp. /, we have a
unique presentation  .Ni/ D pi0 ı p

i
1 ı � � � ı p

i
li

for certain generators from hn1 C 1i �

� � � � hnk C 1i. We then consider an ordinal Œli � and take Œn�� D Œl0� � Œl1� � � � � � Œln�,
where � means the ordinal sum (concatenation) of ordinals. We consider each Œli � as a
subordinal of Œn�� in a natural way. We then have a map ˇ W Œn��! Œn�, which sends each
element of the subordinal Œli � to Ni 2 Œn�. Let ˛ W hnC 1i ! hn� C 1i be its Joyal’s dual.
By definition, ˛.Ni/ is the composite of the generators from hli C 1i. We then define  � on
such a generator as equal to the corresponding pij .

Thus we have a required factorisation. Uniqueness follows from the fact that  � is
already determined by the “shape” of  , i.e. by the composite

h1i ! hnC 1i
 
�! hn1 C 1i � � � � � hnk C 1i:

Lemma A.15. Let W hnC1i!hn1C1i� � � �� hnkC1i be a lattice path and 1; : : : ; k
a set of composable lattice paths, that is the composition  . 1; : : : ;  k/ is defined in
the lattice path operad. Then there exists a shuffle path  � such that the composite
 �. 

�
1 ; : : : ;  

�

k
/ is defined and such that

(1) $. . 1; : : : ;  k// D $. �. 
�
1 ; : : : ;  

�

k
// and

(2) $. /.$. 1/; : : : ;$. k// D $. �/.$. 
�
1 /; : : : ;$. 

�

k
//,

where in the last row the composite is computed in the operad Ass.

Proof. Consider the composite  . 1; : : : ;  k/:

hnC 1i
 
�! hn1 C 1i � � � � � hnk C 1i

 1����� k
�������! hm1;l1 C 1i � � � � � hmk;lk C 1i:

We factorise  and  i , 1 � i � k, as in (19) to get  � and  �i . Then we factorise the
composite

hn� C 1i
 �

��! hn1 C 1i � � � � � hnk C 1i ! hn
�
1 C 1i � � � � � hn

�

k
C 1i (20)

as a morphism of intervals followed by a shuffle path  �.
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From the uniqueness of factorisation, it follows that�
 . 1; : : : ;  k/

��
D  �. 

�
1 ; : : : ;  

�

k
/

and therefore
$
�
 . 1; : : : ;  k/

�
D $

�
 �. 

�
1 ; : : : ;  

�

k
/
�

from Lemma A.8.
Now, $. / D $. �/ and $. i / D $. 

�
i /. The value of $ on the composite (20)

is equal to $. �/ and also to $. �/ by Lemma A.8 again. Therefore,

$. /
�
$. 1/; : : : ;$. k/

�
D $. �/

�
$. 

�
1 /; : : : ;$. 

�

k
/
�
:

A.4. Shuffle paths and their sketches

The lattice paths have another presentation as strings of integers with a number of ver-
tical bars between them [3, Section 2.2]. The shuffle paths correspond to the strings
where there is exactly one bar between each pair of consecutive entries. This present-
ation can be reformulated as follows. Let FM.k/ be a subset of elements of the free
monoid FM.p1; : : : ; pk/ on k elements which contain each generator at least once. Such
an element is a word p of the variables p1; : : : ;pk . Let F .n1; : : : ;nk Im/�FM.k/ be the
subset of words in which a variable pi appears ni C 1 times if n1C � � � C nk DmC 1� k
and an empty set otherwise. These sets form a Set-operad F whose composition ıi can
be described as follows. Let p 2 F .p1; : : : ; pk/, q 2 F .q1; : : : ; qm/, 1 � i � k. We can
write p as a string pi1pi2pi3 � � � and similarly for q. Observe that in this presentation we
put all generators in degree 1, that is we write pi � � �pi (d -times) for pdi . We suppose that
the number of occurrence of the variable pi in p is equal to the length of the string q.
Then the string p ıi q is obtained by replacing j -th occurrence of the variable pi in p by
the j -th element from q and then renumbering of the variables.

Lemma A.16. There is an isomorphism between shufflepathsoperad�h and theoperadF .

Proof. According to [3], the path

 W hnC 1i ! hn1 C 1i � � � � � hnk C 1i

determines a string of integers i0; : : : ; in, where ip D i if  . Np/D .id; : : : ; id; Nj ; id; : : : ; id/
and j is on i -th place. We interpret this string as a word from FM.k/.

We now introduce a sequence of sets �k.k/; k � 1, whose elements we call sketches.
Sketches help us to handle the combinatorics of complexity and of the first movement
order. The sequence �k.k/ does not form an operad in Set but, in fact, can be equipped
with an operad structure after linearisation. This linearised version was introduced by
McClure and Smith in [24] under the name surjection operad. Sketches form a linear basis
of this operad and can be identified with nondegenerate surjections [24, Definition 2.13].
The facts below are not completely new and can be found in [24]. We present them here
for the reader’s convenience.
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Let �k.k/ � FI.s1; : : : ; sk/ be the subset of elements of the free monoids on k idem-
potent generators, which contains each generator at least once. They are, of course, equi-
valence classes of words in the variables s1; : : : ; sk , where the equivalence relation is
generated by si D sisi for all 1 � i � k. We say that such a word is a reduced form with
respect to a variable si if it does not contain a repeated subword of the form sisi . It is a
reduced form if it is a reduced form with respect to all variables. Obviously, every element
of �k.k/ is uniquely represented by a reduced word and we will suppose by default that
the reduced words are exactly the elements of �k.k/. We can then define a length of a
sketch l.s/ as the length of its reduced form.

For each 1 � i < j � k, there is a projection �ij W �k.k/! �k.2/ which is computed
by substituting the unit e to the word s for all variables not equal to si and sj . For example,

�23.s1s3s1s3s4s1s2s3s1s2/ D es3es3ees2s3es2 D s2s1s2s1:

We define the complexity index of an element s 2 �k.2/ as l.s/ � 1. For an element
s 2 �k.k/ and 1 � i < j � k, we define the complexity index cij .s/ as the complexity
index of the corresponding projection on �ij .s/. The complexity index c.s/ of the sketch
s is the maximum of the pairwise complexity indices.

Finally, we define the first movement order $.s/ of a sketch s 2 �k.k/ as a linear
order on ¹1; : : : ; kº in which variables appear first in the word s.

An expansion .s/i of a sketch s 2 �k.n/ at a variable si is a string of variables
s1; : : : ; sn such that

(1) as an element of FI.s1; : : : ; sn/, it is equal to s,

(2) it is in a reduced form with respect to all variables except for si .

An example of an expansion of s D s1s2s1s2s1 at s1 is

s D s1s1s2s1s1s1s2s1: (21)

For a shuffle path

 W hnC 1i ! hn1 C 1i � � � � � hnk C 1i;

we then associate a sketch sk. / 2 �k.k/ and its expansions ski . / WD .sk. //i for
each 1 � i � k as follows:  determines an element of FM.k/ as in Lemma A.16. Then
sk. / is the image of this element under a natural reduction map FM.k/! �k.k/. To
get ski . /, we reduce the same word by all variables except for i .

Finally, we can substitute a shuffle path t 2 FM.d/ to an expansion .s/i of s provided
the length of t is equal to the number of occurrences of si in .s/i . For this, we replace the
j -th occurrence of si by the j -th term of t (in natural order). Then we change t to s and
renumber by adding i to tj and i C c C d to the variable siCc for c > 0. We then apply
sk to the resulting shuffle path and produce a sketch. We denote this operation .s/i ı t .

For example, for an expansion .s/1 from the example (21) and a shuffle path t D
t1t2t1t3t1t2, the result of substitution .s/1 ı t is

.t1/.t2/s2.t1/.t3/.t1/s2.t2/ D s1s2s4s1s3s1s4s2:
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Lemma A.17. For two shuffle paths  and ! the following is true:

(1) $. / D $.sk. //;
(2) cij . / D cij .sk. // D lk.�ij .p. ///;
(3) sk. ıi !/ D ski . / ı ! if  ıi ! is defined.

Proof. Obvious from definitions.
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