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On some (co)homological invariants of coherent
matrix factorizations

Massimo Pippi

Abstract. We provide an equivalence between the dg category of coherent matrix factorizations and
a certain dg category of absolute singularities. As an application, we compute the `-adic cohomology
of the dg category of coherent matrix factorizations, as well as its Hochschild and periodic cyclic
homologies (these last two only in the affine case).

1. Introduction

Matrix factorizations are non-commutative spaces (a.k.a. dg categories) associated to vari-
eties with a potential h W Y ! A1. They were first introduced by Eisenbud in [11] in order
to study hypersurface singularities. Buchweitz ([4]) and Orlov ([19]) independently found
out that these are related to the dg category of singularities of the fiber over 0 of h. This is
defined as the Drinfeld/Verdier quotient

Sing.h�1.0// D
Cohb.h�1.0//
Perf.h�1.0//

:

In particular, they showed that these two dg categories are equivalent if Y and h are reg-
ular. In other words, matrix factorizations are related to those complexes with coherent
cohomology over h�1.0/ that are not quasi-isomorphic to a perfect one.

This connection can be explained by means of the main theorem in [11]. Assume that
Y D Spec.Q/ is a regular local ring of finite Krull dimension. Let X D Spec.Q=h/. A
classical result due to Auslander–Buchsbaum/Serre (see [1, 28]) asserts that X is regular
if and only if it has finite global dimension, i.e., any finitely generated module admits
a finite resolution by projective modules of finite type. Eisenbud proved that if X fails
to be regular, the resolutions of finitely generated Q=h modules eventually become 2-
periodic. This 2-periodic part of the complex is essentially the datum of two projective
Q-modules of finite type, together with twoQ-linear morphisms from one another whose
compositions are equal to multiplication by h. That is, the 2-periodic part of the complex
is essentially the datum of a matrix factorization.
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Various generalizations of the dg category of matrix factorizations and of dg categories
of singularities have been introduced in the literature. The main theme of this note deals
with dg categories of matrix factorizations defined for pairs .Y; h/ where Y is allowed to
be singular.

When Y is a regular scheme, there is only one candidate for what should be the cat-
egory of matrix factorizations of h W Y ! A1 and it coincides with the dg category of
absolute singularities of h�1.0/. However, as soon as we allow Y to be singular, (at least)
two non-equivalent definitions are possible. The first possibility is to consider the dg cat-
egory of relative singularities of i W h�1.0/ ! Y ([5, 10]). The pushforward induces a
well-defined dg functor

i� W Sing.h�1.0//! Sing.Y /

and the dg category of relative singularities is defined as its kernel:

Sing.Y; h/ WD Ker
�
i� W Sing.h�1.0//! Sing.Y /

�
:

The pullback i� also induces a dg functor between the dg categories of singularities
of Y and h�1.0/. Therefore, as a second possibility, we can consider the dg quotient

Singcoh.Y; h/ D Coker
�
i� W Sing.Y /! Sing.h�1.0//

�
;

also known as the dg category of coherent relative singularities. As far as the author is
aware, this dg category was first considered by Efimov and Positselski in [10].

These two relative versions of the dg category of singularities also admit a description
in terms of matrix factorizations ([2,5,10,22]). Roughly, Sing.Y;h/ is equivalent to the dg
category MF.Y; h/ whose objects are quadruples .E0; E1; ı0 W E0 ! E1; ı1 W E1 ! E0/

where E0 and E1 are Y -vector bundles of finite rank and ı0 ı ı1 D h D ı1 ı ı0, while
Singcoh.Y; h/ is equivalent to the dg category MFcoh.Y; h/ whose objects are quadruples
.F0; F1; @0 W F0 ! F1; @1 W F1 ! F0/ where F0 and F1 are coherent OY modules and
@0 ı @1 D h D @1 ı @0. This also explains the choice of terminology for Singcoh.Y; h/.

Remark 1.1. It is immediate to see that Sing.Y;h/' Singcoh.Y;h/' Sing.h�1.0//when
Y is regular, as in this case Sing.Y / ' 0.

An interesting feature of non-commutative spaces is that, while they do not carry any
topology, it is still possible to define interesting (co)homological invariants.

The main purpose of this note is the computation of some (co)homological invariants
of the dg category of coherent matrix factorizations. As far as the author is aware, these
(co)homological invariants were previously computed only in the case where the ambient
space is regular ([2, 8, 9, 15, 21, 24, 27]).

The main observation is that sometimes it is possible to identify the category of co-
herent matrix factorizations MFcoh.Y; h/ with the category of (usual, i.e., locally free)
matrix factorizations MF.V ; W / of a pair .V ; W / where V is regular. This is done by
studying certain (well-known) cohomological operators on the two sides of a reduction of
codimension equivalence for matrix factorizations (see [6, 20]).
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More precisely, let X be a quasi-compact and separated scheme of finite type over a
regular local noetherian ring S of finite Krull dimension. Let EX be a vector bundle over
X and let LX be a line bundle over X . Moreover, let pC D .p; s/ be a global section of
ECX D EX ˚LX . Recall that, for any locally noetherian (derived) scheme Z (such that
OZ 2 Cohb.Z/), we can define its dg category of absolute singularities

Sing.Z/ WD
Cohb.Z/
Perf.Z/

:

Starting from .X; pC/, we can consider the following two dg categories of relative singu-
larities:

Sing.X; pC/ WD Ker
�
f� W Sing.V.pC//! Sing.X/

�
;

Sing.X; p/ WD Ker
�
g� W Sing.V.p//! Sing.X/

�
;

where f W V.pC/! X and g W V.p/! X are the lci closed embedding determined by
pC and p respectively. A theorem of Orlov, refined by Burke and Walker, tells us that we
have equivalences

Sing.X; pC/ ' Sing.P .EC;_X /;WpC/;

Sing.X; p/ ' Sing.P .E_X /;Wp/:

Here, P .EC;_X / D ProjX .SymOX
.ECX // (resp. P .E_X / D ProjX .SymOX

.EX //),WpC (resp.
Wp) denotes the global section of OP.EC;_X /

.1/ (resp. OP.E_X /
.1/) determined by pC (resp.

p) and

Sing.P .EC;_X /;WpC/ WD Ker
�
j� W Sing.V.WpC//! Sing.P .EC;_X //

�
;

Sing.P .E_X /;Wp/ WD Ker
�
k� W Sing.V.Wp//! Sing.P .E_X //

�
;

where j W V.WpC/! P .EC;_X /, k W V.Wp/! P .E_X /. There are lci closed embeddings

i W V.pC/ ,! V.p/; r W V.Wp/ ,! V.WpC/

that induce adjunctions

i� W Sing.X; p/⇄ Sing.X; pC/ W i�;

r� W Sing.P .E_X /;Wp/⇄ Sing.P .EC;_X /;WpC/ W r
Š:

The crucial observation of this note is that these adjunctions correspond (up to a twisted
shift).

Theorem 2.10. The adjunctions

i�..�/˝LV.p//Œ�1� W Sing.X; p/! Sing.X; pC/ W .i�.�/˝L_V.p//Œ1�;

r� W Sing.P .E_X /;Wp/! Sing.P .EC;_X /;WpC/ W r
Š

identify under the equivalences above.
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The counit of .i�; i�/ (resp. .r�; r Š/) induces a cohomological operator " (resp. �) on
Sing.X; pC/ (resp. Sing.P .EC;_X /; WpC/). See Definitions 2.12 and 2.13. As an imme-
diate consequence of the theorem above, these operators agree under the equivalences
above.

We will next study the torsion objects of these operators, i.e., objects P in Sing.X;pC/
(resp. Sing.P .EC;_X /;WpC/) such that "n� 0 (resp. �n� 0) for some n� 0. Clearly, these
agree under the equivalence Sing.X; pC/ ' Sing.P .EC;_X /;WpC/.

We will show that (see Proposition 3.5)

Sing.X; pC/"�tors
' hi�Sing.X; p/i;

where hi�Sing.X; p/i is the thick sub category of Sing.X; pC/ generated by the image of
the pullback i� W Sing.X; p/! Sing.X; pC/, and that (see Proposition 3.10)

Sing.P .EC;_X /;WpC/
��tors

' hr�Sing.P .E_X /;Wp/i;

where hr�Sing.P .E_X /;Wp/i denotes the thick sub category generated by the image of the
pushforward r� W Sing.P .E_X /;Wp/! Sing.P .EC;_X /;WpC/.

Furthermore, when X and pC are regular1, we will identify hr�Sing.P .E_X /; Wp/i
with the dg category SingV.Wp/.P .E

C;_
X /;WpC/ ' SingV.Wp/.V.WpC//, which is the full

sub category of Sing.P .EC;_X /;WpC/ ' Sing.V.WpC// spanned by those objects whose
support is contained in V.Wp/.

Therefore, assuming that X and pC are regular and putting all pieces together, we get
the following corollary.

Corollary 3.20. The equivalence Sing.X;pC/' Sing.P .EC;_X /;WpC/ induces an equiv-
alence of exact sequences in dgCatidm

S ,

hi�Sing.V.p//i Sing.V.pC// Singcoh.V.p/; s/

SingV.Wp/.V.WpC// Sing.V.WpC// Sing.V.WpC/ � V.Wp//:

................................................................................................. ......................
......

..................................................................................................... ............

...........................................
.....
.......
.....

...........................................
.....
.......
.....

...........................................
.....
.......
.....

..................................................................... ......................
......

................................................... ............

In particular,

Singcoh.V.p/; s/ D
Sing.V.pC//
hi�Sing.V.p//i

'
Sing.V.WpC//
hr�Sing.V.Wp//i

' Sing.V ; WpCjV /;

where V D P .ECX / � P .EX / is a regular scheme.

The dg category on the left-hand side is the dg category of coherent relative singulari-
ties of V.pC/ ,! V.p/. The main advantage of the equivalence above is the identification
of Singcoh.V.p/; s/ with the category of matrix factorizations of a pair .V ; WpCjV / with
V regular.

1Recall that a section s of a vector bundle V on a scheme Z is regular if the corresponding morphism
OZ ! V is injective. For example, see [5, Section 5].
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Remark 1.2. Let h W Y ! A1 be a variety with a potential. If Y is regular, then MF.Y; h/
has nice properties, e.g., it satisfies Thomason’s localization. When Y is not regular this is
no longer true (see [10] and [9]): Thomason’s localization fails in general, periodic cyclic
homology may be infinite dimensional . . . It is true however that MFcoh.Y; h/ has nice
properties. The equivalence above might shed some light on different behaviors of the two
versions of MF: being equivalent to a dg category of matrix factorizations for a pair where
the ambient space is regular, the coherent version inherits all its nice properties.

Remark 1.3. Assume that g W X D Spec.A/! A1C is a variety with a potential. It is well
known (see, e.g., [19]) that, if X is regular, MF.X; g/ is non-zero if and only if g�1.0/ is
singular. In particular, only finitely many MF.X;g � c/, c 2 C, do not vanish in this case.
IfX is not supposed to be regular, the author was not aware of any argument guaranteeing
that MFcoh.X;g � c/ is non-zero only for finitely many c 2 C. This can be seen by means
of the previous equivalence. Assume that .f1; : : : ; fm; g/ 2 CŒx1; : : : ; xn� is a regular
sequence and let A D CŒx1;:::;xn�

.f1;:::;fm/
. Since X may be singular, it is not true that only finitely

many values of g W X ! A1C are critical. Nevertheless, it is not true that MFcoh.X; g � c/

is non-zero if g�1.c/ is singular neither. The equivalence above translates in this context
as

MFcoh.X; g/ 'MF.AnCmC ; W /;

whereW D f1 � xnC1 C � � � C fm � xnCm C g. Also notice that, for any c 2C, the assign-
ment g ⇝ W is compatible with translations, i.e., g � c ⇝ W � c. More generally, we
thus have that

MFcoh.X; g � c/ 'MF.AnCmC ; W � c/:

As the dg category on the right-hand side is non-zero only for finitely many values of
c 2 C, the same holds true for the dg category of coherent matrix factorizations.

This phenomenon can be explained as, roughly, MFcoh.X; g � c/ being non-zero if
and only if the points of the fiber g�1.c/� Y are “more singular” when considered inside
g�1.c/ rather than when considered in Y . See also Definition 4.17.

Example 1.4. We will try to explain the phenomenon of the previous remark via an
example. Let g D x22 C x

2
3 C x

2
4 C x

2
5 , f D x1 � x2 C x3 � x4 2 CŒx1; : : : ; x5� and X D

V.f / � A5C . Notice that all points .0; 0; 0; 0;˙
p
c/ 2 g�1.c/ are singular. In particular,

all fibers g�1.c/ are singular.
In this example,

W D .x1 � x2 C x3 � x4/ � x6 C x
2
2 C x

2
3 C x

2
4 C x

2
5 W A

6
C ! A1C

and one easily sees that 0 is the only critical value of W . In particular,

MFcoh.X; g � c/ 'MF.A6C; W � c/ ' 0

for all c ¤ 0.
Alternatively, one can argue that the reason for which MFcoh.X; g � c/ ' 0 if c ¤ 0

is that 0 is the only relative critical value of g W X ! A1C (in the sense of Definition 4.17).
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Remark 1.5. Let g W X ! A1C be as in Remark 1.3. Notice that also MF.X; g � c/, the
dg category of locally free matrix factorizations, vanishes for almost all c 2 C. This is an
immediate consequence of Remark 1.3 and of the existence of a fully faithful dg functor
(see [10])

MF.X; g � c/ �MFcoh.X; g � c/:

In the last section, we apply the equivalence above to compute certain (co)homologi-
cal invariants of Singcoh.V.p/; s/, namely its `-adic cohomology (as defined in [2]), its
Hochschild homology and its periodic cyclic homology (in the affine case). These results
can be seen as attempts to generalize previous established theorems: for the `-adic coho-
mology, the main theorems in [2] and in [21]; for the Hochschild and periodic cyclic
homologies, theorems in [8, 9, 15, 24, 27].

Remark 1.6. For more details on our notation, we invite the reader to consult Section 4.

Theorem 4.3. Let .X;pC/ be an LG model over .Y;ECY / such that X is a regular scheme
and pC is a regular section. Then

R
`;_
Y .Singcoh.V.p/; s// ' R

`;_
Y .MFcoh.V.p/; s// ' q�ˆmi

.V ;WpCjV /
.Q`.ˇ//Œ�1�;

where q W U D V.WpCjV /! Y is the canonical morphism, R
`;_
Y denotes the “`-adic

cohomology of dg categories” 1-functor and ˆmi
.V ;WpCjV /

.Q`.ˇ// denotes the `-adic
sheaf of monodromy invariant vanishing cycles (see [21]).

Theorem 4.22. Let f1; : : : ; fm; g 2 CŒx1; : : : ; xm� be a regular sequence. Let X D
Spec.CŒx1;:::;xn�

.f1;:::;fm/
/ and letW D gC

Pm
kD1 fk � xnCk 2CŒx1; : : : ;xnCm�. There is an equiv-

alence of Z=2Z-graded bundles with connections on Spf.CLuM/M
c2C

HP�.MFcoh.X; g � c/;rGMu /

'

�
H�Zar.�

�

AnCm
C

LuM;�dW C uddR/;rdRu D
d

du
C
�

u
C
W

u2

�
;

where �j�p
AnCmC

D �
p
2
� id, and an equivalence of Z=2Z-graded vector spacesM

c2C

HH�.MFcoh.X; g � c// ' H�Zar.A
nCm
C ; .��

AnCm
C

;�dW //:

Moreover, if the relative critical locus of g (see Definition 4.17) is contained in the fiber
over 0, then

HP�.MFcoh.X;g/;rGMu /'

�
H�Zar.�

�

AnCm
C

LuM;�dW C uddR/;rdRu D
d

du
C
�

u
C
W

u2

�
;

and
HH�.MFcoh.X; g// ' H�Zar.A

nCm
C ; .��

AnCm
C

;�dW //:
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Combining the theorem above with the algebraic computation of vanishing cycles
([25, 26]), we get the following theorem.

Theorem 4.23. With the same notation as above, there is an equivalence of Z=2Z-graded
vector bundles with connections of the punctured disk,M

c2C

HP�.MFcoh.X; g � c/;rGMu /

'

M
c2C

yE �
c
u ˝CLuM cRH

�1
.H��1an .W

�1.c/; ˆW�c.CAnCm
C

//; T � .�1/�/:

Moreover, if the relative critical locus of g is contained in the fiber over 0, then

HP�.MFcoh.X; g/;rGMu / ' cRH
�1
.H��1an .W

�1.0/;ˆW .CAnCm
C

//; T � .�1/�/:

For details about the notation appearing in the members of the two equivalences above,
we refer to [9, 25, 26] (or Theorems 4.12 and 4.13 below, where we state the results from
loc. cit. we will need).

Remark 1.7. Matrix factorizations play a crucial role in Toën–Vezzosi’s approach to the
Bloch’s conductor formula conjecture (see [3] and [32]). In [31] the authors suggest that
applying their machine to MFcoh.Z; �Z/ (for a suitable pair .Z; �Z/) might be useful to
remove the unipotency hypothesis in their categorical version of the Bloch’s conductor
formula.

Notice however that Toën and Vezzosi are currently investigating a second approach
to the Bloch’s conductor conjecture which does not make use of coherent matrix factor-
izations. See [33].

Remark 1.8. In [9, §6], the author states that the following formula is expected to hold:

.HP�.MFcoh.X; g//;rGMu / ' cRH
�1
.H��1c .g�1.0/;ˆg.CX //

_; T _ � .�1/�/;

at least when the relative critical locus of W is concentrated over 0.
In light of the theorem above, this is equivalent to proving that there is a quasi-

isomorphism cRH
�1
.H��1an .W

�1.0/;ˆW .CAnCm
C

//; T � .�1/�/

' cRH
�1
.H��1c .g�1.0/;ˆg.CX //

_; T _ � .�1/�/:

Conventions and notations.

• We will use the theory of1-categories. See [16] and [17].

• We will use interchangeably the terminology “matrix factorizations” and “dg category
of (relative) singularities”. Indeed, it is known after Buchweitz ([4]), Orlov ([19]),
Burke–Walker ([5,6]) and Efimov–Positselski ([10]) (see also [22]) that these coincide.
In particular, for us “matrix factorizations” will be what are sometimes called “locally
free matrix factorizations” in the literature.
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• Similarly, we will say “coherent matrix factorizations” and “category of coherent rel-
ative singularities” to identify the same category. This is possible after [10] (see also
the final remark in [22]).

• All functors are implicitly derived so that, for example, given a proper morphism of
schemes of finite Tor-dimension f WX!Y we will write f� instead of Rf�. Similarly,
all fiber products of schemes will be taken in the1-category of derived schemes.

• Whenever we are given a morphism of (derived) schemes f W X ! Y and an object
EY 2 QCoh.Y / of the (1-enhancement of the) derived category of Y , we will write
EX instead of f �EY .

• We will work with dg categories up to Morita equivalence. The 1-category of (S -
linear) dg categories up to Morita equivalences will be denoted by dgCatidm

S .

2. Cohomological operators

Context 2.1. Let A be a local regular noetherian ring of finite Krull dimension, whose
prime spectrum will be denoted by S . Let Y be a flat S scheme of finite type. Moreover,
let EY be a vector bundle of rank r on Y and LY be a line bundle on Y . We will denote
by ECY the vector bundle EY ˚LY on Y .

Recall the definition of twisted LG models (see [21]).

Definition 2.2. Let LG⊞
.Y;ECY /

denote the (ordinary) symmetric monoidal category of twist-
ed LG models over .Y;ECY /. It is defined as follows:

• objects are pairs .X; pC/, where f W X ! Y is a flat Y -scheme of finite type (the
structure morphism is tacit in our notation) and pC is a global section of ECX . We will
use the notation .p; s/ to denote the global section corresponding to pC under the
isomorphism H0.X;ECX / ' H0.X;EX /˚ H0.X;LX /;

• given two objects .Xk ; pCk /, k 2 ¹1; 2º, a morphism � W .X1; p
C
1 /! .X2; p

C
2 / is a

morphism � W X1 ! X2 of Y -schemes such that ��.pC2 / D p
C
1 ;

• identities and composition are clear;

• the symmetric monoidal structure, labeled

⊞ W LG.Y;ECY / � LG.Y;ECY / ! LG.Y;ECY /;

is defined by the formula

.X1; p
C
1 /⊞ .X2; p

C
2 / D .X1 �Y X2; p

C
1 ⊞ p

C
2 /:

Here, pC1 ⊞ p
C
2 stands for the global section pr�1 .p

C
1 /C pr

�
2 .p

C
2 / 2 H0.X1 �Y X2;

ECX1�YX2/, where prk W X1 �Y X2! Xk denotes the canonical projection, k 2 ¹1; 2º.
It is straightforward that ⊞ defines a symmetric monoidal structure, whose unit is the
object .Y; 0/.
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Remark 2.3. Let .Y; ECY / be as above and consider the symmetric monoidal category
LG⊞

.Y;EY /
of twisted LG models over .Y; EY /. There is an obvious symmetric monoidal

functor

Q⊞
W LG⊞

.Y;ECY /
! LG⊞

.Y;EY /
;

.X; pC/ 7! .X; p/:

Notice that Q⊞ admits a section

� W LG⊞
.Y;EY /

! LG⊞
.Y;ECY /

;

.X; p/ 7! .X; .p; 0//:

Notation 2.4. To any twisted LG model .X; pC/ over .Y;ECY / we can associate a (de-
rived) scheme, namely the (derived) zero locus of pC. We will denote it by V.pC/.
Similarly, we will denote by V.p/ the (derived) zero locus of p.

Recall the following construction of [21, §6]: let .Z;VZ/ be a proper flat scheme over
S with a fixed vector bundle. Let P .V_Z/ denote the projective bundle ProjZ.SymOZ

.VZ//

and let O.1/ denote the twisting sheaf on it. There exists a symmetric monoidal functor

„⊞
W LG⊞

.Z;VZ/
! LG⊞

.P.V_Z/;O.1//

defined on objects by the formula

„.X; s/ D .P .V_X /;Ws/:

Recall that
Ws W OP.V_X /

D ˜SymOX
.VX /! ˜SymOX

.VX /.1/ D O.1/

is the global section of O.1/ induced by the morphism OX ! VX .
There are lax monoidal1-functors

Sing.�; �/;Sing.P .V_� /;W�/ W LGop;⊞
.Z;VZ/

! dgCatidm;˝
S

which at the level of objects are defined by the assignments

.X; s/ 7! Sing.X; pC/; .X; s/ 7! Sing.P .V_X /;Ws/

respectively.

Notation 2.5. For us, given a pair .Z;s/, where s is a global section of some vector bundle
over Z, Sing.Z; s/ denotes the dg category of relative singularities of i W V.s/ ,! Z, i.e.,
the homotopy fiber (computed in dgCatidm

S ) of the dg functor

i� W Sing.V.s//! Sing.Z/:
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This dg functor is well defined as i is an lci closed embedding of derived schemes. In
particular, it preserves both perfect complexes and complexes with coherent cohomology
([12, 30]). It is well known (see [2, 21]) that

Sing.Z; s/ '
Cohb.V.s//Perf.Z/

Perf.V.s//
;

where Cohb.V.s//Perf.Z/ denotes the full sub dg category of Cohb.V.s// spanned by
those complexes M such that i�.M/ 2 Perf.Z/.

Notice that since both functors are lax monoidal, they factor through

ModSing.Z;0/.dgCatidm;˝
S / and ModSing.P.V_Z/;0/

.dgCatidm;˝
S /

respectively. These two assignments are compatible in the following way.

Theorem 2.6 ([6, 20, 21]). There exists a lax monoidal1-natural transformation of1-
functors

‡˝ W Sing.�; �/! Sing.P .V_� /;W�/ W LGop;⊞
.Z;VZ/

!ModSing.Z;0/.dgCatidm;˝
S /

inducing an equivalence

‡.X;s/ W Sing.X; s/
�
�! Sing.P .V_X /;Ws/

for any LG model .X; s/ where s is a regular global section.

Remark 2.7. We strongly believe that the regularity assumption imposed on s is superflu-
ous, at least if one is willing to consider the derived zero locus of s instead of the classical
one.

In particular, this applies to .Z;VZ/ D .Y;ECY / and .Z;VZ/ D .Y;EY /.
With the same notation as above, let V.WpC/ and V.Wp/ denote the zero loci of the

global sections WpC and Wp respectively. They fit in the following commutative diagram
of (possibly derived) S schemes:

P .EC;_V.pC// V.WpC/ P .EC;_X /

V.pC/

X

V.p/

P .E_V.p// V.Wp/ P .E_X /

.......................................................................................................................................................................................................... ............
k

................................................................................................................................................................................................................... ............

.........................................................
.....
.......
.....

q

..........................................................
.....
.......
.....
i

................................................................................................................................................................................................................................................. ..............................................................................................................................................................................
.....
.......
.....

................................................................................................................................................................................................................................................. .............................................................................................................................................
.......
.......
.......
.................
............

.......

.......

.......

.......

.......

.......

.......

.......

.......

.............

............

p

........................................................................................................................................................................................................................ ............
j

.................................................................................................................................................................................................................................... ............
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
............

r

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..................

............
..............................................................................................................................................................

....
............

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

...........................

(2.1)
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In the diagram above, P .E_X /! P .EC;_X / is the closed embedding induced by the
surjection ECX ' EX ˚LX ! EX . Notice that it is an lci closed embedding, as locally
it is of the form P r�1X ! P rX . Also notice that V.Wp/ ' V.WpC/ �P.EC;_X /

P .E_X /. In
particular, r W V.Wp/! V.WpC/ is an lci morphism as well and therefore it induces a dg
functor

r� W Sing.P .E_X /;Wp/! Sing.P .EC;_X /;WpC/

at the level of dg categories of relative singularities.

Lemma 2.8. The dg functor r� W Sing.V.p/; Wp/! Sing.V.pC/; WpC/ admits a right
adjoint r Š W Sing.V.pC/;WpC/! Sing.V.p/;Wp/ induced by the !-pullback.

Proof. This is a standard verification using the properties of the !-pullback. Consider the
pullback square

V.Wp/ P .E_X /

V.WpC/ P .EC;_X /:

............................................................................................................ ............
˛

............................................................................................................
.....
.......
.....

r

............................................................................................................
.....
.......
.....

Qr

....................................................................................... ............

z̨

Since r is lci and, in particular, of finite Tor-dimension, we have a well-defined dg functor
r� W Cohb.V.WpC//! Cohb.V.p//. Its restriction to Cohb.V.WpC//Perf.P.EC;_X //

fac-
tors through Cohb.V.Wp//Perf.P.E_X //

�Cohb.V.Wp// as r�˛�' Qr� z̨�. Recall that we
have an equivalence of functors r Š.�/ ' r�.�/˝ !V.Wp/=V.WpC /

(see, e.g., [18, Corol-
lary 6.4.2.7]), where !V.Wp/=V.WpC /

denotes the relative dualizing sheaf. Notice that
!V.Wp/=V.WpC /

' ˛�!P.E_X /=P.E
C;_
X /

is a perfect complex. In particular, r Š is well defined
at the level of complexes with coherent bounded cohomology sheaves. Then we have a
well-defined dg functor

r Š W Cohb.V.WpC//Perf.P.EC;_X //
! Cohb.V.Wp//Perf.P.E_X //

as ˛�.r�.F /˝ !V.Wp/=V.WpC /
/'˛�r

�.F /˝ !P.E_X /=P.E
C;_
X /

. Since it is clear that r Š pre-
serves perfect complexes, we have a well-defined dg functor

r Š W Sing.V.pC/;WpC/! Sing.V.p/;Wp/:

It is clear that it is the right adjoint to r� W Sing.V.p/;Wp/! Sing.V.pC/;WpC/ (before
taking quotients, r Š is the right adjoint to r�).

Let us now focus on the closed embedding i WV.pC/!V.p/. This is also an lci closed
embedding of (derived) schemes and therefore the �-pullback and the �-pushforward
induce an adjunction at the level of the dg categories of singularities (see [2, 10, 21]).
We will denote this adjunction by

i� W Sing.X; p/⇄ Sing.X; pC/ W i�:
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It is natural to ask whether the adjunction .i�; i�/ identifies with .r�; r Š/ under the equiv-
alences

Sing.X; pC/
�
�! Sing.P .EC;_X /;WpC/; Sing.X; p/

�
�! Sing.P .E_X /;Wp/:

We will now show that this is indeed the case up to a twisted shift.

Remark 2.9. This question is closely related with the comparison between Eisenbud
operators and operators induced by Ti 2 H0.P r�1B ;O.1// addressed by the authors in [6].
We will come back to this point later.

Theorem 2.10. Let .X; pC/ be an LG model over .Y;ECY / such that pC is regular. There
is an equivalence of adjunctions

i�
�
.�/˝LV.p/

�
Œ�1� W Sing.X; p/ Sing.X; pC/ W

�
i�.�/˝L_V.p/

�
Œ1�

r� W Sing.P .EX /;Wp/ Sing.P .ECX /;WpC/ W r
Š

..................................................................................................................................... ............

.................................................................................................................................................

.................................................................................................................................................

..................................................................................................................................... ............

............................................................
.....
.......
.....

�

............................................................
.....
.......
.....
�

where the vertical dg functors are ‡.X;p/ and ‡.X;pC/ respectively, i.e.,

r� ı ‡.X;p/ ' ‡.X;pC/ ı i
�
�
.�/˝LV.p/

�
Œ�1�;

r Š ı ‡.X;pC/ ' ‡.X;p/ ı
�
i�.�/˝L_V.p/

�
Œ1�:

Proof. It is clear that it suffices to show one of the equivalences in the statement of the
theorem. For example, if we assume that r� ı ‡.X;p/ ' ‡.X;pC/ ı i�..�/˝LV.p//Œ�1�,
we get the other equivalence by noticing that, by uniqueness (up to equivalence) of right
adjoints, ‡�1

.X;p/
ı r Š ' .i�.�/˝L_V.p//Œ1� ı ‡

�1
.X;pC/

, i.e.,

r Š ı ‡.X;pC/ ' ‡.X;p/ ı
�
i�.�/˝L_V.p/

�
Œ1�:

The other implication is analogous.
We will show that ‡�1

.X;p/
ı r Š ' .i�.�/˝L_V.p//Œ1� ı‡

�1
.X;pC/

. Recall that ‡.X;p/ '
j�p

� and that ‡.X;pC/ ' k�q
�. In particular, ‡�1

.X;p/
' p�j

Š and ‡�1
.X;pC/

' q�k
Š. We

are therefore claiming that

p�j
Šr Š '

�
i�.�/˝L_V.p/

�
q�k

ŠŒ1�:

Let us compose both functors with ‡.X;pC/ D k�q� on the right. On the right-hand side
we immediately see that we obtain a functor equivalent to .i�.�/˝L_V.p//Œ1�.
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Consider the following diagram:

V.pC/ P .EC;_V.pC// V.WpC/

P .E_V.pC//

V.p/ P .E_V.p// V.Wp/

...........................................................................................................................................................................
q

........................................................................................................................................................ ............
k

.................
.................

.................
.................

.................
.................

.................
.................

.................
.....................................

q ı ˛
.......
.......
.......
.......
.......
.......
.......
.......
..............
............

˛

..............................................................................................................................................................
.....
.......
.....

i
.........................................................
.....
.......
.....
ˇ

..........................................................................................................................................................................................
p

.................................................................................................................................................................................. ..........
..

ˇ ı j

...................................................................................................................................................................... ............

j

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

................

............

r

and notice that V.pC/ �V.p/P .E
_
V.p// ' P .E_V.pC// ' P .EC;_V.pC// �V.WpC /

V.Wp/. Then
we have the following chain of equivalences:

p�j
Šr Šk�q

�
'

r Šk�'j�ˇ�˛Š

p�j
Šj�ˇ�˛

Šq�

'

˛Š'˛�.�/˝!
P.E_

V.pC/
/=P.E

C;_

V.pC/
/

p�j
Šj�ˇ�.˛

�q�.�/˝ !P.E_
V.pC/

/=P.EC;_
V.pC/

/
/:

The ideal sheaf I � OP.EC;_X /
defining u W P .E_X /! P .EC;_X / is

OP.EC;_X /
.�1/˝OX LX ' OP.EC;_X /

.�1/˝O
P.E
C;_
X

/
LP.EC;_X /

;

from which we see that

I

I 2
' OP.E_X /

.�1/˝OP.E_
X
/
LP.E_X /

:

Then,

!P.E_X /=P.E
C;_
X /
' NP.E_X /=P.E

C;_
X /

Œ�1� D
� I

I 2

�_
Œ�1�

' .OP.E_X /
.1/˝L_P.E_X /

/Œ�1�:

As the squares in the diagram

P .EC;_V.pC// V.WpC/ P .EC;_X /

P .E_V.pC// V.Wp/ P .E_X /

...................................................................................................... ............
k

............................................................................................................... ............

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...............

............

˛

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...............

............

r

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...............

............

............................................................................................................. ............
ˇ ı j

................................................................................................................................ ............
u

are cartesian, the equivalences

!P.E_
V.pC/

/=P.EC;_
V.pC/

/
' .OP.E_

V.pC/
/.1/˝L_P.E_

V.pC/
/
/Œ�1�

' ˇ�j �.OV.Wp/.1/˝L_V.Wp//Œ�1�
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follow from [18, Remark 6.4.2.6]. Therefore, we can continue the chain of equivalences

p�j
Šj�ˇ�.˛

�q�.�/˝ !P.E_
V.pC/

/=P.EC;_
V.pC/

/
/

' p�j
Šj�ˇ�

�
˛�q�.�/˝ ˇ�j �.OV.Wp/.1/˝OV.Wp/

L_V.Wp//Œ�1�
�

' p�j
Š
�
j�ˇ�˛

�q�.�/˝OV.Wp/.1/˝L_V.Wp/
�
Œ�1�

' p�j
Š
�
j�ˇ�˛

�q�.�/˝L_V.Wp/
�
Œ1�;

where for the last equivalences we have used the projection formula and the fact that

.�/˝OV.Wp/.1/Œ�1� ' .�/Œ1�

in Sing.P .E_X /;Wp/ (i.e., Sing.P .E_X /;Wp/ is twisted 2-periodic, see, e.g., [6, Theo-
rem 2.7]). Finally, notice that

p�j
Š
�
j�ˇ�˛

�q�.�/˝L_V.Wp/
�
Œ1� ' p�j

Šj�
�
ˇ�˛

�q�.�/˝L_P.E_V.p//
�
Œ1�

'

ˇ�˛�q�'p�i�

p�j
Šj�
�
p�i�.�/˝L_P.E_V.p//

�
Œ1�

' p�j
Šj�p

�
�
i�.�/˝L_V.p/

�
Œ1�

'

p�j Šj�p�'idSing.X;p/

�
i�.�/˝L_V.p/

�
Œ1�:

Since k�q� is an equivalence, the proof is complete.

It has been known since when they were introduced by Eisenbud in [11] that matrix
factorizations are naturally endowed with certain cohomological operators, known now-
adays as Eisenbud operators. They were defined in the following setup: consider a local
regular noetherian ring of finite Krull dimension Q and let f D .f1; : : : ; fn/ 2 Qn be a
regular sequence on it. Set R DQ=.f /. Then Eisenbud defined in [11] n natural transfor-
mations in Fun.Sing.R/;Sing.R//

"j W idSing.R/ ! .�/Œ2�; j 2 ¹1; : : : ; nº:

Remark 2.11. In the special case n D 1, "1 D " is an equivalence and is indeed the one
giving Sing.R/ 'MF.Q; f / its natural 2-periodic structure.

In [6], the authors provide a geometric description of Eisenbud operators, using the
equivalence provided by Theorem 2.6. Notice that they do not require Q to be regular.
They show (see [6, Theorem 3.2]) that under the equivalence

Sing.Q; f / ' Sing.Pn�1Q ; W /;

where W D
Pn
jD1 fj � Tj (Tj ’s being the local coordinates of Pn�1Q ), Eisenbud operators

correspond to the natural transformations

idSing.Pn�1Q ;W /

Tj
�! .�/˝O.1/ ' .�/Œ2�

induced by multiplication along the local coordinates of the projective space.
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One of the main purposes of this note is to show that it might convenient to consider
Eisenbud operators in more general contexts than the one quickly recalled above. For this
we introduce the following definition.

Definition 2.12. Let .Y;ECY / be as in Context 2.1 and let .X; pC/ be an LG model over
it. Using the same notation as in diagram (2.1), define " to be the natural transformation

idSing.X;pC/
"
�! .�/˝L_V.pC/Œ2�

induced by the counit i�i�! idSing.X;pC/. In particular, for any object B in Sing.X;pC/,
by definition, we have a fiber-cofiber sequence

i�i�B ! B
"
�! B ˝L_V.pC/Œ2�:

We will refer to " as the Eisenbud operator on Sing.X; pC/ (E-operator for short).

Similarly, we have an operator on the other side of the equivalence in Theorem 2.6.

Definition 2.13. Let .Y;ECY / be as in Context 2.1 and let .X; pC/ be an LG model over
it. Using the same notation as in diagram (2.1), define � to be the natural transformation

idSing.P.ECX /;WpC /
�
�! .�/˝OV.WpC /

.1/˝L_V.WpC /

induced by the counit r�r Š ! idSing.P.ECX /;WpC /
. In particular, for any object C in

Sing.P .EC;_X /;WpC/, we have a fiber-cofiber sequence

r�r
ŠC ! C

�
�! C ˝OV.WpC /

.1/˝L_V.WpC /
:

We will refer to � as the Burke–Walker operator on Sing.P .EC;_X /;WpC/ (BW-operator
for short).

As an immediate consequence of Theorem 2.10, we have the following corollary.

Corollary 2.14. Let .X; pC/ be an LG model over .Y;ECY / such that pC is regular. Then
the E-operator corresponds to the BW-operator under the equivalence ‡.X;pC/.

Example 2.15. Let Q, f and R be as in the discussion preceding Definition 2.12. Let
Y D X D S D Spec.Q/, EY D B

n�1, LY D B , p D .f1; : : : ; fn�1/ and s D fn (so that
pCD f 2BnDECX ). Then V.pC/D Spec.R/ and V.p/D Spec.Q=.f1; : : : ;fn�1//. The
morphism P .E_X /! P .EC;_X / identifies with the hyperplane Pn�2Q ,! Pn�1Q cut by the
global section Tn 2 H0.Pn�1Q ;O.1//. In particular, V.Wp/ D V.WpC ; Tn/ ,! V.WpC/. In
this case, for any C 2 Sing.Pn�1Q ;WpC/, the cofiber of the morphism r�r

ŠC!C identifies
with C

Tn
�! C ˝O.1/ and therefore the BW-operator � agrees with the natural trans-

formation defined on MF.Pn�1Q ;O.1/; WpC/ ' Sing.Pn�1Q ; WpC/ in [6]. Moreover, as
a consequence of [6, Theorem 3.2] and of Corollary 2.14, we obtain that the E-operator "
agrees with the operator defined in [11]. This fact should reassure the reader that our
terminology is consistent with the existing literature on the subject.
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Remark 2.16. Consider the same notation as in the previous example. It is known since
their introduction in [11] that the Eisenbud operators �i commute with each other. This
can be most easily seen using Burke–Walker’s theorem [6, Theorem 3.2]. After our iden-
tification of Eisenbud operators with the cofiber of the counit morphism

i�0j i0j�B ! B;

where i0j W Spec.Q=f / ,! Spec.Q=.f1; : : : ; Ofj ; : : : ; fn//, this can also be seen by ap-
plying the base change formula to the pullback square

Spec.Q=f / Spec.Q=.f1; : : : ; Ofj ; : : : ; fn//

Spec.Q=.f1; : : : ; Ofk ; : : : ; fn// Spec.Q/:

........................................................................................................................................................................................ ............
i0j

..............................................................................
.....
.......
.....

i0k

..............................................................................
.....
.......
.....

ij

................................................................................................................................................................................................... ............
ik

3. Dg category of coherent relative singularities

Let .X; pC/ be an LG model over .Y;ECY /. In this section, we will investigate torsion ob-
jects for the E-operator (resp. BW-operator) on Sing.X; pC/ (resp. Sing.P .EC;_X /;WpC/).
When X and pC are regular, this will allow us to identify the dg category of coherent
singularities of i W V.pC/ ,! V.p/ with a certain dg category of absolute singularities.

Recall that there exists a lax monoidal1-functor

Sing˝
.Y;ECY /

W LG⊞;op
.Y;ECY /

! dgCatidm;˝
S

which at the level of objects is defined by

.X; pC/ 7! Sing.Y;ECY /.X; p
C/ D Ker

�
f� W Sing.V.pC//! Sing.X/

�
'

Cohb.V.pC//Perf.X/

Perf.V.pC//
;

where f denotes the lci closed embedding V.pC/ ,! X . Similarly, there exists a lax
monoidal1-functor

Sing˝
.Y;EY /

W LG⊞;op
.Y;EY /

! dgCatidm;˝
S

which at the level of objects is defined by

.X; p/ 7! Sing.Y;EY /.X; p/ D Ker
�
g� W Sing.V.p//! Sing.X/

�
'

Cohb.V.p//Perf.X/

Perf.V.p//
;

where g is the lci closed embedding V.p/ ,! X . By composing Sing˝
.Y;EY /

withQ⊞ (see
Remark 2.3), we obtain a lax monoidal1-functor

Sing˝
.Y;EY /

ıQ⊞; .X; pC/ 7! Sing.Y;EY /.X; p/:
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Remark 3.1. We apologize for the heavy notations Sing˝
.Y;EY /

and Sing˝
.Y;ECY /

, but we

think it would lead to confusion to denote with Sing˝ both the1-functor

LG⊞;op
.Y;EY /

! dgCatidm;˝
S and LG⊞;op

.Y;ECY /
! dgCatidm;˝

S :

Proposition 3.2. Let .X; pC/ be an LG model over .Y;ECY / and let i W V.pC/! V.p/
denote the canonical lci closed embedding. The adjunction

i� W Sing.X; p/⇄ Sing.X; pC/ W i�

is functorial in .X; pC/, i.e., we have two natural transformations

Sing.Y;EY / ıQ! Sing.Y;ECY /; Sing.Y;ECY / ıQ! Sing.Y;EY /

that, for a fixed LG model .X; pC/ over .Y;ECY /, determine the above-mentioned adjunc-
tion. In particular, the E-operator is functorial in .X; pC/.

Proof. By uniqueness (up to equivalence) of right adjoints, it suffices to show that the
dg functor i� W Sing.X; p/! Sing.X; pC/ is functorial in .X; pC/. Recall that the lax
monoidal1-functors Sing˝

.Y;ECY /
and Sing˝

.Y;EY /
are defined using strict models and Kan

extensions. We refer the reader to [21, §3 and §6] for details. In particular, we can reduce
to consider the case where Y and X are affine. Let .Y;ECY / correspond to .A;ECA /,
ECA ' EA ˚ LA, whereEA is a projectiveAmodule of rank r andLA is a line bundle. Let
.B; pC/ be an affine LG model over .A;ECA /. The dg category Cohs.B; .ECB /

_; pC/ is a
strict model for the dg category Cohb.V .pC//Perf.Spec.B// (see [21, Construction 6.1.6]),
where V.pC/ D Spec.Ks.B; .ECB /

_; pC// is the spectrum of the (simplicial version of
the) Koszul algebra associated to ..ECB /

_; pC/. Similarly, Cohs.B; E_B ; p/ is a strict
model for the dg category Cohb.V .p//Perf.Spec.B//. Given a morphism � W .B; pC/ !

.C;qC/ of affine LG models over .A;ECA /, i.e., a morphism � WB!C ofA algebras such
that pC D .p; s/ 7! qC D .q; t/, the pseudo-functoriality on Cohs is induced by �˝B C ,

Cohs.B; .ECB /
_; pC/! Cohs.C; .ECC /

_; qC/;

F 7! F ˝B C:

The pseudo-functoriality Cohs.B;E_B ; p/! Cohs.C;E_C ; q/ is analogous. The pullback
i� W Cohb.V.p//Perf.Spec.B// ! Cohb.V.pC//Perf.Spec.B// is modeled by the following
pseudo-functor:

Cohs.B;E_B ; p/! Cohs.B; .ECB /
_; pC/;

F 7! F ˝B K.L
_
B ; s/:
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Therefore, we need to show that the square

Cohs.B;E_B ; p/ Cohs.C;E_C ; q/

Cohs.B; .ECB /
_; pC/ Cohs.C; .ECC /

_; qC/

............................................................................................................................................................................................................................................ ............
�˝B C

............................................................................................................
.....
.......
.....

�˝B K.L
_
B ; s/

............................................................................................................
.....
.......
.....

�˝C K.L
_
C ; t /

....................................................................................................................................................................................... ............

�˝B C

commutes up to canonical equivalence. This follows immediately from the canonical
equivalences

C ˝C � ' id; K.L_C ; t / ' C ˝B K.L
_
B ; s/:

The fact that functoriality of i� W Cohb.V.p//Perf.X/ ! Cohb.V.pC//Perf.X/ in .X; pC/
implies that of i� W Sing.X; p/! Sing.X; pC/ is clear.

The last assertion of the statement is obvious.

Remark 3.3. Notice that the proof of the previous proposition shows the stronger asser-
tion that the adjunction

i� W Cohb.V.p//Perf.X/ ⇄ Cohb.V.pC//Perf.X/ W i�

is functorial in .X; pC/.

Our next aim will be to study "-torsion objects inside Sing.X; pC/.

Definition 3.4. Let .X; pC/ be an LG model over .Y;ECY /. The dg category of "-torsion
objects in Sing.X; pC/ is the full sub dg category

Sing.X; pC/"�tors

WD
®
B 2 Sing.X; pC/ W 9n � 0 such that "n � 0 W B ! B ˝L

_;˝n

V.pC/Œ2n�
¯
:

Proposition 3.5. Let hi�Sing.X;p/i denote the thick full sub dg category of Sing.X;pC/
spanned by the image of the dg functor

i� W Sing.X; p/! Sing.X; pC/:

Then,
Sing.X; pC/"�tors

' hi�Sing.X; p/i:

Proof. It is clear that Sing.X;pC/"�tors � Sing.X;pC/ is a thick sub dg category. There-
fore, it will suffice to show that the image of i� W Sing.X; p/ ! Sing.X; pC/ is con-
tained in Sing.X;pC/"�tors. Let P be an object of Sing.X; p/. We will show that i�P is an
"-torsion object. The counit morphism i�i�i

�P
c
�! i�P admits a section i�P

u
�! i�i�i

�P ,
i.e., there exists a 2-cell � providing a homotopy idi�P � cıu. The fiber-cofiber sequence

i�P
"
�! i�P ˝L_V.pC/Œ2�

dŒ1�
��! i�i�i

�P Œ1�
cŒ1�
��!
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implies, in particular, the existence of a 2-cell � providing a homotopy c ı d � 0. Consider
the diagram

i�P ˝L_V.pC/Œ1� i�i�i
�P i�P

i�P ˝L_V.pC/Œ1� i�P ˝L_V.pC/Œ1�˚ i
�P i�P ;

..................................................................................................................................................................... ............
d

........................................................................................................................................................................................................................................ ............
c

................................................................................. ............�
1
0

� ................................................................................................................................................ ............

Œ 0 1 �

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.............

............

1

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

Œ d u �

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...............

............

1

where horizontal lines are fiber-cofiber sequences. The 2 cells � and � provide a homo-
topy c ı

�
d u

�
� 1 ı

�
0 1

�
. The existence of a homotopy making the square on the left

commutative is clear. Since the left and right vertical morphisms are equivalences, so is
the one in the middle. In particular, we obtain that " � 0 W i�P ! P ˝ L_V.pC/Œ2�. We
have proven that hi�Sing.X; p/i � Sing.X; pC/"�tors.

For the converse inclusion, we will show by induction that

fiber
�
M

"n

�!M ˝L
_;˝n

V.pC/Œ2n�
�
2 hi�Sing.X; p/i

for every n and for every M 2 Sing.X; pC/.
• The case n D 1 is obvious, after the definition of ".

• Let n � 1. The octahedron axiom applied to "n � "n�1 ı " provides us with the fol-
lowing fiber-cofiber sequence:

fiber
�
M

"
�!M ˝L_V.pC/Œ2�

�
! fiber

�
M

"n

�!M ˝ .L_V.pC//
˝nŒ2n�

�
! fiber

�
M ˝L_V.pC/Œ2�

"n�1

���!M ˝ .L_V.pC//
˝nŒ2n�

�
:

Since

fiber
�
M ˝L_V.pC/Œ2�

"n�1

���!M ˝ .L_V.pC//
˝nŒ2n�

�
' C ˝L_V.pC/Œ2�;

where C ' fiber.M
"n�1

���!M ˝ .L_V.pC//
˝n�1Œ2n � 2�/, and we have a fiber-cofiber

sequence
i�i�C ! C

"
�! C ˝L_V.pC/Œ2�;

we conclude by thickness of hi�Sing.X; p/i that fiber."n/ 2 hi�Sing.X; p/i.
Let M 2 Sing.X; pC/"�tors. Let n � 0 such that "n � 0. Then

M ˚M ˝ .L_V.pC//
˝nŒ2n � 1� D fiber."n/

lies in hi�Sing.X; p/i. Being a retract of an object in hi�Sing.X; p/i, M lies in
hi�Sing.X; p/i as well.
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Corollary 3.6. The1-functor Sing.Y;ECY / enhances the assignment

.X; pC/! hi�Sing.X; p/i

with the structure of an1-functor.

Proof. This follows immediately from the fact that " is functorial with respect to .X;pC/
and from the previous proposition.

Corollary 3.7. There exists an1-functor

LGop
.Y;ECY /

! Fun
�
�1;dgCatidm

S

�
which at the level of objects is defined as

.X; pC/ 7! hi�Sing.X; p/i ,! Sing.X; pC/:

By composing it with the1-functor Fun.�1;dgCatidm
S /! dgCatidm

S induced by “taking
quotients”, we obtain an1-functorial enhancement

S coh
.Y;ECY /

W LGop
.Y;ECY /

! dgCatidm
S

of the assignment

.X; pC/ 7! S coh
.Y;ECY /

.X; pC/ D Singcoh.V.p/; s/ D
Sing.X; pC/
hi�Sing.X; p/i

:

Let us now focus on the other side of the equivalence provided by Theorem 2.6, where
everything we said before applies, mutatis mutandis. There exists a lax monoidal 1-
functor

Sing˝
.P.EC;_Y /;O.1//

W LG⊞;op

.P.EC;_Y /;O.1//
! dgCatidm;˝

S

which, at the level of objects, is defined by

.Z;w/ 7! Sing
.P.EC;_Y /;O.1//

.Z;w/ D Ker
�
g� W Sing.V.w//! Sing.Z/

�
;

where g denotes the closed embedding of the zero locus of w 2 H0.Z;O.1// inside Z.
Similarly, there exists an analogous lax monoidal1-functor

Sing˝
.P.E_Y /;O.1//

W LG⊞;op
.P.E_Y /;O.1//

! dgCatidm;˝
S :

We will consider their compositions with the symmetric monoidal functors „⊞ and Q⊞

(see Remark 2.3 and the discussion thereafter),

Sing˝
.P.EC;_Y /;O.1//

ı„⊞
W LG⊞;op

.Y;ECY /
! dgCatidm;˝

S ;

Sing˝
.P.E_Y /;O.1//

ı„⊞
ıQ⊞

W LG⊞;op
.Y;ECY /

! dgCatidm;˝
S :
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Proposition 3.8. Let .X;pC/ be an LG model over .Y;ECY / and let r WV.Wp/!V.WpC/
denote the canonical lci closed embedding. The adjunction

r� W Sing.P .E_X /;Wp/⇄ Sing.P .EC;_X /;WpC/ W r
Š

is functorial in .X; pC/, i.e., we have two natural transformations

Sing.P.E_Y /;O.1// ı„ ıQ! Sing
.P.EC;_Y /;O.1//

ı„;

Sing
.P.EC;_Y /;O.1//

ı„! Sing.P.E_Y /;O.1// ı„ ıQ

that, for a fixed LG model .X; pC/ over .Y;ECY /, determine the above-mentioned adjunc-
tion. In particular, the BW-operator is functorial in .X; pC/.

Proof. This is clear when we restrict to pairs .X; pC/ with pC regular. Indeed, we have
proved the functoriality on .X; pC/ for

i�
�
.�/˝LV.p/

�
Œ�1� W Sing.X; pC/⇄ Sing.X; p/ W i�

�
.�/˝L_V.p/

�
Œ1�

and the equivalences‡.X;p/ and‡.X;pC/ are likewise functorial in .X;pC/. However, this
argument cannot be used in our setup as we have not proved that ‡.X;p/ and ‡.X;pC/ are
always equivalences, regardless of the fact that the section is regular or not.

Nevertheless, we can mimic the proof of Proposition 3.2: using strict models, one can
show that r Š is functorial in .X;pC/. Indeed, the same argument applies mutatis mutandis.
The only difference is that the r Š is modeled a pseudo-functor of the form

Cohs.B;M_B ; w/! Cohs.B; .MB ˚ LB/
_; .w; t//;

F 7! F ˝K.L_B ; t /˝B OB Œ�1�;

where OB is a line bundle (in fact, the restriction of O.1/˝L_V.Wp/) such that, for any
B!C , there is a canonical equivalenceOC 'OB ˝B C . This does not affect the validity
of the proof.

We will now focus on the study of �-torsion objects inside Sing.P .EC;_X /;WpC/.

Definition 3.9. Let .X; pC/ be an LG model over .Y;ECY /. The dg category of �-torsion
objects in Sing.P .EC;_X /;WpC/ is the full sub dg category

Sing.P .EC;_X /;WpC/
��tors

WD
®
C 2 Sing.P .EC;_X /;WpC/ W 9n � 0; �

n
� 0 W

C ! C ˝OV.WpC /
.n/˝L

_;˝n
V.WpC /

¯
:

Proposition 3.10. Let .X; pC/ be an LG model over .Y;ECY /. Let hr�Sing.P .E_X /;Wp/i
denote the thick full sub dg category of Sing.P .EC;_X /;WpC/ spanned by the image of the
dg functor

r� W Sing.P .E_X /;Wp/! Sing.P .EC;_X /;WpC/:

Then,
Sing.P .EC;_X /;WpC/

��tors
' hr�Sing.P .E_X /;Wp/i:
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Proof. The proof of Proposition 3.5 works in this case too. Assume P 2Sing.P .E_X /;Wp/.
The counit morphism r�r

Šr�P
c
�! r�P admits a section r�P

u
�! r�r

Šr�P . Therefore, as
in the proof of Proposition 3.5, we obtain that

r�r
Šr�P ' r�P ˚ r�P ˝O.1/˝L_Œ�1�:

In particular, this means that � � 0 W r�P ! r�P ˝O.1/˝L_ and therefore r�P lies
in Sing.P .EC;_X /;WpC/

��tors.
For the converse, we shall first show that

fiber
�
M

�n

�!M ˝O.n/˝L_;˝n
�
2 hr�Sing.P .E_X /;Wp/i

for any n � 0. We proceed by induction on n:

• the case n D 1 follows from the definition of �;

• if n� 1, the claim follows from the fiber-cofiber sequence associated to �n��n�1 ı�.

Then, if �n � 0 WM!M ˝O.n/˝L_;˝n, we see that M is a retract of an object in
hr�Sing.P .E_X /;Wp/i.

Corollary 3.11. The1-functor Sing.P.E_Y /;O.1// enhances the assignment

.X; pC/! hr�Sing.P .E_X /;Wp/i

with the structure of an1-functor.

Proof. This follows immediately from the fact that � is functorial with respect to .X;pC/
and from the previous proposition.

Corollary 3.12. There exists an1-functor

LGop
.Y;ECY /

! Fun
�
�1;dgCatidm

S

�
which, at the level of objects, is defined as

.X; pC/ 7! hr�Sing.P .E_X /;Wp/i ,! Sing.P .EC;_X /;WpC/:

By composing it with the quotient1-functor Fun.�1;dgCatidm
S /! dgCatidm

S , we obtain
an1-enhancement

S coh
.P.EC;_Y /;O.1//

W LGop
.Y;ECY /

! dgCatidm
S

of the assignment

.X; pC/ 7!
Sing.P .EC;_X /;WpC/

hr�Sing.P .E_X //i
:
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Corollary 3.13. Let .X; pC/ be an LG model over .Y; ECY / and assume that pC is a
regular section. Then we have equivalences

hi�Sing.X; p/i ' Sing.X; pC/"�tors
' Sing.P .EC;_X /;WpC/

��tors

' hr�Sing.P .E_X /;Wp/i:

Proof. The first equivalence follows from Proposition 3.5, the second from Corollary 2.14
and the last one from Proposition 3.10.

Corollary 3.14. Let .X; pC/ be an LG model over .Y; ECY / and assume that pC is a
regular section. Then

Singcoh.V.p/; s/ '
Sing.P .EC;_X /;WpC/

hr�Sing.P .E_X /;Wp/i
:

Our next aim is to better understand the dg category hr�Sing.P .E_X /;Wp/i. Indeed, at
least for pairs .X; pC/ where pC is regular, the results of the previous section imply that
we have an exact sequence of dg categories

hr�Sing.P .E_X /;Wp/i ,! Sing.P .EC;_X /;WpC/! Singcoh.V.p/; s/;

which is a tool to study certain (co)homologies of Singcoh.V.p/; s/.

Context 3.15. From now on we shall assume that .X; pC/ is an LG model over .Y;ECY /
with X , Y and pC regular.

Remark 3.16. Under our standing assumptions, it is immediate to observe that

Sing.X; pC/ ' Sing.V.pC//; Sing.X; p/ ' Sing.V.p//;

Sing.P .EC;_X /;WpC/ ' Sing.V.WpC//; Sing.P .E_X /;Wp/ ' Sing.V.Wp//:

In particular, the exact sequence of dg categories above looks as follows:

hr�Sing.V.Wp//i ,! Sing.V.WpC//! Singcoh.V.p/; s/:

First of all, notice the existence of the following diagram of dg categories:

hr�Perf.V.Wp//i hr�Cohb.V.Wp//i hr�Sing.V.Wp//i

PerfV.Wp/.V.WpC// CohbV.Wp/.V.WpC// SingV.Wp/.V.WpC//:

................................................................. ......................
......

....................................................................... ............

..............................................................................
.....
.......
.....

................ ..............................................................................
.....
.......
.....

................ ..............................................................................
.....
.......
.....

................

............................................ ......................
......

............................................... ............

The dg categories on the bottom line are the full sub dg categories of Perf.V.WpC//
(resp. Cohb.V.WpC//, resp. Sing.V.WpC//) spanned by those objects with support con-
tained in the closed subset V.Wp/.
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Remark 3.17. Notice that the BW-operator is well defined on Cohb.V.pC// and on
Perf.V.pC//. In particular, we can consider �-torsion objects in Perf.V.WpC// and in
Cohb.V.WpC//,

Perf.V.WpC//��tors

D
®
C 2 Perf.V.WpC// W 9n � 0; �n � 0 W C ! C ˝O.n/˝L

_;˝n
V.WpC /

¯
;

Cohb.V.WpC//��tors

D
®
C 2 Cohb.V.WpC// W 9n � 0; �n � 0 W C ! C ˝O.n/˝L

_;˝n
V.WpC /

¯
:

Proposition 3.18. The following equivalences hold:

(1) hr�Perf.V.Wp//i ' Perf.V.WpC//��tors ' PerfV.Wp/.V.WpC//;

(2) hr�Cohb.V.Wp//i ' Cohb.V.WpC//��tors ' CohbV.Wp/.V.WpC//;
(3) hr�Sing.V.Wp//i ' Sing.V.WpC//��tors ' SingV.Wp/.V.WpC//.

Proof. The first equivalences in (1), (2) and (3) can be proved as Proposition 3.5. The other
equivalences follow from the observation that � WC!C ˝O.1/˝L_V.WpC /

is homotopic

to the map induced by T , the global section of O.1/˝L_V.WpC /
which defines the closed

embedding V.Wp/! V.WpC/. Indeed, one can easily see that there is an equivalence

r�r
�.C/ ' cofib

�
C ˝O.�1/˝LV.WpC /

T
�! C

�
:

Using the equivalences r Š.C/ ' r�C ˝ !V.Wp/=V.Wp/ ' r
�C ˝O.1/˝L_V.Wp/Œ�1�, we

get that

r�r
Š.C/ ' r�r

�
�
C ˝O.1/˝L_V.WpC /

�
Œ�1� ' fiber

�
C

T
�! C ˝O.1/˝L_V.WpC /

�
:

Then, C is a �-torsion object if and only if T n W C ! C ˝O.n/˝L
_;˝n
V.WpC /

is homotopic
to zero for some n� 0, i.e., the support of C is contained in V.Wp/.

Corollary 3.19. The following is an exact sequence of dg categories:

hr�Perf.V.Wp//i ,! hr�Cohb.V.Wp//i ! hr�Sing.V.Wp//i:

Proof. This is clear from the previous proposition, as

PerfV.Wp/.V.WpC// ,! CohbV.Wp/.V.WpC//! SingV.Wp/.V.WpC//

is an exact sequence of dg categories.

In particular, we obtain the following result, which can be thought as the main result
of this note.
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Corollary 3.20. The equivalence ‡.X;pC/ induces an equivalence of exact sequences in
dgCatidm

S ,

hi�Sing.V.p//i Sing.V.pC// Singcoh.V.p/; s/

SingV.Wp/.V.WpC// Sing.V.WpC// Sing.V.WpC/ � V.Wp//:

................................................................................................. ......................
......

..................................................................................................... ............

.....................................................................................
.....
.......
.....

.....................................................................................
.....
.......
.....

.....................................................................................
.....
.......
.....

..................................................................... ......................
......

................................................... ............

Remark 3.21. Notice that, when V.p/ is a regular scheme, we have the implication

Sing.V.Wp// ' 0) SingV.Wp/.V.WpC// ' 0:

It is easy to see that this phenomenon is false in general. Given a closed embeddingZ! Y

with Z regular, it is not always true that SingZ.Y / ' 0. For example, consider the closed
embedding of the singular point of a nodal curve inside the curve.

4. Applications

4.1. The `-adic realization of Singcoh.V.p/; s/

Let .X; pC/ be an LG model over .Y;ECY /. Assume that both X and pC are regular. One
immediate consequence of the identification

Singcoh.V.p/; s/ ' Sing.V ; WpCjV / ' Sing.U/;

where V WD P .EC;_X / � P .E_X /,WpCjV denotes the restriction of the global sectionWpC 2
H0.P .EC;_X /;O.1// to V and U D V.WpCjV / D V.WpC/ � V.Wp/, is the computation
of the `-adic cohomology of the dg category of coherent matrix factorizations.

Remark 4.2. Using the isomorphisms

P .E_X / ' P .E_X ˝LX /; P .EC;_X / ' P .E_X ˝LX ˚OX /;

we can see that

V ' V .E_X ˝LX / D SpecX .SymOX
.EX ˝L_X //:

Recall (see [2,21]) that, for any schemeZ of finite type over S , there is a lax monoidal
1-functor

R
`;_
Z W dgCatidm;˝

Z ! ShvQ`
.Z/˝;

which sends a dg category C to an `-adic sheaf R`;_.C/, which we refer to as the `-
adic cohomology of C . This1-functor is compatible with the usual `-adic realization of
schemes by means of the following equivalence:

R
`;_
Z .Perf.Y // ' f�Q`;Y .ˇ/;

where f W Y ! Z and Q`;Y .ˇ/ '
L
n2Z Q`;Y .n/Œ2n�.
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Further, recall the notion of monodromy invariant vanishing cycles (see [21]): let
.Z;MZ/ be a scheme of finite type over S together with a line bundle. Let s 2H0.Z;MZ/

be a regular section and consider the diagram

V.s/ Z Z � V.s/

Z V .MZ/ V .MZ/ �Z:

.............................................................................................................................................................................................................. ............
i

.................................................................................................................................................................................................

j

............................................................................................................
.....
.......
.....

s0

............................................................................................................
.....
.......
.....

s

............................................................................................................
.....
.......
.....

sU

............................................................................................................................................................................................. ............

i0 D 0
......................................................................................................................................................

j0

We define the `-adic sheaf of monodromy invariant vanishing cycles of .Z; s/ as

ˆmi
.Z;s/.Q`.ˇ// WD cofib

�
i�s�j0�Q`;V .MZ/�Z.ˇ/! i�j�s

�
UQ`;V .MZ/�Z.ˇ/

�
:

Theorem 4.3. Let .X;pC/ be an LG model over .Y;ECY / such that X is a regular scheme
and pC is a regular section. Then

R
`;_
Y .Singcoh.V.p/; s// ' R

`;_
Y .MFcoh.V.p/; s// ' q�ˆmi

.V ;WpCjV /
.Q`.ˇ//Œ�1�;

where q W U! Y is the canonical morphism.

Proof. This follows immediately from the discussion above and from [21, Theorem 5.2.2].

Remark 4.4. The equivalence of the theorem above stands at the motivic level, i.e., before
taking the `-adic realization

M_Y;Q.Singcoh.V.p/; s// 'M_Y;Q.MFcoh.V.p/; s// ' q�ˆ
mi;mot
.V ;WpCjV /

.BUQ/Œ�1�:

More precisely, the equivalence above lives in ModBUQ.SHY /, the1-category of mod-
ules over the spectrum of homotopy invariant, non-connective rational K theory. See [2]
and [21] for notation.

The following example seems particularly interesting.

Example 4.5. Let S be an excellent, strictly henselian trait and let X be a projective
S -scheme. Then there exist an integer N and homogeneous polynomials

p 2 H0
�
Y;

mM
kD1

OY .dk/
�
;

where Y D PNS and dk � 0, k D 1; : : : ; m, such that X D V.p/. We assume that p is a
regular section of

Lm
kD1OY .dk/. Fix a uniformizer � of S . We shall label �Y the induced

regular function on PNS . Setting EY D
Lm
kD1OY .dk/, ECY DEY ˚OY and pCD .p;�Y /,
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it is immediate to see that .Y;pC/ defines an LG model over .Y;ECY / such that V.p/D X
and V.pC/ D X� , the special fiber of X over S , i.e., the zero locus of the pullback �X of
� along X ! S . Then all the previous results apply and we find that

MFcoh.X; �X / ' Sing.U/;

where U D V.WpCjV / and MFcoh.X; �X / denotes the dg category of coherent matrix
factorizations of .X; �X / (see [10]). In particular, we get

R
`;_
Y .MFcoh.X; �X ; // ' q�ˆ

mi
.V ;WpCjV /

.Q`.ˇ//Œ�1�:

An interesting `-adic sheaf attached to an S -scheme is that of vanishing cycles. It is known
(see [2, Theorem 4.39]) that when X is regular one can express the (inertia invariant)
vanishing cohomology of X ! S by means of the singularity category of the special
fiber, which agrees with MFcoh.X; �X /,

i��R
`;_
S .MFcoh.X; �X // ' i

�
�R

`;_
S .Sing.X� // ' .p���.Q`;X .ˇ///

hI Œ�1�;

where I denotes the inertia group of S , i� W � ! S is the closed point, p� W X� D X �S
� ! � the projection and �.Q`;X .ˇ// is the `-adic sheaf of vanishing cycles of Q`;X .ˇ/.
Recall that Q`;X .ˇ/ is the commutative algebra object Sym.Q`;X � ˇ/Œˇ

�1� with ˇ living
in bidegree .1; 2/, i.e., Q`;X .ˇ/ D

L
n2Z Q`;X .n/Œ2n�.

This implies, in particular, that there is an equivalence

ˆmi
.V ;WpC /

.Q`.ˇ// ' .�.Q`;X .ˇ///
hI

wheneverX is regular. It would be interesting to understand whether there exists an `-adic
sheaf F on X , which agrees with Q`;X if X is regular, such that the equivalence

ˆmi
.V ;WpC /

.Q`.ˇ// ' .�.F .ˇ///
hI

holds without the regularity assumptions.

4.6. Hochschild and periodic cyclic homologies of Singcoh.V.p/; s/

The connection between categories of singularities and vanishing cycles is well known and
predates the above-mentioned theorem of Blanc, Robalo, Toën and Vezzosi. For example,
Hochschild (co)homology of matrix factorizations has been computed by Efimov ([9]),
Dyckerhoff (see [8]) Lin–Pomerlano (see [15]), Preygel (see [24]), Segal (see [27]). How-
ever, the author is not aware of any computation of these invariants for MFcoh.X; f / (or
MF.X; f /) when X is not supposed to be regular.

Let us explain these results as stated in [9]. Let C be a Z=2Z-graded dg category. Its
Hochschild homology is defined as

HH�.C/ WD H��.idC ˝C˝Cop idC /;

where idC denotes the identity C ˝ Cop-bimodule. It is computed by the bar complex
.Hoch.C/; b/ as defined, e.g., in [9, §3].
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The notions of mixed complex and u-connection on a mixed complex are crucial to
understand Efimov’s results. Let us recall these notions for the reader’s convenience.

Definition 4.7. Let k be a field.

• A mixed complex is a triple .C; b; B/, where C is a Z=2Z-graded k-vector space and
b and B are two odd differentials on C such that

bB C Bb D 0:

• A morphism f W .C1; b1;B1/! .C2; b2;B2/ is a graded morphism of k-vector spaces
which commutes with both differentials.

• A morphism f W .C1; b1; B1/ ! .C2; b2; B2/ is said to be a quasi-isomorphism if
f W .C1; b1/! .C2; b2/ is a quasi-isomorphism.

Remark 4.8. Notice that, even if the assignment .C; b; B/ 7! .C; B; b/ defines an endo-
functor on the category of mixed complexes, it does not preserve quasi-isomorphisms. In
other words, the roles played by the two differentials b and B are not symmetric, and b
should be thought as the main differential.

Example 4.9. • Let C be a Z=2Z-graded dg category. The Hochschild complex
.Hoch.C/; b/, together with the Connes differential B , defines a mixed complex. For
the precise definition, see [9, §3].

• Let C be a Z=2Z-graded curved dg category. The Hochschild complex of the second
kind .HochII.C/;b/, together with the Connes differentialB , defines a mixed complex.
For the precise definition, see [23] and [9, §3].

• Let A be a smooth k algebra. The twisted de Rham complex .��
A=k

;�dW ^; ddR/ is a
mixed complex.

Let .C;b;B/ be a mixed complex. The second differentialB is used to define a second
complex out of the initial datum. Let u be a formal variable of even degree and set

C JuK WD lim
 �
n

C ˝k
kŒu�

un
; C LuM WD lim

�!
n

u�n � C JuK:

It is immediate that b C uB defines a differential on C LuM and that every morphism f W

.C1; b1; B1/! .C2; b2; B2/ of mixed complexes induces a morphism of complexes

f LuM W .C1LuM; b1 C uB1/! .C2LuM; b2 C uB2/:

Moreover, if f is a quasi-isomorphism of mixed complexes, f LuM is a quasi-isomorphism
too.

Let B denote the Connes differential acting on .Hoch.C/; b/. The periodic cyclic
homology of C is defined as

HP�.C/ WD H�.Hoch.CLuM/; b C uB/;

where u is a formal variable of even degree.
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Definition 4.10. Let .C; b; B/ be a mixed complex.

• A u-connection is a k-linear operator

r D
d

du
CM W C LuM! C LuM;

where M is a kLuM-linear operator C LuM! LuM, such that

Œr; b C uB� D
1

2u
.b C uB/:

• Let .Ci ; bi ; Bi ;ri /, i 2 ¹1; 2º be two mixed complexes with u-connections. A mor-
phism of mixed complexes f W .C1; b1;B1/! .C2; b2;B2/ is weakly compatible (resp.
strictly compatible) with the u-connections if r2 ı f LuM � f LuM ı r1 is homotopic
(resp. equal) to zero. The homotopy is part of the datum.

Remark 4.11. All the examples of mixed complexes given above can be endowed with u-
connections in a natural way. In particular, there is a Getzler–Gauss–Manin u-connection
rGMu on .Hoch.C/; b; B/ (see [13] and [29]) and a u-connection rdRu on the twisted de
Rham complex. We refer the reader to [9] for more details.

In [9], Efimov proves the following.

Theorem 4.12 ([9, Theorem 1.3, Theorem 1.4]). Let X be a separated smooth scheme
of finite type over a field k of characteristic zero. Let W 2 H0.X; OX / be a regular
function whose critical locus is contained in the fiber over 0. There is a chain of quasi-
isomorphisms of mixed complexes with u-connections between

.Hoch.MFcoh.X;W //; b; B;rGMu /

and
R�.X; .��X ;�dW; ddR;r

dR
u //:

In particular, there is an equivalence between Z=2Z-graded complexes with connections�
HP�.MFcoh.X;W //;rGMu

�
'

�
H�.��X LuM;�dW C uddR/;rdRu D

d

du
C
�

u
C
W

u2

�
;

where �j�pX D �
p
2

, and a quasi-isomorphism of Z=2Z-graded complexes

HH�.MFcoh.X;W // ' H�.X;��X ;�dW /:

The connection between matrix factorizations and vanishing cycles in this context
arises from the combination of Efimov’s theorem with the algebraic formula for vanishing
cycles, conjectured by Kontsevich and proved by Sabbah ([25])/Sabbah–M. Saito ([26]).
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Theorem 4.13 ([25, Theorem 1.1]). For a finite dimensional C-vector space V with
an automorphism T , let M be a logarithm of T , i.e., an automorphism of V such that
exp.�2�iM/ D T . Set

cRH
�1
.V; T / WD

�
V LuM; d CM

d

du

�
:

For any c 2 C , consider the following CLuM-vector space with connection:

yE �
c
u WD

�
CLuM; d C c

du

u2

�
:

Let X be a smooth quasi-projective algebraic variety over C and let W W X ! A1C be a
regular function. For any c 2 C, label ˆW�c.CX / the sheaf of vanishing cycles over the
fiber W �1.c/ and let T denote the monodromy operator.

There is an equivalence of Z-graded bundles with connections on Spf.CLuM/

H �Zar

�
X; .��X LuM;�dW C uddR/;ru

�
'

M
c2C

yE �
c
u ˝CLuM cRH

�1
.H��1an .W

�1.c/; ˆW�c.CX //; T /;

where ru D d
du
C

W
u2

.

Remark 4.14. The theorem above is stated in greater generality in [25] and [26]. How-
ever, we will need it only with this extent of generality.

Remark 4.15. Notice that the sum on the right-hand side is finite, as ˆW�c.CX / ' 0

unless c is a critical value of W .

As an immediate consequence of the two theorems, we get an identification of the
periodic cyclic homology of MFcoh.X; W / with a vanishing cohomology (see [9, The-
orem 1.1]) when X is smooth and the critical values are contained in the fiber over 0.
In order to prove Theorem 4.12, Efimov first proves it in the affine case and then glob-
alizes the result using a sheafification procedure, following ideas of Keller (see [14]).
We shall try to move some step towards the computation of the Hochschild and periodic
cyclic homologies of MFcoh.X; W / in the non-smooth case, following closely Efimov’s
approach. We shall restrict ourselves to the affine case.

Let A be a C-algebra of finite type and let g be a regular function on X D Spec.A/.
We fix a presentation A D CŒx1;:::;xn�

.f1;:::;fm/
. Set Q D CŒx1; : : : ; xn�, Y D Spec.Q/ and X0 D

Spec.A=.g//. Moreover, we assume that .f1; : : : ; fm; g/ 2 CŒx1; : : : ; xn� is a regular
sequence.

Now, with the same notation as in the previous sections, we consider the LG model
.Y; .f1; : : : ; fm; g// over .Y;OmC1

Y /. The global section of OPmQ
.1/ corresponding to

.f1; : : : ; fm; g/ is f1 � T1 C � � � C fm � Tm C g � TmC1. Similarly, the global section
of OPm�1Q

.1/ corresponding to .f1; : : : ; fm/ is f1 � T1 C � � � C fm � Tm. Set ZC D



On some (co)homological invariants of coherent matrix factorizations 1329

V.f1 � T1 C � � � C fm � Tm C g � TmC1/ and Z D V.f1 � T1 C � � � C fm � Tm/. Then dia-
gram (2.1) in this setup becomes

U WD ZC �Z AmQ ' AnCmC

PmX0 ZC PmQ

X0

Y

X

Pm�1X Z Pm�1Q D V.TmC1/:

....................................................................................................................................................................................................... ............
k

......................................................................................................................................................................................................... ............

......................................
.....
.......
.....q

......................................
.....
.......
.....i

....................................................................................................................................................................................... .............................................................................................................................................
.....
.......
.....

....................................................................................................................................................................................... ..................................................................................................................
.......
.......
..................
............

.......

.......

.......

.......

.......

.......

.............

............
p

.............................................................................................................................................................................................. ............
j

.......................................................................................................................... ............
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...................
............

r

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..................

............................................................................................................................
....
............

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
............................

......................................
.....
.......
.....

......................................
.....
.......
.....

............................................................................................... ............

Let W W AmQ ' AnCmC ! A1C be the function f1 � xnC1 C � � � C fm � xnCm C g 2
CŒx1; : : : ; xnCm�, where xnCk D Tk=TmC1 for k 2 ¹1; : : : ; mº. In particular,

U D V.W / � AnCmC :

Proposition 4.16. There is an equivalence of mixed complexes with u-connectionsM
c2C

.Hoch.MFcoh.X; g � c//; b; B;rGMu / ' �.AnCmC ; .��
AnCm

C
;�dW; ddR;r

dR
u //:

Proof. The proof follows closely the proof of [9, §4].
Notice that the assignment c ⇝ g � c is compatible with the assignment g ! W ,

i.e., g � c ⇝ W � c for any complex number c 2 C. Then, by Corollary 3.20, we have
equivalences

MFcoh.X; g � c/ ' Singcoh.X; g � c/ ' Sing.AnCmC ; W � c/; c 2 C:

As a Hochschild homology is Morita invariant, we get that

Hoch.MFcoh.X; g � c// ' Hoch.Sing.AnCmC ; W � c//

for any c 2C. Moreover, this quasi-isomorphism is strictly compatible with u-connections
(see [9, Proposition 3.7]).

By [23, §4.10], we get that

HochII.Sing.AnCmC ; W // '
M
c2C

Hoch.Sing.AnCmC ; W � c//:

Moreover, this is also strictly compatible with u-connections: it is defined by maps

Hoch.Sing.AnCmC ; W � c//! HochII.Sing.AnCmC ; W � c//

'
�! HochII.Sing.AnCmC ; W //;
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where the first map is a morphism of mixed complexes strictly compatible with u-connec-
tions by [9, Proposition 3.11]. For what concerns the second map, letRDCŒx1; : : : ;xnCm�
and let RW (resp. RW�c , c 2 C) denote the Z=2Z-graded cdg algebra associated to
.R;W / (resp. .R;W � c/). Let

p
c be a square root of c. It is immediate to see that

.id;
p
c/ W RW ! RW�c

is a cdg functor which, moreover, is a pseudo-equivalence (in the sense of [23]). Therefore,
by [9, Proposition 2.13, Proposition 3.10], the second map is a quasi-isomorphism of
mixed complexes strictly compatible with u-connections as well.

By [9, Proposition 3.10, Proposition 2.13, Proposition 3.13 and Proposition 3.14]
(notice that here the assumption crit.W / � W �1.0/ is not needed), we get that

HochII.Sing.AnCmC ; W // ' �.AnCmC ; .��
AnCm

C
;�dW; ddR;r

dR
u //:

In order to have an equivalence in the statement of the previous proposition with just
the term HH�.MFcoh.X; g/; b; B;rGMu / on the left-hand side, one needs to impose some
hypothesis, similar to the requirement that the critical locus of g is contained in the fiber
over zero when X is smooth. For this we introduce the following.

Definition 4.17. Let g W X ! A1C be as above. We say that x 2 X is a relative critical
point of W if

rank.Jac.f1; : : : ; fm//.x/ D rank.Jac.f1; : : : ; fm; g//.x/:

A relative critical value c 2 A1C is the image of a relative critical point.

Remark 4.18. If X is smooth, a relative critical point is just a critical point in the usual
sense.

Remark 4.19. It seems possible that Definition 4.17 is related to the notion of a critical
value of a regular function on a singular variety, introduced in [10, §B.2].

Example 4.20. Let z W X D Spec.CŒx; y; z�=.y2 � x3//! A1C . All points of the line
V.x; y/ are critical points (meaning that all the fibers are singular), but none of them is a
relative critical point.

Proposition 4.21. Let .X;g/ be as above. Assume that 0 is the only relative critical value.
Then

.Hoch.MFcoh.A; g//; b; B;r/ ' �.AnCmC ; .��
AnCm

C
;�dW; ddR;r

dR
u //

is an equivalence of mixed complexes with u-connection.

Proof. The hypothesis on the relative critical locus of g means that the Jacobian of W

Jac.W / D
� dg
dx1
C

mX
kD1

dfk

dx1
xnCk ; : : : ;

dg

dxn
C

mX
kD1

dfk

dxn
xnCk ; f1; : : : ; fm

�
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can vanish only if f1.x1; : : : ; xn/D � � � D fm.x1; : : : ; xn/D g.x1; : : : ; xn/D 0, in which
case W D 0. In particular,

HochII.Sing.AnCmC ; W // ' Hoch.Sing.AnCmC ; W //

and the statement is clear from the previous proposition.

As an immediate consequence of the two propositions above, we have the following
theorem.

Theorem 4.22. With the same notation as above, there is an equivalence of Z=2Z-graded
bundles with connections on Spf.CLuM/,M

c2C

HP�.MFcoh.X; g � c/;rGMu /

'

�
H�Zar.�

�

AnCm
C

LuM;�dW C uddR/;rdRu D
d

du
C
�

u
C
W

u2

�
;

where �j�p
AnCmC

D �
p
2
� id, and an equivalence of Z=2Z-graded vector spacesM

c2C

HH�.MFcoh.X; g � c// ' H�Zar.A
nCm
C ; .��

AnCm
C

;�dW //:

Moreover, if the relative critical locus of g is contained in the fiber over 0, then

HP�.MFcoh.X;g/;rGMu /'
�

H�Zar.�
�

AnCm
C

LuM;�dW C uddR/;rdRu D
d

du
C
�

u
C
W

u2

�
;

and
HH�.MFcoh.X; g// ' H�Zar.A

nCm
C ; .��

AnCm
C

;�dW //:

This theorem, combined with Sabbah/Sabbah–Saito’s result, gives us the following
computation of the periodic cyclic homology of MFcoh.X; g/ in terms of vanishing coho-
mology in the affine case.

Theorem 4.23. With the same notation as above, there is an equivalence of Z=2Z-graded
vector bundles with connections of the punctured disk,M

c2C

HP�.MFcoh.X; g � c/;rGMu /

'

M
c2C

yE �
c
u ˝CLuM cRH

�1
.H��1an .W

�1.c/; ˆW�c.CAnCm
C

//; T � .�1/�/:

Moreover, if the relative critical locus of g is contained in the fiber over 0, then

HP�.MFcoh.X; g/;rGMu / ' cRH
�1
.H��1an .W

�1.0/;ˆW .CAnCm
C

//; T � .�1/�/:
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Remark 4.24. The .�1/� in front of the monodromy operator T appears as we have
added the term �

u
to the connection on the twisted de Rham complex. See the proof of

[9, Theorem 5.4].

Remark 4.25. In order to obtain a generalization of the theorem above to the non-affine
case, the equivalence

MFcoh.X; s/ ' Sing.V ; WjV 2 �.V ;O.1///

suggests that a formalism of vanishing cycles over ŒA1C=Gm;C� analogous to the one
sketched in [21] is required. See [7], where this formalism has been developed in the
étale setup.

It also seems possible that there exists an algebraic computation for vanishing cycles
over ŒA1C=Gm;C� that generalizes Kontsevich’s formula.

This is currently being investigated by the author.
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