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Noncommutative Hodge conjecture

Xun Lin

Abstract. The paper provides a version of the rational Hodge conjecture for dg categories. The non-
commutative Hodge conjecture is equivalent to the version proposed by Perry (2022) for admissible
subcategories. We obtain examples of evidence of the Hodge conjecture by techniques of noncom-
mutative geometry. Finally, we show that the noncommutative Hodge conjecture for smooth proper
connective dg algebras is true.

1. Introduction

Recently, G. Tabuada proposed a series of noncommutative counterparts of the cele-
brated conjectures, for example, Grothendieck standard conjecture of type C and type D,
Voevodsky nilpotence conjecture, Tate conjecture, Weil conjecture, and so on. After pro-
posing the noncommutative counterparts, he proved additivity with respect to the SODs
(semi-orthogonal decomposition, see the notation in Section 1) for most of these conjec-
tures. Then, he was able to give new evidence of the conjectures by a good knowledge of
the semi-orthogonal decompositions of the derived category of varieties. For the details,
the reader can refer to “Noncommutative counterparts of celebrated conjectures” [32].

In this paper, the author provides a version of the rational Hodge conjecture to the
small dg categories. This new conjecture is equivalent to the classical Hodge conjecture
when the dg category is Perdg.X/, where X is a projective smooth variety. It is equivalent
to the version of the Hodge conjecture in [25] for the admissible subcategories of Db.X/.

For Perdg.X/, HH0.Perdg.X//Š
L

Hp;p.X;C/ by the HKR isomorphism. In order to gen-
eralize the Hodge conjecture, we need to find natural intrinsic rational Hodge classes
in HH0.A/, and most importantly, it becomes the usual rational Hodge classes when
AD Perdg.X/. Classically, it is well known that the images of rational topological K-groups
under topological Chern character recovers the rational Betti cohomology. The topologi-
cal K-theory was generalized to the noncommutative spaces by A. Blanc [6], it turns out
that the image of the rational topological K-group Ktop0 .A/Q under the topological Chern
character becomes the even rational Betti cohomology when A D Perdg.X/.
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There is a functorial commutative diagram

HH0.A/

K0.A/

Ch

44

��

Ch
// HN0.A/

j
��

�

99

Ktop0 .A/
Chtop // HCper0 .A/:

Definition 1.1. Let A be a small dg category. The Hodge classes of A are defined as

Hodge.A/ WD �.j�1.Chtop.Ktop0 .A/Q/// � HH0.A/:

Clearly, the Chern character ChW K0.A/ ! HH0.A/ maps K0.A/ to Hodge.A/. We
define the noncommutative Hodge conjecture for any dg category as follows.

Conjecture 1.2 (Noncommutative Hodge conjecture). The Chern character ChWK0.A/ 7!
HH0.A/ maps K0.A/Q surjectively into the Hodge classes Hodge.A/.

For the smooth proper dg categories, we propose an equivalent version of the rational
Hodge conjecture, for the reason that they are equivalent, see Remark 3.8. We write H as
the isomorphism HCper0 .A/ Š

H L
HH2n.A/ which is the Hodge decomposition by degen-

eration of the noncommutative Hodge-to-de Rham spectral sequence [10]. Note that we
choose a splitting. Define the rational class in HCper0 .A/ as Chtop.Ktop0 .A/Q/ \ j.HN0.A//.
Then we define the Hodge classes in HH0.A/ as

Hodge.A/ D Pr ı H.Chtop.Ktop0 .A/Q/ \ j.HN0.A///:

Here the map Pr is the projection from
L

HH2n.A/ to HH0.A/. Clearly the natural Chern
character map K0.A/Q to Hodge.A/.

Definition 1.3 (D Definition 3.7). Hodge conjecture for smooth proper dg categories: the
Chern character ChW K0.A/! HH0.A/ maps K0.A/Q surjectively into the Hodge classes
Hodge.A/.

Remark 1.4. Since the noncommutative Hodge conjecture of smooth proper dg cate-
gories here is equivalent to Conjecture 1.2, see Remark 3.8, the formulation for smooth
proper dg categories is independent of the choice of splitting.

The version of the Hodge conjecture is equivalent to the one in [25] for admissible
subcategories of Db.X/, see Theorem 3.5.

After establishing the language of the noncommutative Hodge conjecture, the author
proves that the conjecture is additive for general SODs and the noncommutative motives.
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Theorem 1.5 (D Theorem 3.20). Let A, B and C be smooth and proper dg categories.
Suppose there is a direct sum decomposition U.C/Q Š U.A/Q ˚ U.B/Q, see Sec-
tion 3.2 for the definition of U.�/ and U.�/Q. We have the following:

noncommutative Hodge conjecture for C

, noncommutative Hodge conjecture for A and B:

Corollary 1.6 (D Theorem 3.13). Suppose we have an SOD, Db.X/ D hA;Bi. There
are natural dg liftings Adg, Bdg of A, B corresponding to the dg enhancement Perdg.X/
of Db.X/.

Hodge conjecture for X , noncommutative Hodge conjecture for Adg and Bdg:

Remark 1.7. This follows directly from Theorem 1.5. By Theorem 3.5, this version of
the noncommutative Hodge conjecture for admissible categories is equivalent with the one
proposed by Alex Perry, so the corollary was known by Alex Perry [25].

Let A be a sheaf of Azumaya algebras on X. Using the work of G. Tabuada and M. Van
den Bergh on Azumaya algebras [33, Theorem 2.1], U.Perdg.X;A//Q Š U.Perdg.X//Q.
We have the following.

Theorem 1.8 (D Theorem 3.24). Noncommutative Hodge conjecture for Perdg.X;A/,
noncommutative Hodge conjecture for Perdg.X/.

This formulation of the noncommutative Hodge conjecture is compatible with the
semi-orthogonal decompositions. Therefore, good knowledge of semi-orthogonal decom-
position of varieties can simplify the Hodge conjecture, and gives new evidence of the
Hodge conjecture. The survey “Noncommutative counterparts of celebrated conjectures”
[32, Section 2] provides many examples of the applications to the geometry for some
conjectures via this approach. The examples also apply to the noncommutative Hodge
conjecture, and we give some further examples which are combined in the theorem below.

Theorem 1.9. Combining Corollary 1.6, Theorem 1.5, and Theorem 1.8, we have:

(1) Fractional Calabi–Yau categories.
Let X be a hypersurface of degree � n C 1 in Pn. There is a semi-orthogonal
decomposition

Perf.X/ D hT .X/;OX; : : : ;OX.n � deg.X//i:

T .X/ is a fractional Calabi–Yau of dimension .nC1/.deg�2/
deg.X/ [18, Theorem 3.5]. We

write Tdg.X/ for the full dg subcategory of Perdg.X/ whose objects belong to T .X/.
Then

Hodge conjecture of X, noncommutative Hodge conjecture of Tdg.X/:
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(2) Twisted scheme.

(A) Let X be a cubic fourfold containing a plane. There is a semi-orthogonal
decomposition

Perf.X/ D hPerf.S;A/;OX;OX.1/;OX.2/i;

where S is a K3 surface, and A is a sheaf of the Azumaya algebra over S
[16, Theorem 4.3]. Since the noncommutative Hodge conjecture is true for
Perdg.S;A/ by Theorem 1.8, hence the Hodge conjecture is true for X.

(B) Let fWX! S be a smooth quadratic fibration, for example, the smooth quadric
in the relative projective space PnC1S [15]. There is a semi-orthogonal de-
composition

Perf.X/ D hPerf.S; Cl0/; Perf.S/; : : : ; Perf.S/i;

where Cl0 is a sheaf of the Azumaya algebra over S if the dimension n of the
fiber of f is odd.

Thus, if n is odd, the Hodge conjecture of X, S. Moreover, if dim S � 3, the
Hodge conjecture for X is true.

(3) HP duality.
We write Hodge.�/ if the (noncommutative) Hodge conjecture is true for varieties
(smooth and proper dg categories). Let Y! P .V�/ be the HP dual of X! P .V/,
then Hodge.X/, Hodge.Y/. Choose a linear subspace L � V�. Let XL D X �P.V/

P .L?/ and YL D Y �P.V�/ P .L/ be the corresponding linear sections. Assume XL
and YL are of expected dimension and smooth. If we assume Hodge.X/, then
Hodge.XL/, Hodge.YL/.

We can prove (3) directly from the description of HPD, see Theorem 3.27. For more
examples constructed from HPD, see Example 3.29. Motivated from the noncommutative
techniques, Theorem 1.9 (3), we expect that we can establish duality of the Hodge con-
jecture for certain linear sections of the projective dual varieties by classical methods of
algebraic geometry.

Conjecture 1.10 (D Conjecture 3.31). Let X � P .V/ be a projective smooth variety.
Suppose the Hodge conjecture is true for X. Let Y � P .V�/ be the projective dual of
X � P .V/. Choose a linear subspace L � V�. Suppose the linear section XL D X \ P .L?/
and YLD Y\P .L/ are both of expected dimension and smooth. Then, the Hodge conjecture
of XL is equivalent to the Hodge conjecture of YL.

Finally, we obtain some results by the algebraic techniques. A dg algebra A is called
connective if Hi .A/ D 0 for i > 0. According to [26, Theorem 4.6], if A is a connective
smooth proper dg algebra, then U.A/Q Š U.H0.A/=Jac.H0.A///Q Š

L
U.C/Q. Thus,

we have the following.
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Theorem 1.11. The noncommutative Hodge conjecture is true for a smooth proper and
connected dg algebra A, see Theorem 3.33. In particular, the noncommutative Hodge con-
jecture is true for smooth and proper algebras.

We also provide another proof for the case of smooth and proper algebras, see Theo-
rem 3.34. Theorem 1.11 implies that if a variety X admits a tilting bundle (or sheaf), then
the Hodge conjecture is true for X, see Corollary 3.38 in the text.

Notation

We assume the varieties to be defined over C. We write SOD for a semi-orthogonal decom-
position of triangulated categories. We say a semi-orthogonal decomposition is geometric
if its components are equivalent to some derived categories of projective smooth varieties.
We always assume the dg categories to be small categories. We write k as the field C in
some places without mentioning.

2. Preliminary

2.1. The classical Hodge conjecture

Given a projective smooth variety X, there is a famous Hodge decomposition

Hk.X.C/;Z/˝C Š
M
pCqDk

Hp.X; �q
X/

where Hp.X; �q
X/ can be identified with the .p; q/ classes in HpCq.X.C/;C/. We define the

rational (integral) Hodge classes as rational (integral) .p; p/ classes. Namely, the ratio-
nal Hodge classes are Heven.X.C/;Q/ \

L
p H

p;p.X;C/, and the integral Hodge classes
are Heven.X.C/;Z/ \

L
p H

p;p.X;C/. By the Poincaré duality, there is a cycle map which
relates the Chow group of X with its Betti cohomology

CycleW CH�.X/! H�.X.C/;C/:

Clearly, the image lies in the Heven.X.C/;Z/. We obtain the rational cycle map when we
tensor with Q. The famous Hodge conjecture concerns whether the image of the (rational)
cycle map is exactly the (rational) integral Hodge class. It is well known that the integral
Hodge conjecture is not true in general [3], and the rational Hodge conjecture is still open.
For more introductions to the classical Hodge conjecture, the reader can refer to the survey
“Some aspects of the Hodge conjecture” [36].

Remark 2.1. The rational (and integral) Hodge conjecture is true for weight one by the
Lefschetz one-one theorem. According to the Poincaré duality, the rational Hodge conjec-
ture is true for weight n � 1, n is the dimension of the variety. In particular, the rational
Hodge conjecture is true for varieties of dimension less than or equal to 3.
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This paper focuses on the non-weighted rational Hodge conjecture. That is, we con-
cern whether the rational cycle map maps CH�.X/Q surjectively into the rational Hodge
classes.

Theorem 2.2 (Part of Grothendieck–Riemann–Roch (SGA6, exp. XIV)[5]). Let X be a
smooth projective variety. There is a commutative diagram, where ChQ are the certain
Chern characters, K0.X/Q is the rational 0-th algebraic K-group of the coherent sheaves,

K0.X/Q
ChQ
//

ŠChQ

��

H�.X;C/

CH�.X/Q:
cycle

88

The image of the Chern character is in the rational Hodge classes, and the rational
Hodge conjecture can be reformulated that ChQ maps K0.X/Q surjectively into the rational
Hodge classes.

2.2. Noncommutative geometry

We briefly recall the theory of noncommutative spaces. We regard certain dg categories as
noncommutative counterparts of varieties. We will recall the basic notions. For a survey of
the dg categories, the reader can refer to the survey by B. Keller, “On differential graded
categories” [12].

Definition 2.3. The C-linear category A is called a dg category if Mor.�; �/ are differen-
tial Z-graded k-vector spaces. For every object E, F, G 2 A, the compositions

Mor.F; E/˝ Mor.G; F/! Mor.G; E/

of complexes are associative. Furthermore, there is a unit k! Mor.E; E/. Note that the
composition law implies that Mor.E; E/ is a differential graded algebra.

Example 2.4. A basic example of dg categories is Cdg.k/, whose objects are complexes
of k-vector space. The morphism spaces are refined as follows:

Let E; F 2 Cdg.k/ define the degree n piece of the morphism Mor.E; F/ to be

Mor.E; F/.n/ WD …Hom.Ei ; FiCn/:

The n-th differential is given by dn.f/ D dE ı f � .�1/nf ı dF, f 2 Mor.E; F/.n/.

Definition 2.5. We call FWC ! D a dg functor between dg categories if FWHom.E;G/!
Hom.F.E/; F.G// is in C.k/ (morphisms are morphisms of chain complexes), E, G 2 C . We
call F to be quasi-equivalent if F induces isomorphisms on homologies of morphisms and
equivalences on their homotopic categories.
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Definition 2.6. The dg functor FWA! B is derived Morita equivalent if it induces an
equivalence of derived categories by composition

F�WD.B/ Š D.A/:

Note that if the dg functor A ! B is a quasi-equivalence, then it is derived Morita
equivalent, the reader can refer to “Categorical resolutions of irrational singularities” [19,
Proposition 3.9] for an explicit proof.

We consider the category of small dg categories, whose morphisms are the dg func-
tors. It is written as dg-cat. According to G. Tabuada [29], there is a model structure
on dg-cat with derived Morita equivalent dg functors as weak equivalences. We write
Hmo.dg-cat/ as the associated homotopy category for such model structure. Given two
dg categories A and B, we have a bijection HomHmo.A;B/ Š Iso rep.Aop ˝L B/, where
rep.Aop ˝L B/ is the subcategory of D.A˝L B/ with bi-module X such that X.A; �/ is
a perfect B module. Linearizing the category, we obtain Hmo0 whose morphism spaces
become K0.rep.Aop ˝B//. After Q linearization and idempotent completion, we get the
category of the pre-noncommutative motive PChowQ.

Definition 2.7. Any functor to an additive category C , FWdg-cat! C , is called an additive
invariant in the sense of G. Tabuada [29] if

(1) it maps the Morita equivalences to isomorphisms;

(2) for pre-triangulated dg categories A, B and X with natural morphism iWA! X and
jWB! Xwhich induce a semi-orthogonal decomposition of triangulated categories
Ho.X/D hHo.A/;Ho.B/i, there is an isomorphism F.X/Š F.A/˚ F.B/ which is
induced by F.i/C F.j/.

The following theorem is due to G. Tabuada.

Theorem 2.8 (G. Tabuada [29, Theorem 4.1]). The functor F in Definition 2.7 that induces
Hmo! A is an additive invariant if and only if it factors through Hmo! Hmo0 ! A.
That is, Hmo0 plays a role as the usual motives and the additive invariants should be
regarded as noncommutative Weil cohomology theories.

Remark 2.9. Due to the work of many people, see the survey [31], the Hochschild homo-
logy, algebraic K-theory, (periodic) cyclic homology theory are all additive invariants. The
Hochschild homology of proper smooth varieties is the noncommutative counterpart of
the Hodge cohomology, and the periodic cyclic homology corresponds to the de Rham
cohomology.

Given a proper smooth variety X, there is a natural dg enhancement Perdg.X/, which is
a dg enhancement of Perf.X/. In this sense, the dg categories can be regarded as noncom-
mutative counterpart of varieties. In order to focus on the nice spaces, for example, the
Chow motive concerns the proper smooth varieties, we restrict the dg-cat to the smooth
proper dg categories.
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Definition 2.10. A dg category A is called smooth if A is a perfect A �A bi-module. It
is called smooth and proper if A is derived Morita equivalent to a smooth dg algebra of
finite type.

It is well known that the property of dg categories being smooth and proper is closed
under derived Morita equivalence and tensor product [31, Chapter 1, Theorem 1.43]. Peo-
ple also define the properness as HomA.�;�/ being perfect k-mod. According to a book of
G. Tabuada, “Noncommutative motive” [31, Proposition 1.45], such a definition of smooth
and properness is equivalent to our definition.

Definition 2.11 (Noncommutative Chow motive [31]). We write Hmosp0 as a full subcat-
egory of Hmo0 whose objects are smooth proper dg categories. Then, Q linearizing the
category Hmosp0 , that is, the morphisms become K0.Aop ˝B/Q [31, Corollary 1.44], we
obtain Hmosp0;Q. Then, we define NChowQ to be the idempotent completion of Hmosp0;Q.

There is a universal additive invariant

UW dg-catsp ! NChow :

Let C be the category with one object whose morphism space is C. Then for any A 2

dg-cat, HomNChow.U.C/;U.A// Š K0.rep.A// Š K0.A/ WD K0.Dc.A//. Since we have
a functorial morphism HomNChow.U.C/;U.A//! HomC.HH0.C/; HH0.A//, there is a
Chern character map

ChW K0.A/! HH0.A/:

Given any A module X 2 Dc.A/, it is defined via the following diagram of dg categories:

Perdg.A/

C

X

;;

A:

OO

It induces morphisms of Hochschild complexes naturally, and then an element in HH0.A/
via the isomorphism HH0.A/ Š HH0.Perdg.A//. The isomorphism is a derived Morita
equivalence, because of the Yoneda embedding A! Perdg.A/. Here, Perdg.A/ is defined
as a full subcategory of the dgA module whose objects are isomorphic to objects in
Perf.A/.

In general, given any additive invariant F with F.k/ Š k, we have a Chern character
map K0.A/! F.A/, for example, the (periodic) cyclic homology, and the negative cyclic
homology.

It is natural to ask what the relations between the Chow motive ChowQ and the non-
commutative Chow motive NChowQ are. There is a nice answer due to remarkable works
by M. Kontsevich and G. Tabuada.
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Theorem 2.12 ([30, Theorem 1.1]). There is a symmetric monoidal functor

�W SmProjecop
! dg-catop; X 7! Perdg.X/

such that the following natural diagram is commutative:

SmProjecop �
//

��

dg-catsp

��

ChowQ

��

Hmosp0

��

ChowQ = �˝Q.1/
�0
// NChowQ � Hmo�0;Q:

With this commutative diagram, G. Tabuada was able to generalize some famous con-
jectures to the noncommutative spaces, see “Noncommutative counterparts of celebrated
conjectures” [32].

3. Noncommutative Hodge conjecture

In this section, we propose the noncommutative Hodge conjecture, and prove that the
noncommutative Hodge conjecture is additive for semi-orthogonal decomposition. We
obtain more evidence of the Hodge conjecture via good knowledge of semi-orthogonal
decompositions. Finally, we prove that the noncommutative Hodge conjecture is true for
smooth proper connective dg algebras.

3.1. Formulation

Definition 3.1. Let A be a small dg category. The Hodge class of A is defined as

Hodge.A/ WD �.j�1.Chtop.Ktop0 .A/Q/// � HH0.A/;

HH0.A/

K0.A/

Ch

44

��

Ch
// HN0.A/

j
��

�

99

Ktop0 .A/
Chtop // HCper0 .A/:

Conjecture 3.2 (Noncommutative Hodge conjecture). The Chern character ChWK0.A/ 7!
HH0.A/ maps K0.A/Q surjectively into the Hodge class Hodge.A/.
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Remark 3.3. Note that we obtain the abstract rational Hodge class in HH0.A/. Classi-
cally, the Hodge conjecture concerns the weight. However, to the author’s knowledge, we
do not know how to obtain the weight of the abstract Hodge class. In this paper, we always
assume the conjecture as a non-weighted Hodge conjecture.

Example 3.4. Let X D Spec A be a smooth affine connected variety over C, and A D

Perdg.X/. Then we have

HCper0 .A/ D HN0.A/ Š C ˚
M
i�1

H2idR.X;C/:

The projection � WHN0.A/! HH0.A/maps
L
i�1 H

2i
dR.X;C/ to 0, and C to HH0.A/D A

as inclusion of functions. The Hodge classes are �.Q/ DQ � A. Clearly, Ch.K0.A/Q/ D
Q which is exactly the Hodge class. Thus, the noncommutative Hodge conjecture is true
for Perdg.X/.

Theorem 3.5. Conjecture 3.2 is equivalent to the one in Alex Perry’s paper [25, Conjec-
ture 5.11] for admissible subcategories of Db.X/.

Proof. For the admissible subcategory A � Db.X/, Alex Perry defines the Hodge classes
of A as the classes of Ktop0 .A/Q � Ktop0 .A/˝C that lie in HH0.A/ under the isomorphism

Ktop0 .A/˝C
Chtop // HCper0 .A/

Š //
L
i HH2i .A/ :

Note that there is a natural choice of splitting of the Hodge filtration of HCper0 .A/ induced
from that of X, and then we have a natural decomposition HCper0 .A/ Š

L
i HH2i .A/. The

map jW HN0.A/! HCper0 .A/ is injective by degeneration of the noncommutative Hodge-
to-de Rham spectral sequence. Choose the natural splitting of the Hodge decomposition
of HCper0 .A/ (the one in [25]), and induce a splitting for HN0.A/, we get a commutative
diagram,

HH0.A/

D

��

K0.A/

Ch

22

//

��

HN0.A/

�

33

Š

H
//

j

��

L
i�0 HH2i .A/

��

77

Pr

77

Ktop0 .A/
Chtop // HCper0 .A/

Š

H
//
L
i HH2i .A/

Pr

''

HH0.A/:

Note that the projection Pr ı HWHN0.A/! HH0.A/ is naturally the morphism � . We show
that the Hodge class defined in [25] is isomorphic to the image pr ı H.Chtop.Ktop0 .A/Q/ \
j.HN0.A/// in HH0.A/. It is true if replacing A with Db.X/: identify HCper0 .Perdg.X// with
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Heven.X;C/, the Hodge class defined in [25] and the space pr ı H.Chtop.Ktop0 .Perdg.X//Q/\
j.HN0.Perdg.X//// are both rational Hodge classes Heven.X;Q/\

L
p H

p;p.X;C/. Therefore,
the Hodge class defined in [25] for the admissible subcategory A � Db.X/ is isomorphic
to pr ı H.Chtop.Ktop0 .A/Q/\ j.HN0.A/// by additivity. According to the commutative dia-
gram above, pr ı H.Chtop.Ktop0 .A/Q/ \ j.HN0.A/// is exactly the class

�.j�1.Chtop.Ktop0 .A/Q/// � HH0.A/:

Lemma 3.6. Let A be a smooth proper dg category, the noncommutative Hodge-to-de
Rham spectral sequence degenerates [10].

Let A be a smooth proper dg category. By Lemma 3.6, we can choose a splitting
of the Hodge filtration of HCper0 .A/, and then we have an isomorphism HW HCper0 .A/ ŠL
2i HH2i .A/.

Definition 3.7 (Hodge conjecture for smooth proper dg categories). Define the Hodge
classes in HH0.A/ as pr ı H.Chtop.Ktop0 .A/Q/\ j.HN0.A///. The Hodge conjecture of A is
that the Chern character ChW K0.A/! HH0.A/ maps K0.A/Q surjectively into the Hodge
classes.

Remark 3.8. This is equivalent to Conjecture 3.2 by identifying pr ıH.Chtop.Ktop0 .A/Q/\
j.HN0.A///with �.j�1.Chtop.Ktop0 .A/Q///� HH0.A/. Thus, the conjecture is independent
of the choice of splitting H.

Remark 3.9. Let X be a smooth projective variety. Combining Theorem 3.5 and Perry’s
work [25], the Hodge conjecture for X , the noncommutative Hodge conjecture for
Perdg.X/. For completeness, we provide the proof here. The rational Hodge conjecture
claims that the Chern character ChW K0.X/Q !

L
p H

p;p.X;C/maps K0.X/Q surjectively to
the rational Hodge classes. The noncommutative Hodge conjecture claims that the map
ChQW K0.X/Q D K0.Perdg.X//Q ! Hodge.Perdg.X// is surjective. There is a commutative
diagram

HH0.Perdg.X//

Š

��

Ktop0 .Perdg.X//

((

��

K0.Perdg.X//

66

Ch

gg

Ch //

Š

��

HN0.Perdg.X//

�

kk

,! //

Š

��

HCper0 .Perdg.X//

Š

��

K0.X/

((

Ch

ww

Ch //
L
i�0 H

p;p�2i .X;C/

�
ss

,! // HevendR .X;C/

L
p H

p;p.X;C/ Ktop0 .X/:

66
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We explain the commutative diagram. There is a natural quasi-isomorphism of double
complexes of the periodic cyclic homology Tot�;�.Perdg.X// ! Tot�;�.R�.

L
�iXŒi �//

which is described by B. Keller in [11].
After identifying HCper0 .Perdg.X// with HevendR .X;C/, the noncommutative Chern char-

acter becomes the usual Chern character. The reader can refer to C. Weibel [37, Propo-
sition 3.8.1] or [6, Proposition 4.32]. Hence, the noncommutative Chern character maps
K0.X/Q surjectively to the noncommutative rational Hodge classes if and only if the Chern
character maps K0.X/Q surjectively to the rational Hodge classes.

Theorem 3.10. Suppose FWA!B is a derived Morita equivalence, then the Hodge con-
jecture is true for A if and only if it is true for B.

Proof. The topological and algebraic K-theory, Hochschild homology, periodic (negative)
cyclic homology are all additive invariants. We have a commutative diagram,

Ktop0 .A/

��

Š // Ktop0 .B/

��

K0.A/

Ch

��

Š //

��

ee

K0.B/

Ch

��

��

99

HN0.A/

�

��

Š //

��

HN0.B/

��

�

��

HCper0 .A/
Š // HCper0 .B/

HH0.A/
Š // HH0.B/

whose rows are isomorphisms. It is clear that any morphism of dg categories induces
a morphism of Hodge classes: write � as the corresponding morphism from additive
invariants of A to B. Let x 2 Hodge.A/, this implies that there is x0 2 HN0.A/ such
that �.x0/ D x, and y 2 Ktop0 .A/Q such that j.x0/ D ChtopQ .y/. Applying �, we get �.x/ D
�.�.x0//, and j.�.x0// D ChtopQ .�.y//, that is, �.x/ 2 Hodge.B/. There is a commutative
diagram,

K0.A/
Š //

Ch
��

K0.B/

Ch
��

Hodge.A/ Š // Hodge.B/:

The isomorphism of Hodge classes is as follows: take z 2 Hodge.B/, since � induces an
isomorphism HH0.A/Š HH0.B/, there exists a unique x 2 HH0.A/ such that �.x/D z. It
can be shown that x 2 Hodge.A/ by diagram chasing.
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Corollary 3.11. For the unique enhanced triangulated categories, we can define its Hodge
conjecture via dg enhancement. The Hodge conjecture does not depend on the dg enhance-
ment.

Proof. This is because two dg enhancements of the unique enhanced triangulated cat-
egories are connected by a chain of quasi-equivalences, and the corollary follows from
Theorem 3.10.

Remark 3.12. For a projective smooth variety X, Db.X/ Š Perf.X/ is a unique enhanced
triangulated category. Thus, it suffices to check whether the conjecture is true for any
pre-triangulated dg enhancement of Db.X/.

Combining Theorem 3.5 and Perry’s work [25], we get the following theorem. Here
we provide an independent proof.

Theorem 3.13. Suppose we have an SOD, Db.X/D hA;Bi. There are natural dg enhance-
ments Adg, Bdg of A, B corresponding to the dg enhancement Perdg.X/ of Db.X/.

Hodge conjecture for X , noncommutative Hodge conjecture for Adg and Bdg:

Proof. We still write A and B as dg categories corresponding to the natural dg enhance-
ment again. We can lift the semi-orthogonal decomposition to the dg world by [19, Propo-
sition 4.10]. That is, there is a diagram

B
i
// D

L
//

R
uu

A

j
vv

where D is a certain gluing of A and B and it is quasi-equivalent to Perdg.X/. Therefore,
we still have a diagram such that iC j induces an isomorphism of K-groups, and iH C jH
induces

K0.B/ i
//

Ch
��

K0.D/ L
//

R
rr

Ch
��

K0.A/

Ch
��

j
rr

Hodge.B/
iH
// Hodge.D/

LH
//

RH
qq

Hodge.A/:
jH

qq

Hence ChD;Q maps K0.D/Q surjectively to Hodge.D/ if and only if ChB;Q and ChA;Q

map K0.B/Q and K0.A/Q surjectively to Hodge.B/ and Hodge.A/, respectively. But the
noncommutative Hodge conjecture is true for D if and only if it is true for the Hodge
conjecture of X by Remark 3.9 and Theorem 3.10. Thus, the statement follows.

Remark 3.14. The statement is still true if there are more than two components for SODs.

Corollary 3.15. Let X be a projective smooth variety, suppose there is an SOD, Db.X/ D
hDb.Z/; Db.Y/i. Then the Hodge conjecture is true for X if and only if for Z and Y. In
particular, the Hodge conjecture is a derived invariant.
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Proof. The Hodge conjecture is true for X if and only if it is true for the corresponding dg
enhancement of Db.Z/ and Db.Y/. Since Db.Z/ and Db.Y/ are unique enhanced triangulated
categories [20], the Hodge conjecture is true for X if and only if for Z and Y.

Corollary 3.16. Consider the blow-up X of Y with smooth center Z, according to Orlov’s
blow-up formula [7, Theorem 4.2], we have an SOD, Db.X/ D hDb.Z/; : : : ; Db.Z/; Db.Y/i.
Hence the Hodge conjecture is true for X if and only if for Z and Y.

Remark 3.17. It was known by a classical method. We can even write down the Chow
groups with respect to the blow-up, for explicit details, the reader can refer to the book of
C. Voisin, “Hodge theory and complex algebraic geometry II” [35, Theorem 9.27]

For low dimensional varieties, Hodge conjecture is a birational invariant. We use the
following lemma.

Lemma 3.18 ([1, Theorem 0.1.1]). Let X and Y be proper smooth varieties. If X is bira-
tional to Y, then there is a chain of blow-ups and blow-downs of smooth centers connecting
X and Y,

X1

��   

� � � X3

~~ ��

X X2 Y:

The following may be well known for the experts, see also [22]. Here, we use the
noncommutative techniques to prove the results.

Theorem 3.19. Since the Hodge conjecture is true for 0-, 1-, 2- and 3-dimensional vari-
eties, the Hodge conjecture is a birational invariant for 4- and 5-dimensional varieties.

Proof. Combine Corollary 3.16 and Lemma 3.18, and observe that X and Y are connected
by a chain of blow-ups of smooth center whose dimension is less or equal to 3.

3.2. Application to geometry and examples

The survey “Noncommutative counterparts of celebrated conjecture” [32, Section 2] pro-
vides many examples of the applications to the geometry for some celebrated conjectures.
The examples also apply to the noncommutative Hodge conjecture. In this subsection, we
still show some interesting examples.

There is a universal functor

UW dg-cat! NChow:

We call U.A/ the noncommutative Chow motive that corresponds to A. We write the
image of U.A/ in NChowQ as U.A/Q. Similar to works by G. Tabuada, the noncommu-
tative Hodge conjecture is compatible with the direct sum decomposition of the noncom-
mutative Chow motives.
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Theorem 3.20. Let A, B and C be smooth and proper dg categories. Suppose there is a
direct sum decomposition U.C/Q ŠU.A/Q˚U.B/Q, then the noncommutative Hodge
conjecture holds for C if and only if it holds for A and B.

Proof. This follows from the fact that the periodic (negative) cyclic homology and rational
(topological or algebraic) K-theory are all additive invariants, and the corresponding target
categories are idempotent complete. The proof is similar to Theorem 3.13.

Example 3.21. Suppose we have a semi-orthogonal decomposition

H0.C/ D hH0.A/;H0.B/i;

then U.C/ Š U.A/˚U.B/.

3.2.1. Fractional Calabi–Yau categories.

Theorem 3.22 ([18, Theorem 3.5]). Let X be a hypersurface of degree � n C 1 in Pn.
There is a semi-orthogonal decomposition

Perf.X/ D hT .X/;OX; : : : ;OX.n � deg.X//i;

where T .X/ is a fractional Calabi–Yau of dimension .nC1/.deg.X/�2/
deg.X/ . Then

U.X/ Š U.Tdg.X//˚U.k/˚ � � � ˚U.k/:

Therefore, the Hodge conjecture of X, the noncommutative Hodge conjecture of Tdg.X/.

3.2.2. Twisted scheme.

Definition 3.23. Let X be a scheme with structure sheaf OX. A is a sheaf of the Azumaya
algebra over X. We call the derived category of a perfect A module Perf.X;A/ the twisted
scheme.

Theorem 3.24. Noncommutative Hodge conjecture for Perdg.X;A/, noncommutative
Hodge conjecture for Perdg.X/.

Proof. According to [33, Theorem 2.1], U.Perdg.X;A//QŠU.Perdg.X//Q. Thus, by The-
orem 3.20, the statement follows.

3.2.3. Cubic fourfold containing a plane.

Example 3.25. Let X be a cubic fourfold containing a plane. There is a semi-orthogonal
decomposition [16, Theorem 4.3]

Perf.X/ D hPerf.S;A/;OX;OX.1/;OX.2/i;

where S is a K3 surface, and A is a sheaf of the Azumaya algebra over S. Since the noncom-
mutative Hodge conjecture is true for Perdg.S;A/ which is unique enhanced, the Hodge
conjecture is true for X.
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3.2.4. Quadratic fibration.

Example 3.26. Let fW X ! S be a smooth quadratic fibration, for example, the smooth
quadric in the relative projective space PnS . There is a semi-orthogonal decomposition

Perf.X/ D hPerf.S; Cl0/; Perf.S/; : : : ; Perf.S/i;

where Cl0 is a sheaf of the Azumaya algebra over S if the dimension n of the fiber of f
is odd [15]. Thus, the Hodge conjecture of X, S. Moreover, if dim S � 3, the Hodge
conjecture for X is true.

3.2.5. HP duality. Let X be a projective smooth variety with morphism fW X! P .V/. Set
OX.1/ D f�OP.V/.1/. Assume there is an SOD

Db.X/ D hA0;A1.1/; : : : ;Am�1.m � 1/i

where Am�1 � � � � � A1 � A0. Define H WD X �P.V/ Q, where Q is the incidence quadric
in P .V/ � P .V�/. Then, there is an SOD

Db.H/ D hL;A1;P.V�/.1/; : : : ;Am�1;P.V�/.m � 1/i:

The projective smooth variety Y with morphism gW Y! P .V�/ is called homological pro-
jective dual of X if there is an object E 2 Db.H �P.V�/ Y/ which induces an equivalence
from Db.Y/ into L.

We refer to [17, Section 2.3] or Kuznetsov’s original paper [14]. Let .Y; g/ be an HP
dual of .X; f/, then

(1) There is an SOD

Db.Y/ D hBn�1.1 � n/; : : : ;B1.�1/;B0i

where Bn�1 � � � � �B1 �B0. Moreover, A0 ŠB0 via a Fourier–Mukai functor.

(2) (Symmetry) .X; f/ is an HP dual of .Y; g/.

(3) For any subspace L � V�, define XL D X �P.V/ P .L?/ and YL D Y �P.V�/ P .L/.
If we assume that they have the expected dimension, dim XL D dim X � dim L,
dim YL D dim Y � .dim V � dim L/, and write dim L D r, dim V D N, then there are
SOD such that LX;L Š LY;L,

Db.XL/ D hLX;L;Ar.r/; : : : ;Am�1.m � 1/i;

Db.YL/ D hBn�1.1 � n/; : : : ;BN�r.r � N/;LY;Li:

Theorem 3.27. We write Hodge.�/ if the (noncommutative) Hodge conjecture is true for
varieties (smooth and proper dg categories). Then,

Hodge.X/, Hodge.A0/, Hodge.B0/, Hodge.Y/:

If we assume Hodge.X/, then Hodge.XL/, Hodge.YL/.
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Proof. The midterm equivalence Hodge.A0/, Hodge.B0/ is because A0 Š B0 via a
Fourier–Mukai functor, and then there is an isomorphism of natural dg enhancements
Adg;0ŠBdg;0 in Hmo, see a proof in [4, Section 9]. Since LX;LŠLY;L via a Fourier–Mukai
functor, the statement Hodge.XL/, Hodge.YL/ follows from the same argument.

Remark 3.28. The HPD can be generalized to the noncommutative version, see the discus-
sion in [17, Section 3.4] or the paper by Alexander Perry, “Noncommutative homological
projective duality” [24].

Example 3.29. One of the nontrivial examples of the homological projective duality
comes from the Grassmannian–Pfaffian duality. Let W be a dimension n vector space, XD
Gr.2;W/ the Grassmannian of 2-dimensional sub-vector spaces of W. Consider the projec-
tive space P .^2W�/, there is a natural filtration called the Pfaffian filtration: Pf.2;W�/ �
Pf.4;W�/ � � � � P .^2W�/,

Pf.2k;W�/ D ¹! 2 P .^2W�/ j rank.!/ � 2kº:

The intermediate Pfaffians are no longer smooth but with singularities. The singularity
of Pf.2k;W�/ is Pf.2k � 2;W�/. Classically, it was known that Y D Pf.2bn

2
c � 2;W�/ is

the classical projective dual of X D Gr.2;W/ via the Plücker embedding. For n � 7, the
noncommutative categorical resolution of Pf.2bn

2
c � 2;W�/ is the homological projective

dual of Gr.2;W/. However, it was not known for the cases n� 8. The interested reader can
refer to a survey [17, Section 4.4, Conjecture 4.4] or Kuznetsov’s original paper [13].

The known nontrivial Grassmannian–Pfaffian duality are the cases n D 6; 7. In these
cases, the Hodge conjecture is true for X since it has a full exceptional collection, then the
noncommutative Hodge conjecture is true for the noncommutative categorical resolution
of the Pfaffians. However, the Hodge conjecture is trivial for the noncommutative category
since it automatically has full exceptional collections, or the geometric resolution of the
Pfaffians are of the form PGr.2;W/.E/ [13, Section 4] for some vector bundle E. It has a full
exceptional collection too.

We expect to obtain duality of the Hodge conjecture for XL and YL when they are
smooth, and have the expected dimension. According to the Lefschetz hyperplane theo-
rem, there is a commutative diagram for i � dim XL � 1,

CHi .XL/Q // Hi .XL;Q/

CHi .Gr.2;W//Q
Š //

OO

Hi .Gr.2;W/;Q/:

Š

OO

The Hodge conjecture is true for a weight less than dim XL. By the hard Lefschetz isomor-
phism, it is still true for weights greater than dim XL. Thus, if dim XL is odd, the Hodge
conjecture for XL is true.

The following examples for n D 6; 7 are from paper [13, Section 10].



X. Lin 1384

(I). We have nD 6, dimXLD 8� dimL, dimYLD dimL� 2. When dimLD 6, the expected
dimension of XL is 2 while the expected dimension of YL is 4. This is the duality between
the Pfaffian cubic fourfold and the K3 surface [13]. When dim LD 5, dimXL D dim YL D 3,
the Hodge conjecture is true by a dimension reason. When dim L D 4, YL D Pf.4; 6/\ P3

is a cubic surface. Then XL D Gr.2; 6/ \ P10 has a full exceptional collection. Further, XL
is a rational Fano 4-fold [38, Section 2.2, Theorem 2.2.1]. Hence, the Hodge conjecture
is true for XL by the weak factorization theorem [1, Theorem 0.1.1]. When dim L D 3,
dim XL D 5, the Hodge conjecture is true for XL. When dim L D 2, XL admits a full excep-
tional collection. We obtain Table 1.

dim L dim XL dim YL classically

2 6 0
3 5 1 known
4 4 2 known, XL is a rational Fano 4-fold
5 3 3 known, they are 3-fold
6 2 4 known, YL is a cubic 4-fold

Table 1. The case n D 6.

(II). We have nD 7, dimXLD 10� dimL, dimYLD dimL� 4. For example, take dimLD 7.
The expected dimensions of XL and YL are both 3. The Hodge conjecture is true for them
by a dimension reason. When dim L D 5, dim XL D 5, the Hodge conjecture is true for XL.
When dim LD 6, dim XL D 4, it is a Fano 4-fold. When dim LD 8, dim YL D 4, it is a Fano
4-fold. Since Fano varieties are uniruled, the Hodge conjecture is true for Fano 4-folds [8].
When dim YL D 9, YL is a Fano 5-fold, the Hodge conjecture is true for Fano 5-folds by [2].
When dim L D 10, YL admits a full exceptional collection. We obtain Table 2.

dim L dim XL dim YL classically

5 5 1 known, since the dimension of XL is odd
6 4 2 known, XL is a Fano 4-fold
7 3 3 known by a dimension reason
8 2 4 known, YL is a Fano 4-fold
9 1 5 known, YL is a Fano 5-fold

10 0 6

Table 2. The case n D 7.
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Remark 3.30. We thank Claire Voisin pointing out to the author a classical result that the
Hodge conjecture is true for uniruled 4-folds [8]. Even though most examples here can
be proved by classical methods, we hope that we can use geometry of dual varieties to
prove the Hodge conjecture of these examples, see also Conjecture 3.31 below. We leave
the blanks in the tables since it is not known for the author whether the Hodge conjecture
is proved for these cases previously.

(III). For n � 8, the HPD is not constructed. However, when n D 10, there is an inter-
esting picture inspired by the Mirror Symmetry which was constructed by E. Segal and
R. P. Thomas [28, Theorem A].

Let L be a 5-dimensional subspace of ^2W�, L? � ^2W. Write X D Gr.2; 10/ � P44

and Y D Pf.8; 10/ � P44; XL D P .L?/ \ X, YL D P .L/ \ Y. We choose a general linear
subspace L such that both XL and YL are smooth. In particular, YL is a quintic 3-fold and XL
is a Fano 11-fold. According to E. Segal and R. P. Thomas [28, Theorem A], there is a
fully faithful embedding

Db.YL/ ,! Db.XL/:

Let A be the exceptional collection ¹Sym3 S; Sym2 S; S;Oº of Db.Gr.2; 10//, where S is
the tautological bundle on Gr.2; 10/. It restricts to an exceptional collection in Db.XL/ by
techniques in [13]. Then, let hA;A.1/; : : : ;A.4/i be an exceptional collection in Db.XL/. It
is right orthogonal to the above embedding of Db.YL/, see description in [28, Remark 3.8].
The Hochschild homology HH0.XL/Š C24 and HH0.YL/Š C4. Thus, the 0-th Hochschild
homology of the right orthogonal complement of hA;A.1/; : : : ;A.4/; Db.YL/i is trivial.
Thus, the Hodge conjecture for XL follows from the additive theory.

Inspired by the examples above, we expect that even though we do not have HPD, the
duality of the Hodge conjecture between linear sections of the dual varieties can be proved
by classical methods.

Conjecture 3.31. Let X � P .V/ be a projective smooth variety. Suppose the Hodge con-
jecture is true for X. Let Y � P .V�/ be the projective dual of X � P .V /. Choose a linear
subspace L � V�. Suppose the linear sections XL D X\ P .L?/ and YL D Y\ P .L/ are both
of expected dimension and smooth. Then, the Hodge conjecture of XL is equivalent to the
Hodge conjecture of YL.

3.3. Connective dg algebras

In this section, we prove that the noncommutative Hodge conjecture is true for the con-
nective dg algebras.

Definition 3.32. An algebra A is called a connective dg algebra if Hi .A/ D 0 for i > 0.

Theorem 3.33. If A is a smooth and proper connective dg algebra, the noncommutative
Hodge conjecture is true for A.
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Proof. According to recent work by Theo Raedschelders and Greg Stevenson [26, Corol-
lary 4.3, Theorem 4.6], U.A/Q ŠU.H0.A/=Jac.H0.A///Q Š

L
U.C/Q. Hence, the non-

commutative Hodge conjecture is true for connective dg algebras. In particular, it is true
for the proper smooth algebras (concentrated in degree 0).

We provide another proof which involves more calculation for smooth and proper
algebras. Clearly, proper algebras are finite dimensional algebras. Due to R. Rouquier [27,
Section 7], PdimAe.A/ D Pdim.A/, smooth algebras are finite global dimensional algebras.
Consider the acyclic quiver Q with finitely many vertices. Let A WD kQ=I be the quiver
algebra with relations, where kQ is the path algebra of Q. Then, A is a smooth and proper
algebra. The noncommutative Hodge conjecture is true for A.

Theorem 3.34. Let A D kQ=I. Consider the natural Chern character map

ChW K0.A/! HH0.A/:

Then, Im ChQ ˝C D HH0.A/. In particular, the noncommutative Hodge conjecture is true
for A.

Proof. Firstly, for the algebra A, HH0.A/Š A=ŒA;A�Š khe1;e2; : : : ;eniwhere ei is the ver-
tex of the quiver Q. We write Si D A � ei which is considered as a left Amodule, ŒSi �2 K0.A/.
We prove that Ch.ŒSi �/D ei . According to the paper of McCarthy, “Cyclic homology of an
exact category” [21, Section 2], there is a natural identification of Hochschild homologiesM

n

HomA.A; A/˝ � � � ˝ HomA.A; A/!
M
X;Y;n

HomA.X; E1/˝ � � � ˝ HomA.En; Y/:

It is a natural quasi-isomorphism, the left-hand side is exactly the bar complex of A. X and
Y are both projective left A modules. Under this identification, the image of the Chern
character of the object ŒP � that is a projective A module is the homology class of idP in
the right-hand side complex. Consider the local picture

BarWHomA.Si ; A/˝ HomA.A; Si /! HomA.Si ; Si /˚ HomA.A; A/:

Let f 2 Hom.Si ; A/ be the natural inclusion, ei 2 HomA.A; Si / be the multiplication by ei .
Then Bar.f˝ ei /D idSi � ei . Therefore, Œei �D ŒidSi � in HH0.Proj A/. Hence Ch.ŒSi �/D Œei �.
Finally, ImChQ ˝C D HH0.A/. Since ImChQ � HH0;Q.A/, we have ImChQ D HH0;Q.A/.

A finite dimensional algebra A is (derived) Morita equivalent to an elementary algebra
which is isomorphic to kQ=I for some quiver Q. Clearly, kQ=I is smooth and proper if A
is smooth and proper. Then, according to Theorem 3.34, the Hodge conjecture is true for
any smooth and finite dimensional algebra A.
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Remark 3.35. A. Perry pointed out to the author that if A is a smooth and proper algebra,
Perf.A/ can be an admissible subcategory of the Perf.X/ which admits full exceptional col-
lections for some smooth and projective varieties X by Orlov [23, Section 5.1]. Therefore,
the noncommutative Hodge conjecture of A is true.

Classically, given any projective smooth variety X, there is a compact generator E of
DQch.X/. Write E again after the resolution to an injective complex. Denote ADHomdg.E;E/,
then there is an equivalence Dper.A/ Š Perf.X/ and a chain of derived Morita equivalences
between Perdg.A/ and Perdg.X/. Thus, the commutative Hodge conjecture for X , the
noncommutative Hodge conjecture for a dg algebra A. By the results above, suppose A is
a smooth and finite dimensional algebra, then the Hodge conjecture of A is true.

Definition 3.36. Let X be a projective smooth variety. An object T is a called tilting sheaf
if the following property holds:

(1) T classically generates Db.X/;

(2) A WD Hom.T; T/ is of finite global dimension;

(3) Extk.T; T/ D 0 for k > 0.

The reader can refer to Alastair Craw’s note, “Explicit methods for derived categories
of sheaves” [9] for more discussions.

Due to Van den Bergh, there are many examples of varieties which admit a tilting
bundle.

Example 3.37 (Van den Bergh [34, Theorem A]). Suppose there is a projective morphism
fWX! YD SpecR between noetherian schemes. Furthermore, Rf�.OX/Š OY and the fibers
are at most one-dimensional. Then there is a tilting bundle E of X.

Corollary 3.38. Suppose X admits a tilting sheaf, then the Hodge conjecture for X is true.

Proof. Let T be a tilting sheaf of X. We write T again after resolution to an injective
complex. Define A WD Homdg.T; T/, which is quasi-isomorphic (hence derived Morita
equivalent) to a smooth and finite dimensional algebra. Thus, the Hodge conjecture for
X is true.
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