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Ideal structure and pure infiniteness of inverse semigroup
crossed products

Bartosz Kosma Kwasniewski and Ralf Meyer

Abstract. We give efficient conditions under which a C*-subalgebra A C B separates ideals in
a C*-algebra B, and B is purely infinite if every positive element in A is properly infinite in B.
We specialise to the case when B is a crossed product for an inverse semigroup action by Hilbert
bimodules or a section C*-algebra of a Fell bundle over an étale, possibly non-Hausdorff, groupoid.
Then our theory works provided B is the recently introduced essential crossed product and the action
is essentially exact and residually aperiodic or residually topologically free. These last notions are
developed in the article.

1. Introduction

Many authors have given sufficient criteria for crossed products by discrete group actions
or for C*-algebras associated to étale locally compact groupoids to be purely infinite (see,
for instance, [2, 6, 19, 22, 34-36, 38, 41, 43]). These articles mostly deal with the case
when the bigger C*-algebra B is simple or when the C*-subalgebra A € B on which
the action takes place is commutative and has totally disconnected spectrum. In addition,
étale groupoids are required to be Hausdorff. These pure infiniteness criteria also imply
that A separates ideals in B. Then the ideal lattice of B is isomorphic to the lattice of
invariant ideals in A. Here we formulate sufficient conditions for A to separate ideals
in B and for B to be purely infinite, which allow A to be noncommutative and which
impose no Hausdorffness restrictions. In this generality, it is natural to study actions of
inverse semigroups by Hilbert bimodules (see [11]) or, equivalently, section algebras of
Fell bundles over inverse semigroups. This contains Fell bundles over discrete groups and
over étale groupoids — possibly non-Hausdorff — as special cases. Another special case are
Exel’s noncommutative Cartan C*-inclusions (see [15,29]), which generalise Renault’s
(commutative) Cartan subalgebras.

This article is based on our recent papers, [28, 30-32], where two key concepts are
developed. The first one is the essential crossed product introduced in [31], which is a vari-
ation on the reduced crossed product that “always” has the expected ideal structure — even
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for general actions of inverse semigroups and for actions of non-Hausdorff groupoids. The
second concept is aperiodicity. It is a strong regularity property, abstracted from the work
of Kishimoto, Olesen—Pedersen, and others, defined for a general C*-inclusion A C B
in [31]. As shown in [32], aperiodicity implies that there is a unique pseudo-expectation — a
unique generalised conditional expectation for A C B taking values in Hamana’s injective
hull of A. If in addition this pseudo-expectation is almost faithful, then A supports B in the
sense that every element in BT \ {0} is supported by an element in A™ \ {0} in the Cuntz
preorder of [12]. This, in turn, implies that A detects ideals in B, that is, J N A # 0 for
any ideal 0 # J < B. All these properties are closely related. In fact, when B is an essen-
tial crossed product and A is separable or of Type I, then the following conditions are
equivalent: aperiodicity, unique pseudo-expectation, supporting positive elements in all
intermediate C*-algebras, detection of ideals in all intermediate C*-algebras, and topolo-
gical freeness of the dual groupoid (see [32]).

In the present paper, we study “residual” versions of these conditions, that is, when
they hold for quotient inclusions A/I € B/BIB for all ideals I < A that are restricted
from B. The relationship between ideals in B and restricted ideals in A is thoroughly
studied in [30]. For a crossed product inclusion, the restricted ideals in A are exactly those
that are invariant under the action that produces B from A. The residual version of detec-
tion of ideals is separation of ideals. We say that A separates idealsin Bif [N A=J N A
for ideals 1, J < B implies / = J. This identifies the ideal lattice of B with the lattice of
restricted ideals in A. Under some extra assumptions, we may also identify the primitive
ideal space of B with the quasi-orbit space of the induced action on the primitive ideal
space of A (see [30]). A residual version of supporting is closely related to the formally
stronger condition called filling, which was used in [22,23] to prove strong pure infinite-
ness. For a large class of C*-inclusion A C B, we show that A residually supports B if and
only if A fills B. Namely, this holds for the symmetric inclusions defined in [30], which
include all sorts of C*-inclusions coming from crossed products. For general residually
supporting C*-inclusions A C B and a family ¥ C A™ of elements in 4 that are properly
infinite in B, we give sufficient conditions for B to be purely infinite (see Theorem 2.37
below).

To ensure that A residually supports B we assume that the inclusion A C B is resid-
ually aperiodic, in the sense that for any restricted ideal / < A, the inclusion A/I —
B/BIB is aperiodic. We also need to assume that the pseudo-expectations for these quo-
tient inclusions are almost faithful. For actions by discrete groups this “residual faithful-
ness of conditional expectations” is also called exactness (see [1,34,44]) and for groupoids
inner exactness (see [3,6]). We generalise this concept to inverse semigroup actions by Hil-
bert bimodules and Fell bundles over étale groupoids. In particular, we prove that the full
crossed product is an exact functor and the reduced crossed product is an injective func-
tor, but only when restricted to special homomorphisms between actions (Propositions 4.2
and 4.15). The essential crossed product is not functorial. Therefore, exactness for these
crossed products, which we call essential exactness, is more subtle.
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As an appetizer, we formulate here a theorem that summarises and illustrates some
of our results. An action of a unital inverse semigroup S by Hilbert bimodules on a
C*-algebra A is a semigroup & = (&;)ses, where each fibre &; is a Hilbert A-bimodule
and the semigroup product is compatible with the internal tensor product (see Defini-
tion 3.1 below). This induces an S-action by partial homeomorphisms on the spectrum A
and the primitive ideal space A. The corresponding transformation groupoids Ax S and
A x S are called dual groupoids of &. If the unit spaces in these groupoids are closed,
we call & a closed action. Then the essential crossed product A X S coincides with
the reduced crossed product A . S. The following theorem combines Theorems 5.8, 5.9
and 5.15, and Corollary 5.22.

Theorem 1. Let & = (&;),es be an inverse semigroup action by Hilbert bimodules on a
C*-algebra A. Assume that & is essentially exact (or exact when the action is closed) and
residually aperiodic (this holds when A x S is residually topologically free). Then

(1) A fills the essential crossed product A Xegs S. S0 A Xegs S is strongly purely infin-
ite if and only if every pair of elements in AT satisfies the matrix factorisation
property of [23];

(2) the ideal lattice of A Xess S is isomorphic to the lattice 1€ (A) of € -invariant ideals
in A. If A is second countable, the primitive ideal space of A Xess S is homeo-
morphic to the quasi-orbit space A /~ of the dual groupoid AxS;

(3) if ¥ € AT residually supports A and consists of residually &-infinite elements
(see Definition 5.18), and 1€ (A) is finite or the projections in ¥ separate the
ideals in 1€ (A), then A Xess S is purely infinite and has the ideal property.

The above theorem directly applies to (twisted) crossed products by discrete groups.
As we explain in Section 5.2, it covers all the pure infiniteness results in [19, 22, 34,
35, 38, 43]. Theorem | has an analogue for Fell bundles over étale groupoids (Corol-
lary 5.10). In particular, it can be used to generalise the results in [6,36,41] to twisted (not
necessarily Hausdorff) étale groupoids. The twisted version covers all Cartan inclusions of
Renault [42] (see Corollary 5.29 and Remark 5.30). In fact, Theorem | may be applied to
all regular residually aperiodic C*-inclusions A C B with a residually faithful conditional
expectation (see Proposition 5.12). This includes a large class of noncommutative Cartan
inclusions in the sense of Exel [15]. See [29, Theorem 4.3] for a number of equivalent
characterisations of such inclusions.

The article is organised as follows. Section 2 reviews general results about restriction
and induction of ideals from [30], discusses residually supporting and filling families and
their relationship, and presents our general pure infiniteness criteria for C*-algebras. In
Section 3, we recall actions of inverse semigroups by Hilbert bimodules and their crossed
products. In Section 4, we discuss restrictions, functoriality and exactness of inverse
semigroup crossed products. Section 5 discusses our general pure infiniteness criteria for
crossed products by inverse semigroup actions.
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2. Separation of ideals and pure infiniteness criteria for C*-inclusions

2.1. Separation and detection of ideals

Let A € B be a C*-inclusion. We recall some results from [30] that relate the ideal struc-
ture of the two C*-algebras A and B. (In [30], we also consider the more general situation
of an inclusion A — M (B) into the multiplier algebra of B.)

Definition 2.2. Let [(A4) and I(B) be the complete lattices of (closed, two-sided) ideals
in A and B, respectively. For I € 1(A), let BIB € I(B) be the ideal in B generated by /.
We define the restriction map r and the induction map i by

r:1(B) — 1(A), J = JNA,
i:1(A) — I(B), I — BIB.

We call I € [(A) restricted it I = r(J) for some J € 1(B). We call J € [(B) induced
if J =i(I) for some I € I(A). Let [B(4) € I(A4) and I4(B) C I(B) be the subsets of
restricted and induced ideals, respectively.

The maps r and i form a (monotone) Galois connection, that is, if I € [(A), J €
I(B), then I € r(J) if and only if i (/) € J. This observation goes back to Green [17].
It has a number of consequences. For instance, the maps i and r are monotone and
satisfy roi(I) 2 1 and i or oi(I) =i(I) for all I € [(A), and i or(J) € J and
roior(J)=r(J)forall J € [(B). The map i preserves joins and r preserves meets.
The maps r:1(B) — 18(4) C1(A) and i:1(A) — I4(B) C I(B) restrict to mutually
inverse isomorphisms of partially ordered sets

I4(B) =~ 18 (4).

Thus I4(B) = 18(A) are complete lattices with inclusion as the partial order. The map r
is injective if and only if i is surjective, if and only if I(B) = I4(B). Subalgebras with
this property are said to separate ideals in the sense of the following definition.

Definition 2.3. We say that A separates idealsin B if J1 N A # J, N Aforall J;,J, < B
with Jy # J, or, equivalently, r is injective. We say that A detects idealsin Bif J N A #0
for all J < B with J # 0 or, equivalently, 7 ~1(0) = {0}.

Detection of ideals is sometimes called the intersection property. Separation of ideals
is a residual version of detection of ideals, as the following lemma shows.

Lemma 2.4 ([30, Proposition 2.12]). A C*-subalgebra A C B separates ideals if and only
if A/I C B/BIB detects ideals for all restricted ideals I € 1B (A).
2.2. Symmetric and regular C*-inclusions

We will be mainly interested in regular inclusions, and these are symmetric as in the
following definition.
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Definition 2.5 ([30, Definition 5.2]). A C*-inclusion A C B is nondegenerate if AB = B.
It is symmetric if for all I € 12(A) the inclusion I — BIB is nondegenerate. (This is
equivalent to /B = BI by [30, Lemma 5.1].)

Let A and B denote the primitive ideal spaces of A and B, respectively. Let Prime® (4)
denote the space of prime ideals in the lattice 12 (4) of restricted ideals. For I € 18 (A), let
Uy := {p € Prime®(4): I & p}. We equip Prime® (4) with the topology {U; }re1B(4)-

The next theorem summarises several desirable properties of symmetric inclusions.

Theorem 2.6 ([30]). Let A C B be a symmetric C*-inclusion.

(1) If p is a primitive ideal in B, then r(p) € 18(A) is prime, and this defines a
continuous map r: B — Prime® (4).

(2) If p is a primitive ideal in A, then there is a largest restricted ideal in A that is
contained in p, which we denote by 7t (p). This element of 18 (A) is prime, and the
resulting map 7: A — Prime® (A) is continuous. Define an equivalence relation
on A by p ~ q if and only if t(p) = n(q). So 7 descends to a continuous map
7: A/~ — Prime® (4).

3 If Prime® (A) is first countable — this always holds when A is second countable —
then 1 is open and surjective and 7 is a homeomorphism. Then there is a continu-

ous map
0:B — A/~, pr—n}'_l(r(p)).

It is a homeomorphism if and only if A separates ideals in B.

Proof. By [30, Corollary 5.5] we may apply [30, Lemmas 4.8 and 4.1] to get (1) and (2),
and [30, Theorem 4.5] gives (3), see also [30, Corollary 4.7]. [

Definition 2.7 ([30, Definitions 4.4, 4.10]). The space A /~ in Theorem 2.6 is called the
quasi-orbit space and the map o: B — A/~ is called the quasi-orbit map of A C B.

Remark 2.8. If B is the full or reduced crossed product — or an exotic crossed product,
for an action of a discrete group G on a C*-algebra A, then A /~ coincides with the
usual quasi-orbit space of the dual action of G on A.1In [30], the quasi-orbit space is also
described in several other cases.

Next we turn to regular inclusions. To link them to crossed products for inverse semi-
group actions, we describe them through gradings by inverse semigroups.

Definition 2.9 ([30, Definition 6.15]). Let S be an inverse semigroup with unit 1 € S. An
S-graded C*-algebra is a C*-algebra B with a family of closed linear subspaces (By)res
such that B; = Bg+, By - By C By forallg,h € Sand By C By if g < hin § (that s,
g=hg*g),and ) B,isdensein B. We call A := B; C B the unit fibre of the S-grading.
The grading is saturated if By - B, = By, forallg,h € S.
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Definition 2.10 ([24,42]). Let A € B be a C*-subalgebra. We call b € B a normaliser
of Ain B if bAb™ C A and b* Ab C A. The inclusion A C B is regular if it is nondegen-
erate and B is the closed linear span of the normalisers of 4 in B.

Proposition 2.11. Let A C B be a C*-inclusion. The following are equivalent:
(1) A is a regular subalgebra of B;
(2) A is the unit fibre for some S-grading on B;
(3) A is the unit fibre for some saturated S-grading on B.

If the inclusion is regular, then it is symmetric, and the set S(A, B) of all closed linear
A-subbimodules M C B that consist entirely of normalisers is an inverse semigroup with
the operations M - N :=span{mn:m € M, n € N} and M* := {m* :m € M}, and it
gives a saturated grading on B.

Proof. Combine [30, Lemma 6.25 and Proposition 6.26]. [

Definition 2.12. Let (B;)ses be an S-grading on B with A = B;. Anideal I € [(A) is
called (B;);es-invariant if IB; = B;I forallt € S. Anideal J € [(B) is called S-graded
ifJ =) ,c5(J N By).

Proposition 2.13 ([30, Propositions 6.19 and 6.20]). Let (B;);es be an S-grading on B
with A = By. An ideal 1 € 1(A) is restricted, I € 18(A), if and only if it is (By):es-in-
variant. An ideal J € 1(B) is induced, J € 14(B), if and only if J is S-graded.

The following lemma on quotients of C*-inclusions is not yet considered in [30].

Lemma 2.14. Let A C B be a C*-subalgebraand J € 1(B). Let I := J N A. Letq: B —
B/ J denote the quotient map. View A/I as a C*-subalgebra of B/ J.

(1) If (By)tes is an S-grading of B with A as unit fibre, then (q(B¢))ses is an
S-grading on B/J with unit fibre A/ 1. And q(B;) = B;/B;1 as Banach spaces —
and even as Hilbert A/ I-bimodules —forallt € S.

(2) If A C B is regular, then A/I < B/J is regular.

Proof. The canonical map from A/I to B/J is injective because J N A = I. Thus we
may view A/I as a C*-subalgebra of B/J. We prove (1). It is easy to see that (¢(B;))ses
is an S-grading on B/J. Each By is naturally a right Hilbert A-module with inner product
{(a|b) :=a*b € Afora,b € B; and the right multiplication in B. The proof of the Rieffel
correspondence between ideals in A and K(B;) shows that B, = {b € B;:(b|b) € I}.
The quotient Banach space B; /B, I is aright Hilbert A/I-module with the induced multi-
plication and the inner product

(@+ B |b+B):=(al|b)+1=qa*h) e A/l
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fora,b € B;. We claim that the norm defined by this inner product is equal to the quotient
norm on B;/B;I. To show this, let (1, ),en be an approximate unit for /. Then

lg®II? = Tim [|b — bu; [|* = Tim [|[(1 —u)b*b(1 —u;)|| = llg(b*b)|

This finishes the proof of (1). Assertion (2) follows from (1) and Proposition 2.11. [

2.3. Generalised expectations

Definition 2.15. A generalised expectation for a C*-inclusion A C B consists of another
C*-inclusion A C A4 and a completely positive, contractive map B — A that restricts to
the identity map on A. If A = A, A = A”, or A =1(A) is Hamana’s injective envel-
ope of A, then we speak of a conditional expectation, a weak expectation, or a pseudo-
expectation, respectively.

Let E: B — A D A be a generalised expectation. It is called faithful if E(b*b) = 0
for some b € B implies b = 0, almost faithful if E((bc)*bc) = 0 for all ¢ € B and some
b € B implies b = 0, and symmetric if E(b*b) = 0 for some b € B implies E(bb*) = 0.
The largest two-sided ideal in B contained in ker E is equal to

Ng :=1{b € B:E((bc)*bc) = Oforall c € B}
={be B:E(xby)=0forallx,y € B}

(see [31, Proposition 3.6]), and Ng = 0 if and only if E is almost faithful.

Since E|4 =1d4 and E|y, = 0, it follows that A N Ng = 0. Hence the composite
map A — B — B/NE is injective and we may identify A with its image in B, := B/NEg.
The map E descends to a generalised expectation E;: B, — A D A that we call the reduced
generalised expectation associated to E (see [31, Definition 3.5]). The reduced general-
ised expectation E; is always almost faithful. It is faithful if and only if £ is symmetric
(see [31, Corollary 3.8]).

We will mainly work with pseudo-expectations below. The injectivity of I(A) implies
that any C*-inclusion has a pseudo-expectation. The following lemma links detection of
ideals to almost faithfulness of pseudo-expectations.

Lemma 2.16. Let A C B be a C*-inclusion. The following are equivalent:

(1) A detects ideals in B;

(2) every generalised expectation for the C*-inclusion A C B is almost faithful;

(3) every pseudo-expectation for A C B is almost faithful.
Proof. Let E:B — A D A be a generalised expectation. Since Ng N A = 0, we must
have Ng = 0 if A detects ideals in B. That is, (1) implies (2). That (2) implies (3) is
obvious. We prove by contradiction that (3) implies (1). Assume that A does not detect

ideals in B. Then there is a nonzero ideal N in B with &' N A = 0. The inclusion A —
B/ N has a pseudo-expectation E: B/ N — I(A). Let g: B — B/.N be the quotient map.
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Then E o g: B — 1(A) is a pseudo-expectation for the inclusion A C B. It is not almost
faithful because 0 #= N C NEoq. [ ]

Remark 2.17 ([40, Theorem 3.5]). Every pseudo-expectation for A C B is faithful — not
only almost faithful — if and only if A detects ideals in C for each intermediate C*-algebra
ACCCB.

Lemma 2.4 says that A separates ideals in B if and only if it “residually detects” ideals
in B. The residual version of Lemma 2.16 says that A separates ideals in B if and only if
the following happens: if 7 € 18(A) is a restricted ideal and E’: B/BIB — 1(A/I)is a
pseudo-expectation for the inclusion A/ < B/BIB, then E' is almost faithful.

In general, it is not practical to check that all pseudo-expectations B — I(A) are
faithful or almost faithful. And the residual version of this statement looks even more
hopeless. There are, however, inclusions with a unique pseudo-expectation. This is the
case for aperiodic inclusions by [32, Theorem 3.6]. When the inclusion is even “resid-
ually” aperiodic, then the inclusions A/l — B/BIB have a unique pseudo-expectation
for all 7 € 18(A). And if we know pseudo-expectations EZ: B/BIB — 1(A/I) for all
I € 18(A), then it becomes possible to check whether they are all (almost) faithful (see
Theorem 2.34 below).

The residual version of Lemma 2.16 discussed above uses pseudo-expectations for the
inclusion A/I < B/BIB for I € 18(A). The following examples show that these need
not be closely related to pseudo-expectations for the original inclusion A C B. In fact, for
inclusions that are not symmetric, even a genuine conditional expectation E: B — A need
not “induce” a conditional expectation E: B/BIB — A/I.

Example 2.18. Let B = B(H) be the algebra of bounded operators on a separable Hilbert
space H, and let A=K (H )+ 1 be the minimal unitisation of the compacts. The inclusion
A C B is symmetric, 18 (4) = {0, K(H), A}, and I(4) = B(H) = B. We may take the
identity map as the pseudo-expectation £: B — B for A C B.Let [ := K(H). Then, on
the one hand, E descends to the identity map EX: B/I — B/I on the Calkin algebra. On
the other hand, pseudo-expectations for C =~ A/I C B/ are just states on the Calkin al-
gebra. It seems that there is no universal way how to produce a state from the identity map.

Example 2.19 (See [30, Examples 2.16 and 7.9]). Let B := M,(C) & M,(C) and con-
sider the commutative C*-subalgebra A C B spanned by the orthogonal diagonal projec-
tions (Pog, 0), (0, Pog), and (P11, P11). Let E: B — A C B be any faithful conditional
expectation. For instance,

E((aoo 001) & (boo bm)) 1 (2000 0 ) o 1 (Zboo 0 )
aio an bio bu)) 2\ 0 ann+bn) 2\ 0 an+bii)

Let J = M,(C) @ 0. Then I :=J N A= C - (Pyo,0) is a restricted ideal in 4 = C3.
We have J = BIB and E(J) = {/\1(P00,0) + Ag(Pll, P11) Z/\l,)tz € (C} g I. Hence
E: B — A does not factor through a map B/J — A/I. Note that the inclusion A C B is
not symmetric.
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Lemma 2.20. Let E: B — A be a conditional expectation for a symmetric C*-inclusion
A C Bandlet I € 18(A). Then E descends to a conditional expectation ET: B/BIB —
A/l, b+ Jw— E(b)+ I, for the inclusion A/l — B/BIB.

Proof. Let J e I4(B)andput I = J N A € IB(A). Since A C B is symmetric we have
J =1IBI. Thus E(J) = E(IBI) C IE(B)I = I because E is A-bilinear. Since I C
E(J) always holds, this is equivalent to I = E(J). Then E7 is well defined. |

Many C*-algebras, including section algebras for Fell bundles over Hausdorff étale
groupoids, are naturally equipped with a conditional expectation, which is residually sym-
metric in the sense described in the following proposition. Then the residual faithfulness
of E is called exactness of the corresponding action [1,3,6,34,44].

Proposition 2.21. Let A C B be a symmetric C*-inclusion with a conditional expectation
E: B — A which is residually symmetric, that is, for each I € 1B (A), the conditional
expectation E' in Lemma 2.20 is symmetric. Then A separates ideals in B if and only
if E is residually faithful — that is, ET is faithful for each I € 18(A) — and E preserves
ideals — that is, E(J) C J for each J € 1(B).

Proof. Assume first that A separates ideals in B. Lemmas 2.4 and 2.16 imply that E7 is
faithful for all 7 € T8 (A). Since we assume that I(B) = [4(B) and A C B is symmetric,
this implies E£(J) € J by Lemma 2.20. Conversely, assume that E is residually faithful
and preserves ideals.

Let J € I(B) and I € I(A) satisfy BIB S J. Then E(J) # I because E! is faithful.
Since E preserves ideals, E(J) = J N A. Thus I € J N A. This shows that A/] C
B/BIB detects ideals for any I € 18 (A). This implies that A separates ideals in B by
Lemma 2.4. ]

2.4. Supporting and filling families

Let BT be the set of positive elements in a C*-algebra B. We equip B with the Cuntz
preorder % introduced in [12]: fora, b € BT, we write a < b and say that a supports b if,
for every ¢ > 0, there is x € B with ||a — x*bx|| < s. Wecall a,b € BT Cuntz equivalent
and writte a ~ bifa I band b < a. We call a, b € BT Murray—von Neumann equivalent
and write a ~ b if there is z € B witha = z*z and b = zz*. Both ~ and = are equivalence
relations, and a ~ b implies a ~ b. In the converse direction, only a weaker result is true
(see [21, Lemma 2.3 (iv)]). Namely, fore > Oanda € B* \ {0}, let (¢ — &)+ € B be the
positive part of a — & - 1 € M(B). Let bBb be the hereditary subalgebra generated by b,
that is, the closure of {bxb:x € A}. Then a < b if and only if every e-cut-down of a is
Murray—von Neumann equivalent to an element in bBb, that is

a3b <= Veodiep(a—e)y =z*zandzz* € bBb.

In particular, a € bBb implies a X b, aBa = bBb implies a ~ b, and a <X b implies
a € BbB. A C*-algebra B is purely infinite [20] if it admits no characters and a, b €
BT\ {0} satisfy @ < b if and only if a € BbB.
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Definition 2.22 (Compare [27, Definition 2.39]). A subset ¥ € B supports B if, for
eachb € Bt \ {0}, there is a € F \ {0} with a X b. It residually supports B if, for each
J € I(B), the image of ¥ in the quotient B/J supports B/J.

Lemma 2.23. Let B be a C*-algebra and let ¥ < B™.
(1) Let & support B. If J € 1(B), then J N ¥ supports J. So F detects ideals in B.

(2) Let ¥ residually support B. If J € 1(B), then J N ¥ residually supports J. In
addition, ¥ separates ideals in B.

Proof. We first prove (1). Let J € I(B) and b € JT \ {0}. Then x*bx € J for each
x € B.Ifa 3 bhforsomea € B\ {0}, thena = lim x; bx;. for some sequence (xx)ken
in B. Therefore, any a € ¥+ \ {0} witha < b and b € J* \ {0} belongs to J. So if ¥
supports B and J # {0}, then J N F # {0}.

Next we prove (2). Let J € [(B) and I € [(J).Letg: B — B/I be the quotient map.
Forany b € g(J)™ \ {0}, there is a € F with 0 # g(a) 3 b. The proof above shows that
q(a) € q(J). Since g(a) # 0, we have a € J \ I. Thus J N F residually supports J.
If I,J € (B) and I # J, then I N J is a proper ideal of I or J. Assume, say, that
I NJ < J.Aswehave seen above, thereisa € (JNF)\[.Hence I NF A#JNF. =n

Corollary 2.24. Let A € B be a C*-inclusion. A family ¥ C A" residually supports B
if and only if the image of ¥ supports B/ J for each J € 14(B).

Proof. If the image of ¥ supports the quotient B/J for every J € 14(B), then by Lem-
ma 2.23, A/(J N A) detects ideals in B/J for each J € I4(B). Then A separates ideals
in B by Lemma 2.4. Thus I(B) = I4(B). So our assumption already says that ¥ resid-
ually supports B. ]

A C*-algebra B has the ideal property if projections in B separate ideals in B.

Corollary 2.25. If the set of projections in B residually supports B, then B has the ideal
property. Conversely, a purely infinite C*-algebra with the ideal property is residually
supported by its projections.

Proof. Lemma 2.23 (2) gives the first statement. For the second statement, let J € 1(B)
and b € BT\ JT. Let ¢: B — B/J be the quotient map. Since B has the ideal prop-
erty, the ideal BbB + J 2 J contains a projection p ¢ J. Then 0 # q(p) € q(BbB) =
q(B)q(b)q(B). The quotient B/J is purely infinite by [20, Proposition 4.3]. Hence we

getq(p) = q(b). u
Let H(B) be the set of all nonzero hereditary C*-subalgebras of B.
Lemma 2.26. Let ¥ C B™. The following conditions are equivalent:
(1) ¥ supports B;
(2) foreach b € Bt \ {0}, there is x € B with x*bx € ¥ \ {0};
(3) foreach D € H(B), thereisz € B withzz* € D and z*z € ¥ \ {0}.
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Proof. (1)=(2): Let b € Bt \ {0}. Let § € (0, ||b||). Then (1) gives a € F \ {0} with
a 2 (b—38)+. And [21, Lemma 2.4 (ii)] gives x € B with x*bx =a € ¥ \ {0}.
(2)=(3): Let b € DT \ {0} and choose x € B with x*bx € ¥ \ {0} as in (2). Then
z:= /b - x satisfies zz* € D and z*z € ¥ \ {0}, as required in (3).
(3)=(1): Let b € B* \ {0}. Then D := bBb is a nonzero hereditary C*-subalgebra
of B. Condition (3) gives z € B with zz* € D anda := z*z € ¥ \ {0}. Thena ~ zz*
and hence a =~ zz*. And zz* X b by [20, Proposition 2.7 (i)]. Soa < b. [ ]

Definition 2.27 ([23, Definition 4.2]). Let B be a C*-algebra. A set ¥ € B™ fills B (is
a filling family for B) if, for each D € H(B) and each J € [(B) with D & J, there is
ze B\ Jwithzz* € Dandz*z € ¥.

In this definition, we may also require z € B with zz* € D and z*z € ¥ \ J because
z € J if and only if z*z € J. For J = 0, this is the condition in Lemma 2.26 (3). This
suggests that filling and residually supporting families are closely related. We are going
to prove some results to this effect.

Proposition 2.28. If ¥ C B™ fills B, then it residually supports B.

Proof. Let J € 1(B). Let g: B — B/J denote the quotient map. Let b € g(B)™* \ {0}.
Thereisd € BT\ J withq(d) = b.For D := dBd we have (D) = bg(B)band D Z J.
Since ¥ fills B, thereis z € B withz*z € D andzz* € ¥ \ J. Thenq(z)*q(z) € bq(B)b
and ¢(2)q(z)* € ¢(¥) \ {0}. Hence ¢ (2)q(2)* ~ q(2)*q(z) 3 b. S0 q(¥) supports g(B).

[

Proposition 2.29. Let A C B be a symmetric C*-inclusion. Then A residually sup-
ports B ifand only if A™ fills B.

Proof. If A* fills B, then it residually supports B by Proposition 2.28. Conversely, as-
sume that AT residually supports B. We are going to prove that A™ fills B. Pick D €
H(B) and J € 1(B) with D Z J. We need z € A with z*z € D and zz* € AT\ J.
By Lemma 2.23 (2), A separates ideals in B. Hence 14(B) = I(B). So J = BIB with
I:=ANJ.Letq: B— B/J be the quotient map. Thereisd € D+ \ J.Leth :=¢q(d) €
(B/J)*t \ {0}. Lemma 2.26 gives x € B/J with a := x*bx € (A/I)* \ {0}. There are
¢ € AT with g(¢) = a and w € B with g(w) = x. Then ¢(¢) = x*bx = g(w*dw). So
¢ =w*dw + v forsome v € J.

Let ¢ := ||a||/2. By assumption, an approximate unit in / is also one for J. So there is
f eIt with | f| <1land|v— fv| < e. Let 1 denote the formal unit in the unitisation
of Bandletg :=1— f € M(A)™. Then |g|| < 1 and

lgw*dwg — gcg|l = llgvgll < v — foll <e.
Now [21, Lemma 2.2] gives & € B with

h*(gw*dwg)h = (gcg —e)y € AT,
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Let z := d"/>wgh. Then zz* € D because d € D, and z*z = (gcg — )4 € AT, Since
q(geg) = q(c —cf = fe+ fef) = q(c) = a, we get
la(z*2)|l = lla((gcg — &) )l = @ — &)+ = llal — & = Jall/2 > 0.

Hence z*z ¢ J, which is equivalent to zz* ¢ J. L]

Example 2.30. Let B = Co(2) be commutative and let # € B™T. The following condi-
tions are equivalent:

(1) ¥ fills B;

(2) ¥ residually supports B;

(3) the open supports of elements of ¥ form a basis of the topology of 2.
Proposition 2.28 implies (1)=(2), and (3)=>(1) is straightforward. We show (2)=>(3). Fix
an open subset U € Q and a point xo € U. There is a function b € Cy(£2) with b(x¢) =1
and b|g\y = 0. Let J be the ideal in B consisting of functions vanishing on 2 \ U U {xp}.

Thereisa € ¥ \ J witha+ J b+ J. Then V := {x € Q:a(x) > 0} is an open subset
of U that contains x¢. This implies (3).

Example 2.30 suggests to view filling families and residually supporting subsets as
noncommutative analogues of bases for topologies.

2.5. Residual aperiodicity and criteria for pure infiniteness

We introduce the residual version of aperiodicity and use it to characterise when a C*-in-
clusion A C B separates ideals. We also formulate some criteria for B to be purely infinite.

Definition 2.31 ([31, Definition 5.14]). A C*-inclusion A C B is aperiodic if the Banach
A-bimodule B/A is aperiodic, that is, if for every x € B, D € H(A) and ¢ > 0, there are
a € DT and y € A with ||axa — y|| < ¢ and |ja| = 1.

Remark 2.32 ([32, Theorem 5.5]). If a C*-inclusion A C B has the almost extension
property introduced in [37], then A € B is aperiodic. The converse implication holds if B
is separable.

Definition 2.33. A C*-inclusion A C B is residually aperiodic if, for all I € 12(A) and
J := BIB, the C*-inclusion A/I € B/J is aperiodic.

Theorem 2.34. Let A C B be a residually aperiodic C*-inclusion. Then for each I €
18 (A) there is a unique pseudo-expectation E': B/BIB — 1(A/I) for the C*-inclusion
A/l € B/BIB, and the following are equivalent:

(1) the unique pseudo-expectation ET is almost faithful for all I € 18 (A);
(2) A separates ideals in B;
(3) A™ residually supports B.

If, in addition, the inclusion A C B is symmetric, then (1)—(3) are equivalent to
(4) AT fills B.
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If A C B is symmetric, A is second countable, and the above equivalent conditions hold,
then B = A/~ via the quasi-orbit map.

Proof. 1t follows from [32, Theorem 3.6] that the expectation £ I is unique and that (1)
implies (3). Lemma 2.23 shows that (3) implies (2). Next we prove that (2) implies (1).
Indeed, if £ is not almost faithful, then N g1 witnesses that A/ does not detect ideals
in B/J. Then A does not separate ideals in B by Lemma 2.4. In the symmetric case,
Proposition 2.29 shows that (3) is equivalent to (4). The claims in the last sentence follow
from Theorem 2.6. [ ]

We end this section with pure infiniteness criteria that use filling and residually sup-
porting families. Infinite and properly infinite elements in B are defined in [20]. We
recall their equivalent descriptions in [34, Lemma 2.1]. We also recall the notion of a
separated pair of elements in BT from [28, Definition 5.1] and relate it to the matrix
diagonalisation property. We write a ~, b if ||a — b|| < e fora,b € B.

Definition 2.35. Let B be a C*-algebraanda € B \ {0}.
(1) Wecalla € B infinite in B if there is b € B \ {0} such that for all & > 0 there
are x,y € aB with x*x ~; a, y*y ~, b and x*y ~, 0.
(2) We call a € B+ \ {0} properly infinite if for all ¢ > 0 there are x, y € aB with
x*x ~ga, y*y ~;aand x*y =, 0.
(3) Wecall a,b € BT separated in B if for all ¢ > 0 there are x € aB and y € bB
with x*x ~; a, y*y ~, b and x*y =,

By [20, Theorem 4.16], a C*-algebra is purely infinite if and only if each element
a € B\ {0} is properly infinite. By [21, Remark 5.10], B is strongly purely infinite if
and only if each pair of elements a,b € BT \ {0} is separated in B.
We say that a pair of elements a,b € BT has the matrix diagonalisation property in B,
if for each x € B with (5’6 ’;:) € M»(B)" and each & > O there are d; € B and d, € B
such that
diad, ~¢ a, dybd, ~; b, d{xdy = 0.

We say that a subset ¥ C B™ is invariant under e-cut-downs if (a — &)+ € F for all
a € ¥ and arbitrarily small & > 0.

Theorem 2.36 ([23, Theorem 1.1]). Let ¥ fill B and be invariant under e-cut-downs.
Then B is strongly purely infinite if and only if each pair of elements a,b € ¥ has the
matrix diagonalisation property in B.

The following theorem improves upon [28, Proposition 5.4].

Theorem 2.37. Let A € B be a C*-subalgebra for which A residually supports B;
this is the case, for instance, if A C B is residually aperiodic and for each I € 1B (A)
the unique pseudo-expectation E': B/BIB — 1(A/I) is almost faithful. Let ¥ € AT
residually support A. Assume that 1B (A) is finite or that the projections in ¥ separate
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the ideals in 1B (A) (this is automatic when ¥ consists of projections). Then the following
statements are equivalent:

(1) F \ {0} consists of elements that are properly infinite in B;

(2) B is purely infinite;

(3) B is purely infinite and Prim B has topological dimension zero;
(4) B is purely infinite and has the ideal property;

(5) B is strongly purely infinite.

Proof. The implications (3)<=(4)=-(5) are general facts (see [39, Propositions 2.11
and 2.14]). The implications (3)=(2)=>(1)<=(5) are clear. To close the cycles of implica-
tions, it suffices to show that (1)=>(4). We have I(B) = I4(B) = 15(A) by Lemma 2.23.
And ¥ residually supports B because < is transitive. In particular, ¥ separates ideals
in ]IB(A). Under our assumptions, the implication (1)=>(4) follows from the proof of
[28, Proposition 5.4]. We considered there the case ¥ = A™. The proof still works, how-
ever, for any ¥ that residually supports A. ]

When A separates ideals in B, the assumption that A residually supports B seems
necessary for Theorem 2.37 to hold. Evidence for this is the following result abstracted
from [43, Proposition 2.1] (see also [6, Proposition 4.1]).

Proposition 2.38. Let A C B be a symmetric C*-inclusion with a residually symmetric
conditional expectation E: B — A as in Proposition 2.21. If A separates ideals in B, then
B is purely infinite if and only if every a € AT \ {0} is properly infinite in B and E(b) 3 b
for every b € BT, If B is purely infinite and A separates ideals in B, then A™ fills B.

Proof. Assume that A separates ideals in B. Suppose first that B is purely infinite. By
Proposition 2.21, for any b € B+ \ {0}, E(b) is in the ideal in B generated by b. Then
E(b) 2 b because b is properly infinite (see [20, Theorem 4.16]). Now suppose that every
a € AT\ {0} is properly infinite in B and E(b) < b for every b € B*. Let J be the
ideal in B generated by b € BT \ {0}. Proposition 2.21 implies J N 4 = E(J). Since
every ideal in B is induced, this implies J = BE(J)B. So b is in the ideal generated
by E(b). This implies that b X E(b) using that E(b) is properly infinite (see [20, Pro-
position 3.5 (ii)]). Since b & b < E(b) ® E(b) 2 E(b) X b in B, we conclude that b is
properly infinite. This shows that B is purely infinite.

If A separates ideals in B and B is purely infinite, the same holds for all the quotient
inclusions A/ € B/J, I = J N A, J € (B) (see [20, Proposition 4.3]). By Proposi-
tion 2.21, the conditional expectation E7: B/J — A/ is faithful. Hence the first part of
the assertion shows that b € (B/J)* \ {0} implies 0 # E7(b) < b. Thus AT residually
supports B. Then A™ fills B by Proposition 2.29. |
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3. Inverse semigroup actions and their crossed products

In this section, we briefly recall inverse semigroup actions by Hilbert bimodules and their
crossed products, referring to [10,31] for more details.

3.1. Inverse semigroup actions by Hilbert bimodules
Throughout this paper, S is an inverse semigroup with unit 1 € S.

Definition 3.1 ([11]). An action of S on a C*-algebra A (by Hilbert bimodules) consists
of Hilbert A-bimodules &; for t € S and Hilbert bimodule isomorphisms s ,: &; ®4
&, = &4, fort,u € S, such that

(A1) forallt,u,v € S, the following diagram commutes (associativity):

M ®4 ldg,
(8t ®A 8u) ®A 81} L gtu ®A 81) \IILIM’U
assi Eruvs
& ®4 (8u Q4 Ey) Idgt D4 s &E; ®4 Euy Lo

(A2) & is the identity Hilbert A, A-bimodule A4;

(A3) 1s1:6, @4 A 8 and u14: A ®4 8 = & fort € S are the maps defined
by ui;(a®é) =a-§fand ;1 (§®@a)=§&-aforaec A, & € &;.

Any S-action by Hilbert bimodules comes with canonical involutions J;: & — &+
and inclusion maps jy ;: &; — &, for ¢ < u that satisfy the conditions required for a
saturated Fell bundle in [15] (see [11, Theorem 4.8]). Thus S-actions by Hilbert bimod-
ules are equivalent to saturated Fell bundles over S. A nonsaturated Fell bundle over S is
turned into a saturated Fell bundle over another inverse semigroup in [9], such that the full
and reduced section C*-algebras stay the same. Therefore, we usually restrict attention to
saturated Fell bundles, which we may replace by inverse semigroup actions as in Defini-
tion 3.1. Definition 3.1 contains (twisted) actions by partial automorphisms, providing the
following example.

Example 3.2 (Twisted actions of inverse semigroups, see [7, Definition 4.1]). A twisted
action of an inverse semigroup S by partial automorphisms on a C*-algebra A consists of
partial automorphisms ¢;: Dy+ — Dy of Afort € S —thatis, D; isanidealin A and oy isa
*-isomorphism — and unitary multipliers w(¢,u) € UM (D) fort,u € S, such that Dy =
A and the following conditions hold for r,z,u € S and e, f € E(S) :={s € S :5%2 = s}):
(D) apoay = Adw(r,t)art;
2) ar(aw(t,u))o(r,tu) = ar(@)w(r,t)w(rt,u) fora € Dy« N Dyy;
(3) wle, f) = ler and w(r,r*r) = w(rr*,r) = 1,, where 1, is the unit of M (D, );
@) w(t*,e)o(te,t)a = w(t*,t)aforall a € Dyxes.
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Let ((a¢)ses. (t,u))s ues be a twisted action as above. For ¢ € S, let &; be the Hilbert
A-bimodule associated to the partial homeomorphism «,; this is D, as a Banach space,
and we denote elements by b§; to highlight the # € S in which we view b € D; C A as
an element; the Hilbert A-bimodule structure is defined by

a-(bd;) := (ab)s;, (b8) - a = a, (o, (b)a)s;,
{(c8: | b8;)) = cb™, (¢8| DSr) = at_l(c*b)
fora € A, b,c € D;. The formula
u(ad; ® b8y) = ar(ey (D)o, w)s,

well defines a Hilbert bimodule isomorphism fif: & ®4 &, = &y, fort,u € S by [7,
Theorem 4.12]. And (&, itr,u)sues is an action of S on A by Hilbert bimodules. Fell
bundles over S that come from twisted partial actions are characterised in [7, Corol-
lary 4.16], where they are called “regular”.

Example 3.3 (Inverse semigroup gradings). An S-grading (B;);es of a C*-algebra B as
in Definition 2.9 gives a Fell bundle over S, using the multiplication and involution in B.
This bundle is saturated if and only if the grading is saturated. Then it is an action of S by
Hilbert bimodules on A := By C B. Thus inverse semigroup actions by Hilbert bimodules
are inevitable in the study of regular inclusions (see also Proposition 2.11). Any inverse
semigroup action & = ((&:)res, (J4r,u)rues) ona C*-algebra A comes from an S-graded
C*-algebra. Namely, embed the spaces &, for ¢ € S into, say, the full crossed product.
They form an S-grading of the full crossed product.

Fell bundles over étale groupoids may be described through S-actions, as in the fol-
lowing example.

Example 3.4 (Fell bundles over groupoids). Let G be an étale groupoid with locally
compact and Hausdorff unit space X . So the range and source maps r, s: G = X are local
homeomorphisms. A Fell bundle over G is defined, for instance, in [8, Section 2]. It is
an upper semicontinous bundle 4 = (A4, ),ec of complex Banach spaces equipped with
a continuous involution *: A — # and a continuous multiplication -: {(a, b) € A X A :
a€Ay,,beA, (yi,y2) € G®) — A, which satisfy some natural properties. The set
of (open) bisections

Bis(G) :={U C G:U isopen and s|y, r|y are injective}

is a unital inverse semigroup with U - V :={y -n:y e U, n € V} for U,V € Bis(G).
Namely, X € Bis(G) is the unitelement and U* := {y~!:y € U} for U € Bis(G). Let Ay
for U € Bis(G) be the space of continuous sections of (4, ), e vanishing outside U. The
spaces A,y and Az are closed two-sided ideals in A = Ay, and Ay becomes a Hilbert
Ar)-As)-bimodule with the bimodule structure (a - & - b)(y) := a(r(y))§(y)b(s(y))
and the right and left inner products

(E 1) (x) == EGlG )™ nGI5 (D)), (E M) == @l Cn(rlg' ().
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For U,V € S, the formula

poyEQ ) = E(rlg r))n(sly (). vy eUV,

defines a Hilbert bimodule map py,v: Ay ®4 Ay — Ayy. This data defines a Fell bundle
over Bis(G), which is saturated if + is (see [8,31] for details). If A is not saturated, this
may be naturally turned into a saturated Fell bundle over another inverse semigroup in a
number of ways. For instance, for any inverse subsemigroup S C Bis(G) we may let S be
the family of all Hilbert subbimodules of Ay for U € S. Equivalently, elements of S are
of the form Ay - I forU € S and I < A. Then S , with operations defined as above, forms
an inverse semigroup that acts by Hilbert bimodules on A (see [31, Lemma 7.3]).

Let A be a C*-algebra with an action & of a unital inverse semigroup S. Let A and
A= Prim(A) be the space of irreducible representations and the primitive ideal space
of A, respectively. The action of S on A induces actions g = (é,),es and & = (é,) reS
of S by partial homeomorphisms on Aand A, respectively (see [11, Lemma 6.12], [31,
Section 2.3]). The homeomorphisms

ét:sTé)t = ”\(_é)t, ét:S@)t - ”/(g)t

are given by Rieffel’s correspondence and induction of representations, respectively. Any
action by partial homeomorphisms has a transformation groupoid, which is étale (see
[14, Section 4] or [31, Section 2.1] for details).

Definition 3.5 ([30,31]). We call & and & dual actions to the action & of S on A. The
transformation groupoids A x S and A x S are called dual groupoids of &.

Example 3.6 (Dual groupoids to Fell bundles). Let # be a Fell bundle over an étale
groupoid G with locally compact Hausdorff object space X. Then G acts naturally both
on the primitive ideal space A and the spectrum A of the C*-algebra A := Cy(X, +A). More
specifically, every irreducible representation of A factors through the evaluation map A —
Ay for some x € X, and this defines a continuous map ¥ : A — X, which is the anchor map
of the G-action on A given by the partial homeomorphisms r,,: A/sa — m induced
by the Hilbert A, (,)-As(y)-bimodules A, for y € G (see, for instance, [18, Section 2]).
The corresponding transformation groupoid is

AxG = {(n]y) e AxG:y(x]) = s(y)}.

Two elements ([p], n) and ([z], y) are composable if and only if [p] = ¥, ([x]), and
then their composite is ([r], ny). The inverse is ([z],y)~! = (¥, ([x]), y~!). The maps
v A— X and % m — X,—(y\) for y € G, factor through to a G-action on A, which
defines a transformation groupoid AxG (see [18]). These actions give rise to transform-
ation groupoids AxGand AxG.Let S C Bis(G) be a unital, inverse subsemigroup of
bisections of G which is wide in the sense that | JS = G and U N V is a union of bisections
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in S forall U,V € S. Then turning this into the inverse semigroup action S on A described
in Example 3.4, we have natural isomorphisms of groupoids (see [31, Remark 7.4])

A\XGEI‘TXS;, AxG=AxS.
We call A x G and A x G dual groupoids for A.

3.2. Crossed products

Fix an action & = ((&;)ses, (Wt,u)tues) of S on A.Foranyt € S, let r(&;) and s(&;) be
the ideals in A generated by the left and right inner products of vectors in &;, respectively.
Thus &; is an r(&;)-s(&;)-imprimitivity bimodule. If v < ¢z, then the inclusion map j;
restricts to a Hilbert bimodule isomorphism &, = r(&,) - &; = &, -5(8y). Fort,u € §
and for all v < ¢, u this gives Hilbert bimodule isomorphisms

jt,v ju,v

90,160 5(6y) 4 8y 5 6y - 5(6y).

Let _
=) 5(&) 3.7)
v<t,u
be the closed ideal generated by s(&,) for v < ¢, u. It is contained in s(&;) N s(&,,), and
the inclusion may be strict. There is a unique Hilbert bimodule isomorphism

ﬁu,t: 8[ . It,u = 814 . It,u (38)

that restricts to ¢, , on &; - s(&y) forall v <7,u by [10, Lemma 2.4]. The *-algebra A »,
S of the action & is defined as the quotient vector space of ), g & by the linear span of
Ve ()8 —&0; forallt,u € S and £ € &; - I;,,. The algebraic structure on A X, S is
given by the multiplication maps s, and the involutions J;.

Definition 3.9. The (full) crossed product A x S of the action & is the maximal C*-com-
pletion of the *-algebra A iy, S described above.

Definition 3.10. A representation of & in a C*-algebra B is a family of linear maps
;28 — B for t € S such that 7y (1w (E @ 0) = 7 (E)my(n), (1) 7 (E2) =
m1((61162)), and 7, (§1)7: (§2)™ = w1 ((§1 [ 62)) forall z,u € S, §.61.62 € &1, 1 € &y
The representation is called injective if m; is injective; then all the maps 7, for ¢ € S are
isometric.

Any representation 7 of & in B induces a *-homomorphism 7 x S: 4 xS — B.
Conversely, every *-homomorphism A x § — B is equal to 7 x S for a unique repres-
entation 7 (compare [10, Proposition 2.9]). This universal property determines A x S
uniquely up to isomorphism.

The C*-algebra A x S is canonically isomorphic to the full section C*-algebra of the
Fell bundle over S corresponding to &. The reduced section C*-algebra of a Fell bundle
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over S was first defined using inducing pure states, see [15]. An equivalent definition
appears in [10], where this is called the reduced crossed product A x; S of the action & (the
reduced C*-algebra obtained in [5], using a regular representation, is in general different).
The main ingredient in the construction in [10] is the weak conditional expectation for
A xS — A" described in [10, Lemma 4.5] through the formula

E(£8;) = s-lim 9y 4 (& - u;). (3.11)

where £ € &, 1t € §, (u;) is an approximate unit for /;; and s-lim denotes the limit in
the strict topology on M(I;,) € A”. This weak expectation is symmetric by [31, The-
orem 3.22].

Definition 3.12. The reduced crossed product is the quotient C*-algebra A x, S :=
(A x S)/NE. Hence there is a canonical surjection A: A x S — A %, S, and

kerA = Ng ={be AxS:E(b*b) = 0}. (3.13)
So the induced weak expectation E; on A X, S is faithful.

Remark 3.14. The canonical maps from A X, S to A xS and to A x, S are injective
by [10, Proposition 4.3]. In particular, both A x S and A X, S are naturally S-graded with
the same Fell bundle (&;);es over S.

Definition 3.15. The action & = (&;),eys is called closed if the weak expectation E: A X
S — A” given by (3.11) is A-valued. So it is a genuine conditional expectation 4 x § —
ACTAXS.

Remark 3.16. The action & is closed if and only if the unit space A is closed in the
dual groupoid AxS or, equivalently, Ais closed in A x S (see [10, Theorem 6.5] and
[31, Proposition 3.20]). This explains the name. By [10, Proposition 6.3], & is closed if
and only if the ideal /;,; defined in (3.7) is complemented in s(&;) for eacht € §.

Example 3.17 (C*-algebras of Fell bundles over groupoids). Retain the notation from
Example 3.4. The *-algebra associated to the Fell bundle 4 over the étale groupoid G
is denoted by &(G, ). It is the linear span of compactly supported continuous sections
Ay = C.(U, A) for all bisections U € Bis(G) with a convolution and involution given by

fx) = Y f-gt™-y). (O =f)*
r(m=r(y)
forall f,g € G(G,A), y € G. The full section C*-algebra C* (G, A) is defined as the max-
imal C*-completion of the *-algebra ©(G, ). This C*-algebra contains 4 := C*(X, 4)
as a C*-subalgebra. It is equipped with a generalised expectation E:C*(G, A) —>B(X, #A),
where B (X, 4) is the C*-algebra of bounded Borel sections of the C*-bundle #4|x and E
on ©(G, A) restricts sections to X . The reduced section C*-algebra can be defined as the

quotient
CI(G, A) := C*(G, A)/NE.
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All this follows from [31, Proposition 7.10]. Let S € Bis(G) be a unital, inverse sub-
semigroup of bisections of G which is wide in the sense that | JS = Gand U NV isa
union of bisections in S for all U, V' € S. If 4 is saturated, then the spaces (Ay)yes, with
operations inherited from &(G, 4), form an action of S on A by Hilbert bimodules, and
the associated crossed products are isomorphic to the corresponding section C*-algebras.
In general, we modify the construction as follows. The convolution and multiplication
from &(G, A) make (Ay - I)yes, 1«4 an action by Hilbert bimodules on A, and there are
natural isomorphisms

C*(G. A) = AxS, CG.A)=A%S
(see [31, Propositions 7.6 and 7.9]). If the groupoid G is Hausdorff, that is, the unit
space X 1is closed in G, then the inverse semigroup action S is closed. The converse
implication holds if + is a Fell line bundle. Fell line bundles over G are equivalent to
twists of G. If (G, X) is a twisted groupoid and £ the corresponding line bundle, then
C*"G,2)=C*G,£) 2 Ax S and C (G, %) = C¥(G,£) = A%, S. That is, twisted
groupoid C*-algebras are also modelled by inverse semigroup actions.

3.3. Essential crossed products

The local multiplier algebra M,.(A) of A is the inductive limit of the multiplier algebras
M(J), where J runs through the directed set of essential ideals in 4 (see [4]). A key idea
in [31] is a natural generalised expectation EL: A xS — Mo (A) with values in Mj,.(A).
It is defined as follows: for each & € &;, ¢ € S, the element EL(§) € M(I;,; & Ill,t) -
Mioc(A) is given by

EL(E)(u +v) = 91, (Eu) € 4

forueli;,vel IJ,_t' This generalised expectation is symmetric by [31, Theorem 4.11].
Hence EL factors through a faithful pseudo-expectation on the quotient

A Hess S = (A X S)/JVEL.

There is a canonical embedding ¢: Mj,.(A) < I(A) compatible with the inclusions A C
Mioc(A) and A C I(A) (see [16, Theorem 1]). Thus the canonical Moc-expectation EL
may be viewed as a pseudo-expectation.

Definition 3.18 ([31, Definition 4.4]). We call A x5 S the essential crossed product.

For a closed action, both £ and E L take values in A and then A X5 S = A %, S. In
general, Ng C Ng and there are surjective maps

AXNS > AX S —> A X S.

A C*-algebra B with *-epimorphisms A X S —> B —» A X S that compose to the
canonical quotient map A X S — A X S is called an exotic crossed product (see [31]).
The following proposition characterises when the reduced and essential crossed products
coincide.
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Proposition 3.19 ([31, Corollary 4.17]). We have A Xess S = A %, S if and only if for
everyb € (A x S)T \ {0} there is & > 0 such that {w € A:||n" (E(b))| > &} has nonempty
interior, if and only if for every b € (A x S)* \ {0} the set {w € A: ||n"(E(b))|| # 0} is

not meagre in A.

Example 3.20 (Essential section C*-algebras). Let 4 be a Fell bundle over an étale
groupoid G with locally compact Hausdorff unit space X. There is a canonical gener-
alised expectation EL: C*(G, A) — Moc(A) (see [31, Section 7.4]). Let

M(X, A) :={f € B(X, 4): f vanishes on a comeagre set}.
If the bundle #|y is continuous, then there is a natural embedding
Mioc(4) = B(X, A)/TM(X, A),

and EL is the composite of E and the quotient map B(X, A) — B(X, A)/M(X, A).
If the bundle is discontinuous, we define E L using the isomorphism C*(G, A4) =~ A x S
from Example 3.17. The essential section C*-algebra is defined in [31, Definition 7.12]
as the quotient

CL(G. A) = C*(G. A)/ NEL.

Example 3.21 (Essential twisted groupoid C*-algebras). We define the essential groupoid
C*-algebra C% (G, X) of a twisted groupoid (G, X) as CX, (G, £) for the corresponding

Fell line bundle £. Denoting by X the unit space of G, [31, Proposition 7.18] implies that
the following are equivalent:

(1) CHG. X) = C(G. D);
(2) {x € X : E.(f)(x) # 0} is not meagre for every f € C*(G,X)" \ {0};

(3) if f € CHG, )" \ {0}, then {x € X :||E.(f)(x)|| > &} has nonempty interior
for some ¢ > 0.

Here E;:C¥(G, X) — B(X) is the canonical generalised expectation that restricts sections
of the corresponding Fell line bundle to X .

Example 3.22 (Twisted crossed products by partial automorphisms). Let (o, w) be a twis-
ted action of an inverse semigroup S by partial automorphisms on a C*-algebra A as in
Example 3.2. By [7, Definition 6.2], a covariant representation of (o, w) on a Hilbert
space J is a pair (p, v) consisting of a *-homomorphism p: A — B(J) and a family
v = (vy)res of partial isometries in B(F) such that

pla: (b)) = vep(b)vf,  plo(t,u)) = vivyvy,, vvf = p(ly),  vive = ple),

for all b € Dy, t,u € S. Here p is the extension of p to the enveloping von Neumann
algebra of A, so that p(w(¢, u)) and p(l.) make sense. By definition, the full crossed
product for (o, w) is the universal C*-algebra for covariant representations, and by [7,
Theorem 6.3] it is naturally isomorphic to the full crossed product A x S for the asso-
ciated inverse semigroup action & by Hilbert bimodules (see Example 3.2). The reduced
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crossed product for (o, w) may be identified with the reduced crossed product A x; S by
[7, Definition 6.6]. We define the essential crossed product for (a, w) as A Xess S. By
[7, Theorem 7.2], for any twisted groupoid (G, X) the bisections S of G that trivialise the
twist X give rise to a twisted inverse semigroup action (o, ) by partial automorphisms
of A := Co(G?) such that C*(G, ) = A x, S. By definition, this descends to an isomor-
phism C¥ (G, X) == A X S.

€ss

The reduced section C*-algebra C* (G, ) is usually defined through the regular rep-
resentation, which is the direct sum of representations

A C*(G. A) > B((2(Gy. A)).

Here £?(Gy, ) is the Hilbert A,-module completion of @S(y):x A, with the obvious
right multiplication and the standard inner product ( f | g) := Zs(y): + f(¥)*g(y). For

f € ®(H, A) and g € @)=y Ay, define Ax(f)(@) V) = 2 op=ri SO 'Y).
The kernel of @, cx Ax is Ng. So the reduced C*-algebra C? (H, +) is isomorphic to the
completion of &(H, +4) in the reduced norm || f||; := sup,cy [[Ax(f)|. We now describe
essential algebras in a similar fashion.

Definition 3.23 ([31, Definition 7.14]). Call x € X dangerous if there is a net (y,) in G
that converges towards two different points y # y’ in G with s(y) = s(y’) = x.

Proposition 3.24. Let A be a continuous Fell bundle over an étale groupoid G with
locally compact and Hausdorff unit space X. Assume G is covered by countably many
bisections and let D C X be the set of dangerous points. Then

ker @ )LXZNEL.
xeX\D

That is, C3 (G, A) is isomorphic to the Hausdorff completion of ©(G, ) in the seminorm

[/ lless = supxex\p IAx ()]l
Proof. Foreachx € X,y € Gy = s !(x) and f € C*(G, A),

12y (O 112 = {1y [ 2 (f* ))1y) = ECF* ) ().

Thus ker A, = {f € C*(G, A): E(f* f)(r(Gx)) = 0}. We claim that the set of danger-
ous points is G-invariant. Indeed, if 7 € s~ (x) and there is a net (y,) that converges
towards two different y # y’ € H with s(y) = s(y’) = x, then the net (y,n~') con-
verges to yn~! # y'n~! € H with s(yn™!) = s(y'n~') = r(n). Hence x € D implies
that 7 (Gx) € D. Then

ker @ Ar= [ kerAc={f €C*(G.A):E(f*f)(x)=0forallx € X \ D}.
xeX\D xeX\D

The set on the right hand side is equal to Ng 1, by [31, Proposition 7.18]. ]
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4. Exactness of inverse semigroup actions

4.1. Functoriality

For group actions, the full and reduced crossed products are functors, and the reduced
one preserves injective homomorphisms. We extend this to inverse semigroup actions by
Hilbert bimodules.

Definition 4.1. Let & = ((&/)res. (t1u)rues) and F = ((F1)res. (Vu)rues) be two
actions of S by Hilbert bimodules on A and B, respectively. A homomorphism ¥ from &
to & is a family of linear maps y;: &, — ¥, fort € S such that forallt,u € S, § € &,
n € &, we have

Viu(eu(E @ 1) = vew(We (§) @ Yu ().
(e @® [Ye(m) = (5 [ m)),
(e ) 1Y) = Y1 ((E ).

The maps v; are always contractive. We call v injective if 1 is injective; then the
maps Y, are isometric for all 1 € S. We call ¥ an isomorphism if all 1, are isomorphisms.

We use the superscripts € and ¥ to distinguish between objects defined for the actions
&and F.

Proposition 4.2. Let  be a homomorphism from an action & = (&;);es on A to an
action ¥ = (F3)1es on B. It induces a *-homomorphism ¥ X S: A xS — B x S where
(W x8)(&) =y (&) forE € &, t € S. In particular, W respects the involution and inclu-
sions maps on & and ¥, and  x S restricts to a *-homomorphism ¥ Xag S: A Mg S —
B xg, . Moreover, the following conditions are equivalent:

(1) ¥ x S descends to a *-homomorphism Y x; S: A x; S — B %, S that respects
the canonical weak expectations, that is, the following diagram commutes:

S A E€ "
AXgg S — AXxS —— Ax§ — A

lwxalgs lV/NS lwxrs l@lf{,

BNalgS?}BXlSTBXrSF)BN

where A€ (resp. A¥ ) is the regular representation and E€ (resp. E¥) is the
canonical weak conditional expectation associated to the action & (resp. F).

@ v UED =v{(s(E)IDUT,) forallt € S, where [I£,].[s(€)] € A" and [IT,] €
B" are the support projections of the ideals If, ,8(8¢) € Aand 113; C B, respect-
ively.

If the above equivalent conditions hold and  is injective, then so are ¥ X, S, ¥ Xy S,
and yry.
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Proof. The Hilbert bimodules ¥; for ¢+ € S embed into B x S. Hence we may treat the
maps ¥;: & — F; as taking values in B x S. Then ' is a representation of & in B < S.
It integrates to a *-homomorphism ¥ X S: A x § — B x S by [10, Proposition 2.9]. This
restricts to a *-homomorphism ¥ Xag S: A Xag S — B Xag S and therefore ¥ respects
the induced involutions and inclusions maps on & and ¥ . Our first goal is to show that (1)
is equivalent to

EF o AT o (y xS) =y o E€ o A, 4.3)

It is clear that (1) implies (4.3). Conversely, assume (4.3). For any a € (4 x )™, we get

ackerA® & E(A%(a)) = 0= y{(E¢(A®(@)) =0
= ET (AT ((y x9)(@)) =0 < (¥ xS)(a) ekerAT. (4.4

Hence (¥ x S)(ker A®) C ker(A¥). So ¥ x S descends to a *-homomorphism v x, S as
in (1). If, in addition, V¥ is injective, then so is Wi/ , and then the only one-sided implication
in (4.4) may be reversed. Thus (¢ x S)(ker A®) = ker(A¥), so that ¥ x, S is injective.
Since the canonical map A Xy, S — A % S is still injective, it also follows that ¥ Xy S
is injective. So we get all assertions in (1).

Next, we prove that (2) is equivalent to (4.3). By passing to biduals, we get a weakly
continuous *-homomorphism (¢ x §)”: (4 x §)” — (B x S)”. The C*-algebra A” and
the Hilbert bimodules &/ for ¢ € S embed naturally into (4 x S)”. Similarly, ¥, for
t € S are embedded into (B x §)". Then (Y x S)"|gr =y for ¢t € S. Moreover, if
£c8 CAxS, then ES(A8(£)) =£-[I,,] € A", where the product is taken in (4 x S)"
(see (3.11) or the proof of [10, Lemma 4.5]). Hence (4.3) is equivalent to

VOV UED = v @®UF,),  forevery§ € &, 1 €8, (4.5)

Since & = & - [s(&;)] holds inside (4 x §)”, (2) implies (4.5),

Y ©VED = v @Y (@Y (LE]) = v (E)y{ (s(E)DIIT]
= Y (EIT].

Conversely, (4.5) implies ¥; (§1)* ¥« (E2)¥1{ ([IF,])) = V2 (§)* ¥ (§2)[17,] for all &,
&, € &;. Taking linear combinations, we may then replace v (£1)* ¥, (&) by an approx-
imate unit for the ideal s(&;). And then we may take a strong limit over this approximate
unit to arrive at w{’([s(&)])l//{’([lf”:t]) = {’([s(&,)])[lft]. The left hand side then sim-
plifies to W{’([IISJ]) because 11“’:[ C s(&;) implies lﬁ/([lﬁt]) < ¥{([s(&)]). Hence (4.5)
implies (2). |

Remark 4.6. Retain the notation from Proposition 4.2. Since Y respects inclusions,
we have wl(lfl) - 115; and therefore W{/([Ift]) < [Ift]. We also have wi/([lft]) <
{([s(&)]) because I léjt C 5(&;) . Thus every representation satisfies

Y (UIED < v (s(E)DUT]
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forall# € S. So condition (2) only asserts the inverse inequality. This condition is always
satisfied when S = G is a group, as then [If’:t] =0fort # 1 (and [Il""jl] = 1). For general
actions, (2) holds whenever ¥y (1 18 D =v(s(ENI 1‘7'; for all # € S. The latter equality is
automatic for inclusion and quotient homomorphisms in Proposition 4.15 below.

Condition (2) in Proposition 4.2 may fail (and perhaps for some purposes one might
want to include it in the definition of a homomorphism). We thank Alcides Buss, Diego
Martinez and Jonathan Taylor for point this to us.

Example 4.7. Consider the actions whose crossed products are described in [10, Propos-
ition 8.5]. Namely, let S = {—1, 0, 1} be the inverse semigroup with the usual number
multiplication. Take any C*-algebra A and any ideal [ in A different from A. Let &; =
&_1 := A and &y = I be trivial Hilbert bimodules over A, and let jt; ,(a ® b) = a - b for
t,u € S be just the multiplication in A. Then A x& § = Axf S = Ax§, S=A® A/I
(see [10, (8.6)]). We let & be the similar action with I replaced by A. Then A xF § =
A er S=4 Xig S =~ A. The inclusion maps yield a homomorphism v from & to &
where Y xS = Xu, S:A® A/I — Ais givenby (a @ b + I) — a. This homomorph-
ism is not injective, although ¥ is. So the conditions in Proposition 4.2 are not satisfied.
Indeed, note that ¥ %, S = ¥ x S exists in this example, but it does not intertwine the
canonical weak expectations, which are given by E€ (a @ (b + 1)) = # + %[I ] and
E¥(a) = a,fora,b € A, where [I] € A” is the support projection of I.

4.2. Restrictions of actions

We fix an action & = ((8¢)ses, (f4¢,u)rues) of a unital inverse semigroup S on a C*-alge-
bra A by Hilbert bimodules.

Definition 4.8. Let 1¢(A4) := {I € 1(A):1&; = &1 foreveryt € S} be the set of &-
invariant ideals in A.

Lemma 4.9. Let I € 1(A) and let B be any S-graded C*-algebra with grading (€;)cs.
The following are equivalent:

(1) I is &-invariant, that is, I € ]18(14);

(2) I is restricted, that is, I € ]IB(A);

(3) the open subset [ C A is invariant in the dual groupoid AxS;

(4) the open subset I C A is invariant in the dual groupoid AxS.
Proof. Proposition 2.13 implies that (1) and (2) are equivalent. It is easy to see that (3) and

(4) are equivalent. If € S, then I - &, = &, - I is equivalent to gt(lv N 5,) =In 5:* (see
[26, page 645] or the proof of [ 1, Proposition 3.10]). That is, (1) and (3) are equivalent. m

Let / € I€(A) be an &-invariant ideal in A. There are natural induced actions of S
on [ and A/I. Namely, the family &|; := (&;1);es of Hilbert /-bimodules, with the re-
strictions of the isomorphisms iy to &:1 ®4 &, 1 = & @4 &1 = &, 1 fort,u € S,



B. K. Kwasniewski and R. Meyer 1024

forms an inverse semigroup action by Hilbert bimodules on the C*-algebra /. For ¢ € S,
the quotient Banach space &,/&;1 is a Hilbert A/-bimodule in a natural way because
&1 =18, If t,u € S, then the isomorphism piy,: & ®4 &y = &, induces an iso-
morphism

ﬁt,u: (gt ®4 814) / (gt ®4 Sul) = 8tu / 8tul-

There are natural isomorphisms of Hilbert bimodules
Gru (E:/Ec1) ®as1 (Eu/Eul) = (€ ®a Ex) [ (61 @4 Eul)

because /&, = &,/ (see, for instance, [25, Lemma 1.8]). Now &|4/; := (8:/8:1)ses
with the isomorphisms [i;, © ¢;y: (6:/8:1) @4 (64/Eul) = (E1u/Ery) fort,u € S
is an action of S by Hilbert bimodules on A/1.

Definition 4.10. We call the actions &|; and &|4,; above the restrictions of & to [
and A/, respectively.

Remark 4.11. Let J € 1€ (A). The inclusions &1 C &; fort € S yield an injective homo-
morphism from &|; to &. The quotient maps &, — &;/&,I fort € S yield a homomor-
phism from & to &|4/;.

Remark 4.12. Let B be an S-graded C*-algebra with grading (B;);cs and let I € 1B (A).
The induced ideal BIB carries the S-grading BIB N B; by Proposition 2.13. The quo-
tient B/BIB is S-graded by the images of B; by Lemma 2.14.

Remark 4.13. If / is &-invariant, then the dual actions for the restrictions &|; and & |47
are equal to the restrictions of the action (8 )tes to I and A \ I, respectively. Let IxS
and A \ I xS denote the transformation groupoids dual to &|; and &|4,, respectively.
Then

IxS=(Ax;  A\NT=xS=(Ax9z7

where the right hand sides in the above equalities mean the restrictions of the transforma-
tion groupoid A % S to the invariant subsets / and A \ I of the unit space Aof Ax S.In
particular, if the space of units in AxSis closed, then the same holds for the transform-
ation groupoids dual to the restrictions &|; and & 4.

Proposition 4.14. [fthe action & on A is closed, then so are the restrictions &|r and € |4/1
for each &-invariant ideal I < A.

Proof. This follows from Remarks 3.16 and 4.13. ]

4.3. Exact actions

Proposition 4.15. Let & be an action of S by Hilbert bimodules on a C*-algebra A and let
I € 18 (A). Let 1 be the injective homomorphism from €|y into & and let k be the quotient
homomorphism from & onto &|4,1 in Remark 4.11. They induce an exact sequence

0o IxS 2% Axs 25 4/1xs 0.



Ideal structure and pure infiniteness of inverse semigroup crossed products 1025

It descends to a sequence

S S
0= 71xS 2% A% S 2% A/T %, S — 0, (4.16)

which may fail to be exact only in the middle: 1 %, S is injective, k X, S is surjective and
the range of L X, S is contained in the kernel of k %, S.

Proof. Note that L(Iftl) = If’jt I =u(s(&: 1)) - If‘jt and /((If’:t) = 118’[/81’ forallt € S.
Hence ¢ and « satisfy the equivalent conditions in Proposition 4.2 by the last part of
Remark 4.6. Thus, by Proposition 4.2, not only the *-homomorphisms ¢ x S, k¥ x S but
also ¢ x; S, k % S exist, and ¢ % S is injective. The maps x x S and k x; S are surjective
because their images contain the dense *-subalgebra A/1 Xy, S.

We prove that ¢ x S is injective. Let 7 be a faithful, nondegenerate representation of
I xS on a Hilbert space #. Since [ is nondegenerate in / x S, the representation 7 |; is
also nondegenerate. Therefore, for each &; € &, the formula

w()m(a)h == w(Era)h

for a € I and h € J defines a bounded operator on J¢. Alternatively, 7 (£;) could be
defined using an approximate identity () for I, as the limit of the strongly convergent
net (& /4). A standard proof shows that (77;);cs is a representation 7 of &. The inte-
grated representation 7 X S: A x § — B(J) satisfies (7 x S) o (1t x §) =x.Hencet x S
is injective.

The composite maps (k X .S) o (¢t x .§) and (k % S) o (¢t x; S) vanish. Hence the range
of t X § is contained in ker(k x §) and the range of ¢ %, S is contained in ker(x %, .S).
Conversely, we claim that the range of ¢ X S contains ker(k x §). We identify 7 x S with
itsimagein A x S.Letg: Ax S — (A xS) /(I xS) be the quotient map. For ¢ € S, the
restriction of ¢ to &;1 vanishes. Hence g induces maps

Y8 /8 ] — (A% S)/(I xS).
They form a representation of &4, . It integrates to a homomorphism
Y xS (A/I) xS —> (AxS)/(IxS).
We have (¢ x S) o (k x§) = g. Hence ker(k x §) C ker(qg) =1 x S. |

Definition 4.17. The action & is exact if the sequence (4.16) is exact for each I € 1€ (4).

Example 4.18 (Exactness of twisted groupoids). An action & of an inverse semigroup S
on a commutative C*-algebra A = Cy(X) corresponds to a twisted étale groupoid (2, G)
with unit space X (see [8]). Here G = X x S is the dual groupoid of &. The action & is
exact if and only if the corresponding twisted groupoid (G, X) is exact in the sense that for
any open invariant subset U C X, the sequence of reduced twisted groupoid C*-algebras

C/(Glu. Zlv) = CX(G. X) - C[(GIx\v. Zlx\v)
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is exact. If the twist is trivial, the name inner exact for such groupoids is introduced in [3].
This example generalises as follows.

Example 4.19 (Exactness of Fell bundles over groupoids). Let 4 = (4,),ec be a Fell
bundle over an étale groupoid G with locally compact Hausdorff unit space X. Let § C
Bis(G) be a wide inverse semigroup of bisections and turn the Fell bundle +4 into an
action & of S on the section C*-algebra A = Alx, such that the associated universal and
reduced C*-algebras remain the same (see Examples 3.4 and 3.17). This natural corres-
pondence extends to invariant ideals and the associated algebras. Indeed, by Lemma 4.9 an
ideal I in A is &-invariant if and only if it is G-invariant in the sense of [18] (I is invariant
under the dual groupoid AxG = AxS§). The restricted actions & |7 and E|4/1 of S cor-
respond to restricted Fell bundles A|; = (Ay Isy))yec and Ay 1 = (Ay/(Ay Is)))yec
over G as defined in [18, Propositions 3.3 and 3.4]. The authors of [18] consider separable
Fell bundles over locally compact Hausdorff groupoids. However, neither separability nor
Hausdorffness are used in the construction of »#|; and #,,;. Proposition 4.15 implies that
the sequence
C*(Alr) > C*(A) = C*(Ala/r)

is exact. This extends the main result of [18] to étale groupoids that are not separable or
not Hausdorff. We will say that the Fell bundle A is exact if for every G-invariant ideal /
in A, the sequence

CF(Alr) > CE(A) = CF(Alasr)

is exact. Equivalently, the action & corresponding to - is exact.

4.4. Exactness for essential crossed products

The essential crossed product is not functorial (see [31, Remark 4.8]). This complicates
the definition of “exactness” for essential crossed products. Only the quotient maps cause
extra problems, as the following lemma shows.

Lemma 4.20. Let & be an action of S by Hilbert bimodules on a C*-algebra A and let
I € 1€(A). The injective homomorphism t from &|; into & induces an injective *-homo-
Morphism t Xess S: I Xess S — A Xegs S. Its image is the ideal in A Xess S generated by 1.

Proof. 1f J is an essential ideal in /, then J & [ 1 is an essential ideal in A. The obvious
inclusions M (J) — M(J @ I1) for the essential ideals J C I induce a natural isomor-
phism from Mo (1) onto an ideal in M, (A). Let ELy: I xS — M. (1) be the canonical
essential expectation. We are going to prove below that the following diagram commutes:

I xS L AxS
lELI lEL 4.21)
eA’{loc (I) — C/\’{loc (A)
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Then Ngz Nt xS xS) =1 x S(Ngr,) because ¢ x S(I x S) is an ideal in 4 x S.
This, in turn, implies that the injective homomorphism ¢ x S factors through an injective
homomorphism ¢ Xess S: 1 Xess S = I X S/NgL, = A Xess S = AXS/NEL.

To check (4.21),lett € S.If I;; = qujl s(&y) then I; 11 = qu’l s(8y,1) and
the restriction of the map ¥;,1: &, - I;1 = I:,l (defined in (3.8)) to Etl_- 1,1 coincides
with the corresponding map defined for the restricted action (&7 )ses. Hence for each
£ € &1 the element EL(§) € M(Iy, & 1) € M1y, ] & 1151 & 11,1+ & I{,17)
actsonu € Iy 1 in the same way as EL;(§),

EL(E)u = 01,(6u) = ELr(§)u.

Since EL(§)(I{51 & 111+ @ I{;,1+) = 0, the embedding Mioc(1) S Mioc(A) maps
ELj(§)to EL(§). This proves (4.21). L]

Example 4.22 ([31, Example 4.7]). Let S := G U {0} be the inverse semigroup obtained
by adjoining a zero element to an amenable discrete group G. Let G act on A = CJ[0, 1] by
&g = C[0, 1] for g € G and &y = Cy(0, 1], equipped with the usual involution and multi-
plication maps. Then A X S = A. Every ideal [ in A is &-invariant and [ X S = 1,
and s0 1 Xeg S C A X5 S. However, if 1 := Cg(0, 1], then A/1 X S = C x G = C*(G)
and the quotient homomorphism « from & onto &|4,7 does not induce a map from A
to C*(G).

Definition 4.23. We call the action & essentially exact if for each I € 1€(A) there is a
*-homomorphism Kk Xegs S: A Xess S — A/ I Xess S Whose restriction to each fibre &; is
the quotient map onto &;/&,1,t € S, and the kernel of k Xegs S 1S ¢ Ness S(I Negs S).

Remark 4.24. When the action & is closed, then the reduced and essential crossed pro-
ducts coincide for all restrictions of & (see Proposition 4.14). Thus essential exactness is
the same as exactness for closed actions of inverse semigroups and for Fell bundles over
Hausdorff groupoids.

Example 4.25 (Essentially exact Fell bundles). Consistently with Example 4.19, we will
call a Fell bundle 4 = (A4,),eg over an étale groupoid essentially exact if the correspond-
ing action & is essentially exact. More specifically, by Lemma 4.20, for any G-invariant
ideal I in A, the inclusion C¢(#A|;) € C.(+) extends to an injective *-homomorphism
Cr (A1) >> Cx (A). So A is essentially exact if and only if, for every G-invariant

ideal / in A, restriction of sections gives a well-defined *-homomorphism C} (A) —
Cl(Al4/r) and the following sequence is exact:

Cls(Alr) > CLi(A) = CL(Alasr).

ess ess

If the S-action on A is residually aperiodic, then A separates ideals in A X.g S if and
only if the S-action on A is essentially exact (see Theorem 5.9 below). In Example 4.22,
however, A separates ideals in A X S although the S-action on A is not essentially
exact. The following proposition shows that the S-action on A must be essentially exact
if A separates ideals in A X S.
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Proposition 4.26. The following are equivalent:
(1) A separates ideals in the reduced crossed product A x, S;
(2) the action is exact and for each I € 1€ (A), A/I detects ideals in AJI . S.

If these equivalent conditions hold, then AJI x; S = A/ I X S for every I € 1€(A) and
the action is essentially exact.

Proof. Lemma 2.4 and Proposition 2.13 show that A separates ideals in A X, S if and only
if A/I detects ideals in A x; S/t, x S(I », S) for all I € I€(A). Then the action is exact
because the kernel of x x; S has to be ¢, x S(I X, S), and then

Ax S/ xS % S) = A/l xS

for all I € I[‘S(A). Thus (1) and (2) are equivalent. Condition (2) implies A/1 x; S =
A/JI X S because otherwise A/ X S would be a quotient of A/1 X, S by a nonzero
ideal not detected by A/ 1. L]

We illustrate by an example what can go wrong with the exactness of essential crossed
products. Our example is closely related to the Reeb foliation or, more precisely, to its
restriction to a transversal.

Example 4.27. Let ¥: R — R be a homeomorphism with ¥ (¢) = ¢ fort <0and 9 (¢) > ¢
for all > 0. Let G be the germ groupoid of the transformation groupoid R xy Z. We
claim that C!(G) = C%(G). To see this, we use that the restrictions of G to [0, 00)
and (—oo, 0) are Hausdorff. Indeed, G|(o,00) is the Hausdorff transformation groupoid
(0, 00) <9 Z because Z acts freely (and properly) on (0, c0). Similarly, G|[o,00) is the
Hausdorff transformation groupoid [0, 0c0) Xy Z; the action of Z on [0, co) fixes 0, but
the germ of any n € Z at 0 is nontrivial because #” acts nontrivially on (0, co). There-
fore, the support of any nonzero element of C(G) must intersect [0, co) and (—oo, 0) in
relatively open subsets. Hence the support cannot be meagre, and this proves our claim.
This equality of reduced and essential groupoid C*-algebras for G is not inherited by the
restriction to the closed invariant subset (—oo, 0]. Indeed, the restriction of G to (—o0, 0]
is the non-Hausdorff group bundle with trivial fibre over (—oo, 0) and the fibre Z at 0
(see [31, Example 4.7] and Example 4.22). In this case, the full and reduced groupoid
C*-algebras are obtained by gluing together Co((—0c0, 0)) and the fibre C*(Z) at 0. How-
ever, Cl (G |(—o0,01) = Co((—00,0]), so

C! (Gl(=o0,01) # Ciis(Gl(=o0,01)-

Since the essential and reduced crossed products coincide for G and G|(g,c0), but not
for G|(—w0,0]> the following sequence of essential crossed products exists, but fails to be
exact:

0 — Ci(Gl(0,00) = Ci(G) — Ci (Gl (=00,01) — 0.

ess ess
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This is one way how essential crossed products may fail to be exact. The restriction G |¢o}
is simply the group Z. So CX (G |{0y) = C%(Gl{03) = C*(Z). The restriction *-homomor-
phism C* (G |(—o0,01) = C*(G|{0}) does not descend to the essential crossed products. That
is, there is no canonical map from CZ (G |(—o0,0]) to CZ(Gloy). This is the second way
how essential crossed products may fail to be exact.

Since Gl[o,00) = [0, 00) 39 Z, it follows that C*(G[0,00)) = C;(G0,00))- By a dia-
gram, it follows that the sequence

*
€ss

0 = CI(Gl(—o0,0) = C7(G) = CI(Glpo,00) — 0

is exact. Since also C* (G |(=c0,0)) = C; (G |(—00,0)) the Five Lemma shows that C*(G) =
C!(G). A similar argument shows C*(G|y) = C*(G|y) for all locally closed G-invariant
subsets U C R. Therefore, G is inner exact.

4.5. Amenability vs exactness

Definition 4.28. Let & be an S-action by Hilbert bimodules on a C*-algebra A. We call
the action & amenable if the regular representation A: A X § — A X, S is an isomorphism.

Remark 4.29. By (3.13), the action & is amenable if and only if the weak conditional
expectation E: A x S — A” is faithful.

Lemma 4.30. Let & be an S-action by Hilbert bimodules on a C*-algebra A and let
I € 18 (A) be an invariant ideal. If €| 4 /1 is amenable, then

I 8>> A% 8 —> A/l xS

is exact. If this sequence is exact, then & is amenable if and only if &|r and &|4;; are
amenable.

Proof. There is a commutative diagram

xS kxS
I xS ——> AxS —» A/I xS

[ [ [aws

IS >——> AxS —» A/l xS,
13,5 kXS

where the top horizontal sequence is exact, and AL, A4, AA/T denote the respective
regular representations. If A4/7 is injective, then

ker(k x; S) = A (ker(k x S)) = A4 (xS x S)) =t %, S(I %, ).

Hence I x; S >> A x; § — A/I %, § is exact. In general, if this sequence is exact, the
Snake Lemma from homological algebra yields a short exact sequence

ker(A!) > ker(AA) — ker(A4/1).
Hence ker(A4) = 0 if and only if ker(A’) = 0 and ker(A4/7) = 0. |
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Remark 4.31. It is unclear whether the quotient action &|,,7 for I € 1€ (A) is amenable
if & is (the proof of [34, Lemma 3.9] is incorrect). If so, then by Lemma 4.30, the amenable
action is also exact. Let S = G be a group. If & satisfies the approximation property in
[13, Definition 4.4], then also every restriction & |4, satisfies the approximation property.
Hence the approximation property of a Fell bundle over a group implies both amenability
and exactness. In particular, if there is an amenable group action & such that |4, is not
amenable for some I € 1€ (A), then the approximation property is strictly stronger than
amenability (see also [13, page 169]).

Example 4.32. Let A = (A4,),eg be a Fell bundle over an étale, locally compact, Haus-
dorff groupoid G. Suppose that G is second countable and that each fibre A4, is separable.
If G is amenable, then the regular representation C*(A) — C;(+4) is an isomorphism
by [45, Theorem 1]. This applies also to every Fell bundle 44,7 over G where [ is a
G-invariant ideal in A. Thus if G is amenable, then # is exact in the sense described in
Example 4.19.

Example 4.33. If & is a closed action of a countable inverse semigroup S on a separable,
commutative C*-algebra A = Co(X) such that 4 x, S is nuclear, then the action & is
amenable and exact. Indeed, the action & corresponds to a twisted étale, locally compact,
Hausdorff groupoid (G, X), where G = X x S is the dual groupoid of &. Equivalently,
this corresponds to a Fell line bundle over G. Then G is amenable by [46, Theorem 5.4].
Hence our claim follows from Example 4.32. In particular, a twisted étale, locally com-
pact, second countable, Hausdorff groupoid (G, ) with nuclear C} (G, X) is exact in the
sense of Example 4.18.

5. Ideals and pure infiniteness for inverse semigroup crossed products

In this section, we present efficient criteria for separation of ideals and pure infiniteness in
essential crossed products.

5.1. Residual aperiodicity and ideal structure

Let & = (&;)ses be an action of a unital inverse semigroup S by Hilbert bimodules on a
C*-algebra A.

Definition 5.1 ([31, Definition 6.1]). The action & = (&;);es is aperiodic if the Hilbert

A-bimodules &; - 1{-, are aperiodic for all # € S, where I; ; is defined in (3.7).

Proposition 5.2 ([31, Proposition 6.3]). Let B be an S-graded C*-algebra with a grad-
ing & = (&¢)res. Let A := &, C B and turn & into an S-action on A. If this action is
aperiodic, then the inclusion A C B is aperiodic. The converse holds if the grading on B
is topological, that is, the canonical quotient map A X S —> A Xeg S factors through
A — B.
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Definition 5.3 ([31, Definition 2.20]). Let G be an étale groupoid and X C G its unit
space. The isotropy group of a point x € X is G(x) := s ' (x) N r~(x) € G. We call G
topologically free if, for every open U € G \ X, the set {x € X : G(x) N U # @} has
empty interior.

Remark 5.4. A groupoid G is effective if any open subset U C G with r|y = s|y is
contained in X . Effective groupoids are topologically free. The converse implication holds
if X is closed in G, but not in general.

Aperiodicity is related in [28,31,32] to topological freeness and several other condi-
tions. We now introduce residual versions of aperiodicity and topological freeness.

Definition 5.5. The action & is residually aperiodic if, for each I € 1€ (A), the restricted
action &|4,1 is aperiodic.

Definition 5.6. An étale groupoid G with unit space X € G is residually topologic-
ally free if, for each nonempty closed G-invariant subset ¥ C X, the restricted groupoid
r~1(Y) = s71(Y) is topologically free.

The following lemma may help to show that a transformation groupoid is (residually)
topologically free.

Lemma 5.7. Let G be an étale groupoid. Let X and Y be topological spaces with G-
actions and let f: X — Y be a continuous G-equivariant map.

(D) IfY isclosedin G X Y, then X is closed in G x X.
Q) If f: X = Y isopenand G x Y is topologically free, then so is G x X.

(3) If f: X — Y is open, maps closed G-invariant sets to closed sets, and G x Y is
residually topologically free, then so is G x X.

Proof. The map f induces a continuous groupoid homomorphism f4:G X X — G x Y
such that f,"}(Y) = X. So (1) follows. The map fs is open if and only if f is open. As-
sume this. To show (2) assume that G x Y is topologically free and let U € (G x X) \ X.
Then f,(U) is open and contained in (G x Y)\ Y. Let Iy :={x € X:G(x) N U # @}
and Irxy :={y € Y :G(y) N f«(U) # @}. We claim that f(Iy) = Ir+. To see this,
let x € Iy. Then there is an arrow (x, g, x) € U; here g € G is such that p(x) = s(g) and
g-x = x. Since f is G-equivariant, then ( f(x), g, f(x)) € f«(U). This witnesses that
J(x) € Ir«y). Since G x Y is topologically free, =) has empty interior. Since f is
open, the preimage of /¢«) in X has empty interior as well. It follows that Iy has empty
interior. This witnesses that G x X is topologically free and proves (2).

Finally, for any G-invariant set D C X the set f(D) is G-invariant. If we assume
f(D)isclosedin Y and G x Y is residually topologically free, then G x f(D) is topolo-
gically free. Since the restriction of f to G x D is a continuous open map onto G x (D),
(2) implies that G x D is topologically free. This proves (3). ]
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Theorem 5.8. Let & be an action of a unital inverse semigroup S on a C*-algebra A by
Hilbert bimodules. If A is separable or of Type I, then the following are equivalent:

(1) the dual groupoid AxSis residually topologically free;
(2) the action & is residually aperiodic;

(3) for any I € 1€(A), the full crossed product for the restricted action & |4 /1 has a
unique pseudo-expectation, namely, the canonical M..-expectation;

4) for any I € 18(A), (A/I)T supports C for each intermediate C*-subalgebra
A/l € C C AJI Xegs S for the restricted action € |4/1;

(5) forany I € 1€(A), A/I detects ideals in each intermediate C*-subalgebra A]I C
C C A/I X5 S for the restricted action € |47

For general A, (1)=(12)=3)=(5) and (2)=(4)=(5).

Proof. A subset of A is closed and invariant if and only if it is of the form X = Z/\I
for an &-invariant ideal /. The dual groupoid of the induced action on A/ is the restric-
tion X x S of the dual groupoid to X. Hence the implications (1)=(2)=(3), (4) follow
from [32, Corollary 4.8 and Theorem 3.6], applied to the quotients A// and intermedi-
ate C*-algebras. Lemma 2.23 shows that (4) implies (5), and [40, Theorem 3.5] shows
that (3) implies (5). If A is separable or of Type I, so are its quotients A//, and then
[32, Proposition 6.1] shows that (5) implies (1). [

The following result justifies introducing the notion of essential exactness — it is an
instance of condition (1) in Theorem 2.34.

Theorem 5.9. Letr B be an S-graded C*-algebra with a grading & = (8;)es that forms
a residually aperiodic action of S on A := &, (this holds if the dual groupoid A x S is
residually topologically free). The following are equivalent:

(1) B = A X5 S and & is essentially exact;
(2) A separates ideals in B, so 1(B) = 1€ (4);
(3) A residually supports B;
4) AT fills B.
If the above equivalent conditions hold and the primitive ideal space A is second count-

able, then the quasi-orbit map induces a homeomorphism Bx~A /~, where A /~ is the
quasi-orbit space of the dual groupoid A xS, that is, P1. P2 € A satisfy p1 ~ p2 if and

only if

(/INS)-pl :(ILIXS)-pz,

Proof. The C*-inclusion A C B is symmetric and residually aperiodic by Propositions 2.13
and 5.2. Hence by Theorem 2.34, conditions (2)—(4) are equivalent to the condition that for
each I € 18(A4) = I€(A) the unique pseudo-expectation EX: B/BIB — A/I is almost
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faithful. Let us assume this. Then there is a commutative diagram

AxS/IxS~A/xS —— B/BIB

[ B

Mioc(A/T) — I(A/1),

where W is the homomorphism that exists by universality of A/I x S because B/BIB is
graded by &|4,7 by Lemma 2.14, EL' is the canonical essential expectation for A/1 x S,
and M. (A/1) < I(A/I) is the canonical embedding. The diagram commutes because
the inclusion A/I € A/I x S is aperiodic and hence there is a unique pseudo-expectation
by [32, Theorem 3.6]. As a consequence, ker W = W~1(0) = W~ 1(Ng/) = Ngp and
thus W factors through an isomorphism A/ X, S = B/BIB. Since this holds for every
I €I8(A) we get that B = A X5 S and that & is essentially exact (A Xegs S/ 1 Xegs S =
B/BIB 2= (A/I) X S for I € T€(A)).

Theorem 2.34 implies easily that (1) implies (2). This finishes the proof that the
four conditions are equivalent. The remaining claims follow mostly from the last part
of Theorem 2.34. That the quasi-orbit space has the asserted form follows from [30, The-
orem 6.22]. [

Corollary 5.10. Let A = (A,)yec be a Fell bundle over an étale groupoid G with locally
compact, Hausdor{f unit space X, and put A = Cy(A|x). Define the dual groupoid AxG
as in Example 3.6. Assume that it is residually topologically free (this holds, for instance,
if G is residually topologically free and the base map for the C*-bundle 4 is open and
closed). Assume also one of the following:

(1) B :=C*

* () and A is essentially exact;
(2) B := C} (), A is exact, and the unit space in A x G is closed (the latter is

automatic if G is Hausdorff);
(3) B := C*(A), A is separable, and G is amenable and Hausdorff.

Then A separates ideals in B and, even more, A™ fills B. The lattice 1(B) is naturally
isomorphic to the lattice of G -invariant ideals in A. If, in addition, A is second countable,
then B ~ fI/fv where /I/N is the quasi-orbit space of the dual groupoid A X G, that is,
P1, P2 € /Isatisfy p1 ~ p2 if and only if(/f xG)-p; = (/f X G) - pa.

Proof. The claims in brackets follow from Lemma 5.7. The claim in case (1) follows
from Theorem 5.9 (see also Example 4.25). Case (2) follows from (1) and Remarks 3.16
and 4.24. Example 4.32 explains why (3) is a special case of (2). ]

Theorem 5.9 allows us to describe the ideal structure of B in terms of A under the
following assumptions:

& is an essentially exact, residually aperiodic action and B = A X S. (5.11)
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We are going to study whether B is purely infinite using the same assumption. Before we
do this, we simplify (5.11) in the presence of a conditional expectation.

Proposition 5.12. If there is a genuine conditional expectation E: B — A C B, then
(5.11) is equivalent to

& is closed, exact, residually aperiodic and B = A %, S. (5.13)

For any C*-inclusion A C B, an action & as in (5.13) exists if and only if A C B is regular,
residually aperiodic and there is a conditional expectation E: B — A which is residually
faithful in the sense that E descends to a faithful conditional expectation E': B/BIB —
A/I forany I € 1B(A) (see Lemma 2.20).

Proof. Assumption (5.13) implies (5.11) by Remark 4.24. Conversely, assume (5.11).
Then E: B — A is the unique pseudo-expectation for A € B by [32, Theorem 3.6].
Hence £ = EL, & is closed and A X; S = A X S. The same argument works for all
the restrictions &/ and quotient inclusions A/ € B/BIB for I € 1€(A) = 18(4). This
gives (5.13). Combining this reasoning with [29, Theorem 6.3] also gives the second part
of the assertion. ]

Corollary 5.14. If A is type I, then an action & as in (5.13) exists if and only if A C B
is residually Cartan, that is, for each I € 18 (A), A/I € B/BIB is a noncommutative
Cartan subalgebra in the sense of Exel [15].

Proof. Combine the second part of Proposition 5.12 and [29, Theorem 6.3]. |

5.2. Pure infiniteness criteria

In this section, we assume that B is an S-graded C*-algebra with a grading & = (&;);es
and A is the unit fibre of the grading. We give pure infiniteness criteria for B under the
assumption (5.11). This covers (5.13) and the assumptions in Corollary 5.10 as special
cases. In view of Theorem 5.9, the following two theorems are immediate corollaries of
Theorems 2.36 and 2.37.

Theorem 5.15. Assume (5.11). Let ¥ € A™ fill A and be invariant under e-cut-downs.
Then B is strongly purely infinite if and only if each pair of elements a,b € ¥ has the
matrix diagonalisation property in B.

Theorem 5.16. Assume (5.11). Let ¥ C A™ residually support A. Suppose that 1€ (A)
is finite or the projections in ¥ separate the ideals in 1€ (A). Then B is strongly purely
infinite (with the ideal property) if and only if every element in ¥ \ {0} is properly infinite
in B.

In order to use these results, we need conditions that suffice for a,b € AT to have
the matrix diagonalisation property in B or fora € A \ {0} to be properly infinite in B.
Checking the matrix diagonalisation property is usually difficult. Nevertheless, the fol-
lowing lemma may be useful (see [22,28]).



Ideal structure and pure infiniteness of inverse semigroup crossed products 1035

Lemma 5.17. Let a,b € AT \ {0}. Suppose that for each ¢ € &, t € S, and each & > 0
there are n,m € N and a; € a8, s; € S, fori =1,...,n and b; € b8,j, tji €8, for
j =1,...,m such that

n m n n,m
a%sg ala;, b%sg b} b;, E afa; ~ 0, E bibj ~ 0

i=1 i=1 i,j=1, i,j=1,
i#j i#j

and Z?’zml,jzl afchj ~; 0. Then a,b € A \ {0} have the matrix diagonalisation prop-

ertyin B.

Proof. Let € :=|J,c5 & and 8 := {J,c5 &:. We claim that a, b € AT \ {0} have the
matrix diagonalisation property with respect to € and § as introduced in [23, Defini-
tion 4.6]. Indeed, let x € &; be such that (¢ x;) € M(B)" and let & > 0. Let a; € aé&;
and b; € b€, satisfy the conditions described in the assertion with ¢ := a'?xb"?. We may
write a; = a'?x; and b = b'y; for some x;, y;. Letdy := Y [  x;jand dy := Y7, ;.
The assumed estimates imply that

d{"adl e A, dz*bdz e b, dl*xdz e 0.

This proves our claim. Clearly, § is a multiplicative subsemigroup of B, $*G§ C ©,
ASA C S, and the closed linear span of € is B. Thus a,b € A" \ {0} have the matrix
diagonalisation property in B by [23, Lemma 5.6]. ]

Now we will focus on ways to check whether a € A™ \ {0} is properly infinite in B.
The following definition generalises [34, Definition 5.1] and [28, Definition 5.5] from
groups to inverse semigroups. A crucial point is that the properties depend only on the
Fell bundle & = (&;)ses, not on the norm in B.

Definition 5.18. Anelementa € AT \ {0} is called

(1) &-infinite if there is b € AT \ {0} such that for each ¢ > 0, there are n,m € N,
t; € Sanda; € a8y, for 1 <i <n + m, such that

n n+m n+m
~ * . b ~ * ¥ < e
a ~g a; ai, Ne a;aj, la;ajll <e;
i=1 i=n+1 i,j=1,
i#j

(2) residually &-infinite if a + I is &|4,;-infinite for all 1 € 1€(A) witha ¢ I;

(3) properly &-infinite if for all ¢ > O there are n,m € N, t; € S and a; € a&;, for
1 <i <n+ m, such that

n m n+m
~r * . ~ * . * . .
a =, E aja;, a =, E aiaj, E laja;j| <&
i=1 j=n+1 i,j=1,

i#j
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(4) &-paradoxical if the condition in (3) holds with ¢ = 0, that is, there are n,m € N,
t; € S,anda; € a;; for 1 <i <n + m, such that

n n+m
a= E a;a;, a= E ajaj, ajaj =0 fori # j.
i=1 j=n+1

Lemma 5.19. If a € A" \ {0} is &-infinite, then it is infinite in B. If a € AT \ {0} is
properly &-infinite, then it is properly infinite in B.

Proof. First,leta € AT \ {0} be &-infinite. Let b € A \ {0} be as in Definition 5.18 (1).
Fore > 0,therearen,m e Nandt; € Sanda; €ab;, fori =1,...,n+m,n,m € N as
in Definition 5.18 (1). Let x := )"/, a; and y := > ;- ., a;. Then x, y € aB. Simple
estimates such as

[x*x —a| = <ec+te

n n
* *
E ajaj —a+ E a;a;
Jj=1

Lj=Li#]

show that x*x =5, a, y*y a5, b and y*x a, 0. Hence « is infinite in B (see Defini-
tion 2.35). The proof when a is properly &-infinite is the same with b = a. ]

Let us compare the definitions of infinite and properly infinite elements in Defini-
tion 2.35 with the definitions of &-infinite and properly &-infinite elements in Defini-
tion 5.18. There are two differences. First, we now choose the elements x, y € aB in
the subalgebra A X, S, so that we may write them as a finite sum > a; witha; € a&;y,.
Secondly, we estimate each product a;a; fori # j separately. The first change does not
achieve much because A Xy, S is dense in B and we only aim for approximate equalities
anyway. The second change simplifies the estimates a lot because [aa; || is computed in
the Hilbert A-bimodule 8,1,*,_1., whereas the norm estimates in Definition 2.35 involve the
C*-norm of B. For an &-paradoxical element, we even assume the products a;a; fori # j
to vanish exactly. This is once again much easier to check. Paradoxical elements are also
important because they are related to paradoxical decompositions, which were studied
already by Banach and Tarski. In the setting of purely infinite crossed products, their
importance was highlighted by Rgrdam and Sierakowski [43]. The implications among
our infiniteness conditions hinted at above are summarised in the following proposition.

Proposition 5.20. Assume that A separates ideals in B. Consider the following condi-
tions which a € A1 \ {0} may satisfy:
(1) a is properly infinite in B;

(2) foreache > 0therearen,m e N, t; € S, and a; € a&y; for1 <i <n 4+ m, such

that
n m n+m
* * * .
a ~g E a; aj, a =g E a;aj, E a;aj ~g 0;
i,j=1 i,j=n+1 i,j=1,

i#]
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(3) a is residually &-infinite;

(4) a is properly & -infinite;

(5) a is &-paradoxical.
Then (1)&(2)<=3)<=(4)<=(5).

Proof. The implications (5)=(4)=>(3) are straightforward. By [20, Proposition 3.14], a is
properly infinite if and only if it is residually infinite. Since A separates ideals in B, any
ideal in B comes from an invariant ideal in A, as in the definition that a is residually
&-infinite. Together with Lemma 5.19, this shows that (3) implies (1).

According to Definition 2.35, a € AT \ {0} is properly infinite in B if and only if,
for all ¢ > 0, there are x,y € a - B with x*x =, a, y*y =, b and x*y =, 0. Without
loss of generality, we may pick x,y € a - (D_,cg E:) because ) ,.g &; is dense in B.

Sox=3Y7_ ajand y =Y JI"  a; for some n.m € N, 1; € S, and a; € a&,, for
1 <i <n + m. The relations x*x =, a, y*y ~, b and x*y ~, 0 translate to those
described in (2). This proves that (1) and (2) are equivalent. [

It is unclear whether the implications in Proposition 5.20 may be reversed.

Remark 5.21. The example of graph C*-algebras shows that it may be much easier to
check that an element is residually &-infinite than that it is properly &-infinite (see also
[34, Remark 7.10]).

Corollary 5.22. Assume (5.11). Let ¥ € A residually support A. Suppose that 1€ (A)
is finite or that ¥ consists of projections, or that the projections in ¥ separate the ideals
in 1€ (A). If every element in F \ {0} is residually &-infinite, then A Xes S is purely
infinite and has the ideal property.

Proof. Combine Theorem 5.16 and Proposition 5.20. ]
We may simplify our conditions further if A is commutative. Then

A X S = C*

ess

(G.%)

for a twisted étale groupoid G with object space A. The twist X is always locally trivial.
Therefore, the bisections that trivialise the twist X form a wide inverse subsemigroup S’
among all bisections of G (see [7, Theorem 7.2]). Then CZ (G, ) = A Xeg S’. The action
of S” on A is equivalent to a twisted action as in [7, Definition 4.1], that is, each &; for
t € S comes from an isomorphism between two ideals in A. We assume this because it
allows us to identify elements of &, with Cy-functions on s(&;) C A. This discussion
shows how to turn any inverse semigroup action on a commutative C*-algebra into a

twisted action by partial automorphisms.

Lemma 5.23. Assume that A is commutative and that S acts on A by a twisted action by
partial automorphisms as in Example 3.2. Equip A with the dual action of S. Leta € AT
andV 1= {x € A:a(x) # 0}. Consider the following conditions:
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(1) the condition in Definition 5.18 (1) holds with ¢ = 0;
(2) thereare b € (aAa)™ \{0},n e Nandt; € S, a € a&,, for | <i < n such that

n
a=2a;‘a,~, and ajaj =0, ajb=0  foralli,j=1,....ni# j;

i
i=1

(3) therearen € N, t1,...,t, € S, and open subsets V1, ...,V, C V such that
(a) V; is contained in the domain of t; for 1 <i < n;
®) @ -V)n@-V)=0ifl<i<j=n;
© V=U ViandU_ 1 -Vi G Vs
(4) a is &-infinite.
Then (1) < (2)=(3)=(4). The implications (1)< (2)=>(4) hold in full generality.

Proof. 1f (2) holds, then taking m := 1, 1,41 := 1l and g, := \/Z we get (1). Conversely,
if (1) holds, then there are t; € S, a; € a&y, fori =1,...,n + m,suchthata = Z;’:la;“ai,
St La*a; #0and afa; = Ofori # j. Thus putting b := Y /2" a;a}, gives (2).
This shows that (1) and (2) are equivalent.

Nowleth € (ada)™ \{0},n e N,andt; € S, a; €a&; fori =1,...,nbeasin(2). We
identify the fibres &; for t € S with spaces of sections of the associated line bundle over G.
PutU; :=={y € G:|ai(y)| >0} fori =1,...,nand W := {x € X :||b(y)|| > 0}. Then
Vi:=s(U;) ={x € X:(a}a;)(x) > 0} C V is contained in the domain of #; for 1 <i <n.
The equality a = Y ;_, afa; implies that V = J/_, s(U;) = U/, V;. Similarly,
afa; = 0 holds if and only if (t; - V;) N (t; - V;) = r(Uy)) N r(U;) = @ for all i # j
and afb = 0 holds if and only if W € V \ J/_, r(U;) = V \ U/, (ti - Vi); here we
identify functions in &; with Co-functions on bisections. Such a W exists if and only if
Uit - Vi & V. Hence (2) implies (3).

Next we show that (3) implies (4). Let#,...,t, € S,and Vi, ..., V, € V beasin (3).
Let b € A" \ {0} be any function that vanishes outside the open set V' \ | J/_, ;i - Vi.
Fixe>0.Let K := {x € /T:a(x) > ¢e}. Let wy,...,w, € A be a partition of unity sub-
ordinate to the open covering K C | J?_, Vi. Leta; := (a — e)ﬂr/2 . wil/2 fori =1,...,n.
These functions vanish outside K, and a; belongs to the domain of ¢;. Since &;, comes
from a partial automorphism, we may view a; as an element of &,. It belongs to a - &;,
because the support of a; is contained in V. The product a;a; is defined using the Fell
bundle structure. If i # j, then aa; = 0 because (; - V;) N (¢; - V;) = . Similarly, we

getah = 0. And

n n
Za?ai =Z(a—8)+-w,~ =(a—¢&)4 ~ga.

i=1 i=1

Hence a is &-infinite. [
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Remark 5.24. For strongly boundary group actions (see [35]) and, more generally, for
filling actions (see [19]) condition (3) in Lemma 5.23 holds for every nonempty open sub-
set V. Thus if & comes from such an action, then every element in A™ \ {0} is &-infinite.
This also holds when A is noncommutative (see [34, Lemma 5.12]).

Remark 5.25. An étale, Hausdorff, locally compact groupoid H is locally contracting
if for each nonempty open set U in the unit space H° of H there is a bisection B € H
with r(B) C s(B) C U (see [2]). Given a wide inverse subsemigroup S C Bis(H), we
may strengthen this criterion by requiring B C ¢ for some ¢ € S. Then we may rewrite
r(B) C s(B) € U as follows: there is t € S and V C U contained in the domain of ¢ with
v C V. This is the case n = 1 of condition (3) in Lemma 5.23. As a result, if the dual
groupoid AxSis locally contracting, then for any a € A™ \ {0} there is 0 # a, < a that
is &-infinite; namely, choose U = suppa and then a, with suppa; = V anda, <a for V
as above.

Condition (3) in Lemma 5.23 could be relaxed so that it still implies &-infiniteness,
by using compact subsets of V. We formulate the relevant condition implying &-proper
infiniteness.

Lemma 5.26. Retain the assumptions of Lemma 5.23. In particular, leta € AT and V =
{x e /T:a(x) % 0}. If for each compact subset K C V therearen,m € N, t1,...,ty4m €S,
and open subsets Vy,. .., Voym CV suchthat (t; - Vi))N (¢ - V) =0if1 <i<j<n+m,
K CU'_, Viand K C\J!Z | Vi, then a is &-properly infinite.

Proof. Fix ¢ > 0. Let K 1= {x € IZI\:a(x) > &}. Choose n,m, t;, V; as in the assump-
tion of the lemma. Let wy,...,w, € A and Wy41, ..., Wn+m € A be partitions of unity
subordinate to the open coverings K C | J{_, V; and K C \J'2". | Vi, respectively. Let
a; = (a— 8)},'_/2 . wil/2 fori = 1,...,n + m. As in the proof of the implication (3)=(4)
in Lemma 5.23 one sees that treating a; as an element of &;,, the elements a; satisfy the
relations in Definition 5.18 (3). [

Now we assume, in addition, that the spectrum Ais totally disconnected. This implies
that the compact open bisections form a basis for the topology and that A is spanned by
projections. We are going to see that a projection is & -paradoxical if and only if its support
is (2, 1)-paradoxical as defined in [6]. Such open subsets give purely infinite elements in
the type semigroup considered in [6,36,41].

Definition 5.27 ([6]). Let G be an ample groupoid. We say that a compact open set
V € G%is (2, 1)-paradoxical if there are n, m € N and compact open bisections U; € G
forl <i <n+msuchthatr(U;) CV forl <i <n+ mand

n+m

v =||s). V= || sW). r@nrU)=0 fori#;.
i=1 i=n+1
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Proposition 5.28. Let & be an action of an inverse semigroup S by Hilbert bimodules on
a commutative C*-algebra A with totally disconnected spectrum A; equivalently, the dual
groupoid G = AxS is ample. A projection a € A% is &-paradoxical if and only if its
support V .= {x € A: a(x) # 0} is (2, 1)-paradoxical.

Proof. Suppose first that a € A™ \ {0} is &-paradoxical. That is, there are n,m € N,
f.....tnym € S,and a; €a&y, suchthata = > |, afa; = Z:’:,:"H a‘aj andafa; =0
fori # j.Let 1 <i <n + m. Recall that we may treat &, as spaces of sections Ay,
of a line bundle over G = A x S that are supported on open bisections U; € Bis(G).
Thus U; := {y € G :|la;(y)|| > 0} is an open bisection of G contained in U;. Since
a; € aAy,, we have r(U;) = {x € A: (a;jaf)(x) >0} € V. And afa; = 0 implies that
r(Ui) Nr(Uj) =@ foralli # j.Since {x € X :(a]a;)(x) > 0} = s(U;), the equalities
a=Y"_afa;anda =Y 1" ata; imply V = |'_, s(U;) and V = /27", s(Up).
Hence the family U; € Bis(G) for 1 <i < n + m has all the desired properties, except
that U; need not be compact. However, since G is ample, every U; is a union of some
compact open bisections. Since V' is compact and V = | [/_; s(U;) = |_|:’:,:"+1 s(Uy),
we may, in fact, replace each U; for 1 <i < n + m by a finite union of compact open
bisections. This gives a compact open bisection.

Conversely, let U; € G for 1 <i <n + m be a family of bisection as in Definition 5.27.
Let S’ C Bis(G) be the family of open compact bisections that trivialise the twist, that is,
the restrictions of the associated line bundle over G to sets in S are trivial. Note that S’
forms an inverse semigroup and a basis for the topology of G; this holds for the family of
all open bisections that trivialise the twist, by the proof of [7, Theorem 7.2], and for the
family of all compact open bisections because G is ample. Since

n n+m
v=|]swy= || swp
i=1 j=n+1
is compact, foreachi = 1,...,n we may find a finite family of sets (U,-,j);.”=1 C S’ such

that \J7L, Us,; € Up and V = UJ{_, UjL, s(Us,j). Since the bisections (U;,;)7L; < U
are closed and open, we may arrange that the sets (s(U;, j));l ., are pairwise disjoint. Then

the sets (Ui7j):~1’=’1{’j=l are pairwise disjoint, and since | J7L, Us,; € Uy, fori = 1,...,n,
also (r(Us,;)); 2} =, are pairwise disjoint. We put a;; := 1y, ;, fori = 1,...,n, j =
1,...,n;. By the choice of bisections in S’, we may treat @; ; as an element of the space

C.(Uij) of sections of the line bundle over G. By the construction of the Fell bundle over
AxS, by passing if necessary to smaller sets, we may assume that each space C.(U; ;)
is contained in &,; for some 7;; € S. Hence a;,; € &, for all i, j. Using the Fell bundle
structure, we get

n,n; n,n;i
* —_ —_— —_—
E dij iy = E : Lwp=1lv=a
i=1,j=1 i=1,j=1

Similarly, we get Z:’;L,:"J;'i"jzl af;-a;j =aanda};apjr = 0forall (i, ) # (', j").

Hence a is &-paradoxical. |
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Corollary 5.29. Let (G, X) be an essentially exact twisted groupoid where G is ample and
residually topologically free with locally compact Hausdorff X := G°. If every compact
open subset of X is (2, 1)-paradoxical, then the essential C*-algebra C} (G, X) is purely

infinite (and has the ideal property).

Proof. View Cl (G, X) as the essential crossed product by an inverse semigroup action &

on Co(X) as in Examples 3.21 and 3.22. The assertion follows from Proposition 5.28 and
Corollary 5.22. ]

Remark 5.30. When G is Hausdorff, then C} (G, ¥£) = C} (G, ¥) and (G, X) is essen-
tially exact if and only if it is inner exact. Thus Corollary 5.29 generalises the pure
infiniteness criteria in [6,41], where the authors considered Hausdorff ample groupoids
without a twist. They proved, in addition, that if the type semigroup associated to G is
almost unperforated, then the implication in Corollary 5.29 may be reversed. We will gen-
eralise this and some other results of Ma [36] to étale twisted groupoids in the forthcoming

paper [33].
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