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Mixed g-deformed Araki-Woods von Neumann algebras
Panchugopal Bikram, Rahul Kumar R, and Kunal Mukherjee

Abstract. Given a strongly continuous orthogonal representation (U;);er of R on a real Hilbert
space Jr, a decomposition HR := P;cn J(’]g) consisting of invariant subspaces of (U;);er and
an appropriate matrix ((¢;j))Nxn of real parameters, we associate representations of the mixed
commutation relations on twisted Fock spaces. The associated von Neumann algebras are (usually)
non-tracial and are generalizations of those constructed by Bozejko—Speicher and Hiai. We investi-
gate the factoriality of these von Neumann algebras. Along the process, we show that the generating
abelian subalgebras associated with the blocks of the aforesaid decomposition are strongly mix-
ing masas when they admit appropriate conditional expectations. On the contrary, the generating
abelian algebras which fail to admit appropriate conditional expectations are quasi-split. We also
discuss non-injectivity and the Haagerup approximation property.

1. Introduction

In free probability, Voiculescu’s C*-free Gaussian functor associates a canonical C *-
algebra denoted by I'(Jr) with a real Hilbert space Jr. The C*-algebra I'(HR) is
generated by the sum of canonical creation and annihilation operators on ¥ (#¢), the full
Fock space of the complexification of #r. It is well known that the associated von Neu-
mann algebra I' (#r)" is isomorphic to the free group factor L (Fim(seg)) if dim(Hr) > 2
(see [31]) and is the central object of study in free probability.

There are natural deformations of Voiculescu’s functor in the literature. The most
prominent ones are the g-Gaussian functor due to Bozejko and Speicher [7] and the free
CAR functor due to Shlyakhtenko [26]. The associated von Neumann algebras are called
g-Gaussian von Neumann algebras and free Araki—-Woods factors. These von Neumann
algebras are very well studied.

Free Araki—Woods factors are type III counterparts of the free group factors. They
are full factors when (U;);eRr is non-trivial and dim(#r) > 2. They have many more
interesting properties; for example, they lack Cartan subalgebras, satisfy the complete
metric approximation property and are strongly solid (see [5, 17]).

There is also a generalization of the g-Gaussian functor, namely, the mixed g-Gaussian
functor introduced in [8]. The associated von Neumann algebras, namely, the mixed g-
Gaussian von Neumann algebras, are tracial.
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In [16], Hiai introduced a new functor by combining the ones considered in [7, 26].
The associated von Neumann algebras are called g-deformed Araki—Woods von Neumann
algebras and are known to be very complicated objects. The factoriality of these algebras
is not even known in the fullest generality.

In this paper, we extend Hiai’s construction by combining Shlyakhtenko’s construc-
tion in [26] and the mixed g-Gaussian functor due to Bozejko and Speicher in [8]. Thus,
in our context, the associated von Neumann algebras depend on a real Hilbert space #g, a
strongly continuous group of orthogonal representation (Uy);er of R on Jr and param-
eters g;; € (—1,1) such that g;; = g;; for all 7, j, and sup; ; |¢;j| < 1,7, j € N where
N ={1,2,...,r},r € N,or N = N. We call these algebras the mixed g-deformed
Araki-Woods von Neumann algebras. Our construction is also functorial. As expected,
these algebras act in standard form on “twisted” Fock spaces, and the associated (Uy)ser
encodes the data of the modular automorphisms associated with the canonical vacuum
state.

Like the g-commutation relations associated with the g-deformed Araki—Woods von
Neumann algebras, here too, we obtain the mixed ¢;;-commutation relations. Thus, our
construction provides Fock-type representations of the following relations:

I*©)1(n) — qis L )I*(§) = (. nyul fork € J, ne 3,

where %ﬂg ) and %ﬂg ) are appropriate subspaces of Jg and (-, -)y is the inner product on
a complexification of #r that has been twisted by the representation (U;);er. The above
commutation relations clearly generalize the commutation relations considered in [8, 16].

Now, we discuss the overview of this paper. This paper relies heavily on the techniques
developed in [1, 16]. In Section 2, we construct the mixed g-deformed Araki—-Woods von
Neumann algebras combining the construction in [8, 16]. Subsequently, we study the stan-
dard representation of these algebras with respect to the canonical vacuum state and the
modular theory associated with the vacuum state in Section 3.

Section 4 is devoted to the study of generator masas in the mixed g-deformed Araki—
Woods von Neumann algebras. Following [1], we show that a canonical self-adjoint gen-
erator of the aforesaid von Neumann algebra corresponding to a unit vector & € ](’]g ),
i € N, generates a masa with appropriate conditional expectation if and only if U;& = &
for all + € R. In fact, such a masa is strongly mixing (with respect to the vacuum state)
(Theorems 4.5 and 4.11). Similar ideas can be found in [25,27].

Section 5 is concerned with the factoriality of the mixed g-deformed Araki—Woods
von Neumann algebras, which is a hard problem. Hiai proved the factoriality of the g-
deformed Araki—Woods von Neumann algebras, when the almost periodic part of (U;)ser
is infinite-dimensional [ 16, Thm. 3.2]. The factoriality of the same was proved in [1] under
the assumption that (U;);eR is non-ergodic and dim(H#R) > 2, or (U;);er has a non-trivial
weakly mixing component for all ¢ € (—1, 1). Unfortunately, there is a gap in the proof of
[16, Thm. 3.2]. To be precise, Hiai’s proof holds only in the case when the set of eigenval-
ues of the analytic generator of (U;);er has a limit point in R other than 0. Without this
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assumption, the conclusion “@(y*x) = 0” in the last equation in [16, Thm. 3.2] would fail,
and hence, the final statement cannot be concluded. Thus, in Section 5, assuming the same
hypothesis that fixes [16, Thm. 3.2] and adapting the techniques in [16] and also the tech-
niques in [1], we prove the factoriality and type classification of the mixed g-deformed
Araki-Woods von Neumann algebras. As the results in [1], our results on factoriality are
partial.

With the results in Section 5, namely, Theorems 5.4, 5.1 and 5.2, the factoriality of the
mixed g-deformed Araki—-Woods von Neumann algebras remain open only in the cases
when:

(1) dim(HR) is even and (Uy);eR is ergodic;

(2) (Uy)ser is ergodic, almost periodic, and O is the only limit point of the set of
eigenvalues of the analytic generator of (U;);eRr-

Further, in Theorems 5.7, 5.8 and 5.9, we show that in the cases the mixed g-deformed
Araki—Woods von Neumann algebras are factors, their type is completely determined by
the spectral data of (U;);cRr-

In Section 6, we show that the construction of the mixed g-deformed Araki—Woods
von Neumann algebras is functorial. Using this statement, in the same section, we show
that these von Neumann algebras have the Haagerup property.

In Section 7, we show that, in contrast to the results proved in Section 4, if £ € J{’Hg ),
i € N, is a unit vector not fixed by (Uy);er, then the inclusion of the associated abelian
subalgebra in the mixed g-deformed Araki—-Woods von Neumann algebra is split when-
ever the latter is a type III factor, forcing such abelian subalgebras to have huge relative
commutants. Thus, when (Uy);er is ergodic, there is no obvious way to construct masas
in such von Neumann algebras.

Finally, in Section 8, by adapting the techniques in [16], we show that the mixed g-
deformed Araki—-Woods von Neumann algebras are non-injective in many cases.

The last section is an appendix. In Appendix A, we have included some known results
concerning Hilbert spaces which are inevitable for our purpose but for which we lack an
appropriate reference.

2. Mixed g-deformed Araki-Woods algebras: Construction

In this section, we describe the construction of the mixed g-deformed Araki-Woods von
Neumann algebras. Our construction generalizes the constructions considered in [8, 16].
Following [16], we begin with a real Hilbert space and a strongly continuous one-parame-
ter orthogonal group on it. As in [8], our construction also involves an operator 7" which
is a self-adjoint contraction and satisfies the Yang—Baxter relation. As a convention, all
Hilbert spaces in this paper are assumed to be separable, all von Neumann algebras have
separable preduals and inner products are linear in the second variable. There is some
overlap of materials in this section with [26] to keep the paper self-contained. We proceed
to describe the construction below.
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Let Jr be a separable real Hilbert space and let ¢ — Uy, ¢ € R, be a strongly con-
tinuous orthogonal representation of R on #g. Let ¢ = Hr ® C denote the complex-
ification of #gr. We denote the inner product and norm on Hc¢ by (-, -) g and | - || ¢,
respectively. Identify #r in ¢ by Jr ® 1. Since Hc = Hr + i Hr, as a real Hilbert
space, the inner product of g in Hc is given by 3 (-, -) g . Consider the bounded anti-
linear operator (complex conjugation) § : Hc — Hc defined as (¢ +in) = & —in for
&, n € Hr. Note that & = & for all £ € #Hr. Moreover,

(EMae = (0.E) g = (0. §) s forall € € Hc and n € Hg. (1

Linearly extend the flow ¢ — U; from R to a strongly continuous one-parameter
group of unitaries on . We denote the extension again by U; for each t € R with slight
abuse of notation. Let A denote the analytic generator and H the associated Hamiltonian
of the strongly continuous one-parameter group {U; : t € R} acting on Hc. Then, A4 is
positive, nonsingular and self-adjoint, while H is self-adjoint. Since g is invariant under
U, for all t € R, Hp is invariant for i H as well. Let us denote D(:) to be the domain of
an (unbounded) operator. One notes that D(H) = D(iH ) and H maps D(H) N g into
iHg. It follows that JH = —HJ and $A = A1 ¢.

Define a new inner product (-, -)yy on H¢ as follows:

o = (), rene e

Denote the completion of F¢ with respect to the norm induced by (-, )y by J€. We denote
the inner product and norm on # by (-,-)y and || - ||y, respectively. Since A4 is affiliated
to vN(U; : t € R), one has

(Ui, Uy = (§,nju  for§, n e He.

Consequently, (Ut)teR extends to a strongly continuous umtary representation (Ut) teR
of R on J. Let A be the analytic generator associated with (U,) teR, Which is clearly
an extension of A. From [1, Prop. 2.1] and the discussion prior to it, one notes that the
spectral data of 4 and A are essentially the same. Therefore, we denote the extensions
(ﬁ;) rer and A again by (U;):er and A, respectively, with slight abuse of notation.

A vector £ € J is said to be analytic with respect to the strongly continuous one-
parameter group (U;),;er on J if the mapping R > ¢t — U,§ € J has a weakly entire
extension on J. The value of the extended function at z € C is denoted by U, £. Further,
it is easy to check that U, = A*% forall z € C.

The next few computations are statutory and follow from [26]. We present them for
the sake of completeness. Let £, n € Hg. Then,

2
(&.mu <1+A lén>ﬂc=<n&’1+A 1$> " <n,1+AE>

_ 2471 _ 2 1 _ -1
= <7’ls mé)}f@ = <m’7»1‘1 E>J€c ={n.A" 8. (@)
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Also, 1
2 1—A4~
€6 =(med), =6owet({mee), O
But gt 4 |t
(=), =), e, e @

Thus, it follows from (3) and (4) that ||£]|y = [|£]| . for all £ € HRr. Hence, #r embeds
in J€ isometrically as a real Hilbert space.

Let N denote {1,2,...,r}, r € N, or N. Fix a decomposition of #g as follows:
Hr = P HY. (5)
ieN

where %ﬂg ) ,1 € N, are non-trivial invariant subspaces of (U;);er (direct sum taken with
respect to (-, -) gec.)- Choose —1 < g;; = q;i < 1 fori, j € N withsup; ;ep |¢ij| < 1.In
this paper, we will often denote the scalar ¢;; also by g(i, j) fori, j € N.

Note that J&c = @leN Jf(g), where Jé’(g is the complexification of J{’(l) fori € N.
Also, since J(’C ,i € N, are invariant for (U;)eR, it follows that # = P,y H @ where
HD i e N, are, respectively, the completions of J(’((:), i € N, with respect to (-, -)y. For
& € H, the associated unique decomposition will be denoted by £ := €D,y g0,

Fix i, j € N.Define T; ; : ‘%]I(Qi ) ® %Iéj ) %ﬂg ) ® Jf]g ) {0 be the bounded extension
of

EQ@n>qii(n®E) forke Jfﬂ({), ne Jfﬂ({).

Then, Tr := EBi’jeN T;j € B(#r @ #Rr). Linearly extend Tgr to #c ® Hc and denote
the extension by T¢.

By a simple density argument, it follows that 7¢c admits a unique bounded extension
T to J ® J. Itis easy to verify that T := P; ;e Tij, where Tj; : HO @ HV) —
HD @ @ is defined as the bounded extension of the map

E@ni>qi(n®E) fors e HD, ne g ©

Moreover, T has the following properties:

T =T, (since g;; = gj; fori, j € N),
ITlse@se <1, (since sup |gi;| < 1), 0
i,jeN

AT TINAST)=T1HART)T ®1),

where 1 ® T and T ® 1 are the natural amplifications of 7" to # & # & H. The third
relation listed in (7) is referred to as the Yang—Baxter equation (see [18,20,34]).

Let F(H) := CQ & P, #®" be the full Fock space of #, where € is a distin-
guished unit vector (vacuum vector) in C. By convention, #®° := CQ. The canonical
inner product and norm on ¥ (#) will be denoted by (-, ) # () and | - || # (), respectively.
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For £ € J, let a(§) and a* (&) denote the canonical left creation and annihilation
operators acting on ¥ (#) which are defined as follows:

a@R=§ a@)E1®6LQ Q) =(R6HBHL® - ® &,
a* )R =0, a@ER®L® - ®&) =(EHvh® - ®&,
where £; ® -+ ® &, € HO" (H©" denoting the n-fold algebraic tensor product of J) for

n > 1. The operators a(§) and a* (£) are bounded and are adjoints of each other on % ().
Let T} be the operator acting on #®¢+1D for i € N as follows:

®)

T, =1®---01QT. )
| e’
i—1
Extend T; to #®" foralln >i +1by T; ® 1 ® --- ® 1 and denote the extension again
by T; with slight abuse of notation. n—i—1

Let S, denote the symmetric group of n elements. Note that S; is trivial. For n > 2, let
7; be the transposition between i and i + 1. It is well known that {z; ;’;11 is a generating
set of S,,.

Forn € N, let w : S, — B(#®") be the quasi-multiplicative extension of the map
givenby n(1) = land n(7;) = T; (i = 1,...,n — 1). The extension is well defined and
unique, and this follows from the proof of [4, Prop. 5].

Consider P™ ¢ B(#®"), defined as follows:

P =" n(0). (10)

ogeS,

By convention, P® on #®° is identity.
From the properties of 7" in (7) and [8, Thm. 2.3], it follows that P®™ is a strictly
positive operator for every n € N. Following [8], the association

(E.T = Snm(E, Pn) gy forf e HO™, ned®, (11)

defines a definite sesquilinear form on ¥ (J), and let 7 (J¢) denote the completion of
F (J) with respect to the norm on % (#) induced by (-, -)7. We denote the inner product
and the norm on F7(J#) by (-,-)7 and || - || 7, respectively. We also denote F(H) :=

spanc {H®", n > 0} and H®T = 78T forn e N.
Lemma 2.1. Forn,m € N, let n;, € %(ik)for ix € N,1<k<n, and§ € %(jl)for
JEN, 1<l <mLetn=1n;, - Qn;,and§ =&, ®---®Ej,. Then,
(.87 =8um Y a(0,E)(Mirs &)U (i Ejpiy U (12)
gesS,

where a(o, &) is given by

a(o, &) = {Lk_l fo=id,

t=1 q(jo't(uk—t)’jat(uk—t+1))q(juk’juk+1)’ ifo =1, T Ty
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where 0 1= 1y, -+ Ty, is the reduced product of transpositions and o, denotes the permu-
tation Ty,_, . Ty for 1 <t <k —1.

Proof. Fix 0 € Sp,. Let o be written as the reduced product of transpositions as o :=
Ty, ** - Tu, . First, we show that

Ty T (5, ® - ®§j,) =a(0.8)(Ej,q) @+ @ &jpm)-

Note that

T &y ® -+ ® &)

= q g Ju+1)Ej @ ® &y oy ® &jyiy ®Ejy, ® - ®E;,)  (by (9))

= 4G Jur+1) ) ® - ® &y ) (13)
Again,
Tu Ty 6, ® -+ ®Ej,)

= Ty (4 G- S 4D Gy () @ ® Ej, () (bY (13)

= 4G Jur+ ) Tuey Eoy oy @ - ® iy )
= 4G Jug+ 14 Uy 1) Ty ey 40 oy 0 @ @ &jy o)) (by 9)
= 4w Jur+ 19 Uor ) Jor iy +10) Gy oy @ O ey o)

Iterating as above, one gets

Tu1 "‘Tuk(és'jl R ® ég-jm)
k—1
= l_[ Q(j(ft(uk_,)’ jot(uk_,+1))Q(jukv juk"’_l)(gjg‘(l) X ® Ejg‘(m))
t=1

= a(07£)(§j5(1) ®“‘®Sja’(m))‘ (14)
Then,

(77’ g)T = 8n,m<77i1 & ®ni,, P(m)(gjl X ® E}m))gr(gg) (b)’ (1 ]))

= Sn,m<r/i1 R @i Y 7(0)(E ®® Sjm)> (by (10))
F(F)

0ESH

= 8n,m<ni1 Q- BNiy,» Z a(o, E)éja(l) @ ®$jg(m)>57(%) (by (14))

g€eSy,

= bn,m Z a(o, &) (i, ® - ® Niys Ejpy @+ ® &) 730 (as a0, &) €R)

o€ES,

= 8n,m Z a(as)(ningqu))U (ninvéjg(m))U-

og€S,

This completes the proof. ]



P. Bikram, R. Kumar R, and K. Mukherjee 1238

Note that #'l7 = 3. Following [8], for § € #, consider the T'-deformed left creation
and annihilation operators on 7 () defined as follows:

[(§) :=a(§),
I (E) = a*EA+Ti+ T+ +TiTr---Ty—y), onH®", 15)
o 0, on CQ2.

Then, /(§) and /* (£) admit bounded extensions to F7(#), and we have the following.
Proposition 2.2. Let & € H. Then, the following hold:
. . _1
@ iflITsewswe =q <1, then |I(E)] = [§llu(1—¢q)72;
(i)  1(&) and I*(§) are adjoints of each other on Fr(H).

Proof. The proof follows exactly along the same lines of [8, Thm. 3.1]. We omit the
details. |

Following (15), the definition of /* (&) involves the operator T'. From (6), it follows
that the action of /*(§) on F7(J) is as follows. Fix n € N, and §;, € HCO for iy € N
and 1 < k < n. Then,

" =0,

@G, ®---®8,) (16)

n
= Z(E’gik>qukik—l 0 'Qikil (Eil (29 Siz K Q® gik_l 02y Eik_H Q& %—in)'
k=1

In the following lemma, we show that the 7' -deformed creation and annihilation oper-
ators on F7 (H) satisfy the ¢;;-commutation relations, which generalize the commutation
relations considered in [8, 16].

Lemma 2.3. Fixi,j € N andlet& € #D ne HD). Then,
")) — qij L (mI* () = (. nul, (17)
where 1 is the identity operator on F(H).
Proof. By (8) and (15), it follows that
MR = qi L (MI™ ()@ = *E)IM2 = €. nNu.

Thus, it remains to check (17) on the n-particle spaces. Fixn € N, and let §;, € # GO for
ir € Nand 1 <k <n.By (15) and (16), it follows that

FEOMmE, @ ®&,)
=I"E®E& ®---®E,)
=€ nNué, ®--®E,

n
+ ) (EED Ui, G G (1 ® & ® i, @ ® & @&, ® - QF,).
k=1



Mixed g-deformed Araki-Woods von Neumann algebras 1239

On the other hand,
@) ¢ ® - ®&,)

n
=D (EE)Udii 4 (1 ®E, ® - ® &, ®&,, @ ®E,).
k=1

Therefore, [*(§)I(n) — qi; 1(n)[*(§) = (£, n)u 1 on simple tensors if and only if

aii(E.0u = qij (€. 0v Ve H P keN. (18)

To verify (18), fix ¢ € #® for k € N. Indeed, if i # k, then both sides of (18) are
equal to 0. Now, if i = k, then gx; = g;;; so both sides of (18) are equal to ¢;; (£, {)v.
Hence, (17) holds on simple tensors. Therefore, it follows by a simple density argument
that (17) holds on n-particle spaces. This completes the proof. ]

Define
s(€) :=1(§) +1%(§) for& € Hr. (19)

Consider the C *-algebra I'r (H#g, U;) and the associated von Neumann algebra
L7 (Hr.Up)" S B(Fr(H))

generated by the self-adjoint operators {s(§) : £ € #g}. In this paper, we are interested in
I'r(H#Hr, U;)”, and we call it the mixed ¢g-deformed Araki—-Woods von Neumann algebra.

Note that Ty (#r, U;)” (and hence Ty (Hr, Uy)) is equipped with a canonical vacuum
state ¢ given by ¢(-) = (Q,-Q)r.

3. Standard form of 'y (#r, U,)”

This section is concerned with the faithful representation of I'r(Hr, Uy)” on Fp(F).
We show that the GNS space of I'r (#g, U;)” associated with the canonical vacuum state
@ is Fr(H), and hence, the identity representation of I'r(Hg, U;)” on Fr(J) is in
standard form. The modular theory of I'r (#r, U;)” associated with the vacuum state ¢
is an inevitable component for the further analysis of I'7(#gr, U;)”. In this section, we
also discuss the same, and subsequently we identify the commutant of Ty (H#r, U;)”. We
proceed as follows.

For & € #, let b(§) and b*(£) denote the canonical right creation and annihilation
operators acting on ¥ () which are defined as follows:

bE)2=¢& bEE® Q) =50 Q& QE,
*EQ =0 b0 ®E® @) =(EEuE1® @ &1,

where £; ® --- ® £, € H©" for n > 1. The operators b(£) and b*(£) are bounded and
adjoints of each other on ¥ (#).

(20)
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Consider the unitary operator j : ¥ (#) — F (H) defined as follows:
Jj=Q,
JE1® Q&) =86 ® Q&L
where £; ® --- ® £, € HO" forn > 1.

2n

Lemma 3.1. The operator j extends to a unitary on Fr(¥).

Proof. Fixn € N,and let§;, € J¢m) for im € N,1 <m <n.Fork < n,one has
JTejGi ® - ®&;,)

= JjTiE, ® - ®&) (by(2D)

=j1®®10T®1IQ--®1)(, ® - ®&) (by(9)

k—1 n—k—1
= ].Qi(,,,k)i(,,,kﬂ) (Sin ® tee ® Si(n,kJrz) ® Ei(nfk) ® Ei(nfk#»l) ® Si(,,,k,l) ® te ® giz ® Si])

= qi(nfk)i(n7k+l)(sil ®--® Si(nfkfl) ® gi(nkarl) ® Si(n—k) ® Si(n7k+2) ®-® Ei(nq) ® Sin)
= nfk(%-i] R ® gin)~ (22)

Therefore, by a simple density argument, it follows that jTyj = T,_; on #®" for all
k <n.
Consequently, it follows that there is an injection (and hence a bijection) S, > 0 —
o’ € S, such that
jr(o)j = n(0)), o €S,.

Therefore,

JP®j =" jn@)j (by(10)

og€S,

= Z 7(o’)

o’eSy,

=p®, (23)
Then, one has

(jE1® Q&) j(m @ @ m))y

= Sum(jE1 @+ ®E), P jm @+ ® 1)) g 50,

= Snnlj(E1 @@ &), GP™J)jm ® - @ M) g (e, (by (23))

= Sum(E1® -+ @&, PP @ @)z (since j>=jj*=j*j=10n F (X))
= (51 ®"'®§n’711 ®"'®T)m)T

for§1 @ ®& € HO", )1 ® -+ @ Ny € HO™.
Hence, by a simple density argument, it follows that j extends to a unitary on Fr (#).
[
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The extension of j in Lemma 3.1 will be denoted by j again with slight abuse of
notation.

For £ € #, consider the densely defined 7T-deformed right creation and annihilation
operators on Fr (#) defined as follows:

r(§)=>b(&).
“(£) b*E) 1+ Tt + Tm1 Tzt -+ Tym1 Ty—z -+ T1), on H®" forn>1, (24)
r =
0, on CQ.
Proposition 3.2. Let £ € K. Then, r(§),r*(§) extend as bounded operators in Fr(H).
Denoting the extensions by the same symbols, the following hold:

@) T lwer =aq <1, then [r@ < [Elu(1—q)72;
(i) (&) and r* (&) are adjoints of each other on ¥ (H).

Proof. Forn > 1, on #®" define
Rn =14 Tl + T1T2 ~|—'~'+T1T2“'Tn_1,
R, :=1+Tyy+ TyoiTy—z +++ Tyoy Ty T.

By (22), it follows that /R, j = R!, on J¢®".
Note that, for §; ® --- ® £, € H ", one has

JEjE® - ®E) =jlE)E® &) =jE®6® - ® &)
=6Q - ®LOE=rE)E1® Q&)
Therefore, it follows directly from Proposition 2.2 and Lemma 3.1 that r(§) extends to

F1(H) as a bounded operator and jI(§)j = r(§) on Fr(H).
Fix§; ® -+ ® &, € HO". Again, as j keeps F () invariant, one has

ja*@)j ® - ®&) = ja* ()& @ ® &)
=jé&un-1®--®&1) (See (8))
=(€&uE ® - ®&i-1)
=b*E)E1 ® - ®&) (see (20)). (25)
Therefore, by (15),
JI© 6 ® - ® ) = jaTE) R j 61 ® - ® &)
= ja* (§)jjRnjE1 ® - ® &)
=b*E)R, (51 ® - ® &) (see (29))
=r"EE @ ® &) (see (24)).

Arguing as in the previous case, it follows that jI*(§)j = r*(§) on F(H).
The rest follows from Proposition 2.2. This completes the proof. ]
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Equation (24) entails that the definition of the right annihilation operator r*(£) involves
the operator 7. Following (6), note that for £ € #, one has

rr(Q =0,
rr @ ¢, ®--®&,)
n (26)
= Z(S,Sik)qu'kikﬂ “Gigin€iy i, @ @& &, ® B,
k=1
where n € N and &, € #) foriy e N, 1 <k <n.
Define
dE):=r)+r*¢E) forge H. 27
Let§ e JeD, ne JU) fori, j € N.Then, from Lemmas 2.3 and 3.1, one has
r*Erm) —qirmr*€) = jIE)jjlnJj —qi jlm)jjl* &) j
= JjIE®IJ — qij 1) j
= j (" &) — qi; L)1 ()
= nul. (28)

For j € N, let
(#Y ={e e #D : (£, )y € Rforall € H).

Note that (Jfﬂg{j ))’ is a real subspace of J, and by the Hahn—Hellinger theorem, it follows
that

Gy iy " = g0,
Define '
Iy = P’y (29)
jeN

Lemma 3.3. Let B = {d(§) : £ € Hy}". Then, B C I'r(Hr,U;)".

Proof. Let£ € Jr and n € H. Let§ = @,y 0 for @ e J) and n = @, 1?
for n® e (J(’]g ))’ ,i € N, be the unique decompositions of &, 7, respectively. We show
that [d(n), s(§)] = 0 on Fp (H).

If N ={l,...,n},n €N, from (19) and (27), it follows that s(§) = >_,;cy s(?)
andd(n) =) jeny d (n9). From Proposition 2.2 (resp., Proposition 3.2), it follows that
Hr 3+ 5() € T(Hr, Uy)" (resp., Hy 3¢+ d(§) € B)is || - ||y to || - || continuous.
Hence,if N = N, then s(§) = Y,y (D) and d(n) = 3,y d(n?) in strong operator
topology (s.o0.t.) as well.

Therefore, we may assume without loss of generality that £ € J(’H({ ) and ne (J(’H({) )
fort,r € N. Note that (£, n)y € R. From (19) and (27), it follows that

s(§)d(mQ = (€. nNu2 +E®n,
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while
dms@)2=n§uvL+E®n.

Since (€, n)uy € R, one has (¢, n)y = (n, &)y . Therefore, [d(7), s(£)]2 = 0.
Thus, it remains only to show that [d (), s(§)] = 0 on the n-particle spaces of Fr (H).
Now, from (19) and (27), it follows that

d(m)s§) = r(mIE) + rml*€) + r*mIE) + rrml*¢).
s@)d(m) = 1E)r(n) +1Er*() + *E)r(n) + 17 E)r* ().

Fix n € N. Let &, € #W) foriy e N, 1 <k <n.Lety =&, ® - ® &,. From
(15) and (24), it follows that [(§)r (n)y = r(n)l(§)y. Therefore, by a simple density argu-
ment, it follows that [(§)r(n) = r(n)l(§) on Fr(H). Hence, [*(§)r*(n) = r*(n)*(§) on
Fr (H). Therefore, from (30), it follows that to show [d(7n), s(§)]y = 0, it is enough to
show that

(30)

((©r*m) +1"E)rm)y = (rmI*E) + r*mi§))y.
We proceed to show the same. First, let us note the following computations that follow
from (15), (16), (24) and (26). We have
I mE, ®--- ®&,)
n
= &) Ui i E® L ® - ® & ® iy, ®--®E,). (D)
k=1

Again,

r@rméE, @ ®%&,)
=I"®E, @& 0 =ENudri, - qri (& ® - ® &)

n
3 EE) Ui iy iy ® - ® b, ® ki, ® - B &, ® 1),
k=1

rml*€) & ® - ®§,)

= D () Ui, i By ® - ® &, &, ®--® &, ®1),
k=1
rrmlE)E, - ®&,)
=r'mME®E& @ ®8&,) =0.8vq 4, & @ ®E&,)

n
+ 3 08 Ui i E ® 5 ® - ® & ® &, ® - ® &),
k=1

From (31), it follows that (I(§)r*(n) + I*(&)r(m)y = (r(m!* (&) + r*(ml(E))y if
and only if
M, Eudriy -+ qrin = & MUGriy - Griy - (32)



P. Bikram, R. Kumar R, and K. Mukherjee 1244

We verify (32) below. First, assume that ¢ # r. Then, both sides of (32) are equal to 0.
Otherwise, since (£, )y € R, both sides of (32) are equal to (£, n)y qri, - - - Gri; -
Therefore, we have [d(n),s(§)]y =0 for § € HRr, n€ Hp. This completes the proof. m

Lemma 3.4. (i) spanc{Q,s(&,)--5(5,)Q : &, € H¥ fort € N, 1<k <n, n e N}
is dense in 1 (H).

(ii) spanc{Q, d(&,) -+~ d ()R - &, € (HTY for iy € N, 1 <k <n, n € N}is
dense in F7(J).

Proof. (1) First, we show that

{6 ® - ®&, 1 & € Jf]gk), 1<k <n,neN}
C spangc {Q,s(&,l)---s(étn)ﬂ (&, € ](’]gk) forty e N, 1<k <n,ne N}.
The proof is by induction. Let §;, € J{’ﬂ({") for 1 <k <n.The case n = 1 is trivial since

by (15) and (16), one has s(&;,)2 = &;,.
Suppose that the result is true for (n — 1) with n > 2. Thus,

£, ® - ®E, espang {Q,5(5,) - 5(E,)Q: &y € HF forty € N, 1<k <n, neN}.
Note that

sGE)En ®--® &)

= (l(‘étl) + Z*(gn))(gtz ®- - ®%&,)

=6, ®6,Q Q& +1"(¢)(E, ® - ®&,) (by(15)
=6, ®EL,® - ®&,

+ ) EnEn Ut G G ® - ® &y, ®Ey,, ® - ®&,) (by (16)).
k=2

Therefore,

€y ® &, @ ®E,
=5En)6n® - ®&,)

- Z(Etl’élk)thktk_l oy G ® Q& Q& ® - ® &), (33)
k=2

Note that the simple tensors in the right-hand side of (33) contain only (n — 1) vectors.
Therefore, by the induction hypothesis, it follows that

£ ®6, ® - ®&,
€ spanc {2, 5(5,) -+ 5(6,)2 1 & € e}’(’ﬂgk) forty € N, 1<k <n, neN}.

Hence, the containment of the sets as claimed is established.
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Therefore, Jfgm C spanc{2,s5(s,) 56, 1 & € an({")} for all m > 0. The rest
follows by a straightforward density argument.
(i1) Proceeding analogously as in (i), it follows that

{6n @ ®&, &, € (H). 1<k <n neN)
C spanc {Q, d(&;,) - d(E,)Q : &, € ()Y foryy € N, 1 <k <n, neN).

- —|-lv .
Since (Jfﬂ({ Dy + i(%ﬂ({ " = #W for j € N, by a simple density argument, it
follows that

spang {Szl ® - ®&,: & € (J(’H(ék))/, 1<k<n,ne N}

is dense in spanc{n, ® -+ ® Ny, : Ny, € H@, 1 <k <n, neN} with respect to
| - Il #2). Further, by an approximation argument, one has that

spang {77t1 ® - ®Ny, i My, € HW 1<k<n ne N} U {CQ}
is dense in F (H). The rest is clear. |

Proposition 3.5. The vacuum vector Q is cyclic and separating for Ut (Hr, Uy)”.

Proof. By Lemma 3.4 (i), one has that
spang {Q,s(é,l)---s(étn)ﬂ t& € Jf]gk), k€N, 1<k<n,ne N}

is dense in F "¢ (J}). Therefore, it follows that € is cyclic for I'r (#r, U;)".
By Lemma 3.4 (ii), one has that

spanc {Q.d(ny,) - d(0,)2 : 0y € (HG) . tx € N, 1 <k <n. neN}

is dense in ?77‘3““‘3(% ). Therefore, from Lemma 3.3, it follows that & is cyclic for the
commutant of Iy (Hg, U;)” as well. Hence, € is cyclic and separating for I'r (#g, U;)”.
This completes the proof. ]

Remark 3.6. The vacuum state ¢ is faithful on T'7 (H#r, U;)”, and the identity represen-
tation of I'r (Hr, U;)” on Fr(H) is the GNS representation with respect to ¢.

Remark 3.7. (1)If U; = I forallt € R, and Hr = P,y R, then I'r(Hr, U;)” is the
mixed g-Gaussian von Neumann algebra constructed in [8].

(2) Consider the decomposition Hr 1= P;cpn J(’Hg) in (5), and let —1 < g;; =g =
qji < lfori,j € N.Then, the above construction reduces to the construction in [16], and
if ¢ = 0, then the construction reduces to the construction in [26].

The remaining part of this section is devoted for describing the modular theory of
I'r(HRr, U;)" associated with the vacuum state ¢. Before discussing the same, we prepare
ourselves with some useful lemmas. We proceed as follows.
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Fix t € R. Note that the second quantization ¥ (U;), defined on the full Fock space
F(#) by
FUHQ = Q,
FUNM @ ®np) = Um) ® - @ (Uyny) form @ @1, € H", neN,
is unitary on F (#).
Lemma 3.8. Fort € R, the operator ¥ (U;) extends to a unitary on 1 (F).

Proof. By the definition of T in (6), it is easy to verify that (U; @ U;)T = T(U; ® Uy)
on #O @ #D fori, j € N, t eR. This implies that (U, ® U,)T = T(U; ® U;) on
JH Q J forallt € R. Thus, it follows that 7; commutes with

U, U, ®---Q Uy
i+1

on H®E+D foralli € N, ¢ € R (see (9)). Therefore, P commutes with

Ut®Ut®®Ut

n

foralln e Nandt e Ras (1) = 1.
Fixt € Randn,m e N.For¢; ® -+ ® &, € HO", 1 @ -+ @ Ny € H O™, one has
(FUONG @ @), FUM @& thm))y
= um(Uil1 ® - @ U, PP (Ui ® -+ @ Uiiim)) -5y (by (1))
= Spm(Uil1 ® -+ @ Uiln, (Ui ® - @ UN PP () ® - ® )5 (se)
= 8n,m(§l ® -+ ® Ln, P(")(ﬂl ® & nm))jfr(gg)
=1 ® - ®%.Mm® & Nm)T-

Therefore, ¥ (U;) extends to a unitary on 7 (J) for all ¢ € R. This completes the proof.
[

We will denote the unitary extension of ¥ (U;) on F7(H) by Fr(U;), t € R.
Lemma 3.9. Forn > 1, the following assertions hold:
(1) the operator A®" : (D(A))®" € H®T — H®T defined by
AP (1 ® - @ M) = A1) ® -+ ® A(n),

ni € D(A) for 1 <i < n, is positive and symmetric;
(2) let A®T be the closure of A" on H®T. Then, A®T is positive and self-adjoint;
() fork € N, (A®T)k = (A%)®T.
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Proof. Firstly, for n = 1, there is nothing to prove. So, fix n > 2.

(i) Note that P is a positive bounded operator on H ®" (see [8, Thm. 2.3]). Since A4
leaves # V) invariant for i € N, by the definition of T in (6), it follows that T(4 © A) C
(A® A)T on D(A) © D(A). Then, by (10), one has

P™ 4O C 49" P on (D(4))".

Note that A°" is preclosed in # ®". Denoting A®" to be the closure of A®" on F#®", it fol-
lows that A®" P js a densely defined closed operator on #®”. Since (D(A4))®” is a core
for A®", it follows that P A®" C A®" P on J#®" Therefore, by [28, Exer. E9.21],
it follows that

P g®n = Ag®np@) o g1,

Next, we show that A%" P is positive and self-adjoint on #®”. Since P A®" C
A®"P(™ it is easy to verify that p(P)A4%®" C A®" p(P ™) for every polynomial p
on o (P™). Let {p,n} be a sequence of polynomials such that p,,(0) = 0 for all m and
pm(A) = Az uniformly on o/(P ™) as m — co. Let ¢ € D(A®"). Then, one has

(P™)3 4% = 1im p,(P™)A®"¢
m—>00
= lim A®"p,(P™)¢
m-—00
= A% (P3¢
since limp—so0 pm (P ™) = (P™)2¢ and A®" is closed. Therefore,
(P(n))%A®n C A®n(P(n))%
Since A®" is positive, one has
1 1
(6. PP A ) g 30y = (P20, (P™M)2 4%77)
= ((P®)g 4% (P™)2)
>0, ¢e€DA%).

F(H)

F(H)

us, is positive. This implies that = is positive and hence
Thus, P A®" is positive. This implies that P () A®n = 4@ p™) jg p dh
symmetric.
Now, since P A®" € A®" p() and 4%" P™ s symmetric, one has
(A% pMy* < (p(M) @) (by [28, p. 191])
= (A®MH*(P™)*  (by [28, §9.21)
— A®r p()

Therefore, A®" P is self-adjoint as well.
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Let C := PM™A®" and { € (D(A))®". Then, one has

(2. A°")r = (£, PP AP L) 7 (90)
= (0, CO 7

= (C3L.C30) 5

> 0.

Thus, (i) in the statement follows.

(ii) Since by (i), A®" is densely defined, positive and symmetric on # ®7, it follows
that A" is closable (on #®7) and A®T is also densely defined. Hence, A®T is positive
and symmetric.

From Lemma 3.8, it follows that

R>t+— f'(VT(Ut)1J€®’;
is a strongly continuous one-parameter group of unitaries on #®7. Let B denote the
analytic generator of (¥7(Uy), ;e )rer. Note that A®" C A®T C B. Since D(A®")isa
core for both A®T and B, and both A®7 and B are closed, one has that A®T = B. Since
B is self-adjoint on #®T (by Stone’s Theorem), one has that A®7 is also self-adjoint.
This completes the proof.

(iii) Replacing the role of A by A% in (ii), one has that (A%)®'% is positive and self-
adjoint on #®7 . Therefore, by functional calculus, it follows that ((A%)‘X"%)k is positive
and self-adjoint. Note that

"= (ah)or. (ah)or  ((al)®h,

k times

Hence, one has A®T C ((A%)®'%)k. Therefore, by (ii) and [28, Exer. E.9.28], it follows
that A®T = ((A%)®7)¥. Hence, it follows by the uniqueness of the k-th root of A®7 that
(A®T)% = (A%)®T. This completes the proof. m

Lemma 3.10. Fixn € N, and let &, € Jfﬂg")ﬁ)r tx € N,1 <k <n. Then,

S(Etl)s(gtz) T S(Stn)Q
1
= 3 o (q,»j)( H Enny» Etn) ) (B @+ ® iy )s (34)

v={i(r),i(MN}<r<t k(P h1<p=m}
where the summation is over all partitions
v={i(), j(Mh<r<t: k(P h1<p<m}

of {1, ...,n} having blocks of one or two elements such that

Im>0, 2l+m=n, i(r)y<jr) forl<r<l, k(1) <---<k(m),
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and f,(qij) is given by
folgij) = ( I1 qUGE fj<s>))

vay={(r,8):1=r, s<l, i(r)<i(s)<j(r)<j(s)}
x ( I1 61(fk(p>,fj(r)))‘
viy={(r,p):1=r=i, 1<p=<m, i(r)<k(p)<j(r)}

Proof. The proof is by induction on n. The case n = 1 is trivial. Suppose the formula
holds for n — 1. Therefore, we have

s(5r,) - 5(51,)Q2
I
= Z fv(Qij)(l_[ Etz(r) gt}(r) )(Stk(l) ®'-.®Stk(m))v

v={i(r),j (N} <r<1:{k(P)}1<p<m}

where v runs over the partitions of {2, ..., n} as specified in the statement (with 2/ 4+ m =
n — 1). Then, we compute

5(&ey) e 5(6r,)2

- Z fv qu)( 1_[ %‘t,‘(r)v glj(r))U>Et1 ® stk(l) X étk(m)
r=1

+y Z So(qij)q (equys tew—1)) 4Ty ()

v u=l1

1
( §nrs E’k(u) H é:tz(r) ’ Etj(r) )gtk(l) Q- ® Etk(u—l) ® é:tl'c(u-¢-1) ®---® étk(m)-

For each partition v = {{i (r), j(r)}1<r<i, {tk(P)}1<p<m} of {2,...,n} in the above,
we consider the following partitions of {1,...,n}:

Vo = {{l(l"), j(r)}lfrgl’ {1}v {k(p)}lspfm}’
Vy = {{1,k(u)}, {i(r),j(r)}lsrsl, {k(p)}lspsm,p;éu} forl <u <m.

It is clear that the partitions of {1, ..., n} obtained above exhaust all partitions of
{1,...,n} as described in the statement of the lemma. Moreover, it is easy to see that

Svo(gif) = fu(qij),
Jou@i5) = (i) gty tew—1)) =+ 4 (k) tey)  for 1l <u < m.

Hence, we obtain the desired formula for n. This completes the proof. ]

Using Lemma 3.10, for n € N, the value of ¢ at s(§;,)s(§s,) ---5(&,), for &;, € J{’]g"),
tr € N,1 <k <n,is given by
0, if n is odd

P(s(Er)s(Er) - 5G,)) = {Zv o ) T2 € o o i i even. (35)
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where the summation is over all pair partitions v = {i (r), j(r)}1<r<ns2 of {1,...,n} with
i(r) < j(r),and g,(gi;) is given by
gv(qij) = I1 (i) 15))-

iW)={(r;s):1=r,s=<n/2, i(r)<i(s)<j(r)<j(s)}
From Lemma 3.8, it follows that R > ¢ > %7 (U;) defines a strongly continuous uni-
tary representation of R on ¥ (#). Notice that
FrUy)sE)Fr(U,)* = s(UsE) forE € Hrandt € R. (36)

Hence, p; = Ad(F7(U-;)), t € R, defines a strongly continuous one-parameter group of
automorphisms on I'r (#g, U;)".

Definition 3.11 ([19, Def. 9.2.10]). A one-parameter group {&; : t € R} of x-automor-
phisms of a von Neumann algebra M satisfies the KMS (modular) condition relative to
a normal state Y of M if, given any elements x and y of M, there is a complex-valued
function f', bounded and continuous on the strip {z € C : 0 < Im(z) < 1}, and analytic
on the interior of that strip, such that

F@) =¥ ((x)y), f@+i)=1vy(ya;(x)) forseR.

In fact, it is possible to drop the condition of “boundedness” of the function in Defini-
tion 3.11 (see [9, Prop. 5.3.7]).

Theorem 3.12. The one-parameter group {p; : t €R} of *-automorphisms of Iy (#r, U;)"”
is the modular automorphism group of ¢, and therefore it satisfies the KMS condition with
respect to ¢.

Proof. Note that if &, n € Hg are analytic for (U;);er, then

9 (e (s(®)s(m) = (2, pe (s(€))s (M),
= (Q,s(U-&)s(mQ)y,
= (s(U=5)Q,s(MQ)y,

= (U nu
=(E Unu, teR

On the other hand,
o(smpi(s(®)) = (Un.§)u, t€R.
Let I ={z € C:0=<Im(z) <1}. Let Fg, : I — C be the function defined as

Fep(2) = (€. Uy, zel.

Then, F¢ , is continuous in I and analytic in the interior of I. Clearly,

Fe o (t) = @(p:(s(€))s(n)) forallz € R.
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Further,

Fen(t +i) = (£, Urrinu
= (&, UiUm)u
= (6. A ' Unu
= (Um.&)u (by D)
=o(s(mp:(s())), reR.

Let§;, € Jf]gk) forty € N, 1 <k <n,n €N, be analytic vectors of (U;);er on #.

Let x = 5(§;,)s(5r,) -~ 5(6s,) and y = 5(&1,,41)5 (1) -+ 8(Ep,) for 1 <m < n. From
(35), it follows that

@(Pt (x)y) = §0(S(U—z§z1)5(U—z§z2) : "S(U—tézm)S(Eth)S(éth) : "S(étn))
B {0, if n is odd,
>0 &v(4ij) l_[;l/:l (Mtiy> Nty 1 1 is even,

where the summation is over all pair partitions v = {i(r), j(r)}1<r<n/2 of {1,...,n} with
i(r)y<j(r)andn,, =U_&, forp=1,...,m,andn,, =&, for p=(m+1),...,n. The
summand corresponding to each v in the summation above is non-zero only if #; ) = ¢;¢)
forr=1,....5.

With each partition v = {i(r), j(r)}1<r<n/2 of {1, ..., n} with i(r) < j(r), we asso-
ciate a new partition v’ = {(i’(r), j'(r)) := (i(r) — (n —m), j(r) — (n — m))}1<r<n/2,
where the arithmetic is performed modulo n. Thus, again from (35), one has

(1 (x)) = @(5 G Etpsn) -+ 5Er,)S(U—161))s(U—s1y) -+ s(U—§4,,))
B {o, if 1 is odd,

e (37)
Yo g @) T2, ol o ifnis even,

where n/,p =U_ &, forp=1,....m,and r;’,p =&, forp=(m+1),....n,and g, (qi;)
is given by

v (qij) = I1 (1) 1 (s))-
iW)={(r.$):1=r, s=n/2, i(r)<i(s)<j(r)<j(s)}
As before, the summand corresponding to each v’ in the summation above is non-zero
only if t;:(;) = tjry forr =1,..., 3.
Let fx,, : I — C be the function defined as

P { 0, if n is odd, a8)
xy(2) = e

Zv 8v (CIU) l_[;l/zzl (é‘ti(r) s g'l‘j(r))Uv if nis even,
where the summation is over all pair partitions v = {i (r), j(r)}1<r<n/2 of {1,...,n} with

i(ry<j(r)and ¢, = Uz, forp=1,...,m,and {;, =&, for p=(m +1),...,n.
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Since the term corresponding to each partition v in (38) is non-zero only if #; ) = ;)
forr=1,..., % and U} = U_; for all z € C, from the first part of the argument above
and (37), it follows that

Fey@® =0(pi(x)y),  feyt+i)=¢(yp:(x)), t€R.

By applying an argument analogous to [1, Prop. 2.5] to each %]g ) fori € N, one can
construct an orthonormal basis 9; := {S}’) 1<j=< dim(,}’fﬂ({ ))} of Jfﬂ({ ) with respect to
(-, ) 5. consisting of analytic vectors from J, ’), i € N, with respect to the strongly con-
tinuous one-parameter group (U;);er on H. Consequently, @ = | J; <y O is an orthonor-
mal basis of #r consisting of analytic vectors and orthogonal with respect to (-, -) ..

Proposition 2.2 yields that if #g > &, — & > #Rr in || - |y (equivalently in | - || s..),
then s(&,) — s(&) in || - ||. Therefore, vN(s(&) : & € O) = T (JHr, U;)”. Hence, the
*-algebra A = spanc{s(&;,) --5(;,) 1 &, €0, 1 <k <n, n € N}iss.o.t. dense in
Ir(Hr,U;)".

The above argument shows that for x, y € 4, the KMS condition holds. Further, ¢
is faithful as € is separating for I'r(HRr, U;)” (see Remark 3.6). Consequently, from
[19, Lem. 9.2.17], the result follows. This completes the proof. n

3.1. Modular theory

Following the standard notations in modular theory, let S, be the closure of the operator
xQ > x*Qforx € I'r(H,U;)”, and let Ay, J, be the associated modular operator and
Tomita’s modular conjugation, respectively.

From Theorem 3.12, it follows that of = p; = Ad(F1(U-¢)) rp.v) ! € R,
where (o) denotes the modular automorphism group of I'r(Hr, U;)” associated with
the vacuum state ¢. Further, from (36), one has

o7 (s(§)) = s(U_,&) forall§ € Hg and 7 € R. (39)
Let x € Ty (HRr, U;y)”. Then,
(Ap)'xQ = (Ap) " x(Ay)'Q
=0/ (x)Q

= Fr(U-)xFr(U-)*Q
= Fr(U_)xQ, 1€R.

Since  is cyclic for Tz (Hr, Uy)”, one has
(Ap)'! = Fr(U-,) forallt € R on Fr(H). (40)

Theorem 3.13. For each n = 1, the following assertions hold:
D) Sp1®-®&) =6 ® - Q& forkr,.... 6 € Hr;
(i) Ap1®-®&)=ATE® - @A forkr,... & € Hr N D(ATY);
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(iii) Ay restricted on D(Ay) N H®T is the closure (A~")®T of (A~1)®" on H®T;
(V) Jo(E1 @ ®E) = A28, ®-- @ A72E for £y, ... Ey € Hg N D(A™2).

Proof. (i)Fixn € N.Let§&;, € Jfﬁ({k) forty € N, 1 < k < n. First, we show that

Spr, ® - ®6&;,) =6, @R &

The proof is by induction on n. For n = 1, the formula is true since

S(Oél‘l = S¢(S(§t1)9) =562 =&
Suppose that the formula is true up to n — 1. From Lemma 3.10, it follows that §;, ®
- ® &, € D(S,). This is because in (34), there is a single simple tensor of length 7, and
all other simple tensors are of order less than 7.
By applying S, to (34), we get
$(55,) - 5(5,)Q2
=Sy @ ®64,)
l
+ Z fv(qu)(l_[ El‘](r)agt,(r) )(stk(m)® ®é§_tk(l)), (41)
v={{i ("),j (N} <r<i k(D) 1<p<m} r=1

where 2l +m =nand!/ > 1

Next, applying Lemma 3.10 to the reverse sequence &;,, ..., §;,, we get
s(E,) - 5(61,)Q
=£,0 - ®&,
I
+ Z fV (qu)( 1_[ élj(,) ) Ell(,) ) (%‘tk(m) ® ttt ® Elk(l))’ (42)
v={{i(r),j(M}i<r<i k(P }1<p<m} r=1

where 2/ +m =nand! > 1

Comparing (41) and (42) yields the desired formula for 7.

Now, since every § € Hg has a unique decomposition & := P, .y £@ for £0) ¢ J(lg ),
S, is closed and j is unitary on 7 (#) by Lemma 3.1, (i) follows by a simple density
argument.

(i) Fixn € N.Let &, ...,£0. 81, ..., & € HR N D(A™Y). Following [26], we have

<é‘1 ®"'®§nv Sw(gn ®"'®El))y(3€)
=6 ® @& §1®- &) F e

n n

= <zk,sk>U=1'[<sk,A—1§k>U (by (2))

k=1
=R ®8 AL ® @A ) ). (43)

k‘



P. Bikram, R. Kumar R, and K. Mukherjee 1254

Arguing as in Lemma 3.9, it is easy to show that TA oA Hc (A o4 YT on
DA OD(A™). Then, for k <n, one has Ty ((A~1)©") S ((A™1)©") T} on D(A™1)O".
Hence, from (10), it follows that P ™ ((A=1)©") € ((A~1)©") P™ on D(A~1)©". There-
fore,

(;1 ® ®€n» S(p(én ®®§1))T

= (él X ® gn’ P(n)Sw(sn Q- ® El))f,(]g)

(PO @ @), Splén ® - ®E))g 5,
(n @ @&, (ATHPDG @ ® L)) gy, (by 43))
(6@ @&, (ATHO"PW (1 @+ ® Ln))p ey (since j2 =1)
(@ @&, (AH"PD (G @ @ L)) g, by (23)
(fn @ @& PPUTG @ ® A7) g 4
@ @&, AT @A)

Since spanc{{n; ® -+ @ N 1 € KR N D(A™Y), 1 <i <m, m e N} UCSQ} is acore
of Sy, it follows that {1 ® --- ® §, € D(S;) and

Spl1®®L) =A"",® @47
Again, since Ay, = S; Sy, one has

Ap(E1® Q) =5;8,(61® - ®E) =S5, ®---® &) (by (D)
=A% ® @ A7E,.

Therefore, (ii) holds.

(iii) Fix n € N. In (ii), we have noted that P (4=1)©" C(4=1)©" p™) on D(A~1)O",
Therefore, replacing the role of 4 with A™! in the proof of Lemma 3.9, one has that
(A~1)®T is a densely defined positive self-adjoint operator on # 7.

Let P, : F7(H) — H®T denote the orthogonal projection. Since #®7 is invariant
under ¥7(U—;), t € R, from (40), it follows that (A(p)i’Pn = Fr(U-;) P, fort € R and
A, P, is the analytic generator of the strongly continuous group R>¢+— F7(U—;) on # ®r,

From (ii), it follows that (471)®T C A, P,. By [28, Exer. E.9.28], it follows that
(A™H®T = A, P,.

(iv) First, note that replacing the role of A by A~! in Lemma 3.9 (iii), one has

((A™H®T)k = (4 4)®  fork,n € N.
Let&,....6, € Jr N D(A~2). Then,

Jo(§1 @ - ®8n) = JpSp(6n @ -+ ® &1) (by (l))
=A;(® - ® &) (since JySp = A)
= A_%gn ® - ® A_%El, (since ((A_l)‘%)% = (A—%)®'%).

This completes the proof. ]
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3.2. Commutant

With the help of J,, we proceed to describe the commutant of I'r (Hr., U;)”. Let ¢ €
S)(A_%) N Hr, and let ¢ 1= P,y ¢® for (@ ¢ J{’ﬂg) be the unique decomposition
of ¢. Since Jt’ﬂ({ ) is invariant for (U¢)¢er, by the Hahn—Hellinger theorem, it follows that
D e D(A~2) N K foralli € N, and
A7 =P ai®,
ieN

where the direct sum is taken with respect to (-, ). Then, for i € N, by using (1), one
has

_1 _1
(472D )y = <—12:1A2_1 E("),n>ﬂc = <n,3—12fA2_1C(”>%
_ <,,, £C<i>> _ <LU,A—;;«)>
1+ 4% [ \1+47 e
= (0. 472Dy, ne Hp. (44)
From (29) and (44), it follows that
AT3C e g forallt € D(A™2) N Hg. 45)

Also, for £, € D(A™1) N Hg, it follows from (2) that
6 =(EA " Ny = (A 26 A Iy (as DA™ S D(A72)).  (46)

The next result describes the commutant of Ty (#g, U;)”, and the proof is an adapta-
tion of [1, Thm. 2.4] to the current setting.

Theorem 3.14. Let £ € D(A™Y) N Hg. Then, J,5(§)J, = d(A™2§). Moreover,
Cr(Jtw. Up) = {d(€) : £ € It}
Proof. Fixn € N. Let
£, € HIP NDMAY) forip eN, 1<k <n.
Let yx = Giyip_, *** qiriy for 1 <k < n. By Theorem 3.13, one has
Jos(§) (i, ® - ®6i,)
n
= JW(Z@:»EI']()UVIC Ei1 R ® Sik_l ® Eik_H Q- Sin)

k=1
+J,E®E ®E,® - ®E,)

n
_1 _1 _1 _1
= E (gik,g)UVkA ;si,,@"'@A igiHl@A 25ik—1®”'®A zgil
k=1

+ATIE, @ @ ATEE, @ AT2E (since D(47Y) € D(477))
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ZEA Ei)uvk A3, ® @ ATIE, @ ATIE,_ ® - ® A2,

FATIE @ ® AT, @ AT2E (by (46))

_1 _1 _1 _1 _1 _1
Z AT U A2, @ @ ATH, @ AT, ® @ AT,

+ATIE, @@ ATE, @ ATIE (since D(A7Y) € D(477))
—d(A728) (5 ®E, ® - ® ).

Since D(A™) N HY is dense in H# fori € N, it follows that J,s(§)J, = d(A73E).
By the fundamental theorem of the Tomita—Takesaki theory, we have

Lr(Hr,Ur) = J,Tr(Hr, Up)" J.

From (45), it follows that A_%%‘ € Hy forall £ € @(A_%) N J#r. By what we have
proved so far, it follows that {J,s(§)J, : § € D(A™") N Hr} C {d(§) : § € Hg ). From
Proposition 2.2, it follows that if #r 3 &, — & € Hg in || - ||y (equivalently in || - || sec ),
then s(&,) — s(£) in || - ||. Since D(A~!) N Hg is dense in HR, it follows that

Lr(Hr, Up) S {d(§) - § € Hy)".
The reverse inclusion follows from Lemma 3.3. This completes the proof. ]

3.3. Notations and facts

In order to reduce notations, in the remaining sections, we will denote I'r (#g, U;)” by
Mr, J, by J and A, by A, respectively. Also, we will denote the center of Mr by
Z(M7) and the centralizer of M7 associated with the state ¢ by MY, respectively; i.e.,
Z(M7) = My N My, and M7 = {x € M7 : 0/ (x) = x Vi € R}.

Since Q is separating for both M7 and M., for { € M7 Q and n € M}Q, there exist
unique x; € M7 and x; € M7 such that { = x;Q and n = x; Q. In this case, we will
write

s() =x¢ and d(n) = x,.

For example, as £ € M7 Q2 for every £ € HR, one has s(§ +in) = s(&) + is(n) for all
£, n € Hr.

4. Generator algebras M,

In this section, we investigate the subalgebra Mg of Mt generated by the single self-
adjoint variable s(§) for £ € #g. We show that for & € Jfﬂg"), ip € N, with |&lv =1
and U;§p = & for all ¥ € R, the associated subalgebra Mg, of Mt is a ¢-strongly mixing
masa in M7. Needless to say, such a masa is singular.
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Fixi € N, n € N. Let & € J, with ||&]lv = 1. From (35), it follows that the
moments of the operator s(&y) with respect to the vacuum state ¢ are

(( (& )) ) 0, if n is odd, @
S 0 . .

D ov={i (), J W 1<r<nja (qii)¢™, if n is even,
where the summation is over all pair partitions v = {i (r), j(r)}1<r<n/2 of {1,...,n} with

i(r) < j(r)and c(v) is the number of crossings of v; i.e.,

c(v) = #{(r, s)i(r) <i(s) < jr) < j(s)}.

Note that (47) shows that the distribution of the single generator s(&p) does not depend
on the one-parameter group (U );ecr. Therefore, as in the tracial case in [8], the distribu-
tion of the self-adjoint operator s(&p) for & € H (i), i € N, obeys the semi-circular law
Vg;; Which is absolutely continuous with respect to the uniform measure supported on the
interval [— ﬁ \/?] Thus, Mg, = L*°([— W ] Vg;;), and hence, Mg,
is diffuse. The associated orthogonal polynomials, namely, the q,i—Herrmte polynomials,
will be denoted by H,‘,I” ,n>0.

The next lemma provides the descriptions of s(§;, ® .-+ ® &;,) (resp., d(;, ® -+ @
Ni,)) for &, € JQ(:Z") (resp., 1z, € (](’]g"))’ + i(g%]gk))’), tr € N,1 <k <n,interms of the
operators [(&;,) and [*(&;,) (resp., r(n,,) and r*(n;, )). Similar formulas in the literature
are known as the Wick product formulas.

Lemma4.1. Fixn € N. Let &, € #3Y, 1, € (HRY +i(#F) fort e N, 1<k <n.
Then,

(i)  Then, one has
sy ®--®&,)
-y » fi @ Engy) - 1)

ILm>0  T={i(1),...i()},i(1)<-<i(l) * *
em=n 7_ i) jimy, ) <ejomy <1 Fay) 17 (G ).

IUJ {1, Ln}
InJ=0
@ii) also
d(ny ® -+ ®ny,)
= > > T 5@ o) 1)
Lm>0  T={i(1),....i(1)},i(1)<-<i(l)
FEm=n 71y o) i <ejomy X7 () -+ (8 (i)
IUJ={1 ,,,,, n}
Inj=p

where f(I J)(q,,) = ]_[{(r s)l<r<l1<s<m,i(r)>j(s)} Qtinti and § and §, are the complex

Sr=e,1=5=m,

conjugations defined on Hc and Hy + i Hy, respectively.
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Proof. (1) The proof is by induction. For n = 1, the formula is trivial since

s(En) = 1(6n) + 1" (&) (see (15)).

Suppose that the formula is true for n — 1. Since €2 is separating for M, from (15) and
(16), one has

5 @ ®6&,)
= S(étl)s(gtz ®®Etn)

—qu,l- G (FEn E)usEn ® - @&y, Ry, @ ®F,)
= (l@n) + 1% (9E0))s(En ® - ® &)

—th,t,l- Gy (FEn - EnusEn ® - Q& @by, ® - ® &)
= z@h)s(szz ® - ® &) + 1" (FE0)5 (6, ® - ® £,)

—qu,l- Qi (FEn EusEL ® - QF,, @y, @ ®E,)

=z<sn)( ) ) £ 7@ En) Ey) -+ )
Lm=0  T={i(1),...i(0)},i(1)<-<i(l)
IHm=n=1 7 {j(1),....j(m)}, j(1) <-<j(m)
Tuj= iZ,...,n}
InJ=0

X I (F&1)) - --l*(ﬂéz,-(m))) + I (F81)5Gn ® - ® &)

— ZQt,t, Q088 usE ® - ® 8, ® St,H ® Q&)
(by the induction hypothesis). (48)

Again, by the induction hypothesis, one has

I*(g6)s(r, ® - ® &)
= ) > T 7@ (€)1 Engy)

Lm>0  T={i(1),...i()}, i(1)<-<i(])
l+m=n—17_ {),....Jj(m)}, j(1)<-<j(m) Xl(g‘_t,(z)) I(Eti(l))l*(ggtj(l))"'l*(gi:tj(m))

Tuj= {2 Ln}
Inj=0
=( ) ) S 7@ G 1 ()
Lm=0  T={i(1),...i()},i(1)<-<i(l)

Fem=n=1 7_ i), im) 7(1) <- <jm) X 1(Ey ) - z(gti(,))l*(gzs,jm)---1*(5:5,].(,”)))
IUJ {2 ..... n}

Inj=g
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+( 3 3 S 7@ Fn )0l Gry) -+ 1Ery)
! Lmz0  T={i(1),...i(1)}, i(1)<-~<i(l)
M T, S, D<) 1 () ] *<é<é*tf<m>)) (by Lemma 2.3)
TuJ={2,...,n}
Inj=0
=( 3 ) £ @i iy G (360)
Lm=0  T={i(1),....i()},i(1)<-<i(l) * *
I+m=n-1 J={j),....j(m)}, j(1)<-<j(m) X I(Et,-(z)) te l(éti(l))l (g%_tj(n) el (ggtj(m)))
1UJ={2,...,n}
Inj=0

+ At ytiay—1 *- 'qtj(l)tl(gétl ’ st,’(n)Us(gtz ®---® Sti(l)fl ® gt,-(l)ﬂ X ® Stn)
(by the induction hypothesis).

Recursively, one obtains

I*($&0)sGn ® - ® &)
= Z Z ((]t,-(l)tl tee qti(])tl)f‘(’i’_’i) (%])l(‘i"t,(l)) e l(%‘l‘i(]))

Lm=0  T={i(1),..i(D)},i(1)<~<i(])
hm=n=1 F_(j(1),...j0m)}, j)<e<jim) X L (FEa) (F10)) - 1 (F&10))

TuJ={2,...,n}
Inj=0
n
+ thiti—l : “qtit2<g§ll’§ti)US(Etz - Eli—l ® Eli+1 Q- ® g;_t,,)- (49)
i=2

Combining (48) and (49), one has

sEn ®--®&,)
= Y > &5 @i GG Erpy) - 1Er)

L,m>0  T={i(1),...,i(D)}, i(1)<-<i(])
m=n=1 7_(;1),...jm}, j0)<w<jtm) X L (FEay) - 1" (F1y0))
IU{:iZ,...,n}
INJ=0

+ > > Gt Gy S 7.3y @i ) - 1))

Lm=0  T={i(1),...i()},i(1)<-<i(l)
BEm=n=1 5t (1), jom)}, j(D <z jom) X UGG (FE1y)) - 1 (FE)- (50)

Note that each partition (7 T ) of {2,...,n} considered in (50) corresponds to two
partitions (1 U 7, J) and (/,1U J) of {1,...,n} as prescribed in the statement of the
lemma. It is easy to see that

T nW@i) = faurn(@i) and Gy Guon) 13.5(@0) = fga05@i)-
Hence, (i) follows from (50).
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(i1) The proof is similar to that of (i), but one replaces the usage of (15) and (16) by
(24) and (26), respectively, and also replaces the usage of the commutation relation in
Lemma 2.3 by the commutation relation in (28). We omit the details. [

The following lemma identifies vectors in the GNS space.

Lemma 4.2. Let & € Y, i € N, with |&|lv = 1. Then, the following hold:
(i) Hl(s(50)Q = ES" foralln > 0;
(ii) MSOQ"'”T = span{£2" : n > O}IMl7.

Proof. (i) The proof is by induction. Since

Hg”(x)zlon[— 2 , 2 ],
VI—gii V1—gqii
the result is trivial for n = 0. Since
Hi(x) = x on [— 2 , 2 ] and s(&)Q = &,
VI—qii V1—qi

the result is true for n = 1. Now, suppose the result is true for n € N. We have the following
recurrence relation for g;;-Hermite polynomials:

2 2 ] -1
s , n=1,
—qii V1 —qii

where [n]g,, = 1+ gii + -+ + (qi:)" ! [6, Def. 1.9]. Therefore, by (15), (16) and func-
tional calculus, one has

HEE (5(60))2 = s(60) (HT5(60)) R — [n)g,, HE™, (5(60)) 2
= s(E0)ES") — [nlg, ")
= (I(o) + " (50)) (E®™) — [nlg, 63" ™)
= 20D+ 1 E)ES™) — g, €8 T)

XH () = Hl{y (x) + [nlg,, Hil (), xe[_ﬁ

®(n+1)
o .
This completes the proof.
(ii) We have M, = L“([—W «/7] Vg,;)- Note that MSOQ” I 5 canonically

identified with L2(vg,,). Since {H,/"" : n > 0} is a total orthogonal set in L2(vg;,), the
statement in (ii) is a direct consequence of that in (i). ]

Lemma 4.3. Let & € J{’ﬂ({), i € N, be a unit vector such that U;&y = & for all t € R.
Then, the following hold.
(i) Let§;, € J(lgk)for ir € N,1 <k <n,n €N, be non-zero vectors. Form > 1,
ifn #mor (§0.§i, )% = 0 for at least one k, then

(E&m & ®-- ®&,)r =0.
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(i) Let&; € S)(A_%) n J(’ﬂg") for 1 <ip <N,1<k<n,n €N, be non-zero
vectors. Form > 1, if n # m or (§o, &, ) e = 0 for at least one k, then
1 _1
(657, A28, ® - ® A726;,)r =0,
Proof. (i) Since U;&y = &g for all t € R, one has #50 = &p. From (12), it follows that

(ES™ & @ ® &) =8mm Y a(0.8)( 0. Eiy)) U+ (B0 Eigery)U

o€ES,
n 2
= Sm.n ) T 1 A—150 Siok
= Sm,n Z a(a,E) n(fo,fio(k))e%’c
og€ES, k=1
= 8mn H(éo,&k)é‘f’c Z a(o.§).
k=1 o€ES,

Hence, the conclusion is immediate.
(i1) The proof follows along the same lines of the proof of (i). We omit the details. m

For our purposes, we need to know the action of certain operators in M7 on simple
tensors precisely. We note it down in the form of a lemma below. The proof is similar to
[1, Lem. 3.2].

Lemma 4.4. Let & € Hr and &;, € J(’Hgk)for ir € N,1 <k <n,neN, be such that
(&i,.&0)u = O0for1 <k < n. Then,
sE, ® - ®E)E) =6, ® - ® &, QES™  forallm > 0.

Proof. By definition, s(§;, ® --- ® §;,)Q2 = §;, ® --- ® &;,. Hence, the result is true for
m = 0. We prove the result only for m = 1 since the argument is similar for m > 2. The
proof is by induction.

Ifn =1, and (&,,&)v = 0, then

s(&i)€0 = &, ® o + (5. 50)u 2 (by (15) and (16))
=§ ®&.
Now suppose that the result is true for all 1 < p < n.Let§;, € Jfﬂgl) be such that
(&,.&0)u = 0,1 <[ <n+ 1. Since Q2 is separating for M7, from (15) and (16), one has
s @ ®&, ®&,,,)
= S(%‘il)s(giz Q- ® Ein+1) - l*(éh)(éiz - ® éin+1)

n+1

=55, Q- ®&,,,) — Z(gil»éik)UCIikik,l gy

k=2
X5, @ Q& &, ® &,
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By the induction hypothesis, one has

S(Eil - ® Ein ® Ein+1)§0

n+1
= S(Sil)s(giz Q- Sin.H)EO - Z(Sil’ Sik)qukik,1 . 'qikiz
k=2
xs,® - ®&,_,® Eikﬂ ® - ®&,.)é
n+1
=5E)E, @ ® &, ®E0) — Y (E Ei ) Udigic,  Digia
k=2

X6, ® Q& _ &, ® &, ®&)
=§(0-®§,06&,,, ®&.
In the last step of the above equation, one uses (15) and (16). This completes the proof. =

The following theorem is known in the case g;; = g forall i, j € N. The proof follows
along the same lines of the proof of [1, Thm. 4.2]. Thus, we only state the theorem below.

Theorem 4.5. Let &y € Jfﬂg ) for some i € N be a unit vector. There exists a unique @-pre-
serving faithful normal conditional expectation Eg, : M7 — Mg, if and only if s(§9) € M $ ;
equivalently, Us&y = &g forallt € R.

Let M be a von Neumann algebra equipped with a faithful normal state . Let M act
on the GNS Hilbert space L*(M, y) via left multiplication, and let | - ||2,4 denote the
norm on L?(M, ). Let Qy, Jy and (0;/’ )zeRr, respectively, denote the vacuum vector,
modular conjugation operator and the modular automorphism group associated with .
Let A € M be a diffuse abelian von Neumann subalgebra contained in MY = {x € M :
a,"’ (x) = x Vt € R}. Then, there exists a unique faithful, normal, 1 -preserving conditional
expectation E4 from M onto A4 (see [29, Thm. IX. 4.2]). Let M, denote the *x-subalgebra
of all analytic elements of M with respect to (0;/’ )ter. For x € M and y € M,, consider
the densely defined operator

Ty : L*(A, ) — L*(A,¢) defined by Ty ,(aQy) = Ea(xay)Qy, a € A. (51)
Since y € M,, it follows that y* € S)(o;p) for all z € C. Hence,
onf% (V) JyaQy = ayQy
for alla € A [14]. Note that T, admits a bounded extension to L?(A, ). For
|Ea(xay)Qy |, < lIxayQyll2y

< llxlllay Ry ll2.v

< x|y 0¥, )Ty [lay Iy

= ||x||Hcflp%(y*)HHaQ]/,Hz,w foralla € A.

The bounded extension of Ty to L?(A, ¥) will also be denoted by T,
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Definition 4.6 ([11]). The diffuse abelian algebra A C M is said to be ¥-strongly mixing
in M if |[Eq(xany)|l2,y — Oforallx,y € M with E4(x) = 0 = E4(y), whenever {a,}
is a bounded sequence in A that goes to 0 in the weak operator topology (w.o.t.).

One can identify A = L*°(X, v), where X is a compact metric space and v is a non-
atomic probability measure on X such that ¢4 = fX -dv. The left-right measure of A
is the measure (strictly speaking, the measure class) on X x X obtained from the direct
integral decomposition of L2(M, /) © L?(A, ¥) over X x X, so that A V Jy AJy is
the algebra of diagonalizable operators with respect to the decomposition. For details,
see [21].

Define N(A) = {u € U(M) : uAu* = A} to be the normalizer of A. If A is a masa
in M, then A is said to be singular if N(A) = U(A). In view of [1, Thm. 5.2], to show that
A is a singular masa in M, it is enough to show that the left-right measure of A is Lebesgue
absolutely continuous. For the sake of completeness, we state the theorem below.

Theorem 4.7 ([1, Thm. 5.2]). Let A C M be a diffuse abelian algebra such that A C MY
and the left-right measure of A is Lebesgue absolutely continuous. Then, A is a W -strongly
mixing masa in M. In particular, A is a singular masa in M.

From the results of [22, §2], it follows that if A is identified with L°°([a, b], v) as
above, where A < v <« A and A is the normalized Lebesgue measure on [a, b], then the
left-right measure of A is Lebesgue absolutely continuous when Ty y« is Hilbert—Schmidt
for x, y varying over a set S such that E4(x) = 0 = E4(y) for all x, y € S and the span
of S is dense in L2(M, ) © L?(A, V).

Note that x € M7 is analytic with respect to (o7 )seR if the function R > ¢ — of (x) €
M7 extends to an Mr-valued weakly entire function. Note that this is equivalent to the
extension being an entire function in the norm topology of Mt (see [28, §9.24]). Note that
if £ € HR is analytic for (U;),er, then s(£) is analytic for (o7);cr (see [26, Rem. 2.5]).

Fix ip € N and a vector £ € Hp (o) guch that Uiko =&p forallt € R and ||& ||l = 1.
We proceed to show that the d1ffuse abelian subalgebra Mg, is a ¢-strongly mixing masa
in Mr. Let Eg, denote the unique ¢-preserving, faithful, normal conditional expectation
from M7 onto Mg, as guaranteed by Theorem 4.5.

As prescribed in [1, Prop. 2.5], one can extend & to an orthonormal basis of g with
respect to (-, -) g consisting of analytic vectors in J(’]g ) foralli € N. Let O be such an
extension; i.e.,

0= {n,(cl) 17](;) analytic, k € A;, i € N},

where A; is an index set of cardinality dim(c%]g )) fori € N.Let n](cié’) = &p. For simplicity
of notation, we rename the elements of O as
— (£} U {nk e analytic, k < | J A,-} U : 1€ Aigy i # o,
i#ig
Fixn e N.If n;;,...,n;, € 0O, then s(ni, ® -+ @ n;,) lies in the x-algebra generated
by {s(ni;) : 1 < j < n} (see Lemma 4.1). Thus, s(7;, ® --- ® 1;,) is analytic with respect
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to (07)er. Further, s(A_% 1) is analytic with respect to (o7 );cg for each 7 € 0, and this
follows by arguing along the same lines of [1, Rem. 2.6]. Again, by a direct application
of Lemma 4.1 (or the discussion prior to [1, Thm. 5.3]), it follows that A_%n,-1 ®:-®
A=z ni, € MrS2 and s(A_% N, @+ A_%mn) is also analytic with respect to (07 )/eR.
Therefore, A2 N, ® -+ & A2 Ni, € Ty, where T, is the Tomita algebra associated with
¢. Consequently, A_%nil ® - ® A_%r]in € M Q.

Note that from Lemma 4.2 (ii) and Lemma 4.3, it follows that if at least one let-
ter n;, for k € {1,...,n} is different from &g, then Eg (s(n;; ® --- ® 1;,)) = 0 and
Eg(s(A73n;, ® -+ ® A~37p;,)) = 0.

Lemma 4.8. Let £ € Jf(g), ne Jf(j), i,j € N. Then, foralln > 0, the following holds:

[ ©ra = rmi*©), yeu | < [EMulg",  whereq =T < 1.

Proof. From (16) and (24), it follows that

(*Erm —rml* @)@ = ¢ nu.

Thus, the result holds for n = 0.
Fixn > 1. Let &, € #) foriy € N, 1 <k < n. Again, by (16) and (24), one has

FErmé, ®--- ®§,)

n
= Y (&) Uiy i ® - ® &, ® &, ® - ®&, @7
k=1
+ (& M (i, - qji)E @ ® i, (52)

rml*@) ¢, ® - ®§,)

n
=Y (EE ) Uiy Gigin 6y ® - @ iy, ® Eip,, @ ® &, ® 1.
k=1
Fix j € N.Fori; € N,with 1 <k <n,define V;, _; :H ... @ H) - H) g
o ®HW by Viy iy = (@i, -+ qi) ] Then, | Vi, i, | < ¢". Let V 2 J®" — 3"
be the linear operator defined as follows:

V= @ V
(i1,e-sin)ENT

Then, V is bounded and ||V || < ¢".

By the definition of P in (10), it is easy to verify that VP® = PMV for all
n € N. Therefore, by Proposition A.3, V' admits a unique extension V to #®T such that
ViE=1vi =4

From (52), observe that

EmuV =1"Erm —rml*@).

The rest is immediate. This completes the proof. ]
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We also need [32, Lem. 3] in this section. To keep the paper self-contained, we state it
below.

Lemma 4.9 ([32, Lem. 3]). Let (Hp)n>1 be a sequence of Hilbert spaces, and let H =
@D, -1 Hu- Letr,s € N, and let (a;)1<i<r, (bj)1<j<s be two families of operators on H
which send each H, into H,+1 or H,_1 (Ho = 0 by convention) such that there exists
0<g < 1with

||(a,-bj —bjai), g, | <q" foralln > 1andforalli, j.

Forn > 1, let K,, € Hy, be a finite-dimensional subspace, and let K = @nzl K. Suppose
that
ai(K)gK, 1§i§r—1,ar1K=O.

Then, there exists a constant C > 0 independent of n such that

<Cq" foralln > 0.

|(ar---aiby---by)k,
Theorem 4.10. Suppose there exists a unit vector &y € J{’ﬂg"), io € N, such that
Uiko = & forallt € R.

Letx =s(ni, ® -+ ®mn;,) and y = s(A_%r)j1 R ® A_%njk), where n;,, 1j, € @for
1 <i<mandl < j <k, be such that for at least one pair {n;,.n;,}, 0, 7# & and
nj, 7 &o. Then, T,y is a Hilbert—Schmidt operator.

Proof. The hypothesis along with Lemma 4.3 guarantees that E¢, (x) = 0 = Eg, (»).

Since U;&y = &y for t € R, from (39), it follows that the diffuse abelian subalgebra
Mg, of M7 is contained in M;e. Since x and y are analytic with respect to (o;p )teRr (as
discussed before Lemma 4.8), from (51), it follows that

Tyy € B(LZ(MSos ).

From Lemma 4.2 (ii), it follows that

1
Rn .
'n 20}
{nsa@”nr 0

forms an orthonormal basis of L?(Mg,, ¢). Thus, to show that T, is a Hilbert-Schmidt
operator, it is enough to show that

3 Ty &3/ 1EE™ 13 < oo

n=0

Let &, : L*(Mr7,9) — LZ(MEO, ¢) denote the Jones projection associated with Mg, .
From Lemma 4.2, it follows that

on — g\ (5(50))2 foralln > 0.
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Therefore, from (51) and the fact that A_% N, ®--® A_%T]jk IS M’TQ, one has

Ty (Ha"™ (5(60))2)
= &, (xH, " (5(60))s(4 2y, ® -+ ® A730;)Q)

= 85, (xH"" (5(60)) (472, @ - @ A7Hny))

= &, (xH (ql"”’)(s(é ))d(A™ 27]]1 ® QA Zr),k)Q) (see Section 3.3)
= €e, (xd(A ), ® -+ ® A1) HA0 (s(£0)) Q)
= Sgo(xd (A~ 7r)j1 ®-~-®A_517jk).§ )
= & (s(iy ® - @ iy )d(A 27, ® - ® A2 )EE"), n > 0.

By the assumption, there exists at least one pair of vectors {7;,, 1;,, } such that n;, # &o

and 7, # £o.
By the Wick product formula in Lemma 4.1,

_1 _1
s(Miy ® - @i, )d (A7 21, ® - ® A 21n;,)

split as finite sums. A generic term in the aforesaid sum without the coefficient is of the
form:

_1 _1 _1 _1
[iy) L) Wiy -+ 1 iy )1 (A7 2m50) -1 (A7 25 )™ (A7 2y ) - r " (A7 2,

(53)
where the indices of the variables are constrained by Lemma 4.1 and with a pair of vectors

{ni, n;,} such that n;, # & and n;, # &o.
Then, by Lemma 4.1, it suffices to show that for a generic term in the Wick product

expansion as in (53), if
* * -1
é‘n = géo(l(flil)"'l(ﬂia)l (77ia+1)"'l (Uib)r(A 27)]'1)"'
_1 v, 1 v, 1 .
r(A znje)r (A 27’}_/’8+1)"'r (A 27’]lf)S(()X) )7 n ZO,

then 302 [1€a 117/ 165" IF < oo
We will use only the fact that one of {n;,, ..., n;,} is different from &. Let mo =

max{w : 1 <w < b, n;, # &}. Note that if my < a + 1, then g, is 0 from (16) and (26).
Therefore, we will consider only the case mo > a + 1.
In this step, we apply Lemma 4.9 to the following two sets of operators:

A= {ah = l*(nib—h+mo)’ mo < h < b},
—1 _1 _1 * _1
Z{V(A 27’j1),~~-,"(14 ane)»r*(A ane+1)7"'7r (A 27]]/)}

The finite-dimensional subspace K, in Lemma 4.9 is replaced by (CE(‘)X’" for n > 0. Thus,
K = Eano Ky = Lz(Més'o’@)'
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Note that, by the choice of my, it follows that
I (Mimg ) L2 (M 0) = O-

Also, we have [*(1;, ) (L?(Mg,, ¢)) € L*(Mg,, ¢), formg < h < b.
From Lemma 4.8, note that forall mg < h < b and 1 < p < e, one has

% iy (A2m;,) = (47201 () | ey < K™
where 1
K = max }(nih,A_fnjp)U|.

mo=<h<b,
l<p=e

From (16) and (26) again, it follows that
(i, )r* (A2 1;,) — r* (A7 2, ) *(n;,) = Oforallmo <h <bande+ 1< p' < f.
Now applying Lemma 4.9 to
I ig) -+ ()P (A7 207 - P(AT2 0 )P (A2 ,) o™ (A7 2y ),
it follows that there exists a constant C > 0 independent of n such that

IEnllr < Cq"lIE" I foralln > 0.

Therefore,
o0
D NGl F/1EE 17 < oo,
n=0
as desired. This completes the proof. ]

The next result is an adaptation of [1, Thm. 5.4] to the current situation.

Theorem 4.11. Let dim(HRr) > 2, and suppose there exists a unit vector & € JH (ko).
io € N, such that Ui&y = &g for all t € R. Then, Mg, is a ¢-strongly mixing masa in Mt
whose left-right measure is Lebesgue absolutely continuous.

Proof. The proof is similar to [1, Thm. 5.4]. The only change required is the replacement
of the usage of [1, Thm. 5.3] by Theorem 4.10. ]

We conclude this section by jotting the main results obtained so far.

Corollary 4.12. Let dim(HR) > 2, and let & € ]f(i‘)), io € N, be a unit vector. Then, the
following are equivalent:

(1) s(ko) € Mz,

2) Ukog =& forallt e R;

(3) there exists a faithful normal conditional expectation Eg, : My — Mg, such that

¢([Eg, (x)) = o(x) forall x € Mp;
(4) Mg, is a @-strongly mixing masa in M.
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5. Factoriality and type classification

In this section, we discuss the factoriality and type classification of M7 under different
constraints.

First, we show that if there exists & € J(’D({O), ip € N,suchthat U; &y = &y forallt € R,
then Mr is a factor. Its proof is a generalization of [1, Thm. 6.3].

Theorem 5.1. Let dim(HR) > 2. Suppose there exists & € Jf]g“), iop € N, such that
Uko =&y forallt e R.
Then, Mr is a factor.

Proof. Let x € Z(Mr). We show that x is a scalar multiple of identity. From Theorem
4.11, it follows that Mg, is a diffuse masa in M. Hence, Z(M1) C Mg,, and thus by
Lemma 4.2, one has

&)
XQ = buES",
n=0

where the summation converges in || - || 7.

Since dim(#R) > 2, there exist n € Hr such that (o, n) g = 0. Since U;&n = &
for all t € R, one has (&, n)y = 0. From (15) and (16) and by the continuity of /(7), it
follows that

sMxQ = ba(n®E).

n=0

Il
We claim that xs(n)Q2 € span{é(;@" ®n:n=> O}II " as well. Note that x is a limit in
s.o.t. of a sequence of operators from the linear span of {H,;I %0 (5(&0)) : n > 0}. Proceeding
along the same lines of (i) of Lemma 4.2, it follows that

H"llioio (S(éo))s(n)g = g(;@" ®n foralln > 1.

Therefore, the claim follows.
Since xs(n) = s(n)x, it follows that b, = 0 for all n > 1. Therefore, xQ = b 2. Since
Q is separating for M, it follows that x = bg1. Hence, M7 is a factor. [

Theorem 5.2. Suppose that the invariant subspace of weakly mixing vectors in HR is
non-trivial. Then, Mt is a factor.

Proof. The proof follows exactly along the same lines of [1, Thm. 6.2]. ]

Now, we deal with the ergodic and almost periodic component of the representation
t— Ut €R.
First, note that there is a unique decomposition of #r as follows [26]:

N1 NZ
0.0 = (D Eni0)) & (D (.U ) ) @ T, V. 1€ R, (54
h=1 k=1
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where 0 < N1, N, < Ry,

R, =R, Hp(k)=R> Uk)= (cos(t logAy) —sin(z log)tk)) a1

sin(z log Ax) cos(t log Ag)

where (]711@, U;) denotes the weakly mixing component of (U;)eRr.-

In accordance with (5) concerned with the decomposition of g into invariant sub-
spaces of (Uy);er, we will treat each component of the direct sum in (54) as a single block.
Then, in this case, N will be regarded as a subset of N of cardinality at most N + N + 1.

If Ny # O,leteg =00---00160---d0€ @géth,where 1 appears at the
h-th place for 1 <h < Nj (or 1 < h < Ny, if N; = Ry). Also, if N, # 0, let

N>
1
£ =oea---eaoea(0)@0@---@0e@J€R(k),
k=1
N>

0
f=08-®00 (1) 080 e P Hn(k)
k=1
be vectors with non-zero entries in the k-th position for 1 <k < N, (or 1 <k < Ny, if
N> = Rp).
Fix k. Denote

-1
VA +1 . A 1 .
ep = T(fk1 +if) and e} = T(f,g —ifd).

Then, e,i and e,% are orthonormal vectors in #g (k) + i g (k) with respect to (-, -)y. The
analytic generator A(k) of (U;(k)):er is given by

Ak) = llﬂrﬁ i()tk—ﬁ)
—iA =) At )

Also, we have

1
Ak)ep = ﬁe,i and  A(k)ei = Ager. (55)

When the almost periodic component of (#gr, U;) is infinite-dimensional and ¢;; = ¢
for all i, j € N, Hiai established the factoriality of M7 [16, Thm. 3.2]. Unfortunately,
there is a gap in the proof, and the proof is valid only in the case when o (A) has a limit
point in R away from 0 (assuming the vacuum state is almost periodic) [15].

Remark 5.3. Itis provedin [23, Thm. 4.5] that for finite-dimensional #g, the g-deformed
Araki-Woods von Neumann algebras are isomorphic to free Araki-Woods factors for suf-
ficiently small |g|; in particular, they are factors in this case. However, for arbitrary g €
(—1, 1), the factoriality of the g-deformed Araki—Woods von Neumann algebras remained
open in the following cases:

(1) dim(HR) is even and (U;);eR is ergodic;
(2) (Uy)ser is ergodic, almost periodic, and O is the only limit point of the set of
eigenvalues of the analytic generator of (U;);eRr-
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In a very recent work [3], the factoriality of g-deformed Araki—Woods von Neumann alge-
bras has been further investigated. It is proved in [3] that when #g has a two-dimensional
ergodic sub-representation, the g-deformed Araki—Woods von Neumann algebras are fac-
tors in the following cases:

(1) dim(HR)=2 and the parameter A € (0, 1) defining the aforesaid sub-representation
is small;

(2) dim(#g) > 3.

The next theorem discusses the factoriality of M7 under Hiai’s framework by impos-
ing the hypothesis necessary for Hiai’s theorem to successfully pass through. Its proof
is by adapting the techniques of Hiai to the current setup. Thus, this is essentially Hiai’s
proof and we do not claim originality of it.

If N, # 0, then there exists an injection ® from a set of cardinality N, into N. For
1 <k <N, (or 1 <k < N, as the case may be), we will denote ®(k) by k to reduce
notation. This abuse of notation will cause no confusion.

Again, if & € #® for [ € N, then the action of T on vectors of the form (fki ®¢) e
Hr © Hr will be given by

T4 =qu& ® fH, i=1.2.
Therefore, by linearity, one has T'(e} ® &) = qx1({; ® e}), i = 1.2, and for all k.

Theorem 5.4. Assume that Ny = 0, the almost periodic component of (Hr, Uy) is infinite-
dimensional and the set of eigenvalues of the analytic generator A has a limit point other
than 0 in R. Then, (M;f)/ N Mt = C1. In particular, M is a factor.

Proof. Note that N, = Rg. Then, for 1 < k < N, let z := %(s(fkl) + is(sz)) € Mr.
By (19), it is easy to verify that

1 1
= J(e}) + ———1*(e?). 56
Also, from (15) and (39), one has
of (1) = ﬁr(ut)(;l(eh T ;Z*(e%)%(u»*
Vic+1 k A;l + 1 ,
1 1
— —I(Uose}) + " (U~ye})
VA + 1 AI:I +1
1 ; 1 . i
= ﬁzagge,ﬁ) + ﬁ1 (Aep)  (by (59)
P
k
= /lfctzk.

Consequently, of (z3 zx) = z{zx, and hence, one has yi 1= /T + Agz{zx € M7.
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Let L :={f!, 2} U Hg.Fixn € N. Let {1, ..., ¢, € L be such that &; € F65™ for
1<i<nULletx:=s( ® - ®¢&,) € Mr (see Lemma 4.1). Note that
|61kaka2"'6]km,,| < q",

where ¢ = sup; ;e |g;j| for all k. Using the hypothesis, replacing Ax by ﬁ if necessary
and further dropping to a subsequence if required, one can assume that

0<Ar <1,
A — A€ (0, 1],
qkm1ka2 CIkm,, - C} € [—6]", qn], aSk —> OQ.

First, we show that

1

. ad 1+ A2
lim — Y yexyy =
k=1

1+2

X, 1inw.o.t.
N—ooo N

It is enough to show that for &, n € Fr(H),

N

1
lim — § =
Jim k_l(é,ykxykn)r

1+ Ag?

T2 (§.xn)r. (57)

Fixé=fi® - fyandn=g1®---® gy such that f; € L for 1 <i <u and
gj € L for 1 < j < v. By Proposition 2.2 and Lemma 4.1, to prove (57), it suffices to
prove that if

Lr=0,14+r=n,i(l)<---<i(l), j(1) <---< j(r),
{i(),....iOyu{j),....j(n}={1.....n},

x1 = 1) - 1Giw),

x2 ="y - 1 ().

then
N ~2

. 1 1+ Ag
nglwxlg(s,ykxlxzym = T3 & (58)
Consider the set B ={¢1,....¢n, f1.-++s fu.€1,-..,8v}, and let Ny := max{k : fk1 €

B or f? € B}. We show that for k > N,

1+ A (Giem, Giem, "'CIkm,,)2<
1+ Ag
Note that by the commutation relation in Lemma 2.3, one has
I*(ep)l(ed) — qril(ep)™(ef) = 1,
I*(e)l(e}) — qrrl(e)* (ef) = 1,
I*(ep)l(eR) = qrrl (€)™ (ep),
I*(ep)l(e}) = qrrl(ex)I*(e;) forall k.

(€. yrx1x2yKm)T = & x1x2m)T. (59)

(60)
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Therefore,

Ak + 1y = (Ax + Dz zk
= I*(e)l(e) + VAl* (ep)I* (e})
+ VArlED)i(e}) + Al e)I*(e2)  (by (56))
= 1+ qril(e)!* (ef) + VAl * (eI (e})
+ VAlEDle}) + Al (€)™ (e2)  (by (60)). ©61)

Note that for k > N, (e}, g)u = (eZ,g)u = 0 forall g € B. Thus, for k > Np and
j = 1,2, one has
I*(e}) = 1" (e} =0,
* 0 Lk *0 J (62)
I*(ep)x1§ = " (e )x2n = 0.

Therefore, for k > Ny, one has

(Ak + D&, yex1x2ym) T
=(& (1 + VAl (eD)I* (D)) x1x2(1 + VArl(eDI(e}))n);  (by (61), (62))
= (€. xvxen)7 + (£ VAexix2l €le)n) + (& VAl ()™ (ef)x1x2m);
+ Ail€. ¥ (eI * (ep)x1x2l () (e) ),
= (€. X102 7 + VA Qi)+ Qom0 (E X1L (€D (ef)x21)
VA Gy Thomy )2 (E X117 (@)1 () x21),
+ Ak (Gremy Gkm, ---qkmn)z(é, xll*(e,i)l*(e,%)l(e,%)l(e,i)xzn)T (by Lemma 2.3)
= (€. X121 7 + Ak (Qhom, Qhems ++~ Qem,) > (§. X117 (e (ef)1(e) ! (e)x2m) - (by (6(26)3).
)

By (60), one has

I*(e)* (ep)l(ep)l(e) = 1+ qrrl (ep)l™ (ex) + (qrr)*1(€f)]* (ef)
+ (g L eI (eg) ™ (e) ™ (ep)- (64)

Hence, from (62), (63) and (64), it follows that
(ke + DE yexix2yem T = (14 Ak Grm, Grems -+ Qem,)*) (€. X127) 7

This establishes (59).

Since ) "
lim Ut Ak (Ghmy Ghmy - Gkm, )™ _ 1+ A4
ko0 14+ A 1+A 7

Equation (58) is established by taking a Cesaro sum.
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Working exactly as above and replacing N, by

e/&70 = rnax{k:fk1 orsze{fl,...,fu,gl,...,gv}},

it follows that (£, y%n)T = (&, n)r forall k > No. Therefore, one has

1
lim — Y y7=1. inwod (65)

Next, we show that {y; : k > 1Y N My = Cl. Let y € {yx : k > 1} N M7 and
x=501® - ®¢&),forly,...,¢{n € L (as before).

Consequently,
1+Ag% 1+ Ag?
= —(yQ,xQ
T P(y™x) T2 (yQ,xQ)r
1 N
= lim — Q. Q by (57
NgowkE_l(y yexye)r  (by (57)

= lim —
Jim pr(y YkXYk)

= Jim — Z<p(yky XY
k 1

N

Z e(y*xy?) (since yx € M7)
k=

=¢(y*x) (by (65)).

This implies that ¢(y*x) = 0 since otherwise it forces that 1 + G2 = 1 + A, which is
impossible since A # 0 and § € [—¢", ¢"], 0 < g < 1. Therefore, one has 0 = ¢(y*x) =
(2. xQ)r =R, 01 Q- ®y)r. Sincespanc {1 @ - @&y 1 &1,....Lh e L,n > 1}
is dense in F7(H) © C2, one has y 2 € CRQ. Since 2 is separating for M7 (Proposition
3.5), it follows that y € C1. This completes the proof. ]

Remark 5.5. (i) Note that if 0 is the only limit point in R of the set of eigenvalues of A,
then A = 0 in the proof of Theorem 5.4. Thus, the equation 1 + 1% = 1 4+ A would be a
tautology and Hiai’s argument would be inconclusive.

(ii) Suppose that the hypothesis of Theorem 5.4 is true, and let #r := D,y J(’]g )
be an arbitrary but fixed decomposition of g as in (5). Since the decomposition of Hr
in (54) is a refinement of the given decomposition, proceeding along the same lines of
the proof of Theorem 5.4, one concludes that Mt is a factor as well, where T is the
Yang—Baxter operator associated with the given decomposition. The only minor change
in the proof will be the replacement of the sequence {Gkm, Gkm, * * * 9km, tx With a different
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sequence of parameters depending on the given decomposition of Fg. Thus, we have the
following.

Theorem 5.6. Assume that N1 = 0, the almost periodic component of (H#Rr, U;) is infinite-
dimensional and the set of ezgenvalues of the analytic generator A has a limit point other
than 0 in R. Let Hr := @D;cpny K ) be an arbitrary but fixed decomposition of Hr
consisting of invariant subspaces of (U;)ter. Let T be the Yang—Baxter operator cor-
responding to the decomposition and the parameters —1 < q;; = q;; <1 fori,j € N,
with sup; jen qij| < 1. Then, (M}) N My = C1. In particular, Mt is a factor:

(iii) Note that, with the results obtained in this section, the factoriality of M7 remains
open only for the following cases.

(1) dim(HR) is even and (U;);eR is ergodic;

(2) (Uy)ser is ergodic, almost periodic, and 0 is the only limit point in R of the set of

eigenvalues of the analytic generator of (U;);eRr-

In the remaining part of this section, we discuss the type classification of M.

The S invariant of a factor M is defined as the intersection over all faithful normal
semifinite weights ¢ of the spectra of the associated modular operator Ag. Further, if ¢ is
a fixed faithful normal state on M, the S invariant can be written as

S(M) =(){Sp(24,) : 0 # p € P(Z(M?))},

where P (Z(M?)) denotes the lattice of projections in the center of the centralizer M ¢
and ¢, = ¢4 pmp [13].

Connes classified type III factors using the S invariant as follows:
[0, 00) if M is type 111,
S(M) =1 {0,1} if Mis type I,
{A":neZyU{0} ifMistypellly, 0 <A < 1.
Theorem 5.7. Assume that A has infinitely many mutually orthogonal eigenvectors and

the set of eigenvalues of A has a limit point in R other than 0. Let G be the closed subgroup
of R’ generated by the spectrum of A. Then,

typellly if G = R%,
Mrisof { ypellly, ifG={A":neZ}, 0<A<l,
npelly  if G ={1}.
Proof. From Theorem 5.4, it follows that under the hypothesis of the theorem, MT isa

factor. Hence, S(M7) is completely determined by Sp(A). Therefore, the proof follows
from Theorem 3.13 (iii) and [1, Prop. 3.3]. ]
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Theorem 5.8. Suppose dim(Hr) > 2, the orthogonal representation R > t — Uy is almost
periodic, and there exists &y € Jgelio), io € N, such that Uy = &g forallt € R. Let G be
the closed subgroup of R’ generated by the spectrum of A. Then, (M;e)’ N Mr=Cl,
and

typelll; if G = R%,

Mrisof {typelll), ifG={A":neZ}, 0<i<l,

npelly  if G ={1}.
Proof. The hypothesis forces that if dim(#gr) = 2, then (U;);er is trivial. Thus, M
coincides with Bozejko—Speicher’s II; factor, and hence, there is nothing to prove.

Assume that dim(#g) > 3. First, we show that (My)' N M7 = C1. Let x € (M7)

N M7 . From Corollary 4.12, note that Mg, = vN(s(&)) € M$ is a masa in M. There-
fore, (M7)' N My C M. Choose {j,, ..., ¢j, € Hc with real and imaginary part of ¢,
being orthogonal to & such that Ag;, = B¢, for 1 <i < m and []/~, Bj, = 1. Let
y =35, ® - ®Ej,) € Mr (see Lemma 4.1). Since 0%, = Ad(Fr(U;)) forall t € R
(see (39)), it follows that

of,(NQ = FrUnyFrUN*Q
= FrU)yQ
= FrU)&, ®--®;,)
= Uil ® --- Q Ui,
= Bji - Bin)" (G ® - ® ;) (since Uy = A™)
=50, ®- ®;,)0
=yQ forall? € R.

Since 2 is separating for M, one has y € M;‘f.
From Lemma 4.2, one has

o0 o0
xQ = Zanégg’” = ZanH,Eqi"io)(s(éo))Q, a, € C,
n=0

n=0

where the series converges in || - ||7. From Lemma 4.4, it follows that

yxQ espan{l;, @ - ® &, ®ES" 1n > ol
Since Ur§o = §o forall # € R and (§o. {j;) ¢ = 0for 1 <i < m, one has
(§0.j;)u =0 forl <i <m.
Therefore, from (15) and (16), it follows that

50 @ ®j,) =0 ®E ®--®E,.
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Also, proceeding along the same lines of Lemma 4.2, it follows that

(qWO)( (EO))(E]l R é‘/m) = ®n ® ;/1 ®-® ;im forall n > 0.

Therefore,

o0
Q= Iy I = Y andy THOW (s(60)) 2
n=0

= 3" 4 Hy (5(80)) y 2

n=0
=) @l ®F, @ ®E,).
n=0

Now, since xy = yx, one has a, = 0 for all » > 1. Thus, x is a scalar multiple of 1.
Hence, (My)' N My = C1.

The rest of the statements follow similarly to Theorem 5.7. This completes the proof.

|

Theorem 5.9. Suppose that the invariant subspace of weakly mixing vectors in HR is
non-trivial. Then, M is a type l11; factor.

Proof. The proof follows exactly along the same lines of [1, Thm. 8.1]. ]

6. Second quantization and Haagerup approximation property

Second quantization is an indispensable tool for proving various approximation properties
of the free Araki—Woods factors (see [17]) and ¢- deformed Araki—-Woods von Neumann
algebras (see [33]). In this section, we show that second quantization is also available
for the mixed g-deformed Araki-Woods von Neumann algebras. In the same vein, we
establish that M7 has the Haagerup approximation property.

Let Kr and HR be real Hilbert spaces with strongly continuous one-parameter groups
of orthogonal transformations (U;);er and (V;);eRr, respectively. For N, > Ny, let Xy :=
Dien, Jfﬂ({) and Hr :=P; ey, Hy % denote the decompositions of Kg and Jg consisting
of invariant subspaces of (U;);er and (V;);er, respectively. Clearly, K¢ := P, N K¢ @

and H¢ = @le Na Jt’((:l ), where JC((C’ ) and Jé’ @ denote the complexification of JC @) and
H, (l), respectively. Denote the complex conjugation on JC(g) and JC ® by I; and Ji,
respectively. Let A denote the analytic generator of (Uy)ter on K¢ and B the analytlc
generator of (V;)ser on JHc. Since JCC , I € Ny, are invariant for (U;),cgr, and Jf(c ,
i € Ny, are invariant for (V;);er, it follows that X = ; N, KO and F = @zeNz JO,
where XK@, i € Ny, are, respectively, the completions of JCC ,1 € N1, with respect to
(-, )u = (1+A—' , )X and HD i e N, are, respectively, the completions of 79,
i € Ny, with respect to (-, )y 1= (1+B—1 ) e -
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Fix —1 < g;; < 1 with sup; jep, |¢ij| < 1and g;; = g;i for i, j € N». Consider the
operators

Tiisix :K]g'K) ® KIg,K) N K]g,K) ® Jc]gx)»
Toiveoin :%Ig}e) ® ‘%]I({j”) N e%]I({J'J(’) ® %H(Qi.%),
defined by, respectively, extending the maps

S®n._)ql](]x(n®‘i:)v iJCijCEva
ERn = qigjn( ®E), s, jse € Na.

Let T1 = @i«Ksj.K T],i]{,j]( and T2 = @i}(,j}(’ TZJJ(’JJ("
Now, we are in a position to prove an appropriate second quantization theorem for
mixed g-deformed Araki—Woods von Neumann algebras.

Proposition 6.1. Suppose that L; : JC]g) — ‘%]1({ ) are contractions such that LU =V;L;
forallt e Randi € Ny. Let L = @ieNl L;. Then, there exists a normal unital completely
positive (u.c.p. in the sequel) map T'(L) : M, — Mr, extending s(§;, ® -+ ® §;,) —
s(LE, @ ---® L&), &, € Jfﬂ({"),for Jjx € N1, 1 <k <n,n € N. Moreover, I'(L) is a
Markov map; i.e., it preserves the vacuum state and intertwines the associated modular
automorphism groups.

Proof. Fix i € Nj. Consider the dilation of L; to an orthogonal operator Uy, on Jf]g) ®
Jfﬂ({) as follows:

(Lyce — LFLi)? Ly
ULi = * 1 .
Li —(lye — LiL})?

Let; : Kﬂg) — JCH({) ® J(’ﬂg) be the natural inclusion, and let P; : ,K]g) ® Jé’]g) — %ﬂ({)
denote the orthogonal projection. Then,

L,’ = P,‘ULI.L,'.

Define t = P;cy, ti» UL = Djcn, UL, and P = Py, Pi- 1t follows that

PUL = (D Pl-)(@ UL,.)(@L,-) =P rULu=PL=L

ieN; ieN; ieEN; ieN; ieEN;

First, we intend to define appropriate maps I'(¢), ['(UL) and T'(P). We proceed as
follows. Consider the orthogonal group (U; & V;)ser on Kr @ Hgr. Note that ¢ o U; =
Uy Vi)ortand Po(Uy @ Vy) = (U; ® Vy) o P forallt € R. Again, since L; U, = V; L;
forallt e Randi € Ny,onehas LU; = V; L forall t € R. This implies that Uy, intertwines
U; @ V; for all ¢ € R. Hence, the maps ¢, Ur and P extend to contractions from K to
KdH,KdHtoKdHand K & H to K, respectively. We denote these extensions
again by ¢, Uy, and P with slight abuse of notations.
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Let &, € K39, &, € K%, for ig, jx € Ny, and &iyy € HEP?), ¢, € FTH
forige, jge € Np. Define T on (K @ #) ® (K @ H) as the bounded linear extensions of
the complexifications of the following:

~h

1K§'K)®J<§{’K) Sig ® & P Qigcjx Ejae ® Eige)s

1

1 K0 g 0500 Bise @ Lo > digejoe e ® i),

T getia0 g0 * Size ® Ejac > digene Eje ® Lige),
T

1{;(&36)@”&%) Cige ® Cige 7 Gigejige ige @ Lige)-

By construction, T satisfies the properties listed in (7). Also, it is easy to verify that
(PQP)T=T(PRP),(UQU)T =TUr®Ur)and @ )T, =T ®1).
Define I'(UL) : B(¥7 (K @ #)) — B(F7(K & H)) by

F(UL) () = FFULxFFUL).  x € B(FR(K & J0)).

Since (Up ® UL)T = T(UL ® Ur), from Proposition A .4, it follows that T'(Ur) is a
normal completely positive map from B(F7 (K @ #)) to B(F7 (K @ H)).
Now, we verify that

FUL) (s @+ ®§,)) = s(ULE), ® -+ @ ULE,),
where &, € KO @ %, ji € Ny, jiw € Nyand 1 < k, k' < n, n € N. By the Wick
product formula in Lemma 4.1, it suffices to show that
PUL () 1 G 1 E))
= l(ULEj,) -+ L(ULE;, )" (ULE), ) -+ 1" (ULEj,, ).
where §;, € K]f{k) for jr € Ni,1 <k <n,neN.

It is easy to see that F7(UL) is a unitary and 57 (UL )l (u) F7(UL)* = [(Uru) for all
u € K¢ @ Hc. Therefore, we have

FrULIE) -+ 1) Gy )16 ) P (UL
= 1(ULE;, ) -+ IULE ) (UL, ) 1" (ULE,)-
Since U§j, € J{]gk) o) J(H(Qj"/), Jjk € N1, jiw € Noand 1 <k, k' <n,n € N, we have
PUL) (s, ® - ®E;,)) = s(ULj, ® - @ ULE;,).
By an application of the Kaplansky density theorem, it follows that I'(Uz ) maps Mz into
M.
Since (P ® P)T = T»(P ® P), from Proposition A.4, it follows that the map I'(P) :

B(F7(K @ #)) — B(F1,(H)) by ['(P)(x) := F(P)xF (P)*, x € B(F7(K & X)),
is normal and completely positive.
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Let Q7 and Q7, denote the standard vacuum vectors in 7 (K @ #) and Fr, (H),
respectively. Since 27 and 7, are, respectively, cyclic and separating for M5 and Mr,
(see Proposition 3.5), it follows that

C(P)(s(Ej, ® - ®E,))Qrn) = F(P)sE, ® - ®E;,)Q
=F(P)E ® - ®§j,)
= P§j, ®---® Pgj,
= s(P§j, ® -~ ® P§;,)Qr,.

Thus, [(P)(s(E;, ® -+ ® £,)) = (P&, ® -+ ® PE;,), where £, € K{¥ @ g,
Jk € N1, jir € Nyand 1 <k, kK’ <n,n € N. As before, it follows that I'(P) maps Mz
into Mr,.

Now, we proceed to define I'(¢). Let My = {s(£) :§ € Kr ®0C Kr ® Hr}' S M7.
Since (t ® )Ty = T(t ® (), from Proposition A 4, it follows that % (1) is a contraction.

Note that ¥ (1) : F7,(K) — F7(K @ H) is an isometry whose final space is the
range of the Jones projection associated with My . Consequently, I'(¢) : B(F7, (X)) —
B(F7 (K @ H#)) defined as I'(1)(x) = F ()xF (1)*, x € B(F7,(K)), is a unital injective
*-homomorphism. Arguing as before, it is clear that

FO(sE, ® - ®E;,)) =50, ® - ® L&),

where £, € JC{{"), Jk € N1, 1 <k <n,n € N. Further, I"(¢t) maps M7, into M, and the
range of I'(¢) is easily identified with M k.
Define I'(L) : M1, — MT, by

T(L)(x) = T(PY (T UL 1) (T O par, ) (), x € M.

Clearly, I'(L) is a normal u.c.p. map. Further,
T(L)(s¢j ® - ®§,)) =s(LE, ® -+ ® LE;,)

for &, € K¢, jx € Ni,1 <k <n,neN.
The rest of the statements are routine. This completes the proof. =

Corollary 6.2. Let ¢ : Krp — Kr @ Hr be the inclusion map. Then, there exists an
injective, normal unital *-homomorphism I' (1) : M7, — M. Moreover, (1) is a Markov
map.

Proof. We have noted the result in the proof of Proposition 6.1. Hence, we omit the de-
tails. ]

Next, we show that second quantization for mixed g-deformed Araki—Woods von Neu-
mann algebras can be defined for a contraction between Kg and H#gr which respects the
invariant blocks of the one-parameter groups (U;)ser and (V;):er and extends to a con-
traction between J and #. The proof is similar to [33, Thm. 3.4].



P. Bikram, R. Kumar R, and K. Mukherjee 1280

Theorem 6.3. Let L; : X@ — D be contractions such that L; = J;L;I; fori € Nj.

Let L = @zeNl L;. Then, there exists a normal u.c.p. map I'(L) : M7, — MTr, extending
s, ®--®&,) > s(LE, ®---® LE,), &, € KI¥ for jr e N, 1 <k <n,neN.

Moreover, T' (L) preserves the vacuum state.

Proof. The proof follows along the same lines of [33, Thm. 3.4]. Therefore, we provide
only an outline of the proof.

As in the proof of Proposition 6.1, for i € Ny, consider the dilation of L; to a unitary
operator Uz, on X® @ # @) as follows:

Lyw — L¥L;)2 L*
Uy, = (I§%0) L) ; e
L; —(lgay — L;L})2

Note that L; = P;Up,;t;, where ¢; : KD - KO g 3O is the natural inclusion and P; :
KD @ H#D — HD is the orthogonal projection. Define t = Dien, i- UL = Djen, UL
and P = ;cy, Pi- It follows that

PULzz(SB1 )(SBIUL)(SDI ) g?lPULL,_S%L ~ L.

It is easy to see that ¢ maps Kg inside Kr @ Hgr and t o U; = (U; & V;) ot for
t € R. Therefore, by the proof of Proposition 6.1, I" (1) My, M7, — M3 is the second
quantization of «. Let I'(UL ) : B(¥7 (K & #)) — B(F7 (K @ J)) be the automorphism
given by
L(UL)(x) = F(UL)xF7(UL)*, x € B(?f(J{ &) J(’)).

Also, let I'(P) : B(¥7 (K @ #)) — B(Fr,(H)) be the automorphism given by
L(P)(x) = F(P)xF(P)*, xeB(F5(K @ X)).

Define I'(L) : M7, — B(Fr,(#)) by I'(L) := I'(P)I'(UL)I" ()4 My, - Using the hypoth-

esis and arguing along the same lines of [33, Thm. 3.4], it follows that

(L) (s, ®---®&,)) =s(LE, ®--- ® LE;,)

for&;, € JC((C'ik) for jr € N1, 1 <k <n,n € N. By an obvious application of Kaplansky
density theorem, it follows that I'(L) maps M, into Mr,.
The rest is clear. This completes the proof. ]

Remark 6.4. Consider two different decompositions of Jr consisting of invariant sub-
spaces of (U;);er as follows:

Hr =AY and g =P KY.
iEN iEN

Fori,j € N,define T} ; : %Hg) ® Jfﬂ({ ), J(’]I(gj ) ® Jfﬂ({i ) to be the bounded extension of

E@n qiiin®E) forkeHY, ne il
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Also, define T} ; K]g) ® JCH({) — JC]g) ® JC]g) to be the bounded extension of
£ @ a0 ®F) fort e K € Ky,

Let M7 and M7 be the associated von Neumann algebras represented in standard form
on Fr(H) and Fr(H), respectively. Suppose that there exist orthogonal operators V; :
H#8 — KD such that V;U, = U,V; fori € N, 1 € R. Let V = @,y Vi- Then, from
Proposition 6.1, it follows that the map I'(V') : M7 — M7+ defines an isomorphism.

We are prepared to discuss the Haagerup property of M.

Definition 6.5 ([12]). Let M be a von Neumann algebra equipped with a faithful normal
semifinite weight . Then, M has a Haagerup approximation property if there exists a
sequence of normal u.c.p. maps ®; : M — M, k € N such that

(1) Yo ®p < forallk € N;
(2) the GNS-implementation T, : L*(M,¥) — L*(M, ) of @y is compact for all
k € N,and Te, — 172(ps,y) strongly.

Remark 6.6. From [12, Thm. 1.3], it follows that the Haagerup approximation property
is an intrinsic property of the von Neumann algebra M i.e., it does not depend on the
choice of the faithful normal semifinite weight .

Fix k € N. Let J; denote the complex conjugation on J(’(((:k). Then, the following
statement [17] holds.

Proposition 6.7 (Cf [17, Prop. 3.17]). Fori € N there exists a sequence of finite rank
contractions {T }keN on HD such that g,T 5(, = Tk(l) and limy_, o Tk() =1 (on
H D) pointwise.

In the next theorem, we show that M7 has the Haagerup approximation property. It
generalizes [33, Thm. 1.1] to the current setting.

Theorem 6.8. Mt has the Haagerup approximation property.

Proof. Fori € N, by Proposition 6.7, we get a sequence of finite rank contractions
(T en on 3@

such that ¢; T,f’gl,- = Tk(i) forall k € N and Tk(i) — 1 (on #YD)ins.o.t. as k — oco.

IfIN| <oo,define Ly : H — H by Ly :=) ;cn Tk(i). Again, if N = N, then define
Ly : H — J as

L=T"oTP e a1 er® ®0.

Note that Ly is a finite rank contraction for each k € N. Also, note that L (# (i)) 40N
and §; Ly J; = Ly foralli € N, k € N.If [N| < oo, it is obvious that Ly — 1 in s.o.t.
Again, if N = N, let Pg) : H — @iﬂ:l F ™ denote the orthogonal projection. Then,
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L& — £ for all £ € Ran(P() for all /. By a simple density argument, it follows that
L; — lins.ot. on J as k — oo.

By replacing the role of J; and I; for i € N; in Theorem 6.3 by ¢;, i € N, and
proceeding along the same lines of the proof of Theorem 6.3, we get a second quantization
I'(Lg) for M7 such that T'(Lg)s(§;, ® -~ ® §;,) = s(Li&j, ® -+ ® Li§,) for &, €
#I, jr e N1 <k <n,neN.

Let Vi, :=T(e™"Lk): My — My fork € N and 7 > 0 (see Theorem 6.3). Then, Vj
is a normal u.c.p. map, and it preserves the vacuum state ¢ for k € N and ¢ > 0. We show
that the GNS-implementations of these maps are compact and are converging pointwise
tolask — ocoandt — 0.

Since T'(e™*Ly)(x) = Fr(e ' Ly)xFr(e ' Ly)* for x € My, Fr(e 'Ly)*Q = Q
and 2 is generating for M7, it follows that the GNS implementation Ty, , of Vi, is
Fr(e*Ly),keNandt > 0.

Let Py : F (K)—> D), _o H®™ denote the orthogonal projection, n € N (¥ ®° =CQ).
Note that P maps #®” into #®" for n € N. Therefore, one has

o0 o0
(D P)P=PH( @ PP). neN
i=n+1 i=n+1
(note that @fin 11 P® is unbounded, densely defined, c}osed, p_ositive and self-adjoint).
It is easy to verify that T1J€(i)®J€(j) commutes with Tk(') ® Tkm fork e N,i,j € N.
Therefore, T commutes with Ly ® Ly for all k € N. Therefore, ¥ (e_th)1 geon also
commutes with P® forn € N (cf. Proposition A.4). Note that 7 (L) 15 ) = F (L),
k € N. Hence, by Proposition A.1, one has

|PEF L) | = | PatFre ™ Li)|. (66)

where P, : Fr (H) —> By H ®7 is the orthogonal projection, which is an extension of
P,,neN.

Now, we check the compactness of Fr(e?Ly) for k € N and ¢t > 0. Fix k € N
and ¢ > 0. Since Ly is of finite rank, it follows that ’13;377, (e7'Ly) is also of finite rank.
Therefore, it is enough to show that

}|El?r(e_th)}| — 0 asn — oo.
By (66), it is enough to show that
|P-F (e Li)| -0 asn — oco.

Note that
|PAF e Lol = | PEF e LeLp .
Now, since LkLZ is a finite rank positive contraction, there exists an orthonormal
basis {ei(k)}ieA of J¢ such that LkLZei(k) = )&Ek)ei(k) for )Ll(k) € [0,1],i € A. The tensor
products of the elements of the orthonormal basis {ei(k)}ie A form an orthonormal basis
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of the free Fock space ¥ (#). For a multi-index § = {i1,...,i,}, let us denote e( ) =

€,~(1k) ®:® e.(k) and )L(k) = /\(k) A(k)
Let{ € ¥ (J¢) be written as { = ) ¢ a(k)e(f). Then, one has

o 2 - k) 4 (k) (K
|P7 (e ZthL]t)PnJ_CH}'(Jf) = H > el ; )A( ‘e )H?(Jf)
I31>n

—4|8 k k
— Z e 4|d|t|a§)|2|kc(?)|2
I3 |>n
< e—4(n-|-l)t||€-||27

where the last inequality follows since |)Lg€)| < 1. Therefore, ||Pnl?7 (e7"Ly)| — 0 as
n — o0o.

From Proposition A.4, note that || Fr(e "Lg)|| <1 fork € N and t > 0. Let ¢ :=
LH®- ®&, € HOM. Ttis easy to verify that | Fr(e ™ L) — |7 — 0 as k — oo and
t — 0. Hence, by a simple density argument, it follows that F7(e™"Lg) — lg, () in
s.0.t. as k — oo and ¢ — 0. This completes the proof. ]

7. The relative commutant of M;

In Section 4, we proved that for & € J€(i), i € N, suchthat U;&y = &, for all r € R, the
generating subalgebra Mg, is a masa in M. In this section, we show that if &y € HR is not
fixed by (U;):cr, then the inclusion Mg, C M7 is quasi-split, and hence, whenever Mt
is of type III, then M, éo N Mr is large. Therefore, there is no easy way to construct a masa
in M7 other than the ones constructed in Section 4. The results obtained in this section are
analogous to the results obtained for the g-deformed Araki—Woods von Neumann algebras
in [2].

Let M be a von Neumann algebra represented in standard form on the GNS Hilbert
space Hg := L?*(M, ¢) with respect to a faithful normal state ¢. Let B C M be a unital
von Neumann subalgebra of M. Also, let Jy, Ay and Q4 denote Tomita’s conjugation
operator, modular operator and the standard vacuum vector, respectively. The inner prod-
uct and norm on H# are denoted by (-, )¢ and | - [|2,4, respectively. We have the following
natural embeddings of M :

O M — L' (M) by ®(x) = (JpxQp,-Qp)p, X €M,
1
@31 M — L*(M) by $a(x) = AgxQy, xeM.

Definition 7.1 ([2, Def. 3.2]). (1) The inclusion B € M is said to be split if there exists a
type I factor F suchthat BC F C M.
(2) The inclusion B € M is said to be quasi-split if the map

B ®ug M 3aQ yP > algy*Js € B(Hg)

extends to a normal *-homomorphism 7 of B®M P (acting on Hy ® Hg) onto B v M.
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It follows from [2, Lem. 3.9] that when M is type [l and B € M is split, then B’ N M
is of type III. We state it for the sake of completeness.

Lemma 7.2 ([2, Lem. 3.9]). Let B C M C B(Jy) be von Neumann algebras. Then, the
Jollowing are equivalent.

(1) The inclusion B € M is split.

(2) There exist Hilbert spaces H#1 and H, and faithful normal representations np :
B — B(J) and tpp - M’ — B(JH>) such that

xy = rp(x) @y (y), x€Bandy e M,

extends to a spatial isomorphism between B~ M’ and wg(B)®mp (M'). More-
over, B N M = ng(B) ®(mp (M"))'.
Further, if M is of type lll and B € M is a split inclusion, then B’ N M is of type 111

Definition 7.3 ([10]). Let N and M be von Neumann algebras, and let p = 1,2. A normal
c.p.map &, : N — LP(M) is said to be extendable if for any von Neumann algebra N
with separable predual containing N, there exists a normal c.p. map &)p ‘N — LP(M),
which extends ®,,.

Definition 7.4 ([2]). Let X and Y be two Banach spaces, and let ¥ : X — Y be a bounded
linear map. Then, W is called a nuclear map if and only if there exist sequences x;; € X*
and y, € Y such that Y ;2 [|xX||||yn| < oo and

o0
P(x) = Zx:(x)yn forall x € X.
n=1
The following proposition in [2] is crucial for our purpose. For the sake of complete-
ness, we state it below.

Proposition 7.5 ([2, Prop. 3.7]). Let B C M be an inclusion of von Neumann algebras,
where M is represented in standard form on the GNS Hilbert space #y with respect to
a faithful normal state ¢. Then, @p, , is nuclear = &y, , is extendable < B & M is
quasi-split, p = 1, 2.

In this section, we follow notations from Section 5. First, suppose that N, # 0. Fix k,
with 1 <k < N,. In order to make the notations simple, we denote the pair ( f 1 f ) by
(fo. f3)- Also, we denote J(R(k) A(k) Aj and the pair (e e2) by H#r(0), A(O) )Lo and
(€0, €p), respectively. In this section, we show that My, C MT (and hence by symmetry
My, © Mr) is a quasi-split inclusion. We only work with My, as the analysis for My, is
analogous.

Denote fy = %(fo +ify)and f§ = %(fo —ifg). Note that fo, fy are scalar multi-
plies of ep and eo, respectlvely, and are orthonormal vectors with respect to (-, -) g¢.. . Also,
A(0) fo = 1 fo and A(0) f0 = Ao f0 Further, note that

fo= (ot /) and fj= (- fo.

V2 ﬁ
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The following lemma is crucial for our purpose, and the proof follows along the same
lines as [2, Lem. 4.1].

2a 1—2a
Lemma7.6. Leto, f € Rand z =« +if. Then, | A% follr = % In particular,

1
1 228
As = 0.
|atsol, = |28
Proof. The proof follows exactly along the same lines of [2, Lem. 4.1]. ]

Theorem 7.7. A%1L2(Mf0,(0) : L2(My,, ¢) — Fr(H) is a Hilbert-Schmidt operator of
norm 1. In particular CI>21Mf : Mgy — Fr(H) is compact.

Proof. Let u = . Note that u < 1 since A¢g > 1. From Lemma 4.2 (ii), it follows that

®n
0
N/ 0}
{Ilf0®”llr

forms an orthonormal basis of L2(My,, ¢). Let x € My,. Expand

1+/\

xQ =
Z ||fo®”||T

where a,, € C foralln and ), |an|* = [|xQ|/%.
From Lemma 3.9 (iii) and Theorem 3.13 (iii), it follows that if f; € Jfﬂg ) ,1 € N, then

foe DAY, Aifyexd ieN.
Therefore, it is easy to verify that

PO f)® = | 2" I7(A% fo)®" forn € N.

! (Ilf ®n||T)

Z n|2||f®n”2 ” %(f0®n)”§"

Note that

2

Zl s ||f®n||2 | (A% f)®"|)%  (by Theorem 3.13 (ii))
0

Z L ” f0®"||2 (A5 f0)®", PO (AT £6)®") 2 o,
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1
162" 17

la nP (A5 1) I 2 1A 10)®") 4 0

|an| 2((AF )" (A% £0)®") 5 9

MﬂMg uMg

lanl> (1A% follw)*"

S
(=}

3 1l

= Z lan P (1A% foll7)>"
"

= Z |lan|*/"  (by Lemma 7.6)
n=0

< [IxQ|7.

Consequently, the series

0 ®n
(ot )
=0 1o "I
defines a unique element in F7 (). Now, approximating x 2 with
I

{Z ”;W }

"l

1286

(67)

noting A% is a closed operator, using (iii) of Lemma 3.9 and (iii) of Theorem 3.13, one

has

N'—

oo i ®n
Xz(:, ( /6 ”IIT)

1ATxQr < [|x2 7.

From (67), it follows that

1
Therefore, A 1“ M;,Q admits a bounded extension to L?(M o5 ©). Further,

00 ®n 2
5 Al( 0 )
=1 e
||f1 % “( 4f0)®n ||T (by Theorem 3.13 (ii))
n=0
o0 1 1 1
A% n (n) 4 n
T A PO g

(o]

1
Z ”f n”2 ((A f0)®n ||f0®n||T(A4f0)®n);'(gg)
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(A% f0)®" (A% £)®") 5 )

M

3
Il
o

(1A% follw)™

M

3
Il
o

(1A% foll7)™"

M

3
Il
o

e

u"  (by Lemma 7.6)

3
Il
—_ o

I—p
< OQ.

Hence, it follows that

1
z .72 =
Aoy g L (Mpy ) = F1(H)
is a Hilbert—Schmidt operator of norm 1, as AIQ = Q.

Consequently, @54 My, : My, — Fr(H) is compact. Indeed, if My, > x, i 0 in the
w*-topology, then X, 2 — 0 weakly in LZ(MfO, ¢). By the compactness of A1 L2(M;, 0)°
it follows that A # Xp 2 — 01in | - ||7. This completes the proof. |
Theorem 7.8. @ My, My, — Fr(H) is a nuclear map. Also, the inclusion My, < Mt

is quasi-split.

Proof. Following the proof of Theorem 7.7, for x € Mj,, one has

(Ilff®nllr)

@21Mf0 (x) = A%XQ

Z<||f s >TA
=n§wn<x)fn,

Ll

where ¥, € (My,)« is given by

®n

1 f®n)
() = yQ) forally € My, f, = f N U {0
yn ) <||f "y >T orally € M.~/ (Ilf my ) form e N OO

By the Cauchy—Schwarz inequality, one has ||| < 1 for all » € N U {0}. From
Lemma 3.9 (iii) and Theorem 3.13 (iii), it follows that if fy € J(’R), i € N, then

foe DAY, AifoeHxD ieN.
C
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Therefore, it is easy to verify that P (A f5)®" = || fer ||2T(A% f0)®". Then,

oo

Dol fallr < Z I foll7
n=0

n
®n
()
n
" Ifo " llr /N7

Z ”f0®n” |(A% £6)®" |, (by Theorem 3.13 (ii))

Plljg I

0

31

D=

=S L b POt o), )

Fnrdl 75 P

o

=2 ||fo®+||T(<(A3tfo)®ns 1A 13- (A% 0)®") g )

n=0

=

(Sl

3 (A% )" (AT )25 )

i (1A% follw)"

S
(=}

3
Il
o

(1A% follr)"

M

3
Il
o

2k : (by L 7.6)
T 1o y Lemma 7.

M

0

n
1
2A2

< oo | since 0 <lasig>1).
1+ Ao

Hence, it follows that @4 My, is a nuclear map (see Definition 7.4). From Proposition 7.5,
it follows that the inclusion My, € M7 is quasi-split. This completes the proof. ]

Next we extend the above investigations to general vectors in #g. Let Pl 1<j<
Ni, P k, 1 <k < N,, and Py, be the orthogonal projections from Hg onto R; :=R,
1<j <N, #Hr(k),1 <k <N, and %R,respectlvely Let§ € Jf(’),l € N, be such that
I€llsec = I§llv =1 and P2§ 7é 0 for some k or Py,& # 0. Then, following the same
arguments as in [2], one has ||A4§||T < 1. We omit the details.

Therefore, assuming dim(#g) > 2, N, # 0 or Hr # 0, and from Theorems 7.7 and
7.8, one has the following.

Theorem 7.9. Let £ € J{’ﬂg), i € N, be such that ||§||ly = 1. Then, the following are
equivalent.

(1) & is not fixed by (U;)er.
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) A% 12(Ms.0) - L2(Mg, @) — Fr(H) is a Hilbert—Schmidt operator of norm 1. In
1L2(Mg,0) &
particular, @24 p, + Mg — Fr(H) is compact.

(3) Poym, 1 Mg — Fr (H#) is a nuclear map.

(4) Mg € Mr is a quasi-split inclusion.

Proof. The proof of (1)=(2)=(3) follows from the above discussion and Theorems 7.7
and 7.8.

(3)=(1). Suppose to the contrary that U;§ = & for all ¢ € R. From Corollary 4.12, it
follows that M is a masa in M7 possessing a ¢-preserving normal conditional expecta-
tion E¢. Since dim(#r) > 2, by Theorem 5.1, one has that M7 is a factor. Further, from
Theorem 5.8, it follows that M is a factor of type II; or type IIIL.

If Mt is all; factor, then ¢ is a trace from Theorems 3.13 and 5.8. In this case, A =1,
and thus, ®y4 M, cannot be nuclear. Thus, M7 is a type III factor.

Hence, from Proposition 7.5 and [2, Prop. 3.8], it follows that the inclusion Mg € M7
is split. Let F' be an intermediate type I factor between Mg and Mr. Then, E¢ {F: F —
M is a faithful normal conditional expectation. This forces Mg to be completely atomic,
which is a contradiction. Therefore, (1)< (2)<(3).

(3)<(4) follows from Proposition 7.5 and [2, Prop. 3.8]. This completes the proof. m

In the general case, we have the following.

Corollary 7.10. Let & € Jr be such that |€||y = 1. Consider the following statements.
(1) & is not fixed by (Uy)seRr.
2) A%1L2(M$’(p) : L*(Mg, ) — Fr(H) is a Hilbert-Schmidt operator of norm 1. In
particular, ®24p, + Mg — Fr(H) is compact.
(3) Poym, 1 Mg — Fr (H#) is a nuclear map.
(4) Mg € Mr is a quasi-split inclusion.
Then, (1)=(2)=(3)=(4). Suppose Mt is of type lll and & € HR satisfies any one of the

four conditions mentioned above. Then, M é N Mt is of type 11L. If, in addition, Mt is a
type Il factor, then Mg € M is a split inclusion.

Proof. (1)=(2)=(3)=(4) follows along the same lines of Theorem 7.9.

If M7 is of type III, then the conclusion follows directly from [2, Cor. 3.11]. If Mt is
a type III factor, from [2, Prop. 3.8], it follows that the inclusion Mg C M7 is split. This
completes the proof. ]

8. Non-injectivity of My

In this section, we show that Mt is non-injective in many cases. Our result on the non-
injectivity of M7 is partial.

Definition 8.1. A von Neumann algebra M € B(H) is said to be injective if there exists
a projection & of norm 1 from B(H) onto M .
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Definition 8.2 ([30, Def. 3.5]). A von Neumann algebra M C B(H) is said to be semi-
discrete if for any finite sequences x1, X2,...,X, € M and yq, y2,..., V4 € M’, the
inequality

n
inJ’i

i=1

=

n
Z X; ® yi
i=1

min

holds.

Note in [30, Thm. 3.1] that a von Neumann algebra is injective if and only if it is
semi-discrete.

Lemma 8.3. Let ||T|| = q < 1. Also, let ny, . .., Ny be orthonormal vectors in (¥, (-,*)v)
forn € N. Then,
n
1
10| < 7
k=1

Proof. The proof follows along the same lines of [16, Lem. 2.1]. We omit the details. m

In this section, we follow notations from Section 5. Let
xp =s(ep) forl <h < Nj(orl <h < Njif Ny = Ry),
1
Zk = E(s(fkl) +is(f2) forl <k < N (orl <k < Nyif Ny = R),
Vi = Zj.
The following theorem shows that M7 is non-injective in many cases. It adapts [16, Thms.
2.2,2.3] to the current setting. We denote the spectral measure of A by E4.
Theorem 8.4. Let |T| = g < 1. Assume that any one of the following conditions hold.
(i)  Suppose that dim(E4{1}) > 2.

(1)  Suppose that dim(E4{1}) = mg < 1, (HR, (Us);er) is almost periodic and for
some K € N, A has eigenvalues Ay, ..., Ay € (1, K), m € N, counted with
multiplicities such that

1 ( N i 2 ) o4
— | my .
Mmoo +m =1 /Ak + /AEI 1—g¢q

(iii) (HR, (Uy)ter) is weak mixing.

(iv)  Suppose that the weak mixing part of (¥R, (Uy)¢eRr) is non-trivial.
Then, M is not injective.
Proof. (i) Following (54), let K = EBZV;I (R;,.id). By assumption, N; > 2. Let F7(X)

denote the twisted Fock space associated with g and the obvious compression of 7.
From [24, Thm. 2], it follows that I'7 (Kr)” € B(F7(K)) is not injective.
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Consider g = Kr @ (@)J— (direct sum taken with respect to (-, ). ). Let i :
J?]E — J?]E &) (%)l be the inclusion map. By Corollary 6.2, there exists an injective,
normal unital x-homomorphism I'(i) : I'r (Kr)" — M. Hence, M := ra)Trr (36\];1:)”)
is not injective. In addition, I' (i) is a Markov map.

Suppose to the contrary that M7 is injective. Let &1 : B(¥7(#)) — M7 be a projec-
tion of norm 1 onto M. Since I'(i) is Markov, it follows that M is invariant under the
modular automorphism group (o7 );cr. By [29], there exists a ¢-preserving conditional
expectation &, : M7 — M onto M. Hence, &; o & : B(¥7(H#)) — M is a projection of
norm 1 onto M. This forces M to be injective, which is a contradiction.

(i) Since $Ag = A~ it follows that A has eigenvalues in (1, co). Suppose to the
contrary that M7 is injective. By the hypothesis, one has

m

4

+> 2 >
k=1 VA + /A 1=

mo p (mo + m)%. (63)

Let

mo m m
X = xpdxpd + ) zdzad + ) yidyed € C*(Mr. My),
h=1 k=1 k=1

mo m m
X=) xn®Jxpd + Y 2 ®Jzid + ) vk ® Jyd € My ®pin M.
h=1 k=1 k=1
By the equivalence of injectivity and semi-discreteness, one has

X1 < 11X lmin-

Also, proceeding along the same lines of calculations in [16, Thm. 2.2], and by replac-
ing the role of [16, Lem. 2.1] with Lemma 8.3, it follows that

m
2
X[ =mo+ ) ————
k=1 VA + /A"
and
I X min < ——(mo +m)2

Therefore, one has
” 2

) <
k=1 VA + /A l—q

This contradicts (68). Hence, Mt is not injective under the hypothesis.

(iii) Note that o (A) is continuous. Suppose to the contrary that M7 is injective. Since
JAg = A7, it follows that o(A) has a continuous component in (1, 00). Let F C
(1, 00) N g (A) be a bounded set such that the spectral measure p of A restricted to F

mo +
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is continuous. Let @ = inf{x : x € F} and b = sup{x : x € F'}. Then, F C [a, b]. Note
that L°°(F, u4 ) is diffuse. Therefore, there exists a disjoint partition {G,}5>, of [a, b)
such that G, = [a,, b,) forn € N, witha; = a and u(G,) > Oforalln € N. Fork € N,
let

& i= & +i§; € Ea(Gy)(Ho),
such that £}, £ € Hr and || || . = 1. Since A = A~", one has

J = £l —i£2 € E4(G7Y)(Jc). where Gi! = {% ‘xe Gk}.

Let ¢ = and {7 = for k € N. Note that

IIE ”U II&’S ||
{é_]i}keN u {é']%}keN

is an orthonormal set in (-, -) 7. Consider,

_ 1 1 . 2 L
ug = W ESTECA (s€p) +is(87)). vk =uf. k eN.

Fix L € N, and let

L
weJuJ + Y vpJved € CH(Mr, Mp),

[
Ml\

X :
k=1 k=1
L L

X:=> ue® JugJ + Y vk ® Jue € My @pin M.
k=1 k=1

As in the proof of (ii), by the equivalence of injectivity and semi-discreteness, one has
X1 < 11X [l min-

Note that & € EA([a b)) (Hc) and & € E4 (b7, a= 1) (Hc) for k € N. Since the

function f(x) = 75 + ~ defined on [0, 00) is increasing, we get

2a 2
€Iz > T+a and [|g& 7 < Tra

Further, for £ € #, one has ||€||y = ||€]|7- Therefore, proceeding along the same lines of
calculations in [16, Thm. 2.3] (as the vectors involved in the calculations are from #), we
get
1 a
s 0GR,
1+a
Again, proceeding along the same lines of calculations in [16, Thm. 2.3] and by replacing
the role of [16, Lem. 2.1] with Lemma 8.3, it follows that

1
. 4 [(1+b\?
IIXIImmf—( + ) L:.
1—g\1+a

D=
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Therefore, one has

1
2
’

1 1
az(1+ (§)2 ) - 4 (1462

l+a l—g\1+a
which in turn implies

a%(1+(%)%) L%< 4

(+a)(1+bp)> 174
The last inequality does not hold for large L € N. This is a contradiction. Hence, Mt is
not injective when (Hr, (U;)ser) is weak mixing.

(iv) Let (J?R, (Uy)rer) denote the weak mixing part of (Hr, (Us)ser). Let Fr (J?)
denote the twisted Fock space associated with jﬂé and the obvious compression of 7'
associated with Hg. By (iii), it follows that 'y (J?R)” C B(Fr (J?)) is not injective.

The rest of the arguments are similar to the arguments in (i) by considering the inclu-
sion ¢ : Hg — Hr ® (JC/-?/]R)L (direct sum taken with respect to (-, -) o). We omit the
details. This completes the proof. ]

Remark 8.5. The non-injectivity of the mixed g-deformed Araki—-Woods von Neumann
algebras is thus open only when (#Rg, (U;):er) is almost periodic, dim(E4{1}) < 1, and
the spectrum of the analytic generator A of (U;)er is not thick in the sense as stated in
(ii) of Theorem 8.4.

A. Some results on Hilbert spaces

In this section, we include some results concerning Hilbert spaces which are inevitable for
our purpose. The results in this section are known, but we lack references. Therefore, we
provide it for the sake of completeness.

Proposition A.1. Let J;, i = 1,2, be Hilbert spaces, and let P; : D(P;) C #H; — H;
be densely defined strictly positive self-adjoint operators fori = 1,2. Let B; : D(P;) x
D(P;) = C be a sesquilinear form given by B;(n,§) = (n, Pi§)z,, £&.n € D(F;), for
i = 1,2. Suppose Hp, denote the Hilbert space completion of D(P;) with respect to B;,
i =1,2. Let T : ¢y — H5 be a bounded operator such that TPy C P,T. Then, T admits
a unique extension T: Hp, — Hp, such that ||f|| =|T].

Proof. We denote the norm of #; and #p, by | - ||; and || - || p;, respectively, fori = 1, 2.
Let £ € ©(Py). Then,

ITEI, = (TE T&)gep, = (T§, P2TE) 3, = (5. T* P2TE) e,
= (£, P\T*TE)w, (since TPy C PoT and (TP)* = P T* [28, §9.2])

= (PIE(T"T)P2E),  (D(PF)2 D(P))

1 1
< ITI*(PPE PPE) s, = ITI2IIENR,-



P. Bikram, R. Kumar R, and K. Mukherjee 1294

From the density of ®(P;) in #p,, it follows that 7 has a unique extension T from
Jep, to Jp,, and | T < |T].

Further, P; and P are invertible and (P;)~! and (P»)~! admit bounded extensions.
Then, (P,)~'TP; C T, and hence, (P,)~ ' TP; admits bounded extension as well. Thus,
(P2)~'TP; = T, and hence, (P,)~'T = T(P;)~". Further, (P,)"Y)KT = T((P;)~H¥
for k € N. Thus, for § € ®(P;), by functional calculus, one has

T3 = (TE TE)w, = (TE (P2)"'TPiE),,
= ((P2)~ STE (Py)™ 2TP1§)
=(T(P1)~ 6 (Py)” 2TP1§)

=(T(P1)~ 8, Py(Py)” 27"1"15)

=(T(P))~ e, PT(Py)” 2P1§)

= (T(P))"2¢, PaT(P1)” 25)

= | Fpn g wn, < ITI ||(P1)*%g||jfpl (as T is bounded)
< ITI2IER (D(PF) 2 D(P)).
This completes the proof. -

Proposition A.2. Ler #;,i =1,2,..., be Hilbert spaces, and let P; : #; — H; be strictly
positive bounded operators fori =1,2,.... Then, P = €, P; is a densely defined closed
strictly positive self-adjoint operator on @; H;.

Proof. Note that #; CD(P) foralli. Thus, P is densely defined. Clearly, @i P; is strictly
positive. It is easy to see that P is closed and self-adjoint. ]

For the next two results, we invoke the construction in [8] of twisted Fock spaces
corresponding to arbitrary Yang—Baxter operators.

Let H, K be (complex) Hilbert spaces and T’, T" self-adjoint (strict) contractions
satisfying the Yang—Baxter relation on H and K, respectively. For n € N, let P(") nd
P, ™ pe positive operators on H®”" and K®", respectively, defined similar to P in (10).
Let H®7 and K®7” denote the corresponding twisted tensor products as in Section 2.

Proposition A.3. Fixn € N. Let T : H®" — K®" be a bounded linear operator such
that T P(") P(n)'T Then, T admits a unique bounded extension T : H ®r  K®77,
In addition, |T|| = ||J Il

Proof. Recall that P{™ and P\ are strictly positive on H®" and K ®", respectively. The
rest is immediate from Proposition A.1. ]

Proposition A.4. Let H and K be Hilbert spaces, and let V : H — K be a contraction.
Let Ty and T, be self-adjoint contractions satisfying the Yang—Baxter relations defined on



Mixed g-deformed Araki-Woods von Neumann algebras 1295

H ® H and K ® K, respectively. Suppose that (V @ V)T1 = To(V ® V). Then, the map
FV): Fr,(H) - Fr,(K) defined by extending

F(V)Qu) = Qk,
FV)Y MO @m)=Vn®---®Vn,, meHforl<i=<n, neN,

is a contraction, where Qg and Q2 are the distinguished vacuum vectors in H and K,
respectively. Moreover, | (V)| < 1.

Proof. Fix n € N. Let Pl(") and Pz(") denote the strictly positive operators on H ®" and
K®" associated with T} and T», respectively (as defined in (10)). Since (V ® V)T =
To(V ® V), it follows that (V&) P{™ = p{™ (v®n),

Then, by Proposmon A.3, it follows that ¥ (V) gen extends uniquely to a bounded
operator from H ®T 0 K ®T2 of norm ||V ||". Since V is a contraction, the rest is imme-
diate. ]
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