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Mixed q-deformed Araki–Woods von Neumann algebras

Panchugopal Bikram, Rahul Kumar R, and Kunal Mukherjee

Abstract. Given a strongly continuous orthogonal representation .Ut /t2R of R on a real Hilbert
space HR, a decomposition HR WD

L
i2N H

.i/
R consisting of invariant subspaces of .Ut /t2R and

an appropriate matrix ..qij //N�N of real parameters, we associate representations of the mixed
commutation relations on twisted Fock spaces. The associated von Neumann algebras are (usually)
non-tracial and are generalizations of those constructed by Bożejko–Speicher and Hiai. We investi-
gate the factoriality of these von Neumann algebras. Along the process, we show that the generating
abelian subalgebras associated with the blocks of the aforesaid decomposition are strongly mix-
ing masas when they admit appropriate conditional expectations. On the contrary, the generating
abelian algebras which fail to admit appropriate conditional expectations are quasi-split. We also
discuss non-injectivity and the Haagerup approximation property.

1. Introduction

In free probability, Voiculescu’s C �-free Gaussian functor associates a canonical C �-
algebra denoted by �.HR/ with a real Hilbert space HR. The C �-algebra �.HR/ is
generated by the sum of canonical creation and annihilation operators on F .HC/, the full
Fock space of the complexification of HR. It is well known that the associated von Neu-
mann algebra �.HR/

00 is isomorphic to the free group factorL.Fdim.HR// if dim.HR/� 2

(see [31]) and is the central object of study in free probability.
There are natural deformations of Voiculescu’s functor in the literature. The most

prominent ones are the q-Gaussian functor due to Bożejko and Speicher [7] and the free
CAR functor due to Shlyakhtenko [26]. The associated von Neumann algebras are called
q-Gaussian von Neumann algebras and free Araki–Woods factors. These von Neumann
algebras are very well studied.

Free Araki–Woods factors are type III counterparts of the free group factors. They
are full factors when .Ut /t2R is non-trivial and dim.HR/ � 2. They have many more
interesting properties; for example, they lack Cartan subalgebras, satisfy the complete
metric approximation property and are strongly solid (see [5, 17]).

There is also a generalization of the q-Gaussian functor, namely, the mixed q-Gaussian
functor introduced in [8]. The associated von Neumann algebras, namely, the mixed q-
Gaussian von Neumann algebras, are tracial.
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In [16], Hiai introduced a new functor by combining the ones considered in [7, 26].
The associated von Neumann algebras are called q-deformed Araki–Woods von Neumann
algebras and are known to be very complicated objects. The factoriality of these algebras
is not even known in the fullest generality.

In this paper, we extend Hiai’s construction by combining Shlyakhtenko’s construc-
tion in [26] and the mixed q-Gaussian functor due to Bożejko and Speicher in [8]. Thus,
in our context, the associated von Neumann algebras depend on a real Hilbert space HR, a
strongly continuous group of orthogonal representation .Ut /t2R of R on HR and param-
eters qij 2 .�1; 1/ such that qij D qj i for all i; j , and supi;j jqij j < 1, i; j 2 N where
N D ¹1; 2; : : : ; rº, r 2 N, or N D N. We call these algebras the mixed q-deformed
Araki–Woods von Neumann algebras. Our construction is also functorial. As expected,
these algebras act in standard form on “twisted” Fock spaces, and the associated .Ut /t2R

encodes the data of the modular automorphisms associated with the canonical vacuum
state.

Like the q-commutation relations associated with the q-deformed Araki–Woods von
Neumann algebras, here too, we obtain the mixed qij -commutation relations. Thus, our
construction provides Fock-type representations of the following relations:

l�.�/l.�/ � qij l.�/l
�.�/ D h�; �iU 1 for � 2 H

.i/
R ; � 2 H

.j /
R ;

where H
.i/
R and H

.j /
R are appropriate subspaces of HR and h�; �iU is the inner product on

a complexification of HR that has been twisted by the representation .Ut /t2R. The above
commutation relations clearly generalize the commutation relations considered in [8, 16].

Now, we discuss the overview of this paper. This paper relies heavily on the techniques
developed in [1, 16]. In Section 2, we construct the mixed q-deformed Araki–Woods von
Neumann algebras combining the construction in [8,16]. Subsequently, we study the stan-
dard representation of these algebras with respect to the canonical vacuum state and the
modular theory associated with the vacuum state in Section 3.

Section 4 is devoted to the study of generator masas in the mixed q-deformed Araki–
Woods von Neumann algebras. Following [1], we show that a canonical self-adjoint gen-
erator of the aforesaid von Neumann algebra corresponding to a unit vector � 2 H

.i/
R ,

i 2 N , generates a masa with appropriate conditional expectation if and only if Ut� D �
for all t 2 R. In fact, such a masa is strongly mixing (with respect to the vacuum state)
(Theorems 4.5 and 4.11). Similar ideas can be found in [25, 27].

Section 5 is concerned with the factoriality of the mixed q-deformed Araki–Woods
von Neumann algebras, which is a hard problem. Hiai proved the factoriality of the q-
deformed Araki–Woods von Neumann algebras, when the almost periodic part of .Ut /t2R

is infinite-dimensional [16, Thm. 3.2]. The factoriality of the same was proved in [1] under
the assumption that .Ut /t2R is non-ergodic and dim.HR/� 2, or .Ut /t2R has a non-trivial
weakly mixing component for all q 2 .�1; 1/. Unfortunately, there is a gap in the proof of
[16, Thm. 3.2]. To be precise, Hiai’s proof holds only in the case when the set of eigenval-
ues of the analytic generator of .Ut /t2R has a limit point in R other than 0. Without this
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assumption, the conclusion “'.y�x/D 0” in the last equation in [16, Thm. 3.2] would fail,
and hence, the final statement cannot be concluded. Thus, in Section 5, assuming the same
hypothesis that fixes [16, Thm. 3.2] and adapting the techniques in [16] and also the tech-
niques in [1], we prove the factoriality and type classification of the mixed q-deformed
Araki–Woods von Neumann algebras. As the results in [1], our results on factoriality are
partial.

With the results in Section 5, namely, Theorems 5.4, 5.1 and 5.2, the factoriality of the
mixed q-deformed Araki–Woods von Neumann algebras remain open only in the cases
when:

(1) dim.HR/ is even and .Ut /t2R is ergodic;

(2) .Ut /t2R is ergodic, almost periodic, and 0 is the only limit point of the set of
eigenvalues of the analytic generator of .Ut /t2R.

Further, in Theorems 5.7, 5.8 and 5.9, we show that in the cases the mixed q-deformed
Araki–Woods von Neumann algebras are factors, their type is completely determined by
the spectral data of .Ut /t2R.

In Section 6, we show that the construction of the mixed q-deformed Araki–Woods
von Neumann algebras is functorial. Using this statement, in the same section, we show
that these von Neumann algebras have the Haagerup property.

In Section 7, we show that, in contrast to the results proved in Section 4, if � 2 H
.i/
R ,

i 2 N , is a unit vector not fixed by .Ut /t2R, then the inclusion of the associated abelian
subalgebra in the mixed q-deformed Araki–Woods von Neumann algebra is split when-
ever the latter is a type III factor, forcing such abelian subalgebras to have huge relative
commutants. Thus, when .Ut /t2R is ergodic, there is no obvious way to construct masas
in such von Neumann algebras.

Finally, in Section 8, by adapting the techniques in [16], we show that the mixed q-
deformed Araki–Woods von Neumann algebras are non-injective in many cases.

The last section is an appendix. In Appendix A, we have included some known results
concerning Hilbert spaces which are inevitable for our purpose but for which we lack an
appropriate reference.

2. Mixed q-deformed Araki–Woods algebras: Construction

In this section, we describe the construction of the mixed q-deformed Araki–Woods von
Neumann algebras. Our construction generalizes the constructions considered in [8, 16].
Following [16], we begin with a real Hilbert space and a strongly continuous one-parame-
ter orthogonal group on it. As in [8], our construction also involves an operator T which
is a self-adjoint contraction and satisfies the Yang–Baxter relation. As a convention, all
Hilbert spaces in this paper are assumed to be separable, all von Neumann algebras have
separable preduals and inner products are linear in the second variable. There is some
overlap of materials in this section with [26] to keep the paper self-contained. We proceed
to describe the construction below.
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Let HR be a separable real Hilbert space and let t 7! Ut , t 2 R, be a strongly con-
tinuous orthogonal representation of R on HR. Let HC D HR ˝C denote the complex-
ification of HR. We denote the inner product and norm on HC by h�; �iHC and k � kHC ,
respectively. Identify HR in HC by HR ˝ 1. Since HC D HR C iHR, as a real Hilbert
space, the inner product of HR in HC is given by Rh�; �iHC . Consider the bounded anti-
linear operator (complex conjugation) J W HC ! HC defined as J.� C i�/ D � � i� for
�; � 2 HR. Note that J� D � for all � 2 HR. Moreover,

h�; �iHC D h�; �iHC
D h�;J�iHC for all � 2 HC and � 2 HR: (1)

Linearly extend the flow t 7! Ut from HR to a strongly continuous one-parameter
group of unitaries on HC . We denote the extension again by Ut for each t 2 R with slight
abuse of notation. Let A denote the analytic generator and H the associated Hamiltonian
of the strongly continuous one-parameter group ¹Ut W t 2 Rº acting on HC . Then, A is
positive, nonsingular and self-adjoint, whileH is self-adjoint. Since HR is invariant under
Ut for all t 2 R, HR is invariant for iH as well. Let us denote D.�/ to be the domain of
an (unbounded) operator. One notes that D.H/DD.iH/ andH maps D.H/\HR into
iHR. It follows that JH D �HJ and JA D A�1J.

Define a new inner product h�; �iU on HC as follows:

h�; �iU D

�
2

1C A�1
�; �

�
HC

for �; � 2 HC:

Denote the completion of HC with respect to the norm induced by h�; �iU by H . We denote
the inner product and norm on H by h�; �iU and k � kU , respectively. Since A is affiliated
to vN.Ut W t 2 R/, one has

hUt�; Ut�iU D h�; �iU for �; � 2 HC:

Consequently, .Ut /t2R extends to a strongly continuous unitary representation .fUt /t2R

of R on H . Let zA be the analytic generator associated with .fUt /t2R, which is clearly
an extension of A. From [1, Prop. 2.1] and the discussion prior to it, one notes that the
spectral data of A and zA are essentially the same. Therefore, we denote the extensions
.fUt /t2R and zA again by .Ut /t2R and A, respectively, with slight abuse of notation.

A vector � 2 H is said to be analytic with respect to the strongly continuous one-
parameter group .Ut /t2R on H if the mapping R 3 t 7! Ut� 2 H has a weakly entire
extension on H . The value of the extended function at z 2 C is denoted by Uz� . Further,
it is easy to check that Uz D Aiz for all z 2 C.

The next few computations are statutory and follow from [26]. We present them for
the sake of completeness. Let �; � 2 HR. Then,

h�; �iU D

�
2

1C A�1
�; �

�
HC

D

�
�;J

2

1C A�1
�

�
HC

D

�
�;

2

1C A
�

�
HC

D

�
�;

2A�1

1C A�1
�

�
HC

D

�
2

1C A�1
�;A�1�

�
HC

D h�;A�1�iU : (2)
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Also,

h�; �iU D

�
2

1C A�1
�; �

�
HC

D h�; �iHC C

�
1 � A�1

1C A�1
�; �

�
HC

: (3)

But �
1 � A�1

1C A�1
�; �

�
HC

D

�
�;
1 � A

1C A
�

�
HC

D �

�
�;
1 � A�1

1C A�1
�

�
HC

D 0: (4)

Thus, it follows from (3) and (4) that k�kU D k�kHC for all � 2HR. Hence, HR embeds
in H isometrically as a real Hilbert space.

Let N denote ¹1; 2; : : : ; rº, r 2 N, or N. Fix a decomposition of HR as follows:

HR WD
M
i2N

H
.i/
R ; (5)

where H
.i/
R , i 2 N , are non-trivial invariant subspaces of .Ut /t2R (direct sum taken with

respect to h�; �iHC ). Choose �1 < qij D qj i < 1 for i; j 2 N with supi;j2N jqij j < 1. In
this paper, we will often denote the scalar qij also by q.i; j / for i; j 2 N .

Note that HC D
L
i2N H

.i/
C , where H

.i/
C is the complexification of H

.i/
R for i 2 N .

Also, since H
.i/
C , i 2N , are invariant for .Ut /t2R, it follows that H D

L
i2N H .i/, where

H .i/, i 2 N , are, respectively, the completions of H
.i/
C , i 2 N , with respect to h�; �iU . For

� 2 H , the associated unique decomposition will be denoted by � WD
L
i2N �

.i/.
Fix i; j 2 N . Define Ti;j WH

.i/
R ˝H

.j /
R !H

.j /
R ˝H

.i/
R to be the bounded extension

of
� ˝ � 7! qij .�˝ �/ for � 2 H

.i/
R ; � 2 H

.j /
R :

Then, TR WD
L
i;j2N Ti;j 2 B.HR ˝HR/. Linearly extend TR to HC ˝HC and denote

the extension by TC .
By a simple density argument, it follows that TC admits a unique bounded extension

T to H ˝ H . It is easy to verify that T WD
L
i;j2N Tij , where Tij W H .i/ ˝ H .j / !

H .j / ˝H .i/ is defined as the bounded extension of the map

� ˝ � 7! qij .�˝ �/ for � 2 H .i/; � 2 H .j /: (6)

Moreover, T has the following properties:

T � D T; .since qij D qj i for i; j 2 N/;

kT kH˝H < 1;
�
since sup

i;j2N

jqij j < 1
�
;

.1˝ T /.T ˝ 1/.1˝ T / D .T ˝ 1/.1˝ T /.T ˝ 1/;

(7)

where 1˝ T and T ˝ 1 are the natural amplifications of T to H ˝H ˝H . The third
relation listed in (7) is referred to as the Yang–Baxter equation (see [18, 20, 34]).

Let F .H / WD C�˚
L1
nD1 H˝n be the full Fock space of H , where � is a distin-

guished unit vector (vacuum vector) in C. By convention, H˝0 WD C�. The canonical
inner product and norm on F .H /will be denoted by h�; �iF .H/ and k � kF .H/, respectively.
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For � 2 H , let a.�/ and a�.�/ denote the canonical left creation and annihilation
operators acting on F .H / which are defined as follows:

a.�/� D �; a.�/.�1 ˝ �2 ˝ � � � ˝ �n/ D � ˝ �1 ˝ �2 ˝ � � � ˝ �n;

a�.�/� D 0; a�.�/.�1 ˝ �2 ˝ � � � ˝ �n/ D h�; �1iU �2 ˝ � � � ˝ �n;
(8)

where �1 ˝ � � � ˝ �n 2Hˇn (Hˇn denoting the n-fold algebraic tensor product of H ) for
n� 1. The operators a.�/ and a�.�/ are bounded and are adjoints of each other on F .H /.

Let Ti be the operator acting on H˝.iC1/ for i 2 N as follows:

Ti WD 1˝ � � � ˝ 1„ ƒ‚ …
i�1

˝ T: (9)

Extend Ti to H˝n for all n > i C 1 by Ti ˝ 1˝ � � � ˝ 1„ ƒ‚ …
n�i�1

and denote the extension again
by Ti with slight abuse of notation.

Let Sn denote the symmetric group of n elements. Note that S1 is trivial. For n� 2, let
�i be the transposition between i and i C 1. It is well known that ¹�iºn�1iD1 is a generating
set of Sn.

For n 2 N, let � W Sn ! B.H˝n/ be the quasi-multiplicative extension of the map
given by �.1/ D 1 and �.�i / D Ti .i D 1; : : : ; n � 1/. The extension is well defined and
unique, and this follows from the proof of [4, Prop. 5].

Consider P .n/ 2 B.H˝n/, defined as follows:

P .n/ WD
X
�2Sn

�.�/: (10)

By convention, P .0/ on H˝0 is identity.
From the properties of T in (7) and [8, Thm. 2.3], it follows that P .n/ is a strictly

positive operator for every n 2 N. Following [8], the association

h�; �iT D ın;mh�; P
.n/�iF .H/ for � 2 H˝m; � 2 H˝n; (11)

defines a definite sesquilinear form on F .H /, and let FT .H / denote the completion of
F .H / with respect to the norm on F .H / induced by h�; �iT . We denote the inner product
and the norm on FT .H / by h�; �iT and k � kT , respectively. We also denote F finite

T .H / WD

spanC¹H
˝n; n � 0º and H˝

n
T D H˝n

k�kT for n 2 N.

Lemma 2.1. For n; m 2 N, let �ik 2 H .ik/ for ik 2 N , 1 � k � n, and �jl 2 H .jl / for
jl 2 N , 1 � l � m. Let � D �i1 ˝ � � � ˝ �in and � D �j1 ˝ � � � ˝ �jm . Then,

h�; �iT D ın;m
X
�2Sn

a.�; �/h�i1 ; �j�.1/iU � � � h�in ; �j�.m/iU ; (12)

where a.�; �/ is given by

a.�; �/ D

´
1; if � D id;Qk�1
tD1 q.j�t .uk�t /; j�t .uk�tC1//q.juk ; jukC1/; if � WD �u1 � � � �uk ;
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where � WD �u1 � � � �uk is the reduced product of transpositions and �t denotes the permu-
tation �uk�tC1 � � � �uk for 1 � t � k � 1.

Proof. Fix � 2 Sm. Let � be written as the reduced product of transpositions as � WD
�u1 � � � �uk . First, we show that

Tu1 � � �Tuk .�j1 ˝ � � � ˝ �jm/ D a.�; �/.�j�.1/ ˝ � � � ˝ �j�.m//:

Note that

Tuk .�j1 ˝ � � � ˝ �jm/

D q.juk ; jukC1/.�j1 ˝ � � � ˝ �juk�1 ˝ �jukC1 ˝ �juk ˝ � � � ˝ �jm/
�
by (9)

�
D q.juk ; jukC1/.�j�uk .1/

˝ � � � ˝ �j�uk .m/
/: (13)

Again,

Tuk�1Tuk .�j1 ˝ � � � ˝ �jm/

D Tuk�1
�
q.juk ; jukC1/.�j�uk .1/

˝ � � � ˝ �j�uk .m/
/
� �

by (13)
�

D q.juk ; jukC1/Tuk�1.�j�uk .1/
˝ � � � ˝ �j�uk .m/

/

D q.juk ; jukC1/q.j�uk .uk�1/
; j�uk .uk�1C1/

/.�j�uk�1 �uk .1/
˝ � � � ˝ �j�uk�1 �uk .m/

/
�
by (9)

�
D q.juk ; jukC1/q.j�1.uk�1/; j�1.uk�1C1//.�j�uk�1 �uk .1/

˝ � � � ˝ �j�uk�1 �uk .m/
/:

Iterating as above, one gets

Tu1 � � �Tuk .�j1 ˝ � � � ˝ �jm/

D

k�1Y
tD1

q.j�t .uk�t /; j�t .uk�tC1//q.juk ; jukC1/.�j�.1/ ˝ � � � ˝ �j�.m//

D a.�; �/.�j�.1/ ˝ � � � ˝ �j�.m//: (14)

Then,

h�; �iT D ın;m
˝
�i1 ˝ � � � ˝ �in ; P

.m/.�j1 ˝ � � � ˝ �jm/
˛
F .H/

�
by (11)

�
D ın;m

�
�i1 ˝ � � � ˝ �in ;

X
�2Sm

�.�/.�j1 ˝ � � � ˝ �jm/

�
F .H/

�
by (10)

�
D ın;m

�
�i1˝ � � � ˝�in ;

X
�2Sm

a.�; �/�j�.1/˝ � � � ˝�j�.m/

�
F .H/

�
by (14)

�
D ın;m

X
�2Sn

a.�; �/h�i1˝ � � � ˝ �in ; �j�.1/˝ � � � ˝ �j�.m/iF .H/

�
as a.�; �/ 2R

�
D ın;m

X
�2Sn

a.�; �/h�i1 ; �j�.1/iU � � � h�in ; �j�.m/iU :

This completes the proof.
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Note that xH k�kT DH . Following [8], for � 2H , consider the T -deformed left creation
and annihilation operators on FT .H / defined as follows:

l.�/ WD a.�/;

l�.�/ WD

´
a�.�/.1C T1 C T1T2 C � � � C T1T2 � � �Tn�1/; on H˝n;

0; on C�:

(15)

Then, l.�/ and l�.�/ admit bounded extensions to FT .H /, and we have the following.

Proposition 2.2. Let � 2 H . Then, the following hold:

(i) if kT kH˝H D q < 1, then kl.�/k � k�kU .1 � q/�
1
2 ;

(ii) l.�/ and l�.�/ are adjoints of each other on FT .H /.

Proof. The proof follows exactly along the same lines of [8, Thm. 3.1]. We omit the
details.

Following (15), the definition of l�.�/ involves the operator T . From (6), it follows
that the action of l�.�/ on FT .H / is as follows. Fix n 2 N, and �ik 2 H .ik/ for ik 2 N
and 1 � k � n. Then,

l�.�/� D 0;

l�.�/.�i1 ˝ � � � ˝ �in/

D

nX
kD1

h�; �ik iU qik ik�1 � � � qik i1.�i1 ˝ �i2 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �in/:

(16)

In the following lemma, we show that the T -deformed creation and annihilation oper-
ators on FT .H / satisfy the qij -commutation relations, which generalize the commutation
relations considered in [8, 16].

Lemma 2.3. Fix i; j 2 N and let � 2 H .i/; � 2 H .j /. Then,

l�.�/l.�/ � qij l.�/l
�.�/ D h�; �iU 1; (17)

where 1 is the identity operator on FT .H /.

Proof. By (8) and (15), it follows that

l�.�/l.�/� � qij l.�/l
�.�/� D l�.�/l.�/� D h�; �iU�:

Thus, it remains to check (17) on the n-particle spaces. Fix n 2 N, and let �ik 2 H .ik/ for
ik 2 N and 1 � k � n. By (15) and (16), it follows that

l�.�/l.�/.�i1 ˝ � � � ˝ �in/

D l�.�/.�˝ �i1 ˝ � � � ˝ �in/

D h�; �iU �i1 ˝ � � � ˝ �in

C

nX
kD1

h�; �ik iU qik ik�1 � � � qik i1qikj .�˝ �i1 ˝ �i2 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �in/:
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On the other hand,

l.�/l�.�/.�i1 ˝ � � � ˝ �in/

D

nX
kD1

h�; �ik iU qik ik�1 � � � qik i1.�˝ �i1 ˝ �i2 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �in/:

Therefore, l�.�/l.�/ � qij l.�/l�.�/ D h�; �iU 1 on simple tensors if and only if

qkj h�; �iU D qij h�; �iU 8� 2 H .k/; k 2 N: (18)

To verify (18), fix � 2 H .k/ for k 2 N . Indeed, if i ¤ k, then both sides of (18) are
equal to 0. Now, if i D k, then qkj D qij ; so both sides of (18) are equal to qij h�; �iU .
Hence, (17) holds on simple tensors. Therefore, it follows by a simple density argument
that (17) holds on n-particle spaces. This completes the proof.

Define
s.�/ WD l.�/C l�.�/ for � 2 HR: (19)

Consider the C �-algebra �T .HR; Ut / and the associated von Neumann algebra

�T .HR; Ut /
00
� B

�
FT .H /

�
generated by the self-adjoint operators ¹s.�/ W � 2HRº. In this paper, we are interested in
�T .HR; Ut /

00, and we call it the mixed q-deformed Araki–Woods von Neumann algebra.
Note that �T .HR;Ut /

00 (and hence �T .HR;Ut /) is equipped with a canonical vacuum
state ' given by '.�/ D h�; ��iT .

3. Standard form of �T .HR; Ut/
00

This section is concerned with the faithful representation of �T .HR; Ut /
00 on FT .H /.

We show that the GNS space of �T .HR; Ut /
00 associated with the canonical vacuum state

' is FT .H /, and hence, the identity representation of �T .HR; Ut /
00 on FT .H / is in

standard form. The modular theory of �T .HR; Ut /
00 associated with the vacuum state '

is an inevitable component for the further analysis of �T .HR; Ut /
00. In this section, we

also discuss the same, and subsequently we identify the commutant of �T .HR; Ut /
00. We

proceed as follows.
For � 2 H , let b.�/ and b�.�/ denote the canonical right creation and annihilation

operators acting on F .H / which are defined as follows:

b.�/� D �; b.�/.�1 ˝ � � � ˝ �n/ D �1 ˝ � � � ˝ �n ˝ �;

b�.�/� D 0; b�.�/.�1 ˝ �2 ˝ � � � ˝ �n/ D h�; �niU �1 ˝ � � � ˝ �n�1;
(20)

where �1 ˝ � � � ˝ �n 2 Hˇn for n � 1. The operators b.�/ and b�.�/ are bounded and
adjoints of each other on F .H /.
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Consider the unitary operator j W F .H /! F .H / defined as follows:

j� D �;

j.�1 ˝ � � � ˝ �n/ D �n ˝ � � � ˝ �1;
(21)

where �1 ˝ � � � ˝ �n 2 Hˇn for n � 1.

Lemma 3.1. The operator j extends to a unitary on FT .H /.

Proof. Fix n 2 N, and let �im 2 H .im/ for im 2 N; 1 � m � n. For k < n, one has

jTkj.�i1 ˝ � � � ˝ �in/

D jTk.�in ˝ � � � ˝ �i1/
�
by (21)

�
D j

�
1˝ � � � ˝ 1„ ƒ‚ …

k�1

˝ T ˝ 1˝ � � � ˝ 1„ ƒ‚ …
n�k�1

�
.�in ˝ � � � ˝ �i1/

�
by (9)

�
D jqi.n�k/i.n�kC1/.�in ˝ � � � ˝ �i.n�kC2/ ˝ �i.n�k/ ˝ �i.n�kC1/ ˝ �i.n�k�1/ ˝ � � � ˝ �i2 ˝ �i1/

D qi.n�k/i.n�kC1/.�i1˝ � � � ˝ �i.n�k�1/˝ �i.n�kC1/˝ �i.n�k/˝ �i.n�kC2/˝ � � � ˝ �i.n�1/˝ �in/

D Tn�k.�i1 ˝ � � � ˝ �in/: (22)

Therefore, by a simple density argument, it follows that jTkj D Tn�k on H˝n for all
k < n.

Consequently, it follows that there is an injection (and hence a bijection) Sn 3 � !
� 0 2 Sn such that

j�.�/j D �.� 0/; � 2 Sn:

Therefore,

jP .n/j D
X
�2Sn

j�.�/j
�
by (10)

�
D

X
� 02Sn

�.� 0/

D P .n/: (23)

Then, one has˝
j.�1 ˝ � � � ˝ �n/; j.�1 ˝ � � � ˝ �m/

˛
T

D ın;m
˝
j.�1 ˝ � � � ˝ �n/; P

.n/j.�1 ˝ � � � ˝ �m/
˛
F .H/

D ın;m
˝
j.�1 ˝ � � � ˝ �n/; .jP

.n/j /j.�1 ˝ � � � ˝ �m/
˛
F .H/

�
by (23)

�
D ın;m

˝
�1˝� � �˝�n; P

.n/.�1˝� � �˝�m/
˛
F .H/

�
since j 2Djj �Dj �j D1 on F .H /

�
D h�1 ˝ � � � ˝ �n; �1 ˝ � � � ˝ �miT

for �1 ˝ � � � ˝ �n 2 Hˇn, �1 ˝ � � � ˝ �m 2 Hˇm.
Hence, by a simple density argument, it follows that j extends to a unitary on FT .H /.
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The extension of j in Lemma 3.1 will be denoted by j again with slight abuse of
notation.

For � 2 H , consider the densely defined T -deformed right creation and annihilation
operators on FT .H / defined as follows:

r.�/Db.�/;

r�.�/D

´
b�.�/.1CTn�1CTn�1Tn�2C� � �CTn�1Tn�2 � � �T1/; on H˝n for n�1;

0; on C�:

(24)

Proposition 3.2. Let � 2 H . Then, r.�/; r�.�/ extend as bounded operators in FT .H /.
Denoting the extensions by the same symbols, the following hold:

(i) if kT kH˝H D q < 1, then kr.�/k � k�kU .1 � q/�
1
2 ;

(ii) r.�/ and r�.�/ are adjoints of each other on FT .H /.

Proof. For n � 1, on H˝n, define

Rn WD 1C T1 C T1T2 C � � � C T1T2 � � �Tn�1;

R0n WD 1C Tn�1 C Tn�1Tn�2 C � � � C Tn�1Tn�2 � � �T1:

By (22), it follows that jRnj D R0n on H˝n.
Note that, for �1 ˝ � � � ˝ �n 2 Hˇn, one has

jl.�/j.�1 ˝ � � � ˝ �n/ D jl.�/.�n ˝ � � � ˝ �1/ D j.� ˝ �n ˝ � � � ˝ �1/

D �1 ˝ � � � ˝ �n ˝ � D r.�/.�1 ˝ � � � ˝ �n/:

Therefore, it follows directly from Proposition 2.2 and Lemma 3.1 that r.�/ extends to
FT .H / as a bounded operator and jl.�/j D r.�/ on FT .H /.

Fix �1 ˝ � � � ˝ �n 2 Hˇn. Again, as j keeps F .H / invariant, one has

ja�.�/j.�1 ˝ � � � ˝ �n/ D ja
�.�/.�n ˝ � � � ˝ �1/

D j h�; �niU .�n�1 ˝ � � � ˝ �1/
�
see (8)

�
D h�; �niU .�1 ˝ � � � ˝ �n�1/

D b�.�/.�1 ˝ � � � ˝ �n/
�
see (20)

�
: (25)

Therefore, by (15),

jl�.�/j.�1 ˝ � � � ˝ �n/ D ja
�.�/Rnj.�1 ˝ � � � ˝ �n/

D ja�.�/jjRnj.�1 ˝ � � � ˝ �n/

D b�.�/R0n.�1 ˝ � � � ˝ �n/
�
see (25)

�
D r�.�/.�1 ˝ � � � ˝ �n/

�
see (24)

�
:

Arguing as in the previous case, it follows that jl�.�/j D r�.�/ on FT .H /.
The rest follows from Proposition 2.2. This completes the proof.
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Equation (24) entails that the definition of the right annihilation operator r�.�/ involves
the operator T . Following (6), note that for � 2 H , one has

r�.�/� D 0;

r�.�/.�i1 ˝ � � � ˝ �in/

D

nX
kD1

h�; �ik iU qik ikC1 � � � qik in�i1 ˝ �i2 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �in ;

(26)

where n 2 N and �ik 2 H .ik/ for ik 2 N , 1 � k � n.
Define

d.�/ WD r.�/C r�.�/ for � 2 H : (27)

Let � 2 H .i/, � 2 H .j / for i; j 2 N . Then, from Lemmas 2.3 and 3.1, one has

r�.�/r.�/ � qij r.�/r
�.�/ D jl�.�/jjl.�/j � qij jl.�/jjl

�.�/j

D jl�.�/l.�/j � qij jl.�/l
�.�/j

D j
�
l�.�/l.�/ � qij l.�/l

�.�/
�
j

D h�; �iU 1: (28)

For j 2 N , let

.H
.j /
R /0 D

®
� 2 H .j /

W h�; �iU 2 R for all � 2 HR

¯
:

Note that .H .j /
R /0 is a real subspace of H , and by the Hahn–Hellinger theorem, it follows

that

.H
.j /
R /0 C i.H

.j /
R /0

k�kU

D H .j /:

Define
H 0R D

M
j2N

.H
.j /
R /0: (29)

Lemma 3.3. Let B D ¹d.�/ W � 2 H 0Rº
00. Then, B � �T .HR; Ut /

0.

Proof. Let � 2 HR and � 2 H 0R. Let � D
L
i2N �

.i/ for �.i/ 2 H
.i/
R and � D

L
i2N �

.i/

for �.i/ 2 .H .i/
R /0, i 2 N , be the unique decompositions of � , �, respectively. We show

that Œd.�/; s.�/� D 0 on FT .H /.
If N D ¹1; : : : ; nº, n 2 N, from (19) and (27), it follows that s.�/ D

P
i2N s.�

.i//

and d.�/ D
P
i2N d.�

.i//. From Proposition 2.2 (resp., Proposition 3.2), it follows that
HR 3 � 7! s.�/ 2 �.HR; Ut /

00 (resp., H 0R 3 � 7! d.�/ 2 B) is k � kU to k � k continuous.
Hence, ifN DN, then s.�/D

P
i2N s.�

.i// and d.�/D
P
i2N d.�

.i// in strong operator
topology (s.o.t.) as well.

Therefore, we may assume without loss of generality that � 2 H
.t/
R and � 2 .H .r/

R /0

for t; r 2 N . Note that h�; �iU 2 R. From (19) and (27), it follows that

s.�/d.�/� D h�; �iU�C � ˝ �;
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while
d.�/s.�/� D h�; �iU�C � ˝ �:

Since h�; �iU 2 R, one has h�; �iU D h�; �iU . Therefore, Œd.�/; s.�/�� D 0.
Thus, it remains only to show that Œd.�/; s.�/�D 0 on the n-particle spaces of FT .H /.

Now, from (19) and (27), it follows that

d.�/s.�/ D r.�/l.�/C r.�/l�.�/C r�.�/l.�/C r�.�/l�.�/;

s.�/d.�/ D l.�/r.�/C l.�/r�.�/C l�.�/r.�/C l�.�/r�.�/:
(30)

Fix n 2 N. Let �ik 2 H .ik/ for ik 2 N , 1 � k � n. Let 
 WD �i1 ˝ � � � ˝ �in . From
(15) and (24), it follows that l.�/r.�/
 D r.�/l.�/
 . Therefore, by a simple density argu-
ment, it follows that l.�/r.�/D r.�/l.�/ on FT .H /. Hence, l�.�/r�.�/D r�.�/l�.�/ on
FT .H /. Therefore, from (30), it follows that to show Œd.�/; s.�/�
 D 0, it is enough to
show that �

l.�/r�.�/C l�.�/r.�/
�

 D

�
r.�/l�.�/C r�.�/l.�/

�

:

We proceed to show the same. First, let us note the following computations that follow
from (15), (16), (24) and (26). We have

l.�/r�.�/.�i1 ˝ � � � ˝ �in/

D

nX
kD1

h�; �ik iU qik ikC1 � � � qik in.� ˝ �i1 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �in/: (31)

Again,

l�.�/r.�/.�i1 ˝ � � � ˝ �in/

D l�.�/.�i1 ˝ � � � ˝ �in ˝ �/ D h�; �iU qrin � � � qri1.�i1 ˝ � � � ˝ �in/

C

nX
kD1

h�; �ik iU qik ik�1 � � � qik i1.�i1 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �in ˝ �/;

r.�/l�.�/.�i1 ˝ � � � ˝ �in/

D

nX
kD1

h�; �ik iU qik ik�1 � � � qik i1.�i1 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �in ˝ �/;

r�.�/l.�/.�i1 ˝ � � � ˝ �in/

D r�.�/.� ˝ �i1 ˝ � � � ˝ �in/ D h�; �iU qti1 � � � qtin.�i1 ˝ � � � ˝ �in/

C

nX
kD1

h�; �ik iU qik ikC1 � � � qik in.� ˝ �i1 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �in/:

From (31), it follows that .l.�/r�.�/ C l�.�/r.�//
 D .r.�/l�.�/ C r�.�/l.�//
 if
and only if

h�; �iU qti1 � � � qtin D h�; �iU qrin � � � qri1 : (32)
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We verify (32) below. First, assume that t ¤ r . Then, both sides of (32) are equal to 0.
Otherwise, since h�; �iU 2 R, both sides of (32) are equal to h�; �iU qrin � � � qri1 .

Therefore, we have Œd.�/; s.�/�
D0 for �2HR, �2H 0R. This completes the proof.

Lemma 3.4. (i) spanC¹�; s.�t1/ � � � s.�tn/� W �tk 2H
.tk/

R for tk 2 N; 1 � k � n; n 2Nº
is dense in FT .H /.

(ii) spanC¹�; d.�t1/ � � � d.�tn/� W �tk 2 .H
.tk/

R /0 for tk 2 N; 1 � k � n; n 2 Nº is
dense in FT .H /.

Proof. (i) First, we show that®
�t1 ˝ � � � ˝ �tn W �tk 2 H

.tk/

R ; 1 � k � n; n 2 N
¯

� spanC

®
�; s.�t1/ � � � s.�tn/� W �tk 2 H

.tk/

R for tk 2 N; 1 � k � n; n 2 N
¯
:

The proof is by induction. Let �tk 2 H
.tk/

R for 1 � k � n. The case n D 1 is trivial since
by (15) and (16), one has s.�t1/� D �t1 .

Suppose that the result is true for .n � 1/ with n � 2. Thus,

�t2 ˝ � � � ˝ �tn 2 spanC

®
�;s.�t1/ � � � s.�tn/� W �tk 2H

.tk/

R for tk 2N; 1� k � n; n 2N
¯
:

Note that

s.�t1/.�t2 ˝ � � � ˝ �tn/

D
�
l.�t1/C l

�.�t1/
�
.�t2 ˝ � � � ˝ �tn/

D �t1 ˝ �t2 ˝ � � � ˝ �tn C l
�.�t1/.�t2 ˝ � � � ˝ �tn/

�
by (15)

�
D �t1 ˝ �t2 ˝ � � � ˝ �tn

C

nX
kD2

h�t1 ; �tk iU qtk tk�1 � � � qtk t1.�t2 ˝ � � � ˝ �tk�1 ˝ �tkC1 ˝ � � � ˝ �tn/
�
by (16)

�
:

Therefore,

�t1 ˝ �t2 ˝ � � � ˝ �tn

D s.�t1/.�t2 ˝ � � � ˝ �tn/

�

nX
kD2

h�t1 ; �tk iU qtk tk�1 � � � qtk t1.�t2 ˝ � � � ˝ �tk�1 ˝ �tkC1 ˝ � � � ˝ �tn/: (33)

Note that the simple tensors in the right-hand side of (33) contain only .n � 1/ vectors.
Therefore, by the induction hypothesis, it follows that

�t1 ˝ �t2 ˝ � � � ˝ �tn

2 spanC

®
�; s.�t1/ � � � s.�tn/� W �tk 2 H

.tk/

R for tk 2 N; 1 � k � n; n 2 N
¯
:

Hence, the containment of the sets as claimed is established.
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Therefore, HˇmC � spanC¹�; s.�t1/ � � � s.�tn/� W �tk 2 H
.tk/

R º for all m � 0. The rest
follows by a straightforward density argument.

(ii) Proceeding analogously as in (i), it follows that®
�t1 ˝ � � � ˝ �tn W �tk 2 .H

.tk/

R /0; 1 � k � n; n 2 N
¯

� spanC

®
�; d.�t1/ � � � d.�tn/� W �tk 2 .H

.tk/

R /0 for tk 2 N; 1 � k � n; n 2 N
¯
:

Since .H .j /
R /0 C i.H

.j /
R /0

k�kU

D H .j / for j 2 N , by a simple density argument, it
follows that

spanC

®
�t1 ˝ � � � ˝ �tn W �tk 2 .H

.tk/

R /0; 1 � k � n; n 2 N
¯

is dense in spanC¹�t1 ˝ � � � ˝ �tn W �tk 2 H .tk/; 1 � k � n; n 2 Nº with respect to
k � kF .H/. Further, by an approximation argument, one has that

spanC

®
�t1 ˝ � � � ˝ �tn W �tk 2 H .tk/; 1 � k � n; n 2 N

¯
[ ¹C�º

is dense in F .H /. The rest is clear.

Proposition 3.5. The vacuum vector � is cyclic and separating for �T .HR; Ut /
00.

Proof. By Lemma 3.4 (i), one has that

spanC

®
�; s.�t1/ � � � s.�tn/� W �tk 2 H

.tk/

R ; tk 2 N; 1 � k � n; n 2 N
¯

is dense in F finite
T .H /. Therefore, it follows that � is cyclic for �T .HR; Ut /

00.
By Lemma 3.4 (ii), one has that

spanC

®
�; d.�t1/ � � � d.�tn/� W �tk 2 .H

.tk/

R /0; tk 2 N; 1 � k � n; n 2 N
¯

is dense in F finite
T .H /. Therefore, from Lemma 3.3, it follows that � is cyclic for the

commutant of �T .HR; Ut /
00 as well. Hence, � is cyclic and separating for �T .HR; Ut /

00.
This completes the proof.

Remark 3.6. The vacuum state ' is faithful on �T .HR; Ut /
00, and the identity represen-

tation of �T .HR; Ut /
00 on FT .H / is the GNS representation with respect to '.

Remark 3.7. (1) If Ut D I for all t 2 R, and HR D
L
i2N R, then �T .HR; Ut /

00 is the
mixed q-Gaussian von Neumann algebra constructed in [8].

(2) Consider the decomposition HR WD
L
i2N H

.i/
R in (5), and let �1 < qij D q D

qj i < 1 for i; j 2 N . Then, the above construction reduces to the construction in [16], and
if q D 0, then the construction reduces to the construction in [26].

The remaining part of this section is devoted for describing the modular theory of
�T .HR;Ut /

00 associated with the vacuum state '. Before discussing the same, we prepare
ourselves with some useful lemmas. We proceed as follows.
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Fix t 2 R. Note that the second quantization F .Ut /, defined on the full Fock space
F .H / by

F .Ut /� D �;

F .Ut /.�1 ˝ � � � ˝ �n/ D .Ut�1/˝ � � � ˝ .Ut�n/ for �1 ˝ � � � ˝ �n 2 Hˇn; n 2 N;

is unitary on F .H /.

Lemma 3.8. For t 2 R, the operator F .Ut / extends to a unitary on FT .H /.

Proof. By the definition of T in (6), it is easy to verify that .Ut ˝ Ut /T D T .Ut ˝ Ut /
on H .i/ ˝H .j / for i; j 2 N , t 2 R. This implies that .Ut ˝ Ut /T D T .Ut ˝ Ut / on
H ˝H for all t 2 R. Thus, it follows that Ti commutes with

Ut ˝ Ut ˝ � � � ˝ Ut„ ƒ‚ …
iC1

on H˝.iC1/ for all i 2 N, t 2 R (see (9)). Therefore, P .n/ commutes with

Ut ˝ Ut ˝ � � � ˝ Ut„ ƒ‚ …
n

for all n 2 N and t 2 R as �.1/ D 1.
Fix t 2 R and n;m 2 N. For �1 ˝ � � � ˝ �n 2 Hˇn, �1 ˝ � � � ˝ �m 2 Hˇm, one has˝

F .Ut /.�1 ˝ � � � ˝ �n/; F .Ut /.�1 ˝ � � � ˝ �m/
˛
T

D ın;m
˝
Ut�1 ˝ � � � ˝ Ut�n; P

.n/.Ut�1 ˝ � � � ˝ Ut�m/
˛
F .H/

�
by (11)

�
D ın;m

˝
Ut�1 ˝ � � � ˝ Ut�n; .Ut ˝ � � � ˝ Ut /P

.n/.�1 ˝ � � � ˝ �m/
˛
F .H/

D ın;m
˝
�1 ˝ � � � ˝ �n; P

.n/.�1 ˝ � � � ˝ �m/
˛
F .H/

D h�1 ˝ � � � ˝ �n; �1 ˝ � � � ˝ �miT :

Therefore, F .Ut / extends to a unitary on FT .H / for all t 2 R. This completes the proof.

We will denote the unitary extension of F .Ut / on FT .H / by FT .Ut /, t 2 R.

Lemma 3.9. For n � 1, the following assertions hold:

(1) the operator Aˇn W .D.A//ˇn � H˝
n
T ! H˝

n
T defined by

Aˇn.�1 ˝ � � � ˝ �n/ D A.�1/˝ � � � ˝ A.�n/;

�i 2D.A/ for 1 � i � n, is positive and symmetric;

(2) let A˝
n
T be the closure of Aˇn on H˝

n
T . Then, A˝

n
T is positive and self-adjoint;

(3) for k 2 N, .A˝
n
T /

1
k D .A

1
k /˝

n
T .
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Proof. Firstly, for n D 1, there is nothing to prove. So, fix n � 2.
(i) Note that P .n/ is a positive bounded operator on H˝n (see [8, Thm. 2.3]). Since A

leaves H .i/ invariant for i 2 N , by the definition of T in (6), it follows that T .Aˇ A/ �
.Aˇ A/T on D.A/ˇD.A/. Then, by (10), one has

P .n/Aˇn � AˇnP .n/ on
�
D.A/

�ˇn
:

Note thatAˇn is preclosed in H˝n. DenotingA˝n to be the closure ofAˇn on H˝n, it fol-
lows thatA˝nP .n/ is a densely defined closed operator on H˝n. Since .D.A//ˇn is a core
for A˝n, it follows that P .n/A˝n � A˝nP .n/ on H˝n. Therefore, by [28, Exer. E.9.21],
it follows that

P .n/A˝n D A˝nP .n/ on H˝n:

Next, we show that A˝nP .n/ is positive and self-adjoint on H˝n. Since P .n/A˝n �
A˝nP .n/, it is easy to verify that p.P .n//A˝n � A˝np.P .n// for every polynomial p
on �.P .n//. Let ¹pmº be a sequence of polynomials such that pm.0/ D 0 for all m and
pm.�/! �

1
2 uniformly on �.P .n// as m!1. Let � 2D.A˝n/. Then, one has

.P .n//
1
2A˝n� D lim

m!1
pm.P

.n//A˝n�

D lim
m!1

A˝npm.P
.n//�

D A˝n.P .n//
1
2 �

since limm!1 pm.P
.n//� D .P .n//

1
2 � and A˝n is closed. Therefore,

.P .n//
1
2A˝n � A˝n.P .n//

1
2 :

Since A˝n is positive, one has

h�; P .n/A˝n�iF .H/ D
˝
.P .n//

1
2 �; .P .n//

1
2A˝n�

˛
F .H/

D
˝
.P .n//

1
2 �; A˝n.P .n//

1
2 �
˛
F .H/

� 0; � 2D.A˝n/:

Thus, P .n/A˝n is positive. This implies that P .n/A˝n D A˝nP .n/ is positive and hence
symmetric.

Now, since P .n/A˝n � A˝nP .n/ and A˝nP .n/ is symmetric, one has

.A˝nP .n//� � .P .n/A˝n/�
�
by [28, p. 191]

�
D .A˝n/�.P .n//�

�
by [28, §9.2]

�
D A˝nP .n/

� .A˝nP .n//�:

Therefore, A˝nP .n/ is self-adjoint as well.
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Let C WD P .n/A˝n and � 2 .D.A//ˇn. Then, one has

h�; Aˇn�iT D h�; P
.n/A˝n�iF .H/

D h�; C �iF .H/

D hC
1
2 �; C

1
2 �iF .H/

� 0:

Thus, (i) in the statement follows.
(ii) Since by (i), Aˇn is densely defined, positive and symmetric on H˝

n
T , it follows

that Aˇn is closable (on H˝
n
T ) and A˝

n
T is also densely defined. Hence, A˝

n
T is positive

and symmetric.
From Lemma 3.8, it follows that

R 3 t 7! FT .Ut /
�H
˝n
T

is a strongly continuous one-parameter group of unitaries on H˝
n
T . Let B denote the

analytic generator of .FT .Ut /
�H
˝n
T
/t2R. Note that Aˇn � A˝

n
T � B . Since D.Aˇn/ is a

core for both A˝
n
T and B , and both A˝

n
T and B are closed, one has that A˝

n
T D B . Since

B is self-adjoint on H˝
n
T (by Stone’s Theorem), one has that A˝

n
T is also self-adjoint.

This completes the proof.
(iii) Replacing the role of A by A

1
k in (ii), one has that .A

1
k /˝

n
T is positive and self-

adjoint on H˝
n
T . Therefore, by functional calculus, it follows that ..A

1
k /˝

n
T /k is positive

and self-adjoint. Note that

Aˇn D .A
1
k /ˇn � � � .A

1
k /ˇn„ ƒ‚ …

k times

�
�
.A

1
k /˝

n
T
�k
:

Hence, one has A˝
n
T � ..A

1
k /˝

n
T /k . Therefore, by (ii) and [28, Exer. E.9.28], it follows

that A˝
n
T D ..A

1
k /˝

n
T /k . Hence, it follows by the uniqueness of the k-th root of A˝

n
T that

.A˝
n
T /

1
k D .A

1
k /˝

n
T . This completes the proof.

Lemma 3.10. Fix n 2 N, and let �tk 2 H
.tk/

R for tk 2 N , 1 � k � n. Then,

s.�t1/s.�t2/ � � � s.�tn/�

D

X
�D¹¹i.r/;j.r/º1�r�l ;¹k.p/º1�p�mº

f�.qij /

� lY
rD1

h�ti.r/ ; �tj.r/iU

��
�tk.1/˝ � � � ˝ �tk.m/

�
; (34)

where the summation is over all partitions

� D
®
¹i.r/; j.r/º1�r�l ; ¹k.p/º1�p�m

¯
of ¹1; : : : ; nº having blocks of one or two elements such that

l; m � 0; 2l Cm D n; i.r/ < j.r/ for 1 � r � l; k.1/ < � � � < k.m/;
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and f�.qij / is given by

f�.qij / D
� Y
�.1/D¹.r;s/W1�r; s�l; i.r/<i.s/<j.r/<j.s/º

q.tj.r/; tj.s//
�

�

� Y
�.2/D¹.r;p/W1�r�l; 1�p�m; i.r/<k.p/<j.r/º

q.tk.p/; tj.r//
�
:

Proof. The proof is by induction on n. The case n D 1 is trivial. Suppose the formula
holds for n � 1. Therefore, we have

s.�t2/ � � � s.�tn/�

D

X
�D¹¹i.r/;j.r/º1�r�l ;¹k.p/º1�p�mº

f�.qij /

 
lY

rD1

h�ti.r/ ; �tj.r/iU

!�
�tk.1/ ˝ � � � ˝ �tk.m/

�
;

where � runs over the partitions of ¹2; : : : ; nº as specified in the statement (with 2l CmD
n � 1). Then, we compute

s.�t1/ � � � s.�tn/�

D

X
�

f�.qij /

 
lY

rD1

h�ti.r/ ; �tj.r/iU

!
�t1 ˝ �tk.1/ ˝ � � � ˝ �tk.m/

C

X
�

mX
uD1

f�.qij /q.tk.u/; tk.u�1// � � � q.tk.u/; tk.1//

�

 
h�t1 ; �tk.u/iU

lY
rD1

h�ti.r/ ; �tj.r/iU

!
�tk.1/ ˝ � � � ˝ �tk.u�1/ ˝ �tk.uC1/ ˝ � � � ˝ �tk.m/ :

For each partition � D ¹¹i.r/; j.r/º1�r�l ; ¹k.p/º1�p�mº of ¹2; : : : ; nº in the above,
we consider the following partitions of ¹1; : : : ; nº:

�0 WD
®®
i.r/; j.r/

¯
1�r�l

; ¹1º;
®
k.p/

¯
1�p�m

¯
;

�u WD
®®
1; k.u/

¯
;
®
i.r/; j.r/

¯
1�r�l

;
®
k.p/

¯
1�p�m;p¤u

¯
for 1 � u � m:

It is clear that the partitions of ¹1; : : : ; nº obtained above exhaust all partitions of
¹1; : : : ; nº as described in the statement of the lemma. Moreover, it is easy to see that

f�0.qij / D f�.qij /;

f�u.qij / D f�.qij /q.tk.u/; tk.u�1// � � � q.tk.u/; tk.1// for 1 � u � m:

Hence, we obtain the desired formula for n. This completes the proof.

Using Lemma 3.10, for n 2N, the value of ' at s.�t1/s.�t2/ � � � s.�tn/, for �tk 2H
.tk/

R ,
tk 2 N , 1 � k � n, is given by

'
�
s.�t1/s.�t2/ � � � s.�tn/

�
D

´
0; if n is odd;P
� g�.qij /

Qn=2
rD1h�ti.r/ ; �tj.r/iU ; if n is even;

(35)
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where the summation is over all pair partitions � D ¹i.r/; j.r/º1�r�n=2 of ¹1; : : : ; nº with
i.r/ < j.r/, and g�.qij / is given by

g�.qij / D
Y

i.�/D¹.r;s/W1�r;s�n=2; i.r/<i.s/<j.r/<j.s/º

q.tj.r/; tj.s//:

From Lemma 3.8, it follows that R 3 t 7! FT .Ut / defines a strongly continuous uni-
tary representation of R on FT .H /. Notice that

FT .Ut /s.�/FT .Ut /
�
D s.Ut�/ for � 2 HR and t 2 R: (36)

Hence, �t D Ad.FT .U�t //, t 2 R, defines a strongly continuous one-parameter group of
automorphisms on �T .HR; Ut /

00.

Definition 3.11 ([19, Def. 9.2.10]). A one-parameter group ¹˛t W t 2 Rº of �-automor-
phisms of a von Neumann algebra M satisfies the KMS (modular) condition relative to
a normal state  of M if, given any elements x and y of M , there is a complex-valued
function f , bounded and continuous on the strip ¹z 2 C W 0 � Im.z/ � 1º, and analytic
on the interior of that strip, such that

f .t/ D  
�
˛t .x/y

�
; f .t C i/ D  

�
y˛t .x/

�
for t 2 R:

In fact, it is possible to drop the condition of “boundedness” of the function in Defini-
tion 3.11 (see [9, Prop. 5.3.7]).

Theorem 3.12. The one-parameter group ¹�t W t2Rº of �-automorphisms of �T .HR;Ut/
00

is the modular automorphism group of ', and therefore it satisfies the KMS condition with
respect to '.

Proof. Note that if �; � 2 HR are analytic for .Ut /t2R, then

'
�
�t
�
s.�/

�
s.�/

�
D
˝
�; �t

�
s.�/

�
s.�/�

˛
U

D
˝
�; s.U�t�/s.�/�

˛
U

D
˝
s.U�t�/�; s.�/�

˛
U

D hU�t�; �iU

D h�; Ut�iU ; t 2 R:

On the other hand,
'
�
s.�/�t

�
s.�/

��
D hUt�; �iU ; t 2 R:

Let 	 D ¹z 2 C W 0 � Im.z/ � 1º. Let F�;� W 	 ! C be the function defined as

F�;�.z/ D h�; Uz�iU ; z 2 	:

Then, F�;� is continuous in 	 and analytic in the interior of 	. Clearly,

F�;�.t/ D '
�
�t
�
s.�/

�
s.�/

�
for all t 2 R:
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Further,

F�;�.t C i/ D h�; UtCi�iU

D h�; UiUt�iU

D h�; A�1Ut�iU

D hUt�; �iU
�
by (2)

�
D '

�
s.�/�t

�
s.�/

��
; t 2 R:

Let �tk 2 H
.tk/

R for tk 2 N , 1 � k � n, n 2 N, be analytic vectors of .Ut /t2R on H .
Let x D s.�t1/s.�t2/ � � � s.�tm/ and y D s.�tmC1/s.�tmC2/ � � � s.�tn/ for 1 � m < n. From
(35), it follows that

'
�
�t .x/y

�
D '

�
s.U�t�t1/s.U�t�t2/ � � � s.U�t�tm/s.�tmC1/s.�tmC2/ � � � s.�tn/

�
D

´
0; if n is odd;P
� g�.qij /

Qn=2
rD1h�ti.r/ ; �tj.r/iU ; if n is even;

where the summation is over all pair partitions � D ¹i.r/; j.r/º1�r�n=2 of ¹1; : : : ; nº with
i.r/ < j.r/ and �tp DU�t�tp for pD 1; : : : ;m, and �tp D �tp for pD .mC 1/; : : : ; n. The
summand corresponding to each � in the summation above is non-zero only if ti.r/ D tj.r/
for r D 1; : : : ; n

2
.

With each partition � D ¹i.r/; j.r/º1�r�n=2 of ¹1; : : : ; nº with i.r/ < j.r/, we asso-
ciate a new partition �0 D ¹.i 0.r/; j 0.r// WD .i.r/ � .n � m/; j.r/ � .n � m//º1�r�n=2,
where the arithmetic is performed modulo n. Thus, again from (35), one has

'.y�t .x// D '
�
s.�tmC1/s.�tmC2/ � � � s.�tn/s.U�t�t1/s.U�t�t2/ � � � s.U�t�tm/

�
D

´
0; if n is odd;P
�0 g�0.qij /

Qn=2
rD1h�

0
ti 0.r/

; �0tj 0.r/iU ; if n is even;
(37)

where �0tp D U�t�tp for p D 1; : : : ;m, and �0tp D �tp for p D .mC 1/; : : : ; n, and g�0.qij /
is given by

g�0.qij / D
Y

i.�/D¹.r;s/W1�r; s�n=2; i.r/<i.s/<j.r/<j.s/º

q.tj 0.r/; tj 0.s//:

As before, the summand corresponding to each �0 in the summation above is non-zero
only if ti 0.r/ D tj 0.r/ for r D 1; : : : ; n

2
.

Let fx;y W 	 ! C be the function defined as

fx;y.z/ D

´
0; if n is odd;P
� g�.qij /

Qn=2
rD1h�ti.r/ ; �tj.r/iU ; if n is even;

(38)

where the summation is over all pair partitions � D ¹i.r/; j.r/º1�r�n=2 of ¹1; : : : ; nº with
i.r/ < j.r/ and �tp D U�Nz�tp for p D 1; : : : ; m, and �tp D �tp for p D .mC 1/; : : : ; n.
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Since the term corresponding to each partition � in (38) is non-zero only if ti.r/ D tj.r/
for r D 1; : : : ; n

2
, and U �z D U�Nz for all z 2 C, from the first part of the argument above

and (37), it follows that

fx;y.t/ D '
�
�t .x/y

�
; fx;y.t C i/ D '

�
y�t .x/

�
; t 2 R:

By applying an argument analogous to [1, Prop. 2.5] to each H
.i/
R for i 2 N , one can

construct an orthonormal basis Oi WD ¹�
.i/
j W 1 � j � dim.H .i/

R /º of H
.i/
R with respect to

h�; �iHC consisting of analytic vectors from H
.i/
R , i 2 N , with respect to the strongly con-

tinuous one-parameter group .Ut /t2R on H . Consequently, O D
S
i2N Oi is an orthonor-

mal basis of HR consisting of analytic vectors and orthogonal with respect to h�; �iHC .
Proposition 2.2 yields that if HR 3 �n ! � 3 HR in k � kU (equivalently in k � kHC ),

then s.�n/ ! s.�/ in k � k. Therefore, vN.s.�i / W �i 2 O/ D �T .HR; Ut /
00. Hence, the

�-algebra A D spanC¹s.�j1/ � � � s.�jn/ W �jk 2 O; 1 � k � n; n 2 Nº is s.o.t. dense in
�T .HR; Ut /

00.
The above argument shows that for x; y 2 A, the KMS condition holds. Further, '

is faithful as � is separating for �T .HR; Ut /
00 (see Remark 3.6). Consequently, from

[19, Lem. 9.2.17], the result follows. This completes the proof.

3.1. Modular theory

Following the standard notations in modular theory, let S' be the closure of the operator
x� 7! x�� for x 2 �T .H ; Ut /

00, and let �' , J' be the associated modular operator and
Tomita’s modular conjugation, respectively.

From Theorem 3.12, it follows that �'t D �t D Ad.FT .U�t //��T .HR;Ut /
00 , t 2 R,

where .�'t / denotes the modular automorphism group of �T .HR; Ut /
00 associated with

the vacuum state '. Further, from (36), one has

�
'
t

�
s.�/

�
D s.U�t�/ for all � 2 HR and t 2 R: (39)

Let x 2 �T .HR; Ut /
00. Then,

.�'/
itx� D .�'/

itx.�'/
�it�

D �
'
t .x/�

D FT .U�t /xFT .U�t /
��

D FT .U�t /x�; t 2 R:

Since � is cyclic for �T .HR; Ut /
00, one has

.�'/
it
D FT .U�t / for all t 2 R on FT .H /: (40)

Theorem 3.13. For each n > 1, the following assertions hold:

(i) S'.�1 ˝ � � � ˝ �n/ D �n ˝ � � � ˝ �1 for �1; : : : ; �n 2 HR;

(ii) �'.�1 ˝ � � � ˝ �n/ D A
�1�1 ˝ � � � ˝ A

�1�n for �1; : : : ; �n 2 HR \D.A�1/;



Mixed q-deformed Araki–Woods von Neumann algebras 1253

(iii) �' restricted on D.�'/ \H˝
n
T is the closure .A�1/˝

n
T of .A�1/ˇn on H˝

n
T ;

(iv) J'.�1 ˝ � � � ˝ �n/ D A
� 12 �n ˝ � � � ˝ A

� 12 �1 for �1; : : : ; �n 2 HR \D.A�
1
2 /.

Proof. (i) Fix n 2 N. Let �tk 2 H
.tk/

R for tk 2 N , 1 � k � n. First, we show that

S'.�t1 ˝ � � � ˝ �tn/ D �tn ˝ � � � ˝ �t1 :

The proof is by induction on n. For n D 1, the formula is true since

S'�t1 D S'
�
s.�t1/�

�
D s.�t1/� D �t1 :

Suppose that the formula is true up to n � 1. From Lemma 3.10, it follows that �t1 ˝
� � � ˝ �tn 2D.S'/. This is because in (34), there is a single simple tensor of length n, and
all other simple tensors are of order less than n.

By applying S' to (34), we get

s.�tn/ � � � s.�t1/�

D S'.�t1 ˝ � � � ˝ �tn/

C

X
�D¹¹i.r/;j.r/º1�r�l ;¹k.p/º1�p�mº

f�.qij /

� lY
rD1

h�tj.r/ ; �ti.r/iU

��
�tk.m/˝ � � � ˝ �tk.1/

�
; (41)

where 2l Cm D n and l > 1.
Next, applying Lemma 3.10 to the reverse sequence �tn ; : : : ; �t1 , we get

s.�tn/ � � � s.�t1/�

D �tn ˝ � � � ˝ �t1

C

X
�D¹¹i.r/;j.r/º1�r�l ;¹k.p/º1�p�mº

f�.qij /

� lY
rD1

h�tj.r/ ; �ti.r/iU

��
�tk.m/˝ � � � ˝ �tk.1/

�
; (42)

where 2l Cm D n and l > 1.
Comparing (41) and (42) yields the desired formula for n.
Now, since every � 2HR has a unique decomposition � WD

L
i2N �

.i/ for �.i/ 2H
.i/
R ,

S' is closed and j is unitary on FT .H / by Lemma 3.1, (i) follows by a simple density
argument.

(ii) Fix n 2 N. Let �1; : : : ; �n; �1; : : : ; �n 2 HR \D.A�1/. Following [26], we have˝
�1 ˝ � � � ˝ �n; S'.�n ˝ � � � ˝ �1/

˛
F .H/

D h�1 ˝ � � � ˝ �n; �1 ˝ � � � ˝ �niF .H/

D

nY
kD1

h�k ; �kiU D

nY
kD1

h�k ; A
�1�kiU

�
by (2)

�
D h�n ˝ � � � ˝ �1; A

�1�n ˝ � � � ˝ A
�1�1iF .H/: (43)
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Arguing as in Lemma 3.9, it is easy to show that T .A�1ˇA�1/� .A�1ˇA�1/T on
D.A�1/ˇD.A�1/. Then, for k<n, one has Tk..A�1/ˇn/�..A�1/ˇn/Tk on D.A�1/ˇn.
Hence, from (10), it follows thatP .n/..A�1/ˇn/� ..A�1/ˇn/P .n/ on D.A�1/ˇn. There-
fore, ˝

�1 ˝ � � � ˝ �n; S'.�n ˝ � � � ˝ �1/
˛
T

D
˝
�1 ˝ � � � ˝ �n; P

.n/S'.�n ˝ � � � ˝ �1/
˛
F .H/

D
˝
P .n/.�1 ˝ � � � ˝ �n/; S'.�n ˝ � � � ˝ �1/

˛
F .H/

D
˝
�n ˝ � � � ˝ �1; .A

�1/ˇnjP .n/.�1 ˝ � � � ˝ �n/
˛
F .H/

.by (43)/

D
˝
�n ˝ � � � ˝ �1; .A

�1/ˇnjP .n/j 2.�1 ˝ � � � ˝ �n/
˛
F .H/

.since j 2 D 1/

D
˝
�n ˝ � � � ˝ �1; .A

�1/ˇnP .n/.�n ˝ � � � ˝ �n/
˛
F .H/

(by (23))

D
˝
�n ˝ � � � ˝ �1; P

.n/.A�1�n ˝ � � � ˝ A
�1�1/

˛
F .H/

D h�n ˝ � � � ˝ �1; A
�1�n ˝ � � � ˝ A

�1�1iT :

Since spanC¹¹�1 ˝ � � � ˝ �m W �i 2HR \D.A�1/; 1 � i � m; m 2 Nº [C�º is a core
of S' , it follows that �1 ˝ � � � ˝ �n 2D.S�' / and

S�' .�1 ˝ � � � ˝ �n/ D A
�1�n ˝ � � � ˝ A

�1�1:

Again, since �' D S�'S' , one has

�'.�1 ˝ � � � ˝ �n/ D S
�
'S'.�1 ˝ � � � ˝ �n/ D S

�
' .�n ˝ � � � ˝ �1/

�
by (i)

�
D A�1�1 ˝ � � � ˝ A

�1�n:

Therefore, (ii) holds.
(iii) Fix n2N. In (ii), we have noted thatP .n/.A�1/ˇn�.A�1/ˇnP .n/ on D.A�1/ˇn.

Therefore, replacing the role of A with A�1 in the proof of Lemma 3.9, one has that
.A�1/˝

n
T is a densely defined positive self-adjoint operator on H˝

n
T .

Let Pn W FT .H /! H˝
n
T denote the orthogonal projection. Since H˝

n
T is invariant

under FT .U�t /, t 2 R, from (40), it follows that .�'/itPn D FT .U�t /Pn for t 2 R and
�'Pn is the analytic generator of the strongly continuous group R3t 7!FT .U�t/ on H˝

n
T .

From (ii), it follows that .A�1/˝
n
T � �'Pn. By [28, Exer. E.9.28], it follows that

.A�1/˝
n
T D �'Pn.

(iv) First, note that replacing the role of A by A�1 in Lemma 3.9 (iii), one has

..A�1/˝
n
T /

1
k D .A�

1
k /˝

n
T for k; n 2 N:

Let �1; : : : ; �n 2 HR \D.A�
1
2 /. Then,

J'.�1 ˝ � � � ˝ �n/ D J'S'.�n ˝ � � � ˝ �1/
�
by .i/

�
D �

1
2
' .�n ˝ � � � ˝ �1/ .since J'S' D �

1
2
' /

D A�
1
2 �n ˝ � � � ˝ A

� 12 �1;
�
since

�
.A�1/˝

n
T
� 1
2 D .A�

1
2 /˝

n
T
�
:

This completes the proof.
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3.2. Commutant

With the help of J' , we proceed to describe the commutant of �T .HR; Ut /
00. Let � 2

D.A�
1
2 / \ HR, and let � WD

L
i2N �

.i/ for �.i/ 2 H
.i/
R be the unique decomposition

of �. Since H
.i/
R is invariant for .Ut /t2R, by the Hahn–Hellinger theorem, it follows that

�.i/ 2D.A�
1
2 / \HR for all i 2 N , and

A�
1
2 � D

M
i2N

A�
1
2 �.i/;

where the direct sum is taken with respect to h�; �iU . Then, for i 2 N , by using (1), one
has

hA�
1
2 �.i/; �iU D

�
2A�

1
2

1C A�1
�.i/; �

�
HC

D

�
�;J

2A�
1
2

1C A�1
�.i/

�
HC

D

�
�;

2A
1
2

1C A
�.i/

�
HC

D

�
2

1C A�1
�;A�

1
2 �.i/

�
HC

D h�;A�
1
2 �.i/iU ; � 2 HR: (44)

From (29) and (44), it follows that

A�
1
2 � 2 H 0R for all � 2D.A�

1
2 / \HR: (45)

Also, for �; � 2D.A�1/ \HR, it follows from (2) that

h�; �iU D h�; A
�1�iU D hA

� 12 �; A�
1
2 �iU

�
as D.A�1/ �D.A�

1
2 /
�
: (46)

The next result describes the commutant of �T .HR; Ut /
00, and the proof is an adapta-

tion of [1, Thm. 2.4] to the current setting.

Theorem 3.14. Let � 2D.A�1/ \HR. Then, J's.�/J' D d.A�
1
2 �/. Moreover,

�T .HR; Ut /
0
D
®
d.�/ W � 2 H 0R

¯00
:

Proof. Fix n 2 N. Let

�ik 2 H
.ik/

R \D.A�1/ for ik 2 N; 1 � k � n:

Let 
k D qik ik�1 � � � qik i1 for 1 � k � n. By Theorem 3.13, one has

J's.�/.�i1 ˝ � � � ˝ �in/

D J'

 
nX
kD1

h�; �ik iU 
k �i1 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �in

!
C J'.� ˝ �i1 ˝ �i2 ˝ � � � ˝ �in/

D

nX
kD1

h�ik ; �iU 
k A
� 12 �in ˝ � � � ˝ A

� 12 �ikC1 ˝ A
� 12 �ik�1 ˝ � � � ˝ A

� 12 �i1

C A�
1
2 �in ˝ � � � ˝ A

� 12 �i1 ˝ A
� 12 �

�
since D.A�1/ �D.A�

1
2 /
�
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D

nX
kD1

h�; A�1�ik iU 
k A
� 12 �in ˝ � � � ˝ A

� 12 �ikC1 ˝ A
� 12 �ik�1 ˝ � � � ˝ A

� 12 �i1

C A�
1
2 �in ˝ � � � ˝ A

� 12 �i1 ˝ A
� 12 �

�
by (46)

�
D

nX
kD1

hA�
1
2 �; A�

1
2 �ik iU 
k A

� 12 �in ˝ � � � ˝ A
� 12 �ikC1 ˝ A

� 12 �ik�1 ˝ � � � ˝ A
� 12 �i1

C A�
1
2 �in ˝ � � � ˝ A

� 12 �i1 ˝ A
� 12 �

�
since D.A�1/ �D.A�

1
2 /
�

D d.A�
1
2 �/J'.�i1 ˝ �i2 ˝ � � � ˝ �in/:

Since D.A�1/ \H
.i/
R is dense in H

.i/
R for i 2 N , it follows that J's.�/J' D d.A�

1
2 �/.

By the fundamental theorem of the Tomita–Takesaki theory, we have

�T .HR; Ut /
0
D J'�T .HR; Ut /

00J' :

From (45), it follows that A�
1
2 � 2 H 0R for all � 2 D.A�

1
2 / \HR. By what we have

proved so far, it follows that ¹J's.�/J' W � 2D.A�1/\HRº � ¹d.�/ W � 2 H 0Rº
00. From

Proposition 2.2, it follows that if HR 3 �n ! � 2 HR in k � kU (equivalently in k � kHC ),
then s.�n/! s.�/ in k � k. Since D.A�1/ \HR is dense in HR, it follows that

�T .HR; Ut /
0
� ¹d.�/ W � 2 H 0Rº

00:

The reverse inclusion follows from Lemma 3.3. This completes the proof.

3.3. Notations and facts

In order to reduce notations, in the remaining sections, we will denote �T .HR; Ut /
00 by

MT , J' by J and �' by �, respectively. Also, we will denote the center of MT by
Z.MT / and the centralizer of MT associated with the state ' by M '

T , respectively; i.e.,
Z.MT / DMT \M

0
T , and M '

T D ¹x 2MT W �
'
t .x/ D x 8t 2 Rº.

Since � is separating for both MT and M 0T , for � 2MT� and � 2M 0T�, there exist
unique x� 2 MT and x0� 2 M

0
T such that � D x�� and � D x0��. In this case, we will

write
s.�/ D x� and d.�/ D x0�:

For example, as � 2 MT� for every � 2 HR, one has s.� C i�/ D s.�/C is.�/ for all
�; � 2 HR.

4. Generator algebrasM�

In this section, we investigate the subalgebra M� of MT generated by the single self-
adjoint variable s.�/ for � 2 HR. We show that for �0 2 H

.i0/
R , i0 2 N , with k�0kU D 1

and Ut�0 D �0 for all t 2 R, the associated subalgebra M�0 of MT is a '-strongly mixing
masa in MT . Needless to say, such a masa is singular.
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Fix i 2 N , n 2 N. Let �0 2 H
.i/
R , with k�0kU D 1. From (35), it follows that the

moments of the operator s.�0/ with respect to the vacuum state ' are

'
��
s.�0/

�n�
D

´
0; if n is odd;P
�D¹i.r/;j.r/º1�r�n=2

.qi i /
c.�/; if n is even;

(47)

where the summation is over all pair partitions � D ¹i.r/; j.r/º1�r�n=2 of ¹1; : : : ; nº with
i.r/ < j.r/ and c.�/ is the number of crossings of �; i.e.,

c.�/ D #
®
.r; s/ W i.r/ < i.s/ < j.r/ < j.s/

¯
:

Note that (47) shows that the distribution of the single generator s.�0/ does not depend
on the one-parameter group .Ut /t2R. Therefore, as in the tracial case in [8], the distribu-
tion of the self-adjoint operator s.�0/ for �0 2 H

.i/
R , i 2 N , obeys the semi-circular law

�qi i which is absolutely continuous with respect to the uniform measure supported on the
interval Œ� 2p

1�qi i
; 2p

1�qi i
�. Thus, M�0 Š L

1.Œ� 2p
1�qi i

; 2p
1�qi i

�; �qi i /, and hence, M�0

is diffuse. The associated orthogonal polynomials, namely, the qi i -Hermite polynomials,
will be denoted by H qi i

n , n � 0.
The next lemma provides the descriptions of s.�t1 ˝ � � � ˝ �tn/ (resp., d.�t1 ˝ � � � ˝

�tn/) for �tk 2H
.tk/

C (resp., �tk 2 .H
.tk/

R /0C i.H
.tk/

R /0), tk 2N , 1� k � n, in terms of the
operators l.�tk / and l�.�tk / (resp., r.�tk / and r�.�tk /). Similar formulas in the literature
are known as the Wick product formulas.

Lemma 4.1. Fix n 2N. Let �tk 2H
.tk/

C , �tk 2 .H
.tk/

R /0C i.H
.tk/

R /0 for tk 2N , 1� k � n.
Then,

(i) Then, one has

s.�t1 ˝ � � � ˝ �tn/

D

X
l;m�0
lCmDn

X
zID¹i.1/;:::;i.l/º; i.1/<���<i.l/
zJD¹j.1/;:::;j.m/º; j.1/<���<j.m/

zI[ zJD¹1;:::;nº
zI\ zJD;

f.zI ; zJ/.qij /l.�ti.1// � � � l.�ti.l//

� l�.J�tj.1// � � � l
�.J�tj.m//;

(ii) also

d.�t1 ˝ � � � ˝ �tn/

D

X
l;m�0
lCmDn

X
zID¹i.1/;:::;i.l/º; i.1/<���<i.l/
zJD¹j.1/;:::;j.m/º; j.1/<���<j.m/

zI[ zJD¹1;:::;nº
zI\ zJD;

f.zI ; zJ/.qij /r.�ti.1// � � � r.�ti.l//

� r�
�
Jr .�tj.1//

�
� � � r�

�
Jr .�tj.m//

�
;

where f.zI ; zJ/.qij /D
Q
¹.r;s/W1�r�l;1�s�m; i.r/>j.s/º qti.r/tj.s/ , and J and Jr are the complex

conjugations defined on HC and H 0R C iH
0
R, respectively.
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Proof. (i) The proof is by induction. For n D 1, the formula is trivial since

s.�t1/ D l.�t1/C l
�.J�t1/

�
see (15)

�
:

Suppose that the formula is true for n � 1. Since � is separating for MT , from (15) and
(16), one has

s.�t1 ˝ � � � ˝ �tn/

D s.�t1/s.�t2 ˝ � � � ˝ �tn/

�

nX
iD2

qti ti�1 � � � qti t2hJ�t1 ; �ti iU s.�t2 ˝ � � � ˝ �ti�1 ˝ �tiC1 ˝ � � � ˝ �tn/

D
�
l.�t1/C l

�.J�t1/
�
s.�t2 ˝ � � � ˝ �tn/

�

nX
iD2

qti ti�1 � � � qti t2hJ�t1 ; �ti iU s.�t2 ˝ � � � ˝ �ti�1 ˝ �tiC1 ˝ � � � ˝ �tn/

D l.�t1/s.�t2 ˝ � � � ˝ �tn/C l
�.J�t1/s.�t2 ˝ � � � ˝ �tn/

�

nX
iD2

qti ti�1 � � � qti t2hJ�t1 ; �ti iU s.�t2 ˝ � � � ˝ �ti�1 ˝ �tiC1 ˝ � � � ˝ �tn/

D l.�t1/

� X
l;m�0

lCmDn�1

X
zID¹i.1/;:::;i.l/º; i.1/<���<i.l/
zJD¹j.1/;:::;j.m/º; j.1/<���<j.m/

zI[ zJD¹2;:::;nº
zI\ zJD;

f.zI ; zJ/.qij /l.�ti.1//l.�ti.2// � � � l.�ti.l//

� l�.J�tj.1// � � � l
�.J�tj.m//

�
C l�.J�t1/s.�t2 ˝ � � � ˝ �tn/

�

nX
iD2

qti ti�1 � � � qti ;t2hJ�t1 ; �ti iU s.�t2 ˝ � � � ˝ �ti�1 ˝ �tiC1 ˝ � � � ˝ �tn/

(by the induction hypothesis). (48)

Again, by the induction hypothesis, one has

l�.J�t1/s.�t2 ˝ � � � ˝ �tn/

D

X
l;m�0

lCmDn�1

X
zID¹i.1/;:::;i.l/º; i.1/<���<i.l/
zJD¹j.1/;:::;j.m/º; j.1/<���<j.m/

zI[ zJD¹2;:::;nº
zI\ zJD;

f.zI ; zJ/.qij /l
�.J�t1/l.�ti.1//

� l.�ti.2// � � � l.�ti.l//l
�.J�tj.1// � � � l

�.J�tj.m//

D

� X
l;m�0

lCmDn�1

X
zID¹i.1/;:::;i.l/º; i.1/<���<i.l/
zJD¹j.1/;:::;j.m/º; j.1/<���<j.m/

zI[ zJD¹2;:::;nº
zI\ zJD;

f.zI ; zJ/.qij /qti.1/;t1 l.�ti.1//l
�.J�t1/

� l.�ti.2// � � � l.�ti.l//l
�.J�tj.1// � � � l

�.J�tj.m//

�
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C

� X
l;m�0

lCmDn�1

X
zID¹i.1/;:::;i.l/º; i.1/<���<i.l/
zJD¹j.1/;:::;j.m/º; j.1/<���<j.m/

zI[ zJD¹2;:::;nº
zI\ zJD;

f.zI ; zJ/.qij /hJ�t1 ; �ti.1/iU l.�ti.2// � � � l.�ti.l//

� l�.J�tj.1// � � � l
�.J�tj.m//

�
.by Lemma 2.3/

D

� X
l;m�0

lCmDn�1

X
zID¹i.1/;:::;i.l/º; i.1/<���<i.l/
zJD¹j.1/;:::;j.m/º; j.1/<���<j.m/

zI[ zJD¹2;:::;nº
zI\ zJD;

f.zI ; zJ/.qij /qti.1/t1 l.�ti.1//l
�.J�t1/

� l.�ti.2// � � � l.�ti.l//l
�.J�tj.1// � � � l

�.J�tj.m//

�

C qti.1/ti.1/�1 � � � qti.1/t2hJ�t1 ; �ti.1/iU s.�t2 ˝ � � � ˝ �ti.1/�1 ˝ �ti.1/C1 ˝ � � � ˝ �tn/

(by the induction hypothesis):

Recursively, one obtains

l�.J�t1/s.�t2 ˝ � � � ˝ �tn/

D

X
l;m�0

lCmDn�1

X
zID¹i.1/;:::;i.l/º; i.1/<���<i.l/
zJD¹j.1/;:::;j.m/º; j.1/<���<j.m/

zI[ zJD¹2;:::;nº
zI\ zJD;

.qti.1/t1 � � � qti.l/t1/f.zI ; zJ/.qij /l.�ti.1// � � � l.�ti.l//

� l�.J�ti.1//l
�.J�tj.1// � � � l

�.J�tj.m//

C

nX
iD2

qti ti�1 � � � qti t2hJ�t1 ; �ti iU s.�t2 ˝ � � � ˝ �ti�1 ˝ �tiC1 ˝ � � � ˝ �tn/: (49)

Combining (48) and (49), one has

s.�t1 ˝ � � � ˝ �tn/

D

X
l;m�0

lCmDn�1

X
zID¹i.1/;:::;i.l/º; i.1/<���<i.l/
zJD¹j.1/;:::;j.m/º; j.1/<���<j.m/

zI[ zJD¹2;:::;nº
zI\ zJD;

f.zI ; zJ/.qij /l.�t1/l.�ti.1//l.�ti.2// � � � l.�ti.l//

� l�.J�tj.1// � � � l
�.J�tj.m//

C

X
l;m�0

lCmDn�1

X
zID¹i.1/;:::;i.l/º; i.1/<���<i.l/
zJD¹j.1/;:::;j.m/º; j.1/<���<j.m/

zI[ zJD¹2;:::;nº
zI\ zJD;

.qti.1/t1 � � � qti.l/t1/f.zI ; zJ/.qij /l.�ti.1// � � � l.�ti.l//

� l�.J�t1/l
�.J�tj.1// � � � l

�.J�tj.m//: (50)

Note that each partition . zI ; zJ / of ¹2; : : : ; nº considered in (50) corresponds to two
partitions .1 [ zI ; zJ / and . zI ; 1 [ zJ / of ¹1; : : : ; nº as prescribed in the statement of the
lemma. It is easy to see that

f.zI ; zJ/.qij / D f.1[zI ; zJ/.qij / and .qti.1/t1 � � � qti.l/t1/f.zI ; zJ/.qij / D f.zI ;1[ zJ/.qij /:

Hence, (i) follows from (50).
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(ii) The proof is similar to that of (i), but one replaces the usage of (15) and (16) by
(24) and (26), respectively, and also replaces the usage of the commutation relation in
Lemma 2.3 by the commutation relation in (28). We omit the details.

The following lemma identifies vectors in the GNS space.

Lemma 4.2. Let �0 2 H
.i/
R , i 2 N , with k�0kU D 1. Then, the following hold:

(i) H
qi i
n .s.�0//� D �

˝n
0 for all n � 0;

(ii) M�0�
k�kT
D span¹�˝n0 W n � 0ºk�kT .

Proof. (i) The proof is by induction. Since

H
qi i
0 .x/ D 1 on

�
�

2
p
1 � qi i

;
2

p
1 � qi i

�
;

the result is trivial for n D 0. Since

H
qi i
1 .x/ D x on

�
�

2
p
1 � qi i

;
2

p
1 � qi i

�
and s.�0/� D �0;

the result is true for nD 1. Now, suppose the result is true for n2N. We have the following
recurrence relation for qi i -Hermite polynomials:

xH qi i
n .x/ D H

qi i
nC1.x/C Œn�qi iH

qi i
n�1.x/; x 2

�
�

2
p
1 � qi i

;
2

p
1 � qi i

�
; n � 1;

where Œn�qi i D 1C qi i C � � � C .qi i /
n�1 [6, Def. 1.9]. Therefore, by (15), (16) and func-

tional calculus, one has

H
qi i
nC1

�
s.�0/

�
� D s.�0/

�
H qi i
n s.�0/

�
� � Œn�qi iH

qi i
n�1

�
s.�0/

�
�

D s.�0/.�
˝n
0 / � Œn�qi i .�

˝.n�1/
0 /

D
�
l.�0/C l

�.�0/
�
.�˝n0 / � Œn�qi i .�

˝.n�1/
0 /

D �
˝.nC1/
0 C l�.�0/.�

˝n
0 / � Œn�qi i .�

˝.n�1/
0 /

D �
˝.nC1/
0 :

This completes the proof.
(ii) We have M�0 Š L

1.Œ� 2p
1�qi i

; 2p
1�qi i

�; �qi i /. Note that M�0�
k�kT is canonically

identified with L2.�qi i /. Since ¹H qi i
n W n � 0º is a total orthogonal set in L2.�qi i /, the

statement in (ii) is a direct consequence of that in (i).

Lemma 4.3. Let �0 2 H
.i/
R , i 2 N , be a unit vector such that Ut�0 D �0 for all t 2 R.

Then, the following hold.

(i) Let �ik 2 H
.ik/

R for ik 2 N , 1 � k � n; n 2 N, be non-zero vectors. For m � 1,
if n ¤ m or h�0; �ik iHC D 0 for at least one k, then

h�˝m0 ; �i1 ˝ � � � ˝ �iniT D 0:
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(ii) Let �ik 2 D.A�
1
2 / \ H

.ik/

R for 1 � ik � N , 1 � k � n; n 2 N, be non-zero
vectors. For m � 1, if n ¤ m or h�0; �ik iHC D 0 for at least one k, then

h�˝k0 ; A�
1
2 �i1 ˝ � � � ˝ A

� 12 �iniT D 0:

Proof. (i) Since Ut�0 D �0 for all t 2R, one has 2
1CA�1

�0 D �0. From (12), it follows that

h�˝m0 ; �i1 ˝ � � � ˝ �iniT D ım;n
X
�2Sn

a.�; �/h�0; �i�.1/iU � � � h�0; �i�.n/iU

D ım;n
X
�2Sn

a.�; �/

nY
kD1

�
2

1C A�1
�0; �i�.k/

�
HC

D ım;n
X
�2Sn

a.�; �/

nY
kD1

h�0; �i�.k/iHC

D ım;n

nY
kD1

h�0; �ik iHC

X
�2Sn

a.�; �/:

Hence, the conclusion is immediate.
(ii) The proof follows along the same lines of the proof of (i). We omit the details.

For our purposes, we need to know the action of certain operators in MT on simple
tensors precisely. We note it down in the form of a lemma below. The proof is similar to
[1, Lem. 3.2].

Lemma 4.4. Let �0 2 HR and �ik 2 H
.ik/

R for ik 2 N , 1 � k � n, n 2 N, be such that
h�ik ; �0iU D 0 for 1 � k � n. Then,

s.�i1 ˝ � � � ˝ �in/.�
˝m
0 / D �i1 ˝ � � � ˝ �in ˝ �

˝m
0 for all m � 0:

Proof. By definition, s.�i1 ˝ � � � ˝ �in/� D �i1 ˝ � � � ˝ �in . Hence, the result is true for
m D 0. We prove the result only for m D 1 since the argument is similar for m � 2. The
proof is by induction.

If n D 1, and h�i1 ; �0iU D 0, then

s.�i1/�0 D �i1 ˝ �0 C h�i1 ; �0iU�
�
by (15) and (16)

�
D �i1 ˝ �0:

Now suppose that the result is true for all 1 � p � n. Let �il 2 H
.il /

R be such that
h�il ; �0iU D 0, 1 � l � nC 1. Since � is separating for MT , from (15) and (16), one has

s.�i1 ˝ � � � ˝ �in ˝ �inC1/

D s.�i1/s.�i2 ˝ � � � ˝ �inC1/ � l
�.�i1/.�i2 ˝ � � � ˝ �inC1/

D s.�i1/s.�i2 ˝ � � � ˝ �inC1/ �

nC1X
kD2

h�i1 ; �ik iU qik ik�1 � � � qik i2

� s.�i2 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �inC1/:
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By the induction hypothesis, one has

s.�i1 ˝ � � � ˝ �in ˝ �inC1/�0

D s.�i1/s.�i2 ˝ � � � ˝ �inC1/�0 �

nC1X
kD2

h�i1 ; �ik iU qik ik�1 � � � qik i2

� s.�i2 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �inC1/�0

D s.�i1/.�i2 ˝ � � � ˝ �inC1 ˝ �0/ �

nC1X
kD2

h�i1 ; �ik iU qik ik�1 � � � qik i2

� .�i2 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �inC1 ˝ �0/

D �i1 ˝ � � � ˝ �in ˝ �inC1 ˝ �0:

In the last step of the above equation, one uses (15) and (16). This completes the proof.

The following theorem is known in the case qij D q for all i; j 2N . The proof follows
along the same lines of the proof of [1, Thm. 4.2]. Thus, we only state the theorem below.

Theorem 4.5. Let �02H
.i/
R for some i 2N be a unit vector. There exists a unique '-pre-

serving faithful normal conditional expectation E�0 WMT!M�0 if and only if s.�0/2M
'
T ;

equivalently, Ut�0 D �0 for all t 2 R.

Let M be a von Neumann algebra equipped with a faithful normal state  . Let M act
on the GNS Hilbert space L2.M;  / via left multiplication, and let k � k2; denote the
norm on L2.M;  /. Let � , J and .� t /t2R, respectively, denote the vacuum vector,
modular conjugation operator and the modular automorphism group associated with  .
Let A �M be a diffuse abelian von Neumann subalgebra contained in M D ¹x 2M W

�
 
t .x/D x 8t 2Rº. Then, there exists a unique faithful, normal, -preserving conditional

expectation EA from M onto A (see [29, Thm. IX. 4.2]). Let Ma denote the �-subalgebra
of all analytic elements of M with respect to .� t /t2R. For x 2M and y 2Ma, consider
the densely defined operator

Tx;y W L
2.A; /! L2.A; / defined by Tx;y.a� / D EA.xay/� ; a 2 A: (51)

Since y 2Ma, it follows that y� 2D.�
 
z / for all z 2 C. Hence,

J �
 

� i2

.y�/J a� D ay� 

for all a 2 A [14]. Note that Tx;y admits a bounded extension to L2.A; /. For

EA.xay/� 



2; 
� kxay� k2; 

� kxkkay� k2; 

� kxk


J � 

� i2

.y�/J 


ka� k2; 

D kxk


� 
� i2

.y�/


ka� k2; for all a 2 A:

The bounded extension of Tx;y to L2.A; / will also be denoted by Tx;y .
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Definition 4.6 ([11]). The diffuse abelian algebra A�M is said to be  -strongly mixing
in M if kEA.xany/k2; ! 0 for all x; y 2M with EA.x/ D 0 D EA.y/, whenever ¹anº
is a bounded sequence in A that goes to 0 in the weak operator topology (w.o.t.).

One can identify A D L1.X; �/, where X is a compact metric space and � is a non-
atomic probability measure on X such that '�A D

R
X
�d�. The left-right measure of A

is the measure (strictly speaking, the measure class) on X � X obtained from the direct
integral decomposition of L2.M;  / 	 L2.A;  / over X � X , so that A _ J AJ is
the algebra of diagonalizable operators with respect to the decomposition. For details,
see [21].

Define N.A/ D ¹u 2 U.M/ W uAu� D Aº to be the normalizer of A. If A is a masa
inM , thenA is said to be singular ifN.A/DU.A/. In view of [1, Thm. 5.2], to show that
A is a singular masa inM , it is enough to show that the left-right measure ofA is Lebesgue
absolutely continuous. For the sake of completeness, we state the theorem below.

Theorem 4.7 ([1, Thm. 5.2]). LetA�M be a diffuse abelian algebra such thatA�M 

and the left-right measure ofA is Lebesgue absolutely continuous. Then,A is a -strongly
mixing masa in M . In particular, A is a singular masa in M .

From the results of [22, §2], it follows that if A is identified with L1.Œa; b�; �/ as
above, where �� � � � and � is the normalized Lebesgue measure on Œa; b�, then the
left-right measure of A is Lebesgue absolutely continuous when Tx;y� is Hilbert–Schmidt
for x; y varying over a set S such that EA.x/ D 0 D EA.y/ for all x; y 2 S and the span
of S� is dense in L2.M; /	 L2.A; /.

Note that x 2MT is analytic with respect to .�'t /t2R if the function R 3 t 7! �
'
t .x/ 2

MT extends to an MT -valued weakly entire function. Note that this is equivalent to the
extension being an entire function in the norm topology ofMT (see [28, §9.24]). Note that
if � 2 HR is analytic for .Ut /t2R, then s.�/ is analytic for .�'t /t2R (see [26, Rem. 2.5]).

Fix i0 2 N and a vector �0 2 H
.i0/
R such that Ut�0 D �0 for all t 2 R and k�0kU D 1.

We proceed to show that the diffuse abelian subalgebra M�0 is a '-strongly mixing masa
in MT . Let E�0 denote the unique '-preserving, faithful, normal conditional expectation
from MT onto M�0 as guaranteed by Theorem 4.5.

As prescribed in [1, Prop. 2.5], one can extend �0 to an orthonormal basis of HR with
respect to h�; �iHC consisting of analytic vectors in H

.i/
R for all i 2 N . Let zO be such an

extension; i.e.,
zO D

®
�
.i/

k
W �
.i/

k
analytic; k 2 ƒi ; i 2 N

¯
;

whereƒi is an index set of cardinality dim.H .i/
R / for i 2N . Let �.i0/

k0
D �0. For simplicity

of notation, we rename the elements of zO as

zO WD ¹�0º [

²
�k W �k analytic; k 2

[
i¤i0

ƒi

³
[ ¹�l W l 2 ƒi0 ; �l ¤ �0º:

Fix n 2 N. If �i1 ; : : : ; �in 2 zO, then s.�i1 ˝ � � � ˝ �in/ lies in the �-algebra generated
by ¹s.�ij / W 1 � j � nº (see Lemma 4.1). Thus, s.�i1 ˝ � � � ˝ �in/ is analytic with respect



P. Bikram, R. Kumar R, and K. Mukherjee 1264

to .�'t /t2R. Further, s.A�
1
2 �/ is analytic with respect to .�'t /t2R for each � 2 zO , and this

follows by arguing along the same lines of [1, Rem. 2.6]. Again, by a direct application
of Lemma 4.1 (or the discussion prior to [1, Thm. 5.3]), it follows that A�

1
2 �i1 ˝ � � � ˝

A�
1
2 �in 2MT� and s.A�

1
2 �i1 ˝ � � � ˝A

� 12 �in/ is also analytic with respect to .�'t /t2R.
Therefore,A�

1
2 �i1 ˝ � � � ˝A

� 12 �in 2T' , where T' is the Tomita algebra associated with
'. Consequently, A�

1
2 �i1 ˝ � � � ˝ A

� 12 �in 2M
0
T�.

Note that from Lemma 4.2 (ii) and Lemma 4.3, it follows that if at least one let-
ter �ik for k 2 ¹1; : : : ; nº is different from �0, then E�0.s.�i1 ˝ � � � ˝ �in// D 0 and
E�0.s.A

� 12 �i1 ˝ � � � ˝ A
� 12 �in// D 0.

Lemma 4.8. Let � 2 H
.i/
C ; � 2 H

.j /
C , i; j 2 N . Then, for all n � 0, the following holds:

�l�.�/r.�/ � r.�/l�.�/�
�H
˝n
T



 � ˇ̌h�; �iU ˇ̌qn; where q D kT k < 1:

Proof. From (16) and (24), it follows that�
l�.�/r.�/ � r.�/l�.�/

�
� D h�; �iU :

Thus, the result holds for n D 0.
Fix n � 1. Let �ik 2 H .ik/ for ik 2 N , 1 � k � n. Again, by (16) and (24), one has

l�.�/r.�/.�i1 ˝ � � � ˝ �in/

D

nX
kD1

h�; �ik iU qik ik�1 � � � qik i1�i1 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �in ˝ �

C h�; �iU .qj in � � � qj i1/�i1 ˝ � � � ˝ �in ;

r.�/l�.�/.�i1 ˝ � � � ˝ �in/

D

nX
kD1

h�; �ik iU qik ik�1 � � � qik i1�i1 ˝ � � � ˝ �ik�1 ˝ �ikC1 ˝ � � � ˝ �in ˝ �:

(52)

Fix j 2N . For ik 2N , with 1� k� n, define Vi1;:::;in WH
.i1/˝ � � �˝H .in/!H .i1/˝

� � � ˝H .in/ by Vi1;:::;in D .qj i1 � � � qj in/I . Then, kVi1;:::;ink � q
n. Let V W H˝n ! H˝n

be the linear operator defined as follows:

V D ˚
.i1;:::;in/2N n

Vi1;:::;in :

Then, V is bounded and kV k � qn.
By the definition of P .n/ in (10), it is easy to verify that VP .n/ D P .n/V for all

n 2 N. Therefore, by Proposition A.3, V admits a unique extension zV to H˝
n
T such that

k zV k D kV k � qn.
From (52), observe that

h�; �iUV D l
�.�/r.�/ � r.�/l�.�/:

The rest is immediate. This completes the proof.
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We also need [32, Lem. 3] in this section. To keep the paper self-contained, we state it
below.

Lemma 4.9 ([32, Lem. 3]). Let .Hn/n�1 be a sequence of Hilbert spaces, and let H DL
n�1Hn. Let r; s 2 N, and let .ai /1�i�r , .bj /1�j�s be two families of operators on H

which send each Hn into HnC1 or Hn�1 (H0 D 0 by convention) such that there exists
0 < q < 1 with 

.aibj � bjai /�Hn

 � qn for all n � 1 and for all i; j:

For n� 1, letKn �Hn be a finite-dimensional subspace, and letK D
L
n�1Kn. Suppose

that
ai .K/ � K; 1 � i � r � 1; ar�K D 0:

Then, there exists a constant C > 0 independent of n such that

.ar � � � a1b1 � � � bs/�Kn

 � Cqn for all n � 0:

Theorem 4.10. Suppose there exists a unit vector �0 2 H
.i0/
R , i0 2 N , such that

Ut�0 D �0 for all t 2 R:

Let x D s.�i1 ˝ � � � ˝ �im/ and y D s.A�
1
2 �j1 ˝ � � � ˝ A

� 12 �jk /, where �iu ; �jv 2 zO for
1 � i � m and 1 � j � k, be such that for at least one pair ¹�iu ; �jv º, �iu ¤ �0 and
�jv ¤ �0. Then, Tx;y is a Hilbert–Schmidt operator.

Proof. The hypothesis along with Lemma 4.3 guarantees that E�0.x/ D 0 D E�0.y/.
Since Ut�0 D �0 for t 2 R, from (39), it follows that the diffuse abelian subalgebra

M�0 of MT is contained in M '
T . Since x and y are analytic with respect to .�'t /t2R (as

discussed before Lemma 4.8), from (51), it follows that

Tx;y 2 B
�
L2.M�0 ; '/

�
:

From Lemma 4.2 (ii), it follows that²
1

k�˝n0 kT
�˝n0 W n � 0

³
forms an orthonormal basis of L2.M�0 ; '/. Thus, to show that Tx;y is a Hilbert–Schmidt
operator, it is enough to show that

1X
nD0



Tx;y.�˝n0 /


2
T
=k�˝n0 k

2
T <1:

Let E�0 W L
2.MT ; '/! L2.M�0 ; '/ denote the Jones projection associated withM�0 .

From Lemma 4.2, it follows that

�˝n0 D H
.qi0i0 /
n

�
s.�0/

�
� for all n � 0:
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Therefore, from (51) and the fact that A�
1
2 �j1 ˝ � � � ˝ A

� 12 �jk 2M
0
T�, one has

Tx;y
�
H
.qi0i0 /
n

�
s.�0/

�
�
�

D E�0
�
xH

.qi0i0 /
n

�
s.�0/

�
s.A�

1
2 �j1 ˝ � � � ˝ A

� 12 �jk /�
�

D E�0
�
xH

.qi0i0 /
n

�
s.�0/

�
.A�

1
2 �j1 ˝ � � � ˝ A

� 12 �jk /
�

D E�0
�
xH

.qi0i0 /
n

�
s.�0/

�
d.A�

1
2 �j1 ˝ � � � ˝ A

� 12 �jk /�
�
.see Section 3.3/

D E�0
�
xd.A�

1
2 �j1 ˝ � � � ˝ A

� 12 �jk /H
.qi0i0 /
n

�
s.�0/

�
�
�

D E�0
�
xd.A�

1
2 �j1 ˝ � � � ˝ A

� 12 �jk /�
˝n
0

�
D E�0

�
s.�i1 ˝ � � � ˝ �im/d.A

� 12 �j1 ˝ � � � ˝ A
� 12 �jk /�

˝n
0

�
; n � 0:

By the assumption, there exists at least one pair of vectors ¹�i` ; �j`0 º such that �i` ¤ �0
and �j`0 ¤ �0.

By the Wick product formula in Lemma 4.1,

s.�i1 ˝ � � � ˝ �im/d.A
� 12 �j1 ˝ � � � ˝ A

� 12 �jk /

split as finite sums. A generic term in the aforesaid sum without the coefficient is of the
form:

l.�i1/ � � � l.�ia/l
�.�iaC1/ � � � l

�.�ib /r.A
� 12 �j1/ � � � r.A

� 12 �je /r
�.A�

1
2 �jeC1/ � � � r

�.A�
1
2 �jf/;

(53)
where the indices of the variables are constrained by Lemma 4.1 and with a pair of vectors
¹�iu ; �jv º such that �iu ¤ �0 and �jv ¤ �0.

Then, by Lemma 4.1, it suffices to show that for a generic term in the Wick product
expansion as in (53), if

�n D E�0.l.�i1/ � � �l.�ia/l
�.�iaC1/ � � � l

�.�ib /r.A
� 12 �j1/ � � �

� � � r.A�
1
2 �je /r

�.A�
1
2 �jeC1/ � � � r

�.A�
1
2 �jf /�

˝n
0 /; n � 0;

then
P1
nD0 k�nk

2
T =k�

˝n
0 k

2
T <1.

We will use only the fact that one of ¹�i1 ; : : : ; �ib º is different from �0. Let m0 D
max¹w W 1 � w � b; �iw ¤ �0º. Note that ifm0 < aC 1, then �n is 0 from (16) and (26).
Therefore, we will consider only the case m0 � aC 1.

In this step, we apply Lemma 4.9 to the following two sets of operators:

A D
®
ah D l

�.�ib�hCm0 /; m0 � h � b
¯
;

B D
®
r.A�

1
2 �j1/; : : : ; r.A

� 12 �je /; r
�.A�

1
2 �jeC1/; : : : ; r

�.A�
1
2 �jf /

¯
:

The finite-dimensional subspace Kn in Lemma 4.9 is replaced by C�˝n0 for n � 0. Thus,
K D

L
n�0Kn D L

2.M�0 ; '/.



Mixed q-deformed Araki–Woods von Neumann algebras 1267

Note that, by the choice of m0, it follows that

l�.�im0 /�L2.M�0
;'/ D 0:

Also, we have l�.�ih/.L
2.M�0 ; '// � L

2.M�0 ; '/, for m0 < h � b.
From Lemma 4.8, note that for all m0 � h � b and 1 � p � e, one has

�l�.�ih/r.A� 12 �jp / � r.A� 12 �jp /l�.�ih/�

�H

˝n
T
� Kqn;

where
K D max

m0�h�b;
1�p�e

ˇ̌
h�ih ; A

� 12 �jp iU
ˇ̌
:

From (16) and (26) again, it follows that

l�.�ih/r
�.A�

1
2 �jp0 / � r

�.A�
1
2 �jp0 /l

�.�ih/D 0 for all m0 � h� b and eC1� p0 � f:

Now applying Lemma 4.9 to

l�.�im0 / � � � l
�.�b/r.A

� 12 �j1/ � � � r.A
� 12 �je /r

�.A�
1
2 �jeC1/ � � � r

�.A�
1
2 �jf /;

it follows that there exists a constant C > 0 independent of n such that

k�nkT � Cq
n
k�˝n0 kT for all n � 0:

Therefore,
1X
nD0

k�nk
2
T =k�

˝n
0 k

2
T <1;

as desired. This completes the proof.

The next result is an adaptation of [1, Thm. 5.4] to the current situation.

Theorem 4.11. Let dim.HR/ � 2, and suppose there exists a unit vector �0 2 H
.i0/
R ,

i0 2 N , such that Ut�0 D �0 for all t 2 R. Then, M�0 is a '-strongly mixing masa in MT

whose left-right measure is Lebesgue absolutely continuous.

Proof. The proof is similar to [1, Thm. 5.4]. The only change required is the replacement
of the usage of [1, Thm. 5.3] by Theorem 4.10.

We conclude this section by jotting the main results obtained so far.

Corollary 4.12. Let dim.HR/ � 2, and let �0 2H
.i0/
R , i0 2 N , be a unit vector. Then, the

following are equivalent:

(1) s.�0/ 2M
'
T ;

(2) Ut�0 D �0 for all t 2 R;

(3) there exists a faithful normal conditional expectation E�0 WMT !M�0 such that
'.E�0.x// D '.x/ for all x 2MT ;

(4) M�0 is a '-strongly mixing masa in MT .
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5. Factoriality and type classification

In this section, we discuss the factoriality and type classification of MT under different
constraints.

First, we show that if there exists �0 2H
.i0/
R , i0 2N , such that Ut�0 D �0 for all t 2R,

then MT is a factor. Its proof is a generalization of [1, Thm. 6.3].

Theorem 5.1. Let dim.HR/ � 2. Suppose there exists �0 2 H
.i0/
R , i0 2 N , such that

Ut�0 D �0 for all t 2 R:

Then, MT is a factor.

Proof. Let x 2 Z.MT /. We show that x is a scalar multiple of identity. From Theorem
4.11, it follows that M�0 is a diffuse masa in MT . Hence, Z.MT / � M�0 , and thus by
Lemma 4.2, one has

x� D

1X
nD0

bn�
˝n
0 ;

where the summation converges in k � kT .
Since dim.HR/ � 2, there exist � 2 HR such that h�0; �iHC D 0. Since Ut�0 D �0

for all t 2 R, one has h�0; �iU D 0. From (15) and (16) and by the continuity of l.�/, it
follows that

s.�/x� D

1X
nD0

bn.�˝ �
˝n
0 /:

We claim that xs.�/� 2 span¹�˝n0 ˝ � W n � 0º
k�kT

as well. Note that x is a limit in
s.o.t. of a sequence of operators from the linear span of ¹H

qi0i0
n .s.�0// W n� 0º. Proceeding

along the same lines of (i) of Lemma 4.2, it follows that

H
qi0i0
n

�
s.�0/

�
s.�/� D �˝n0 ˝ � for all n � 1:

Therefore, the claim follows.
Since xs.�/D s.�/x, it follows that bn D 0 for all n� 1. Therefore, x�D b0�. Since

� is separating for MT , it follows that x D b01. Hence, MT is a factor.

Theorem 5.2. Suppose that the invariant subspace of weakly mixing vectors in HR is
non-trivial. Then, MT is a factor.

Proof. The proof follows exactly along the same lines of [1, Thm. 6.2].

Now, we deal with the ergodic and almost periodic component of the representation
t 7! Ut , t 2 R.

First, note that there is a unique decomposition of HR as follows [26]:

.HR; Ut / WD

� N1M
hD1

.Rh; id/
�
˚

� N2M
kD1

�
HR.k/; Ut .k/

��
˚ .eHR; Ut /; t 2 R; (54)
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where 0 � N1, N2 � @0,

Rh D R; HR.k/ D R2; Ut .k/ D

�
cos.t log�k/ � sin.t log�k/
sin.t log�k/ cos.t log�k/

�
; �k > 1;

where .eHR; Ut / denotes the weakly mixing component of .Ut /t2R.
In accordance with (5) concerned with the decomposition of HR into invariant sub-

spaces of .Ut /t2R, we will treat each component of the direct sum in (54) as a single block.
Then, in this case,N will be regarded as a subset of N of cardinality at mostN1CN2C 1.

If N1 ¤ 0, let e0
h
D 0˚ � � � ˚ 0˚ 1˚ 0 � � � ˚ 0 2

LN1
hD1

Rh, where 1 appears at the
h-th place for 1 � h � N1 (or 1 � h < N1, if N1 D @0). Also, if N2 ¤ 0, let

f 1k D 0˚ � � � ˚ 0˚

�
1

0

�
˚ 0˚ � � � ˚ 0 2

N2M
kD1

HR.k/;

f 2k D 0˚ � � � ˚ 0˚

�
0

1

�
˚ 0˚ � � � ˚ 0 2

N2M
kD1

HR.k/

be vectors with non-zero entries in the k-th position for 1 � k � N2 (or 1 � k < N2, if
N2 D @0).

Fix k. Denote

e1k D

p
�k C 1

2
.f 1k C if

2
k / and e2k D

q
��1
k
C 1

2
.f 1k � if

2
k /:

Then, e1
k

and e2
k

are orthonormal vectors in HR.k/C iHR.k/ with respect to h�; �iU . The
analytic generator A.k/ of .Ut .k//t2R is given by

A.k/ D

 
�k C

1
�k

i.�k �
1
�k
/

�i.�k �
1
�k
/ �k C

1
�k

!
:

Also, we have

A.k/e1k D
1

�k
e1k and A.k/e2k D �ke

2
k : (55)

When the almost periodic component of .HR; Ut / is infinite-dimensional and qij D q
for all i; j 2 N , Hiai established the factoriality of MT [16, Thm. 3.2]. Unfortunately,
there is a gap in the proof, and the proof is valid only in the case when �.A/ has a limit
point in R away from 0 (assuming the vacuum state is almost periodic) [15].

Remark 5.3. It is proved in [23, Thm. 4.5] that for finite-dimensional HR, the q-deformed
Araki–Woods von Neumann algebras are isomorphic to free Araki–Woods factors for suf-
ficiently small jqj; in particular, they are factors in this case. However, for arbitrary q 2
.�1; 1/, the factoriality of the q-deformed Araki–Woods von Neumann algebras remained
open in the following cases:

(1) dim.HR/ is even and .Ut /t2R is ergodic;
(2) .Ut /t2R is ergodic, almost periodic, and 0 is the only limit point of the set of

eigenvalues of the analytic generator of .Ut /t2R.
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In a very recent work [3], the factoriality of q-deformed Araki–Woods von Neumann alge-
bras has been further investigated. It is proved in [3] that when HR has a two-dimensional
ergodic sub-representation, the q-deformed Araki–Woods von Neumann algebras are fac-
tors in the following cases:

(1) dim.HR/D2 and the parameter �2.0;1/ defining the aforesaid sub-representation
is small;

(2) dim.HR/ � 3.

The next theorem discusses the factoriality of MT under Hiai’s framework by impos-
ing the hypothesis necessary for Hiai’s theorem to successfully pass through. Its proof
is by adapting the techniques of Hiai to the current setup. Thus, this is essentially Hiai’s
proof and we do not claim originality of it.

If N2 ¤ 0, then there exists an injection ˆ from a set of cardinality N2 into N . For
1 � k � N2 (or 1 � k < N2, as the case may be), we will denote ˆ.k/ by k to reduce
notation. This abuse of notation will cause no confusion.

Again, if �l 2H .l/ for l 2 N , then the action of T on vectors of the form .f i
k
˝ �l / 2

HR ˇHR will be given by

T .f ik ˝ �l / D qkl .�l ˝ f
i
k /; i D 1; 2:

Therefore, by linearity, one has T .ei
k
˝ �l / D qkl .�l ˝ e

i
k
/, i D 1; 2, and for all k.

Theorem 5.4. Assume thatN1D 0, the almost periodic component of .HR;Ut / is infinite-
dimensional and the set of eigenvalues of the analytic generator A has a limit point other
than 0 in R. Then, .M '

T /
0 \MT D C1. In particular, MT is a factor.

Proof. Note that N2 D @0. Then, for 1 � k < N2, let zk WD 1
2
.s.f 1

k
/C is.f 2

k
// 2 MT .

By (19), it is easy to verify that

zk D
1

p
�k C 1

l.e1k/C
1q

��1
k
C 1

l�.e2k/: (56)

Also, from (15) and (39), one has

�
'
t .zk/ D FT .U�t /

�
1

p
�k C 1

l.e1k/C
1q

��1
k
C 1

l�.e2k/

�
FT .U�t /

�

D
1

p
�k C 1

l.U�te
1
k/C

1q
��1
k
C 1

l�.U�te
2
k/

D
1

p
�k C 1

l.�itk e
1
k/C

1q
��1
k
C 1

l�.��itk e2k/
�
by (55)

�
D �itk zk :

Consequently, �'t .z
�
k
zk/ D z

�
k
zk , and hence, one has yk WD

p
1C �kz

�
k
zk 2M

'
T .
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Let L WD ¹f 1
k
; f 2
k
ºk [

eHR. Fix n 2N. Let �1; : : : ; �n 2 L be such that �i 2H
.mi /
R for

1 � i � n. Let x WD s.�1 ˝ � � � ˝ �n/ 2MT (see Lemma 4.1). Note that

jqkm1qkm2 � � � qkmn j < q
n;

where q D supi;j2N jqij j for all k. Using the hypothesis, replacing �k by 1
�k

if necessary
and further dropping to a subsequence if required, one can assume that

0 < �k � 1;

�k ! � 2 .0; 1�;

qkm1qkm2 � � � qkmn ! Qq 2 Œ�q
n; qn�; as k !1:

First, we show that

lim
N!1

1

N

NX
kD1

ykxyk D
1C � Qq2

1C �
x; in w.o.t.

It is enough to show that for �; � 2 FT .H /,

lim
N!1

1

N

NX
kD1

h�; ykxyk�iT D
1C � Qq2

1C �
h�; x�iT : (57)

Fix � D f1 ˝ � � � ˝ fu and � D g1 ˝ � � � ˝ gv such that fi 2 L for 1 � i � u and
gj 2 L for 1 � j � v. By Proposition 2.2 and Lemma 4.1, to prove (57), it suffices to
prove that if

l; r > 0; l C r D n; i.1/ < � � � < i.l/; j.1/ < � � � < j.r/;®
i.1/; : : : ; i.l/

¯
[
®
j.1/; : : : ; j.r/

¯
D
®
1; : : : ; n

¯
;

x1 D l.�i.1// � � � l.�i.l//;

x2 D l
�.�j.1// � � � l

�.�j.r//;

then

lim
N!1

1

N

NX
kD1

h�; ykx1x2yk�iT D
1C � Qq2

1C �
h�; x1x2�iT : (58)

Consider the set B D ¹�1; : : : ; �n; f1; : : : ; fu; g1; : : : ; gvº, and let N0 WDmax¹k W f 1
k
2

B or f 2
k
2 Bº. We show that for k > N0,

h�; ykx1x2yk�iT D
1C �k.qkm1qkm2 � � � qkmn/

2

1C �k
h�; x1x2�iT : (59)

Note that by the commutation relation in Lemma 2.3, one has

l�.e1k/l.e
1
k/ � qkkl.e

1
k/l
�.e1k/ D 1;

l�.e2k/l.e
2
k/ � qkkl.e

2
k/l
�.e2k/ D 1;

l�.e1k/l.e
2
k/ D qkkl.e

2
k/l
�.e1k/;

l�.e2k/l.e
1
k/ D qkkl.e

2
k/l
�.e1k/ for all k:

(60)
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Therefore,p
�k C 1yk D .�k C 1/z

�
kzk

D l�.e1k/l.e
1
k/C

p
�kl
�.e1k/l

�.e2k/

C

p
�kl.e

2
k/l.e

1
k/C �kl.e

2
k/l
�.e2k/

�
by (56)

�
D 1C qkkl.e

1
k/l
�.e1k/C

p
�kl
�.e1k/l

�.e2k/

C

p
�kl.e

2
k/l.e

1
k/C �kl.e

2
k/l
�.e2k/

�
by (60)

�
: (61)

Note that for k > N0, he1
k
; giU D he

2
k
; giU D 0 for all g 2 B . Thus, for k > N0 and

j D 1; 2, one has

l�.e
j

k
/� D l�.e

j

k
/� D 0;

l�.e
j

k
/x�1 � D l

�.e
j

k
/x2� D 0:

(62)

Therefore, for k > N0, one has

.�k C 1/h�; ykx1x2yk�iT

D
˝
�;
�
1C

p
�kl
�.e1k/l

�.e2k/
�
x1x2

�
1C

p
�kl.e

2
k/l.e

1
k/
�
�
˛
T

�
by (61), (62)

�
Dh�; x1x2�iT C

˝
�;
p
�kx1x2l.e

2
k/l.e

1
k/�

˛
T
C
˝
�;
p
�kl
�.e1k/l

�.e2k/x1x2�
˛
T

C �k
˝
�; l�.e1k/l

�.e2k/x1x2l.e
2
k/l.e

1
k/�

˛
T

Dh�; x1x2�iT C
p
�k.qkmj.1/ � � � qkmj.r//

2
˝
�; x1l.e

2
k/l.e

1
k/x2�

˛
T

C

p
�k.qkmi.1/ � � � qkmi.l//

2
˝
�; x1l

�.e1k/l
�.e2k/x2�

˛
T

C �k.qkm1qkm2 � � � qkmn/
2
˝
�; x1l

�.e1k/l
�.e2k/l.e

2
k/l.e

1
k/x2�

˛
T

.by Lemma 2.3/

Dh�; x1x2�iTC�k.qkm1qkm2 � � � qkmn/
2
˝
�; x1l

�.e1k/l
�.e2k/l.e

2
k/l.e

1
k/x2�

˛
T

�
by (62)

�
:

(63)

By (60), one has

l�.e1k/l
�.e2k/l.e

2
k/l.e

1
k/ D 1C qkkl.e

1
k/l
�.e1k/C .qkk/

3l.e2k/l
�.e2k/

C .qkk/
4l.e2k/l.e

1
k/l
�.e1k/l

�.e2k/: (64)

Hence, from (62), (63) and (64), it follows that

.�k C 1/h�; ykx1x2yk�iT D
�
1C �k.qkm1qkm2 � � � qkmn/

2
�
h�; x1x2�iT :

This establishes (59).
Since

lim
k!1

1C �k.qkm1qkm2 � � � qkmn/
2

1C �k
D
1C � Qq2

1C �
;

Equation (58) is established by taking a Cesàro sum.
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Working exactly as above and replacing N0 by

zN0 WD max
®
k W f 1k or f 2k 2 ¹f1; : : : ; fu; g1; : : : ; gvº

¯
;

it follows that h�; y2
k
�iT D h�; �iT for all k > zN0. Therefore, one has

lim
N!1

1

N

NX
kD1

y2k D 1; in w.o.t. (65)

Next, we show that ¹yk W k � 1º0 \MT D C1. Let y 2 ¹yk W k � 1º0 \MT and
x D s.�1 ˝ � � � ˝ �n/, for �1; : : : ; �n 2 L (as before).

Consequently,

1C � Qq2

1C �
'.y�x/ D

1C � Qq2

1C �
hy�; x�iT

D lim
N!1

1

N

NX
kD1

hy�; ykxyk�iT
�
by (57)

�
D lim

N!1

1

N

NX
kD1

'.y�ykxyk/

D lim
N!1

1

N

NX
kD1

'.yky
�xyk/

D lim
N!1

1

N

NX
kD1

'.y�xy2k/ .since yk 2M
'
T /

D '.y�x/
�
by (65)

�
:

This implies that '.y�x/D 0 since otherwise it forces that 1C � Qq2 D 1C �, which is
impossible since � ¤ 0 and Qq 2 Œ�qn; qn�, 0 � q < 1. Therefore, one has 0 D '.y�x/ D
hy�;x�iT D hy�; �1 ˝ � � � ˝ �niT . Since spanC¹�1 ˝ � � � ˝ �n W �1; : : : ; �n 2 L, n � 1º
is dense in FT .H /	C�, one has y� 2 C�. Since� is separating forMT (Proposition
3.5), it follows that y 2 C1. This completes the proof.

Remark 5.5. (i) Note that if 0 is the only limit point in R of the set of eigenvalues of A,
then � D 0 in the proof of Theorem 5.4. Thus, the equation 1C � Qq2 D 1C � would be a
tautology and Hiai’s argument would be inconclusive.

(ii) Suppose that the hypothesis of Theorem 5.4 is true, and let HR WD
L
i2N H

.i/
R

be an arbitrary but fixed decomposition of HR as in (5). Since the decomposition of HR

in (54) is a refinement of the given decomposition, proceeding along the same lines of
the proof of Theorem 5.4, one concludes that MT is a factor as well, where T is the
Yang–Baxter operator associated with the given decomposition. The only minor change
in the proof will be the replacement of the sequence ¹qkm1qkm2 � � �qkmnºk with a different
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sequence of parameters depending on the given decomposition of HR. Thus, we have the
following.

Theorem 5.6. Assume thatN1D 0, the almost periodic component of .HR;Ut / is infinite-
dimensional and the set of eigenvalues of the analytic generator A has a limit point other
than 0 in R. Let HR WD

L
i2N H

.i/
R be an arbitrary but fixed decomposition of HR

consisting of invariant subspaces of .Ut /t2R. Let T be the Yang–Baxter operator cor-
responding to the decomposition and the parameters �1 < qij D qj i < 1 for i; j 2 N ,
with supi;j2N jqij j < 1. Then, .M '

T /
0 \MT D C1. In particular, MT is a factor.

(iii) Note that, with the results obtained in this section, the factoriality of MT remains
open only for the following cases.

(1) dim.HR/ is even and .Ut /t2R is ergodic;

(2) .Ut /t2R is ergodic, almost periodic, and 0 is the only limit point in R of the set of
eigenvalues of the analytic generator of .Ut /t2R.

In the remaining part of this section, we discuss the type classification of MT .
The S invariant of a factor M is defined as the intersection over all faithful normal

semifinite weights � of the spectra of the associated modular operator �� . Further, if � is
a fixed faithful normal state on M , the S invariant can be written as

S.M/ D
\®

Sp.4�p / W 0 ¤ p 2 P
�
Z.M �/

�¯
;

where P .Z.M �// denotes the lattice of projections in the center of the centralizer M �

and �p D ��pMp [13].
Connes classified type III factors using the S invariant as follows:

S.M/ D

8̂̂<̂
:̂
Œ0;1/ if M is type III1;

¹0; 1º if M is type III0;

¹�n W n 2 Zº [ ¹0º if M is type III�; 0 < � < 1:

Theorem 5.7. Assume that A has infinitely many mutually orthogonal eigenvectors and
the set of eigenvalues ofA has a limit point in R other than 0. LetG be the closed subgroup
of R�C generated by the spectrum of A. Then,

MT is of

8̂̂<̂
:̂

type III1 if G D R�C;

type III� if G D ¹�n W n 2 Zº; 0 < � < 1;

type II1 if G D ¹1º:

Proof. From Theorem 5.4, it follows that under the hypothesis of the theorem, M '
T is a

factor. Hence, S.MT / is completely determined by Sp.�/. Therefore, the proof follows
from Theorem 3.13 (iii) and [1, Prop. 3.3].
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Theorem 5.8. Suppose dim.HR/�2, the orthogonal representation R3 t 7!Ut is almost
periodic, and there exists �0 2 H

.i0/
R , i0 2 N , such that Ut�0 D �0 for all t 2 R. Let G be

the closed subgroup of R�C generated by the spectrum of A. Then, .M '
T /
0 \MT D C1,

and

MT is of

8̂̂<̂
:̂

type III1 if G D R�C;

type III� if G D ¹�n W n 2 Zº; 0 < � < 1;

type II1 if G D ¹1º:

Proof. The hypothesis forces that if dim.HR/ D 2, then .Ut /t2R is trivial. Thus, MT

coincides with Bożejko–Speicher’s II1 factor, and hence, there is nothing to prove.
Assume that dim.HR/ � 3. First, we show that .M '

T /
0 \MT D C1. Let x 2 .M '

T /
0

\MT . From Corollary 4.12, note that M�0 D vN.s.�0// �M
'
T is a masa in MT . There-

fore, .M '
T /
0 \MT � M� . Choose �j1 ; : : : ; �jm 2 HC with real and imaginary part of �ji

being orthogonal to �0 such that A�ji D ǰi �ji for 1 � i � m and
Qm
iD1 ǰi D 1. Let

y WD s.�j1 ˝ � � � ˝ �jm/ 2 MT (see Lemma 4.1). Since �'�t D Ad.FT .Ut // for all t 2 R
(see (39)), it follows that

�
'
�t .y/� D FT .Ut /yFT .Ut /

��

D FT .Ut /y�

D FT .Ut /.�j1 ˝ � � � ˝ �jm/

D Ut�j1 ˝ � � � ˝ Ut�jm

D . ǰ1 � � � ǰm/
it .�j1 ˝ � � � ˝ �jm/ .since Ut D Ait /

D s.�j1 ˝ � � � ˝ �jm/�

D y� for all t 2 R:

Since � is separating for MT , one has y 2M '
T .

From Lemma 4.2, one has

x� D

1X
nD0

an�
˝n
0 D

1X
nD0

anH
.qi0i0 /
n

�
s.�0/

�
�; an 2 C;

where the series converges in k � kT . From Lemma 4.4, it follows that

yx� 2 span¹�j1 ˝ � � � ˝ �jm ˝ �
˝n
0 W n � 0ºk�kT :

Since Ut�0 D �0 for all t 2 R and h�0; �ji iHC D 0 for 1 � i � m, one has

h�0; �ji iU D 0 for 1 � i � m:

Therefore, from (15) and (16), it follows that

s.�0/.�j1 ˝ � � � ˝ �jm/ D �0 ˝ �j1 ˝ � � � ˝ �jm :
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Also, proceeding along the same lines of Lemma 4.2, it follows that

H
.qi0i0 /
n

�
s.�0/

�
.�j1 ˝ � � � ˝ �jm/ D �

˝n
0 ˝ �j1 ˝ � � � ˝ �jm for all n � 0:

Therefore,

xy� D Jy�Jx� D

1X
nD0

anJy
�JH

.qi0i0 /
n

�
s.�0/

�
�

D

1X
nD0

anH
.qi0i0 /
n

�
s.�0/

�
y�

D

1X
nD0

an.�
˝n
0 ˝ �j1 ˝ � � � ˝ �jm/:

Now, since xy D yx, one has an D 0 for all n � 1. Thus, x is a scalar multiple of 1.
Hence, .M '

T /
0 \MT D C1.

The rest of the statements follow similarly to Theorem 5.7. This completes the proof.

Theorem 5.9. Suppose that the invariant subspace of weakly mixing vectors in HR is
non-trivial. Then, MT is a type III1 factor.

Proof. The proof follows exactly along the same lines of [1, Thm. 8.1].

6. Second quantization and Haagerup approximation property

Second quantization is an indispensable tool for proving various approximation properties
of the free Araki–Woods factors (see [17]) and q- deformed Araki–Woods von Neumann
algebras (see [33]). In this section, we show that second quantization is also available
for the mixed q-deformed Araki–Woods von Neumann algebras. In the same vein, we
establish that MT has the Haagerup approximation property.

Let KR and HR be real Hilbert spaces with strongly continuous one-parameter groups
of orthogonal transformations .Ut /t2R and .Vt /t2R, respectively. ForN2 �N1, let KR WDL
i2N1

K
.i/
R and HR WD

L
i2N2

H
.i/
R denote the decompositions of KR and HR consisting

of invariant subspaces of .Ut /t2R and .Vt /t2R, respectively. Clearly, KC WD
L
i2N1

K
.i/
C

and HC WD
L
i2N2

H
.i/
C , where K

.i/
C and H

.i/
C denote the complexification of K

.i/
R and

H
.i/
R , respectively. Denote the complex conjugation on K

.i/
C and H

.i/
C by Ii and Ji ,

respectively. Let A denote the analytic generator of .Ut /t2R on KC and B the analytic
generator of .Vt /t2R on HC . Since K

.i/
C , i 2 N1, are invariant for .Ut /t2R, and H

.i/
C ,

i 2N2, are invariant for .Vt /t2R, it follows that K D
L
i2N1

K.i/ and H D
L
i2N2

H .i/,
where K.i/, i 2 N1, are, respectively, the completions of K

.i/
C , i 2 N1, with respect to

h�; �iU WD h
2

1CA�1
�; �iKC , and H .i/, i 2 N2, are, respectively, the completions of H

.i/
C ,

i 2 N2, with respect to h�; �iV WD h 2
1CB�1

�; �iHC .
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Fix �1 < qij < 1 with supi;j2N2 jqij j < 1 and qij D qj i for i; j 2 N2. Consider the
operators

T1;iK ;jK
WK

.iK /

R ˝K
.jK /

R !K
.jK /

R ˝K
.iK /

R ;

T2;iH ;jH
W H

.iH /

R ˝H
.jH /

R ! H
.jH /

R ˝H
.iH /

R ;

defined by, respectively, extending the maps

� ˝ � 7! qiKjK
.�˝ �/; iK ; jK 2 N1;

� 0 ˝ �0 7! qiH jH
.�0 ˝ � 0/; iH ; jH 2 N2:

Let T1 D
L
iK ;jK

T1;iK ;jK
and T2 D

L
iH ;jH

T2;iH ;jH
.

Now, we are in a position to prove an appropriate second quantization theorem for
mixed q-deformed Araki–Woods von Neumann algebras.

Proposition 6.1. Suppose thatLi WK
.i/
R !H

.i/
R are contractions such thatLiUt D VtLi

for all t 2R and i 2N1. LetLD
L
i2N1

Li . Then, there exists a normal unital completely
positive (u.c.p. in the sequel) map �.L/ W MT1 ! MT2 extending s.�j1 ˝ � � � ˝ �jn/ 7!
s.L�j1 ˝ � � � ˝ L�jn/, �jk 2K

.jk/

R , for jk 2 N1, 1 � k � n, n 2 N. Moreover, �.L/ is a
Markov map; i.e., it preserves the vacuum state and intertwines the associated modular
automorphism groups.

Proof. Fix i 2 N1. Consider the dilation of Li to an orthogonal operator ULi on K
.i/
R ˚

H
.i/
R as follows:

ULi D

 
.1KR � L

�
i Li /

1
2 L�i

Li �.1HR � LiL
�
i /

1
2

!
:

Let �i W K
.i/
R ! K

.i/
R ˚H

.i/
R be the natural inclusion, and let Pi W K

.i/
R ˚H

.i/
R ! H

.i/
R

denote the orthogonal projection. Then,

Li D PiULi �i :

Define � D
L
i2N1

�i ; UL D
L
i2N1

ULi and P D
L
i2N1

Pi . It follows that

PUL� D
�M
i2N1

Pi

��M
i2N1

ULi

��M
i2N1

�i

�
D

M
i2N1

PiULi �i D
M
i2N1

Li D L:

First, we intend to define appropriate maps �.�/; �.UL/ and �.P /. We proceed as
follows. Consider the orthogonal group .Ut ˚ Vt /t2R on KR ˚HR. Note that � ı Ut D
.Ut ˚ Vt / ı � and P ı .Ut ˚ Vt /D .Ut ˚ Vt / ıP for all t 2R. Again, sinceLiUt D VtLi
for all t 2R and i 2N1, one hasLUt D VtL for all t 2R. This implies thatUL intertwines
Ut ˚ Vt for all t 2 R. Hence, the maps �; UL and P extend to contractions from K to
K ˚H , K ˚H to K ˚H and K ˚H to H , respectively. We denote these extensions
again by �; UL and P with slight abuse of notations.
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Let �iK 2 K
.iK /

R , �jK
2 K

.jK /

R , for iK , jK 2 N1, and �iH 2 H
.iH /

R , �jH
2 H

.jH /

R

for iH , jH 2 N2. Define zT on .K ˚H /˝ .K ˚H / as the bounded linear extensions of
the complexifications of the following:

zT
�K

.iK /

R ˝K
.jK /

R

W �iK ˝ �jK
7! qiKjK

.�jK
˝ �iK /;

zT
�K

.iK /

R ˝H
.jH /

R

W �iK ˝ �jH
7! qiKjH

.�jH
˝ �iK /;

zT
�H

.iH /

R ˝K
.jK /

R

W �iH ˝ �jK
7! qiH jK

.�jK
˝ �iH /;

zT
�H

.iH /

R ˝H
.jH /

R

W �iH ˝ �jH
7! qiH jH

.�jH
˝ �iH /:

By construction, zT satisfies the properties listed in (7). Also, it is easy to verify that
.P ˝ P / zT D T2.P ˝ P /, .UL ˝ UL/ zT D zT .UL ˝ UL/ and .�˝ �/T1 D zT .�˝ �/.

Define �.UL/ W B.F zT .K ˚H //! B.F zT .K ˚H // by

�.UL/.x/ WD F zT .UL/xF zT .UL/
�; x 2 B

�
F zT .K ˚H /

�
:

Since .UL ˝ UL/ zT D zT .UL ˝ UL/, from Proposition A.4, it follows that �.UL/ is a
normal completely positive map from B.F zT .K ˚H // to B.F zT .K ˚H //.

Now, we verify that

�.UL/
�
s.�j1 ˝ � � � ˝ �jn/

�
D s.UL�j1 ˝ � � � ˝ UL�jn/;

where �jk 2 K
.jk/

R ˚H
.jk0 /

R , jk 2 N1, jk0 2 N2 and 1 � k; k0 � n, n 2 N. By the Wick
product formula in Lemma 4.1, it suffices to show that

�.UL/
�
l.�jt1 / � � � l.�jtk /l

�.�jt.kC1/ / � � � l
�.�jtn /

�
D l.UL�jt1 / � � � l.UL�jtk /l

�.UL�jt.kC1/ / � � � l
�.UL�jtn /;

where �jk 2K
.jk/

R for jk 2 N1, 1 � k � n, n 2 N.
It is easy to see that F zT .UL/ is a unitary and F zT .UL/l.u/F zT .UL/

� D l.ULu/ for all
u 2KC ˚HC . Therefore, we have

F zT .UL/l.�jt1 / � � � l.�jtk /l
�.�jt.kC1/ / � � � l

�.�jtn /F zT .UL/
�

D l.UL�jt1 / � � � l.UL�jtk /l
�.UL�jt.kC1/ / � � � l

�.UL�jtn /:

Since UL�jk 2K
.jk/

R ˚H
.jk0 /

R , jk 2 N1, jk0 2 N2 and 1 � k, k0 � n, n 2 N, we have

�.UL/
�
s.�j1 ˝ � � � ˝ �jn/

�
D s.UL�j1 ˝ � � � ˝ UL�jn/:

By an application of the Kaplansky density theorem, it follows that �.UL/ maps M zT into
M zT .

Since .P ˝P / zT D T2.P ˝P /, from Proposition A.4, it follows that the map �.P / W
B.F zT .K ˚H //! B.FT2.H // by �.P /.x/ WD F .P /xF .P /�, x 2 B.F zT .K ˚H //,
is normal and completely positive.
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Let � zT and �T2 denote the standard vacuum vectors in F zT .K ˚H / and FT2.H /,
respectively. Since � zT and �T2 are, respectively, cyclic and separating for M zT and MT2

(see Proposition 3.5), it follows that

�.P /
�
s.�j1 ˝ � � � ˝ �jn/

�
.�T2/ D F .P /s.�j1 ˝ � � � ˝ �jn/� zT

D F .P /.�j1 ˝ � � � ˝ �jn/

D P�j1 ˝ � � � ˝ P�jn

D s.P �j1 ˝ � � � ˝ P�jn/�T2 :

Thus, �.P /.s.�j1 ˝ � � � ˝ �jn//D s.P �j1 ˝ � � � ˝P�jn/, where �jk 2K
.jk/

R ˚H
.jk0 /

R ,
jk 2 N1, jk0 2 N2 and 1 � k, k0 � n, n 2 N. As before, it follows that �.P / maps M zT
into MT2 .

Now, we proceed to define �.�/. LetMK D¹s.�/ W � 2KR˚ 0�KR˚HRº
00 �M zT .

Since .�˝ �/T1 D zT .�˝ �/, from Proposition A.4, it follows that F .�/ is a contraction.
Note that F .�/ W FT1.K/ ! F zT .K ˚ H / is an isometry whose final space is the

range of the Jones projection associated with MK . Consequently, �.�/ W B.FT1.K//!

B.F zT .K ˚H // defined as �.�/.x/ D F .�/xF .�/�, x 2 B.FT1.K//, is a unital injective
�-homomorphism. Arguing as before, it is clear that

�.�/
�
s.�j1 ˝ � � � ˝ �jn/

�
D s.��j1 ˝ � � � ˝ ��jn/;

where �jk 2K
.jk/

R , jk 2 N1, 1 � k � n, n 2N. Further, �.�/mapsMT1 intoM zT , and the
range of �.�/ is easily identified with MK .

Define �.L/ WMT1 !MT2 by

�.L/.x/ D �.P /
�
�.UL/�M zT

��
�.�/�MT1

�
.x/; x 2MT1 :

Clearly, �.L/ is a normal u.c.p. map. Further,

�.L/
�
s.�j1 ˝ � � � ˝ �jn/

�
D s.L�j1 ˝ � � � ˝ L�jn/

for �jk 2K
.jk/

R , jk 2 N1, 1 � k � n, n 2 N.
The rest of the statements are routine. This completes the proof.

Corollary 6.2. Let � W KR ! KR ˚ HR be the inclusion map. Then, there exists an
injective, normal unital �-homomorphism �.�/ WMT1 !M zT . Moreover, �.�/ is a Markov
map.

Proof. We have noted the result in the proof of Proposition 6.1. Hence, we omit the de-
tails.

Next, we show that second quantization for mixed q-deformed Araki–Woods von Neu-
mann algebras can be defined for a contraction between KR and HR which respects the
invariant blocks of the one-parameter groups .Ut /t2R and .Vt /t2R and extends to a con-
traction between K and H . The proof is similar to [33, Thm. 3.4].
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Theorem 6.3. Let Li W K.i/ ! H .i/ be contractions such that Li D JiLiIi for i 2 N1.
Let L D

L
i2N1

Li . Then, there exists a normal u.c.p. map �.L/ WMT1 !MT2 extending
s.�j1 ˝ � � � ˝ �jn/ 7! s.L�j1 ˝ � � � ˝ L�jn/, �jk 2K

.jk/

C for jk 2 N1, 1 � k � n, n 2 N.
Moreover, �.L/ preserves the vacuum state.

Proof. The proof follows along the same lines of [33, Thm. 3.4]. Therefore, we provide
only an outline of the proof.

As in the proof of Proposition 6.1, for i 2 N1, consider the dilation of Li to a unitary
operator ULi on K.i/ ˚H .i/ as follows:

ULi D

 
.1K.i/ � L�i Li /

1
2 L�i

Li �.1H .i/ � LiL
�
i /

1
2

!
:

Note that Li D PiULi �i , where �i WK.i/ !K.i/ ˚H .i/ is the natural inclusion and Pi W
K.i/˚H .i/!H .i/ is the orthogonal projection. Define �D

L
i2N1

�i ;UL D
L
i2N1

ULi
and P D

L
i2N1

Pi . It follows that

PUL� D
�M
i2N1

Pi

��M
i2N1

ULi

��M
i2N1

�i

�
D

M
i2N1

PiULi �i D
M
i2N1

Li D L:

It is easy to see that � maps KR inside KR ˚ HR and � ı Ut D .Ut ˚ Vt / ı � for
t 2 R. Therefore, by the proof of Proposition 6.1, �.�/�MT1

W MT1 ! M zT is the second
quantization of �. Let �.UL/ W B.F zT .K ˚H //! B.F zT .K ˚H // be the automorphism
given by

�.UL/.x/ WD F zT .UL/xF zT .UL/
�; x 2 B

�
F zT .K ˚H /

�
:

Also, let �.P / W B.F zT .K ˚H //! B.FT2.H // be the automorphism given by

�.P /.x/ D F .P /xF .P /�; x 2 B
�
F zT .K ˚H /

�
:

Define �.L/ WMT1 ! B.FT2.H // by �.L/ WD �.P /�.UL/�.�/�MT1
. Using the hypoth-

esis and arguing along the same lines of [33, Thm. 3.4], it follows that

�.L/
�
s.�j1 ˝ � � � ˝ �jn/

�
D s.L�j1 ˝ � � � ˝ L�jn/

for �jk 2K
.jk/

C for jk 2 N1, 1 � k � n, n 2 N. By an obvious application of Kaplansky
density theorem, it follows that �.L/ maps MT1 into MT2 .

The rest is clear. This completes the proof.

Remark 6.4. Consider two different decompositions of HR consisting of invariant sub-
spaces of .Ut /t2R as follows:

HR WD
M
i2N

H
.i/
R and HR WD

M
i2N

K
.i/
R :

For i; j 2 N , define Ti;j W H
.i/
R ˝H

.j /
R ! H

.j /
R ˝H

.i/
R to be the bounded extension of

� ˝ � 7! qij .�˝ �/ for � 2 H
.i/
R ; � 2 H

.j /
R :
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Also, define T 0i;j WK
.i/
R ˝K

.j /
R !K

.j /
R ˝K

.i/
R to be the bounded extension of

� 0 ˝ �0 7! qij .�
0
˝ � 0/ for � 0 2K

.i/
R ; �0 2K

.j /
R :

Let MT and MT 0 be the associated von Neumann algebras represented in standard form
on FT .H / and FT 0.H /, respectively. Suppose that there exist orthogonal operators Vi W
H
.i/
R ! K

.i/
R such that ViUt D UtVi for i 2 N , t 2 R. Let V D

L
i2N Vi . Then, from

Proposition 6.1, it follows that the map �.V / WMT !MT 0 defines an isomorphism.

We are prepared to discuss the Haagerup property of MT .

Definition 6.5 ([12]). Let M be a von Neumann algebra equipped with a faithful normal
semifinite weight  . Then, M has a Haagerup approximation property if there exists a
sequence of normal u.c.p. maps ˆk WM !M , k 2 N such that

(1)  ıˆk �  for all k 2 N;

(2) the GNS-implementation Tˆk W L
2.M; /! L2.M; / of ˆk is compact for all

k 2 N, and Tˆk ! 1L2.M; / strongly.

Remark 6.6. From [12, Thm. 1.3], it follows that the Haagerup approximation property
is an intrinsic property of the von Neumann algebra M ; i.e., it does not depend on the
choice of the faithful normal semifinite weight  .

Fix k 2 N . Let Jk denote the complex conjugation on H
.k/
C . Then, the following

statement [17] holds.

Proposition 6.7 (cf. [17, Prop. 3.17]). For i 2 N , there exists a sequence of finite rank
contractions ¹T .i/

k
ºk2N on H .i/ such that JiT

.i/

k
Ji D T

.i/

k
and limk!1 T

.i/

k
D 1 (on

H .i/) pointwise.

In the next theorem, we show that MT has the Haagerup approximation property. It
generalizes [33, Thm. 1.1] to the current setting.

Theorem 6.8. MT has the Haagerup approximation property.

Proof. For i 2 N , by Proposition 6.7, we get a sequence of finite rank contractions

¹T
.i/

k
ºk2N on H .i/

such that JiT
.i/

k
Ji D T

.i/

k
for all k 2 N and T .i/

k
! 1 (on H .i/) in s.o.t. as k !1.

If jN j <1, define Lk WH !H by Lk WD
P
i2N T

.i/

k
. Again, if N DN, then define

Lk W H ! H as

Lk WD T
.1/

k
˚ T

.2/

k
˚ � � � ˚ T

.k�1/

k
˚ T

.k/

k
˚ 0:

Note that Lk is a finite rank contraction for each k 2N. Also, note that Lk.H .i//�H .i/,
and JiLkJi D Lk for all i 2 N , k 2 N. If jN j <1, it is obvious that Lk ! 1 in s.o.t.
Again, if N D N, let P.l/ W H !

Ll
mD1 H .m/ denote the orthogonal projection. Then,
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Lk� ! � for all � 2 Ran.P.l// for all l . By a simple density argument, it follows that
Lk ! 1 in s.o.t. on H as k !1.

By replacing the role of Ji and Ii for i 2 N1 in Theorem 6.3 by Ji , i 2 N , and
proceeding along the same lines of the proof of Theorem 6.3, we get a second quantization
�.Lk/ for MT such that �.Lk/s.�j1 ˝ � � � ˝ �jn/ D s.Lk�j1 ˝ � � � ˝ Lk�jn/ for �jk 2
H
.jk/

C , jk 2 N , 1 � k � n, n 2 N.
Let Vk;t WD �.e�tLk/ WMT !MT for k 2N and t > 0 (see Theorem 6.3). Then, Vk;t

is a normal u.c.p. map, and it preserves the vacuum state ' for k 2 N and t > 0. We show
that the GNS-implementations of these maps are compact and are converging pointwise
to 1 as k !1 and t ! 0.

Since �.e�tLk/.x/ D FT .e
�tLk/xFT .e

�tLk/
� for x 2 MT , FT .e

�tLk/
�� D �

and � is generating for MT , it follows that the GNS implementation TVk;t of Vk;t is
FT .e

�tLk/, k 2 N and t > 0.
LetPn WF .H /!

Ln
mD0H

˝m denote the orthogonal projection, n2N (H˝0DC�).
Note that P .n/ maps H˝n into H˝n for n 2 N. Therefore, one has� 1M

iDnC1

P .i/
�
P?n D P

?
n

� 1M
iDnC1

P .i/
�
; n 2 N

(note that
L1
iDnC1 P

.i/ is unbounded, densely defined, closed, positive and self-adjoint).
It is easy to verify that T�H .i/˝H .j / commutes with T .i/

k
˝ T

.j /

k
for k 2 N, i; j 2 N .

Therefore, T commutes with Lk ˝ Lk for all k 2 N. Therefore, F .e�tLk/�H˝n also
commutes with P .n/ for n 2 N (cf. Proposition A.4). Note that FT .Lk/�F .H/ D F .Lk/,
k 2 N. Hence, by Proposition A.1, one has

P?n F .e�tLk/



 D 

fPn?FT .e
�tLk/



; (66)

where fPn W FT .H /!
Ln
mD0H˝

m
T is the orthogonal projection, which is an extension of

Pn, n 2 N.
Now, we check the compactness of FT .e

�tLk/ for k 2 N and t > 0. Fix k 2 N
and t > 0. Since Lk is of finite rank, it follows that fPnFT .e

�tLk/ is also of finite rank.
Therefore, it is enough to show that

fPn?FT .e

�tLk/


! 0 as n!1:

By (66), it is enough to show that

P?n F .e�tLk/


! 0 as n!1:

Note that 

P?n F .e�tLk/


2 D 

P?n F .e�2tLkL

�
k/P

?
n



:
Now, since LkL�k is a finite rank positive contraction, there exists an orthonormal

basis ¹e.k/i ºi2ƒ of H such that LkL�ke
.k/
i D �

.k/
i e

.k/
i for �.k/i 2 Œ0; 1�, i 2 ƒ. The tensor

products of the elements of the orthonormal basis ¹e.k/i ºi2ƒ form an orthonormal basis
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of the free Fock space F .H /. For a multi-index J D ¹i1; : : : ; inº, let us denote e.k/J D

e
.k/
i1
˝ � � � ˝ e

.k/
in

and �.k/J D �
.k/
i1
� � ��

.k/
in

.

Let � 2 F .H / be written as � D
P

J a
.k/

J e
.k/

J . Then, one has

P?n F .e�2tLkL
�
k/P

?
n �


2

F .H/
D




 X
jJ j>n

e�2jJ jta
.k/

J �
.k/

J e
.k/

J




2
F .H/

D

X
jJ j>n

e�4jJ jt ja
.k/

J j
2
j�
.k/

J j
2

� e�4.nC1/tk�k2;

where the last inequality follows since j�.k/J j � 1. Therefore, kP?n F .e�tLk/k ! 0 as
n!1.

From Proposition A.4, note that kFT .e�tLk/k � 1 for k 2 N and t > 0. Let � WD
�1 ˝ � � � ˝ �n 2 Hˇn. It is easy to verify that kFT .e�tLk/� � �kT ! 0 as k !1 and
t ! 0. Hence, by a simple density argument, it follows that FT .e

�tLk/ ! 1FT .H/ in
s.o.t. as k !1 and t ! 0. This completes the proof.

7. The relative commutant ofM�

In Section 4, we proved that for �0 2 H
.i/
R , i 2 N , such that Ut�0 D �0 for all t 2 R, the

generating subalgebraM�0 is a masa inMT . In this section, we show that if �0 2HR is not
fixed by .Ut /t2R, then the inclusion M�0 � MT is quasi-split, and hence, whenever MT

is of type III, thenM 0
�0
\MT is large. Therefore, there is no easy way to construct a masa

inMT other than the ones constructed in Section 4. The results obtained in this section are
analogous to the results obtained for the q-deformed Araki–Woods von Neumann algebras
in [2].

Let M be a von Neumann algebra represented in standard form on the GNS Hilbert
space H� WD L

2.M; �/ with respect to a faithful normal state �. Let B � M be a unital
von Neumann subalgebra of M . Also, let J� ; �� and �� denote Tomita’s conjugation
operator, modular operator and the standard vacuum vector, respectively. The inner prod-
uct and norm on H� are denoted by h�; �i� and k � k2;� , respectively. We have the following
natural embeddings of M :

ˆ1 WM ! L1.M/ by ˆ1.x/ D hJ�x�' ; ���i� ; x 2M;

ˆ2 WM ! L2.M/ by ˆ2.x/ D �
1
4

� x�� ; x 2M:

Definition 7.1 ([2, Def. 3.2]). (1) The inclusion B �M is said to be split if there exists a
type I factor F such that B � F �M .

(2) The inclusion B �M is said to be quasi-split if the map

B ˝alg M
op
3 a˝ yop

7! aJ�y
�J� 2 B.H�/

extends to a normal �-homomorphism � of B x̋M op (acting on H� ˝H�) onto B _M 0.
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It follows from [2, Lem. 3.9] that whenM is type III and B �M is split, then B 0 \M
is of type III. We state it for the sake of completeness.

Lemma 7.2 ([2, Lem. 3.9]). Let B �M � B.H�/ be von Neumann algebras. Then, the
following are equivalent.

(1) The inclusion B �M is split.

(2) There exist Hilbert spaces H1 and H2 and faithful normal representations �B W
B ! B.H1/ and �M 0 WM 0 ! B.H2/ such that

xy0 7! �B.x/˝ �M 0.y
0/; x 2 B and y0 2M 0;

extends to a spatial isomorphism between B _M 0 and �B.B/ x̋�M 0.M 0/. More-
over, B 0 \M Š �B.B/0 x̋ .�M 0.M 0//0.

Further, if M is of type III and B �M is a split inclusion, then B 0 \M is of type III.

Definition 7.3 ([10]). LetN andM be von Neumann algebras, and let pD 1;2. A normal
c.p. map p̂ W N ! Lp.M/ is said to be extendable if for any von Neumann algebra zN
with separable predual containing N , there exists a normal c.p. map ẑp W zN ! Lp.M/,
which extends p̂ .

Definition 7.4 ([2]). LetX and Y be two Banach spaces, and let‰ WX! Y be a bounded
linear map. Then, ‰ is called a nuclear map if and only if there exist sequences x�n 2 X

�

and yn 2 Y such that
P1
nD1 kx

�
nkkynk <1 and

‰.x/ D

1X
nD1

x�n.x/yn for all x 2 X:

The following proposition in [2] is crucial for our purpose. For the sake of complete-
ness, we state it below.

Proposition 7.5 ([2, Prop. 3.7]). Let B � M be an inclusion of von Neumann algebras,
where M is represented in standard form on the GNS Hilbert space H� with respect to
a faithful normal state �. Then, p̂�B

is nuclear ) p̂�B
is extendable , B � M is

quasi-split, p D 1; 2.

In this section, we follow notations from Section 5. First, suppose that N2 ¤ 0. Fix Qk,
with 1 � Qk � N2. In order to make the notations simple, we denote the pair .f 1

Qk
; f 2
Qk
/ by

.f0; f
0
0/. Also, we denote HR. Qk/, A. Qk/, � Qk and the pair .e1

Qk
; e2
Qk
/ by HR.0/, A.0/, �0 and

.e0; e
0
0/, respectively. In this section, we show that Mf0 � MT (and hence by symmetry

Mf 00 �MT ) is a quasi-split inclusion. We only work with Mf0 , as the analysis for Mf 00 is
analogous.

Denote Qf0 D 1p
2
.f0C if

0
0/ and Qf 00 D

1p
2
.f0 � if

0
0/. Note that Qf0; Qf 00 are scalar multi-

plies of e0 and e00, respectively, and are orthonormal vectors with respect to h�; �iHC . Also,
A.0/ Qf0 D

1
�0
Qf0 and A.0/ Qf 00 D �0 Qf

0
0 . Further, note that

f0 D
1
p
2
. Qf0 C Qf

0
0/ and f 00 D

i
p
2
. Qf 00 �

Qf0/:
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The following lemma is crucial for our purpose, and the proof follows along the same
lines as [2, Lem. 4.1].

Lemma 7.6. Let ˛;ˇ 2R and z D ˛C iˇ. Then, k�zf0kT D
q
�2˛0 C�

1�2˛
0

1C�0
. In particular,



� 1
4 f0




T
D

vuut 2�
1
2
0

1C �0
:

Proof. The proof follows exactly along the same lines of [2, Lem. 4.1].

Theorem 7.7. � 1
4

�L2.Mf0 ;'/
W L2.Mf0 ; '/! FT .H / is a Hilbert–Schmidt operator of

norm 1. In particular, ˆ2�Mf0
WMf0 ! FT .H / is compact.

Proof. Let � D 2�
1
2
0

1C�0
. Note that � < 1 since �0 > 1. From Lemma 4.2 (ii), it follows that²

f ˝n0

kf ˝n0 kT

W n � 0

³
forms an orthonormal basis of L2.Mf0 ; '/. Let x 2Mf0 . Expand

x� D

1X
nD0

an
f ˝n0

kf ˝n0 kT

;

where an 2 C for all n and
P1
nD0 janj

2 D kx�k2T .
From Lemma 3.9 (iii) and Theorem 3.13 (iii), it follows that if f0 2 H

.i/
R , i 2 N , then

f0 2D.�
1
4 /; �

1
4 f0 2 H

.i/
C ; i 2 N:

Therefore, it is easy to verify that

P .n/.�
1
4 f0/

˝n
D kf ˝n0 k

2
T .�

1
4 f0/

˝n for n 2 N:

Note that

1X
nD0

janj
2





� 1
4

�
f ˝n0

kf ˝n0 kT

�



2
T

D

1X
nD0

janj
2 1

kf ˝n0 k
2
T



� 1
4 .f ˝n0 /



2
T

D

1X
nD0

janj
2 1

kf ˝n0 k
2
T



.� 1
4 f0/

˝n


2
T

�
by Theorem 3.13 (ii)

�
D

1X
nD0

janj
2 1

kf ˝n0 k
2
T

˝
.�

1
4 f0/

˝n; P .n/.�
1
4 f0/

˝n
˛
F .H/
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D

1X
nD0

janj
2 1

kf ˝n0 k
2
T

˝
.�

1
4 f0/

˝n; kf ˝n0 k
2
T .�

1
4 f0/

˝n
˛
F .H/

D

1X
nD0

janj
2
˝
.�

1
4 f0/

˝n; .�
1
4 f0/

˝n
˛
F .H/

D

1X
nD0

janj
2
�
k�

1
4 f0kU

�2n
D

1X
nD0

janj
2
�
k�

1
4 f0kT

�2n
D

1X
nD0

janj
2�n

�
by Lemma 7.6

�
� kx�k2T : (67)

Consequently, the series
1X
nD0

an

�
�

1
4

f ˝n0

kf ˝n0 kT

�
defines a unique element in FT .H /. Now, approximating x� with² lX

nD0

an
f ˝n0

kf ˝n0 kT

³
l

;

noting �
1
4 is a closed operator, using (iii) of Lemma 3.9 and (iii) of Theorem 3.13, one

has

�
1
4 x� D

1X
nD0

an

�
�

1
4

f ˝n0

kf ˝n0 kT

�
:

From (67), it follows that
k�

1
4 x�kT � kx�kT :

Therefore, �
1
4

�Mf0�
admits a bounded extension to L2.Mf0 ; '/. Further,

1X
nD0





� 1
4

�
f ˝n0

kf ˝n0 kT

�



2
T

D

1X
nD0

1

kf ˝n0 k
2
T



.� 1
4 f0/

˝n


2
T

�
by Theorem 3.13 (ii)

�
D

1X
nD0

1

kf ˝n0 k
2
T

˝
.�

1
4 f0/

˝n; P .n/.�
1
4 f0/

˝n
˛
F .H/

D

1X
nD0

1

kf ˝n0 k
2
T

˝
.�

1
4 f0/

˝n; kf ˝n0 k
2
T .�

1
4 f0/

˝n
˛
F .H/
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D

1X
nD0

˝
.�

1
4 f0/

˝n; .�
1
4 f0/

˝n
˛
F .H/

D

1X
nD0

�
k�

1
4 f0kU

�2n
D

1X
nD0

�
k�

1
4 f0kT

�2n
D

1X
nD0

�n .by Lemma 7.6/

D
1

1 � �

<1:

Hence, it follows that

�
1
4

�L2.Mf0 ;'/
W L2.Mf0 ; '/! FT .H /

is a Hilbert–Schmidt operator of norm 1, as �
1
4� D �.

Consequently, ˆ2�Mf0
W Mf0 ! FT .H / is compact. Indeed, if Mf0 3 xn ! 0 in the

w�-topology, then xn�! 0 weakly in L2.Mf0 ; '/. By the compactness of �
1
4

�L2.Mf0 ;'/
,

it follows that �
1
4 xn�! 0 in k � kT . This completes the proof.

Theorem 7.8. ˆ2�Mf0
WMf0 ! FT .H / is a nuclear map. Also, the inclusionMf0 �MT

is quasi-split.

Proof. Following the proof of Theorem 7.7, for x 2Mf0 , one has

ˆ2�Mf0
.x/ D �

1
4 x�

D

1X
nD0

�
f ˝n0

kf ˝n0 kT

; x�

�
T

�
1
4

�
f ˝n0

kf ˝n0 kT

�
D

1X
nD0

 n.x/fn;

where  n 2 .Mf0/� is given by

 n.y/ D

�
f ˝n0

kf ˝n0 kT

; y�

�
T

for all y 2Mf0 ; fn D �
1
4

�
f ˝n0

kf ˝n0 kT

�
for n 2 N [ ¹0º:

By the Cauchy–Schwarz inequality, one has k nk � 1 for all n 2 N [ ¹0º. From
Lemma 3.9 (iii) and Theorem 3.13 (iii), it follows that if f0 2 H

.i/
R , i 2 N , then

f0 2D.�
1
4 /; �

1
4 f0 2 H

.i/
C ; i 2 N:
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Therefore, it is easy to verify that P .n/.�
1
4 f0/

˝n D kf ˝n0 k
2
T .�

1
4 f0/

˝n. Then,

1X
nD0

k nkkfnkT �

1X
nD0

kfnkT

D

1X
nD0





� 1
4

�
f ˝n0

kf ˝n0 kT

�




T

D

1X
nD0

1

kf ˝n0 kT



.� 1
4 f0/

˝n



T

�
by Theorem 3.13 (ii)

�
D

1X
nD0

1

kf ˝n0 kT

�˝
.�

1
4 f0/

˝n; P .n/.�
1
4 f0/

˝n
˛
F .H/

� 1
2

D

1X
nD0

1

kf ˝n0 kT

�˝
.�

1
4 f0/

˝n; kf ˝n0 k
2
T .�

1
4 f0/

˝n
˛
F .H/

� 1
2

D

1X
nD0

�˝
.�

1
4 f0/

˝n; .�
1
4 f0/

˝n
˛
F .H/

� 1
2

D

1X
nD0

�
k�

1
4 f0kU

�n
D

1X
nD0

�
k�

1
4 f0kT

�n
D

1X
nD0

�
2�

1
2
0

1C �0

� n
2

.by Lemma 7.6/

<1

�
since

2�
1
2
0

1C �0
< 1 as �0 > 1

�
:

Hence, it follows thatˆ2�Mf0
is a nuclear map (see Definition 7.4). From Proposition 7.5,

it follows that the inclusion Mf0 �MT is quasi-split. This completes the proof.

Next, we extend the above investigations to general vectors in HR. Let P 1j , 1 � j �
N1, P 2

k
, 1 � k � N2, and Pwm be the orthogonal projections from HR onto Rj WD R,

1� j �N1, HR.k/, 1� k �N2, and zHR, respectively. Let � 2 H
.i/
R , i 2N , be such that

k�kHC D k�kU D 1 and P 2
k
� ¤ 0 for some k or Pwm� ¤ 0. Then, following the same

arguments as in [2], one has k�
1
4 �kT < 1. We omit the details.

Therefore, assuming dim.HR/ � 2, N2 ¤ 0 or zHR ¤ 0, and from Theorems 7.7 and
7.8, one has the following.

Theorem 7.9. Let � 2 H
.i/
R , i 2 N , be such that k�kU D 1. Then, the following are

equivalent.

(1) � is not fixed by .Ut /t2R.
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(2) �
1
4

�L2.M� ;'/
W L2.M� ; '/! FT .H / is a Hilbert–Schmidt operator of norm 1. In

particular, ˆ2�M�
WM� ! FT .H / is compact.

(3) ˆ2�M�
WM� ! FT .H / is a nuclear map.

(4) M� �MT is a quasi-split inclusion.

Proof. The proof of (1))(2))(3) follows from the above discussion and Theorems 7.7
and 7.8.

(3))(1). Suppose to the contrary that Ut� D � for all t 2 R. From Corollary 4.12, it
follows that M� is a masa in MT possessing a '-preserving normal conditional expecta-
tion E� . Since dim.HR/ � 2, by Theorem 5.1, one has that MT is a factor. Further, from
Theorem 5.8, it follows that MT is a factor of type II1 or type III.

IfMT is a II1 factor, then ' is a trace from Theorems 3.13 and 5.8. In this case,�D 1,
and thus, ˆ2�M�

cannot be nuclear. Thus, MT is a type III factor.
Hence, from Proposition 7.5 and [2, Prop. 3.8], it follows that the inclusionM� �MT

is split. Let F be an intermediate type I factor between M� and MT . Then, E��F
W F !

M� is a faithful normal conditional expectation. This forces M� to be completely atomic,
which is a contradiction. Therefore, (1),(2),(3).

(3),(4) follows from Proposition 7.5 and [2, Prop. 3.8]. This completes the proof.

In the general case, we have the following.

Corollary 7.10. Let � 2 HR be such that k�kU D 1. Consider the following statements.

(1) � is not fixed by .Ut /t2R.

(2) �
1
4

�L2.M� ;'/
W L2.M� ; '/! FT .H / is a Hilbert–Schmidt operator of norm 1. In

particular, ˆ2�M�
WM� ! FT .H / is compact.

(3) ˆ2�M�
WM� ! FT .H / is a nuclear map.

(4) M� �MT is a quasi-split inclusion.

Then, (1))(2))(3))(4). Suppose MT is of type III and � 2 HR satisfies any one of the
four conditions mentioned above. Then, M 0

�
\MT is of type III. If, in addition, MT is a

type III factor, then M� �MT is a split inclusion.

Proof. (1))(2))(3))(4) follows along the same lines of Theorem 7.9.
If MT is of type III, then the conclusion follows directly from [2, Cor. 3.11]. If MT is

a type III factor, from [2, Prop. 3.8], it follows that the inclusion M� � MT is split. This
completes the proof.

8. Non-injectivity ofMT

In this section, we show that MT is non-injective in many cases. Our result on the non-
injectivity of MT is partial.

Definition 8.1. A von Neumann algebra M � B.H/ is said to be injective if there exists
a projection E of norm 1 from B.H/ onto M .



P. Bikram, R. Kumar R, and K. Mukherjee 1290

Definition 8.2 ([30, Def. 3.5]). A von Neumann algebra M � B.H/ is said to be semi-
discrete if for any finite sequences x1; x2; : : : ; xn 2 M and y1; y2; : : : ; yn 2 M 0, the
inequality 




 nX

iD1

xiyi






 �





 nX
iD1

xi ˝ yi







min

holds.

Note in [30, Thm. 3.1] that a von Neumann algebra is injective if and only if it is
semi-discrete.

Lemma 8.3. Let kT k D q < 1. Also, let �1; : : : ; �n be orthonormal vectors in .H ; h�; �iU /

for n 2 N. Then, 




 nX
kD1

l.�k/l
�.�k/






 � 1

1 � q
:

Proof. The proof follows along the same lines of [16, Lem. 2.1]. We omit the details.

In this section, we follow notations from Section 5. Let

xh D s.eh/ for 1 � h � N1 .or 1 � h < N1 if N1 D @0/;

zk D
1

2

�
s.f 1k /C is.f

2
k /
�

for 1 � k � N2 .or 1 � k < N2 if N2 D @0/;

yk D z
�
k :

The following theorem shows thatMT is non-injective in many cases. It adapts [16, Thms.
2.2, 2.3] to the current setting. We denote the spectral measure of A by EA.

Theorem 8.4. Let kT k D q < 1. Assume that any one of the following conditions hold.

(i) Suppose that dim.EA¹1º/ � 2.

(ii) Suppose that dim.EA¹1º/ D m0 � 1, .HR; .Ut /t2R/ is almost periodic and for
some K 2 N, A has eigenvalues �1; : : : ; �m 2 .1; K/, m 2 N, counted with
multiplicities such that

1
p
m0 Cm

 
m0 C

mX
kD1

2
p
�k C

q
��1
k

!
>

4

1 � q
:

(iii) .HR; .Ut /t2R/ is weak mixing.

(iv) Suppose that the weak mixing part of .HR; .Ut /t2R/ is non-trivial.

Then, MT is not injective.

Proof. (i) Following (54), let eKR WD
LN1
hD1

.Rh; id/. By assumption,N1 � 2. Let FT . zK/

denote the twisted Fock space associated with eKR and the obvious compression of T .
From [24, Thm. 2], it follows that �T .eKR/

00 � B.FT .eK// is not injective.
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Consider HR D
eKR ˚ .eKR/

? (direct sum taken with respect to h�; �iHC ). Let i W
eKR !

eKR ˚ .eKR/
? be the inclusion map. By Corollary 6.2, there exists an injective,

normal unital �-homomorphism �.i/ W �T .eKR/
00!MT . Hence,M WD �.i/.�T .eKR/

00/

is not injective. In addition, �.i/ is a Markov map.
Suppose to the contrary that MT is injective. Let E1 W B.FT .H //!MT be a projec-

tion of norm 1 onto MT . Since �.i/ is Markov, it follows that M is invariant under the
modular automorphism group .�'t /t2R. By [29], there exists a '-preserving conditional
expectation E2 WMT !M ontoM . Hence, E2 ı E1 W B.FT .H //!M is a projection of
norm 1 onto M . This forces M to be injective, which is a contradiction.

(ii) Since JAJ D A�1, it follows that A has eigenvalues in .1;1/. Suppose to the
contrary that MT is injective. By the hypothesis, one has

m0 C

mX
kD1

2
p
�k C

q
��1
k

>
4

1 � q
.m0 Cm/

1
2 : (68)

Let

X WD

m0X
hD1

xhJxhJ C

mX
kD1

zkJ zkJ C

mX
kD1

ykJykJ 2 C
�.MT ;M

0
T /;

zX WD

m0X
hD1

xh ˝ JxhJ C

mX
kD1

zk ˝ J zkJ C

mX
kD1

yk ˝ JykJ 2MT ˝min M
0
T :

By the equivalence of injectivity and semi-discreteness, one has

kXk � k zXkmin:

Also, proceeding along the same lines of calculations in [16, Thm. 2.2], and by replac-
ing the role of [16, Lem. 2.1] with Lemma 8.3, it follows that

kXk � m0 C

mX
kD1

2
p
�k C

q
��1
k

and
k zXkmin �

4

1 � q
.m0 Cm/

1
2 :

Therefore, one has

m0 C

mX
kD1

2
p
�k C

q
��1
k

�
4

1 � q
.m0 Cm/

1
2 :

This contradicts (68). Hence, MT is not injective under the hypothesis.
(iii) Note that �.A/ is continuous. Suppose to the contrary that MT is injective. Since

JAJ D A�1, it follows that �.A/ has a continuous component in .1;1/. Let F �
.1;1/ \ �.A/ be a bounded set such that the spectral measure � of A restricted to F



P. Bikram, R. Kumar R, and K. Mukherjee 1292

is continuous. Let a D inf¹x W x 2 F º and b D sup¹x W x 2 F º. Then, F � Œa; b�. Note
that L1.F; ��F / is diffuse. Therefore, there exists a disjoint partition ¹Gnº1nD1 of Œa; b/
such that Gn D Œan; bn/ for n 2 N, with a1 D a and �.Gn/ > 0 for all n 2 N. For k 2 N,
let

�k WD �
1
k C i�

2
k 2 EA.Gk/.HC/;

such that �1
k
; �2
k
2 HR and k�kkHC D 1. Since JAJ D A�1, one has

J�k D �
1
k � i�

2
k 2 EA.G

�1
k /.HC/; where G�1k D

° 1
x
W x 2 Gk

±
:

Let �1
k
D

�k
k�kkU

and �2
k
D

J�k
kJ�kkU

for k 2 N. Note that

¹�1kºk2N [ ¹�
2
kºk2N

is an orthonormal set in h�; �iU . Consider,

uk D
1

p
aC 1kJ�kkU

�
s.�1k/C is.�

2
k/
�
; vk D u

�
k ; k 2 N:

Fix L 2 N, and let

X WD

LX
kD1

ukJukJ C

LX
kD1

vkJvkJ 2 C
�.MT ;M

0
T /;

zX WD

LX
kD1

uk ˝ JukJ C

LX
kD1

vk ˝ JvkJ 2MT ˝min M
0
T :

As in the proof of (ii), by the equivalence of injectivity and semi-discreteness, one has

kXk � k zXkmin:

Note that �k 2EA.Œa; bk//.HC/ and J�k 2EA..b
�1
k
; a�1�/.HC/ for k 2N. Since the

function f .x/ D 2x
1Cx

defined on Œ0;1/ is increasing, we get

k�kk
2
U �

2a

1C a
and kJ�kk

2
U �

2

1C a
:

Further, for � 2 H , one has k�kU D k�kT . Therefore, proceeding along the same lines of
calculations in [16, Thm. 2.3] (as the vectors involved in the calculations are from H ), we
get

kXk �
a
1
2

�
1C

�
a
b

� 1
2
�

1C a
L:

Again, proceeding along the same lines of calculations in [16, Thm. 2.3] and by replacing
the role of [16, Lem. 2.1] with Lemma 8.3, it follows that

k zXkmin �
4

1 � q

�
1C b

1C a

� 1
2

L
1
2 :
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Therefore, one has
a
1
2

�
1C .a

b
/
1
2

�
1C a

L �
4

1 � q

�
1C b

1C a

� 1
2

L
1
2 ;

which in turn implies
a
1
2

�
1C .a

b
/
1
2

��
.1C a/.1C b/

� 1
2

L
1
2 �

4

1 � q
:

The last inequality does not hold for large L 2 N. This is a contradiction. Hence, MT is
not injective when .HR; .Ut /t2R/ is weak mixing.

(iv) Let .eHR; .Ut /t2R/ denote the weak mixing part of .HR; .Ut /t2R/. Let FT . zH /

denote the twisted Fock space associated with eHR and the obvious compression of T
associated with eHR. By (iii), it follows that �T .eHR/

00 � B.FT . zH // is not injective.
The rest of the arguments are similar to the arguments in (i) by considering the inclu-

sion � WeHR !
eHR ˚ .eHR/

? (direct sum taken with respect to h�; �iHC ). We omit the
details. This completes the proof.

Remark 8.5. The non-injectivity of the mixed q-deformed Araki–Woods von Neumann
algebras is thus open only when .HR; .Ut /t2R/ is almost periodic, dim.EA¹1º/ � 1, and
the spectrum of the analytic generator A of .Ut /t2R is not thick in the sense as stated in
(ii) of Theorem 8.4.

A. Some results on Hilbert spaces

In this section, we include some results concerning Hilbert spaces which are inevitable for
our purpose. The results in this section are known, but we lack references. Therefore, we
provide it for the sake of completeness.

Proposition A.1. Let Hi , i D 1; 2, be Hilbert spaces, and let Pi W D.Pi / � Hi ! Hi

be densely defined strictly positive self-adjoint operators for i D 1; 2. Let Bi W D.Pi / �
D.Pi /! C be a sesquilinear form given by Bi .�; �/ D h�; Pi�iHi

, �; � 2 D.Pi /, for
i D 1; 2. Suppose HPi denote the Hilbert space completion of D.Pi / with respect to Bi ,
i D 1; 2. Let T WH1!H2 be a bounded operator such that TP1 � P2T . Then, T admits
a unique extension zT W HP1 ! HP2 such that k zT k D kT k.

Proof. We denote the norm of Hi and HPi by k � ki and k � kPi , respectively, for i D 1; 2.
Let � 2D.P1/. Then,

kT �k2P2 D hT �; T �iHP2
D hT �; P2T �iH2

D h�; T �P2T �iH1

D h�; P1T
�T �iH1

�
since TP1 � P2T and .TP1/� D P1T � [28, §9.2]

�
D
˝
P

1
2
1 �; .T

�T /P
1
2
1 �
˛
H1

�
D.P

1
2
1 / �D.P1/

�
� kT k2hP

1
2
1 �; P

1
2
1 �iH1

D kT k2k�k2P1 :
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From the density of D.P1/ in HP1 , it follows that T has a unique extension zT from
HP1 to HP2 , and k zT k � kT k.

Further, P1 and P2 are invertible and .P1/�1 and .P2/�1 admit bounded extensions.
Then, .P2/�1TP1 � T , and hence, .P2/�1TP1 admits bounded extension as well. Thus,
.P2/

�1TP1 D T , and hence, .P2/�1T D T .P1/�1. Further, ..P2/�1/kT D T ..P1/�1/k

for k 2 N. Thus, for � 2D.P1/, by functional calculus, one has

kT �k22 D hT �; T �iH2
D
˝
T �; .P2/

�1TP1�
˛
H2

D
˝
.P2/

� 12T �; .P2/
� 12TP1�

˛
H2

D
˝
T .P1/

� 12 �; .P2/
� 12TP1�

˛
H2

D
˝
T .P1/

� 12 �; P2.P2/
� 32TP1�

˛
H2

D
˝
T .P1/

� 12 �; P2T .P1/
� 32P1�

˛
H2

D
˝
T .P1/

� 12 �; P2T .P1/
� 12 �

˛
H2

D


 zT .P1/� 12 �

2HP2

� k zT k2


.P1/� 12 �

2HP1

.as zT is bounded/

� k zT k2k�k21
�
D.P

1
2
1 / �D.P1/

�
:

This completes the proof.

Proposition A.2. Let Hi , i D 1;2; : : : ; be Hilbert spaces, and letPi WHi!Hi be strictly
positive bounded operators for i D 1; 2; : : : : Then, P D

L
i Pi is a densely defined closed

strictly positive self-adjoint operator on
L
i Hi .

Proof. Note that Hi�D.P / for all i . Thus,P is densely defined. Clearly,
L
iPi is strictly

positive. It is easy to see that P is closed and self-adjoint.

For the next two results, we invoke the construction in [8] of twisted Fock spaces
corresponding to arbitrary Yang–Baxter operators.

Let H , K be (complex) Hilbert spaces and T 0, T 00 self-adjoint (strict) contractions
satisfying the Yang–Baxter relation on H and K, respectively. For n 2 N, let P .n/1 and
P
.n/
2 be positive operators onH˝n andK˝n, respectively, defined similar to P .n/ in (10).

Let H˝
n
T 0 and K˝

n
T 00 denote the corresponding twisted tensor products as in Section 2.

Proposition A.3. Fix n 2 N. Let T W H˝n ! K˝n be a bounded linear operator such
that T P

.n/
1 D P

.n/
2 T . Then, T admits a unique bounded extension zT W H˝

n
T 0 ! K˝

n
T 00 .

In addition, kT k D k zT k.

Proof. Recall that P .n/1 and P .n/2 are strictly positive onH˝n andK˝n, respectively. The
rest is immediate from Proposition A.1.

Proposition A.4. Let H and K be Hilbert spaces, and let V W H ! K be a contraction.
Let T1 and T2 be self-adjoint contractions satisfying the Yang–Baxter relations defined on
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H ˝H andK ˝K, respectively. Suppose that .V ˝ V /T1 D T2.V ˝ V /. Then, the map
F .V / W FT1.H/! FT2.K/ defined by extending

F .V /.�H / D �K ;

F .V /.�1 ˝ � � � ˝ �n/ D V�1 ˝ � � � ˝ V�n; �i 2 H for 1 � i � n; n 2 N;

is a contraction, where �H and �K are the distinguished vacuum vectors in H and K,
respectively. Moreover, kF .V /k � 1.

Proof. Fix n 2 N. Let P .n/1 and P .n/2 denote the strictly positive operators on H˝n and
K˝n associated with T1 and T2, respectively (as defined in (10)). Since .V ˝ V /T1 D
T2.V ˝ V /, it follows that .V ˝n/P .n/1 D P

.n/
2 .V ˝n/.

Then, by Proposition A.3, it follows that F .V /�H˝n extends uniquely to a bounded
operator from H

˝nT1 to K˝
n
T2 of norm kV kn. Since V is a contraction, the rest is imme-

diate.
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