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Conormal homology of manifolds with corners

Thomas Schick and Mario Velásquez

Abstract. Given a manifold with corners X , we associate to it the corner structure simplicial com-
plex †X . Its reduced K-homology is isomorphic to the K-theory of the C�-algebra Kb.X/ of
b-compact operators on X . Moreover, the homology of †X is isomorphic to the conormal homol-
ogy of X .

In this note, we construct for an arbitrary abstract finite simplicial complex † a manifold with
corners X such that †X Š †. As a consequence, the homology and K-homology which occur for
finite simplicial complexes also occur as conormal homology of manifolds with corners and as K-
theory of their b-compact operators. In particular, these groups can contain torsion.

1. Introduction

In this note, we contribute to the index theory and homology of compact manifolds with
corners. More specifically, a fundamental question in this field asks for obstructions to the
Fredholm property for boundary value problems, initiated in [3]. LetX be such a manifold
with corners. The geometrically relevant boundary value problems (and their inverses) are
contained in the algebra of b-pseudodifferential operators as introduced by [7]. Given such
an operator which is elliptic (has an elliptic principal symbol), it is in general not true that
the operator is Fredholm.

In this situation, one asks if one can find a smoothing perturbation (possibly after
stabilization) to render the given operator Fredholm. If this is possible, the operator satis-
fies the stable Fredholm perturbation (SFP) property. As one can guess, not all operators
have the SFP: it is proven in [8] that the obstruction to this is precisely the boundary
analytic index which takes values in K�.Kb.@X//, where Kb.@X/ is the C �-algebra of
b-compact operators on the boundary of X (the C �-algebra Kb.@X/ is defined as the
quotient Kb.X/=K.X/, where K.X/ denotes the C �-algebra of compact operators on
L2.X/; for details see [3]). A modern proof of the same fact, using deformation groupoids,
is given in [10]. By [3, Proposition 5.6], the restriction to the boundary induces an isomor-
phism K�.Kb.X//! K�.Kb.@X// provided that @X ¤ ;.

It turns out that the relevant group K�.Kb.X// depends only on the combinatorics of
the faces of the manifold with corners X and how they intersect. Indeed, one essentially
can compute these K-groups combinatorially. To this end, Bunke [2] introduced the conor-
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mal homology of X (called differently in [2]), computed from a chain complex generated
abstractly by the faces of X . In [3], it is shown that this conormal homology contains the
obstructions to SFP if the corners in X are of codimension � 3.

More systematically, in [4] a natural Chern character

K�
�
Kb.X/

�
! H cn

�C2Z.X/˝Q (1)

is constructed and proven to be rationally an isomorphism.
In the situation studied in [3], it is useful if the conormal homology is torsion free.

There and in [4], the authors therefore ask if the conormal homology always is torsion free,
and whether perhaps the Chern character (1) can be improved to an integral isomorphism.

The main goal of the present paper is to provide examples of manifolds with cor-
ners which show that the conormal homology does not have any of these nice properties.
Instead, it can be as rich as the homology of an arbitrary finite simplicial complex. The
same applies to the K-theory of Kb.X/.

More specifically, in the present paper, we associate to a manifold with embedded
corners X its corner structure complex, a simplicial complex †X encoding the corner
structure in such a way that the reduced K-homology of †X is isomorphic to the topolog-
ical K-theory of the C �-algebra Kb.X/, and the conormal homology of X is isomorphic
to the homology of†X . We then prove that every finite simplicial complex can be realized
as †X of some manifold with embedded corners X .

In particular, this implies that the conormal homology defined in [3,4] in general does
contain torsion.

2. The corner structure complex of a manifold with corners

Let us recall the definition of a smooth manifold with embedded corners. We adopt the
approach where a manifold with corners is defined as a suitable subset of a smooth ordi-
nary manifold (without boundary).

Definition 2.1. A compact smooth manifold with embedded corners X is defined in the
following way. Start with a compact smooth manifold zX (without boundary) and with
smooth maps �0; : : : ; �nW zX ! R. Set

Hj D �
�1
j .0/ \ zX; j D 0; : : : ; n; Hj1;:::;jk WD Hj1 \ � � � \Hjk

such that

¹d�j1 ; : : : ; d�jk º has maximum rank at each x 2 Hj1;:::;jk 8¹j1; : : : ; jkº � ¹0; : : : ; nº:

This defines the manifold with corners X as follows:

(1) X WD
Tn
jD1 �

�1
j .Œ0;C1// � zX ;

(2) each Hj is called a boundary component of codimension 1;
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(3) if j¹j1; : : : ; jkºj D k, then we call Hj1 \ � � � \Hjk a face of codimension k;

(4) we denote by Fk the set of faces of codimension k.

Throughout the paper, we assume that each face Hj1 \ � � � \ Hjk of arbitrary codi-
mension is connected, in particular each boundary component of codimension 1.

Definition 2.2. LetX be a manifold with embedded corners with nC 1 boundary compo-
nents H0; : : : ; Hn of codimension 1. Define the corner structure complex as the abstract
simplicial complex †X associated to X with vertex set ¹H0; : : : ; Hnº with the following
simplices: for A � ¹H0; : : : ;Hnº

A 2 †X if and only if
\
Hi2A

Hi ¤ ;:

It is clear that †X is closed under inclusions and therefore is an abstract simplicial
complex. Observe that an abstract simplicial complex as considered here is a set, the
vertex set (here ¹H0; : : : ; Hnº), together with a collection of finite subsets (here †X /,
called the simplices, which is closed under taking subsets (if � � � , then � is called a face
of � ).

Every abstract simplicial complex † has a geometric realization denoted by

j†j WD
� [
�2†

� ��j� j�1
�
= � :

Here, �k is the standard k-simplex and we glue according to the face relation in the
abstract simplicial complex. For details, compare (3) or consult [9, Theorem 7.8].

Example 2.3. (1) If X is a smooth manifold without boundary, then †X D ;.

(2) Let .Y; @Y / be a connected manifold with non-empty connected boundary. Then
†Y is a point.

(3) LetX be a connected manifold with boundary with n boundary components. Then
†X is the simplicial complex with n points and no edges.

More generally, we have the following result

Lemma 2.4. Let Y1 and Y2 be manifolds with embedded corners, then †Y1�Y2 is isomor-
phic to the join †Y1 �†Y2 .

Proof. Recall that the join of two abstract simplicial complexes †1; †2 has vertex set the
disjoint union V.†1/q V.†2/, where V.†j / is the vertex set of†j for j D 1;2. A subset
A � V.†1/q V.†2/ is a simplex of †1 �†2 if and only if A D A1qA2 with A1 2 †1
and A2 2 †2.

Let zY1 be a smooth manifold and let �1; : : : ; �nW zY1 ! R be smooth maps defining
the manifold with corners Y1. In the same way, let zY2 and �nC1; : : : ; �nCmW zY2 ! R
define Y2. Then the smooth manifold zY1 � zY2 with the smooth maps �1 ı �1; : : : ; �n ı �1;
�nC1 ı�2; : : : ; �nCm ı�2W zY1 � zY2!R define Y1 � Y2 as a manifold with embedded cor-
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ners. Here �j WY1 � Y2! Yj , j D 1; 2, are the projections. We denote the boundary com-
ponents of Y1 byHj , jD1; : : : ; n, and the boundary components of Y2 byHj , j D nC 1;
: : : ; nCm. Then the set of boundary components of Y1 � Y2 is ¹H1 � Y2; : : : ; Hn � Y2;
Y1 �HnC1; : : : ; Y1 �HnCmº and clearly †Y1�Y2 satisfies the conditions to be the join
†Y1 �†Y2 .

Note that the geometric realization of the join of simplicial complexes is the topolog-
ical join of the geometric realizations of the individual simplicial complexes. The above
lemma gives more examples as follows:

Example 2.5. (1) Let .Y; @Y / be a connected manifold with non-empty connected
boundary and set X D Y n. This is a manifold with embedded corners and †X D
�n is the n-simplex.

(2) We can also directly construct an .nC 2/-dimensional manifoldAwith embedded
corners (all of whose faces are connected) such that †A Š �n. For this aim, start
with zA WD SnC2, but decompose

SnC2 D @.DnC3/ D @.D2
�DnC1/ D S1 �DnC1

[S1�Sn D
2
� Sn:

This way, we have an obvious projection map to the second factor � W SnC2 !
DnC1, with nC 1 component functions �1; : : : ; �nC1W zA! R. Then we set

A WD

nC1[
jD1

¹�j � 0º D S
1
�QnC1

[S1�.Sn\QnC1/ D
2
� .Sn \QnC1/;

where we write QnC1 WD ¹.x1; : : : ; xnC1/ 2 D
nC1 j xj � 0; 8j º, the positive

hyperquadrant sector. Then A is a manifold with embedded corners, where clearly
all the faces are connected and as

TnC1
jD1¹�j D 0º D S

1 � ¹.0; : : : ; 0/º ¤ ;, accord-
ing to Definition 2.2 we have †A Š �n, as desired.

Our first main result is constructive: for every finite simplicial complex we can con-
struct a manifold with corners. A more general result will be proved in Theorem 2.11.

Theorem 2.6. Let† be an arbitrary finite simplicial complex. Then there exists a compact
manifold with embedded corners X such that †X is isomorphic to †.

As a preparation for the proof, we introduce further definitions.

Definition 2.7. Let X be a manifold with embedded corners, let x0 2 X , and let V0 be a
coordinate neighborhood around x0. Then V0 is a manifold with embedded corners and
its corner structure complex †V0 is called the simplicial complex of X around x0. Given
points x0 2 X and y0 2 Y , where X and Y are manifolds with embedded corners of the
same dimension, we say that x0 and y0 have the same local corner structure if the corner
structure complexes of X around x0 and of Y around y0 are isomorphic.

Now we will define the connected sum around 0-dimensional submanifolds. This will
be a key ingredient in the constructions required to prove Theorem 2.6.
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Let X and Y be manifolds with embedded corners of dimension n and let

¹x1; : : : ; xmº � X and ¹y1; : : : ; ymº � Y

be finite subsets of X and Y , respectively, such that for i D 1; : : : ; m, xi and yi have the
same local corner structure. By results in [6], there are tubular neighborhoods V and W
with

¹x1; : : : ; xmº � V � X and ¹y1; : : : ; ymº � W � Y:

We have
V Š V1 t � � � t Vm and W Š W1 t � � � tWm;

where Vi is a coordinate neighborhood of xi and Wi is a coordinate neighborhood of yi .
Then we can choose identifications

Vi D .�1; 1/
ni � Œ0; 1/n�ni � .�1; 1/ni � .�1; 1/n�ni DW eVi

and
Wi D .�1; 1/

mi � Œ0; 1/n�mi � fWi :
In these coordinates, the face defining functions �j of Definition 2.1 are just the coordinate
functions for the closed intervals.

Moreover, as xi and yi have the same local corner structure, we have ni D mi .
We now follow the description of the ordinary connected sum in [5] to define our

connected sum of manifolds with corners.

Definition 2.8. Define the connected sum of X and Y along the subsets ¹x0; : : : ; xmº and
¹y0; : : : ; ymº as follows:�

X; ¹x0; : : : ; xmº
�
]
�
Y; ¹y0; : : : ; ymº

�
WD

�
X � ¹x0; : : : ; xmº

�F �
Y � ¹y0; : : : ; ymº

�
tz 2 Vi � .1 � t /z 2 Wi

(2)

for every z 2 Sn�1. When ¹x0; : : : ; xmº and ¹y0; : : : ; ymº are clear from the context, we
denote the connected sum by X]Y .

For the sake of completeness, let us give the details of how it is a straightforward
verification that X]Y is a manifold with embedded corners. To do so, we have to define
the ambient smooth ordinary manifold and the boundary defining functions.

Of course, the ambient manifold for the connected sum is defined as the connected sum
of the ambient manifolds zX of X and zY of Y , defined precisely with the same formula
as (2).

The boundary defining function �j remains unchanged outside the set Vi t Wi but
has to be modified in the coordinate regions where the identifications are carried out. We
redefine �j on Vi tWi by

�j .x/ WD �x
�
jxj
�
� xj ;
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with �x W .0; 1/! .0; 1/ a smooth monotonously decreasing function with

�x.t/ D

´
1; t > 0:6;
1�t
t
; t < 0:4:

In the coordinates of Wi , we have for y 2 Wi that y � x WD 1�jyj
jyj

y 2 Vi and therefore

�j .y/ D

8<: 1�jyj
jyj

yj ; 1 � jyj > 0:6 ” jyj < 0:4;

1�.1�jyj/
jyj

1�jyj
jyj

yj D yj ; jyj > 0:6:

We observe that we indeed defined a smooth function on the connected sum of zX and zY
as the expressions are unchanged on the “outer” part of Ui or Vi , where the norm is > 0:6.

Remark 2.9. The connected sum of two manifolds with corners X and Y will again be a
manifold with corners. However, even if all faces of arbitrary codimension of X and of Y
are connected, in general this will not be the case for X]Y .

Lemma 2.10. Assume that X is a compact manifold of dimension d with embedded cor-
ners (all faces connected). Assume that we have an embedding �W @�n ,! †X , but the
simplex spanned by the vertices in the image of � is not contained in †X .

Then, for each d 0�max¹d;nC 2º, there is a compact smooth manifoldZ with embed-
ded corners (all faces connected) such that†Z Š†X [� �n; i.e.†Z is isomorphic to the
simplicial complex obtained from †X by adding the simplex spanned by the image of �.

Proof. We write �n D P .¹0; : : : ; nº/, the power set of ¹0; : : : ; nº. Taking the product
with a smooth connected manifold, a process which does not change the corner struc-
ture, we can assume that dim.X/ D d 0. Let Hk � X be the boundary component which
corresponds to �.k/ for k D 0; : : : ; n, and set

Hkc WD
\
j¤k

Hj ;

the face of X of codimension n corresponding to ¹0; : : : ; nº n ¹kº � @�n. By the assump-
tion that �.@�n/�†X , we haveHkc ¤; and dim.Hkc /D d 0 � .n� 1/ > 0 for all k. Pick
then xk 2 .Hkc /ı. The local corner structure around xk is precisely the .n � 1/-simplex
spanned by ¹0; : : : ; nº n ¹kº.

Choose a d 0-dimensional manifold M with embedded corners (all faces connected)
with a fixed isomorphism �n

Š
�! †M . For this, start with A of Example 2.3 (2) and take

the Cartesian product with a connected smooth manifold to adjust the dimension. Given
the fixed isomorphism †M Š �n, let HM

k
be the boundary face corresponding to the

vertex k of �n and set
HM
kc WD

\
j¤k

HM
j :

Note that dim.HM
kc
/D d 0 � n > 0 and pick distinct yk 2 .HM

kc
/ı, with local corner struc-

ture the .n � 1/-simplex spanned by ¹0; : : : ; nº n ¹kº.
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Define now Z WD .X I x0; : : : ; xn/#.M I y0; : : : ; yn/, using at each point the given
identifications of the local corner structure with a determined .n � 1/-dimensional sub-
simplex of �n D P .¹0; : : : ; nº/. This way, the face Hk is glued near the n points xj with
j 2 ¹0; : : : ; nº n ¹kº to the face HM

k
. Moreover, for each 0 � k0 < � � � < k˛ � n the face

Hk0 \ � � � \Hk˛ is glued (at n � ˛ points) to the intersection face HM
k0
\ � � � \HM

k˛
. It

follows that each face of arbitrary codimension of Z remains connected. The boundary
faces of Z are in obvious bijection with those of X and the corner complex is a simpli-
cial complex with vertex set the one of †X . As HM

0 \ � � � \H
M
n ¤ ;, taking everything

together, we now get †Z D †X [�.@�n/ �.�n/.

Theorem 2.11. Let K be a finite simplicial complex and let n be the maximal dimension
of a simplex in K. If d � n C 2, then there is a compact d -dimensional manifold with
embedded corners X (all faces connected) such that

†X Š K:

Proof. The result follows by induction on the number of positive dimensional simplices
in K.

By Example 2.3 (3) any 0-dimensional simplicial complex satisfies the result.
If K contains a positive dimensional simplex, let � be one such of maximal dimen-

sion. Set K 0 WD K n ¹�º. Then K D K 0 [@� � . By induction, there exists the required
X 0 with †X 0 Š K 0 and by Lemma 2.10 we then can also construct the required X with
†X Š K.

3. Groupoids and the space OX

LetX be a manifold with embedded corners. In [4], for sufficiently largem a non-compact
topological space OX is introduced such that we have a Connes–Thom isomorphism

CT WK�
�
C �
�
Kb.X/

�� Š
�! KmC�.OX /:

The spaceOX is constructed as the orbit space of a free and proper groupoid. We recall
this construction briefly.

Let X be defined by the smooth manifold zX and the defining functions �1; : : : ; �n; i.e.
n\

jD1

¹�j � 0º DW X � zX:

The puff groupoid is defined as a subgroupoid of zX � zX � Rn, where zX � zX is the
arrow space of the pair groupoid and where Rn is the additive group (groupoid with one
object). The arrow space of the puff groupoid is then defined as

G
�
zX; .�i /

�
WD
®
.x; y; �1; : : : ; �n/ 2 zX � zX �Rn j �i .x/ D e

�i�i .y/
¯
:

Denote by Gc. zX; .�i // the s-connected component of G. zX; .�i //.
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Choose for sufficiently large m an embedding

�W zX ! Rm�n:

Using this embedding, in [4, Section 3] the authors construct a new groupoid

Rm Ì� Gc
�
zX; .�i /i

�
� Rm � zX:

By [4, Proposition 3.1], this groupoid is a free and proper Lie groupoid (this uses that all
faces of each codimension are connected). Hence the orbit space

O zX D Orb
�
Gc
�
zX; .�i /i

�
Ìh RM

�
D Rm � zX= �

has a natural structure of smooth manifold. Decomposing v 2 Rm as v D .v0; v00/ 2

Rm�n �Rn, set

z�i WO zX ! R;�
.v; x/

�
! �i .x/e

v00i :

By [4, Section 3], these maps are indeed well defined and determine a manifold with
corners OX .

Definition 3.1. We denote

OX D

n\
iD1

¹z�i � 0º:

In [4], it is verified that OX is a manifold with embedded corners with defining func-
tions z�1; : : : ; z�n.

The main result in [4] is the following.

Theorem 3.2. There is a Connes–Thom isomorphism

CThWK�
�
C �
�
Kb.X/

��
! KmC�.OX /:

Here K�.OX / denotes topological K-theory with compact support.

4. Relation between †X and OX

In [4, Section 3C], the authors construct a filtration of the space OX ,

Y0 � Y1 � � � � � Ym D OX :

Moreover, in [4, Proposition 3.27] they prove for each q that

Yq n Yq�1 Š
[

f 2faces ofX
N�q�codim.f /�N

Rmf :
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Here Rm
f

is a certain subspace of Rm, and the construction implies that there is a home-
omorphism from OX to a subspace of Rm which is entirely determined by the combina-
torics of the corner structure of X . We will now describe in detail this homeomorphism.

Canonically, zOX is defined as a subset of Rm�jV j �RV , where V is the set of boundary
faces of X , i.e. the vertex set of †X . We denote the standard basis vectors ıH 2 .R�0/V

for H 2 V . Note that then j�.V /j � RV is the convex hull of the ıH , H 2 V .
To define zOX , for every face F of X set

BF WD
®
x 2 RV j xH D 0 if F � H; xH > 0 if F \H D ;” F ª H

¯
:

Recall that we have a correspondence between the faces F and the subsets � 2 †X �
P .V /, namely F D

T
H2� H , and BF is the open positive quadrant “spanned” by all ıH

with H … � .
Define then

zOX WD Rm�jV j �
[

F face ofX

BF � Rm�jV j �RV

equipped with the subspace topology. Note that, as sets, the union is disjoint. The compu-
tation in [4, Section 3] then gives a homeomorphism between OX and zOX .

Note that†X D�.V / is the full simplex spanned by V if and only if zOX DRm�jV j �
.R�0/V . Otherwise, 0 … zOX and we have a homeomorphism

zOX Š Rm�jV j �R>0 � PX ;

where the factor R>0 is the norm (radial variable) and

PX D
ˇ̌
�.V /

ˇ̌
\ zOX � .R�0/

V :

Observe that, if F D
T
H2� H then BF \ j�.V /j is the interior of the convex hull

FV n� of the ıH for H … � :

BF \
ˇ̌
�.V /

ˇ̌
D .FV n� /

ı:

Now ˇ̌
�.V /

ˇ̌ı
� PX �

ˇ̌
�.V /

ˇ̌
I

i.e. j�.V /j is a compactification of PX . This implies that we get for the one-point com-
pactification .PX /C

.PX /
C
Š
ˇ̌
�.V /

ˇ̌
=
�ˇ̌
�.V /

ˇ̌
n PX

�
I

i.e. we identify all the missing points in the compactification j�.V /j of PX to one point.
We next show that j�.V /j n PX is the geometric realization of the dual of the sim-

plicial complex †X . First recall that the geometric realization of a simplicial complex K
with vertex set V can be defined as follows.

If I � V , set
FI WD closed convex hull of ıH ; H 2 I:
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Then
jKj D

[
I2K

FI D qI2K.FK/
ı
� RK : (3)

Here we define the open face F ıI WD FI n @FI , in particular F¹Hº D ¹ıH º is the singleton
(not the empty set).

Let us now also recall the definition of the dual of a simplicial complex.

Definition 4.1. Let K be a simplicial complex with vertex set V . Then the (Alexander)
dual of K is

K_ D ¹A � V j V n A … Kº:

Note that, in particular, ˇ̌
�.V /

ˇ̌
D q��V .F� /

ı: (4)

Lemma 4.2. We have
j†_X j D

ˇ̌
�.V /

ˇ̌
n PX :

Proof. By definition,

j†_X j D q�2†_X .F� /
ı
D qV n�…†X .F� /

ı: (5)

On the other hand, as observed above,

PX D q�2†X .FV n� /
ı
D qV n�2†X .F� /

ı: (6)

The three decompositions (4), (5), and (6) prove the claim.

Then we have proved the following result.

Theorem 4.3. Let X be a manifold with embedded corners (all faces connected) such
that†X is not the full simplex on the vertex set V with embedding zX ! Rm�jV j as above.
Then there is a homeomorphism

OX Š Rm�jV jC1 �
�
j�.V /j n j†_X j

�
;

where j†_X j denotes the geometric realization of the dual of †X .

To prove the main result of this note we need to recall the Spanier–Whitehead duality
theorem; for a proof see [1].

Theorem 4.4. LetE�be a generalized cohomology theory with dual homology theoryE�.
let jKj ¨ j@�.V /j be the geometric realization of a simplicial complex with vertex set V
consisting of jV j elements, so that, in particular,

dim
�
@
ˇ̌
�.V /

ˇ̌�
D jV j � 2:

Then there is a canonical isomorphism

zEr
�
jKj

�
Š zEjV j�3�r

�
jK_j

�
:
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Applying this to K-theory and to j†X j, we obtain the following theorem.

Theorem 4.5. Let X be a manifold with embedded corners with associated simplicial
complex †X ¤ �.V / on the vertex set V . Then we have a canonical isomorphism

K�
�
C �
�
Kb.X/

��
! zK���1

�
j†X j

�
:

Proof. We already know by Theorem 3.2 that there is an isomorphism

K�
�
C �
�
Kb.X/

��
! KmC�.OX /:

On the other hand, by definition

K�.OX / Š zK
�.OCX /;

where OCX is the one-point compactification. But

OCX Š S
m�jV jC1

^ PCX

Š Sm�jV jC1 ^
�ˇ̌
�.V /

ˇ̌
=
�
j�.V /j n PX

��
D Sm�jV jC1 ^

�ˇ̌
�.V /

ˇ̌
=
�
j†_X j

��
:

We, therefore, get

KmC�. zOX / D zK
mC�

�
zOCX
�

Š zK�CjV j�1
�ˇ̌
�.V /

ˇ̌
=j†_X j

�
Š zK�CjV j�2

�
j†_X j

�
Š zK���1

�
j†X j

�
:

Here, the first isomorphism is the definition of compactly supported K-theory, the sec-
ond is the suspension isomorphism, the third is the boundary map in the long exact pair
sequence, using that j�.V /j is contractible and the last is Spanier–Whitehead duality.

We get the corresponding result for conormal homology H cn
� .�/ defined in [3]. To

prove this, one could construct a direct correspondence between the chain complex which
defines conormal homology and the simplicial chain complex of †X . We use the shortcut
that in [4, Corollary 4.2] it is already established that H cn

� .X/ Š H
m��.OX /. Combined

with the argument above, applied to ordinary (co)homology instead of K-theory, we obtain
the final result of this note.

Theorem 4.6. Let X be a manifold with embedded corners (all faces connected) with
associated simplicial complex †X . Then we have an isomorphism

H cn
� .X/!

zH��1
�
j†X j

�
:

In particular, Theorem 2.11 implies that for every finite abelian group there are exam-
ples of conormal homology groups of manifolds with corner containing that torsion group
as subgroup.
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