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Large time limit and local L2-index theorems for families
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Abstract. We compute explicitly, and without any extra regularity assumptions, the large time
limit of the fibrewise heat operator for Bismut–Lott type superconnections in the L2-setting.
This is motivated by index theory on certain non-compact spaces (families of manifolds with
cocompact group action) where the convergence of the heat operator at large time implies
refined L2-index formulas.

As applications, we prove a local L2-index theorem for families of signature operators and
an L2-Bismut–Lott theorem, expressing the Becker–Gottlieb transfer of flat bundles in terms
of Kamber–Tondeur classes. With slightly stronger regularity we obtain the respective refined
versions: we construct L2-eta forms and L2-torsion forms as transgression forms.
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1. Introduction

The origin of local index theory is the fundamental observation by Atiyah–Bott and
McKean–Singer that the index of an elliptic differential operator is expressed in
terms of the trace of its heat operator. For Dirac type operators, the heat-kernel’s



622 S. Azzali, S. Goette and T. Schick

supertrace provides an interpolation between the local geometry, at small time limit,
and the index, at large time.

The superconnection formalism, developed by Quillen and Bismut, is the
essential tool to apply the heat-kernel approach to the analytic theory of families of
operators, and naturally furnishes transgression formulas [42, 8, 7]. Bismut’s heat-
kernel proof of the Atiyah–Singer family index theorem provides then a fundamental
refinement of the cohomological index formula to the level of differential forms:
when the kernels form a bundle, the heat operator converges, as t ! 1, to an
explicit differential form obtained as the large time limit of the superconnection
Chern character. The small time limit is the index density, and the local index
formula is completed by the transgression term, involving a secondary invariant, the
eta form of the family [8, 10, 11].

A parallel result is the Bismut–Lott index theorem for flat vector bundles, proving
a Riemann–Roch–Grothendieck theorem for the direct images along a submersion
of flat bundles [12]: it says that the Kamber–Tondeur classes of the fibrewise
cohomology twisted by a globally flat vector bundle F are equal to the Becker–
Gottlieb transfer of the classes of F . The transgression term of the refinement at
differential forms level in Bismut–Lott’s formula involves the secondary invariant
higher analytic torsion [12, 35].

Local index theory was extended to non-commutative families in many different
contexts and with a variety of approaches: for example by Lott to the higher index
theory for coverings [37]; by Heitsch–Lazarov and Benameur–Heitsch for foliations
with Hausdorff graph in the Haefliger cohomology context [28, 4]; by Gorokhosky–
Lott for étale groupoids [24].

While the small time limit is in every case the local index density, it is no longer
true that the large time limit of the heat operator always gives the index class, as soon
as the fibres (or leaves) are non-compact. First of all, the heat operator is in general
not convergent as t ! 1; moreover, the index class is in general different from
the so called index bundle, defined, when the projection onto the fibrewise kernel is
transversally smooth, as the Chern character of the corresponding K-theory class.

Heitsch–Lazarov and Benameur–Heitsch investigated this problem for longitudi-
nal Dirac type operators on a foliation, employing the superconnection formalism
on Haefliger forms. Their index theorem in Haefliger cohomology applies to
longitudinal operators admitting an index bundle, and under the further assumptions
that the .0; "/-spectral projection is transversally smooth and the leafwise Novikov–
Shubin invariants are greater than half of the foliation’s codimension [28, 4]. This
regularity ensures that the heat operator converges as t ! 1 to the index bundle,
and in particular proves the equality of the Chern character of index bundle and
index class [28, 4]. Benameur, Heitsch and Wahl recently showed an example where
this equality does not hold, for a family of Dirac operators whose Novikov–Shubin
invariants are just off the regularity condition [6].
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The approach of [28, 4] to the large time limit, inspired by the work of Gong–
Rothenberg on families of coverings [25], makes use of the decomposition of the
spectrum of the Dirac Laplacian into f0g [ .0; "/ [ Œ";1/ and hence requires the
assumption of smooth .0; "/-spectral projections, along with lower bounds on the
Novikov–Shubin invariants.

To ask for transversal smoothness of the .0; "/-spectral projection is a very strong
condition, and difficult to be verified in the case of the geometrically most relevant
operators.

On the other hand, if we focus on the Laplacian, which is the square of the Euler
and signature operators, it is known that it has some intrinsic regularity, coming from
the topological nature of its kernel. Even in the non-compact settings of coverings
and measured foliations, one can usually translate this into a nice behaviour of the
large time limit of its heat operator: for instance this is exploited by Cheeger and
Gromov in the proof of the metric independence of the L2-rho invariant of the
signature operator [17, (4.12)]. This fact suggests that for a family of longitudinal
Laplacians it should be possible to prove the convergence of the heat operator at the
large time limit without assuming extra regularity conditions.

Motivated by this idea, in this paper we investigate the large time limit of the heat
operator for families of Euler and signature operators in the L2-setting of families
of normal coverings. We consider this as a first step to understand more general
foliated manifolds.

Given a smooth fibre bundle pWE ! B with compact fibreZ, a family of normal
coverings .eE;�/ ! B consists of a bundle of discrete groups � ! B and of a
covering � WeE ! E such that �bWeEb ! Eb is a normal covering with group
of covering transformations �b for all b 2 B . The family under consideration is
then the Euler operator dZ C dZ;�, where dZ is the fibrewise de Rham operator
twisted by a globally flat bundle F ! E of A-Hilbert modules, for a given finite
von Neumann algebra A.

Our first result, Theorem 4.1, is the explicit computation of the limit as t !1 of
the heat operator for the Bismut–Lott superconnection, paired with the finite trace �
on A, without assuming any regularity hypothesis on the spectrum. As applications,
in Section 5 we prove the L2-Bismut–Lott index theorem for flat bundles and the
L2-index theorem for the family of signature operators. In particular we show that,
for the signature operator in the L2-setting, the Chern character of index class and
index bundle have the same pairing with the trace � : hence our equality points out
the special behavior of the signature operator with respect to the general question by
Benameur–Heitsch of the comparison of these two objects characters on a foliation
[4, 6].

We realize the computation of the large time limit using two main ingredients.
The first one is a fundamental observation due to Bismut and Lott [12, 36]:
the superconnection adapted to the longitudinal signature operator is given by
A D 1

2
.dE C dE;�/, where dE;� is the adjoint superconnection of dE . Since dE
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is flat, the curvature A2 has another “square root”, the operator X D 1
2
.dE;� � dE /

which satisfies A2 D �X2. The operator X does not involve transversal derivatives
because it is the difference of two superconnections, and we exploit this property
very carefully in the Duhamel expansion of the heat operator eX

2
t . The second

ingredient is a new method of estimating the terms of the perturbative expansion
of eX

2
t , developed in Section 4.

Our technique only applies to the case of families of Euler and signature operators
twisted by globally flat bundles of A-modules, because we use deeply the fact that
dE is flat, and the existence of the operator X. On the other hand, we believe that our
estimates can be applied almost immediately to foliations, at least taking the point
of view of Haefliger forms, where the trace is defined by a local push forward, using
the local structure of fibration [29, 28, 4].

The next result, in Section 6, is the construction of the L2-eta and L2-torsion
forms as transgression forms. To this aim, we implement the estimates on the
Duhamel expansion, and prove that these L2-eta and L2-torsion are well defined if
the fibre is of determinant class and L2-acyclic, or if the Novikov–Shubin invariants
are positive. Under these assumptions we even prove differential form refinements
of the L2-index theorems. Compared to the construction of the L2-torsion form
by Gong and Rothenberg [25], our approach does not need the smoothness of the
spectral projection �.0;"/.D/, and holds for families of manifolds of determinant
class (provided they are L2-acyclic). This is indeed an improvement, as recently
Grabowski proved that there exist closed manifolds with Novikov–Shubin invariant
equal to zero [26] (which are of determinant class by [45]).

In the last Section, we investigate the properties of the L2-rho form of the
signature operator.

2. Setup

In this section we describe the different situations we consider as L2-settings for
geometric families and which we treat in the paper. In 2.1, we consider normal
coverings of a fibre bundle, and therefore we work on families with coefficients in a
flat bundle of finitely generated Hilbert A-modules, where A is a finite von Neumann
algebra. In 2.2 we generalize to families of normal coverings.

2.1. Normal coverings of fibre bundles. Let QpWeE ! B be a smooth fibre bundle,
and let � act fibrewise freely and properly discontinuously on eE such that the fibres
of pWE D eE=� ! B are compact. Let � denote the quotient map eE ! E. We call
this setting a normal covering of the fibre bundle pWE ! B .

Let A be a finite von Neumann algebra with involution �, and let � WA ! C be
a finite, faithful, normal trace. Let `2.A/ be the completion of A with respect to the
scalar product h�; �i with ha; bi D �.b�a/.



Large time limit and local L2-index theorems for families 625

A right Hilbert A-module is a Hilbert space M with a continuous right A-action
that admits an A-linear isometric embedding into `2.A/ ˝ H for some Hilbert
space H ; this embedding is not part of the structure. M is finitely generated if one
can choose a finite-dimensional H . A right Hilbertian A-module is a topological
vector space M with a continuous right A-action such that there exists compatible
scalar products on M that turn M into a right Hilbert module. Every such scalar
product is called admissible.

Remark 2.1. If h�; �i is an admissible scalar product, then all other admissible
scalar products are of the form hS �; �i, where S is a self-adjoint, positive, invertible
endomorphism of M that commutes with the action of A. In particular, the space
of admissible scalar products is always contractible. All admissible scalar products
give rise to isomorphic Hilbert modules, but the corresponding isomorphisms are not
canonical.

We denote with BA.M/ the von Neumann algebra of bounded A-linear operators
on M . The (unbounded) trace on BA.M/ induced by � and by the usual trace on
B.H/ is denoted by tr� , and B1A.M/ is the ideal of trace class operators.

2.1.1. Flat bundles of A-modules. We now fix a finitely generated Hilbertian �-A
bimoduleM , in other words, a finitely generated right Hilbertian module that admits
a commuting �-action from the left. We then consider the bundle of A-modules

F D eE �� M ! E : (2.1)

This bundle comes equipped with a natural flat A-linear connection rF . The space
of F -valued smooth differential forms ��.EIF/ becomes a cochain complex with
differential the usual extension of rF to forms, which we will denote dE as in [12].

Let TZ be the vertical tangent bundle of p. We fix a horizontal subbun-
dle THE � TE such that TE D TZ ˚ THE. If U is a smooth vector field
on B , let NU 2 C1.E; THE/ denote its horizontal lift so that �� NU D U , and P TZ

be the projection from TE to TZ. This defines an isomorphism

��.EIF/ Š ��
�
BI��.E=BIF/

�
: (2.2)

Let W ! B be the smooth infinite-dimensional Z-graded bundle overB whose fibre
is W�

b
D C10 .Zb; .ƒ

�.T �Z/˝ F/Zb /, the compactly supported fibrewise smooth
differential forms.

Let gTZ be a vertical metric, and gF a smooth family of admissible scalar
products on the bundle F ! E. This induces a family ofL2-metrics gW on W . The
fibrewise L2-completion of W is denoted ��

L2
.E=BIF/! B . As a Hilbert space,

it is isomorphic to the Hilbert tensor product ��
L2
.E=B/ ˝ M , and the topology

of ��
L2
.E=BIF/ ! B is independent of the choice of admissible metrics above.

Thus we can regard ��
L2
.E=BIF/ ! B as a locally trivial bundle of Hilbertian
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A-modules, with a family of admissible metrics gW . We will define connections
and do analysis on the subbundle W .

The fibrewise derivative dZ D rF jTZ becomes an unbounded operator

dZ W�k
L2
.E=BIF/ �! �kC1

L2
.E=BIF/

which can be seen as an element of C1.B;Hom.W�;W�C1//.
As shown in [12, III.(b)], the connection dE D rF now becomes a flat A-linear

superconnection
dE D dZ CrW

C �T (2.3)

of total degree 1 on the bundle W ! B . Here rW WD LNP is the Lie derivative
with respect to horizontal lifts, T is the fibre bundle curvature of THE defined by
T .U; V / D �P TZ Œ NU ; NV �, and �T is the interior multiplication by T .�; �/.

2.1.2. The fibrewise L2-cohomology. We consider the reduced L2-cohomology

H �
L2
.E=BIF/ D Ker dZ=Im dZ (2.4)

and we obtain therefore a bundle A-Hilbert modules [39, 1.4.2].
Because dE is a flat superconnection, the connection rW induces a connec-

tion rKerdZ on the bundle Ker dZ ! B such that Im dZ is a parallel subbundle
(as in [12, p. 307]). If the bundle E ! B is trivial and gTZ , gF and THE are
of product type, then Im dZ is clearly also parallel, and rKerdZ induces a flat A-
linear connection rH on the bundle H �

L2
.E=BIF/. As in Bismut–Lott [12], it

turns out that the connection rH is well-defined and independent of the choices
of gTZ , gF and THE in the case that E ! B is a product bundle. Because the
bundle E ! B is assumed to be locally trivial, we obtain naturally a reduced Gauß–
Manin connection rH on the reduced L2-cohomology H �

L2
.E=BIF/ ! B . This

connection is still A-linear and flat.
The operator .dZ C dZ;�/2 is the fibrewise Hodge-Laplacian, and by Hodge

theory the reduced L2-cohomology is given by

H �
L2
.E=BIF/ Š ker.dZ C dZ;�/ D ker.dZ C dZ;�/2 � ��

L2
.E=BIF/ : (2.5)

Restriction of gW to H �
L2
.E=BIF/ thus defines an L2-metric gH

L2
. As the

restriction of an admissible metric to an A-invariant subbundle, the metric gH
L2

is also
admissible. Moreover the fibres ofH �

L2
.E=BIF/ are finitely generated as Hilbertian

A-modules by [46].

Example 2.2. Let � W QE ! E be a normal �-covering of the fibre bundle pWE ! B

as in Section 2.1. Let `2.�/ be the completion of the group ring C� with respect to
the standardL2-scalar product. The group von Neumann algebra N .�/ of � consists
of all bounded operators on `2.�/ that commute with the left regular representation
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of � . It contains C� as a weakly dense subset, and on C� , the canonical trace � is
given by

�
�X

a 
�
D ae :

Then M D `2.�/ is a finitely generated Hilbertian �-N�- bimodule, indeed M '
l2.N�/.

We fix a fibrewise Riemannian metric gTZ on TZ. Because the standard L2-
scalar product on `2.�/ is �-invariant, it defines a natural family of admissible scalar
products gF on F D QE �� `

2.�/. We now have a natural N .�/-linear isometric
isomorphism

��
L2
.eE=B/ Š ��

L2
.E=B;F/

that is compatible with the flat superconnection dE of (2.2). In particular,
the flat Hilbertian N .�/-module bundle H �

L2
.E=BIF/ ! B with the Gauß–

Manin connection is isomorphic to the fibrewise L2-cohomology of the normal
covering eE ! E.

Example 2.3. If � acts on a vector space V , there exists a flat vector bundle

F D eE �� V :

We now considerM D V ˝ `2.�/ with the diagonal �-action. A �-invariant metric
on ��F D QE �V ! E defines a family of admissible metrics gF on F D eE ��M
and a metric gF on F ! E. We have a natural isometry of bundles of Hilbertian
N .�/-modules

��
L2
.eE=BI��F / Š ��.E=B;F/

that is compatible with dE as above.

2.2. Families of normal coverings. Let pWE ! B be a smooth proper submer-
sion, and assume that there exists a covering1 map � WeE ! E such that over each
point b 2 B , the map �bWeEb ! Eb is a normal covering. Then the groups of
covering transformations form a locally trivial bundle of discrete groups over B that
is in general nontrivial.

Definition 2.4. A family of normal coverings .eE;�/! B of pWE ! B consists of
a bundle of discrete groups � ! B and a covering � WeE ! E such that �bWeEb !
Eb is a normal covering with group of covering transformations �b for all b 2 B in
a continuous way.

Example 2.5. A typical non-trivial example for this situation arises from a flat vector
bundle QE ! B with structure group SLn.Z/. Any such a flat vector bundle is
associated to a principal SLn.Z/-bundle P ! B . The action of SLn.Z/ on Zn
by group automorphisms also gives rise to an associated non-trivial bundle of groups

1not necessarily normal.
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� ! B with fibers isomorphic (in a non-canonical way) to Zn. The fibers of � act in
a canonical way on the fibers of QE by deck transformations. The fiberwise quotient
produces a (in this case flat) bundle of tori, the one associated in the canonical way
to P .

Definition 2.6. Let .eE;�/! B be a family of normal coverings of pWE ! B , and
let A! B be a locally trivial family of von Neumann algebras over B with discrete
structure group. A family of Hilbertian �-A-bimodules is a locally trivial family of
Hilbertian spacesM ! B with discrete structure group such thatMb is a Hilbertian
�b-Ab-bimodule for all b 2 B in a continuous way. We say that M is a family of
finitely generated Hilbertian �-A-bimodules if Mb is a finitely generated Hilbertian
A-module for all b 2 B .

In both definitions, “in a continuous way” means that over B we have local
trivialisations of all the structure, including �b ! Diffeo.Eb/. For such actions,
we will henceforth simply write “�-actions” and “A-actions” unless this could
cause confusion. Because we have fixed discrete structure groups, both A ! B

and M ! B are equipped with natural flat connections.
Let M be a family of finitely generated Hilbertian �-A-bimodules and consider

F D eE �� M �! E ; (2.6)

which is equipped with a natural p�A-action and a p�A-linear flat connection rF .
Here “p�A-linearity” means that

r
F .as/ D

�
r
p�Aa

�
� s C a � rFs

for all sections a of p�A! E and s of F .
Because locally we are in the same situation as in Section 2.1, we can repeat

all constructions as before. Thus, we construct a family of Hilbertian A-modules
��
L2
.E=BIF/ ! B carrying a flat superconnection dE and define the fibrewise

reduced L2-cohomology H �
L2
.E=BIF/ ! B . Again, this is a family of finitely

generated Hilbertian A-modules.

Remark 2.7. The reader should keep in mind that all analytic manipulations take
place along the single fibre of p, and will depend only on the geometry of this fibre
inside E. Hence, the two settings of Sections 2.1 and 2.2 work equally well.

Remark 2.8. Let pWE ! B be an arbitrary smooth proper submersion with fibreZ.
From the long exact sequence

�2.B/ ����! �1.Z/ ����! �1.E/ ����! �1.B/

we see that in general there exists no normal subgroup of �1.E/with quotient �1.B/.
In particular, it is in general not possible to take the fibrewise universal covering
globally.
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Example 2.9. If p admits a section e0WB ! E then such a covering can be
constructed. In this case, we consider the fibrewise universal covering eE, which
consists of all fibrewise paths starting at e0 up to fibrewise homotopies that preserve
the endpoints. Then �b Š �1.Eb; e0.b// is the family of fibrewise fundamental
groups with respect to e0. Note that �b is not necessarily a trivial bundle, and that
different sections e0 can produce non-isomorphic coverings, as in the following case.

Consider for instance a closed oriented surface F3 of genus 3, which we regard
as the gluing F3 D S1 [ S2 along a circle  of a surface S1 of genus 1 with one
boundary component  together with a surface S2 of genus two with one boundary
component �1. Let ˛WF3 ! F3 be the Dehn twist on a tubular neighborhood
of  , and let pWT˛ ! S1 be the mapping torus fiber bundle over S1 with T˛ D
.F3 � Œ0; 1�/ = �, where .x; 0/ � .˛.x/; 1/. Let P1 2 S1 and P2 2 S2 be two
base points on F3, both fixed by ˛. Then p has the two global sections given by
si .Œt �/ D Œ.Pi ; t /�, for Œt � 2 S1, i 2 1; 2. We can form two bundles eEi ! S1,
i D 1; 2, of fibrewise universal coverings as explained above. The corresponding
bundles of groups � i ! S1, � i

Œt�
D �1.T˛Œt�; Pi /, are the mapping tori of the maps

˛i�W�1.F3; Pi / ! �1.F3; Pi /. It is not difficult to see that .eE1; �1/ and .eE2; �2/
are not isomorphic: indeed there exists no isomorphism between �1.F3; P1/ and
�1.F3; P2/ that intertwines ˛1� and ˛2�, as they fix subgroups of different rank.

As in Example 2.2, we can form a family N .�/! B of von Neumann algebras
and a family `2.�/! B of finitely generated Hilbertian �-A-bimodules. Since the
situation is locally isomorphic to Example 2.2, we may then proceed as above.

3. L2-invariants for families: superconnections, heat operator

In this Section, we introduce our two problems and set up a unified formalism to
treat both with similar methods in the rest of the paper.

Let Z ! E
p
! B be a smooth fibre bundle with connected n-dimensional

closed Riemannian fibres, let F ! E be a bundle of A-modules as in (2.1) or (2.6).
Let feigniD1 be a local orthonormal framing of TZ. Exterior multiplication by a
form ' will be denoted by '^, interior multiplication by a vector v will be denoted
iv . As usual, we identify vertical tangent and cotangent vectors using the fibrewise
Riemannian metric and we denote for a vertical vector X

c.X/ D .X^/ � iX ; Oc.X/ D .X^/C iX

and put
ci D c.ei / ; Oci D Oc.ei /

which generate two graded-commuting Clifford module structures on forms (for the
bundle of Clifford algebras associated to the vertical tangent bundle), compare [12,
III.c].
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Let N denote the number operator on vertical forms, acting as N' D p', for
' 2 C1.E;ƒp.T �Z//. We have then

Pn
iD1 c

i Oci D 2N � n.

3.1. Trace norm and spectral density function. Let End1A W ! B denote
the bundle whose sections are families of � -trace class operators. Equip the ideal
End1A W with the norm

kAk� WD tr� .jAj/ :

Let D D
1
2
.dZ;� � dZ/ (note that, here and throughout the whole paper,

D is a skew-adjoint operator and D2 � 0), and let etD
2

be the fibrewise heat
operator associated to the Hodge Laplacian. The following proposition by Gong
and Rothenberg is fundamental for what follows.

Proposition 3.1. [25] Let P D .Pb/b2B be the family of projections onto kerD.
Then

P 2 C1.BIEnd 1AW/ and etD
2

2 C1.B;End 1AW/ :

Proof. Proved in [25, Lemma 2.2 and Theorem 2.2], see also [5, Theorem 4.4].

We denote
�b.t/ WD tr� .etD

2
b � P / (3.1)

or simply �.t/, because the dependence on the base point will not be crucial. By
results of Gromov–Shubin [27], the dilatation class of � as t ! 1 is known to
be a homotopy invariant: if b; Nb 2 B , then 9Cb with �b.Cbt / � � Nb.t/ � �b.

t
Cb
/.

Moreover, in the proofs in [27] and [22] one can choose constants Cb (constructed
from the chain homotopy equivalence) depending in a continuous way on b 2 B .
This implies that there is uniformity on compact subsets of B .

It is clear that limt!1 �b.t/ D 0. More precisely, we even have, uniformly on
compact subsets of B ,

lim
t!1

etD
2

D P 2 ��.BIEnd 1AW/

in the trace norm. The operators etD
2

strongly converge to P . However, if 0 is in
the continuous spectrum of D, then etD

2
does not converge in the operator norm

topology.

Corresponding to the different push-forward theorems we want to prove, we will
have two types of flat bundles F of A-modules.

Setting A. F ! E is a flat bundle of A-modules. This is the setting to prove the
L2-version of the Bismut–Lott theorem and to construct the L2-torsion form.

Setting B. F ! E is a flat duality bundle of A-modules. This is the natural setting
to discuss the signature operator, as observed in [36].
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3.2. Flat bundles, L2-Kamber–Tondeur classes.

3.2.1. L2-Kamber–Tondeur classes. Let F ! E be a flat bundle of A-Hilbert
modules, with flat connection rF . If gF is a scalar product on F , let rF;� be
the adjoint connection, and put !.F ; gF / WD rF;� � rF D .gF /�1

�
rFgF� 2

�1.E;EndF/. Using the trace � as in [44, Sec. 4], we define

ck;� .F ; gF / WD .2�i/�
k�1
2 tr�

�
!.F ; gF /

2

�k
2 �k.E/

to be the L2-Kamber–Tondeur forms. They are closed forms, and the corresponding
L2-Kamber–Tondeur classes in H�

dR
.E/ do not depend on the metric gF . Let

ch ı� .F ; gF / WD

1X
jD0

1

j Š
c2jC1;� .r

F ; gF /

D
1
p
2�i

ˆ tr�

�
!.F ; gF /

2
e.
!.F;gF /

2 /2
�
2 ��.E/

whereˆ.˛/ D .2�i/�
j˛j
2 ˛, and denote its cohomology class by chı� .F/ 2 H�dR.E/.

The classes ch ı� .F/ vanish whenever F admits a rF -parallel metric. For a
Z2-graded bundle the Kamber–Tondeur class is defined using the corresponding
supertrace.

3.2.2. Superconnection formalism. Let Z ! E
p
! B be a smooth fibre bundle

with connected n-dimensional closed fibres, let F ! E be a bundle of A-modules
as in (2.1) or (2.6).

As seen in Sections 2.1.2 and 2.2, the fibrewise L2-cohomology with coefficients
in F has the structure of a flat bundle of A-modulesH �

L2
.E=BIF/! B , which we

consider as the analytic push-forward of F . We will compute their Kamber–Tondeur
classes ch ı� .HL2.E=BIF// in the push-forward Theorem 5.1 which will make use
of the following superconnection formalism.

The infinite dimensional bundle W ! B defined in 2.1.1 is endowed with the
L2-metric

gW
b .' ˝ f; '

0
˝ f 0/ D

Z
Zb

' ^ �'0 � gF .f; f 0/ :

Consider the Z2-grading on W induced by the degree of vertical forms. We denote
it by W DW0 ˚W1 ! B , and call it the de Rham, or Euler grading.

Let dE;� be the adjoint superconnection of dE of (2.3) with respect to gW in the
sense of [12, I.d], then as in [12, Prop. 3.7] we have

dE;� D dZ;� CrW;�
C "T (3.2)

where dZ is the fibrewise formal adjoint of dZ with respect to gW , rW;� is the
adjoint connection of rW , and "T D ��T .



632 S. Azzali, S. Goette and T. Schick

Define

A D
1

2
.dE C dE;�/ I X D

1

2
.dE;� � dE / : (3.3)

A is a superconnection on W0 ˚ W1 ! B . We denote by �.B;W/dR D

�.B;W0 ˚ W1/ the graded tensor product algebra between sections of W and
differential forms on the base. This Z2-grading defines on End1A W the supertrace

Str� T D tr..�1/NT / : (3.4)

Remark 3.2. Because dE;��dE is the difference of two superconnections, X is an
(odd) element of ��.B;EndW/dR, and in particular it differentiates only along the
fibres.

Perform the usual rescaling

At WD
1

2
t
N
2

�
dE C dE;�

�
t�

N
2 ; Xt WD

1

2
t
N
2

�
dE;� � dE

�
t�

N
2 : (3.5)

where N is the number operator of W . We have

At D
p
t

2
.dZ C dZ;�/Cru �

c.T /

4
p
t

(3.6)

and

Xt D
p
t

2
.dZ;� � dZ/C

!

2
�
Oc.T /

4
p
t

(3.7)

where ru D 1
2
.rW CrW;�/, and

! D rW;�
� r

W : (3.8)

Let f .a/ D aea
2
. For ˛ 2 �.B/, put ˆ˛ D .2�i/�

deg˛
2 ˛, and define

F� .t/ D
p
2�i ˆStr� .f .Xt // 2 �.B/ : (3.9)

It follows, as in [12, Theorem 1.8], that F� .t/ is a real closed odd form.

3.2.3. Transgression terms. The transgression of (3.9), and later of the heat
operator’s supertrace, can be computed as as in [12, p. 311], and is given by

d

dt
F� .t/ D

1

t
dF ^� .t/ (3.10)

where

F ^� .t/ D ˆStr�

�
N

2
.1C 2X2t /e

X2t
�
: (3.11)
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Equivalently, one can proceed as follows. Let MB D B � R�C, where R�C denotes
the time direction. We fix an arbitrary metric gB on B . Define M� W ME ! MB where
ME D E � R�C and M�.x; t/ D .�.x/; t/. Endow M� with the vertical metric

gT
MZ

jt D
gTZ

t
(3.12)

and on the base take g MB D gB ˚ gR
�
C . We have g

R�
C

t

�
@
@t
; @
@t

�
D

1
t2

. For simplicity

let d# D dt
2t

. On ME we have d ME D dE C @
@t
dt D dZ C rW C dt @

@t
C iT, and its

adjoint superconnection is d ME;� D tdZ;�CrW;�Cdt @
@t
C
�
N � n

2

�
dt
t
�
�Tp
t
, because

the fibrewise rescaling (3.12) gives g MW
i

jt D
p
t
2i�n

gWi
. We define (deviating here

from the notation in [12, III. (i)])

MA WD
1

2
t
N
2

�
d
ME
C d

ME;�
�
t�

N
2 I MX WD

1

2
t
N
2

�
d
ME;�
� d

ME
�
t�

N
2 (3.13)

and we have
MA D At C d#

�
@

@t
C .N �

n

2
/

�
(3.14)

MX D Xt C
�
N �

n

2

�
d# : (3.15)

3.3. Flat duality bundles. Flat duality bundles (over the real numbers) have been
introduced by Lott and further investigated by Bunke and Ma as cycles for a certain
Z=2-graded homotopy invariant contravariant functor NL�.X/ [36, 14].

Deviating from the notation employed by [36, 14], it seems reasonable to think
of the groups NL�.X/ as the degree 0 and degree 2 part of a 4-graded group. For
us, the main feature is that they can be paired with the signature operator of an
even dimensional oriented manifold and we study push-forward theorems in the L2-
context.

Following Lott, we introduce flat duality bundles of R-modules, where R is a
(real) finite von Neumann algebra in the sense of [2]. Nevertheless, since our focus
is on the signature operator acting on complex differential forms, in the applications
we shall mainly use complex von Neumann algebras, or pass to the algebra R˝R C
generated by R.

Let R be a real finite von Neumann algebra. Let F ! E be a bundle of finitely
generated R-Hilbert modules over E. Let " 2 f�1;C1g.

Definition 3.3. F is called a flat duality bundle of R-modules if it is endowed with
a flat connection rF and a bilinear form QF WF ˝F ! R such that

i) QF is "-symmetric, i.e. QF .y; x/ D "QF .x; y/;

ii) QF is non-degenerate (i.e. QF is invertible as a map to the topological dual);
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iii) QF .xa; y/ D QF .x; ya�/, 8x; y 2 F , 8a 2 R;

iv) rFQF D 0 :

As in the finite dimensional case, one can always reduce the structure group:

Lemma 3.4. Let .F ! E;rF ;QF / be a flat duality bundle of R-modules.
Then there exists JF such that .JF /2 D �, QF .JFx; JFy/ D QF .x; y/, and
gF .x; y/ D QF .x; JFy/ is a scalar product.

Proof. Use polar decomposition, as in [3, p.19].

3.3.1. Characteristic classes of flat duality bundles. We constructL2-characteristic
classes along the lines of [36, Sec. 3.1], as well as the formalism of flat duality
superconnections.

For a flat duality bundle F ! E as in 3.3, fix a scalar product gF .z; v/ D

QF .z; JF v/. Let rF;� be the adjoint connection with respect to gF and define
rF;u D 1

2
.rF CrF;�/ which preserves gF .

Definition 3.5. If " D 1, define

p� .r
F ; JF / WD tr�

�
JF cos

�
!.F ; gF /2

8�

��
2 �4�.E/

if " D �1,

p� .r
F ; JF / WD � tr�

�
JF sin

�
!.F ; gF /2

8�

��
2 �4�C2.E/ :

If " D 1, put …˙ WD 1˙JF

2
, F˙ WD …˙F , and rF˙ WD …˙rF;u…˙ D

…˙rF…˙.
If " D �1, consider the complexified bundle FC, put …˙ WD 1�iJF

2
, define

F˙ WD …˙FC and rF˙ WD …˙rF;u…˙. In both cases we have, as in [36,
Proposition 15],

p� .r
F ; JF / D ch� .rFC/ � ch� .rF�/ : (3.16)

Remark 3.6. Our flat duality bundles of 3.3 should be cycles in a variant of the
NL-groups defined by Lott and Bunke–Ma, which would have coefficients in the
von Neumann algebra R. However, we do not develop this theory. Instead, we
concentrate on the local L2-index formula for the pairing with a family of signature
operators.
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3.3.2. Bilinear form on W and superconnection formalism. Recall that if Z
is a closed oriented n-dimensional Riemannian manifold, the bilinear form on real
differential forms �R.Z/ defined by

QZ.';  / D .�1/
j'j.j'j�1/

2

Z
Z

' ^  

is "n-symmetric, where "n D .�1/
n.nC1/
2 . Moreover the automorphism JZ defined

on �R.Z/ by
JZ' D .�1/

j'j.j'j�1/
2 � ' (3.17)

satisfies .JZ/2 D "n, and

QZ.'; JZ'0/ D

Z
Z

' ^ �'0 (3.18)

is the standard L2-scalar product on forms [36, Lemma 5]. QZ extends to a "n-
hermitian form on the C-vector space �.Z/ of complex differential forms and the
corresponding extension of (3.18) gives the standard sesquilinear L2-scalar product.

Let now Z ! E
p
! B be a smooth fibre bundle with connected n-dimensional

closed oriented Riemannian fibres, let F ! E be a duality bundle of R-modules
constructed as in (2.1) or (2.6), with "-symmetric bilinear form QF and flat
connection rF . By Lemma 3.4, fix a scalar product gF .z; v/ WD QF .z; JF v/,
with .JF /2 D ".

On the infinite dimensional bundle WR ! B of vertical real differential forms
with coefficients in F , the bilinear form

QWR

b .' ˝ z;  ˝ �/ WD .�1/
j'j.j'j�1/

2

Z
Zb

' ^  �QF .z; �/ (3.19)

is ""n-symmetric. Let JZ the fibrewise automorphism defined by (3.17). Then
JW.' ˝ z/ WD JZ' ˝ JFz satisfies .JW/2 D ""n.

The adjoint superconnection of dE of (3.2) can be expressed as
Lemma 3.7. [12, p. 328], [36, Proposition 30].

dZ;� D �.JW/�1 dZ JW

r
W;�
D .JW/�1 rW JW

��T D �.J
W/�1 �T J

W :

Define as before

A WD
1

2
.dE;� C dE / I X WD

1

2
.dE;� � dE / : (3.20)

and perform the usual rescaling as in (3.5) to define At and Xt . In the language of
[36, 3.2] the pair .A;X/ is a flat duality superconnection.
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Remark 3.8. When working with complex differential forms, the quadratic form
is extended as usual to a sesquilinear one, and we endow W with the metric
gW.u; v/ WD QW.u; JWv/. Then consider the involution J WD JW

p
"n"

. The formulas

of Lemma 3.7 are still true with JW replaced by J .

Moreover we have, from [12, (3.36)]

dZ C dZ;� D cjr
TZ˝F;u
ej

�
1

2
Ocj j : (3.21)

where  D rF;� �rF and rTZ˝F;u denotes the tensor product of the Levi-Civita
connection on the vertical tangent and the unitary connection rF;u WD 1

2
.rF;� C

rF /.
Define as usual (with an oriented frame e1; : : : ; en)

!C WD i
n.nC1/
2 c1c2 : : : cn ; O!C WD i

n.nC1/
2 Oc1 : : : Ocn :

!C is the chirality involution, related to the vertical Hodge star operator on p-forms
by

!C ' D .�1/
npCp.p�1/2 i

n.nC1/
2 � ' (3.22)

for ' 2 C1.E;ƒp.T �Z//, and one has O!C.�1/
N D !C (see for example [13,

Lemmas 1.1.6 and 1.2.18]).

3.3.3. Transgression formulas, even dimensional fibres. Let dimZ D 2l , and
recall "n WD .�1/

n.nC1/
2 . We have JZp

"n
D !C for n D 4j , and JZp

"n
D .�1/jC1!C

for n D 4j C 2. Then J D !C ˝
JF
p
"

.

Denote by W DWC ˚W� the grading defined by the involution J , which we
call the duality grading. The graded tensor product algebra between sections of W
and forms on the base will be denoted�.B;W/dua D �.B;WC˚W�/, in contrast
to the Euler grading �.B;W/dR D �.B;W0 ˚W1/ considered in Section 3.2.

The operator A is a superconnection on �.B;W/dua.

Remark 3.9. If Bt denotes the Bismut superconnection for the family of signature
operators with coefficients in the bundle .F ;rF;u/, defined in [7, 10.3], then by [12,
Rem. 3.10]

A D B 1
4
�
1

4
Ocj j : (3.23)

Note that 1
4
Ocj j is a zero order operator vanishing if and only if gF is covariantly

constant. If gF is covariantly constant, dZ C dZ;� is the signature operator twisted
by the flat Z=2Z-graded bundle F D FC ˚F�.

Remark 3.10. Because dimZ D 2l , we have

!C D .�1/
N
O!C
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hence

tr� .JT / D Str� . O!C ˝
JF
p
"
T / (3.24)

where Str� denotes the de Rham supertrace defined in (3.4).

Let
p� .t/ WD ˆ tr� .Je�A

2
t /

then the following transgression formula holds

d

dt
p� .t/ D d�� .t/ (3.25)

where
�� .t/ D .2�i/

� 12
1

2t
ˆ tr�

�
J ŒN �

n

2
;Xt �e�A

2
t

�
Remark 3.11. As usual �� .t/ is the d#-term in tr� .Je

MX2/ with the construction of
(3.13).

Remark 3.12. Grading disambiguation. The operator X plays a fundamental role in
the following because, as remarked in 3.2, it does not contain transversal derivatives.
When dimZ D 2l , X is an even element in �.B;W/dua. We use it as sort of
fibrewise square root of the curvature A2. We have to be precise because the relation
between X and A depends on the grading we consider. On �.B;W/dR we have

� A2 D X2 in �.B;W/dR : (3.26)

Because A is odd both for the de Rham and the duality grading, the expression A2 is
the same in the two graded algebras. On the other hand, the meaning of X2 depends
on the grading of W and the resulting graded algebra structure we consider.

It is important to stress that the only object we need is A2, in both gradings being
the curvature of the superconnection. In�.B;W/dua we still have �A2 D X �dR X.
Then the advantageous equality (3.26) can and will be used in every grading with
the small abuse of notation that we write X2 but we always mean the square of X in
the de Rham grading.

3.3.4. Transgression formulas, odd dimensional fibres. If dimZ D 2l C 1,
assume rFJF D 0 and consider the family of odd signature operators defined
as Dsign

odd
D

1
2
.dZJ C JdZ/. Because the operator commutes with the chirality

involution J , one needs here the formalism of Cl.1/-superconnection [42, sec. 5]
and [11, II.f].

The representative of the odd Chern character is tr� .e�A
2
t /odd 2 �odd .B/,

where At is as in (3.5), [42, sec. 5] and [11, II.f]. The transgression formula here is

d

dt
tr� odde�A

2
T D �d

Z T

0

tr�

�
dAt
dt

e�A
2
t

�even
dt : (3.27)
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3.3.5. Duality structure on L2-cohomology. The bundle H �
L2
.E=BIF/ defined

in 2.1.2, with flat Gauß–Manin connection rH can be given the structure of a flat
duality bundle of A-modules by means of the ""n-symmetric bilinear form

QH
b .Œ' ˝ z�; Œ ˝ ��/ D

Z
Zb

' ^  �QF .z; �/ :

Recall the isomorphism (2.5)

H �
L2
.E=BIF/ Š ker.dZ C dZ;�/ � ��

L2
.E=BIF/

and that P denotes the projection onto the fibrewise kernel ker.dZ C dZ;�/ which,
by Proposition 3.1, is smooth. Under the identification above, the connection rH

corresponds to the connection PrWP on the bundle ker.dZ C dZ;�/, see [12,
Proposition 2.6].

Until the end of this section let dimZ D 2l , consider on complex forms
the involution J D !C ˝

JF
p
"

as above. Let JH be the involution induced on

H �
L2
.E=BIF/ corresponding toPJHP D PJH as J commutes withP , and define

P˙ WD 1˙JH

2
, H˙ WD P˙H , rH;˙ WD P˙rHP˙.

If rFJF D 0 then HC ˚ H� is the so called index bundle of the twisted
signature operator as defined by Benameur–Heitsch [4, 10] and p.rH ; JH / D
ch� .rH;C/ � ch� .rH;�/ is its � -Chern character.

For general J , by Lemma 3.7 and because J 2 D 1, the adjoint of rH with
respect to gH is given by

r
H;�
D r

H
C JH ŒrH ; JH � : (3.28)

The characteristic class p.rH ; JH / can be computed as follows.

Lemma 3.13.
p� .r

H ; JH / D tr�
�
JHPeR0P

�
where R0 D 1

2
.rW;� � rW/ D 1

2
! as defined in (3.8).

Proof. A simple computation shows that

curv.PCrHPC ˚ P�rHP�/ D .rHPC/2 D ŒrH ; PC�2

D

�
r
H ;
1C JH

2

�2
D
1

4
ŒrH ; JH �2

where we have used that the commutator ŒrH ; PC� is multiplication byrHPC [33].
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Then

p� .r
H ; JH / D tr�

�
JH e�

1
4 Œr

H ;JH �2
�
D tr�

 
JH

X
r

1

4r

�
�ŒrH ; JH �2

�r!

D tr�

 
JH

X
r

1

rŠ4r

�
JH ŒrH ; JH �2r

�!

D tr�

 
JH

X
r

1

rŠ
P.R0P /

2r

!
D tr�

�
JHPeR0P

�
where we have used that .�1/r ŒrH ; JH �2r D

�
JH ŒrH ; JH �2r

�
, and that

PR0P D R0 D
1

2

�
P.JrWJ � r/P

� ŒP;J �D0
D

1

2

�
PJPrWPJP � PrWP

�
1

2

�
JHrHJH � rH

�
D
1

2

�
r
H;�
� r

H
� (3.28)
D

1

2
JH ŒrH ; JH �:

4. The heat kernel for large times

In this section we prove the main theorems about the asymptotic behavior of the
families XteX

2
t and eX

2
t as t ! 1. Recall that P D .Pb/b2B is the family of

projections onto ker.dZ C dZ;�/ defined in Proposition 3.1.

Theorem 4.1. For k 2 f0; 1; 2g, we have

lim
t!1

Xkt e
X2t D P.R0P /

k e.R0P/
2

2 ��.B;End A�
�

L2
.E=B;F// :

with respect to the � -norm.

Let mB D dimB . We denote the standard n-simplex by

�n D
˚
.s0; : : : ; sn/ 2 Œ0; 1�

nC1
js0 C � � � C sn D 1

	
and the standard volume form on �n by dn.s0; : : : ; sn/, so that �n has total
volume 1

nŠ
.

We split Xt as
Xt D

p
tD CRt (4.1)

where D D 1
2
.dZ;� � dZ/ is a family of skew-adjoint elliptic first order differential

operators along the fibres, and the remainder Rt has coefficients in ƒ>0.T �B/

Rt D R0 C t
� 12R1 (4.2)

with R0; R1 independent of t . From equation (3.3), X2 D tD2 C Rt
p
tD C

p
tDRt CR

2
t , where the products are always in �.B;W/dR.
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From (4.1), and by Duhamel’s principle

eX
2
t D

mBX
nD0

Z
�n
es0tD

2

.
p
tRtD C

p
tDRt CR

2
t /e

s1tD
2

: : :

: : : .
p
tRtD C

p
tDRt CR

2
t /e

sntD
2

dn.s0; : : : ; sn/ : (4.3)

The strategy of the proof will be the following: we will decompose the standard
simplex �k into regions where certain simplex coordinates si are smaller than a
given Ns.t/, and the remaining are larger. Then we integrate over the small simplex
coordinates before considering the limit as t ! 1, and we make an opportune
choice of Ns.t/. In this procedure, the heat operator eX

2
will split into a sum of

various terms: the estimates of the resulting functions of tD2 tell us which terms
contribute at large time, and analyzing their combinatorics we compute its limit as
t !1.

4.1. Large time asymptotic: some estimates. Let 0 < Ns.t/ < 1 be a decreasing
function of t , going to zero as t ! 1. We will fix Ns in Lemma 4.5 below. Choose
T such that Ns.T / < 1

mBC1
.

Lemma 4.2. For c � 0, there exists a constant C such that for all s > 0, t > T ,.pt D/cestD2
op
� C s

�
c
2 ; for c � 0 (4.4)estD2 � P 

�
D �.st/ ; for � of 3.1 (4.5).pt D/cestD2

�
� C s

�
c
2 �
�st
2

�
for c � 1 : (4.6)

Proof. The first two estimates are immediate. For the last one write.pt D/cestD2
�
�

.pt D/ce stD22 
op
�

e stD22 � P 
�

� C s
�
c
2 �
�st
2

�
:

When the parameter s is small and c D 0; 1, we get better estimates by integrating
over s. The case c D 2 is more complicated and will be treated later.

Lemma 4.3. Let c 2 f0; 1g. There exists a constant C such that for all t > T , we
have Z Ns0 .pt D/cestD2ds


op

� Ns
1�
c
2 � C (4.7)

Proof. This follows by integrating (4.4).

Remark 4.4. The estimates of Lemma 4.2 and 4.3 can be made uniformly on
compact subsets of B , as follows from the discussion after equation (3.1).
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4.2. Choices for Ns.t/.

Lemma 4.5. Recall �.t/ D tr.etD
2
� P /, defined in (3.1).

(1) There exists a choice of a monotone decaying function Ns D Ns.t/ such that

lim
t!1

�

�
t Ns.t/

2

�
�

�
1

Ns.t/

�mB
2

D 0 :

(2) If there exists ˛ > 0 such that �.t/ D O.t�˛/ (that is, ifD has positive Novikov–
Shubin invariants), then there exist a function Ns.t/ and " > 0 such that

�.t Ns.t// �

�
1

Ns.t/

�mB
2

� t�"; as t !1 :

(3) If
Z 1
1

�.t/
dt

t
< 1 (that is, if D is of determinant class, Definition 6.3), then

for each d � 0 there exists a choice of a monotone decaying function Ns D Ns.t/
such that Z 1

1

�.t Ns.t//

�
1

Ns.t/

�d
dt

t
<1 :

Proof. To prove (1), let  be the inverse function of � . The function " 7!

2"�1 ."
mB
2 C1/ is monotone decreasing (as product of decreasing factors) and

therefore has an inverse which we take to be the function Ns.t/, that is " D Ns.t/.
We have

t D Ns�1."/ WD 2"�1 �  
�
"
mB
2 C1

�
(4.8)

As lim"!0 s
�1."/ D1 if follows that limt!1 Ns.t/ D 0. Moreover, by construction

�

�
t Ns.t/

2

�
�

�
1

Ns.t/

�mB
2

D Ns.t/
t!1
���! 0:

To prove (2), choose ˇ such that
�
1C ˛

mB
2 C1

��1
< ˇ < 1, hence 1 � ˇ < ˛ˇ

mB
2 C1

.

Define then Ns.t/ D tˇ�1. It follows

�.t Ns.t// �

�
1

Ns.t/

�mB
2

� t�˛ˇ .t1�ˇ /mB � t�
mC1
mC2

˛ˇ
D t�" ; � > 0 : (4.9)

To prove (3), we make the following construction. Choose T1 < T2 < � � � such that
for each k Z 1

Tk

2k

�.t/
dt

t
< 2�k.dC1/ :
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Then
Z 1
Tk

2k

2dk � �.t/
dt

t
< 2�k . Define Ns.t/ WD 2�k for Tk � t � TkC1. Now

Z 1
1

�.t Ns.t//Ns.t/�d
dt

t
D

X
k

Z TkC1

Tk

�.2�kt /2dk
dt

t

�

1X
kD1

Z 1
Tk

2k

�.r/ � 2dk
dr

r
<

1X
1

2�k <1 :

Cases (2) and (3) of the lemma above will only be used in Sections 6. Note that
in the following section we do not make any specific assumption on �.t/.

4.3. Splitting Duhamel’s formula. For n � mB , split �n D
[

I(f0;:::ng

�nNs;I , where

�nNs;I D f.s0; : : : ; sn/ j si � Ns if and only if i 2 I g :

As T > 0 is chosen such that Ns.T / < 1
mBC1

, we have that for all t > T and
all .s0; : : : ; sn/ 2 �n there is at least one variable si such that si > Qs.t/, so
that �Ns.t/;f0;:::;ng D ;.

For fixed n � 0 and I � f0; : : : ; ng, we will regard each of the 3n terms in (4.3)
of the form Z

�n
Ns;I

es0tD
2

S1e
s1tD

2

: : : Sne
sntD

2

dn.s0; : : : ; sn/ (4.10)

separately, where Si 2 f
p
tDRt ;

p
tRtD;R

2
t g. We group

p
tD and its neighbors

which are functions of D so that we have factors of the form

.
p
tD/ci esi tD

2

with ci 2 f0; 1; 2g and Rat with a 2 f1; 2g :

We write a single term as

K.t; n; I I c0; : : : ; cnI a1; : : : ; an/ D

Z
�n
Ns.t/;I

.
p
t D/c0es0tD

2

R
a1
t .
p
t D/c1es1tD

2

R
a2
t : : :

: : : .
p
t D/cnesntD

2

dn.s0; : : : ; sn/ (4.11)

with ci � 0 and ai > 0 for all i . Note that by (4.3) and the above, we can
write e OX

2
t as sum of terms of the form K.n; I I c0; : : : ; cnI a1; : : : ; an/; however,

not all possible combinations of ci and ai occur in this sum. With this notation,
Duhamel’s formula (4.3) now becomes

e
OX2t D

X
n

X
I

X
c0Ca1�2�c0Ca1Cc1

c0C���Ca2�4�c0C���Cc2
:::

c0Ca1C���CanCcnD2n

K.t; n; I I c0; : : : ; cnI a1; : : : ; an/ : (4.12)
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Using the estimates of the Lemmas 4.2 and 4.3, we show that some of the terms
above vanish for t !1 in � -norm.

Proposition 4.6. As t ! 1, we have the following asymptotics with respect to the
� -norm.

(1) If I D ;, then

lim
t!1

K.t; n; I I c0; : : : ; cnI a1; : : : ; an/

D

(
1
nŠ
P R

a1
0 PR

a2
0 P � � �P if c0 D � � � D cn D 0,

0 otherwise.

(2) If I ¤ ; and ci 2 f0; 1g for all i 2 I , then

lim
t!1

K.t; n; I I c0; : : : ; cnI a1; : : : ; an/ D 0 :

Moreover in each of the cases considered above, for t sufficiently largeˇ̌̌
K.t; n; I I c0; : : : ; cnI a1; : : : ; an/ � lim

t!1
K.t; n; I I c0; : : : ; cnI a1; : : : ; an/

ˇ̌̌
�

� C

�
Ns.t/
�
mB
2 �

�
Ns.t/ t

2

�
C kP k� Ns.t/

1
2

�
:

Proof. For (1), we note first that a1 C � � � C an � mB . Because each ai � 1, this
implies n � mB and

c0 C � � � C cn D 2n � a1 � � � � � an � n � mB : (4.13)

Assume first that ci ¤ 0 for some 0 � i � n, for simplicity c0 ¤ 0. Because
I D ;, we have sj � Ns.t/ for all j if .s0; : : : ; sn/ 2 �nNs.t/;;. Using Lemma 4.2, we
find that.pt D/c0es0tD2Ra1t .pt D/c1es1tD2 � � � .pt D/cnesntD2

�

�

.pt D/c0es0tD2
�
�
Ra1t op �

.pt D/c1es1tD2
op
� � �.pt D/cnesntD2

op

� C1 s
�
c0
2

0 �

�
s0t

2

� Ra1t op � C2 s
�
c1
2

1 � � �C3 s
�
cn
2

n

� C Ns.t/
�
mB
2 �

�
Ns.t/ t

2

�
(4.14)

for some constant C .
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Choose Ns.t/ as in Lemma 4.5 (1). Then

lim
t!1

.pt D/c0es0tD2Ra1t .pt D/c1es1tD2 � � � .pt D/cnesntD2
�
D 0

uniformly on �n
Ns.t/;;

. Hence in this case,

lim
t!1
kK.t; n;;I c0; : : : ; cnI a1; : : : ; an/k� D 0 :

If I D ; and c0 D � � � D cn D 0, we compute�es0tD2 � P �Ra1t es1tD
2

� � � esntD
2

�

�

es0tD2 � P 
�
�
Ra1t op �

es1tD2
op
� � �

.pt D/cnesntD2
op

� C �

�
Ns.t/ t

2

�
;

which tends to 0 as t ! 1. By repeating this computation successively for
s1; : : : ; sn, we find that

lim
t!1

es0tD
2

R
a1
0 es1tD

2

� � � esntD
2

D P R
a1
0 lim

t!1
es1tD

2

R
a2
t es2tD

2

� � � esntD
2

D � � � D P R
a1
0 P � � �P

uniformly on �n
Ns.t/;;

with respect to the � -norm. Because

lim
t!1

vol.�n
Ns.t/;;/ D vol.�n/ D

1

nŠ
;

integrating over �n
Ns.t/;;

proves the remaining case in (1).
Now assume that I ¤ ; and put I WD fi1; : : : irg and f0; : : : ; ng n I DW

fj0; : : : ; jn�rg ¤ ; because by our choice of T , we have r � n. As in (2), we
assume ci1 , . . . , cir 2 f0; 1g. We rewrite (4.11) as

K.t; n; I I c0; : : : ; cnI a1; : : : ; an/

D

Z Ns.t/
0

: : :

Z Ns.t/
0„ ƒ‚ …

r times

Z
f.sj0 ;:::;sjn�r /j.s0;:::;sn/2�

n
Ns.t/;I

g

.
p
t D/c0es0tD

2

R
a1
t .
p
t D/c1es1tD

2

� � �

.
p
t D/cnesntD

2

dn�r.sj0 ; : : : ; sjn�r / dsir � � � dsi1 : (4.15)

To estimate the � -norm, we take the � -norm of .
p
t D/cj0 esj0 tD

2

and the operator
norms of the remaining factors.
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Assume first that there exists j 2 f0; : : : ; ng n I such that cj � 1, say cj0 � 1.
Then by 4.6,

kK.t; n; I I c0; : : : ; cnI a1; : : : ; an/k�

�

Z Ns.t/
0

: : :

Z Ns.t/
0

Z
f.sj0 ;:::;sjn�r /j.s0;:::;sn/2�

n
Ns.t/;I

g

C s
�
c0
2

0 � � � s
�
cn
2

n �

�
sj0 t

2

�
dn�r.sj0 ; : : : ; sjn�r / dsir � � � dsi1

.4:13/
�

Z Ns.t/
0

: : :

Z Ns.t/
0

vol n�rf.sj0 ; : : : ; sjn�r / j .s0; : : : ; sn/ 2 �
n
Ns.t/;I g

C Ns.t/�
mB
2 s
�
ci1
2

i1
� � � s

�
cir
2

ir
�

�
Ns.t/ t

2

�
dsir � � � dsi1

� C Ns.t/�
mB
2 �

�
Ns.t/ t

2

�
:

(4.16)

Again, this tends to 0 as t !1 by our choice of Ns.t/.
If cj0 D � � � D cjp D 0, replace esj0 tD

2

by .esj0 tD
2

� P /C P and estimate it
by taking its � -norm and the operator norm of the remaining factor, which does not
contribute with negative powers of Ns.t/, since cj0 D � � � D cjp D 0:

kK.t; n; I I c0; : : : ; cnI a1; : : : ; an/k�

�

Z Ns.t/
0

: : :

Z Ns.t/
0

Z
f.sj0 ;:::;sjn�r /j.s0;:::;sn/2�

n
Ns.t/;I

g

�esj0 tD2 � P 
�
C kP k�

�
�
Ra1t op � � �

� � �

esntD2
op
dn�r.sj0 ; : : : ; sjn�r /dsir � � � dsi1

�

Z Ns.t/
0

: : :

Z Ns.t/
0

Z
f.sj0 ;:::;sjn�r /j.s0;:::;sn/2�

n
Ns.t/;I

g

C s
�
ci1
2

i1
� � � s

�
cir
2

ir

�
�

�
sj0 t

2

�
C kP k�

�
� dn�r.sj0 ; : : : ; sjn�r / dsir � � � dsi1

� Ns.t/r�
ci1
2 �����

cir
2

�
�

�
Ns.t/t

2

�
C kP k�

�
� vol n�rf.sj0 ; : : : ; sjn�r / j .s0; : : : ; sn/ 2 �

n
Ns.t/;I g :

which goes to 0 as t !1, because r �
ci1
2
� � � � �

cir
2
> 0.

4.4. Integration by parts. To estimate the � -norm of (4.11) if ci D 2 for some
i 2 I using the lemmas in Section 4.1, we proceed to eliminate all terms of the form
tD2esia tD

2
, ia 2 I by integration by parts.
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As a preparation, let gW Œ0;1/n�rC1 ! C be a function of classC 1, let q D n�r
and assume that 0 < � < s0 and c > .q C 1/Ns C � . We first want to compute the
derivative of the integral of g over the interior part of the simplex where all variables
are at least Ns, with respect to the size c � � of the simplex. We find

�
@

@�

Z
f .x0;:::;xq/2.c��/�q jx0;:::;xq�Ns g

g.x0; : : : ; xq/ d
q.x0; : : : ; xq/ D �

@

@�

Z c���q Ns

Ns

Z c���.q�1/Ns�x0

Ns

� � �

c���Ns�x0�����xq�2Z
Ns

g.x0; : : : ; xq�1; c � � � x0 � � � � � xq�1/ dxq�1 � � � dx0

D

�Z c���.q�1/Ns�x0

Ns

� � �

c���Ns�x0�����xq�2Z
Ns

g.x0; : : : ; xq�1; c � � � x0 � � � � � xq�1/

� dxq�1 � � � dx1

�ˇ̌̌̌
x0Dc���q Ns

C � � � C

Z c���q Ns

Ns

� � �

c���2Ns�x0�����xq�3Z
Ns

g.x0; : : : ; xq�1; c � � � x0 � : : :

� xq�1/
ˇ̌
xq�1Dc���Ns�x0�����xq�2

dxq�2 � � � dx0

C

Z c���q Ns

Ns

Z c���.q�1/Ns�x0

Ns

� � �

c���Ns�x0�����xq�2Z
Ns

@g

@xq
.x0; : : : ; xq�1; c � � � x0 � : : :

� xq�1/ dxq�1 � � � dx0 :

The first q terms arise by formal differentiation of an integral with respect to its upper
limit. The first q� 1 of them vanish because there remains at least one inner integral
over an interval of length 0. Thus, we are left with

@

@�

Z
f .x0;:::;xq/2.c��/�q jx0;:::;xq�Ns g

g.x0; : : : ; xq/ d
q.x0; : : : ; xq/

D �

Z
f .x0;:::;xq�1/2.c���Ns/�q�1jx0;:::;xq�1�Ns g

g.x0; : : : ; xq�1; Ns/ d
q�1.x0; : : : ; xq�1/

�

Z
f .x0;:::;xq/2.c��/�q jx0;:::;xq�Ns g

@g

@xq
.x0; : : : ; xq/ d

q.x0; : : : ; xq/
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if q � 1, and since .c � �/�0 D fc � �g, we have

�
@

@�
g.c � �/ D

@g

@x0
.c � �/

if q D 0. The last simplex variable xq plays a special role in this computation, so we
will call it the “target variable” later on. By symmetry of integration, we may choose
any of the simplex variables to be our target variable.

Now assume that the term tD2esia tD
2

occurs somewhere in one of the fac-
tors 4.11 with ia 2 I . At this point, we integrate only over sia and sj0 , . . . , sjq
and keep all other small variables sib with b ¤ a fixed. Recall that there exists at
least one j0 … I . We choose sj0 as target variable. By the above, from the equalityZ
f .sj0 ;:::;sjq /jsj0 ;:::;sjq�Ns ; s0C���CsnD1 g

: : : Rt e
sia tD

2

Rt : : : .
p
tD/cj0 esj0 tD

2

: : : dq.sj0 ; : : : ; sjq /
ˇ̌̌Ns
siaD0

D

Z Ns
0

@

@sia

Z
f .sj0 ;:::;sjq /jsj0 ;:::;sjq�Ns ; s0C���CsnD1 g

: : : Rt e
sia tD

2

Rt : : : .
p
tD/cj0 esj0 tD

2

: : : dq.sj0 ; : : : ; sjq / dsia

we obtainZ Ns
0

Z
f .sj0 ;:::;sjq /jsj0 ;:::;sjq�Ns ; s0C���CsnD1 g

: : : Rt tD
2 esia tD

2

Rt : : : .
p
tD/cj0 esj0 tD

2

: : : dq.sj0 ; : : : ; sjq / dsia

D

Z
f .sj0 ;:::;sjq /jsj0 ;:::;sjq�Ns ; s0C���CbsiaC���CsnD1�Ns g

: : : Rt e
NstD2 Rt : : : .

p
tD/cj0 esj0 tD

2

: : : dq.sj0 ; : : : ; sjq /

�

Z
f .sj0 ;:::;sjq /jsj0 ;:::;sjq�Ns ; s0C���CbsiaC���CsnD1 g

: : : R2t : : : .
p
tD/cj0 esj0 tD

2

: : : dq.sj0 ; : : : ; sjq /

�

Z Ns
0

Z
f .sj1 ;:::;sjq /jsj1 ;:::;sjq�Ns ; s0C���Ccsj0C���CsnD1�Ns g

: : : Rt e
sia tD

2

Rt : : : .
p
tD/cj0 e NstD

2

: : : dq�1.sj1 ; : : : ; sjq / dsia

�

Z Ns
0

Z
f .sj0 ;:::;sjq /jsj0 ;:::;sjq�Ns ; s0C���C���CsnD1 g

: : : Rt e
sia tD

2

Rt : : : .
p
tD/cj0C2esj0 tD

2

: : : dq.sj0 ; : : : ; sjq / dsia

if q > 0, and a similar expression without the third term on the right hand side
if q D 0.
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Let us now extend our notation in (4.11) to incorporate those situations where
some of the si are “frozen” to Ns.t/. If I and J are disjoint subsets of f0; : : : ; ng
with I D fi1; : : : ; irg and f0; : : : ; ng n .I [ J / DW fk1; : : : ; kqg ¤ ;, we write

K.t; n; I; J I c0; : : : ; cnI a1; : : : ; an/

D

Z Ns.t/
0

: : :

Z Ns.t/
0„ ƒ‚ …

r times

Z
f.sk0 ;:::;skq /j.s0;:::;sn/2�

n
Ns;I
g

.
p
t D/c0es0tD

2

R
a1
t .
p
t D/c1es1tD

2

� � �

.
p
t D/cnesntD

2

dq.sk0 ; : : : ; skq / dsir : : : dsi1 ;

where sj D Ns.t/ is “frozen” for all j 2 J . Then our computations above become

K.t; n; I [ fiag; J I : : : ; 2„ƒ‚…
ia

; : : : ; ck0 ; : : : I : : : ; aia ; aiaC1; : : : /

D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

K.t; n; I; J [ fiagI : : : ; 0; : : : ; ck0 ; : : : I : : : ; aia ; aiaC1; : : : /

�K.t; n � 1; I; J I : : : ; : : : ; ck0 ; : : : I : : : ; aia C aiaC1; : : : /

CK.t; n; I [ fiag; J [ fk0gI : : : ; 0; : : : ; ck0 ; : : : I : : : ; aia ; aiaC1; : : : /

CK.t; n; I [ fiag; J I : : : ; 0; : : : ; ck0 C 2; : : : I : : : ; aia ; aiaC1; : : : /

if q > 0,

K.t; n; I; J [ fiagI : : : ; 0; : : : ; ck0 ; : : : I : : : ; aia ; aiaC1; : : : /

�K.t; n � 1; I; J I : : : ; : : : ; ck0 ; : : : I : : : ; aia C aiaC1; : : : /

CK.t; n; I [ fiag; J I : : : ; 0; : : : ; ck0 C 2; : : : I : : : ; aia ; aiaC1; : : : /

if q D 0.

(4.17)

We now continue to perform partial integration, thus eliminating all terms
with ci D 2 for some i 2 I . The remaining terms are all of the form
K.t; n; I; J I c0; : : : ; cnI a1; : : : ; an/ with ci 2 f0; 1g for i 2 I and ci � 0 for i … I .
During partial integration, the sum of the ci never increases, so we still have

c0 C � � � C cn � mB

as in (4.13). We can now prove for the resulting terms an analogue of Proposition 4.6.

Proposition 4.7. Assume that ci 2 f0; 1g for all i 2 I , then with respect to the
� -norm, we have

lim
t!1

K.t; n; I; J I c0; : : : ; cnI a1; : : : ; an/

D

(
1

.n�jJ j/Š
P R

a1
0 P � � �P if I D ; and c0 D � � � D cn D 0, and

0 otherwise.
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Moreover in each of the cases considered above, for t sufficiently largeˇ̌̌
K.t; n; I; J I c0; : : : ; cnI a1; : : : ; an/ � lim

t!1
K.t; n; I; J I c0; : : : ; cnI a1; : : : ; an/

ˇ̌̌
�

� C

�
Ns.t/
�
mB
2 �

�
Ns.t/ t

2

�
C kP k� Ns.t/

1
2

�
: (4.18)

Proof. This is proved precisely as Proposition 4.6. If I D ; and c0 D � � � D
cn D 0, we successively replace esi tD

2
by P and use (4.5) of Lemma 4.2.

Because sj D Ns.t/ for all j 2 J , and Ns.t/ ! 0 as t ! 1, we are left with
an integral over an .n � jJ j/-simplex of volume 1

.n�jJ j/Š
. If I D ; and there

exists ci > 0 for some i 2 f0; : : : ; ng, the arguments in the proof of 4.6 show
that kK.t; n; I; J I c0; : : : ; cnI a1; : : : ; an/k� ! 0.

If I ¤ ;, then we proceed again exactly as in the proof of 4.6, because the frozen
variables play the same role as large variables.

4.5. Proof of Theorem 4.1.

Proof of Theorem 4.1. We begin with k D 0.
We apply Duhamel’s formula to eX

2
t , split the result as in (4.12) and use partial

integration iteratively to get rid of all terms with ci D 2 for some i 2 I .
Thus if i 2 I and ci D 2, the corresponding term K.t; n; I; J I : : : / is

replaced by three or four terms as in (4.17). In the first two of these terms, the
corresponding variable si is frozen, whereas the remaining terms still involve an
integral over si 2 .0; Ns/, but with ci D 0. These integrals persist if we perform more
partial integrations, so the remaining terms do not contribute to the limit as t ! 1
by Proposition 4.7.

We also note that whenever any term contains ci 2 f0; 1g for some i 2 I

or ci > 0 for some i … I , then this fact is not altered by partial integration, so these
terms also do not contribute in the limit by Proposition 4.7. Thus, only those terms
K.t; n; I I c0; : : : ; cnI a1; : : : ; an/ in equation (4.12) contribute to the limit where

ci D

(
2 if i 2 I , and
0 if i … I .

Whenever ci D 2 and i 2 I , the corresponding part of the integrand in such a term
must be of the form

: : : esi�1tD
2

Rt
p
t D esi tD

2p
t D Rt e

siC1tD
2

: : : ; (4.19)

whence 0 < i < n, i � 1, i C 1 … I and ai D aiC1 D 1. On the other hand, if i � 1,
i … I , the corresponding part of the integrand takes the form

: : : esi�1tD
2

R2t e
si tD

2

: : : ; (4.20)



650 S. Azzali, S. Goette and T. Schick

whence ai D 2 in this case. Thus, the summandsK.t; n; I I : : : / that contribute to the
limit are in one to one correspondence with finite words in the free ring generated
by the two letters A and B , where each A stands for an occurrence of (4.19) and
each B stands for (4.20). Two subsequent terms overlap at esi tD

2
with i … I , and

the empty word represents etD
2
. Note however that the mapping from this ring to

��.B;EndA�
�.E=BIF// that assigns to each monomial a term in the Duhamel

expansion of the heat kernel is only additive, not a homomorphism. Because each
letter contains Rt twice, its degree with respect to B is at least 2, so there cannot be
more than mB

2
letters.

Partial integration now has the effect of replacing one letter A by C � B , where
the letter C stands for

: : : esi�1tD
2

Rt e
Ns.t/ tD2 Rt e

si tD
2

: : : ; (4.21)

modulo terms that vanish in � -norm as t !1. As in Proposition 4.7, the word C n

converges to
1

nŠ
P .R0P /

2n :

We thus find that

lim
t!1

eX
2
t D lim

t!1

j
mB
2

kX
nD0

.AC B/n D lim
t!1

j
mB
2

kX
nD0

C n D P e.R0P/
2

: (4.22)

This completes the proof of Theorem 4.1 for k D 0.
The analogues of (4.11) and (4.12) for k D 1 are given by

Xt eX
2
t D

X
n

X
I

X
a0�1�a0Cc0

a0Cc0Ca1�3�a0C���Cc1
:::

a0C���Can�2nC1Da0C���Ccn

K.t; n; I I c0; : : : ; cnI a0; : : : ; an/ ; (4.23)

where

K.t; n; I I c0; : : : ; cnI a0; : : : ; an/

D

Z
�n
Ns.t/;I

R
a0
t .
p
t D/c0es0tD

2

R
a1
t .
p
t D/c1es1tD

2

: : : .
p
t D/cnesntD

2

dn.s0; : : : ; sn/

with ci � 0 and ai > 0 for all i .
We perform partial integration as before. By the analogue of Proposition 4.7, the

remaining terms can again be described by letters A, B and C as above, where we
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have to delete the leftmost est D
2
Rt from the first letter in each word. Counting the

number of free simplex variables correctly, we find that

lim
t!1

C nC1 D
1

nŠ
P.R0P /

2nC1 :

With these modifications, the limit in the � -norm can now be described as

lim
t!1

Xt eX
2
t D lim

t!1

�
mB�1
2

�X
nD0

.AC B/nC1 D PR0P e
.R0P/

2

: (4.24)

For k D 2, we similarly consider the Duhamel expansion of Xt eX
2
t Xt , leaving

the details to the reader. We still work with letters A, B , C as before, where we
delete both the leftmost estD

2
from the first letter and the rightmost estD

2
from the

last letter in each word. For the limit in the � -norm, we obtain

lim
t!1

Xt eX
2
t Xt D lim

t!1

�
mB�2
2

�X
nD0

.AC B/nC2 D PR0P e
.R0P/

2

R0P : (4.25)

5. L2-index theorems

5.1. L2-Bismut–Lott theorem. Our first application of Theorem 4.1 is the L2-
Bismut–Lott index theorem. This was proved by Gong and Rothenberg in [25]
assuming extra regularity hypothesis.

Let . QE;�/ ! B be a family of normal coverings, and M ! B be a family of
finitely generated Hilbertian �-A-bimodules as in Definition 2.6. We use here the
Euler grading. The following theorem proves that the L2-Kamber–Tondeur class of
the flat bundle of A-modules HL2.E=BIF/ D

L
k.�1/

kH k
L2
.E=BIF/ ! B is

equal to the Becker–Gottlieb transfer of the class of F (see definitions in Section
3.2.1).

Theorem 5.1. If dimZ is even,

ch ı� .HL2.E=BIF// D
Z
E=B

e.TZ/ ch ı� .F/ 2 H odd
dR .B/:

Proof. Let f .a/ D a exp.a2/, and let F� .t/ WD
p
2�iˆStr� .f .Xt // as defined in

(3.9), with ˆ.˛/ D .2�i/�
j˛j
2 ˛. F� .t/ is a closed, real odd form on B , and by
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(3.10), its cohomology class does not depend on t . The small time limit of F� .t/ can
be obtained as in [12, Theorem 3.16] and gives, as t ! 0

F� .t/ D

8<:
Z
E=B

e.TZ;rTZ/ ch ı� .F ; gF /CO.t/ ; if dimZ is even

O.
p
t / ; if dimZ is odd :

On the other hand, Theorem 4.1 implies

lim
t!1

Str�
�
XteX

2
t

�
D Str�

�
P.R0P /e

.R0P/
2
�
:

Since PR0P D 1
2
.rH;� � rH /, it follows immediately that

lim
t!1

F� .t/ D ch ı� .HL2.E=BIF/; gHL2 / :

We get a family version of Atiyah’s L2-index theorem as a special case:
Corollary 5.2. In the situation of Example 2.3, when F D F ˝ L with L D QE ��
l2.�/ comes from a finite dimensional flat vector bundle F ! E, then

ch ı� .HL2.E=BIF/; gHL2 / D ch ı.H.E=BIF /; gH / :

5.2. L2-index theorem for the family of signature operators. Our next applica-
tion of Theorem 4.1 is the L2-index theorem for the families of signature operators
twisted by a flat duality bundle.

Theorem 5.3. Let Z ! E
p
! B be a smooth fibre bundle with connected even-

dimensional closed fibres, let F ! E be a flat bundle of A-modules as in (2.1) or
(2.6) with a flat duality structure. Then

p� .r
H ; JH / D

Z
E=B

L.E=B/p� .r
F ; JF / 2 H�dR.B/ : (5.1)

Proof. By (3.25), the cohomology class of tr � .Je�A
2
t / is constant with respect to t .

The small time limit of tr � .Je�A
2
t / is computed as in [36, Proposition 31], [12, 3.16]

and [8] and gives

lim
t!0

tr � .Je�A
2
t / D

Z
E=B

L.E=B/p� .r
F ; JF / :

The large time limit is provided by Theorem 4.1:

lim
t!1

tr� .Je�A
2
t / D tr� .JPe.R0P/

2

/ :

Comparing with the computation of Lemma 3.13, we then have

lim
t!1

tr� .JeX
2
t / D p� .r

H ; JH / (5.2)

and the equality (5.1) follows directly from the McKean–Singer formula (3.25).
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Again a special case is a version of Atiyah’s L2-index theorem for families of
twisted signature operators.

Corollary 5.4. Consider the situation of Example 2.3, when F comes from two
finite dimensional flat vector bundles FC ˚ F � ! E, i.e. rFJF D 0. Then
Dsign D dZ C dZ;� is the twisted signature operator. Denoting by Dsign the
signature operator twisted by FC ˚ F �, then in H�

dR
.B/ we have

ch� KerDsign
D ch KerDsign :

5.3. Remarks.

5.3.1. Index class versus index bundle. Consider the case of normal coverings of
fibre bundles. From the point of view of non-commutative geometry, the family of
twisted signature operators Dsign possesses an analytic index class IndaD

sign 2

K0.C.B/˝ C
�.�//. More generally, the index class belongs to the K-theory of a

certain groupoid IndaD
sign 2 K0.C

1
c .G//. This class represents the obstruction to

invertibility in C�1c .G/ of the operator Dsign which is invertible modulo C1c .G/
([18, II.9.˛]).

In the classical case of a compact fibre family, the index class of the family
of operators coincides with the K-theory class of the index bundle for any family
of Dirac operators whose kernels form a bundle. This is no longer true on non-
compact fibres/leaves, where, basically, the obstruction to invertibility needs not be
“concentrated in the kernel bundle”.

The question of the equality of the index class and the index bundle once one has
paired the Chern character with a trace, was first investigated by Heitsch, Lazarov
and Benameur in the more general situation of a foliated manifold with Hausdorff
graph. The results in [28, 5] guarantee it is true if the spectrum of D is very well
behaved (smoothness of the spectral projection relative to .0; "/ plus a lower bound
on the Novikov–Shubin invariants). An example where the equality fails is given by
Benameur, Heitsch and Wahl on a Lusztig fibration in [6].

Our Theorem 5.3 proves the desired equality for the signature operator with
coefficients in a globally flat bundle, in the setting of families of normal coverings.

Corollary 5.5. Let . QE;�/ ! B a family of normal coverings, and M ! B be a
family of flat finitely-generated Hilbertian �-A-bimodules as in Definition 2.6. In
this situation the pairing of the index bundle and of the index class with elements in
H�.B/˝ � are equal.

5.3.2. Lusztig fibrewise flat twisting bundle. Our methods do not extend to the
fibrewise flat case because the operator dE is no longer a flat superconnection and
the property .dE;� C dE /2 D �.dE;� � dE /2 is no longer true. This is consistent
with [6].
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5.3.3. Examples of spectral density. One can construct an example of a badly
behaved spectral density function, starting from the Lusztig fibration.

Consider �2WT � T � ! T � where T D S1 D Œ0; 2��= �, and T � is the dual
torus which we parametrize as T � D f�sWZ ! U.1/; n 7! e2�insg, s 2 Œ0; 1�= �.
The line bundle l WL ! T � T � defined as L D .R � R� � C/=.Z � Z�/ with
the action .n;m/ � .t; r; �/ D .2�n C t; m C r; e2�ihr;ni�/ is leafwise flat, because
L� D Lj��1.�/ is flat. Let .Ds/s2T � be the family of signature operators twisted
by L�s : it is explicitly given by Ds D i@t on C1.S1; L�s / D fg W Œ0; 2�� !
C j e2�isg.0/ D g.2�/g. We have specDs D f.kC s/; k 2 Zg, so that the spectral
density function of Ds is equal to Fs.�/ D trE�s

�2
D b�C 1 � sc C b�C sc. Let

X be a closed manifold, whose universal covering QX is such that the Laplacian on
QX has a nontrivial kernel, and let �3WT � X � T � ! T � be the fibration having as

fibre the product manifold T �X .
Consider now the family of normal �1.X/-covering q3WT � QX � T � ! T �

X � T �. Lift the twisting bundle l to the product T � X � T � and to the covering.
Computing the spectral density function of the Dirac operator on the product (using
the convolution of the densities) one can see that it has a discontinuity in s D 0.

6. Refined index theorems and secondary invariants

In this section we prove the refinements of Theorems 5.3 and 5.1 at the level of
differential forms, and we define the L2-eta form and the L2-higher analytic torsion.
To this aim, we look for the weakest regularity condition under which we can pass
to the large time limit in the transgression formulas derived from (3.10) and (3.25).
Making use of the estimates of Section 4, we show that the secondary invariants
eta and torsion are well defined in the following two cases: if the typical fibre has
positive Novikov–Shubin invariants, or if it is of determinant class and L2-acyclic.

The L2-torsion form was first introduced by Gong and Rothenberg [25],
assuming much stronger regularity hypothesis (smoothness of the spectral projection
�.0;"/.D/ and positive Novikov–Shubin invariants). Our extension to certain fam-
ilies of determinant class is relevant, because it was recently proved by Grabowski
that there exist closed manifolds with Novikov–Shubin invariant equal to zero [26],
but these examples are of determinant class by [45].

6.1. L2-torsion forms. Consider the L2-Betti numbers with coefficients in F
defined by b.k/� .Z;F/ D dim�

�
ker.dZ C dZ;�/ \Wk

�
, and define the L2-Euler

characteristic, and the derived L2-Euler characteristic, respectively as

�� .E=B/ WD
X
k

.�1/kb.k/� .Z;F/ ; �0� .E=B/ WD
X
k

.�1/kkb.k/� .Z;F/
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Lemma 6.1.
lim
t!1

F ^� .t/ D
�0� .E=B/

2
:

Proof. It is enough to apply Theorem 4.1. Because Str�
�
NP.R0P /

2j
�
D 0 8j ¤

0, it follows that limt!1 Str�
�
N
2
.1C 2X2t /eX

2
t

�
D Str�

�
N
2

�
.

Lemma 6.2 (Theorem 3.20 in [12]). As t ! 0,

F ^� .t/ D

�
1
4

dimZ rk� .F/�� .E=B/; dimZ even
O.
p
t /; dimZ odd :

The integral of F
^
� .t/

t
would diverge both for t ! 0 and t ! 1, so we add the

usual compensation scalar terms as in [12, Def 3.22] and define the function

T� .THE; gTZ ; gF /.t/

WD
1

t

�
F ^� .t/ �

�0�
2
�

�
n rk� F � ��

4
�
�0�
2

�
.1 � 2t/e�t

�
: (6.1)

Definition 6.3. Denote as before D D 1
2
.dZ;� � dZ/, and recall that P is the

projection onto KerD. The fibre Z is called of determinant class ifZ 1
1

tr� .etD
2

� P /
dt

t
<1 : (6.2)

The first statement of the following proposition was proved by Gong and
Rothenberg in [25] under the additional hypothesis that the spectral projections P"
are smooth.

Proposition 6.4. (I) If the Novikov–Shubin invariants are positive, then there
exists " > 0 such that in ��.BIEnd1A�L2.E=B//, i.e. in the trace norm

F ^� .t/ �
�0�
2
D O.t�"/ ; as t !1 :

(II) If Z is of determinant class and L2-acyclic, thenZ 1
1

1

t
F ^� .t/dt <1 :

Proof. We go back to the proof of Theorem 4.1. Consider the expression for F ^� .t/
developed with the Duhamel expansion as in Section 4.5. By Lemma 6.1, it is enough
to estimate all the terms in the expansion that go to zero as t !1.

If the hypothesis of (I) is verified, with the choices of Lemma 4.5 (2), there exists

" > 0 such that �.t Ns.t// �
�
1
Ns.t/

�mB
� t�", as t ! 1. Therefore the remainder

terms in (4.14) and (4.16), summarized in (4.18), become an O.t�"/.
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If we have the hypothesis of part (II), then we choose Ns.t/ as in Lemma 4.5
(3) and we prove that all remainder terms are integrable on Œ1;1/. To do so, we
proceed as in the proof of Proposition 4.6 and 4.7. In particular, we successively
replace e NstD

2
D .e NstD

2
� P / C P and apply the determinant class condition to

e NstD
2
� P . Since we are assuming L2-acyclicity, P D 0 hence the remainder terms

with P are not there, and the convergence holds.

Corollary 6.5. If any of the two hypothesis in (I) or (II) of Proposition 6.4 is verified,
then the L2-torsion form is well defined as

T� .THE; gTZ ; gF /

D �

Z 1
0

�
F ^� .t/ �

�0�
2
�

�
n rk� F � ��

4
�
�0�
2

�
.1 � 2t/e�t

�
1

t
dt : (6.3)

Remark 6.6. L2-torsion and Igusa’s axioms: a question. The higher analytic
torsion of Bismut and Lott has a counterpart in (differential) topology, the higher
Franz–Reidemeister torsion TIK defined by Igusa and Klein [30].

Igusa gave a set of axioms characterizing TIK in the case of a smooth unipotent
fibre bundle pWE ! B , and without coefficients [31]. It is an open question
how to axiomatize higher torsion when the input data also contains a flat twisting
bundle, i.e. a representation 'W�1.E/ ! U.n/. As explained in [32], the set of
desired axioms should contain an additional “continuity condition” with respect to
the representation '.

We think that the axiom could be a continuity condition on the sequence of higher
analytic torsions for a tower of coverings, so involving the L2-torsion defined in 6.3.
More precisely, we ask whether, given a residually finite covering of a fibre bundle
(possibly under opportune assumptions), the sequence of Bismut–Lott torsions for
the finite covering families converges to the L2-higher torsion. Such a property, if
true, could provide an interesting basis for future investigation of L2-topological
higher torsion invariants.

6.2. L2-eta forms for the signature operator. Let Z ! E
p
! B be a smooth

fibre bundle with connected 2l-dimensional closed oriented Riemannian fibres, let
F ! E be a flat bundle of A-modules as in (2.1) or (2.6).

If dimZ D 2l consider in �.B;W/dua, recall (3.25), the eta function

�� .t/ WD .2�i/
� 12ˆ tr�

�
J
dAt
dt

e�A
2
t

�
: (6.4)

If dimZ D 2l C 1, we consider the odd signature operator of 3.3.4 and we set

�� .t/ WD .2�i/
� 12ˆ tr�

�
dAt
dt

e�A
2
t

�even
:
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Lemma 6.7. In both even and odd dimensional cases

lim
t!1

�� .t/ D 0 : (6.5)

Proof. Consider first even dimensional fibres. By Remark 3.11, we look at the d#-
term of tr

�
Je
MX2
�
D Str

�
. O!C ˝ J

F /e
MX2
�

. We compute its large time limit with
Theorem 4.1:

lim
t!1

Str
�
. O!C ˝ J

F /e
MX2
�
D Str

�
. O!C ˝ J

F /Pe.
MR0P/

2
�

(6.6)

where MR0 D R0C
�
N � n

2

�
d# . Then the d#-term of the right hand side is equal toX

k�0

1

kŠ
Str
�
. O!C ˝ J

F /P.R0P /
2kC1.N �

n

2
/P
�

which is equal to zero because for each k

Str
�
. O!C ˝ J

F /P.R0P /
2kC1.N �

n

2
/P
�

D Str
�
. O!C ˝ J

F /P.R0P /
2k.R0P /.N �

n

2
/P
�

D Str
�
. O!C ˝ J

F /P.R0P /
2k.N �

n

2
/.R0P /

�
D Str

�
.N �

n

2
/.R0P /. O!C ˝ J

F /P.R0P /
2k
�

D �Str
�
.N �

n

2
/. O!C ˝ J

F /P.R0P /
2kC1

�
D �Str

�
. O!C ˝ J

F /P.R0P /
2kC1.N �

n

2
/P
�

where we have used thatR0P anti-commutes with O!C˝J
F , and thatN � n

2
is even.

For odd dimensional fibres, the computation is similar.

Proposition 6.8. (I) If the Novikov–Shubin invariants are positive, then there
exists " > 0 such that in ��.BIEnd1A�L2.E=B//, i.e. in the trace norm

�� .t/ D O.t�1�"/ ; as t !1 :

(II) If Z is of determinant class and L2-acyclic, then
Z 1
1

�� .t/dt <1 .

Proof. Consider the Duhamel expansion of e MX
2
t , split it as in 4.3 and integrate by

parts. Then we proceed exactly as in the proof of Proposition 6.4, choosing Ns.t/ as
in Lemma 4.5 part (2) or as in part (3), respectively, in the two cases.
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Corollary 6.9. If any of the two hypothesis in (I) or (II) of Proposition 6.8 is verified,
then the L2-eta form of the signature operator is well defined as

�� .Dsign/ D

8̂̂<̂
:̂
.2�i/�

1
2ˆ

Z 1
0

tr�

�
dAt
dt

e�A
2
t

�even
dt ; dimZ D 2l C 1

.2�i/�
1
2ˆ

Z 1
0

tr�

�
J
dAt
dt

e�A
2
t

�
dt ; dimZ D 2l :

(6.7)

If the fibre is odd-dimensional, then the zero-degree part of �� .D
sign

odd
/ is a

function on B whose value at the point b is equal to the Cheeger–Gromov L2-eta
invariant of Zb , introduced in [16]. Guided by the fact that Cheeger and Gromov
prove the existence of the L2-eta invariant of the signature operator without any
condition, we ask the following.

Question 6.10. Can the L2-eta form of the signature operator be defined dropping
the L2-acyclicity condition and all other extra conditions?

6.3. Local index theorems. The proofs of Propositions 6.4 and 6.8 defined T� and
�� as continuous differential forms onB . Our estimates are not good enough to prove
that �� is a C 1 differential form. Nevertheless, we can use weak exterior derivatives
to prove local index theorems. Gong and Rothenberg proved the same result under
stronger regularity hypothesis [25, Th. 3.2].

Definition 6.11. A continuous k-form ' onB is said to have weak exterior derivative
 if for every smooth .k C 1/-simplex cW�kC1 ! BZ

c

 D

Z
@c

' :

Let Z ! E
p
! B be a smooth fibre bundle with connected closed fibres, let

F ! E be a flat bundle of A-modules as in (2.1) or (2.6).

Theorem 6.12. Assume the fibres Z have positive Novikov–Shubin invariants. Then
the form T� has weak exterior derivative

dT� D
Z
E=B

e.TZ;rTZ/ ch ı.F ; gF / � ch ı� .HL2.E=BIF/; gHL2 / :

If the fibres are determinant class and L2-acyclic, then T� has weak exterior
derivative

dT� D
Z
E=B

e.TZ;rTZ/ ch ı.F ; gF / :
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Proof. Let c be a .k C 1/-smooth chain in B . By (3.10) and the theorem of Stokes,
on a finite interval 0 < t < T <1 we haveZ

c

F� .t/ �

Z
c

F� .T /

D �

Z
@c

Z T

t

1

t

�
F ^� .t/ �

�0�
2
�

�
n rk� F � ��

4
�
�0�
2

�
.1 � 2t/e�t

�
dt

which implies the desired result.

Let now Z ! E
p
! B , F ! E be as above and let F be endowed with a flat

duality structure. The following local formulas are deduced in the same way from
(3.25) and (3.27).

Theorem 6.13. Assume dimZ D n D 2k. If the fibres have positive Novikov–
Shubin invariants, then the form �� has weak exterior derivative

d�� D

Z
E=B

L.E=B/ p� .r
F ; JF / � p� .r

H
L2 ; JHL2 / :

If the fibres are of determinant class and L2-acyclic, then the same holds, with the
last term on the right hand side vanishing.

If n D 2k C 1, and assuming either positive Novikov–Shubin, or determinant
class and L2-acyclicity, then the form �� has weak exterior derivative

d�� D

Z
E=B

L.E=B/ p� .r
F ; JF / :

7. L2-rho form

Let � W QE ! E be a normal �-covering of the fibre bundle pWE ! B as in
Section 2.1. Recall that in this case A D N� , M D l2� , and � is the canonical
trace on N� .

To define the L2-rho form of the family of signature operators in this setting,
we introduce the following notation: let Dsign be the family of signature operators
along the compact fibres of E ! B (i.e. untwisted), and Dsign be the family of
signature operators twisted by F D QE �� l2� .

Definition 7.1. If Z is of determinant class and L2-acyclic, or if Z has positive
Novikov–Shubin invariants, the L2-rho form is the difference

�� .D
sign/ WD �� .D

sign/ � �.Dsign/ 2 C 0.B;ƒ�B/ :
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If the fibre is odd-dimensional, then the zero-degree part of �� .D
sign

odd
/ is a

function on B whose value at the point b is equal to the Cheeger–Gromov L2-rho
invariant of Zb , [16].

The local index theorem implies the following.

Lemma 7.2. The L2-rho form �� .D
sign/ is weakly closed in the following cases:

� for odd dimensional fibres, whenever it is well defined (conditions of Corollary
6.9);

� for even dimensional fibres, when Z is of determinant class, acyclic and L2-
acyclic.

Proof. It suffices to look at the weak local index formulas to get the desired equality.

The following proposition shows that, as usual, when the form �� .D
sign/ is

closed, then its cohomology class is independent of the vertical metric gTZ . This is
in analogy with [12, Theorem 3.24 and Corollary 3.25].

Proposition 7.3. Let .gu/u2Œ0;1� be a path of metrics on the vertical tangent bundle
T .E=B/, andDsign

u the corresponding family of signature operators. Let us assume
that �� .Du/ is weakly closed. Suppose Z is determinant class and L2-acyclic. Then
the cohomology class of �� .Du/ is constant in u.

Proof. Let OE D E � Œ0; 1�! B � Œ0; 1� D OB the family with one added parameter
u 2 Œ0; 1�. Let � � B be a .k C 1/-simplex. Let C D � � Œ0; 1�. We have

0 D

Z
@C

O� D

Z
�

��;g0 �

Z
�

��;g1 C

Z
Œ0;1�

Z
@�

O� :

Because O� is closed, we get �� jg0 D �� jg1 2 H
�.B/.

Rho-invariants have natural stability properties. For example, the Cheeger–
Gromov �-invariant of the signature operator is independent of the metric [17].
Indrava Roy proved the analogous stability property for the foliated �-invariant of the
longitudinal signature operator if one has a holonomy invariant transverse measure
[43, Theorem 4.3.1].

Remark 7.4. Chang and Weinberger use the L2-rho invariant of the signature
operator to prove that, whenever the fundamental group contains torsion, a given
homotopy type of closed oriented manifolds contains infinitely many different
diffeomorphism types (using surgery theory for the construction of the manifolds)
[15]. We could then conjecture that a similar result holds for a fiber homotopy
type, i.e. that one can construct and then use rho-forms to distinguish non-fiber
diffeomorphic but fiber homotopy equivalent maps. Because of the stability results
one can expect for this kind of “degree 0 rho-invariants” under the assumption that
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the maximal Baum-Connes assembly map for the classifying space for free actions is
an isomorphism [41], one can expect that such examples will require a group where
such a very strong isomorphism result does not hold.

Remark 7.5. In the situation of Example 2.3, one could also consider a rho-type
invariant T� .THE; gTZ ; gF / � T .THE; gTZ ; gF / for acyclic F and L2-acyclic
F . The significance of this weakly closed form is not yet understood.
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