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Quantum group-twisted tensor products of C�-algebras. II
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Abstract. For a quasitriangular C�-quantum group, we enrich the twisted tensor product
constructed in the first part of this series to a monoidal structure on the category of its continuous
coactions on C�-algebras. We define braided C�-quantum groups, where the comultiplication
takes values in a twisted tensor product. We show that compact braided C�-quantum groups
yield compact quantum groups by a semidirect product construction.
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1. Introduction

Let C and D be C�-algebras with a coaction of a C�-quantum group G D .A;�A/.
As in [12], C�-quantum groups are generated by manageable multiplicative unitaries,
and Haar weights are not assumed. IfG is a group, then the C�-tensor productC˝D
inherits a diagonal coaction. This fails for quantum groups because the diagonal
coaction is not compatible with the multiplication in the tensor product. We use the
noncommutative tensor products described in [12] to construct a monoidal structure
on the category of G-C�-algebras if G is quasitriangular in a suitable sense.

Such a structure is to be expected from the analogous situation for (co)module
algebras over a Hopf algebra. In that context, an R-matrix for the dual Hopf algebra
allows to deform themultiplication on the tensor product of twoH -comodule algebras
so as to get an H -comodule algebra again. For C�-quantum groups, Hopf module
structures are replaced by comodule structures. Hence we call G quasitriangular if
there is a unitary R-matrix R 2 U. OA˝ OA/ for the dual C�-quantum group.

Since R is a bicharacter, the braided tensor product C �D WD .C; /�R .D; ı/

in [12] is defined if .C; / and .D; ı/ are C�-algebras with continuous coactions
of G. We show that C � D carries a unique continuous coaction  ‰ ı of G for
which the canonical embeddings of C and D are G-equivariant. (We do not denote
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this coaction by  � ı because � is a bifunctor, and the *-homomorphism  � ı
given by this bifunctoriality is not  ‰ ı.)

It is crucial for the theory here and in [12] that R is unitary. This rules out some
important examples of quasitriangular Hopf algebras. For instance, R-matrices for
quantum deformations of compact simple Lie groups are non-unitary.

If .E; �/ is another C�-algebra with a continuous coaction of G, then there is
a canonical isomorphism .C � D/ � E Š C � .D � E/. If C or D carries a
trivialG-coaction, then C �D D C ˝D, and  ‰ ı is the obvious induced action,
 ˝ idD or idC ˝ ı. Thus our tensor product onG-coactions is monoidal: the tensor
unit is C with trivial coaction. The tensor product of coactions is braided monoidal
if and only if it is symmetric monoidal, if and only if the R-matrix is antisymmetric.
This rarely happens, and it should not be expected because this also usually fails
on the Hopf algebra level. What should be braided is the category of Hilbert space
corepresentations. This is indeed the case, and we use it to prove that the tensor
product for coactions is associative and monoidal.

AnR-matrix R 2 U. OA˝ OA/ lifts uniquely to a universalR-matrix R 2 U. OAu˝ OAu/

for the universal quantum group OAu, so it makes no difference whether we consider
R-matrices for OA or OAu. Since Hilbert space corepresentations of A are equivalent
to Hilbert space representations of OAu, an R-matrix for OAu induces a braiding on the
monoidal category of Hilbert space corepresentations of G.

If G is the quantum group of functions on an Abelian locally compact group � ,
then its R-matrices are simply bicharacters O� � O� ! U.1/. For instance, if � is Z=2,
there are two such bicharacters. One gives the ordinary commutative tensor product
with the diagonal coaction, the other gives the skew-commutative tensor product with
diagonal Z=2-coaction.

A well-known class of quasitriangular Hopf algebras are Drinfeld doubles; their
module algebras are the same as Yetter–Drinfeld algebras. The dual of the Drinfeld
double D.G/ of G is the Drinfeld codouble D.G/b, which we just call quantum
codouble. (What we call quantum codouble is called Drinfeld double in [13].)

For our class of C�-quantum groups, quantum codoubles and doubles and
corresponding multiplicative unitaries are described in [17]. It is already shown
in [17] that quantum codoubles are quasitriangular and that D.G/b-C�-algebras are
the same as G-Yetter–Drinfeld C�-algebras. In this article, we identify the twisted
tensor product for the canonical R-matrix of D.G/bwith the twisted tensor product
in the category of G-Yetter–Drinfeld C�-algebras constructed in [13].

A braided C�-bialgebra is a G-C�-algebra .B; ˇ/ with a comultiplication

�B WB ! B � B

that is coassociative. We call .B; ˇ;�B/ a braided compact quantum group if B is
unital and �B satisfies an appropriate Podleś condition.

We are particularly interested in braided quantum groups over a codoubleD.G/b
because they appear in a quantum group version of semidirect products. In the group



Quantum group-twisted tensor products of C�-algebras. II 861

case, the construction of a semidirect product G ËH requires a conjugation action
of G on H such that the multiplication map H � H ! H is G-equivariant. For
quantum group semidirect products, the equivariance of the multiplication map on
the underlying C�-algebra B of H only makes sense if we deform the tensor product
because there is no canonical G-coaction on B ˝ B . A theorem of Radford [15,
Theorem 3] for the analogous situation in the world of Hopf algebras suggests thatH
should be a braided quantum group over the codouble D.G/b of G. In this case, we
describe an induced C�-bialgebra structure onA�B . This is a C�-algebraic analogue
of whatMajid calls “bosonisation” in [10]. We prefer to call the construction ofA�B
a “semidirect product”. IfA is a compact quantum group andB is a braided compact
quantum group, then their semidirect product A� B is a compact quantum group.

As a first example, we construct a C�-algebraic analogue of the partial duals
studied in [3]. We have constructed braided quantum SU(2) groups with complex
deformation parameter q together with Paweł Kasprzak in [6]; their semidirect
products are the deformation quantisations of the unitary group U(2) defined in [22].

The construction of the C�-bialgebra A� B works in great generality. For this
to be a C�-quantum group, we would need a multiplicative unitary for it. Then it is
best to work on the level of multiplicative unitaries throughout. That is done in [16].
On that level, one can also go back and decompose a semidirect product into the two
factors. Here we limit our attention to the compact case, where bisimplifiability of
the comultiplication map is enough to get a quantum group.

We briefly summarise the following sections. In Section 2, we define R-matrices
and show that they lift to the universal quantum group. In Section 3, we describe the
braided monoidal structure on the category of Hilbert space corepresentations for a
quasitriangular C�-quantum group. As an example, we consider the case of Abelian
groups. In Section 4 we construct the “diagonal” action of a quasitriangular quantum
group on tensor products twisted by the R-matrix and show that it gives a monoidal
structure on G-C�-algebras. Section 5 studies the case of quantum codoubles,
where coactions on C�-algebras are equivalent to Yetter–Drinfeld algebra structures.
Section 6 contains the semidirect product construction for braided C�-bialgebras.
The appendix recalls basic results about C�-quantum groups and some results of
our previous articles for the convenience of the reader. There are also some new
observations about Heisenberg pairs in Appendix A.7, whichwould fit better into [12]
but were left out there.

2. R-matrices

Let G D .A;�A/ be a C�-quantum group and let W 2 U. OA ˝ A/ be its reduced
bicharacter; see Appendix A.1 and Definition A.6.
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Definition 2.1. A bicharacter R 2 U.A˝ A/ is called an R-matrix if

R.� ı�A.a//R� D �A.a/ for all a 2 A: (2.1)

Lemma 2.2. The dual OR WD �.R�/ 2 U.A˝ A/ of a bicharacter R 2 U.A˝ A/ is
an R-matrix if and only if R is an R-matrix.

Remark 2.3. The standard convention for Hopf algebras (see [9, Definition 2.1.1])
assumes R.�A.a//R� D � ı �A.a/, which is opposite to (2.1). Our convention
in (2.1) becomes the standard one if we replace �A by �cop

A
WD � ı�A or R by R�.

In order to simplify proofs later, we lift an R-matrix R 2 U.A˝A/ toU.Au˝Au/:
Proposition 2.4. There is a unique Ru 2 U.Au ˝ Au/ with

.ƒ˝ƒ/Ru
D R in U.A˝ A/; (2.2)

.�Au ˝ idAu/Ru
D Ru

23R
u
13 in U.Au

˝ Au
˝ Au/; (2.3)

.idAu ˝�Au/Ru
D Ru

12R
u
13 in U.Au

˝ Au
˝ Au/: (2.4)

This unitary also satisfies

Ru.� ı�u
A.a//.R

u/� D �u
A.a/ for all a 2 Au: (2.5)

Proof. [11, Proposition 4.7] gives a unique Ru 2 U.Au˝Au/ satisfying (2.2)–(2.4).
The nontrivial part is to show that Ru satisfies (2.5). Let V 2 U. OA ˝ Au/ be the
universal bicharacter as in Appendix A.4. Theorem 25 and Proposition 31 in [19]
show that

Au
D f.! ˝ idAu/V j ! 2 OA0gCLS and .id OA ˝�Au/V D V12V13: (2.6)

Therefore, (2.5) is equivalent to:

Ru
23V13V12.Ru

23/
�
D V12V13 in U. OA˝ Au

˝ Au/: (2.7)

The unitary R WD .ƒ ˝ idAu/Ru 2 M.A ˝ Au/ is also a bicharacter. Let X WD
W�12R23V13W12 2 U. OA˝ A˝ Au/. The following computation shows that X is a
corepresentation of .Au; �Au/ on OA˝ A:

.id OA ˝ idA ˝�Au/.W�12R23V13W12/ DW�12R23R24V13V14W12

D .W�12R23V13W12/.W
�
12R24V14W12/

D X123X124:

The first step uses (2.4) and (2.6), the second step uses that R24 and V13 commute,
and the last step is trivial. A similar routine computation shows that Y WD V13R23 2
U. OA˝ A˝ Au/ satisfies .id OA ˝ idA ˝�Au/Y D Y123Y124.
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The argument that shows that (2.5) is equivalent to (2.7) also shows that the
R-matrix condition (2.1) is equivalent to

R23W13W12 DW12W13R23 in U. OA˝ A˝ A/: (2.8)

Thus .id OA˝ idA˝ƒ/X D .id OA˝ idA˝ƒ/Y . Nowwe use Lemma [11, Lemma 4.6],
which is a variation on [7, Result 6.1]. It gives X D Y or, equivalently,

V�13W�12 NR23V13 D NR23W�12 in U. OA˝ A˝ Au/: (2.9)

Similarly, eX WD V�13.Ru
23/
�V12V13 and eY WD V12.Ru

23/
� in U. OA˝Au˝Au/ satisfy

.id OA ˝ƒ˝ idAu/eX D .id OA ˝ƒ˝ idAu/eY by (2.9), and

.id OA ˝�Au ˝ idAu/.eX/ D eX124eX134; .id OA ˝�Au ˝ idAu/.eY / D eY 124eY 134
because of (2.3) and (2.6). Another application of [11, Lemma 4.6] gives eX D eY ,
which is equivalent to (2.7).

[19, Proposition 31.2] shows that .Au; �Au/ has a bounded counit: there is a
unique morphism eWAu ! C with

.e ˝ idAu/�Au D .idAu ˝ e/�Au D idAu : (2.10)

Lemma 2.5. The unitary Ru 2 U.Au ˝ Au/ in Proposition 2.4 satisfies

.e ˝ idAu/Ru
D .idAu ˝ e/Ru

D 1Au in U.Au/; (2.11)
Ru
12R

u
13R

u
23 D Ru

23R
u
13R

u
12 in U.Au

˝ Au
˝ Au/: (2.12)

Proof. Apply idAu ˝ e ˝ idAu on both sides of (2.3) and (2.4) and then use (2.10).
This gives

Ru
D .1Au ˝ .e ˝ idAu/Ru/Ru

D ...idAu ˝ e/Ru/˝ 1Au/Ru:

Multiplying with .Ru/� on the right gives .e ˝ idAu/Ru D .idAu ˝ e/Ru D 1Au .
The following computation yields (2.12):

Ru
12R

u
13R

u
23 D ..idAu ˝�u/Ru/Ru

23 D Ru
23..idAu ˝ � ı�u/Ru/ D Ru

23R
u
13R

u
12I

here the first and third step use (2.4) and the second step uses (2.5).

3. Corepresentation categories of quasitriangular quantum groups

Definition 3.1. A quasitriangular C�-quantum group is a C�-quantum group
G D .A;�A/ with an R-matrix R 2 U. OA˝ OA/.
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Let†.H1;H2/WH1˝H2 ! H2˝H1 denote the flip operator. As already pointed
out in [19], †.H1;H2/

12 is G-equivariant for all corepresentations of G if and only if G
is commutative. Hence †.�;�/ does not give a braiding on Corep.G/ in general.

Let UHi 2 U.K.Hi /˝ A/ be corepresentations of G on Hi for i D 1; 2. These
correspond to representations of the universal quantum group OAu by the universal
property of OAu. More precisely, there are unique O'i 2 Mor. OAu;K.Hi // such that
. O'i ˝ idA/ QV D UHi for i D 1; 2, see Appendix A.4; here QVA is the universal
bicharacter in U. OAu ˝ A/.

Define H2H1 WH1 ˝H2 ! H2 ˝H1 by

X.H2;H1/ WD . O'2 ˝ O'1/.Ru/� in U.H2 ˝H1/; (3.1)
H2H1 WD X.H2;H1/ ı†H1;H2 in U.H1 ˝H2;H2 ˝H1/: (3.2)

Here Ru 2 U. OAu ˝ OAu/ is as in Proposition 2.4.
Proposition 3.2. The unitaries H2H1 WH1 ˝H2 ! H2 ˝H1 are G-equivariant,
that is,

H2H1
12.UH1 UH2/ D .UH2 UH1/ H2H1

12 in U.K.H1 ˝H2/˝ A/

(3.3)

for all UH1 ;UH2 2 Corep.G/. The tensor product is defined in (A.9).
The unitaries H2H1 define a braiding on Corep.G/, that is, the following

hexagons commute for all UHi 2 Corep.G/, i D 1; 2; 3:

H1 ˝ .H2 ˝H3/ .H2 ˝H3/˝H1

.H1 ˝H2/˝H3 H2 ˝ .H3 ˝H1/

.H2 ˝H1/˝H3 H2 ˝ .H1 ˝H3/

H2˝H3H1

H2H1 ˝ idH3
idH2

˝
H3H1

(3.4)

.H1 ˝H2/˝H3 H3 ˝ .H1 ˝H2/

H1 ˝ .H2 ˝H3/ .H3 ˝H1/˝H2

H1 ˝ .H3 ˝H2/ .H1 ˝H3/˝H2

H3H1˝H2

idH1
˝

H3H2 H3H1 ˝ idH2

(3.5)

Here the unlabelled arrows are the standard associators of Hilbert spaces.
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Proof. We have . O�Au ˝ idA/ QVA D QVA23 QVA13 in U. OAu ˝ OAu ˝ A/ because QVA is a
character in the first leg. Therefore, the corepresentation UH1 UH2 corresponds to
. O�1˝ O�2/ ı � ı O�

u
AW
OAu ! B.H1˝H2/ through the universal property (A.11) of QV :

.. O�1 ˝ O�2/ ı � ı O�
u
A ˝ idA/ QV D UH1 UH2 : (3.6)

The following computation yields (3.3):

H2H1
12.UH1 UH2/ D . O�2 ˝ O�1 ˝ idA/

�
.Ru
12/
�. O�u

A ˝ idA/ QV
�
†
.H1;H2/
12

D
�
.. O�2 ˝ O�1/ ı � ı O�

u
A/˝ idA/ QV

�
X.H2;H1/
12 †

.H1;H2/
12

D .UH2 UH1/ H2H1
12:

The first equality uses (3.6) and (3.2), the second equality follows from (2.5) and (3.1),
and the last equality uses (3.6) and (3.2).

Equations (3.2) and (3.6) imply

H2˝H3H1 WDX.H2˝H3;H1/†.H1;H2˝H3/

D

�
. O�2 ˝ O�3 ˝ O�1/.� ı O�

u
A ˝ id OAu/.Ru/�

�
ı†.H1;H2˝H3/: (3.7)

Now we check the first braiding diagram (3.4):�
. O�2 ˝ O�3 ˝ O�1/.� ı O�

u
A ˝ id OAu/.Ru/�

�
ı†.H1;H2˝H3/

D

�
. O�2 ˝ O�3 ˝ O�1/

�
.Ru/�23.R

u/�13
��
†
.H1;H3/
23 †

.H1;H2/
12

D X.H3;H1/
23 X.H2;H1/

13 †
.H1;H3/
23 †

.H1;H2/
12

D X.H3;H1/
23 †

.H1;H3/
23 X.H2;H1/

12 †
.H1;H2/
12 D

H1H3
23

H1H2
12I

here the first equality uses (2.3), the second equality uses (3.1), the third equality
uses properties of the flip operator †, and the fourth equality follows from (3.2).

A similar computation for H3H1˝H2 yields the second braiding diagram (3.5).

Corollary 3.3. If C carries the trivial corepresentation of G, then

HC
WC˝H! H˝ C and CH

WH˝ C! C˝H

are the canonical isomorphisms. For any three corepresentations of G,

H2H1
23

H3H1
12

H3H2
23 D

H3H2
12

H3H1
23

H2H1
12: (3.8)

Proof. These are general properties of braided monoidal categories, see [5,
Proposition 2.1]. They also follow from (2.11), (2.12), and (3.1).
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Remark 3.4. The dual OR WD �.R�/ of an R-matrix R 2 U. OA ˝ OA/ is again an
R-matrix by Lemma 2.2. A routine computation shows that the resulting braiding
on Corep.G/ is the dual braiding, given by the braiding unitaries

H1 H2 D
� H1H2

��
WH1 ˝H2 ! H2 ˝H1:

3.1. Symmetric braidings.
Definition 3.5. An R-matrix R 2 U.A˝ A/ is called antisymmetric if R� D �.R/
for the flip � WA˝ A! A˝ A, a1 ˝ a2 7! a2 ˝ a1.
Lemma 3.6. If R is antisymmetric, then .Ru/� D �.Ru/ for the universal lift Ru 2

U.Au ˝ Au/ constructed in Proposition 2.4.

Proof. Both �.Ru/� and Ru are bicharacters that lift R. They must be equal because
bicharacters lift uniquely by [11, Proposition 4.7].

Proposition 3.7. The braiding on Corep.G/ constructed from R 2 U. OA ˝ OA/ is
symmetric if and only if R is antisymmetric.

Proof. LetH1 andH2 be Hilbert spaces with corepresentations ofG. Let O�i W OAu !

B.Hi / be the corresponding *-representations. Then

H1 ˝H2

H2H1

�����! H2 ˝H1

H1H2

�����! H1 ˝H2

is equal to

. O�1 ˝ O�2/.Ru/� ı†.H2;H1/ ı . O�2 ˝ O�1/.Ru/� ı†.H1;H2/ D . O�1 ˝ O�2/.�.Ru/Ru/�:

This is the identity operator for all representations O�i if and only if �.Ru/Ru D 1.

3.2. The Abelian case. Let B be a locally compact group. What is an R-matrix for
the commutative quantum group .C0.G/;�/? Since C0.G/˝C0.G/ is commutative
as well, (2.1) simplifies to the condition � ı� D �, which is equivalent to G being
commutative. Hence there is no R-matrix unlessG is Abelian, whichwe assume from
now on. Then (2.1) holds for any unitary R 2 U.C0.G/˝ C0.G//, so an R-matrix
forG is simply a bicharacter. Equivalently, R is a function �WG�G ! U.1/ satisfying
�.xy; z/ D �.x; z/�.y; z/ and �.x; yz/ D �.x; y/�.x; z/. Being antisymmetric
means �.x; y/�.y; x/ D 1 for all x; y 2 G.

Any bicharacter � as above is of the form �.x; y/ D h O�.x/; yi for a group
homomorphism O�WG ! OG to the Pontrjagin dual OG, with �.x; ␣/ D O�. This is a
special case of the interpretation of bicharacters as quantum group homomorphisms
in [11].

The category of Hilbert space representations of G is equivalent to the category
of corepresentations of .C0.G/;�/ and to the category of representations of
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C�.G/ Š C0. OG/. The tensor category of G-representations is already symmetric
for the obvious braiding †, which corresponds to the R-matrix 1. What are the
braiding operators for a nontrivial R-matrix?

Let
R ˚
OG
Hx d�.x/ denote the Hilbert space of L2-sections of a measurable field

of Hilbert spaces .Hx/x2 OG over OG with respect to a measure �, equipped with
the action of C0. OG/ by pointwise multiplication. Any representation of C0. OG/ is
of this form, where � is unique up to measure equivalence and the field .Hx/ is
unique up to isomorphism �-almost everywhere. Let H1 D

R ˚
OG
H1x

d�1.x/ and
H2 D

R ˚
OG
H2x

d�2.x/ be two Hilbert space representations of G. Then

H1 ˝H2 D

Z̊
OG� OG

H1x
˝H2y

d�1.x/ d�2.y/

with C0. OG/˝C0. OG/ Š C0. OG� OG/ acting by pointwise multiplication. The braiding
H2H1 maps an L2-section .�x;y/x;y of the field .H1x

˝ H2y
/x;y to the section

.y; x/ 7! �.y; x/�1�x;y of .H2y
˝H1x

/y;x .

Example 3.8. Consider G D Z=2 D f˙1g and let �.x; y/ D xy 2 Z=2 � U.1/;
this bicharacter corresponds to the isomorphism G Š OG. It is both symmetric
and antisymmetric. The spectral analysis above writes a Z=2-Hilbert space as a
Z=2-graded Hilbert space, splitting it into even and odd elements with respect to the
action of the generator of Z=2. The braiding unitary on � ˝ � is † if � or � is even,
and �† if both � and � are odd. This is the usual Koszul sign rule.

4. Coaction categories of quasitriangular quantum groups

Let G D .A;�A;R/ be a quasitriangular quantum group. Let .C; / and .D; ı/
be G-C�-algebras. The twisted tensor product C �R D D C � D is constructed
in [12]. It is a crossed product of C and D, that is, there are canonical morphisms
�C WC ! C �D and �DWD ! C �D with

�C .C / � �D.D/ D �D.D/ � �C .C / D C �DI

here a morphism is a nondegenerate *-homomorphism to the multiplier algebra,
and X � Y for two subspaces X and Y of a C�-algebra means the closed linear span
of x � y for x 2 X , y 2 Y as in [12].

Theorem A.9 recalls one of the two equivalent definitions of the twisted tensor
product in [12]. Let .';UH/ and . ;UK/ be faithful covariant representations of
.C; / and .D; ı/ on Hilbert spaces H and K, respectively. Then C �R D is
canonically isomorphic to '1.C / � Q 2.D/ � B.H˝K/, where '1.c/ D '.c/˝ 1K
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and Q 2.d/ D X.1H ˝  .d//X
� for the unitary X that is characterised by (A.19).

The same unitary appears in our construction of the braiding, so

Q 2.d/ D
KH . .d/˝ 1H/.

KH /�: (4.1)

We are going to equip C �D with a naturalG-coaction and show that this tensor
product gives a monoidal structure on the category of G-C�-algebras C�alg.G/ (see
Definition A.4).

Proposition 4.1. There is a unique G-coaction  ‰R ı on C �R D such that
the canonical representation on H ˝ K and the corepresentation UH UK form a
covariant representation of .C �RD;  ‰R ı/. This coaction is also the unique one
for which the morphisms �C WC ! C�RD and �DWD ! C�RD areG-equivariant.

Proof. We identify C � D with its image in B.H ˝ K/. The covariance of this
representation of C �D with UH UK means that

. ‰R ı/.x/ D .UH UK/.x ˝ 1A/.UH UK/�

for all x 2 C �D. Hence there is at most one such coaction  ‰R ı.
The representation c 7! �C .c/ D '.c/˝1K is covariant with respect to UH UK

because it is covariant with respect to UH ˝ 1 by construction and �C .c/ acts only
on the first leg. Hence . ‰R ı/.�C .c// D .�C ˝ idA/.c/ for all c 2 C . Similarly,
the representation d 7!  .d/˝ 1 on K˝H is covariant with respect to UK UH.
Since the unitary KH is G-equivariant by Proposition 3.2, the representation Q 2
on H ˝ K is covariant with respect to UH UK as well (unlike the representation
d 7! 1˝  .d/). Hence . ‰R ı/.�D.d// D .�D ˝ idA/ı.d/ for all d 2 D. As a
result,  ‰R ı maps C �D D �C .C / � �D.D/ nondegenerately into the multiplier
algebra of .C �D/˝ A, and the morphisms �C and �D are G-equivariant.

The morphism  ‰R ıWC �D ! .C �D/˝A is faithful by construction. The
Podleś condition for C �D follows from those for C andD:

. ‰R ı/.C �D/ � .1˝ A/ D .�C ˝ idA/..C // � .�D ˝ idA/.ı.D// � .1˝ A/
D .�C ˝ idA/..C // � .�D.D/˝ A/
D .�C ˝ idA/..C // � .1˝ A/ � .�D.D/˝ A/
D .�C .C /˝ A/ � .�D.D/˝ A/ D C �D ˝ A:

Thus  ‰R ı is a continuous G-coaction on C � D for which �C and �D are
equivariant. Conversely, if �C and �D are G-equivariant, then

. ‰R ı/.�C .c/ � �D.d// D .�C ˝ idA/..c// � .�D ˝ idA/.ı.d//

for c 2 C , d 2 D; this determines  ‰R ı because �C .C / � �D.D/ D C �D.
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Proposition 4.2. The coaction  ‰R ı on C �R D is natural with respect to
equivariant morphisms, that is, it gives a bifunctor �RWC

�alg.G/ � C�alg.G/ !
C�alg.G/. It is the only natural coaction for which C with the obvious isomorphisms
C � C Š C and C�D Š D is a tensor unit.

Proof. Two G-equivariant morphisms f WC1 ! C2 and gWD1 ! D2 induce a
morphism f � gWC1 � D1 ! C2 � D2, which is determined uniquely by the
conditions .f �g/ı�C1

D �C2
ıf and .f �g/ı�D1

D �D2
ıg (see [12, Lemma 5.5]).

The coactions 1 ‰R ı1 and 2 ‰R ı2 satisfy .k ‰R ık/ ı �Ck
D .�Ck

˝ idA/ ı k
and .k ‰R ık/ ı �Dk

D .�Dk
˝ idA/ ı ık for k D 1; 2. Thus

.2 ‰R ı2/ ı �C2
ı f D .f � g ˝ idA/ ı .1 ‰R ı1/ ı �C1

and similarly onD1. So f � g is equivariant and�R is a bifunctor as asserted. The
obvious isomorphisms C � C Š C and C�D Š D are G-equivariant and natural
and satisfy the triangle axiom for a tensor unit in a monoidal category; so C with
these isomorphisms is a unit for the tensor product�R on C�alg.G/.

Conversely, assume that �ı is a naturalG-coaction onC �D for whichCwith
the obvious isomorphisms C � C Š C and C�D Š D is a tensor unit. That is,
these two isomorphisms are G-equivariant. The unique morphisms 1C WC! C and
1DWC ! D given by the unit multiplier are equivariant with respect to the trivial
G-coaction on C. We have �C D idC � 1D and �D D 1C � idD . Hence �C and �D
are equivariant for  � ı. This forces  � ı D  ‰R ı.

Theorem 4.3. If C1; C2; C3 are objects of C�alg.G/, then there is a unique
isomorphism of triple crossed products C1 � .C2 � C3/ Š .C1 � C2/� C3, which
is also G-equivariant. Thus C�alg.G/ with the tensor product �R is a monoidal
category.

Proof. An isomorphism of triple crossed products is an isomorphism that intertwines
the embeddings of C1, C2 and C3. Since the images of these embeddings generate
the crossed product, such an isomorphism is unique if it exists.

Let .Ci ; i / be G-C�-algebras and let .'i ;UHi / be faithful covariant representa-
tions of .Ci ; i /, respectively, for i D 1; 2; 3. The construction of the G-coaction
on Ci � Cj shows that .'i � 'j ;UHi UHj / is a faithful covariant representation
of Ci � Cj on Hi ˝ Hj . Therefore, Theorem A.9 gives a faithful representation
'1 � .'2 � '3/ of C1 � .C2 � C3/ onH1 ˝H2 ˝H3, which is characterised by:

�C1
.c1/ 7! '1.c1/˝ 1H2

˝ 1H3
;

�C2
.c2/ 7! . H1H2˝H3 /

�
'2.c2/˝ 1H3

˝ 1H1

�
. H1H2˝H3 /�;

�C3
.c3/ 7! . H1H2˝H3 /. H2H3

12/
�
'3.c3/˝ 1H2

˝ 1H1

�
. H2H3

12/
�. H1H2˝H3 /�
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for ci 2 Ci , i D 1; 2; 3. The diagrams in Proposition 3.2 and Corollary 3.3 give
H1H2˝H3 D

H1H2
12 �

H1H3
23;

H1H2˝H3 �
H2H3
12 D

H1H2
12 �

H1H3
23 �

H2H3
12 D

H1˝H2H3 �
H1H2
23:

Hence the above characterisation of '1 � .'2 � '3/ simplifies to�
'1 � .'2 � '3/

�
ı �C1

.c1/ D '1.c1/˝ 1;�
'1 � .'2 � '3/

�
ı �C2

.c2/ D
H1H2
12.'2.c2/˝ 1/.

H1H2
12/
�;�

'1 � .'2 � '3/
�
ı �C3

.c3/ D .
H1˝H2H3 /.'3.c3/˝ 1/.

H1˝H2H3 /�:

(4.2)

Similarly, we get a faithful representation .'1 � '2/ � '3 of .C1 � C2/ � C3
onH1˝H2˝H3. A computation as above shows that the combinations of braiding
unitaries in it are equal to those in (4.2). Thus'1�.'2�'3/ and .'1�'2/�'3 are the
same representation onH1˝H2˝H3. This gives an isomorphismC1�.C2�C3/ Š
.C1 � C2/� C3 that intertwines the canonical embeddings of C1, C2 and C3. It is
G-equivariant because our G-coactions are uniquely determined by their actions on
the tensor factors C1, C2 and C3.

The natural isomorphisms above provide the associators needed for a monoidal
category. The pentagon condition for these associators and the compatibility with
the unit transformations C�D Š D, C � C Š C follow by checking the relevant
commuting diagram on each tensor factor separately.

Proposition 4.4. The monoidal structure �R is braided monoidal if and only if it is
symmetric monoidal, if and only if R is antisymmetric. In that case, the braiding is
the unique isomorphism of crossed products .C �RD; �C ; �D/ Š .D�R C; �C ; �D/.

Proof. [12, Proposition 5.1] shows that D �R C Š C � OR D as crossed products,
where OR WD �.R�/. If R is antisymmetric, this gives an isomorphism of crossed
products between .C �R D; �C ; �D/ and .D �R C; �C ; �D/. This isomorphism is
equivariant because our coactions are determined by what they do on the embedded
copies of C andD. Thus we get a braided monoidal category in this case.

Conversely, any braiding must give the identity map on C �R C and C �R D

because C is the tensor unit. Since �C D idC � 1D and �D D 1C � idD , any
braiding must be an isomorphism of crossed products C �R D Š D �R C . By
the argument above, this happens if and only if C �R D D C � OR D as crossed
products. CorollaryA.13 says that the crossed productA�RA determines R uniquely.
Hence R D OR.

5. Quantum codoubles

Quantum codoubles of compact quantum groups were introduced by Podleś and
Woronowicz in [14] to construct an example of a quantum Lorentz group. The
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definition was extended to the non-compact case in [21]. Quantum codoubles were
also described by Baaj and Vaes in [2, Proposition 9.5], assuming the underlying
quantum group to be generated by a regular multiplicative unitary. We call the
dual of the quantum codouble Drinfeld double. Some authors use different notation,
exchanging doubles and codoubles.

We shall refer to [17] for the definition of the quantum codouble D.G/b and the
Drinfeld double D.G/ of a C�-quantum group G D .A;�A/. It is shown in [17]
that D.G/b and D.G/ are again C�-quantum groups and that D.G/b-coactions on
C�-algebras are equivalent to G-Yetter–Drinfeld C�-algebras. To simplify notation,
we shall only consider the special case of the results in [17] where B D OA and the
bicharacter V is W 2 U. OA˝ A/ because that is all we need below.

The main result in this section is that this equivalence of categories between
D.G/b-coactions andG-Yetter–DrinfeldC�-algebras turns the tensor products�R for
D.G/b-C�-algebras and a canonical R-matrix forD.G/b into the tensor product�W
forG-Yetter–Drinfeld algebras. We also show that the tensor product�R for a general
quasitriangular quantum group is a special case of the same operation for its codouble
(see Theorem 5.7).

The quantum codouble D.G/bD . OD; � OD/ of G is defined by OD WD A˝ OA and

�W
WA˝ OA! OA˝ A; a˝ Oa 7!W. Oa˝ a/W�;

� ODW
OD! OD ˝ OD; a˝ Oa 7! �W

23.�A.a/˝
O�A. Oa//;

for a 2 A, Oa 2 OA. We may generate D.G/b by a manageable multiplicative unitary
by [17, Theorem 4.1]. So it is a C�-quantum group and has a dualD.G/ D .D; �D/,
which is called the Drinfeld double of G. We have

D D �.A/ � �. OA/ and �D.�.a/ � �. Oa// D .�˝ �/�A.a/ � .� ˝ �/ O�A. Oa/

for a certain pair of representations � and � of A and OA on the same Hilbert space.
The formulas for � and � will not be needed in the following.

It is crucial that � and � give Hopf *-homomorphisms from G and bG
to D.G/. These induce dual morphisms D.G/b! G and D.G/b! bG (compare
Theorem A.8). These quantum group morphisms induce a map on corepresentations
(see [11, Proposition 6.5] and the proof of [12, Theorem 5.2] for a correct general
proof). Thus a corepresentation of D.G/b induces corepresentations of G and bG
on the same Hilbert space. It is shown in [17] that this gives a bijection between
corepresentations of D.G/b and certain pairs of corepresentations of G and bG:
Proposition 5.1 ([17, Proposition 6.11]). Let K be a Hilbert space. The corep-
resentations U 2 U.K.K/˝A/ and V 2 U.K.K/˝ OA/ of G and bG associated to a
corepresentation X 2 U.K.K/˝ bD/ of D.G/b satisfy

�W
23

�
U12V13

�
D V12U13 in U.K.K/˝ OA˝ A/I
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we call a pair .U;V/ with this property D.G/b-compatible. The map X 7! .U;V/
above is a bijection from corepresentations ofD.G/b toD.G/b-compatible pairs of
corepresentations of G and bG, with inverse

X WD U12V13 in U.K.K/˝ A˝ OA/:

A quantum group morphism also induces a functor between the coaction
categories, see Theorem A.8. Thus a continuous coaction of D.G/b on a
C�-algebra C induces coactions of G and bG. Once again, this gives a bijection
from coactions of D.G/b to certain pairs of coactions of G and bG:

Proposition 5.2. Let C be a C�-algebra. The continuous coactions  and ı of G
and bG associated to a continuous coaction � of D.G/b satisfy

�W
23

�
. ˝ id OA/ı

�
D .ı ˝ idA/ I (5.1)

A C�-algebra with such a pair of coactions is called aG-Yetter–Drinfeld C�-algebra.
The map � 7! .; ı/ above is a bijection from continuous coactions of D.G/b to

the set of pairs of continuous coactions .; ı/ satisfying (5.1); the inverse maps .; ı/
to � D . ˝ id OA/ı.

Yetter–Drinfeld C�-algebraswere defined byNest andVoigt in [13, Definition 3.1]
(assuming Haar weights on G), and Proposition 5.2 is essentially [13, Proposi-
tion 3.2]. For C�-quantum groups without Haar weights, Proposition 5.2 is [17,
Proposition 6.8], with an explicit description of the bijection taken from the proof
of [17, Proposition 6.8].

Let YDC�alg.G/ denote the category with G-Yetter–Drinfeld C�-algebras as
objects and morphisms that are both G- and bG-equivariant as arrows.

The following unitary is an R-matrix for D.G/b by [17, Lemma 5.11]:

R D .� ˝ �/W 2 U.D ˝D/:

Thus D.G/b is quasitriangular and the construction in the previous section gives a
monoidal structure �R on C�alg.D.G/b/. What happens when we translate this to
the equivalent setting of G-Yetter–Drinfeld C�-algebras?

The reduced bicharacter W 2 U. OA ˝ A/, being a bicharacter, gives a tensor
product�W for twoG-Yetter–Drinfeld C�-algebras. This tensor product is also used
by Nest and Voigt in [13] (they require, however, that G has Haar weights).

Theorem 5.3. Let C1 and C2 be D.G/b-C�-algebras, view them also as G-Yetter–
Drinfeld C�-algebras. There is an equivariant isomorphism of crossed products
C1 �R C2 Š C1 �W C2.

Proof. First we describe the braiding on Corep.D.G/b/ induced by R in terms of W
and compatible pairs of corepresentations of A and OA.
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Recall that the maps �WA ! D and � W OA ! D are Hopf *-homomorphisms.
Thus they lift to the universal quantum groups: �uWAu ! Du and �uW OAu ! Du.
Let Wu 2 U. OAu ˝ Au/ be the universal lift of W. The unitary .�u ˝ �u/.Wu/ 2

U.Du ˝Du/ is a bicharacter and lifts R. Hence it is the universal lift Ru of R.
A corepresentation ofD.G/b is equivalent to a representation ofDu. Composing

this with the morphisms �u and �u gives representations O� and � of OAu andAu. These
are, in turn, equivalent to corepresentations U and V of A and OA. The construction
of .U;V/ is exactly the bijection to D.G/b-compatible pairs of corepresentations in
Proposition 5.1.

Now take two corepresentations of D.G/b on Hilbert spaces Hk . These
correspond to representations …k of Du, which determine representations O�k D
…k ı �

u and �k D …k ı �
u of OAu and Au on Hk for k D 1; 2. The braiding

unitary H2H1 is given by (3.1) and (3.2) and involves the unitary

.…1 ˝…2/.Ru/� D .…1�
u
˝…2�

u/.Wu/� D . O�1 ˝ �2/.Wu/�:

Let .Ci ; �i / be D.G/b-C�-algebras. Proposition 5.2 gives a unique pair of
coactions i WCi ! Ci ˝ A and ıi WCi ! Ci ˝ OA such that .Ci ; i ; ıi / is a
G-Yetter-Drinfeld C�-algebra and �i D .i ˝ id OA/ ı ıi for i D 1; 2. There are
faithful covariant representations .XHi ; 'i / of .Ci ; �i ;bD/ on Hilbert spaces Hi for
i D 1; 2. We use these faithful covariant representations to define C1 �R C2 as a
C�-subalgebra of B.H1 ˝H2/, see Theorem A.9.

Proposition 5.1 turns XHi into a D.G/b-compatible pair of corepresentations
.UHi ;VHi /. The maps on corepresentations and coactions induced by a quantum
group morphism preserve covariance of representations. Hence .'i ;UHi / is
a covariant representation of .Ci ; i ; A/ on Hi and .'i ;VHi / is a covariant
representation of .Ci ; ıi ; OA/ on Hi for i D 1; 2, respectively. We use these faithful
covariant representations to define C1 �W C2 as a C�-subalgebra of B.H1 ˝H2/,
see Theorem A.9.

The representation of C1 �� C2 onH1 ˝H2 comes from the representations

C1 3 c1 7! '1.c1/˝ 1; C2 3 c2 7! Z�.1˝ '2.c2//Z
�
�;

where ZR D .…1 ˝ …2/.Ru/� and ZW D . O�1 ˝ �2/.Wu/�. The computation
above shows that ZW D ZR, so C1 �R C2 D C1 �W C2 as C�-subalgebras of
B.H1 ˝H2/.

Since G-Yetter–Drinfeld C�-algebras are equivalent to D.G/b-C�-algebras, the
isomorphism in Theorem 5.3 shows that C1 �W C2 for two G-Yetter–Drinfeld
C�-algebras C1 and C2 carries a unique G-Yetter–Drinfeld C�-algebra structure for
which the embeddings of C1 and C2 are equivariant. This extra structure is natural,
and .YDC�alg.G/;�W/ is a monoidal category. By construction, the equivalence
between YDC�alg.G/ and C�alg.D.G/b/ is an equivalence of monoidal categories
between .YDC�alg.G/;�W/ and .C�alg.D.G/b/;�R/.
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Remark 5.4. Propositions 3.7 and 4.4 show that �R admits a braiding if and only
if it is symmetric, if and only if the braiding on Corep.D.G/b/ associated to R is
symmetric if and only if R is antisymmetric, that is, R� D �.R/. For the codouble,
this is equivalent to W D bW. We know no non-trivial multiplicative unitary with
this property. Since W D bW implies that A and OA are the same C�-algebra, such a
multiplicative unitary cannot be regular.

Example 5.5. The tensor product A�W OA is the canonical Heisenberg double of a
C�-quantum group G, in the sense that its representations are the Heisenberg pairs
of G (see Proposition A.12). Theorem 5.3 says that A �W OA Š A �R OA; this is a
C�-algebraic version of [4, Proposition 5.1].

It is already shown in [13, Section 3] that YDC�alg.G/ is a monoidal category
for the tensor product�W if G has Haar weights.

Now letG be a quasitriangular quantum group with R-matrix R 2 U. OA˝ OA/. We
view R as a quantum group morphism from A to OA. Theorem A.8 explains how R
gives an induced coaction ıWC ! C ˝ OA on any G-C�-algebra .C; /.

Lemma 5.6. Any pair .; ı/ as above is G-Yetter–Drinfeld.

Proof. Any objectC 2 C�alg.G/ is equivariantly isomorphic to a subobject ofD˝A
with coaction idD˝�A for some C�-algebraD by [12, Lemma 2.9]. Since the tensor
factor D causes no problems, it suffices to prove the lemma for .C; / D .A;�A/;
here ı D �R is the right coaction characterised by (A.16) for � D R.

The relation (2.8) has to be modified for R 2 U. OA ˝ OA/ by taking the dual
multiplicative unitaries because we use OA instead of A. This gives

R12W13W23 DW23W13R12 in U. OA˝ OA˝ A/: (5.2)

Equations (A.16) for R, (A.4) and (5.2) give

�W
34

�
.id OA ˝ .�A ˝ id OA/�R/W

�
DW12�

W
34.W13R14/

DW12W34W14R13W
�
34

DW12R13W14 D .id OA ˝ .�R ˝ idA/�A/W:

Finally, we slice the first leg of this equation with ! 2 OA0. This gives (5.1) for the
pair .�A; �R/ because slices of W generate A.

Since a morphism between twoG-C�-algebras isG-equivariant if and only if it is
G- and bG-equivariant, Lemma 5.6 gives a fully faithful embedding of C�alg.G/ into
YDC�alg.G/ Š C�alg.D.G/b/ that leaves the underlying C�-algebras unchanged.
Thus an R-matrix for G induces a quantum group morphism G! D.G/b.
Theorem5.7. The embedding .C�alg.G/;�R/! .YDC�alg.G/;�W/ is monoidal.
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Proof. Let C and D be two G-C�-algebras, equip them with the G-Yetter–Drinfeld
structure described above. As a C�-algebra, we have an isomorphism of crossed
products C �R D Š C �W D by [12, Example 5.4]. The induced G-Yetter–
Drinfeld algebra structure on C �W D is the unique one for which the embeddings
of C and D are equivariant: combine Proposition 4.1 with the equivalence of
G-Yetter–Drinfeld algebra structures and D.G/b-coactions. Similarly, the induced
A-coaction on C �R D is the unique one for which the embeddings of C and D
are A-equivariant. Since the OA-coactions constructed from R and an A-coaction are
natural, the embeddings of C andD into C �RD are also OA-equivariant. Hence the
G-Yetter–Drinfeld algebra structures on C �RD and C �W D are the same as well.
Since the isomorphism between these tensor products is one of crossed products, it
automatically satisfies the coherence conditions required for a monoidal functor.

6. Braided C �-bialgebras and braided compact quantum groups

We are going to define braided C�-bialgebras and use them to construct ordinary
C�-bialgebras by a semidirect product construction, which is the C�-analogue of what
Majid calls “bosonisation” in [10]. We check that the semidirect product C�-bialgebra
is bisimplifiable if and only if the braidedC�-bialgebra is bisimplifiable. Thuswemay
construct compact quantum groups from two pieces: an ordinary compact quantum
group and a braided quantum group over its codouble.

Definition 6.1. A braided C�-bialgebra over a quasitriangular quantum group
G D .A;�A;R/ is aG-C�-algebra .B; ˇ/with aG-equivariant morphism�B WB !
B �R B which is coassociative:

.�B �R idB/ ı�B D .idB �R �B/ ı�B : (6.1)

We call .B;�B/ bisimplifiable if it satisfies the braided Podleś conditions

�B.B/ � �1.B/ D B �R B D �B.B/ � �2.B/; (6.2)

where �1 and �2 denote the two canonical maps B � B �R B .
A braided compact quantum group over G is a unital, bisimplifiable braided

C�-bialgebra .B;�B/ over G.

In the following, we let G D .A;�A/ be any C�-quantum group, and we
let .B;�B/ be a braided C�-bialgebra over the codouble D.G/b with its canonical
R-matrix. Equivalently, B is a C�-bialgebra in the category of G-Yetter–Drinfeld
C�-algebras (see Theorem 5.3). Thus we do not assume G to be quasitriangular any
more. Since we may embed the coaction category of a quasitriangular C�-quantum
group into the one for its codouble by Theorem 5.7, our new setting is more general
than the one in Definition 6.1.
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The monoidal structure on G-Yetter–Drinfeld algebras is given by the tensor
productC�WD for the bicharacterW by Theorem 5.3. So the underlying C�-algebra
only uses the coaction of A on C and the coaction of OA on D. Both coactions are
used to equip C �W D with a Yetter–Drinfeld algebra structure, which we need to
form tensor products of more than two factors. We abbreviate� D �W .

The C�-algebra A carries the canonical continuous coaction �A of A and a
canonical coaction of OA by Ad.bW/W a 7! bW.a ˝ 1 OA/

bW�. These two coactions
satisfy the Yetter–Drinfeld compatibility condition. The Podleś condition for the
OA-coaction on A is not automatic, however: it is a weak form of regularity. Since we
do not want to impose any regularity condition on G, we make sure that we do not
use the coaction of OA on A in the following constructions. The A-coaction �A on A
is enough to define the twisted tensor products A� B and A� .B � B/.
Lemma 6.2. There are unique coactions of A and OA on A� B and A� .B � B 0/
for which the canonical embeddings ofA, B andB 0 are equivariant; theA-coactions
are continuous, the OA-coactions are injective, but do not necessarily satisfy the
Podleś condition. The coactions of A and OA are compatible. There is a canonical
isomorphism of triple crossed products A � .B � B 0/ Š .A � B/ � B 0, which is
equivariant for the coactions of A and OA.

Proof. If the OA-coaction on A were continuous, our previous theory for coactions of
the codouble of G would give all the statements immediately.

LetW 2 U.H˝H/ be a manageable multiplicative unitary generating .A;�A/.
Let � WA ! B.H/ and O� W OA ! B.H/ be the resulting representations. The
unitaries . O� ˝ idA/.W/ 2 U.K.H/˝ A/ and .� ˝ id OA/.bW/ 2 U.K.H/˝ OA/ are
corepresentations becauseW 2 U. OA˝A/ and bW 2 U.A˝ OA/ are bicharacters. These
two corepresentations together with � form a faithful covariant representation of
.A;�A;Ad.bW//. Moreover, the corepresentations . O�˝ idA/.W/ and .�˝ id OA/.bW/
satisfy the Yetter–Drinfeld compatibility condition, so they give a corepresentation
of the codouble D.G/b.

Let ˇWB ! B˝A and ǑWB ! B˝ OA denote the coactions ofA and OA onB that
give the Yetter–Drinfeld algebra structure on B . We may choose a faithful covariant
representation .�; U; V / of .B; ˇ; Ǒ/ on some Hilbert spaceK. ThusU and V satisfy
the Yetter–Drinfeld compatibility condition, so they give a corepresentation of the
codouble D.G/b.

Now we represent A � B faithfully on H ˝ K. This gives a C�-algebra even
if Ad.bW/ is not continuous because the construction of A�B D A�W B only uses
theA-coaction�A onA and the OA-coaction Ǒ onB . The codouble ofG acts onH˝K
by the usual tensor product corepresentation. As in the proof of Proposition 4.1, we
get a unique coaction ofD.G/bonA�B for which its representation onH˝K and
the embeddings of A and B are equivariant. Only the proof of the Podleś condition
breaks down because we do not know the Podleś condition for the D.G/b-coaction
on A. We may, however, split the D.G/b-coaction into compatible coactions of A
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and OA, and prove the Podleś condition for the coaction of A, just as in the proof
of Proposition 4.1, using only the A-equivariance of the embeddings of A and B
into A� B and the Podleś conditions for the A-coactions on A and B .

Similarly, the construction of the associator .A� B/� B 0 Š A� .B � B 0/ in
the proof of Theorem 4.3 still works, using the covariant representation of A � B
just constructed, and gives the remaining statements.

Our goal is to construct a coassociative comultiplication on C WD A� B from a
braided comultiplication �B WB ! B � B . The first ingredient is the morphism

idA ��B WA� B ! A� .B � B/;

which is the unique onewith .idA��B/ı�A D �A and .idA��B/ı�B D �B�B ı�B .
Next we construct a canonical map

‰WA� B � B ! .A� B/˝ .A� B/:

Under regularity assumptions on G, we could construct this by composing the
canonical morphism

j124WA� B � B ! A� B � A� B

with an isomorphism A�B �A�B Š .A�B/˝ .A�B/, which exists because
the OA-coaction on A is inner (see [12, Corollary 5.16]). The following proposition
constructs ‰ directly without regularity assumptions on G:
Proposition 6.3. Let B and B 0 be G-Yetter–Drinfeld algebras, let ˇWB ! B ˝ A

be the A-coaction. There is a unique injective morphism

‰WA� B � B 0 ! .A� B/˝ .A� B 0/

that satisfies, for a 2 A, b 2 B , b0 2 B 0,

‰ ı �A.a/ D .�A ˝ �A/ ı�A.a/;

‰ ı �B.b/ D .�B ˝ �A/ ı ˇ.b/;

‰ ı �B0.b
0/ D 1A�B ˝ �B0.b

0/:

(6.3)

Before we prove this technical result, we state our main result and give a simple
example. Another example is the construction of quantum U(2) groups from braided
quantum SU(2) groups in [6] (the conventions in [6] are, however, slightly different).
Theorem 6.4. Let C WD A � B and �C WD ‰ ı .idA � �B/WC ! C ˝ C .
Then .C;�C / is a bisimplifiable C�-bialgebra whenever .B;�B/ is a bisimplifiable
braided C�-bialgebra over G. If �B is injective, then so is �C , and vice versa.

Corollary 6.5. .C;�C / is a compact quantum group if G is a compact quantum
group and .B;�B/ is a braided compact quantum group over G.
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Proof. The C�-algebra C is unital if and only if A and B are both unital. In the
unital (compact) case, the Podleś conditions suffice to characterise compact quantum
groups.

Example 6.6. The following example is inspired by the construction of partial duals
in [3] in the setting of Hopf algebras. Let K be a compact group, let � be a discrete
group, and let 'W� ! Aut.K/ be a group homomorphism. Let � act on B WD C.K/
by '�gf .k/ WD f .'�1g .k// for all k 2 K, g 2 � , f 2 C.K/. Equip C.K/ with the
trivial coaction of � . Since the �-coaction on C.K/ is trivial,

C0.�/� C.K/ Š C0.�/˝ C.K/ Š C0.� �K/:

The comultiplication �C is the one that is induced by the multiplication in the
semidirect product group � ËK.

Wemay also viewC.K/ as aYetter–Drinfeld algebra over C�r .�/ instead of C0.�/.
This gives a compact quantum group C�r .�/�C.K/ by Corollary 6.5. Its underlying
C�-algebra is canonically isomorphic to the reduced crossed product � Ë C.K/
(see [12, Section 6.3]). Thus the unital C�-algebra � Ë C.K/ becomes a compact
quantum group by Corollary 6.5. This is the partial dual of the group � ËK, where
we dualise C0.�/ to C�r .�/ and leave C.K/ unchanged. This example is also a special
case of a bicrossed product (see [1, Proposition 8.22]).

In the remainder of this section, we will prove Proposition 6.3 and Theorem 6.4.
First we name the coactions on our Yetter–Drinfeld algebras: call them

ˇWB ! B ˝ A; ǑWB ! B ˝ OA; ˇ0WB 0 ! B 0 ˝ A; Ǒ0WB 0 ! B 0 ˝ OA:

We choose faithful covariant, D.G/b-compatible representations .';U;V/ and
.'0;U0;V0/ of .B; ˇ; Ǒ/ and .B 0; ˇ0; Ǒ0/ on some Hilbert spaces L and L0. We
choose a manageable multiplicative unitaryW 2 U.H˝H/ generatingG; it induces
representations � WA! B.H/ and O� W OA! B.H/withW D . O�˝�/W. Then � and
the corepresentation . O� ˝ idA/W 2 U.K.H/˝ A/ form a covariant representation
of .A;�A/. We use these covariant representations of A, B and B 0 to realise
A� B � B 0 as a C�-subalgebra of B.H˝ L˝ L0/; this gives

A� B � B 0 D �A.A/ � �B.B/ � �B0.B 0/

for three representations �A, �B , �B0 of A, B and B 0 on H ˝ L ˝ L0. We describe
these representations as in the proof of Theorem 4.3.

The representation �A is most easy:

�A.a/ D �.a/˝ 1L˝L0 :

To describe �B , we must represent the universal R-matrix, which is essentially Wu,
on the Hilbert space H ˝ L. The bijection between corepresentations of A and
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representations of OAu maps the left corepresentation W1� 2 U. OA ˝ K.H// to the
representation O� W OAu ! OA ! B.H/. The bijection between corepresentations of OA
and representations of Au maps the right corepresentation V 2 U.K.L/˝ OA/ to the
unique representation �WAu ! B.L/ with W1� D

OV WD �.V/� 2 U. OA ˝ K.L//.
Hence the resulting representation O� ˝ �W OAu ˝ Au ! B.H ˝ L/ maps Wu to
OV WD OV O�2. Thus the braiding unitary HL is OV�† and

�B.b/ D OV�12.1H ˝ '.b/˝ 1L/ OV12:

The representations �A and �B without the trivial third leg inL0 also realiseA�B
in B.H˝L/. Similarly, we realiseA�B 0 in B.H˝L0/ using OV0 WD . O�˝ idL0/ OV0 2
U.H˝ L0/ instead of OV.

The braiding forL andL0 involves a unitaryZ given by (A.18). This unitary may
also be characterised uniquely by the condition

U12. OV0/�23Z13 D . OV
0/�23U12 in U.L˝H˝ L0/; (6.4)

where U WD .idL ˝ �/U 2 U.L ˝ H/; compare (A.19). As in the proof of
Theorem 4.3, we see that the representation �B0 is

�B0.b
0/ D Z23. OV0/�13.1H˝L ˝ '

0.b0//. OV0/13Z�23:

Proof of Proposition 6.3. Define

‰.x/ WDW13U23. OV0/�34x124 OV
0
34U
�
23W

�
13 for x 2 B.H˝ L˝ L0/:

This is an injective *-homomorphism from B.H˝L˝L0/ to B.H˝L˝H˝L0/.
We compute ‰ ı �A, ‰ ı �B , ‰ ı �B0 ; this will show that ‰ maps A� B � B 0 into

.A� B/˝ .A� B 0/ � B.H˝ L˝H˝ L0/

and has the expected values on �A.A/, �B.B/ and �B0.B 0/.
Since �A.a/ D �.a/1, we get

‰ ı �A.a/ DW13�.a/1W�13 D .�A ˝ �A/ ı�A.a/:

Next, ‰ ı �B.b/ D W13U23 OV�12'.b/2 OV12U�23W�13. The Yetter–Drinfeld com-
patibility condition for U and V is equivalent to W13U23 OV�12 D OV�12U23W13 in
U.H˝L˝H/. Using this and the covariance condition for .';U/with respect to ˇ,
we compute

‰ ı �B.b/ D OV�12U23'.b/2U
�
23
OV12 D .�B ˝ �A/ ı ˇ.b/:
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Finally, we compute

‰ ı �B0.b
0/ DW13U23. OV0/�34Z24. OV

0/�14'
0.b0/4 OV014Z

�
24
OV034U

�
23W

�
13

DW13. OV0/�34U23. OV
0/�14'

0.b0/4 OV014U
�
23
OV034W

�
13

DW13. OV0/�34. OV
0/�14'

0.b0/4 OV014 OV
0
34W

�
13

D . OV0/�34W13'
0.b0/4W�13 OV

0
34

D . OV0/�34'
0.b0/4 OV034 D 1A�B ˝ �B0.b

0/:

The first equality is trivial; the second equality uses (6.4); the third equality
commutes U23 with OV14 and '0.b/4; the fourth equality uses that V0 is a
corepresentation of OA; the fifth equality commutes W13 and '0.b0/4; and the last
equality is the definition of the embedding of A� B 0 in B.H˝ L0/.

Proof of Theorem 6.4. Let C WD A�B and�C WD ‰ ı .idA��B/WC ! C ˝C ,
where we use ‰ from Proposition 6.3 in the special case B D B 0. We first check
that this comultiplication is coassociative. It suffices to check .�C ˝ idC /�C ı �A D
.idC˝�C /�C ı�A and .�C˝idC /�C ı�B D .idC˝�C /�C ı�B . The first statement
holds because on elements of the form �A.a/ with a 2 A, we get .idA ˝�A/�A.a/
and .�A ˝ idA/�A.a/, respectively, embedded into C ˝ C ˝ C via �A ˝ �A ˝ �A.

To check the formula on B , we also need the two maps

‰0WA� B � .B � B/! .A� B/˝ .A� B � B/;
‰00WA� .B � B/� B ! .A� B � B/˝ .A� B/

that we get from Proposition 6.3 for B;B � B and B � B;B , respectively. These
satisfy, among others,

‰0.b2/ D ˇ.b/23; ‰0.b3/ D b4; ‰0.b4/ D b5;

‰00.b2/ D ˇ.b/24; ‰00.b3/ D ˇ.b/34; ‰00.b4/ D b5:

Here we use leg numbering notation to distinguish the different copies of B more
clearly. For instance, ˇ.b/23 means .�B ˝ �A/ˇ.b/. With these maps, we may write

.idC ˝ .idA ��B// ı‰jB�B D ‰
0
ı .idB ��B/;

..idA ��B/˝ idC / ı‰jB�B D ‰
00
ı .�B � idB/:

The second formula uses that �B is G-equivariant with respect to the actions ˇ
and ˇ ‰ ˇ and that ‰00 on �2.B/�3.B/ is ˇ ‰ ˇ. Since ˇ is a coaction, we get

.idC ˝‰/ ı‰0jB�B�B D .‰ ˝ idC / ı‰00jB�B�B :

This and the coassociativity of �B imply that �C is coassociative also on B .
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Now we turn to the Podleś conditions. We have A � B D �A.A/�B.B/ D

�B.B/�A.A/, ˇ.B/ � .1˝A/ D B ˝A because ˇ satisfies the Podleś condition, and
�A.A/.1˝A/ D �A.A/.A˝1/ D A˝A and�B.B/ �B2 D �B.B/B1 D B�B
because A and B are bisimplifiable. Thus

�C .C / � .1˝ C/ D �C .�B.B// ��C .�A.A// � .1˝ �A.A// � .1˝ �B.B//

D �C .�B.B// � .�A ˝ �A/.�A.A/ � .1˝ A// � .1˝ �B.B//

D �C .�B.B// � .�A.A/˝ C/ D ‰.�B.B/23/ � .�A.A/˝ C/:

Since ‰ ı �B0.b0/ D 1˝ �B0.b0/ is a multiplier of �A.A/˝C , we may rewrite this as

‰.�B.B/23 � B3/ � .�A.A/˝ C/

D ‰..B � B/23/ � .�A.A/˝ C/ D ‰.B2/ � .�A.A/˝ C/;

using that .B;�B/ is bisimplifiable. Finally, the formula for‰ on the second leg and
the Podleś condition for ˇ show that this is C ˝ C , as desired.

The other Podleś condition is proved similarly. Since ‰ is injective, �C is
injective if and only if idA��B is injective. This is equivalent to�B being injective
by [11, Proposition 5.6].

A. Preliminaries

A.1. Multiplicative unitaries and quantum groups.

Definition A.1 ([1]). Let H be a Hilbert space. A unitary W 2 U.H ˝ H/ is
multiplicative if it satisfies the pentagon equation

W23W12 DW12W13W23 in U.H˝H˝H/: (A.1)

Technical assumptions such as manageability [20] are needed to construct
C�-algebras out of a multiplicative unitary.

Theorem A.2 ([18–20]). Let H be a separable Hilbert space and W 2 U.H˝H/
a manageable multiplicative unitary. Let

A WD f.! ˝ idH/W W ! 2 B.H/�gCLS; (A.2)
OA WD f.idH ˝ !/W W ! 2 B.H/�gCLS: (A.3)

(1) A and OA are separable, nondegenerate C�-subalgebras of B.H/.

(2) W 2 U. OA ˝ A/ � U.H ˝ H/. We write WA for W viewed as a unitary
multiplier of OA˝ A and call it reduced bicharacter.
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(3) There is a unique morphism �AWA! A˝ A such that

.id OA ˝�A/W
A
DWA

12W
A
13 in U. OA˝ A˝ A/I (A.4)

it is coassociative and bisimplifiable:

.�A ˝ idA/ ı�A D .idA ˝�A/ ı�A; (A.5)
�A.A/ � .1A ˝ A/ D A˝ A D .A˝ 1A/ ��A.A/: (A.6)

A C�-quantum group is a C�-bialgebra G D .A;�A/ constructed from a
manageable multiplicative unitary. This class contains the locally compact quantum
groups of Kustermans and Vaes [8], which are defined by the existence of left and
right Haar weights.

The dualmultiplicative unitary is bW WD †W�† 2 U.H˝H/, where†.x˝y/ D
y ˝ x. It is manageable if W is. The C�-quantum group bG D . OA; O�A/ generated
by bW is the dual of G. Its comultiplication is characterised by

. O�A ˝ idA/WA
DWA

23W
A
13 in U. OA˝ OA˝ A/: (A.7)

A.2. Corepresentations.
Definition A.3. A (right) corepresentation of G on a Hilbert space H is a unitary
U 2 U.K.H/˝ A/ with

.idK.H/ ˝�A/U D U12U13 in U.K.H/˝ A˝ A/: (A.8)

Let U1 2 U.K.H1/˝ A/ and U2 2 U.K.H2/˝ A/ be corepresentations of G.
An element t 2 B.H1;H2/ is called an intertwiner if .t ˝ 1A/U1 D U2.t ˝ 1A/.
The set of all intertwiners between U1 and U2 is denoted Hom.U1;U2/. This gives
corepresentations a structure of W�-category (see [19, Sections 3.1–2]).

The tensor product of two corepresentations UH1 and UH2 is defined by

UH1 UH2 WD UH1

13 U
H2

23 in U.K.H1 ˝H2/˝ A/: (A.9)

Routine computations show the following: UH1 UH2 is a corepresentation;
is associative; and the trivial 1-dimensional representation is a tensor unit. Thus
corepresentations form a monoidal W�-category, which we denote by Corep.G/;
see [19, Section 3.3] for more details.

A.3. Coactions.
Definition A.4. A continuous (right) coaction ofG on a C�-algebraC is a morphism
 WC ! C ˝ A with the following properties:
(1)  is injective;
(2)  is a comodule structure, that is, .idC ˝�A/ D . ˝ idA/ ;
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(3)  satisfies the Podleś condition .C / � .1C ˝ A/ D C ˝ A.
We call .C; / a G-C�-algebra. We often drop  from our notation.

A morphism f WC ! D between two G-C�-algebras .C; / and .D; ı/ is
G-equivariant if ı ıf D .f ˝ idA/ı . Let MorG.C;D/ be the set ofG-equivariant
morphisms from C to D. Let C�alg.G/ be the category with G-C�-algebras as
objects and G-equivariant morphisms as arrows.
Definition A.5. A covariant representation of .C; ; A/ on a Hilbert space H is
a pair consisting of a corepresentation U 2 U.K.H/ ˝ A/ and a representation
'WC ! B.H/ that satisfy the covariance condition

.' ˝ idA/ ı .c/ D U.'.c/˝ 1A/U� in U.K.H/˝ A/ (A.10)

for all c 2 C . A covariant representation is called faithful if ' is faithful.
Faithful covariant representations always exist by [12, Example 4.5].

A.4. Universal quantum groups. The universal quantum group

Gu
WD .Au; �Au/

associated to G D .A;�A/ is introduced in [19]. By construction, it comes with a
reducing mapƒWAu ! A and a universal bicharacter V 2 U. OA˝Au/. This may also
be characterised as the unique bicharacter in U. OA˝ Au/ that lifts WA 2 U. OA˝ A/
in the sense that .id OA ˝ƒ/V DWA.

Similarly, there are unique bicharacters QV 2 U. OAu ˝ A/ and Wu 2 U. OAu ˝ Au/

that lift WA 2 U. OA˝ A/; the latter is constructed in [7] assuming a Haar measure
and in [11] in the more general setting of manageable multiplicative unitaries. The
universality of QV 2 U. OAu˝A/ says that for any corepresentation U 2 U.K.H/˝A/
of G on a Hilbert spaceH, there is a unique representation �W OAu ! B.H/ with

.�˝ idA/ QV D U in U.K.H/˝ A/: (A.11)

A.5. Bicharacters as quantum group morphisms. Let G D .A;�A/ and H D
.B;�B/ be C�-quantum groups. LetbG D . OA; O�A/ andbH D . OB; O�B/ be their duals.
Definition A.6 ( [11, Definition 16]). A bicharacter from G to bH is a unitary � 2
U. OA˝ OB/ with

. O�A ˝ id OB/� D �23�13 in U. OA˝ OA˝ OB/; (A.12)

.id OA ˝ O�B/� D �12�13 in U. OA˝ OB ˝ OB/: (A.13)

Bicharacters in U. OA˝ B/ are interpreted as quantum group morphisms from G
to H in [11]. We mainly use bicharacters in U. OA˝ OB/ and rewrite some definitions
in [11] in this setting.
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Definition A.7. A right quantum group morphism from G to bH is a morphism
�RWA! A˝ OB such that the following diagrams commute:

A A˝ OB

A˝ A A˝ A˝ OB

�R

�A �A ˝ id OB

idA ˝�R

A A˝ OB

A˝ OB A˝ OB ˝ OB

�R

�R

�R ˝ id OB

idA ˝ O�B (A.14)

The following theorem summarises some of the main results of [11].

Theorem A.8. There are natural bijections between the following sets:

(1) bicharacters � 2 U. OA˝ OB/ from G to bH;

(2) bicharacters O� 2 U. OB ˝ OA/ from H to bG;

(3) right quantum group homomorphisms �RWA! A˝ OB;

(4) functors F WC�alg.G/ ! C�alg.bH/ with ForbH ı F D ForG for the forgetful
functor ForGWC�alg.G/! C�alg;

(5) Hopf *-homomorphisms f WAu ! OBu between universal quantum groups;

(6) bicharacters �u 2 U. OAu ˝ OBu/.

The first bijection maps a bicharacter � to

O� WD �.��/: (A.15)

A bicharacter � and a right quantum group homomorphism�R determine each other
uniquely via

.id OA ˝�R/.W
A/ DWA

12
�
13: (A.16)

The functor F associated to�R is the unique one that maps .A;�A/ to .A;�R/. In
general, F maps a continuous G-coaction  WC ! C ˝A to the unique bH-coaction
ıWC ! C ˝ OB for which the following diagram commutes:

C C ˝ A

C ˝ OB C ˝ A˝ OB



ı idC ˝�R

 ˝ id OB

(A.17)

The bicharacter in U. OA˝ OB/ associated to a Hopf *-homomorphism f WAu ! OBu is
� WD .id OA ˝ƒ OBf /.V

A/, where VA 2 U. OA˝ Au/ is the unique bicharacter lifting
WA 2 U. OA˝ A/ and ƒ OB W OB

u ! OB is the reducing map.
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A.6. Twisted tensor products. Let  WC ! C˝A and ıWD ! D˝B be coactions
of G and H on C�-algebras C and D, respectively. We are going to describe the
twisted tensor product

C �D WD .C; /�� .D; ı/

for a bicharacter � 2 U. OA ˝ OB/. Let .';UH/ and . ;UK/ be faithful covariant
representations of .C; / and .D; ı/ on Hilbert spaces H and K, respectively. Thus
UH 2 U.K.H/ ˝ A/ and UK 2 U.K.K/ ˝ B/ are corepresentations of G and H.
Let �HW OAu ! B.H/ and �KW OBu ! B.K/ be the corresponding representations of
the universal duals. Let �u 2 U. OA˝ OB/ lift �, see Theorem A.8. Let

Z WD .�H ˝ �K/.�u/� 2 U.H˝K/: (A.18)

The proof of [12, Theorem 4.1] shows that this is the unique Z 2 U.H˝K/ with

UH
1˛U

K
2ˇZ12 D UK

2ˇU
H
1˛ in U.H˝K˝ L/ (A.19)

for any �-Heisenberg pair .˛; ˇ/ on any Hilbert space L.
Define representations �C D '1 and �D D Q 2 of C andD onH˝K by

�C .c/ D '1.c/ WD '.c/˝ 1K;

�D.d/ D Q 2.d/ WD Z.1H ˝  .d//Z
�:

(A.20)

Theorem A.9 ([12, Lemma 3.20, Theorem 4.3, Theorem 4.9]). The subspace

C �D WD '1.C / � Q 2.D/ � B.H˝K/

is a nondegenerate C�-subalgebra. The crossed product .C � D; �C ; �D/, up to
equivalence, does not depend on the faithful covariant representations .UH; '/

and .UK;  /.

We callC��D the twisted tensor product ofC andD. It generalises the minimal
tensor product of C�-algebras.

A.7. Heisenberg pairs. Let G D .A;�A/ and H D .B;�B/ be C�-quantum
groups and let WA 2 U. OA˝A/ and WB 2 U. OB˝B/ be their reduced bicharacters,
respectively. Let � 2 U. OA˝ OB/ be a bicharacter from G to bH.
Definition A.10 ([12, Definition 3.1]). Let E be a C�-algebra and let ˛WA ! E

and ˇWB ! E be morphisms. The pair .˛; ˇ/ is a �-Heisenberg pair or briefly
Heisenberg pair on E if

WA
1˛W

B
2ˇ DWB

2ˇW
A
1˛
�
12 in U. OA˝ OB ˝E/I (A.21)

here WA
1˛ WD ..id OA ˝ ˛/W

A/13 and WB
2ˇ
WD ..id OB ˝ ˇ/W

B/23.
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The following lemma is routine to check:

Lemma A.11. Let .˛; ˇ/ be a �-Heisenberg pair on a C�-algebra E. Define
˛0WA ! A˝ B ˝ E and ˇ0WB ! A˝ B ˝ E by ˛0.a/ WD

�
.idA ˝ ˛/�A.a/

�
13

and ˇ0.b/ WD
�
.idB ˝ ˇ/�B.b/

�
23
. This is again a �-Heisenberg pair.

Equip A and B with the standard coactions�A and�B ofG andH, respectively,
and form the tensor product A �� B . This plays a special role, as explained after
Proposition 5.6 in [12]: coactions  WC ! C ˝ A and ıWD ! D ˝ B induce a
canonical map

 � ıWC �� D ! .C ˝ A/�� .D ˝ B/ Š C ˝D ˝ .A�� B/:

Proposition A.12. Let H be a Hilbert space and let 'WA �� B ! B.H/ be a
representation. Define ˛ WD ' ı �AWA! B.H/ and ˇ WD ' ı �B WB ! B.H/. The
pair .˛; ˇ/ is a �-Heisenberg pair.

Proof. This is the only place where we use the construction of twisted tensor products
through Heisenberg pairs in [12, Section 3]. Let .˛0; ˇ0/ be a �-Heisenberg pair on
a C�-algebra E. Define morphisms

�AWA! A˝ B ˝E; a 7!
�
.idA ˝ ˛0/�A.a/

�
13
;

�B WB ! A˝ B ˝E; b 7!
�
.idB ˝ ˇ0/�B.b/

�
23
:

Then A�� B Š �A.A/ � �B.B/. Lemma A.11 shows that .�A; �B/ is a �-Heisenberg
pair on A�� B . Hence .' ı �A; ' ı �B/ is a �-Heisenberg pair onH.

Corollary A.13. If A �� B Š A ��0 B as crossed products for two bicharacters
�; �0 2 U. OA˝ OB/, then � D �0.

Proof. LetH, ', ˛, ˇ as in Proposition A.12. The pair .˛; ˇ/ is both a �-Heisenberg
pair and a �0-Heisenberg pair by Proposition A.12. The commutation relation (A.21)
that characterises Heisenberg pairs gives

WA
2ˇW

A
1˛
�
12 DWA

1˛W
A
1ˇ DWA

2ˇW
A
1˛
�0
12 in U. OA˝ OA˝K.H//:

Thus � D �0.
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