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Abstract. We show that the character from the bivariant K-theory KEG introduced by
Dumitraşcu to EG factors through Kasparov’s KKG for any locally compact group G.
Hence KEG contains KKG as a direct summand.
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1. Introduction

K-theory may be generalised in several ways to a bivariant theory. One such
bivariant K-theory is Kasparov’s KK (see [5]), another is the E-theory of Connes
and Higson [1]. Both theories have equivariant versions with respect to second-
countable locally compact groups (see [4,6]). These theories are related by a natural
transformation KKG.A;B/! EG.A;B/ because of the universal property of KKG .

Dumitraşcu defines another equivariant bivariant K-theory KEG.A;B/ in his
thesis [2], which has the same formal properties as KKG and EG ; in particular, it has
an analogue of the Kasparov product and the exterior product. He also constructs
explicit natural transformations

KKG.A;B/! KEG.A;B/! EG.A;B/:

Hence this also makes the transformation KKG
! EG explicit.

The construction of a new bivariant K-theory is always laden with technical
difficulties, especially the construction of a product. KK-theory and E-theory involve
different technicalities, and KE-theory needs a share of both kinds of technicalities.
When Iwas asked to referee the article [3] byDumitraşcu, I thereforewanted to clarify
whether KEG is really a new theory or equivalent to KKG or EG . I expected KEG to
be equivalent to either KKG or EG . I came up quickly with a sketch of an argument
why KEG should be equivalent to KKG , which I communicated to Dumitraşcu,
asking him whether he could complete this sketch to a full proof. After a while it
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became clear that I had to complete this argument myself, which resulted in this note.
Its purpose is the following theorem:
Theorem 1.1. Let G be a second countable locally compact group and let A and B
be separable G-C�-algebras. The natural map KEG.A;B/ ! EG.A;B/ factors
through a map KEG.A;B/! KKG.A;B/.

I still expect KEG.A;B/ Š KKG.A;B/, but I do not know how to prove this.
A transformation KEG

! KKG seems enough for applications. It shows that a
computation in KEG gives results in KKG . For instance, if G has the analogue of a
 -element in KEG or if  D 1 in KEG , then the same follows in KKG .

In Section 2, we recall Dumitraşcu’s definition of cycles for KEG.A;B/ and show
that we may strengthen his conditions slightly without changing the set of homotopy
classes. In Section 3, we show how to get completely positive equivariant asymptotic
morphisms from the KEG-cycles satisfying our stronger conditions.

2. The definition of KE-theory

Throughout this article, G is a second countable, locally compact topological group;
A and B are separable C�-algebras with continuous actions of G � Z=2. An action
of G � Z=2 is the same as a Z=2-grading together with an action of G by grading-
preserving automorphisms; wewill frequently combine aZ=2-grading and aG-action
in this way.

We first recall the definition of KEG.A;B/.
Let L WD Œ1;1/ and BL WD C0.L;B/. A continuous field of G � Z=2-.A;B/-

modules is a countably generated, G � Z=2-equivariant Hilbert BL-module E with
a G � Z=2-equivariant �-homomorphism 'WA ! L.E/, where L.E/ denotes the
C�-algebra of adjointable operators on E with its canonical action of G � Z=2.

Using the evaluation homomorphisms BL! B , f 7! f .t/, we may view E as
a family of G � Z=2-equivariant Hilbert B-modules Et ; an operator x 2 L.E/ is
completely determined by a family of operators xt 2 L.Et /. Besides the ideal K.E/
of compact operators on E , we need the two ideals

C.E/ WD fx 2 L.E/ j xf 2 K.E/ for all f 2 C0.L/g;

I.E/ WD fx 2 L.E/ j lim
t!1
kxtk D 0g:

We have C.E/ \ I.E/ D K.E/.
A cycle for KEG.A;B/ is a pair .E ; F /, where E is a continuous field ofG�Z=2-

.A;B/-modules andF is an odd, adjointable operator on E that satisfies the following
conditions (for all a 2 A, g 2 G):
akm1: .F � F �/'.a/ 2 I.E/ for all a 2 A;
akm2: ŒF; '.a/� 2 I.E/ for all a 2 A;
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akm3: '.a/.F 2 � 1/'.a/� � 0 modulo C.E/C I.E/ for all a 2 A;
akm4: .gF � F /'.a/ 2 I.E/ for all a 2 A, g 2 G.

Later, we shall meet the following strengthenings of these conditions:
aKm1s: F D F �;
aKm3s: kF k � 1 and .1 � F 2/'.a/ 2 C.E/ for all a 2 A;
aKm4s: gF D F for all g 2 G.

Cycles for KEG.A;C.Œ0; 1�; B// are called homotopies of cycles. We define
KEG.A;B/ as the set of homotopy classes of cycles for KEG.A;B/.
Lemma 2.1. Any cycle for KEG.A;B/ is homotopic to one that satisfies (aKm1s)
and (aKm3s). If two cycles satisfying (aKm1s) and (aKm3s) are homotopic, they are
homotopic via a homotopy that satisfies (aKm1s) and (aKm3s).

We will treat condition (aKm4s) below in Lemma 2.2.

Proof. Let .E ; F / be a cycle forKEG.A;B/. Then .FCF �/=2 is a small perturbation
of F and hence gives a homotopic cycle (see [3, Corollary 3.25]) satisfying F D F �.

Now assume F D F � and (aKm2); then

'.a/.1 � F 2/C'.a/
�
� '.a/.1 � F 2/�'.a/

�

� '.a/'.a/�'.a/.1 � F 2/C.1 � F
2/�'.a/

�
� 0 mod I.E/:

Hence '.a/.F 2�1/˙'.a/
� are the positive and negative parts of '.a/.F 2�1/'.a/�

in L.E/=I.E/. As a result, (aKm3) is equivalent to

'.a/ � .F 2
� 1/� � '.a/

�
2 C.E/C I.E/

for all a 2 A.
Define �WR ! Œ�1; 1� by �.t/ WD �1 for t � �1, �.t/ WD t for �1 � t � 1,

and �.t/ WD 1 for t � 1. Then k�.F /k � 1 and �.F /2 � 1 D .F 2 � 1/�. The
reformulation of (aKm3) in the previous paragraph shows that .E ; �.F // is again a
cycle for KEG.A;B/ and that the linear path .E ; sF C .1 � s/�.F // is a homotopy
of cycles. Thus any cycle is homotopic to one with F D F � and kF k � 1.

Next we adapt the standard trick to achieve F 2 D 1 for KK-cycles. Let E2 WD

E˚Eop, where op denotes the oppositeZ=2-grading. LetA act on E2 by '2 WD '˚0.
For s 2 Œ0; 1�, let

F2s WD

 
F s

p
1 � u2

p
1 � F 2

s
p
1 � F 2

p
1 � u2 �F

!
;

where u 2 L.E/.0/ is an even operator as in [3, Lemma 3.35]; that is, u2C.E/,
Œu; F �2I.E/, Œu; '.a/�2I.E/ for all a 2 A, .1 � u2/.'.a/.F 2 � 1/'.a/�/�2I.E/
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for all a 2 A, and gu � u 2 I.E/ for all g 2 G. Since u 2 C.E/ and
C.E/ \ I.E/ DK.E/, we even have Œu; F � 2 K.E/, Œu; '.a/� 2 K.E/ for all a 2 A,
and gu�u 2 K.E/ for all g 2 G. Since we already achieved kF k � 1, we also have
.1 � u2/'.a/.1 � F 2/'.a/� 2 I.E/, hence .1 � u2/'.aa�/.1 � F 2/ 2 I.E/. This
is equivalent to .1� u2/'.a/.1� F 2/ 2 I.E/ for all a 2 A because elements of the
form aa� span A.

The set of f 2 CŒ0; 1� with f .1 � u2/'.a/.1 � F 2/ 2 I.E/ for all a 2 A is
a closed ideal because I.E/ is a closed ideal. Since 1 � u2 and

p
1 � u2 generate

the same closed ideal in CŒ0; 1�, namely, the ideal of functions vanishing at 1, our
condition is equivalent to

p
1 � u2'.a/.1 � F 2/ 2 I.E/ for all a 2 A. We may do

the same to F , so our condition is also equivalent to
p
1 � u2'.a/

p
1 � F 2 2 I.E/

for all a 2 A. Moreover, we may change the order of the three factors here arbitrarily.
Therefore, ŒF2s; '2.a/� 2 I.E2/ for all a 2 A. Furthermore, Œu; F � 2 K.E/ implies

.1 � F 2
2s/'.a/

�

�
.1 � F 2/.1 � s2 C s2u2/ 0

0 .1 � F 2/.1 � s2 C s2u2/

�
'.a/ mod K.E2/:

Hence .E2; F2s/ is a homotopy of cycles for KEG.A;B/. For s D 0, .E2; F20/ is a
direct sum of .E ; F / with a degenerate cycle and hence homotopic to .E ; F /. Thus
.E ; F / is homotopic to .E2; F21/. The diagonal entries of 1 � F 2

21 are .1 � F 2/u2,
which belongs to C.E/ because u 2 C.E/. Hence 1 � F 2

21 2 C.E2/. Thus any cycle
for KEG.A;B/ is homotopic to one satisfying (aKm1s) and (aKm3s).

If we already have F D F � and kF k � 1, then the canonical homotopy from F

to �..F C F �/=2/ is constant. And if also 1 � F 2 2 C.E/, then the homotopy F2s

constructed above satisfies 1 � F 2
2s 2 C.E2/ for any choice of u. If two cycles

.E1; F1/ and .E2; F2/ satisfying (aKm1s) and (aKm3s) are homotopic, then we may
apply the modifications above to a homotopy between them; this provides a homotopy
between their modifications that satisfies (aKm1s) and (aKm3s); since the canonical
homotopies from .E1; F1/ and .E2; F2/ to their modifications also satisfy (aKm1s)
and (aKm3s), we get a homotopy from .E1; F1/ to .E2; F2/ satisfying (aKm1s) and
(aKm3s). Hence restricting to cycles satisfying (aKm1s) and (aKm3s) does not
change KEG.A;B/.

The standard G � Z=2-equivariant Hilbert B-module is

H D HB WD L
2.G � Z=2/˝ `2.N/˝ B:

Lemma 2.2. We get the same groupKEG.A˝K.L2G/;B˝K.L2G// if we restrict
attention to cycles for KEG.A ˝ K.L2G/;B ˝ K.L2G// that satisfy (aKm1s),
(aKm3s) and (aKm4s) and with underlying Hilbert module E D HB˝K.L2G/L, and
homotopies between such cycles with the same properties.
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Proof. The main ideas below already appeared in [7] and as Fell’s trick in [2,
Lemma 3.3.3]. Let F0 be the canonical isomorphismHC $ H� and let '0 D 0; this
gives a degenerate cyclewith underlyingHilbertmoduleHL. Hence anyKEG.A;B/-
cycle .E ; F / is equivalent to .E˚HL;F˚F0/. Since E must be countably generated,
Kasparov’s Stabilisation Theorem gives a G-continuous, Z=2-equivariant unitary
operator V W E ˚ HL ! HL. (Unless G is compact, we cannot expect V to be
G-equivariant.)

Therefore, we get the same set of homotopy classes KEG.A;B/ if we restrict
attention to cycles .E ; F / for which there is aG-continuous, Z=2-grading preserving
unitary V W E ! HBL. This may be combined with Lemma 2.1, that is, we get the
same set of homotopy classes if we assume .E ; F / to satisfy (aKm1s) and (aKm3s)
and to have such a unitary V . The unitary V defines a G � Z=2-equivariant unitary

V 0WL2.G; E/! L2.G;HBL/; .V 0f /.g/ WD g.V.f .g///:

By a similar formula, any F 2 L.E/ defines aG-equivariant adjointable operator F 0
on L2.G; E/. By [3, Theorem 4.21], the exterior product map

KEG.A;B/! KEG.A˝K.L2G/;B˝K.L2G//; .E ; F / 7! .E˝K.L2G/; F˝1/;

is an isomorphism. So any cycle for KEG.A˝K.L2G/;B˝K.L2G// is homotopic
to .E ˝ K.L2G/; F ˝ 1/ for some cycle .E ; F / for KEG.A;B/ with (aKm1s) and
(aKm3s) and a unitary V W E ! HBL as above; and if two such cycles are homotopic,
there is a homotopy of the same form.

As a Hilbert module over itself, K.L2G/ Š L2G ˝ .L2G/�, where .L2G/�

is viewed as a Hilbert K.L2G/-module. Hence V 0 induces a G � Z=2-equivariant
unitary E ˝ K.L2G/ ! HBL ˝ K.L2G/ D HB˝K.L2G/L, and F 0 induces a
G-equivariant odd operator on E ˝K.L2G/. Since gF � F 2 I.E/, F 0 is a small
perturbation ofF˝1. Thuswe get the same groupKEG.A˝K.L2G/;B˝K.L2G//

if we use only those cycles and homotopies that satisfy (aKm1s), (aKm3s) and
(aKm4s) and have underlying Hilbert module E D HB˝K.L2G/L.

For the passage from KEG to EG , it is harmless to stabilise the C�-algebras A
and B . Hence Lemma 2.2 says that it is essentially no loss of generality to restrict
attention to those cycles for KEG that satisfy the stronger assumptions (aKm1s),
(aKm3s) and (aKm4s). Furthermore, we may assume that E D HBL is the constant
family with fibre the standard G-equivariant Hilbert B-moduleHB .

Remark 2.3. If a cycle for KEG.A;B/ is in the image of KKG.A;B/, then it satisfies
more than (aKm2), namely, ŒF; '.a/� 2 K.E/ for all a 2 A. If KKG and KEG were
equivalent, then any cycle for KEG would be homotopic to one with this extra
property. I do not know, however, how to prove this.
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3. Constructing asymptotic morphisms from KE-cycles

Let S WD C0..�1; 1// with the Z=2-grading automorphism f .x/ D f .�x/.
Dumitraşcu maps a cycle .HBL; '; F / for KEG.A;B/ to an asymptotic morphism
from S Ő A to K.HB/ in [3, Section 5.1], as follows. Since I.HBL/\ C.HBL/ D

K.HBL/ and ŒF; '.A/� � I.HBL/ by (aKm2), the images of A and F in
C.HBL/=K.HBL/ commute. Hence there is a unique �-homomorphism

„WS Ő A! C.HBL/=K.HBL/

with „.h ˝ a/ D h.F /'.a/ for all h 2 S , a 2 A (this works for the maximal
C�-norm, which is the only C�-norm here because S is nuclear). We may lift „
to a map (of sets) N„WS Ő A ! C.HBL/, which we may view as a family of maps
N„t WS Ő A! K.HB/, t 2 L. These maps N„t form an asymptotic morphism. This
is used in [3, Section 5.1] to construct a functor KEG

! EG .
For cycles with extra properties as in Lemma 2.2, we are going to construct a

completely positive, contractive and G � Z=2-equivariant choice for N„ in a natural
way. Using Thomsen’s picture for KKG , this will give a functor KEG

! KEG , by
essentially the same arguments as in [3].

First we approximate the identity map on S by Z=2-equivariant, completely
positive contractions of finite rank. Let n 2 N. Let

In WD f�2
n
C 1;�2n

C 2; : : : ; 2n
� 1g:

For k 2 In, define  n;k 2 S by

 n;k.x/ WD

8̂<̂
:
p
2nx � .k � 1/ for k � 1 � 2nx � k;
p
k C 1 � 2nx for k � 2nx � k C 1;

0 otherwise.

Thus  2
n;k

is the unique continuous, piecewise linear function with singularities
in 2�n � fk � 1; k; k C 1g and  2

n;k
.2�nk/ D 1 and  2

n;k
.2�nl/ D 0 for k ¤ l . We

have . n;k/ D  n;�k for all k 2 In. Define

‰nWS ! S; f 7!
X
k2In

f .2�nk/ �  2
n;k :

Equivalently,

‰nf .2
�n.k C t // D .1 � t / � f .2�nk/C t � f .2�n.k C 1// (3.1)

for k 2 f�2n;�2n C 1; : : : ; 2n � 1g, t 2 Œ0; 1�, because f .˙1/ D 0.
By construction, ‰n is a completely positive map of finite rank. It is grading-

preserving because . n;k/ D  n;�k , and contractive because
P

k2In
 2

n;k
� 1.
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We have limkf �‰n.f /k1 D 0 for each f 2 S , and this holds uniformly for f in
a compact subset of S because all the operators ‰n are contractions.

Now let A and B be Z=2-graded C�-algebras. Let Ő be the graded-commutative
tensor product. This is functorial for grading-preserving completely positive
contractions. Hence we get a grading-preserving completely positive contraction
‰A

n D ‰n Ő idAWS Ő A! S Ő A. The sequence ‰A
n .f / converges in norm to f

for any f 2 S Ő A because ‰n converges to idS uniformly on compact subsets.
Tomake use ofLemma2.2, we assumeADA0˝K.L2G/ andBDB0 ˝K.L2G/

for some Z=2-graded C�-algebras A0 and B0. Then we get the same group
KEG.A;B/ if we use cycles and homotopies that satisfy (aKm1s), (aKm2), (aKm3s)
and (aKm4s), and where the underlying family of Hilbert modules E is the constant
family HBL with the standard G-equivariant Hilbert B-module HB as its fibre.
(Actually,HB is G-equivariantly isomorphic to .B1/˚ .B1/op.)

Let .'; F / be such a special cycle for KEG.A;B/. That is, 'WA! L.HBL/ is a
G � Z=2-equivariant �-homomorphism and F 2 L.HBL/, such that .F / D �F ,
F D F �, kF k � 1, g.F / D F for all g 2 G, limt!1kŒFt ; 't .a/�k D 0 for all
a 2 A, and .1 � F 2/'.a/ 2 C.HBL/. Since Œ.1 � F 2/'.a�/�� D '.a/.1 � F 2/, it
is equivalent to require .1�F 2/'.a/ 2 C.HBL/ or '.a/.1�F 2/ 2 C.HBL/ for all
a 2 A. Furthermore, this implies h.F /'.a/ 2 C.HBL/ and '.a/h.F / 2 C.HBL/

for all h 2 S .
The next step is easier to write down for trivially graded A, so we assume this for

a moment to explain our idea. Then S Ő A Š C0..�1; 1/; A/. Since  n;k 2 S , we
get  n;k.F /'.a/ 2 C.HBL/ for all n 2 N, k 2 In, a 2 A. Hence

�n.f / WD

2n�1X
kD�2nC1

 n;k.F /'.f .k � 2
�n// n;k.F / (3.2)

for f W .�1; 1/!A continuous with f .˙1/D0 defines a map �nWS Ő A!C.HBL/.
This map is grading-preserving, completely positive and G-equivariant because
F D F �, kF k � 1 and F is G-equivariant. If f � 0, then

�n.f / �

2n�1X
kD�2nC1

 n;k.F / � kf .k � 2
�n/k �  n;k.F / � kf k1

2n�1X
kD�2nC1

 n;k.F /
2
� kf k1I

thus �n is contractive. If � W C.HBL/ ! C.HBL/=K.HBL/ denotes the quotient
map, then � ı �n D „ ı‰

A
n because �.A/ and �.F / commute. Now we remove the

assumption that A is trivially graded:

Lemma 3.1. There is a sequence of G � Z=2-equivariant completely positive
contractive maps �nWS Ő A! C.HBL/ with � ı �n D „ ı‰

A
n for n 2 N, even if A

is Z=2-graded.
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Proof. We fix n 2 N. To make the proof of complete positivity easy, we directly
construct the Stinespring dilation of our map �n. Let

E WD
2n�1M
kD0

�
HBL˚ .HBL/

op�:
Let A act by ' ˚ ' ı  on each summand HBL˚ .HBL/

op. Let xW E ! E be the
operator that acts by �

0 2�nk

2�nk 0

�
on the kth summand. This operator is self-adjoint, and it graded-commutes with the
representation ofA becausewe take' for the second summands. Thus the functional
calculus for x provides a �-homomorphismS ! L.E/ that graded-commuteswithA.
Hence we get a G � Z=2-equivariant �-homomorphism ˛WS Ő A ! L.E/. We let
�n.f / WD V �˛.f /V for all f 2 S Ő A, where V D .Vk/k2In

WHBL ! E has the
components

2�1=2. n;k.F /C  n;�k.F //WHBL! HBL;

2�1=2. n;k.F / �  n;�k.F //WHBL! .HBL/
op

for k > 0, and
 n;0.F / D 2

�1. n;k.F /C  n;�k.F //WHBL! HBL;

0 D 2�1. n;k.F / �  n;�k.F //WHBL! .HBL/
op

for k D 0. Notice that Vk is grading-preserving because  n;k C  n;�k is an even
function and  n;k �  n;�k is an odd function. Since V is G-invariant as well, �n is
G � Z=2-equivariant. The map �n is completely positive. Since

V �V D

�
 2

n;0 C
1

2

2n�1X
kD1

. n;k C  n;�k/
2
C . n;k �  n;�k/

2

�
.F /

D

�
 2

n;0 C

2n�1X
kD1

 2
n;k C  

2
n;�k

�
.F / D

�X
k2In

 2
n;k

�
.F / � 1;

the map �n is completely contractive.
Let f 2 S and a 2 A. If f 2 S is even, then

�n.f Ő a/ D  n;0.F /f .0/'.a/ n;0.F /

C

2n�1X
kD1

. n;k.F /C  n;�k.F //f .2
�nk/'.a/. n;k.F /C  n;�k.F //

C . n;k.F / �  n;�k.F //f .2
�nk/'.a/. n;k.F / �  n;�k.F //I
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if f 2 S is odd, then

�n.f Ő a/ D

2n�1X
kD1

. n;k.F / �  n;�k.F //f .2
�nk/'.a/. n;k.F /C  n;�k.F //

C . n;k.F /C  n;�k.F //f .2
�nk/'.a/. n;k.F / �  n;�k.F //

Now we use that �.F / graded-commutes with �'.A/ to simplify � ı �n.f Ő a/.
For even f , this is equal to the �-image of

1

2

2n�1X
kD1

. n;k C  n;�k/
2.F /f .2�nk/'.a/C . n;k �  n;�k/

2.F /f .2�nk/'.a/

C  2
n;0.F /f .0/'.a/ D

X
k2In

 2
n;k.F /f .2

�nk/'.a/ D ‰A
n .f /.F / � '.a/;

which is „ ı‰A
n .f Ő a/. For odd f , � ı �n.f Ő a/ is equal to the �-image of

2n�1X
kD1

. n;k C  n;�k/.F /. n;k �  n;�k/.F /f .2
�nk/'.a/

D

2n�1X
kD1

. 2
n;k �  

2
n;�k/.F /f .2

�nk/'.a/

D

X
k2In

 2
n;k.F /f .2

�nk/'.a/ D ‰A
n .f /.F / � '.a/;

which is„ ı‰A
n .f Ő a/ once again. Thus„ ı‰A

n .f Ő a/ D �.‰
A
n .f /.F / � '.a//

for all f 2 S , a 2 A, as desired.

Let �nCs D .1 � s/�n C s�nC1 for n 2 N, s 2 Œ0; 1�. The maps .�s/s2L

form a continuous family of grading-preserving, G-equivariant, completely positive
contractions �sWS Ő A ! C.HBL/. In the following, we view �s as a family
of functions �s;t WS Ő A ! K.HB/, and we lift „ to an asymptotic morphism
N„t WS Ő A! K.HB/.
Lemma 3.2. For separable A, there is a continuous increasing function t0WL! L

with lims!1 t0.s/ D 1 such that for all t � t0, �s;t.s/WS Ő A ! K.HB/ is
asymptotically equal to the reparametrisation „t.s/ of „ and hence an asymptotic
morphism in the same class as „.

Proof. Since S Ő A is separable, there is a sequence .fi / whose closed linear span
is S Ő A. For the asymptotic equality we need ��s;t.s/.fi / D „t.s/.fi / for i 2 N.
We have norm convergence lims!1‰

A
s .fi / D fi for all i 2 N. Since kfik ! 0
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and ‰A
s is uniformly bounded, this convergence is uniform. Hence for each n 2 N

there is sn 2 L such that k‰A
s .fi / � fik < 1=n for all s � sn, i 2 N. We may

assume that the sequence .sn/ is strictly increasing with limn!1 sn D1.
Since�ı�s D „ı‰

A
s and„ is a �-homomorphism, we get k� ı �s.fi / �„.fi /k

< 1=n for all s � sn, i 2 N. By definition of the quotient norm in
C.HBL/=K.HBL/, we may find ti .s; n/ 2 L with k�s;t .fi / � N„t .fi /k < 1=n

for s � sn, t � ti .s; n/. Since kfik ! 0 for i ! 1, there are only finitely many i
with k�s;t .fi /k � 1=2n and N„t .fi / � 1=2n; hence we may find t .s; n/ independent
of i with k�s;t .fi / � N„t .fi /k < 1=n for all i 2 N, s � sn, t � t .s; n/.

Now choose t0.s/ increasing and continuous with lims!1 t0.s/ D 1 and
t0.s/ � t .s; n/ for s 2 Œsn; snC1�. If t .s/ � t0.s/ for all s 2 L, then
k�s;t.s/.fi / � N„t.s/.fi /k < 1=n for all s 2 Œsn; snC1� and all i 2 N. Thus
�s;t.s/ and N„t.s/ are asymptotically equal. This implies that �s;t.s/ is an asymptotic
morphism because N„t is one.

The asymptotic morphism �s;t.s/ from S Ő A to K.HB/ in Lemma 3.2 is also
linear, completely positive contractive and G � Z=2-equivariant. Thomsen [8]
describes KKG.A;B/ using asymptotic homomorphisms with these extra properties.
We cannot directly appeal to [8] because we have replaced the ungraded suspension
on both A and B by the graded suspension S on A alone. It is well-known, however,
that both approaches give the same definition of equivariant E-theory. For the
same reason, both approaches with added complete positivity requirements give
KKG.A;B/. Let us make this more explicit.

An asymptotic morphism .�t / from S Ő A to K.HB/ gives an extension

0! C0.L;K.HB//! E ! S Ő A! 0;

where E D C0.L;K.HB//C �.S Ő A/; it comes with evaluation homomorphisms
�t WE ! K.HB/ for t 2 L. If the asymptoticmorphism isG�Z=2-equivariant, com-
pletely positive and contractive, then the extension above has aG �Z=2-equivariant,
completely positive and contractive cross-section. Hence there is a long exact
sequence in KKG�Z=2 for this extension. Since the kernel is contractible, we get
that the quotient map in the extension is invertible in KKG�Z=2. Composing its
inverse with the evaluation homomorphism, we get a class in

KKG�Z=2.S Ő A;K.HB// Š KKG�Z=2.S Ő A;B/ Š KKG.A;B/:

Here we use a description of KKG for Z=2-graded C�-algebras in terms ofG �Z=2-
equivariant Kasparov theory that goes back to Haag in the non-equivariant case and
is extended to the equivariant case in [7].

Thus we attach a class in KKG.A;B/ to a cycle for KEG.A;B/. Since the same
construction applies to homotopies, this construction descends to a well-defined map
�WKEG.A;B/! KKG.A;B/. By design, the composite map

KEG.A;B/! KKG.A;B/! EG.A;B/

is the functor „ of [3].
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The Kasparov product in KKG becomes the composition of completely positive
equivariant asymptotic morphisms in the above picture. A composite of two
completely positive equivariant asymptotic morphisms is again completely positive
and equivariant. So the same argument as in [2] shows that � is a functor.
Proposition 3.3. The composite map

KKG.A;B/! KEG.A;B/! KKG.A;B/

is the identity on KKG.A;B/.

Proof. This clearly holds on the class in KKG.A;B/ of a grading-preserving
equivariant �-homomorphism f WS Ő A ! B . If this f is a KKG-equivalence,
then Œf ��1 is mapped to Œf ��1 as well by functoriality. Hence any composite of such
classes is mapped to itself by functoriality. Any class in KKG may be written as such
a composition of classes of Œf � and Œf ��1. This follows from the Cuntz picture for
KKG.A;B/ Š KKG�Z=2.S Ő A;B/ in [7].
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