Comparison of KE-theory and KK-theory

Ralf Meyer

Abstract. We show that the character from the bivariant K-theory KE^G introduced by Dumitraşcu to E^G factors through Kasparov's KK^G for any locally compact group G . Hence KE^G contains KK^G as a direct summand.

Mathematics Subject Classification (2010). 19K35. *Keywords.* KK-theory, E-theory.

1. Introduction

K-theory may be generalised in several ways to a bivariant theory. One such bivariant K-theory is Kasparov's KK (see [\[5\]](#page-10-0)), another is the E-theory of Connes and Higson [\[1\]](#page-10-1). Both theories have equivariant versions with respect to secondcountable locally compact groups (see $[4, 6]$ $[4, 6]$ $[4, 6]$). These theories are related by a natural transformation $KK^G(A, B) \to E^G(A, B)$ because of the universal property of KK^G .

Dumitrascu defines another equivariant bivariant K-theory $KE^{G}(A, B)$ in his thesis [\[2\]](#page-10-4), which has the same formal properties as KK^G and E^G ; in particular, it has an analogue of the Kasparov product and the exterior product. He also constructs explicit natural transformations

$$
KK^G(A, B) \to KE^G(A, B) \to E^G(A, B).
$$

Hence this also makes the transformation $KK^G \to E^G$ explicit.

The construction of a new bivariant K-theory is always laden with technical difficulties, especially the construction of a product. KK-theory and E-theory involve different technicalities, and KE-theory needs a share of both kinds of technicalities. When I was asked to referee the article [\[3\]](#page-10-5) by Dumitrascu, I therefore wanted to clarify whether KE^G is really a new theory or equivalent to KK^G or E^G . I expected KE^G to be equivalent to either KK^G or E^G . I came up quickly with a sketch of an argument why KE^G should be equivalent to KK^G , which I communicated to Dumitrascu, asking him whether he could complete this sketch to a full proof. After a while it became clear that I had to complete this argument myself, which resulted in this note. Its purpose is the following theorem:

Theorem 1.1. *Let* G *be a second countable locally compact group and let* A *and* B be separable G-C^{*}-algebras. The natural map $\overline{KE}^G(A, B) \to \overline{E}^G(A, B)$ factors *through a map* $KE^G(A, B) \rightarrow KK^G(A, B)$ *.*

I still expect $KE^G(A, B) \cong KK^G(A, B)$, but I do not know how to prove this. A transformation $KE^G \rightarrow KK^G$ seems enough for applications. It shows that a computation in KE^G gives results in KK^G . For instance, if G has the analogue of a ν -element in KE^G or if $\nu = 1$ in KE^G, then the same follows in KK^G.

In Section [2,](#page-1-0) we recall Dumitrascu's definition of cycles for $KE^G(A, B)$ and show that we may strengthen his conditions slightly without changing the set of homotopy classes. In Section [3,](#page-5-0) we show how to get completely positive equivariant asymptotic morphisms from the KE^G -cycles satisfying our stronger conditions.

2. The definition of KE-theory

Throughout this article, G is a second countable, locally compact topological group; A and B are separable C*-algebras with continuous actions of $G \times \mathbb{Z}/2$. An action of $G \times \mathbb{Z}/2$ is the same as a $\mathbb{Z}/2$ -grading together with an action of G by gradingpreserving automorphisms; we will frequently combine a $\mathbb{Z}/2$ -grading and a G-action in this way.

We first recall the definition of $KE^{G}(A, B)$.

Let $L := [1, \infty)$ and $BL := C_0(L, B)$. A *continuous field of* $G \times \mathbb{Z}/2$ - (A, B) *modules* is a countably generated, $G \times \mathbb{Z}/2$ -equivariant Hilbert BL-module $\mathcal E$ with a $G \times \mathbb{Z}/2$ -equivariant *-homomorphism $\varphi: A \to \mathcal{L}(\mathcal{E})$, where $\mathcal{L}(\mathcal{E})$ denotes the C^{*}-algebra of adjointable operators on $\mathcal E$ with its canonical action of $G \times \mathbb Z/2$.

Using the evaluation homomorphisms $BL \rightarrow B$, $f \mapsto f(t)$, we may view $\mathcal E$ as a family of $G \times \mathbb{Z}/2$ -equivariant Hilbert B-modules \mathcal{E}_t ; an operator $x \in \mathcal{L}(\mathcal{E})$ is completely determined by a family of operators $x_t \in \mathcal{L}(\mathcal{E}_t)$. Besides the ideal $\mathcal{K}(\mathcal{E})$ of compact operators on \mathcal{E} , we need the two ideals

$$
\mathcal{C}(\mathcal{E}) := \{ x \in \mathcal{L}(\mathcal{E}) \mid xf \in \mathcal{K}(\mathcal{E}) \text{ for all } f \in C_0(L) \},
$$

$$
\mathcal{I}(\mathcal{E}) := \{ x \in \mathcal{L}(\mathcal{E}) \mid \lim_{t \to \infty} ||x_t|| = 0 \}.
$$

We have $\mathcal{C}(\mathcal{E}) \cap \mathcal{I}(\mathcal{E}) = \mathcal{K}(\mathcal{E}).$

A *cycle for* $\mathrm{KE}^{G}(A,B)$ is a pair (\mathcal{E}, F) , where $\mathcal E$ is a continuous field of $G \times \mathbb Z/2$ - (A, B) -modules and F is an odd, adjointable operator on E that satisfies the following conditions (for all $a \in A$, $g \in G$):

akm1: $(F - F^*)\varphi(a) \in \mathcal{I}(\mathcal{E})$ for all $a \in A$; **akm2:** $[F, \varphi(a)] \in \mathcal{I}(\mathcal{E})$ for all $a \in A$;

akm3: $\varphi(a)(F^2 - 1)\varphi(a)^* > 0$ modulo $\mathcal{C}(\mathcal{E}) + \mathcal{I}(\mathcal{E})$ for all $a \in A$;

akm4: $(gF - F)\varphi(a) \in \mathcal{I}(\mathcal{E})$ for all $a \in A, g \in G$.

Later, we shall meet the following strengthenings of these conditions:

aKm1s: $F = F^*$;

aKm3s: $||F|| \le 1$ and $(1 - F^2)\varphi(a) \in \mathcal{C}(\mathcal{E})$ for all $a \in A$;

aKm4s: $gF = F$ for all $g \in G$.

Cycles for $KE^G(A, C([0, 1], B))$ are called *homotopies* of cycles. We define $KE^G(A, B)$ as the set of homotopy classes of cycles for $KE^G(A, B)$.

Lemma 2.1. *Any cycle for* $KE^G(A, B)$ *is homotopic to one that satisfies* (aKm1s) *and* (aKm3s)*. If two cycles satisfying* (aKm1s) *and* (aKm3s) *are homotopic, they are homotopic via a homotopy that satisfies* (aKm1s) *and* (aKm3s)*.*

We will treat condition (aKm4s) below in Lemma [2.2.](#page-3-0)

Proof. Let (\mathcal{E}, F) be a cycle for $\mathrm{KE}^G(A, B)$. Then $(F + F^*)/2$ is a small perturbation of F and hence gives a homotopic cycle (see [\[3,](#page-10-5) Corollary 3.25]) satisfying $F = F^*$. Now assume $F = F^*$ and (aKm2); then

$$
\varphi(a)(1 - F^2)_{+} \varphi(a)^{*} \cdot \varphi(a)(1 - F^2)_{-} \varphi(a)^{*}
$$

\n
$$
\equiv \varphi(a)\varphi(a)^{*} \varphi(a)(1 - F^2)_{+}(1 - F^2)_{-} \varphi(a)^{*} \equiv 0 \mod \mathcal{I}(\mathcal{E}).
$$

Hence $\varphi(a)(F^2-1)_\pm \varphi(a)^*$ are the positive and negative parts of $\varphi(a)(F^2-1)\varphi(a)^*$ in $\mathcal{L}(\mathcal{E})/\mathcal{I}(\mathcal{E})$. As a result, (aKm3) is equivalent to

$$
\varphi(a) \cdot (F^2 - 1) - \varphi(a)^* \in \mathcal{C}(\mathcal{E}) + \mathcal{I}(\mathcal{E})
$$

for all $a \in A$.

Define $\chi: \mathbb{R} \to [-1, 1]$ by $\chi(t) := -1$ for $t \leq -1$, $\chi(t) := t$ for $-1 \leq t \leq 1$, and $\chi(t) := 1$ for $t \ge 1$. Then $\|\chi(F)\| \le 1$ and $\chi(F)^2 - 1 = (F^2 - 1)$. The reformulation of (aKm3) in the previous paragraph shows that $(\mathcal{E}, \chi(F))$ is again a cycle for $KE^G(A, B)$ and that the linear path $(\mathcal{E}, sF + (1 - s)\chi(F))$ is a homotopy of cycles. Thus any cycle is homotopic to one with $F = F^*$ and $||F|| \le 1$.

Next we adapt the standard trick to achieve $F^2 = 1$ for KK-cycles. Let $\mathcal{E}_2 :=$ $\mathcal{E} \oplus \mathcal{E}^{\mathrm{op}}$, where op denotes the opposite $\mathbb{Z}/2$ -grading. Let A act on \mathcal{E}_2 by $\varphi_2 := \varphi \oplus 0$. For $s \in [0, 1]$, let

$$
F_{2s} := \begin{pmatrix} F & s\sqrt{1 - u^2}\sqrt{1 - F^2} \\ s\sqrt{1 - F^2}\sqrt{1 - u^2} & -F \end{pmatrix},
$$

where $u \in \mathcal{L}(\mathcal{E})^{(0)}$ is an even operator as in [\[3,](#page-10-5) Lemma 3.35]; that is, $u \in \mathcal{C}(\mathcal{E})$, $[u, F] \in \mathcal{I}(\mathcal{E}), [u, \varphi(a)] \in \mathcal{I}(\mathcal{E})$ for all $a \in A$, $(1 - u^2)(\varphi(a)(F^2 - 1)\varphi(a)^*) \in \mathcal{I}(\mathcal{E})$ for all $a \in A$, and $gu - u \in \mathcal{I}(\mathcal{E})$ for all $g \in G$. Since $u \in \mathcal{C}(\mathcal{E})$ and $\mathcal{C}(\mathcal{E}) \cap \mathcal{I}(\mathcal{E}) = \mathcal{K}(\mathcal{E})$, we even have $[u, F] \in \mathcal{K}(\mathcal{E})$, $[u, \varphi(a)] \in \mathcal{K}(\mathcal{E})$ for all $a \in A$, and $gu - u \in \mathcal{K}(\mathcal{E})$ for all $g \in G$. Since we already achieved $||F|| \leq 1$, we also have $(1-u^2)\varphi(a)(1-F^2)\varphi(a)^* \in \mathcal{I}(\mathcal{E})$, hence $(1-u^2)\varphi(aa^*)(1-F^2) \in \mathcal{I}(\mathcal{E})$. This is equivalent to $(1 - u^2)\varphi(a)(1 - F^2) \in \mathcal{I}(\mathcal{E})$ for all $a \in A$ because elements of the form aa^* span A.

The set of $f \in C[0, 1]$ with $f(1 - u^2)\varphi(a)(1 - F^2) \in \mathcal{I}(\mathcal{E})$ for all $a \in A$ is a closed ideal because $\mathcal{I}(\mathcal{E})$ is a closed ideal. Since $1 - u^2$ and $\sqrt{1 - u^2}$ generate the same closed ideal in $C[0, 1]$, namely, the ideal of functions vanishing at 1, our condition is equivalent to $\sqrt{1-u^2}\varphi(a)(1-F^2) \in \mathcal{I}(\mathcal{E})$ for all $a \in A$. We may do the same to F, so our condition is also equivalent to $\sqrt{1-u^2}\varphi(a)\sqrt{1-F^2} \in \mathcal{I}(\mathcal{E})$ for all $a \in A$. Moreover, we may change the order of the three factors here arbitrarily. Therefore, $[F_{2s}, \varphi_2(a)] \in \mathcal{I}(\mathcal{E}_2)$ for all $a \in A$. Furthermore, $[u, F] \in \mathcal{K}(\mathcal{E})$ implies

$$
(1 - F_{2s}^2)\varphi(a)
$$

= $\begin{pmatrix} (1 - F^2)(1 - s^2 + s^2u^2) & 0 \\ 0 & (1 - F^2)(1 - s^2 + s^2u^2) \end{pmatrix} \varphi(a) \text{ mod } \mathcal{K}(\mathcal{E}_2).$

Hence (\mathcal{E}_2, F_{2s}) is a homotopy of cycles for $KE^G(A, B)$. For $s = 0$, (\mathcal{E}_2, F_{20}) is a direct sum of (\mathcal{E}, F) with a degenerate cycle and hence homotopic to (\mathcal{E}, F) . Thus (\mathcal{E}, F) is homotopic to (\mathcal{E}_2, F_{21}) . The diagonal entries of $1 - F_{21}^2$ are $(1 - F^2)u^2$, which belongs to $\mathcal{C}(\mathcal{E})$ because $u \in \mathcal{C}(\mathcal{E})$. Hence $1 - F_{21}^2 \in \mathcal{C}(\mathcal{E}_2)$. Thus any cycle for $KE^{G}(A, B)$ is homotopic to one satisfying (aKm1s) and (aKm3s).

If we already have $F = F^*$ and $||F|| \le 1$, then the canonical homotopy from F to $\chi((F + F^*)/2)$ is constant. And if also $1 - F^2 \in C(\mathcal{E})$, then the homotopy F_{2s} constructed above satisfies $1 - F_{2s}^2 \in C(\mathcal{E}_2)$ for any choice of u. If two cycles (\mathcal{E}_1, F_1) and (\mathcal{E}_2, F_2) satisfying (aKm1s) and (aKm3s) are homotopic, then we may apply the modifications above to a homotopy between them; this provides a homotopy between their modifications that satisfies (aKm1s) and (aKm3s); since the canonical homotopies from (\mathcal{E}_1, F_1) and (\mathcal{E}_2, F_2) to their modifications also satisfy (aKm1s) and (aKm3s), we get a homotopy from (\mathcal{E}_1, F_1) to (\mathcal{E}_2, F_2) satisfying (aKm1s) and (aKm3s). Hence restricting to cycles satisfying (aKm1s) and (aKm3s) does not change $KE^G(A, B)$. \Box

The standard $G \times \mathbb{Z}/2$ -equivariant Hilbert B-module is

$$
\mathcal{H} = \mathcal{H}_B := L^2(G \times \mathbb{Z}/2) \otimes \ell^2(\mathbb{N}) \otimes B.
$$

Lemma 2.2. We get the same group $KE^G(A \otimes \mathcal{K}(L^2G), B \otimes \mathcal{K}(L^2G))$ if we restrict attention to cycles for $KE^G(A \otimes \mathcal{K}(L^2G), B \otimes \mathcal{K}(L^2G))$ that satisfy (aKm1s), (aKm3s) and (aKm4s) and with underlying Hilbert module $\mathcal{E} = \mathcal{H}_{B \otimes K(L^2 G)} L$, and homotopies between such cycles with the same properties.

Proof. The main ideas below already appeared in [\[7\]](#page-10-6) and as Fell's trick in [\[2,](#page-10-4) Lemma 3.3.3]. Let F_0 be the canonical isomorphism $H_+ \leftrightarrow H_-$ and let $\varphi_0 = 0$; this gives a degenerate cycle with underlying Hilbert module HL . Hence any $KE^{G}(A, B)$ cycle (\mathcal{E}, F) is equivalent to $(\mathcal{E} \oplus \mathcal{H}L, F \oplus F_0)$. Since \mathcal{E} must be countably generated, Kasparov's Stabilisation Theorem gives a G-continuous, $\mathbb{Z}/2$ -equivariant unitary operator $V: \mathcal{E} \oplus \mathcal{H} \to \mathcal{H}$. (Unless G is compact, we cannot expect V to be G-equivariant.)

Therefore, we get the same set of homotopy classes $KE^G(A, B)$ if we restrict attention to cycles (\mathcal{E}, F) for which there is a G-continuous, $\mathbb{Z}/2$ -grading preserving unitary $V: \mathcal{E} \to \mathcal{H}_B L$. This may be combined with Lemma [2.1,](#page-2-0) that is, we get the same set of homotopy classes if we assume (\mathcal{E}, F) to satisfy (aKm1s) and (aKm3s) and to have such a unitary V. The unitary V defines a $G \times \mathbb{Z}/2$ -equivariant unitary

 $V' : L^2(G, \mathcal{E}) \to L^2(G, \mathcal{H}_B L), \quad (V'f)(g) := g(V(f(g))).$

By a similar formula, any $F \in \mathcal{L}(\mathcal{E})$ defines a G-equivariant adjointable operator F' on $L^2(G,\mathcal{E})$. By [\[3,](#page-10-5) Theorem 4.21], the exterior product map

$$
KE^{G}(A, B) \to KE^{G}(A \otimes \mathcal{K}(L^{2}G), B \otimes \mathcal{K}(L^{2}G)), \ (\mathcal{E}, F) \mapsto (\mathcal{E} \otimes \mathcal{K}(L^{2}G), F \otimes 1),
$$

is an isomorphism. So any cycle for $KE^G(A \otimes \mathcal{K}(L^2G), B \otimes \mathcal{K}(L^2G))$ is homotopic to $(\mathcal{E} \otimes \mathcal{K}(L^2G), F \otimes 1)$ for some cycle (\mathcal{E}, F) for $KE^G(A, B)$ with (aKm1s) and (aKm3s) and a unitary $V : \mathcal{E} \to \mathcal{H}_B L$ as above; and if two such cycles are homotopic, there is a homotopy of the same form.

As a Hilbert module over itself, $\mathcal{K}(L^2G) \cong L^2G \otimes (L^2G)^*$, where $(L^2G)^*$ is viewed as a Hilbert $\mathcal{K}(L^2G)$ -module. Hence V' induces a $G \times \mathbb{Z}/2$ -equivariant unitary $\mathcal{E} \otimes \mathcal{K}(L^2G) \to \mathcal{H}_B L \otimes \mathcal{K}(L^2G) = \mathcal{H}_{B \otimes \mathcal{K}(L^2G)} L$, and F' induces a G-equivariant odd operator on $\mathcal{E} \otimes \mathcal{K}(L^2G)$. Since $gF - F \in \mathcal{I}(\mathcal{E})$, F' is a small perturbation of $F \otimes 1$. Thus we get the same group $KE^G(A \otimes K(L^2G), B \otimes K(L^2G))$ if we use only those cycles and homotopies that satisfy (aKm1s), (aKm3s) and (aKm4s) and have underlying Hilbert module $\mathcal{E} = \mathcal{H}_{B \otimes \mathcal{K}(L^2G)}L$. \Box

For the passage from KE^G to E^G , it is harmless to stabilise the C*-algebras A and B. Hence Lemma [2.2](#page-3-0) says that it is essentially no loss of generality to restrict attention to those cycles for KE^G that satisfy the stronger assumptions (aKm1s), (aKm3s) and (aKm4s). Furthermore, we may assume that $\mathcal{E} = \mathcal{H}_B L$ is the constant family with fibre the standard G-equivariant Hilbert B-module \mathcal{H}_B .

Remark 2.3. If a cycle for $KE^G(A, B)$ is in the image of $KK^G(A, B)$, then it satisfies more than (aKm2), namely, $[F, \varphi(a)] \in \mathcal{K}(\mathcal{E})$ for all $a \in A$. If KK^G and KE^G were equivalent, then any cycle for $KE^{\tilde{G}}$ would be homotopic to one with this extra property. I do not know, however, how to prove this.

1136 R. Meyer

3. Constructing asymptotic morphisms from KE-cycles

Let $S := C_0((-1, 1))$ with the $\mathbb{Z}/2$ -grading automorphism $\gamma f(x) = f(-x)$. Dumitraşcu maps a cycle $(\mathcal{H}_B L, \varphi, F)$ for $\text{KE}^G(A, B)$ to an asymptotic morphism from $S \hat{\otimes} A$ to $\mathcal{K}(\mathcal{H}_B)$ in [\[3,](#page-10-5) Section 5.1], as follows. Since $\mathcal{I}(\mathcal{H}_B L) \cap \mathcal{C}(\mathcal{H}_B L) =$ $\mathcal{K}(\mathcal{H}_B L)$ and $[F, \varphi(A)] \subseteq \mathcal{I}(\mathcal{H}_B L)$ by (aKm2), the images of A and F in $\mathcal{C}(\mathcal{H}_B L)/\mathcal{K}(\mathcal{H}_B L)$ commute. Hence there is a unique *-homomorphism

$$
\Xi\colon S\mathbin{\hat{\otimes}} A\to \mathcal{C}(\mathcal{H}_BL)/\mathcal{K}(\mathcal{H}_BL)
$$

with $\Xi(h \otimes a) = h(F)\varphi(a)$ for all $h \in S$, $a \in A$ (this works for the maximal C^* -norm, which is the only C^* -norm here because S is nuclear). We may lift Ξ to a map (of sets) $\bar{\Xi}$: $S \hat{\otimes} A \rightarrow C(H_B L)$, which we may view as a family of maps $\overline{\Xi}_t$: $S \otimes A \to \mathcal{K}(\mathcal{H}_B)$, $t \in L$. These maps $\overline{\Xi}_t$ form an asymptotic morphism. This is used in [\[3,](#page-10-5) Section 5.1] to construct a functor $\mathrm{KE}^G \rightarrow \mathrm{E}^G.$

For cycles with extra properties as in Lemma [2.2,](#page-3-0) we are going to construct a completely positive, contractive and $G \times \mathbb{Z}/2$ -equivariant choice for \overline{E} in a natural way. Using Thomsen's picture for KK^G , this will give a functor $KE^G \rightarrow KE^G$, by essentially the same arguments as in [\[3\]](#page-10-5).

First we approximate the identity map on S by $\mathbb{Z}/2$ -equivariant, completely positive contractions of finite rank. Let $n \in \mathbb{N}$. Let

$$
I_n := \{-2^n + 1, -2^n + 2, \ldots, 2^n - 1\}.
$$

For $k \in I_n$, define $\psi_{n,k} \in S$ by

$$
\psi_{n,k}(x) := \begin{cases}\n\sqrt{2^n x - (k-1)} & \text{for } k-1 \le 2^n x \le k, \\
\sqrt{k+1-2^n x} & \text{for } k \le 2^n x \le k+1, \\
0 & \text{otherwise.} \n\end{cases}
$$

Thus $\psi_{n,k}^2$ is the unique continuous, piecewise linear function with singularities in $2^{-n} \cdot \{k-1, k, k+1\}$ and $\psi_{n,k}^2(2^{-n}k) = 1$ and $\psi_{n,k}^2(2^{-n}l) = 0$ for $k \neq l$. We have $\gamma(\psi_{n,k}) = \psi_{n,-k}$ for all $k \in I_n$. Define

$$
\Psi_n: S \to S, \quad f \mapsto \sum_{k \in I_n} f(2^{-n}k) \cdot \psi_{n,k}^2.
$$

Equivalently,

$$
\Psi_n f(2^{-n}(k+t)) = (1-t) \cdot f(2^{-n}k) + t \cdot f(2^{-n}(k+1)) \tag{3.1}
$$

for $k \in \{-2^n, -2^n + 1, \ldots, 2^n - 1\}, t \in [0, 1]$, because $f(\pm 1) = 0$.

By construction, Ψ_n is a completely positive map of finite rank. It is gradingpreserving because $\gamma(\psi_{n,k}) = \psi_{n,-k}$, and contractive because $\sum_{k \in I_n} \psi_{n,k}^2 \leq 1$.

We have $\lim_{n \to \infty} f - \Psi_n(f) \|_{\infty} = 0$ for each $f \in S$, and this holds uniformly for f in a compact subset of S because all the operators Ψ_n are contractions.

Now let A and B be $\mathbb{Z}/2$ -graded C^{*}-algebras. Let $\hat{\otimes}$ be the graded-commutative tensor product. This is functorial for grading-preserving completely positive contractions. Hence we get a grading-preserving completely positive contraction $\Psi_n^A = \Psi_n \hat{\otimes} \text{id}_A$: $S \hat{\otimes} A \to S \hat{\otimes} A$. The sequence $\Psi_n^A(f)$ converges in norm to f for any $f \in S \hat{\otimes} A$ because Ψ_n converges to id_S uniformly on compact subsets.

To make use of Lemma [2.2,](#page-3-0) we assume $A = A_0 \otimes \mathcal{K}(L^2G)$ and $B = B_0 \otimes \mathcal{K}(L^2G)$ for some $\mathbb{Z}/2$ -graded C^{*}-algebras A_0 and B_0 . Then we get the same group $KE^G(A, B)$ if we use cycles and homotopies that satisfy (aKm1s), (aKm2), (aKm3s) and (aKm4s), and where the underlying family of Hilbert modules $\mathcal E$ is the constant family $\mathcal{H}_B L$ with the standard G-equivariant Hilbert B-module \mathcal{H}_B as its fibre. (Actually, \mathcal{H}_B is G-equivariantly isomorphic to $(B^{\infty}) \oplus (B^{\infty})^{\text{op}}$.)

Let (φ, F) be such a special cycle for $\text{KE}^G(A, B)$. That is, $\varphi: A \to \mathcal{L}(\mathcal{H}_B L)$ is a $G \times \mathbb{Z}/2$ -equivariant *-homomorphism and $F \in \mathcal{L}(\mathcal{H}_B L)$, such that $\gamma(F) = -F$, $F = F^*$, $\|F\| \le 1$, $g(F) = F$ for all $g \in G$, $\lim_{t \to \infty} \| [F_t, \varphi_t(a)] \| = 0$ for all $a \in A$, and $(1 - F^2)\varphi(a) \in C(\mathcal{H}_B L)$. Since $[(1 - F^2)\varphi(a^*)]^* = \varphi(a)(1 - F^2)$, it is equivalent to require $(1 - F^2)\varphi(a) \in \mathcal{C}(\mathcal{H}_B L)$ or $\varphi(a)(1 - F^2) \in \mathcal{C}(\mathcal{H}_B L)$ for all $a \in A$. Furthermore, this implies $h(F)\varphi(a) \in \mathcal{C}(\mathcal{H}_B L)$ and $\varphi(a)h(F) \in \mathcal{C}(\mathcal{H}_B L)$ for all $h \in S$.

The next step is easier to write down for trivially graded A , so we assume this for a moment to explain our idea. Then $S \hat{\otimes} A \cong C_0((-1, 1), A)$. Since $\psi_{n,k} \in S$, we get $\psi_{n,k}(F) \varphi(a) \in \mathcal{C}(\mathcal{H}_B L)$ for all $n \in \mathbb{N}, k \in I_n, a \in A$. Hence

$$
\xi_n(f) := \sum_{k=-2^n+1}^{2^n-1} \psi_{n,k}(F)\varphi(f(k \cdot 2^{-n}))\psi_{n,k}(F)
$$
\n(3.2)

for $f: (-1, 1) \rightarrow A$ continuous with $f(\pm 1)=0$ defines a map $\xi_n : S \otimes A \rightarrow C(H_B L)$. This map is grading-preserving, completely positive and G-equivariant because $F = F^*$, $||F|| \le 1$ and F is G-equivariant. If $f \ge 0$, then

$$
\xi_n(f) \leq \sum_{k=-2^n+1}^{2^n-1} \psi_{n,k}(F) \cdot \|f(k \cdot 2^{-n})\| \cdot \psi_{n,k}(F) \leq \|f\|_{\infty} \sum_{k=-2^n+1}^{2^n-1} \psi_{n,k}(F)^2 \leq \|f\|_{\infty};
$$

thus ξ_n is contractive. If $\pi: \mathcal{C}(\mathcal{H}_B L) \to \mathcal{C}(\mathcal{H}_B L)/\mathcal{K}(\mathcal{H}_B L)$ denotes the quotient map, then $\pi \circ \xi_n = \Xi \circ \Psi_n^A$ because $\pi(A)$ and $\pi(F)$ commute. Now we remove the assumption that A is trivially graded:

Lemma 3.1. *There is a sequence of* $G \times \mathbb{Z}/2$ -equivariant completely positive *contractive maps* ξ_n : $S \otimes A \to C(H_B L)$ *with* $\pi \circ \xi_n = \Xi \circ \Psi_n^A$ for $n \in \mathbb{N}$, *even if* A $is \mathbb{Z}/2$ -graded.

Proof. We fix $n \in \mathbb{N}$. To make the proof of complete positivity easy, we directly construct the Stinespring dilation of our map ξ_n . Let

$$
\mathcal{E}:=\bigoplus_{k=0}^{2^n-1} \bigl(\mathcal{H}_B L \oplus (\mathcal{H}_B L)^{\mathrm{op}}\bigr).
$$

Let A act by $\varphi \oplus \varphi \circ \gamma$ on each summand $\mathcal{H}_B L \oplus (\mathcal{H}_B L)^{op}$. Let $x: \mathcal{E} \to \mathcal{E}$ be the operator that acts by

$$
\begin{pmatrix} 0 & 2^{-n}k \\ 2^{-n}k & 0 \end{pmatrix}
$$

on the kth summand. This operator is self-adjoint, and it graded-commutes with the representation of A because we take $\varphi \gamma$ for the second summands. Thus the functional calculus for x provides a *-homomorphism $S \to \mathcal{L}(\mathcal{E})$ that graded-commutes with A. Hence we get a $G \times \mathbb{Z}/2$ -equivariant *-homomorphism $\alpha: S \otimes A \to \mathcal{L}(\mathcal{E})$. We let $\xi_n(f) := V^* \alpha(f) V$ for all $f \in S \otimes A$, where $V = (V_k)_{k \in I_n}: \mathcal{H}_B L \to \mathcal{E}$ has the components

$$
2^{-1/2}(\psi_{n,k}(F) + \psi_{n,-k}(F)) : \mathcal{H}_B L \to \mathcal{H}_B L,
$$

$$
2^{-1/2}(\psi_{n,k}(F) - \psi_{n,-k}(F)) : \mathcal{H}_B L \to (\mathcal{H}_B L)^{\text{op}}
$$

for $k > 0$, and

$$
\psi_{n,0}(F) = 2^{-1}(\psi_{n,k}(F) + \psi_{n,-k}(F)) : \mathcal{H}_B L \to \mathcal{H}_B L,
$$

$$
0 = 2^{-1}(\psi_{n,k}(F) - \psi_{n,-k}(F)) : \mathcal{H}_B L \to (\mathcal{H}_B L)^{\text{op}}
$$

for $k = 0$. Notice that V_k is grading-preserving because $\psi_{n,k} + \psi_{n,-k}$ is an even function and $\psi_{n,k} - \psi_{n,-k}$ is an odd function. Since V is G-invariant as well, ξ_n is $G \times \mathbb{Z}/2$ -equivariant. The map ξ_n is completely positive. Since

$$
V^*V = \left(\psi_{n,0}^2 + \frac{1}{2} \sum_{k=1}^{2^n - 1} (\psi_{n,k} + \psi_{n,-k})^2 + (\psi_{n,k} - \psi_{n,-k})^2\right)(F)
$$

=
$$
\left(\psi_{n,0}^2 + \sum_{k=1}^{2^n - 1} \psi_{n,k}^2 + \psi_{n,-k}^2\right)(F) = \left(\sum_{k \in I_n} \psi_{n,k}^2\right)(F) \le 1,
$$

the map ξ_n is completely contractive.

Let $f \in S$ and $a \in A$. If $f \in S$ is even, then

$$
\xi_n(f \otimes a) = \psi_{n,0}(F) f(0)\varphi(a)\psi_{n,0}(F)
$$

+
$$
\sum_{k=1}^{2^n-1} (\psi_{n,k}(F) + \psi_{n,-k}(F)) f(2^{-n}k)\varphi(a)(\psi_{n,k}(F) + \psi_{n,-k}(F))
$$

+
$$
(\psi_{n,k}(F) - \psi_{n,-k}(F)) f(2^{-n}k)\varphi\gamma(a)(\psi_{n,k}(F) - \psi_{n,-k}(F));
$$

if $f \in S$ is odd, then

$$
\xi_n(f \otimes a) = \sum_{k=1}^{2^n - 1} (\psi_{n,k}(F) - \psi_{n,-k}(F)) f(2^{-n}k) \varphi(a) (\psi_{n,k}(F) + \psi_{n,-k}(F)) + (\psi_{n,k}(F) + \psi_{n,-k}(F)) f(2^{-n}k) \varphi \gamma(a) (\psi_{n,k}(F) - \psi_{n,-k}(F))
$$

Now we use that $\pi(F)$ graded-commutes with $\pi\varphi(A)$ to simplify $\pi \circ \xi_n(f \otimes a)$. For even f, this is equal to the π -image of

$$
\frac{1}{2} \sum_{k=1}^{2^{n}-1} (\psi_{n,k} + \psi_{n,-k})^{2} (F) f(2^{-n}k) \varphi(a) + (\psi_{n,k} - \psi_{n,-k})^{2} (F) f(2^{-n}k) \varphi(a) \n+ \psi_{n,0}^{2} (F) f(0) \varphi(a) = \sum_{k \in I_{n}} \psi_{n,k}^{2} (F) f(2^{-n}k) \varphi(a) = \Psi_{n}^{A}(f) (F) \cdot \varphi(a),
$$

which is $\Xi \circ \Psi_n^A(f \otimes a)$. For odd $f, \pi \circ \xi_n(f \otimes a)$ is equal to the π -image of

$$
\sum_{k=1}^{2^{n}-1} (\psi_{n,k} + \psi_{n,-k})(F)(\psi_{n,k} - \psi_{n,-k})(F) f(2^{-n}k)\varphi(a)
$$

=
$$
\sum_{k=1}^{2^{n}-1} (\psi_{n,k}^{2} - \psi_{n,-k}^{2})(F) f(2^{-n}k)\varphi(a)
$$

=
$$
\sum_{k \in I_{n}} \psi_{n,k}^{2}(F) f(2^{-n}k)\varphi(a) = \Psi_{n}^{A}(f)(F) \cdot \varphi(a),
$$

which is $\Xi \circ \Psi_n^A(f \otimes a)$ once again. Thus $\Xi \circ \Psi_n^A(f \otimes a) = \pi(\Psi_n^A(f)(F) \cdot \varphi(a))$ for all $f \in S$, $a \in A$, as desired. \Box

Let $\xi_{n+s} = (1-s)\xi_n + s\xi_{n+1}$ for $n \in \mathbb{N}$, $s \in [0,1]$. The maps $(\xi_s)_{s \in L}$ form a continuous family of grading-preserving, G-equivariant, completely positive contractions ξ_s : $S \otimes A \to C(\mathcal{H}_B L)$. In the following, we view ξ_s as a family of functions $\xi_{s,t}: S \hat{\otimes} A \to \mathcal{K}(\mathcal{H}_B)$, and we lift Σ to an asymptotic morphism $\bar{\Xi}_t$: $S \hat{\otimes} A \rightarrow \mathcal{K}(\mathcal{H}_R)$.

Lemma 3.2. For separable A, there is a continuous increasing function $t_0: L \to L$ with $\lim_{s\to\infty} t_0(s) = \infty$ such that for all $t \ge t_0$, $\xi_{s,t(s)}$: $S \otimes A \to \mathcal{K}(\mathcal{H}_B)$ is asymptotically equal to the reparametrisation $\Xi_{t(s)}$ of Ξ and hence an asymptotic morphism in the same class as E .

Proof. Since $S \hat{\otimes} A$ is separable, there is a sequence (f_i) whose closed linear span is $S \hat{\otimes} A$. For the asymptotic equality we need $\pi \xi_{s,t(s)}(f_i) = \Xi_{t(s)}(f_i)$ for $i \in \mathbb{N}$. We have norm convergence $\lim_{s\to\infty} \Psi_s^A(f_i) = f_i$ for all $i \in \mathbb{N}$. Since $||f_i|| \to 0$

and Ψ_s^A is uniformly bounded, this convergence is uniform. Hence for each $n \in \mathbb{N}$ there is $s_n \in L$ such that $\|\Psi_s^A(f_i) - f_i\| < 1/n$ for all $s \geq s_n$, $i \in \mathbb{N}$. We may assume that the sequence (s_n) is strictly increasing with $\lim_{n\to\infty} s_n = \infty$.

Since $\pi \circ \xi_s = \mathbb{E} \circ \Psi_s^A$ and Ξ is a *-homomorphism, we get $\|\pi \circ \xi_s(f_i) - \Xi(f_i)\|$ $\langle 1/n \rangle$ for all $s \geq s_n$, $i \in \mathbb{N}$. By definition of the quotient norm in $\mathcal{C}(\mathcal{H}_B L)/\mathcal{K}(\mathcal{H}_B L)$, we may find $t_i(s,n) \in L$ with $\|\xi_{s,t}(f_i) - \overline{\mathfrak{B}}_t(f_i)\| < 1/n$ for $s \geq s_n$, $t \geq t_i(s, n)$. Since $||f_i|| \to 0$ for $i \to \infty$, there are only finitely many i with $\|\xi_{s,t}(f_i)\| \geq 1/2n$ and $\overline{\Xi}_t(f_i) \geq 1/2n$; hence we may find $t(s, n)$ independent of *i* with $\|\xi_{s,t}(f_i) - \bar{\Xi}_t(f_i)\| < 1/n$ for all $i \in \mathbb{N}, s \geq s_n, t \geq t(s,n)$.

Now choose $t_0(s)$ increasing and continuous with $\lim_{s\to\infty} t_0(s) = \infty$ and $t_0(s) \ge t(s,n)$ for $s \in [s_n, s_{n+1}]$. If $t(s) \ge t_0(s)$ for all $s \in L$, then $\|\xi_{s,t(s)}(f_i) - \bar{\Xi}_{t(s)}(f_i)\|$ < $1/n$ for all $s \in [s_n, s_{n+1}]$ and all $i \in \mathbb{N}$. Thus $\xi_{s,t(s)}$ and $\overline{\mathbb{E}}_{t(s)}$ are asymptotically equal. This implies that $\xi_{s,t(s)}$ is an asymptotic morphism because $\bar{\Xi}_t$ is one. \Box

The asymptotic morphism $\xi_{s,t(s)}$ from $S \hat{\otimes} A$ to $K(\mathcal{H}_B)$ in Lemma [3.2](#page-8-0) is also linear, completely positive contractive and $G \times \mathbb{Z}/2$ -equivariant. Thomsen [\[8\]](#page-10-7) describes $KK^G(A, B)$ using asymptotic homomorphisms with these extra properties. We cannot directly appeal to [\[8\]](#page-10-7) because we have replaced the ungraded suspension on both A and B by the graded suspension S on A alone. It is well-known, however, that both approaches give the same definition of equivariant E -theory. For the same reason, both approaches with added complete positivity requirements give $KK^G(A, B)$. Let us make this more explicit.

An asymptotic morphism (ξ_t) from $S \hat{\otimes} A$ to $\mathcal{K}(\mathcal{H}_B)$ gives an extension

$$
0 \to C_0(L, \mathcal{K}(\mathcal{H}_B)) \to E \to S \hat{\otimes} A \to 0,
$$

where $E = C_0(L, \mathcal{K}(\mathcal{H}_B)) + \xi(S \hat{\otimes} A)$; it comes with evaluation homomorphisms $\epsilon_t: E \to \mathcal{K}(\mathcal{H}_B)$ for $t \in L$. If the asymptotic morphism is $G \times \mathbb{Z}/2$ -equivariant, completely positive and contractive, then the extension above has a $G \times \mathbb{Z}/2$ -equivariant, completely positive and contractive cross-section. Hence there is a long exact sequence in $KK^{G\times\mathbb{Z}/2}$ for this extension. Since the kernel is contractible, we get that the quotient map in the extension is invertible in $KK^{G \times \mathbb{Z}/2}$. Composing its inverse with the evaluation homomorphism, we get a class in

$$
KK^{G \times \mathbb{Z}/2}(S \hat{\otimes} A, \mathcal{K}(\mathcal{H}_B)) \cong KK^{G \times \mathbb{Z}/2}(S \hat{\otimes} A, B) \cong KK^G(A, B).
$$

Here we use a description of KK G for $\mathbb{Z}/2$ -graded C*-algebras in terms of $G\times \mathbb{Z}/2$ equivariant Kasparov theory that goes back to Haag in the non-equivariant case and is extended to the equivariant case in [\[7\]](#page-10-6).

Thus we attach a class in $KK^G(A, B)$ to a cycle for $KE^G(A, B)$. Since the same construction applies to homotopies, this construction descends to a well-defined map $\xi:KE^G(A, B) \to KK^G(A, B)$. By design, the composite map

$$
KE^G(A, B) \to KK^G(A, B) \to E^G(A, B)
$$

is the functor Ξ of [\[3\]](#page-10-5).

The Kasparov product in KK^G becomes the composition of completely positive equivariant asymptotic morphisms in the above picture. A composite of two completely positive equivariant asymptotic morphisms is again completely positive and equivariant. So the same argument as in [\[2\]](#page-10-4) shows that ξ is a functor.

Proposition 3.3. *The composite map*

$$
KK^G(A, B) \to KE^G(A, B) \to KK^G(A, B)
$$

is the identity on $KK^G(A, B)$ *.*

Proof. This clearly holds on the class in $KK^G(A, B)$ of a grading-preserving equivariant *-homomorphism $f: S \hat{\otimes} A \to B$. If this f is a KK^G-equivalence, then $[f]^{-1}$ is mapped to $[f]^{-1}$ as well by functoriality. Hence any composite of such classes is mapped to itself by functoriality. Any class in KK^G may be written as such a composition of classes of $[f]$ and $[f]^{-1}$. This follows from the Cuntz picture for $KK^G(A, B) \cong KK^{G \times \mathbb{Z}/2}(\overbrace{S \otimes A}^{\circ} A, B)$ in [\[7\]](#page-10-6). \Box

References

- [1] A. Connes and N. Higson, Déformations, morphismes asymptotiques et K-théorie bivariante, *C. R. Acad. Sci. Paris Sér. I Math.*, **311** (1990), no. 2, 101–106. [Zbl 0717.46062](https://zbmath.org/?q=an:0717.46062) [MR 1065438](http://www.ams.org/mathscinet-getitem?mr=1065438)
- [2] D. Dumitraşcu, *A new approach to bivariant K-theory*, Ph.D. Thesis, Pennsylvania State University, 2001. Available at: <https://etda.libraries.psu.edu/paper/5876/>
- [3] D. Dumitraşcu, On an intermediate bivariant K -theory for C^* -algebras, *J. Noncommut. Geom.*, **10** (2016), no. 3, 1083–1130.
- [4] E. P. Guentner, N. Higson and J. Trout, Equivariant E -theory for C^* -algebras, *Mem. Amer. Math. Soc.*, **148** (2000), no. 703, viii+86pp. [Zbl 0983.19003](https://zbmath.org/?q=an:0983.19003) [MR 1711324](http://www.ams.org/mathscinet-getitem?mr=1711324)
- [5] G. G. Kasparov, The operator K -functor and extensions of C^* -algebras, I_zv . *Akad. Nauk SSSR Ser. Mat.*, **44** (1980), no. 3, 571–636, 719; translation in *Math. USSR-Izv.*, **16** (1981), no. 3, 513–572. [Zbl 0448.46051](https://zbmath.org/?q=an:0448.46051) [MR 0582160](http://www.ams.org/mathscinet-getitem?mr=0582160)
- [6] G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, *Invent. Math.*, **91** (1988), no. 1, 147–201. [Zbl 0647.46053](https://zbmath.org/?q=an:0647.46053) [MR 0918241](http://www.ams.org/mathscinet-getitem?mr=0918241)
- [7] R. Meyer, Equivariant Kasparov theory and generalized homomorphisms, K*-Theory*, **21** (2000), no. 3, 201–228. [Zbl 0982.19004](https://zbmath.org/?q=an:0982.19004) [MR 1803228](http://www.ams.org/mathscinet-getitem?mr=1803228)
- [8] K. Thomsen, Asymptotic homomorphisms and equivariant KK-theory, *J. Funct. Anal.*, **163** (1999), no. 2, 324–343. [Zbl 0929.46059](https://zbmath.org/?q=an:0929.46059) [MR 1680467](http://www.ams.org/mathscinet-getitem?mr=1680467)

1142 R. Meyer

Received 19 March, 2015; revised 22 May, 2015

R. Meyer, Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstr. 3–5, 37073 Göttingen, Germany E-mail: rmeyer2@uni-goettingen.de