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Braided quantum SU(2) groups
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Abstract. We construct a family of q-deformations of SU(2) for complex parameters q ¤ 0.
For real q, the deformation coincides with Woronowicz’ compact quantum SUq.2/ group. For
q … R, SUq.2/ is only a braided compact quantum group with respect to a certain tensor product
functor for C�-algebras with an action of the circle group.
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1. Introduction

The q-deformations of SU.2/ for real deformation parameters 0 < q < 1 discovered
in [10] are among the first and most important examples of compact quantum groups.
Here we construct a family of q-deformations of SU.2/ for complex parameters
q 2 C� D C n f0g. For q … R, SUq.2/ is not a compact quantum group, but a
braided compact quantum group in a suitable tensor category.

A compact quantum group G as defined in [11] is a pair G D .A;�/ where
�WA ! A ˝ A is a coassociative morphism satisfying the cancellation law (1.4)
below. The C�-algebra A is viewed as the algebra of continuous functions on G.

The theory of compact quantum groups is formulated within the category C�
of C�-algebras. This category with the minimal tensor functor ˝ is a monoidal
category (see [2]). A more general theory may be formulated within a monoidal
category .D�;�/, where D� is a suitable category of C�-algebras with additional
structure and �WD� � D� ! D� is a monoidal bifunctor on D�. Braided Hopf
algebras may be defined in braided monoidal categories (see [4, Definition 9.4.5]).
The braiding becomes unnecessary when we work in categories of C�-algebras.

Let A and B be C�-algebras. The multiplier algebra of B is denoted by M.B/. A
morphism � 2 Mor.A;B/ is a �-homomorphism � WA! M.B/ with �.A/B D B .
If A and B are unital, a morphism is simply a unital �-homomorphism.
�Partially supported by the NCN (National Centre of Science) grant 2015/17/B/ST1/00085.
��Supported by a Fields–Ontario Postdoctoral fellowship.
�Supported by the Alexander von Humboldt Stiftung.



1612 P. Kasprzak, R. Meyer, S. Roy and S. L. Woronowicz

Let T be the group of complex numbers of modulus 1 and let C�T be the category
of T -C�-algebras; its objects are C�-algebras with an action of T , arrows are
T -equivariant morphisms. We shall use a family of monoidal structures �� on C�T
parametrised by � 2 T , which is defined as in [5].

The C�-algebra A of SUq.2/ is defined as the universal unital C�-algebra
generated by two elements ˛; 
 subject to the relations8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

˛�˛ C 
�
 D I;
˛˛� C jqj2 
�
 D I;



� D 
�
;

˛
 D q
˛;

˛
� D q
�˛:

(1.1)

For real q, the algebraA coincides with the algebra of continuous functions on the
quantum SUq.2/ group described in [10]: A D C.SUq.2//. Then there is a unique
morphism �WA! A˝ A with

�.˛/ D ˛ ˝ ˛ � q
� ˝ 
;

�.
/ D 
 ˝ ˛ C ˛� ˝ 
:
(1.2)

It is coassociative, that is,

.�˝ idA/ ı� D .idA ˝�/ ı�; (1.3)

and has the following cancellation property:

A˝ A D �.A/.A˝ I/;
A˝ A D �.A/.I˝ A/I

(1.4)

here and below, EF for two closed subspaces E and F of a C�-algebra denotes the
norm-closed linear span of the set of products ef for e 2 E, f 2 F .

If q is not real, then the operators on the right hand sides of (1.2) do not satisfy
the relations (1.1), so there is no morphism � satisfying (1.2). Instead, (1.2) defines
a T -equivariant morphism A! A�� A for the monoidal functor �� with � D q=q.
This morphism in C�T satisfies appropriate analogues of the coassociativity and
cancellation laws (1.3) and (1.4), so we get a braided compact quantum group.
Here the action of T on A is defined by �z.˛/ D ˛ and �z.
/ D z
 for all z 2 T .

For X; Y 2 Obj.C�/, X ˝ Y contains commuting copies X ˝ IY of X
and IX ˝ Y of Y with X ˝ Y D .X ˝ IY /.IX ˝ Y /. Similarly, X �� Y

for X; Y 2 C�T is a C�-algebra with injective morphisms j1 2 Mor.X;X �� Y /

and j2 2 Mor.Y;X �� Y / such that X �� Y D j1.X/j2.Y /. For T -homogeneous
elements x 2 Xk and y 2 Yl (as defined in (3.4)), we have the commutation relation

j1.x/j2.y/ D �
klj2.y/j1.x/ (1.5)
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The following theorem contains the main result of this paper:
Theorem 1.1. Let q 2 C n f0g and � D q=q. Then
(1) there is a unique T -equivariant morphism � 2 Mor.A;A�� A/ with

�.˛/ D j1.˛/j2.˛/ � qj1.
/
�j2.
/;

�.
/ D j1.
/j2.˛/C j1.˛/
�j2.
/I

(1.6)

(2) � is coassociative, that is,

.��� idA/ ı� D .idA �� �/ ı�I

(3) � obeys the cancellation law

j1.A/�.A/ D �.A/j2.A/ D A�� A:

We also describe some important features of the representation theory of SUq.2/
to explain the definition of SUq.2/, and we relate SUq.2/ to the quantumU.2/ groups
defined by Zhang and Zhao in [12].

Braided Hopf algebras that deform SL.2;C/ are already described in [3].
We could, however, find no precise relationship between Majid’s braided Hopf
algebra BSL.2/ and our braided compact quantum group SUq.2/.

2. The algebra of SUq.2/

The following elementary lemma explains what the defining relations (1.1) mean:
Lemma 2.1. Two elements ˛ and 
 of a C�-algebra satisfy the relations (1.1) if and
only if the following matrix is unitary:�

˛ �q
�


 ˛�

�
There are at least two ways to introduce a C�-algebra with given generators and

relations. One may consider the algebra A of all non-commutative polynomials in
the generators and their adjoints and take the largest C�-seminorm on A vanishing
on the given relations. The set N of elements with vanishing seminorm is an ideal
in A. The seminorm becomes a norm on A=N. Completing A=N with respect to
this norm gives the desired C�-algebra A. Another way is to consider the operator
domain consisting of all families of operators satisfying the relations. Then A is the
algebra of all continuous operator functions on that domain (see [1]). Applying one
of these procedures to the relations (1.1) gives a C�-algebraAwith two distinguished
elements ˛; 
 2 A that is universal in the following sense:
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Theorem 2.2. Let eA be a C�-algebra with two elements ę;e
 2 eA satisfying8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

Q̨
�
Q̨ C Q
� Q
 D I;

Q̨ Q̨
�
C jqj2 Q
� Q
 D I;

Q
 Q
� D Q
� Q
;

Q̨ Q
 D q Q
 Q̨ ;

Q̨ Q
� D q Q
� Q̨ :

(2.1)

Then there is a unique morphism � 2 Mor.A;eA/ with �.˛/ D ę and �.
/ De
 .
The elements ę D IC.T/ ˝ ˛ and e
 D z ˝ 
 of C.T / ˝ A satisfy (2.1). Here

z 2 C.T / denotes the coordinate function on T . (Later, we also denote elements
of T by z.) Theorem 2.2 gives a unique morphism �A 2 Mor.A;C.T /˝ A/ with

�.˛/ D IC.T/ ˝ ˛;
�.
/ D z ˝ 
:

(2.2)

This is a continuousT -action, so wemay view .A; �A/ as an object in the category C�T
described in detail in the next section.

Theorem 2.3. The C�-algebras A for different q with jqj ¤ 0; 1 are isomorphic.

Proof. During this proof, we write Aq for our C�-algebra with parameter q.
First, Aq Š Aq0 for q0 D q�1 by mapping Aq 3 ˛ 7! ˛0 D ˛� 2 Aq0 and

Aq 3 
 7! 
 0 D q�1
 2 Aq0 . Routine computations show that ˛0 and 
 0 satisfy the
relations (1.1), so that Theorem 2.2 gives a unique morphism Aq ! Aq0 mapping
˛ 7! ˛0 and 
 7! 
 0. Doing this twice gives q00 D q, ˛00 D ˛ and 
 00 D 
 , so we get
an inverse for the morphism Aq ! Aq0 . This completes the first step. It reduces to
the case 0 < jqj < 1, which we assume from now on.

Secondly, we claim that Aq Š Ajqj if 0 < jqj < 1. Equation (1.1) implies that 

is normal with k
k � 1. So we may use the functional calculus for continuous
functions on the closed unit disc D1 D f� 2 C W j�j � 1g.

We claim that
f̨ .
/ D f .q
/˛ (2.3)

for all f 2 C.D1/. Indeed, the set B � C.D1/ of functions satisfying (2.3) is a
norm-closed, unital subalgebra of C.D1/. The last two equations in (1.1) say that B
contains the functions f .�/ D � and f �.�/ D �. Since these separate the points
of D1, the Stone–Weierstrass Theorem gives B D C.D1/.

Let q D ei� jqj be the polar decomposition of q. For � 2 D1, let

g.�/ D

(
�ei� logjqjj�j for � ¤ 0;
0 for � D 0:
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This is a homeomorphism of D1 because we get the map g�1 if we replace � by �� .
Thus 
 and 
 0 D g.
/ generate the same C�-algebra. We also get g.q�/ D jqjg.�/,
so inserting f D g and f D g in (2.3) gives

a
 0 D jqj 
 0˛; a.
 0/� D jqj .
 0/�˛:

Moreover, jg.�/j D j�j and hence j
 0j D j
 j. Thus we may replace 
 by 
 0 in
the first three equations of (1.1). As a result, ˛ and 
 0 satisfy the relations (1.1)
with jqj instead of q. Since g is a homeomorphism, an argument as in the first step
now shows that Aq Š Ajqj. Finally, [10, Theorem A2.2, page 180] shows that the
C�-algebras Aq for 0 < q < 1 are isomorphic.

3. Monoidal structure on T -C�-algebras

We are going to describe the monoidal category .C�T ;�� / for � 2 T that is the
framework for our braided quantum groups. Monoidal categories are defined in [2].

The C�-algebra C.T / is a compact quantum group with comultiplication

ıWC.T /! C.T /˝ C.T /; z 7! z ˝ z:

An object of C�T is, by definition, a pair .X; �X / where X is a C�-algebra and
�X 2 Mor.X;C.T /˝X/ makes the diagram

X
�X //

�X

��

C.T /˝X

ı˝id
��

C.T /˝X
idC.T/˝�X

// C.T /˝ C.T /˝X

(3.1)

commute and satisfies the Podleś condition

�X .X/.C.T /˝ IX / D C.T /˝X: (3.2)

This is equivalent to a continuous T -action on X by [9, Proposition 2.3].
Let X; Y be T -C�-algebras. The set of morphisms from X to Y in C�T is the set

MorT .X; Y / of T -equivariant morphisms X ! Y . By definition, ' 2 Mor.X; Y /
is T -equivariant if and only if the following diagram commutes:

X
�X //

'

��

C.T /˝X

idC.T/˝'
��

Y
�Y
// C.T /˝ Y

(3.3)
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Let X 2 C�T . An element x 2 X is homogeneous of degree n 2 Z if

�X .x/ D zn ˝ x: (3.4)

The degree of a homogeneous element x is denoted by deg.x/. Let Xn be the set
of homogeneous elements of X of degree n. This is a closed linear subspace of X ,
and XnXm � XnCm and X�n D X�n for n;m 2 Z. Moreover, finite sums of
homogeneous elements are dense in X .

Let � 2 T . The monoidal functor �� W C�T � C�T ! C�T is introduced as in [5].
We describe X �� Y using quantum tori. By definition, the C�-algebra C.T2

�
/ of

the quantum torus is the C�-algebra generated by two unitary elements U; V subject
to the relation UV D � V U .

There are unique injective morphisms �1; �22Mor.C.T /;C.T2
�
//with �1.z/ D U

and �2.z/ D V . Define j1 2 Mor.X;C.T2
�
/˝ X ˝ Y / and j2 2 Mor.Y;C.T2

�
/˝

X ˝ Y / by

j1.x/ D .�1 ˝ idX / ı �X .x/ for all x 2 X;
j2.y/ D .�2 ˝ idY / ı �Y .y/ for all y 2 Y:

Let x 2 Xk and y 2 Yl . Then j1.x/ D U k˝ x˝ 1 and j2.y/ D V l ˝ 1˝y, so
that we get the commutation relation (1.5). This implies j1.X/j2.Y / D j2.Y /j1.X/,
so that j1.X/j2.Y / is a C�-algebra. We define

X �� Y D j1.X/j2.Y /:

This construction agrees with the one in [5] because C.T2
�
/ Š C.T /�� C.T /, see

also the end of [5, Section 5.2].
There is a unique continuous T -action �X��Y on X �� Y for which j1 and j2

are T -equivariant, that is, j1 2 MorT .X;X �� Y / and j2 2 MorT .Y;X �� Y /.
This action is constructed in a more general context in [6]. We always equipX �� Y

with this T -action and thus view it as an object of C�T .
The construction �� is a bifunctor; that is, T -equivariant morphisms �1 2

MorT .X1; Y1/ and �2 2 MorT .X2; Y2/ induce a unique T -equivariant morphism
�1 �� �2 2 MorT .X1 �� X2; Y1 �� Y2/ with

.�1 �� �2/.jX1.x1/jX2.x2// D jY1.�1.x1//jY2.�2.x2// (3.5)

for all x1 2 X1 and x2 2 X2.

Proposition 3.1. Let x 2 X and y 2 Y be homogeneous elements. Then

j1.x/j2.Y / D j2.Y /j1.x/;

j1.X/j2.y/ D j2.y/j1.X/:
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Proof. Equation (1.5) shows that

j1.x/j2.y/ D j2.y/j1.�
X
�deg.y/

.x//

for any x 2 X and any homogeneous y 2 Y . Since �X
�deg.y/

is an automorphism
of X , this implies j1.X/j2.y/ D j2.y/j1.X/. Similarly, j1.x/j2.y/ D
j2.�

Y
�deg.x/

.y//j1.x/ for homogeneous x 2 X and any y 2 Y implies j1.x/j2.Y / D
j2.Y /j1.x/.

4. Proof of the main theorem

Let ˛ and 
 be the distinguished elements ofA. Letęande
 be the elements ofA��A

appearing on the right hand side of (1.6):

ęD j1.˛/j2.˛/ � qj1.
/�j2.
/;e
 D j1.
/j2.˛/C j1.˛/�j2.
/: (4.1)

We have deg.˛/ D deg.˛�/ D 0, deg.
/ D 1 and deg.
�/ D �1 by (2.2). Assume
q� D q. Using (1.5) we may rewrite (4.1) in the following form:

ęD j2.˛/j1.˛/ � qj2.
/j1.
/�;e
 D j2.˛/j1.
/C j2.
/j1.˛/�:
Therefore, ę� D j1.˛/�j2.˛/� � qj1.
/j2.
/�;e
� D j1.
/�j2.˛/� C j1.˛/j2.
/�: (4.2)

The four equations (4.1) and (4.2) together are equivalent to�ę �qe
�e
 ę� �
D

�
j1.˛/ �qj1.
/

�

j1.
/ j1.˛/
�

��
j2.˛/ �qj2.
/

�

j2.
/ j2.˛/
�

�
: (4.3)

Lemma 2.1 shows that the matrix

u D

�
˛ �q
�


 ˛�

�
2 M2.A/ (4.4)

is unitary. Hence so is the matrix j1.u/j2.u/ on the right hand side of (4.3). Now
Lemma 2.1 shows that ę;e
 2 A�� A satisfy (2.1). So the universal property of A
in Theorem 2.2 gives a unique morphism � with �.˛/ D ę and �.
/ De
 .

The elements ˛ and 
 are homogeneous of degrees 0 and 1, respectively, by (2.2).
Hence ęande
 are homogeneous of degree 0 and 1 as well. Since ˛ and 
 generateA,
it follows that � is T -equivariant. This proves statement (1) in Theorem 1.1. Here
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we use the action �A��A of T with �A��A
z .j1.a1/j2.a2// D j1.�

A
z .a1//j2.�

A
z .a2//.

We may rewrite (4.3) as�
�.˛/ �q�.
/�

�.
/ �.˛/�

�
D

�
j1.˛/ �qj1.
/

�

j1.
/ j1.˛/
�

��
j2.˛/ �qj2.
/

�

j2.
/ j2.˛/
�

�
:

Identifying M2.A/ with M2.C/˝ A, we may further rewrite this as

.id˝�/.u/ D .id˝ j1/.u/ .id˝ j2/.u/; (4.5)

where id is the identity map on M2.C/.
Now we prove statement (2) in Theorem 1.1. Let j1; j2; j3 be the natural

embeddings of A into A �� A �� A. Since � is T -equivariant, we may form
��� id and id �� �. The values of id˝

�
��� idA

�
and id˝

�
idA �� �

�
on the

right hand side of (4.5) are equal:�
id˝ .��� idA/ ı�

�
.u/ D .id˝ j1/.u/ .id˝ j2/.u/ .id˝ j3/.u/;�

id˝ .idA �� �/ ı�
�
.u/ D .id˝ j1/.u/ .id˝ j2/.u/ .id˝ j3/.u/:

Thus .��� idA/ ı� and .idA �� �/ ı� coincide on ˛; 
; ˛�; 
�. Since the latter
generate A, this proves statement (2) of Theorem 1.1.

Now we prove statement (3). Let

S D fx 2 A W j1.x/ 2 �.A/j2.A/g :

This is a closed subspace of A. We may also rewrite (4.5) as�
j1.˛/ �qj1.
/

�

j1.
/ j1.˛/
�

�
D

�
�.˛/ �q�.
/�

�.
/ �.˛/�

��
j2.˛/ �qj2.
/

�

j2.
/ j2.˛/
�

��
: (4.6)

Thus ˛; 
; ˛�; 
� 2 S . Let x; y 2 S with homogeneous y. Proposition 3.1 gives

j1.xy/ D j1.x/j1.y/ 2 �.A/j2.A/j1.y/ D �.A/j1.y/j2.A/

� �.A/�.A/j2.A/j2.A/ D �.A/j2.A/:

That is, xy 2 S . Therefore, all monomials in ˛; 
; ˛�; 
� belong to S , so that S D A.
Hence j1.A/ � �.A/j2.A/. Now A �� A D j1.A/j2.A/ � �.A/j2.A/j2.A/ D

�.A/j2.A/, which is one of the Podleś conditions. Similarly, let

R D fx 2 A W j2.x/ 2 j1.A/�.A/g :

Then R is a closed subspace of A. We may also rewrite (4.5) as�
j2.˛/ �qj2.
/

�

j2.
/ j2.˛/
�

�
D

�
j1.˛/ �qj1.
/

�

j1.
/ j1.˛/
�

�� �
�.˛/ �q�.
/�

�.
/ �.˛/�

�
: (4.7)
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Thus ˛; 
; ˛�; 
� 2 R. Let x; y 2 R with homogeneous x. Proposition 3.1 gives

j2.xy/ D j2.x/j2.y/ 2 j2.x/j1.A/�.A/ D j1.A/j2.x/�.A/

� j1.A/j1.A/�.A/�.A/ D j1.A/�.A/:

Thus xy 2 R. Therefore, all monomials in ˛; 
; ˛�; 
� belong to R, so that
R D A, that is, j2.A/ � j1.A/�.A/. This implies A �� A D j1.A/j2.A/ �

j1.A/j1.A/�.A/ D j1.A/�.A/ and finishes the proof of Theorem 1.1.

5. The representation theory of SUq

For real q, the relations defining the compact quantum group SUq.2/ are dictated if
we stipulate that the unitary matrix in Lemma 2.1 is a representation and that a certain
vector in the tensor square of this representation is invariant. Here we generalise this
to the complex case. This is how we found SUq.2/.

LetH be a T -Hilbert space, that is, a Hilbert space with a unitary representation
U WT ! U.H/. For z 2 T and x 2 K.H/ we define

�K.H/z .x/ D UzxU
�
z :

Thus .K.H/; �K.H// is a T -C�-algebra. Let .X; �X / 2 Obj.C�T /. Since �K.H/ is
inner, the braided tensor product K.H/ �� X may (and will) be identified with
K.H/˝X ; see [5, Corollary 5.18] and [5, Example 5.19].

Definition 5.1. Let H be a T -Hilbert space and let v 2 M.K.H/ ˝ A/ be a
unitary element which is T -invariant, that is, .�K.H/z ˝ �Xz /.v/ D v. We call v
a representation of SUq.2/ onH if

.idH ˝�/.v/ D .idH ˝ j1/.v/ .idH ˝ j2/.v/:

Theorem 6.1 below will show that representations of SUq.2/ are equivalent to
representations of a certain compact quantum group. This allows us to carry over
all the usual structural results about representations of compact quantum groups
to SUq.2/. In particular, we may tensor representations. To describe this directly, we
need the following result:

Proposition 5.2. LetX; Y;U; T be T -C�-algebras. Let v 2 X ˝T and w 2 Y ˝U
be homogeneous elements of degree 0. Denote the natural embeddings by

i1WX ! X �� Y; i2WY ! X �� Y;

j1WU ! U �� T; j2WT ! U �� T:

Then .i1 ˝ j2/.v/ and .i2 ˝ j1/.w/ commute in .X �� Y /˝ .U �� T /.
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Proof. We may assume that v D x ˝ t and w D y ˝ u for homogeneous elements
x 2 X , t 2 T , y 2 Y and u 2 U . Since deg.v/ D deg.w/ D 0, we get
deg.x/ D � deg.t/ and deg.y/ D � deg.u/. The following computation completes
the proof:

.i1 ˝ j2/.v/ .i2 ˝ j1/.w/ D .i1.x/˝ j2.t// .i2.y/˝ j1.u//

D i1.x/i2.y/˝ j2.t/j1.u/ D �
deg.x/ deg.y/�deg.t/ deg.u/i2.y/i1.x/˝ j1.u/j2.t/

D .i2.y/˝ j1.u// .i1.x/˝ j2.t// D .i2 ˝ j1/.w/ .i1 ˝ j2/.v/:

Proposition 5.3. Let H1 and H2 be T -Hilbert spaces and let vi 2 M.K.Hi /˝ A/

for i D 1; 2 be representations of SUq.2/. Define

v D .�1 ˝ idA/.v1/.�2 ˝ idA/.v2/ 2 M.K.H1/�� K.H2/˝ A/

and identifyK.H1/�� K.H2/ Š K.H1˝H2/. Then v 2 M.K.H1˝H2/˝A/ is
a representation of SUq.2/ onH1˝H2. It is denoted v1 v2 and called the tensor
product of v1 and v2.

Proof. It is clear that v is T -invariant. We compute

.idH1˝H2 ˝�/.v/ D .idH1˝H2 ˝�/..�1 ˝ idA/.v1/.�2 ˝ idA/.v2//
D .�1 ˝ j1/.v1/ .�1 ˝ j2/.v1/ .�2 ˝ j1/.v2/ .�2 ˝ j2/.v2/

D .�1 ˝ j1/.v1/ .�2 ˝ j1/.v2/ .�1 ˝ j2/.v1/ .�2 ˝ j2/.v2/

D .idH1˝H2 ˝ j1/.v/ .idH1˝H2 ˝ j2/.v/;

where the third step uses Proposition 5.2.

Now consider the Hilbert space C2, let fe0; e1g be its canonical orthonormal
basis. We equip it with the representation U WT ! U.C2/ defined by Uze0 D ze0
and Uze1 D e1. Let �M2.C/ be the action implemented by U :

�M2.C/z

�
a11 a12
a21 a22

�
D

�
a11 za12
za21 a22

�
;

where aij 2 C. We claim that

u D

�
˛ �q
�


 ˛�

�
2 M2.C/˝ A

is a representation of SUq.2/ on C2. By Lemma 2.1, the relations defining A are
equivalent to u being unitary. The T -action on A is defined so that u is T -invariant.
The comultiplication is defined exactly so that u is a representation, see (4.5).



Braided quantum SU(2) groups 1621

The particular shape of u contains further assumptions, however. To explain
these, we consider an arbitrary compact quantum group G D .C.G/;�G/ in C�T
with a unitary representation

u D

�
a b

c d

�
2 M2.C.G//;

such that a; b; c; d generate the C�-algebra C.G/. We assume thatu isT -invariant for
the above T -action on C2. Thus deg.a/ D deg.d/ D 0, deg.b/ D �1, deg.c/ D 1.
Theorem 5.4. Let G be a braided compact quantum group with a unitary
representation u as above. Assume b ¤ 0 and that the vector e0 ˝ e1 � qe1 ˝ e0 2
C2 ˝C2 for q 2 C is invariant for the representation u u. Then q ¤ 0, q� D q,
d D a�, b D �qc�, and there is a unique morphism � WC.SUq.2// ! C.G/ with
�.˛/ D a and �.
/ D c. This is T -equivariant and satisfies .� �� �/ ı�SUq.2/ D

�G ı � .

Proof. The representation u u 2 M4.C.G// is given by Proposition 5.3, which
uses a canonical isomorphism M2.C/ �� M2.C/ Š M4.C/. This comes from the
following standard representation of M2.C/ �� M2.C/ on C2 ˝ C2. For T; S 2
M2.C/ of degree k; l and x; y 2 C2 of degree m; n, we let �1.T /�2.S/.x ˝ y/ D
�
lm
T x ˝ Sy. By construction, u u is .�1 ˝ idC.G//.u/ � .�2 ˝ idC.G//.u/. So we

may rewrite the invariance of e0 ˝ e1 � qe1 ˝ e0 as

.�1˝ idC.G//.u�/.e0˝e1�qe1˝e0/ D .�2˝ idC.G//.u/.e0˝e1�qe1˝e0/ (5.1)

in C2 ˝C2 ˝ C.G/. The left and right hand sides of (5.1) are

e0 ˝ e1 ˝ a
�
C e1 ˝ e1 ˝ b

�
� qe0 ˝ e0 ˝ c

�
� qe1 ˝ e0 ˝ d

�;

e0 ˝ e0 ˝ b C e0 ˝ e1 ˝ d � qe1 ˝ e0 ˝ a � q�e1 ˝ e1 ˝ c;

respectively. These are equal if and only if b D �qc�, d D a�, and b� D �q�c.
Since b ¤ 0, this implies q ¤ 0 and q� D q, and u has the form in Lemma 2.1.
Since u is a representation, it is unitary. So a; c satisfy the relations defining SUq.2/
and Theorem 2.2 gives the unique morphism � . The conditions on u in Definition 5.1
imply that � is T -equivariant and compatible with comultiplications.

The proof also shows that q is uniquely determined by the condition that e0˝e1�
qe1 ˝ e0 should be SUq.2/-invariant. An invariant vector for SUq.2/ should also
be homogeneous for the T -action. There are three cases of homogeneous vectors in
C2 ˝ C2: multiples of e0 ˝ e0, multiples of e1 ˝ e1, and linear combinations of
e0 ˝ e1 and e1 ˝ e0. If a non-zero multiple of ei ˝ ej for i; j 2 f0; 1g is invariant,
then the representation u is reducible. Ruling out such degenerate cases, we may
normalise the invariant vector to have the form e0 ˝ e1 � qe1 ˝ e0 assumed in
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Theorem 5.4. Roughly speaking, SUq.2/ is the universal family of braided quantum
groups generated by a 2-dimensional representation with an invariant vector in u u.

Up to scaling, the basis e0; e1 is the unique one consisting of joint eigenvectors of
theT -actionwith degrees 1 and 0. Hence the braided quantum group .C.SUq.2//;�/
determines q uniquely. There is, however, one extra symmetry that changes the
T -action on C.SUq.2// and that corresponds to the permutation of the basis e0; e1.
Given a T -algebraA, let S.A/ be the same C�-algebra with the T -action by �S.A/z D

.�Az /
�1. Since the commutation relation (1.5) is symmetric in k; l , there is a unique

isomorphism

S.A�� B/ Š S.A/�� S.B/; j1.a/ 7! j1.a/; j2.b/ 7! j2.b/:

Hence the comultiplication on C.SUq.2// is one on S.C.SUq.2/// as well.
Proposition 5.5. The braided quantum groups S.C.SUq.2/// and C.SU Qq.2// for
Qq D q�1 are isomorphic as braided quantum groups.

Proof. Let ˛; 
 be the standard generators of Aq D C.SUq.2// and let Q̨ ; Q
 be the
standard generators of A Qq . We claim that there is an isomorphism 'WAq ! A Qq that
maps ˛ 7! Q̨� and 
 7! Qq Q
� and that is an isomorphism of braided quantum groups
from S.Aq/ to A Qq . Lemma 2.1 implies that the matrix�

0 1

�1 0

��
Q̨ � Qq Q
�

Q
 Q̨�

��
0 �1

1 0

�
D

�
Q̨� � Q


Qq Q
� Q̨

�
D

�
'.˛/ '.�q
�/

'.
/ '.˛�/

�
is unitary. Now Lemma 2.1 and Theorem 2.2 give the desired morphism '. Since
the inverse of ' may be constructed in the same way, ' is an isomorphism. On
generators, it reverses the grading, so it is T -equivariant as a map S.Aq/! A Qq .

Let � and Q� denote the comultiplications on S.Aq/ and A Qq . We compute

.' �� '/�.˛/ D .' �� '/.j1.˛/j2.˛/ � qj1.

�/j2.
//

D j1.'.˛//j2.'.˛// � qj1.'.

�//j2.'.
//

D j1. Q̨
�/j2. Q̨

�/ � Qqj1. Q
/j2. Q

�/;

Q�.'.˛// D Q�. Q̨�/ D j2. Q̨ /
�j1. Q̨ /

�
� q�1j2. Q
/

�j1. Q
/

D j1. Q̨ /
�j2. Q̨ /

�
� q�1�j1. Q
/j2. Q
/

�:

These are equal because Qq D q�1 D q�1�. Similarly, .' �� '/�.
/ D Q�.'.
//.
Thus ' is an isomorphism of braided quantum groups.

6. The semidirect product quantum group

A quantum analogue of the semidirect product construction for groups turns the
braided quantum group SUq.2/ into a genuine compact quantum group .B;�B/,
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see [6, Section 6]. Here B is the universal C�-algebra with three generators ˛; 
; z
with the SUq.2/-relations for ˛ and 
 and

z˛z� D ˛;

z
z� D ��1
;

zz� D z�z D II

the comultiplication is defined by

�B.z/ D z ˝ z;

�B.˛/ D ˛ ˝ ˛ � q

�z ˝ 
;

�B.
/ D 
 ˝ ˛ C ˛
�z ˝ 
:

There are two embeddings �1; �2WA � B ˝ B defined by

�1.˛/ D ˛ ˝ I �2.˛/ D I˝ ˛;
�1.
/ D 
 ˝ I �2.
/ D z ˝ 
:

Homogeneous elements x; y 2 A satisfy

�1.x/�2.y/ D �
deg.x/ deg.y/�2.y/�1.x/: (6.1)

Thus we may rewrite the comultiplication as

�B.z/ D z ˝ z;

�B.˛/ D �1.˛/�2.˛/ � q�1.
/
��2.
/;

�B.
/ D �1.
/�2.˛/C �1.˛/
��2.
/:

In particular, �B respects the commutation relations for .˛; 
; z/, so it is a well-
defined �-homomorphism B ! B ˝ B . It is routine to check the cancellation
conditions (1.4) for B , so .B;�B/ is a compact quantum group.

This is a compact quantum group with a projection as in [7, 8]. Here the
projection � WB ! B is the unique �-homomorphism with �.˛/ D 1B , �.
/ D 0

and �.z/ D z; this is an idempotent bialgebra morphism. Its “image” is the copy
of C.T / generated by z, its “kernel” is the copy of A generated by ˛ and 
 .

For q D 1, B Š C.T � SU.2// as a C�-algebra, which is commutative.
The representation on C2 combines the standard embedding of SU.2/ and the
representation of T mapping z to the diagonal matrix with entries z; 1. This gives
a homeomorphism T � SU.2/ Š U.2/. So .B;�B/ is the group U.2/, written as a
semidirect product of SU.2/ and T .

For q ¤ 1, .B;�B/ is the coopposite of the quantum Uq.2/ group described
previously by Zhang and Zhao in [12]: the substitutions a D ˛�, b D 
� andD D z�
turn our generators and relations into those in [12], and the comultiplications differ
only by a coordinate flip.
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Theorem 6.1. Let U 2 M.K.H/ ˝ C.T // be a unitary representation of T on a
Hilbert space H. There is a bijection between representations of SUq.2/ on H and
representations of .B;�B/ onH that restrict to the given representation on T .

Proof. Let v 2 M.K.H/ ˝ A/ be a unitary representation of SUq.2/ on H.
Since B contains copies of A and C.T /, we may view u D vU � as an element
of M.K.H/˝ B/. The T -invariance of v,

.id˝ �A/.v/ D U �12v13U12

and the formula for �2 (which is basically given by the action �A) show that

U12.id˝ �2/.v/U �12 D v13:

Using .id˝ �2/.v/ D v12, we conclude that u is a unitary representation of .B;�B/:

.id˝�B/.u/ D v12.id˝ �2/.v/U �12U
�
13 D v12U

�
12v13U

�
13 D u12u13:

Going back and forth between u and v is the desired bijection.
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