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Braided quantum SU(2) groups
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Abstract. We construct a family of g-deformations of SU(2) for complex parameters ¢ # 0.
For real ¢, the deformation coincides with Woronowicz’ compact quantum SU (2) group. For
q ¢ R,SU4(2) is only a braided compact quantum group with respect to a certain tensor product
functor for C*-algebras with an action of the circle group.
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1. Introduction

The g-deformations of SU(2) for real deformation parameters 0 < g < 1 discovered
in [10] are among the first and most important examples of compact quantum groups.
Here we construct a family of g-deformations of SU(2) for complex parameters
g € C* = C\{0}. Forq ¢ R, SU4(2) is not a compact quantum group, but a
braided compact quantum group in a suitable tensor category.

A compact quantum group G as defined in [11] is a pair G = (A4, A) where
A:A — A ® A is a coassociative morphism satisfying the cancellation law (1.4)
below. The C*-algebra A is viewed as the algebra of continuous functions on G.

The theory of compact quantum groups is formulated within the category C*
of C*-algebras. This category with the minimal tensor functor ® is a monoidal
category (see [2]). A more general theory may be formulated within a monoidal
category (D*,X), where D* is a suitable category of C*-algebras with additional
structure and X: D* x D* — D* is a monoidal bifunctor on D*. Braided Hopf
algebras may be defined in braided monoidal categories (see [4, Definition 9.4.5]).
The braiding becomes unnecessary when we work in categories of C*-algebras.

Let A and B be C*-algebras. The multiplier algebra of B is denoted by M(B). A
morphism w € Mor(A, B) is a *-homomorphism 7: A — M(B) with 7(4)B = B.
If A and B are unital, a morphism is simply a unital *-homomorphism.
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Let T be the group of complex numbers of modulus 1 and let C} be the category
of T-C*-algebras; its objects are C*-algebras with an action of T, arrows are
T -equivariant morphisms. We shall use a family of monoidal structures X¢ on Cy
parametrised by ¢ € T, which is defined as in [5].

The C*-algebra A of SU,(2) is defined as the universal unital C*-algebra
generated by two elements ¢, y subject to the relations

a*a +yry =1,
aa® +|q*y*y =1,
Yy =y (1.1)
ay = qya,
ay* = qgy*a.

For real g, the algebra A coincides with the algebra of continuous functions on the
quantum SU, (2) group described in [10]: A = C(SU,(2)). Then there is a unique
morphism A: 4 — A ® A with

Al@)=a®@a—qy*®y,

1.2
AP =yQa+a*®y. 1.2)
It is coassociative, that is,
(A®idg) o A = (idg ® A) o A, (1.3)
and has the following cancellation property:
AR A=A(A)ARI),
(A)( ) (1.4)

A®A=AAI® A);

here and below, EF for two closed subspaces E and F of a C*-algebra denotes the
norm-closed linear span of the set of products ef fore € E, f € F.

If g is not real, then the operators on the right hand sides of (1.2) do not satisfy
the relations (1.1), so there is no morphism A satisfying (1.2). Instead, (1.2) defines
a T-equivariant morphism A — A X; A for the monoidal functor X; with { = ¢/q.
This morphism in Cy satisfies appropriate analogues of the coassociativity and
cancellation laws (1.3) and (1.4), so we get a braided compact quantum group.
Here the action of T on A is defined by p;(¢) = o and p;(y) = zy forallz € T.

For X,Y € Obj(C*), X ® Y contains commuting copies X ® Iy of X
and Iy ® Y of ¥ with X ® ¥ = (X ® Iy)(Ix ® Y). Similarly, X X, ¥
for X,Y e Cj is a C*-algebra with injective morphisms j; € Mor(X, X X Y)
and j, € Mor(Y, X X Y) such that X K¢ ¥ = j;(X)j2(Y). For T-homogeneous
elements x € Xj and y € Y} (as defined in (3.4)), we have the commutation relation

J1)j2(y) = ja () ji(x) (1.5)
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The following theorem contains the main result of this paper:
Theorem 1.1. Let g € C \ {0} and ¢ = q/q. Then
(1) there is a unique T -equivariant morphism A € Mor(A, A XW¢ A) with
Ale) = ji(e) j2(a) = qj1(y)* j2(y),

A(y) = j1(y) j2(a) + j1(@)* j2(y):

(1.6)

(2) A is coassociative, that is,
(AXeidg) o A = (idg Me A) o A;

(3) A obeys the cancellation law

J1(A)A(A) = A(A) j2(A) = AR A.

We also describe some important features of the representation theory of SU,(2)
to explain the definition of SU, (2), and we relate SU,(2) to the quantum U(2) groups
defined by Zhang and Zhao in [12].

Braided Hopf algebras that deform SL(2,C) are already described in [3].
We could, however, find no precise relationship between Majid’s braided Hopf
algebra BSL(2) and our braided compact quantum group SU, (2).

2. The algebra of SU, (2)

The following elementary lemma explains what the defining relations (1.1) mean:

Lemma 2.1. Two elements o and y of a C*-algebra satisfy the relations (1.1) if and
only if the following matrix is unitary:

@ —qy*
(V o )

There are at least two ways to introduce a C*-algebra with given generators and
relations. One may consider the algebra A of all non-commutative polynomials in
the generators and their adjoints and take the largest C*-seminorm on A vanishing
on the given relations. The set 91 of elements with vanishing seminorm is an ideal
in A. The seminorm becomes a norm on A/91. Completing .4/ with respect to
this norm gives the desired C*-algebra A. Another way is to consider the operator
domain consisting of all families of operators satisfying the relations. Then A is the
algebra of all continuous operator functions on that domain (see [1]). Applying one
of these procedures to the relations (1.1) gives a C*-algebra 4 with two distinguished
elements o, y € A that is universal in the following sense:
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Theorem 2.2. Let A be a C*-algebra with two elements &, 7 € A satisfying

ata+ 7y =1,
aa* + g 77 = L
P =77 eX)
a7 = g74.
a7* = g7"a.

Then there is a unique morphism p € Mor(A, A) with p(e) = & and p(y) =7. O

The elements @ = Ie(m) ® @ and Y = z ® y of C(T) ® A satisfy (2.1). Here
z € C(T) denotes the coordinate function on T. (Later, we also denote elements
of T by z.) Theorem 2.2 gives a unique morphism p4 € Mor(4, C(T) ® A) with

p(a) = Ic(m) ® @,
p(y) =zQy. (22)

This is a continuous T -action, so we may view (4, p) as an object in the category Cr
described in detail in the next section.

Theorem 2.3. The C*-algebras A for different q with |q| # 0, 1 are isomorphic.

Proof. During this proof, we write A, for our C*-algebra with parameter g.

First, A; =~ Ay for ¢/ = ¢~ by mapping A; > @ > o' = a* € Ay and
Ag 3y y =q 'y € Ay. Routine computations show that o’ and y’ satisfy the
relations (1.1), so that Theorem 2.2 gives a unique morphism 4, — A, mapping
a +— o’ and y — y’. Doing this twice gives ¢ = g, «” = a and y” = y, so we get
an inverse for the morphism A, — A,. This completes the first step. It reduces to
the case 0 < |¢| < 1, which we assume from now on.

Secondly, we claim that A, = A, if 0 < |g| < 1. Equation (1.1) implies that y
is normal with ||y|| < 1. So we may use the functional calculus for continuous
functions on the closed unit disc D! = {1 € C : |A| < 1}.

We claim that

af(y) = f(@y) (2.3)

for all £ € C(D!). Indeed, the set B € C(D!) of functions satisfying (2.3) is a
norm-closed, unital subalgebra of C(D!). The last two equations in (1.1) say that B
contains the functions f(1) = A and f*(1) = A. Since these separate the points
of D!, the Stone—Weierstrass Theorem gives B = C(D1).

Let ¢ = ¢'? |¢| be the polar decomposition of ¢. For A € D', let

Aelflozialll - for A £ 0,

1) =
g 0 for A = 0.
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This is a homeomorphism of D! because we get the map g~ ! if we replace 6 by —0.
Thus y and y’ = g(y) generate the same C*-algebra. We also get g(gA) = |¢| g(X),
so inserting f = g and f = g in (2.3) gives

ay' = lq|y'a, a(y)* = lq| (y")*a.

Moreover, |g(A)| = |A| and hence |y’| = |y|. Thus we may replace y by y’ in
the first three equations of (1.1). As a result, @ and y’ satisfy the relations (1.1)
with |g| instead of g. Since g is a homeomorphism, an argument as in the first step
now shows that A; = A,|. Finally, [10, Theorem A2.2, page 180] shows that the
C*-algebras A, for 0 < g < 1 are isomorphic. O

3. Monoidal structure on T-C*-algebras

We are going to describe the monoidal category (CT,X¢) for { € T that is the
framework for our braided quantum groups. Monoidal categories are defined in [2].
The C*-algebra C(T) is a compact quantum group with comultiplication

5:C(T) - C(T) ® C(T), Iz Q z.

An object of Cf; is, by definition, a pair (X, pX) where X is a C*-algebra and
pX € Mor(X,C(T) ® X) makes the diagram

oX
X CTYe X
X Lé’@id 3.1
C(MRX—C(MRIC(T)® X
ide(T)®0%
commute and satisfies the Podles condition
pX(X)(C(T)®Ix) =C(T) ® X. (3.2)

This is equivalent to a continuous T -action on X by [9, Proposition 2.3].

Let X, Y be T-C*-algebras. The set of morphisms from X to Y in Cy is the set
Mor (X, Y) of T-equivariant morphisms X — Y. By definition, ¢ € Mor(X,Y)
is T -equivariant if and only if the following diagram commutes:

pX
X2-cmex

fpj lidcmr)@(ﬂ (3.3)

Y —>C(T)®Y
o
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Let X € C}. Anelement x € X is homogeneous of degree n € 7Z if
X _.n
o (x)=2"®x. (3.49)

The degree of a homogeneous element x is denoted by deg(x). Let X, be the set
of homogeneous elements of X of degree n. This is a closed linear subspace of X,
and X, X, € Xy4m and X,; = X_, for n,m € Z. Moreover, finite sums of
homogeneous elements are dense in X.

Let { € T. The monoidal functor X¢:C. x Cp — Cf is introduced as in [5].
We describe X K¢ Y using quantum tori. By definition, the C*-algebra C(T?) of
the quantum torus is the C*-algebra generated by two unitary elements U, V subject
to the relation UV = VU.

There are unique injective morphisms ¢1, ¢, € Mor(C(T), C(T §2)) withi;(z) = U
and 1,(z) = V. Define j; € Mor(X,C(T?) ® X ®Y)and j, € Mor(Y,C(T?) ®
X®Y)by

j1(x) = (11 ®idy) o pX (x) forall x € X,
J2(y) = (12 ® idy) 0 p¥ (») forall y €Y.

Letx € Xgandy € ¥;. Then j;(x) = UF®@x®1and jo(y) = V' ®1® y, so
that we get the commutation relation (1.5). This implies j1(X) j2(Y) = j2(Y)j1(X),
so that j1(X)j2(Y) is a C*-algebra. We define

XK Y = j1(X)j2(Y).

This construction agrees with the one in [5] because C(Tcz) =~ C(T) Mg C(T), see
also the end of [5, Section 5.2].

There is a unique continuous T -action p on X X, Y for which j; and j,
are T-equivariant, that is, j; € Morp (X, X K¢ Y) and j, € Morp (Y, X K¢ Y).
This action is constructed in a more general context in [6]. We always equip X X, Y
with this T -action and thus view it as an object of C7..

The construction X is a bifunctor; that is, T-equivariant morphisms m; €
Mort (X1, Y1) and 7, € Morr (X», Y>2) induce a unique T-equivariant morphism
T &; 75 € Morr (X, &g X2, 1 &g Y;) with

XR:Y

(1 W m2) (jx, (x1) x5 (x2)) = jy, (7w1(x1)) jy, (72(x2)) (3.5)

for all x; € X7 and x, € X5>.

Proposition 3.1. Let x € X and y € Y be homogeneous elements. Then

J1(X) 2(Y) = ja(Y) j1(x),
J1(X) j2(y) = j2(») j1(X).
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Proof. Equation (1.5) shows that
J1() 2(y) = j2(0) 1 (ngiegm(x))

for any x € X and any homogeneous y € Y. Since pgﬂegm is an automorphism

of X, this implies ji1(X)j2(y) = Jj2(¥)j1(X). Similarly, ji(x)j2(y) =
jz(,ogdeg(x) (¥))j1(x) for homogeneous x € X and any y € Y implies ji(x)j>(Y) =

J2(Y) j1(x). O

4. Proof of the main theorem

Let « and y be the distinguished elements of A. Let@ andy be the elements of AX; A
appearing on the right hand side of (1.6):
a = ji(e)j2(@) —qj1(¥)* j2(¥),
~ - 4.1
Y = j1(n)j2(e) + ji(@)* j2(y).

We have deg(a) = deg(a™) = 0, deg(y) = 1 and deg(y™*) = —1 by (2.2). Assume
g¢ = q. Using (1.5) we may rewrite (4.1) in the following form:
a = ja(a)j1(a) —qj2(y)j1 ()",
Y = j2(@)j1(y) + j2(y)j1(@)*.
Therefore,
at = ji@)* j2(@)* —qj1(y)j2(r)"
V=AW @) + i) 2 ()"
The four equations (4.1) and (4.2) together are equivalent to

(a —‘17*):(11(00 —61j1(7/)*) (jz(Ol) —QJ2(V)*) 4.3)
vy oo ) a@* J\j2y) e@)* ) '

4.2)

Lemma 2.1 shows that the matrix

‘= (3 B ) € Ma(A) (4.4)

is unitary. Hence so is the matrix j;(u)j»(u) on the right hand side of (4.3). Now
Lemma 2.1 shows that o,y € A K¢ A satisfy (2.1). So the universal property of A
in Theorem 2.2 gives a unique morphism A with A(x) =@ and A(y) =7.

The elements « and y are homogeneous of degrees 0 and 1, respectively, by (2.2).
Hence & and y are homogeneous of degree 0 and 1 as well. Since « and y generate A,
it follows that A is T-equivariant. This proves statement (1) in Theorem 1.1. Here
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. . AR A, . . . .
we use the action pA%¢4 of T with p3 ™ (1 (a1) j2(a2)) = j1(p2(a1)) ja(p2 (@2)).
We may rewrite (4.3) as

(A(a) —qA(V)*) _ (h () —qjl(y)*) (jz(a) —qu(y)*)
Aly)  Al)* ) a@* J\j2(y)  e@)* )
Identifying M, (A4) with M (C) ® A, we may further rewrite this as

(id® A)() = (([d® j1)u) (id® j2)u), (4.5)

where id is the identity map on M, (C).

Now we prove statement (2) in Theorem 1.1. Let ji, j», j3 be the natural
embeddings of A into 4 X A M, A. Since A is T-equivariant, we may form
A X id and id ¢ A. The values of id ® (A Mg id4) and id ® (id4 M; A) on the
right hand side of (4.5) are equal:

(id ® (A Rgidg) 0 A) (u) = (id ® j1) () (id ® j2)(u) (id ® j3)(u),
(id ® (ida Bz A)o A) (u) = (id ® j1)(w) (id ® j2)(u) (id ® j3)(u).

Thus (A K¢ id4) o A and (id4 R¢ A) o A coincide on @, y, a*, y*. Since the latter
generate A, this proves statement (2) of Theorem 1.1.
Now we prove statement (3). Let

S={xeA:ji(x) € A(A))2(A)}.
This is a closed subspace of A. We may also rewrite (4.5) as

(jl(a) —qjl(V)*)z(A(a) —qA(V)*) (jz(a) —qu()/)*)* 4.6)
ay @ Aly)  Aa)* 2 @) ' .

Thus a, y,a*, y* € S. Let x, y € S with homogeneous y. Proposition 3.1 gives
J1(xy) = j1(x)j1(y) € A(A4) j2(A) j1(y) = A(A) j1(¥) j2(A)
C A(A)A(A) j2(A) j2(A) = A(A) j2(A).

Thatis, xy € S. Therefore, all monomials in &, y, @™, y* belong to S, sothat S = A.
Hence j1(A4) € A(A)j2(A). Now AR A = j1(A)j2(A) € A(A) j2(A) j2(A) =
A(A) j2(A), which is one of the Podles conditions. Similarly, let

R={xeA: ja(x) € j1(A)A(A)}.
Then R is a closed subspace of A. We may also rewrite (4.5) as

(jz(a) —cu'z(y)*):(jl(a) —qjl(y)*)*(A(m —qA(y)*) @7
20 e Ay @t ) \Agy) At )
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Thus «, y,a*, y* € R. Let x, y € R with homogeneous x. Proposition 3.1 gives

J2(xy) = j2(x) j2(y) € ja(x) j1(A)A(A) = j1(A) j2(x)A(A)
C J1(A) j1(A)A(A)A(A) = j1(A)A(A).

Thus xy € R. Therefore, all monomials in «,y,a*, y* belong to R, so that
R = A, thatis, j>(A) € ji(A)A(A). This implies A X A = ji1(A)j2(A) S
Jj1(A)j1(A)A(A) = j1(A)A(A) and finishes the proof of Theorem 1.1.

S. The representation theory of SU,

For real ¢, the relations defining the compact quantum group SU, (2) are dictated if
we stipulate that the unitary matrix in Lemma 2.1 is a representation and that a certain
vector in the tensor square of this representation is invariant. Here we generalise this
to the complex case. This is how we found SU, (2).

Let ‘H be a T-Hilbert space, that is, a Hilbert space with a unitary representation
U:T — U(H). Forz € T and x € K(H) we define

P (x) = U,xU}.

Thus (K(H). p*) is a T-C*-algebra. Let (X, p*) € Obj(C}). Since o™ is
inner, the braided tensor product K(H) X X may (and will) be identified with
K(H) ® X; see [5, Corollary 5.18] and [5, Example 5.19].

Definition 5.1. Let H be a T-Hilbert space and let v € M(K(H) ® A) be a
unitary element which is T-invariant, that is, (pf(H) ® pX)(v) = v. We call v
a representation of SUy(2) on H if

(idy ® A)(v) = (idy ® j1)(v) (idy ® j2)(v).

Theorem 6.1 below will show that representations of SU,(2) are equivalent to
representations of a certain compact quantum group. This allows us to carry over
all the usual structural results about representations of compact quantum groups
to SU,(2). In particular, we may tensor representations. To describe this directly, we
need the following result:

Proposition 5.2. Let X, Y, U, T be T-C*-algebras. Letv € X @ T andw € Y Q U
be homogeneous elements of degree 0. Denote the natural embeddings by

X > XK Y, Y- XK,
U —>URT,  joT - URT.

Then (i1 ® j2)(v) and (i ® j1)(w) commute in (X M YV) @ (U X T).
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Proof. We may assume that v = x ® ¢ and w = y ® u for homogeneous elements
x € X,t €T,y €Y andu € U. Since deg(v) = deg(w) = 0, we get
deg(x) = —deg(?) and deg(y) = —deg(u). The following computation completes
the proof:

(i1 ® j2)(v) (2 ® j1)(w) = (i1(x) ® j2(1)) ((2(y) ® j1(u))
= i1(X)i2(y) ® jo(t) ji(u) = ¢oeet) dee)=dee®)dee@)y) ()i (x) ® jy () jo (1)
= (i2(y) ® j1(v)) (i1(x) ® j2(1)) = (i2 ® j1)(w) (i1 ® j2)(V). 0

Proposition 5.3. Let Hq and H, be T -Hilbert spaces and let v; € M(K(H;) ® A)
fori = 1,2 be representations of SUy(2). Define

v = (1 ®ida)(v1) (2 ® ida)(v2) € M(K(H1) Ke K(H2) ® A)

and identify K(H1) K¢ K(Hz) = K(H1 @ Ha). Thenv € M(K(H1 ® Hz) ® A) is
a representation of SU4(2) on H1 ® Hy. It is denoted v @ v, and called the tensor
product of v; and v,.

Proof. Ttis clear that v is T -invariant. We compute

(id3, @1, ® A)(v) = (i3, @1, ® A)((11 ®ida)(v1) (12 ® id4)(v2))
= (1 ® j1) (1) (1 ® j2)(v1) (2 ® j1)(v2) (12 ® j2)(v2)
= (11 ® j)(v1) (2 ® j1)(v2) (1 ® j2)(v1) (L2 ® j2)(v2)
= (id3, @, @ J1)(V) ([d3 01, @ J2)(V),

where the third step uses Proposition 5.2. O

Now consider the Hilbert space C2, let {eg, e;} be its canonical orthonormal
basis. We equip it with the representation U: T — U(C?) defined by U,eq = zeg
and U,e; = e;. Let pMZ(C) be the action implemented by U:

pM2((C) aiy a2 _ (4 zdy2
z a1 ax Zasy axp )’
where a;; € C. We claim that

a _ *
uz(y a7 )eMz(C)®A

is a representation of SU,(2) on C2. By Lemma 2.1, the relations defining A are
equivalent to u being unitary. The T -action on A is defined so that u is T -invariant.
The comultiplication is defined exactly so that u is a representation, see (4.5).
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The particular shape of u contains further assumptions, however. To explain
these, we consider an arbitrary compact quantum group G = (C(G), Ag) in C};
with a unitary representation

y = (‘C‘ fl) € My(C(C)).

suchthata, b, ¢, d generate the C*-algebra C(G). We assume that u is T -invariant for
the above T -action on C2. Thus deg(a) = deg(d) = 0, deg(h) = —1, deg(c) = 1.

Theorem 5.4. Let G be a braided compact quantum group with a unitary
representation u as above. Assume b # 0 and that the vector eg ® e; — qe1 ® eg €
C? ® C2 for q € C is invariant for the representationu @ u. Then g # 0, g¢ = q,
d = a*, b = —qc*, and there is a unique morphism : C(SUq(2)) — C(G) with
n(a) = a and w(y) = c. This is T -equivariant and satisfies (7w Mg ) 0 Agy, (2) =
Ag om.

Proof. The representation u @ u € My(C(G)) is given by Proposition 5.3, which
uses a canonical isomorphism M, (C) K¢ M»(C) = My (C). This comes from the
following standard representation of M(C) K¢ M2(C) on C2 @ C2. For T, S €
M, (C) of degree k, [ and x,y € C? of degree m,n, we let 11 (T)i2(S)(x ® y) =

—I
¢ "Tx® Sy. By construction, u @ u is (1 ® ide(G))(#) - (12 ® ideG)) (u). So we
may rewrite the invariance of eg ® ¢1 — ge; ® e as

(11 ®idc(@)) (™) (eo ®e1 —ger Q@ eg) = (12 Qideg)) (1) (eo ® e —ge ®eg) (5.1)
in C? ® C? ® C(G). The left and right hand sides of (5.1) are

oRe1Ra*+e1®e; ®b* —geg Qe @ c* —qeg ®eg@d™,
eo®e@b+e®e; ®d—qer ®ey®a—qley ®e; ®c,

respectively. These are equal if and only if b = —gc*, d = a*, and b* = —gCc.
Since b # 0, this implies ¢ # 0 and g¢ = ¢, and u has the form in Lemma 2.1.
Since u is a representation, it is unitary. So a, ¢ satisfy the relations defining SU,(2)
and Theorem 2.2 gives the unique morphism 7. The conditions on u in Definition 5.1
imply that 7 is T-equivariant and compatible with comultiplications. O

The proof also shows that g is uniquely determined by the condition that eg ® e; —
ge1 ® eg should be SU,(2)-invariant. An invariant vector for SU,(2) should also
be homogeneous for the T -action. There are three cases of homogeneous vectors in
C?® CZ% multiples of ey ® e, multiples of e; ® ey, and linear combinations of
eo ® e1 and e; ® eq. If a non-zero multiple of ¢; ® e; for i, j € {0, 1} is invariant,
then the representation u is reducible. Ruling out such degenerate cases, we may
normalise the invariant vector to have the form ey ® e; — ge; ® e assumed in
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Theorem 5.4. Roughly speaking, SU,(2) is the universal family of braided quantum
groups generated by a 2-dimensional representation with an invariant vector in u @ u.

Up to scaling, the basis ey, €7 is the unique one consisting of joint eigenvectors of
the T -action with degrees 1 and 0. Hence the braided quantum group (C(SU,(2)), A)
determines g uniquely. There is, however, one extra symmetry that changes the
T -action on C(SUy(2)) and that corresponds to the permutation of the basis e, e;.
Given a T -algebra A, let S(A) be the same C*-algebra with the T -action by pZS(A) =
(o)1, Since the commutation relation (1.5) is symmetric in k, [, there is a unique
isomorphism

S(AR; B) = S(A) R S(B),  ji(a) = ji(a), ja(b) = ja(b).

Hence the comultiplication on C(SU,(2)) is one on S(C(SU,(2))) as well.
Proposition 5.5. The braided quantum groups S(C(SUy(2))) and C(SU;(2)) for
qg= J_l are isomorphic as braided quantum groups.

Proof. Let a, y be the standard generators of A; = C(SUy(2)) and let &, y be the
standard generators of A;. We claim that there is an isomorphism ¢: A; — Aj that
maps @ — @™ and y — ¢y* and that is an isomorphism of braided quantum groups
from S(A4) to A7. Lemma 2.1 implies that the matrix

(0 1) ( —é?*) (0 —1)=(&* —f)z(w(a) <P(—61V*))
-1 0)\y & J\1 0© qv* « o(y)  o@®)

is unitary. Now Lemma 2.1 and Theorem 2.2 give the desired morphism ¢. Since

the inverse of ¢ may be constructed in the same way, ¢ is an isomorphism. On

generators, it reverses the grading, so it is T-equivariant as a map S(A4,) — A4;.
Let A and A denote the comultiplications on S (A4) and A;. We compute

(¢ B¢ @) Ada) = (¢ Be 9)(j1(@) ja(@) = gj1(r*)j2(¥))
= j1(p(@)) j2(p(@) — gj1(0(y ™)) j2(@(¥))
= j1(@")j2@*) — G j1(7) j2(7%),
Alp(@)) = A@*) = jo@* j1@* —q~ " 2 (M * 1 ()
= j1(@)" j2(&)* — ¢ 1 (P j2(P)*.

]

These are equal because § = g~ ' = ¢~'¢. Similarly, (¢ X @)A(y) = Ap(y)).
Thus ¢ is an isomorphism of braided quantum groups. 0

6. The semidirect product quantum group

A quantum analogue of the semidirect product construction for groups turns the
braided quantum group SU,(2) into a genuine compact quantum group (B, Ap),
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see [6, Section 6]. Here B is the universal C*-algebra with three generators a, y, z
with the SU, (2)-relations for o and y and

zaz* = a,

* _ e—1
zyzt =§y,
zz¥ =z =1;

the comultiplication is defined by

Ap(z) =zQ® z,
Ap(@) =a®a—qy*zQy,
Ap(y) =y®a+a*z®y.

There are two embeddings ¢, 12: A = B ® B defined by

Ha)=a®l ) =1 «a,
u@y)=ye®l ) =z9y

Homogeneous elements x, y € A satisfy

0(X)ia(y) = (B D5 (y)0) (x). (6.1)
Thus we may rewrite the comultiplication as

Ap(z) =z ®z,
Ap(ar) = tp(a)iz(e) — gui(y)*ia(y),
Ap(y) = u(y)a(e) + ti(e)*i2(y).

In particular, Ap respects the commutation relations for («, y, z), so it is a well-
defined *-homomorphism B — B ® B. It is routine to check the cancellation
conditions (1.4) for B, so (B, Ap) is a compact quantum group.

This is a compact quantum group with a projection as in [7,8]. Here the
projection 7: B — B is the unique *-homomorphism with () = 1, 7(y) = 0
and 7 (z) = z; this is an idempotent bialgebra morphism. Its “image” is the copy
of C(T) generated by z, its “kernel” is the copy of A generated by « and y.

For ¢ = 1, B =~ C(T x SU(2)) as a C*-algebra, which is commutative.
The representation on C? combines the standard embedding of SU(2) and the
representation of T mapping z to the diagonal matrix with entries z, 1. This gives
a homeomorphism T x SU(2) = U(2). So (B, Ap) is the group U(2), written as a
semidirect product of SU(2) and T'.

For ¢ # 1, (B, Ap) is the coopposite of the quantum U, (2) group described
previously by Zhang and Zhao in [12]: the substitutionsa = «*,b = y*and D = z*
turn our generators and relations into those in [12], and the comultiplications differ
only by a coordinate flip.
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Theorem 6.1. Let U € M(K(H) ® C(T)) be a unitary representation of T on a
Hilbert space H. There is a bijection between representations of SUy(2) on H and
representations of (B, Ag) on H that restrict to the given representation on T

Proof. Let v € M(K(H) ® A) be a unitary representation of SU;(2) on H.
Since B contains copies of A and C(T), we may view u = vU™ as an element
of M(C(H) ® B). The T -invariance of v,

(id ® p*)(v) = Uthv1aUsz
and the formula for 1, (which is basically given by the action p) show that
Ui2(id ® 1) (v)Uyy = vy3.
Using (id ® t)(v) = v12, we conclude that u is a unitary representation of (B, Ap):
(id ® Ap)(u) = v12(id ® 1) (VUL U = v12U 013U 5 = uppuys.

Going back and forth between u and v is the desired bijection. O
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