J. Noncommut. Geom. 10 (2016), 1611–1625 DOI 10.4171/JNCG/268

Journal of Noncommutative Geometry © European Mathematical Society

Braided quantum SU(2) groups

Paweł Kasprzak,* Ralf Meyer, Sutanu Roy** and Stanisław Lech Woronowicz[‡]

Abstract. We construct a family of q-deformations of SU(2) for complex parameters $q \neq 0$. For real q, the deformation coincides with Woronowicz' compact quantum $SU_q(2)$ group. For $q \notin \mathbb{R}$, SU_q(2) is only a braided compact quantum group with respect to a certain tensor product functor for $\overline{C^*}$ -algebras with an action of the circle group.

Mathematics Subject Classification (2010). 81R50; 46L55, 46L06. *Keywords.* Braided compact quantum group, $SU_a(2)$, $U_a(2)$.

1. Introduction

The q-deformations of SU(2) for real deformation parameters $0 < q < 1$ discovered in [\[10\]](#page-14-0) are among the first and most important examples of compact quantum groups. Here we construct a family of q-deformations of SU(2) for *complex* parameters $q \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$. For $q \notin \mathbb{R}$, $SU_q(2)$ is not a compact quantum group, but a braided compact quantum group in a suitable tensor category.

A compact quantum group G as defined in [\[11\]](#page-14-1) is a pair $\mathbb{G} = (A, \Delta)$ where $\Delta: A \rightarrow A \otimes A$ is a coassociative morphism satisfying the cancellation law [\(1.4\)](#page-1-0) below. The C*-algebra A is viewed as the algebra of continuous functions on \mathbb{G} .

The theory of compact quantum groups is formulated within the category C^* of C^* -algebras. This category with the minimal tensor functor \otimes is a monoidal category (see [\[2\]](#page-13-0)). A more general theory may be formulated within a monoidal category (D^*, \boxtimes) , where D^* is a suitable category of C^{*}-algebras with additional structure and $\boxtimes : \mathcal{D}^* \times \mathcal{D}^* \to \mathcal{D}^*$ is a monoidal bifunctor on \mathcal{D}^* . Braided Hopf algebras may be defined in braided monoidal categories (see [\[4,](#page-13-1) Definition 9.4.5]). The braiding becomes unnecessary when we work in categories of C^* -algebras.

Let A and B be C*-algebras. The multiplier algebra of B is denoted by $M(B)$. A *morphism* $\pi \in \text{Mor}(A, B)$ is a *-homomorphism $\pi: A \to \text{M}(B)$ with $\pi(A)B = B$. If \overline{A} and \overline{B} are unital, a morphism is simply a unital *-homomorphism.

^{*}Partially supported by the NCN (National Centre of Science) grant 2015/17/B/ST1/00085.

Supported by a Fields–Ontario Postdoctoral fellowship.

Supported by the Alexander von Humboldt Stiftung.

Let T be the group of complex numbers of modulus 1 and let $\mathcal{C}_{\mathbb{T}}^*$ T^* be the category of \mathbb{T} -C*-algebras; its objects are C*-algebras with an action of \mathbb{T} , arrows are T-equivariant morphisms. We shall use a family of monoidal structures \boxtimes_{ζ} on $\mathcal{C}_{\mathbb{T}}^*$ T parametrised by $\zeta \in \mathbb{T}$, which is defined as in [\[5\]](#page-13-2).

The C^{*}-algebra A of $SU_q(2)$ is defined as the universal unital C^{*}-algebra generated by two elements α , γ subject to the relations

$$
\begin{cases}\n\alpha^*\alpha + \gamma^*\gamma = I, \\
\alpha\alpha^* + |q|^2 \gamma^*\gamma = I, \\
\gamma\gamma^* = \gamma^*\gamma, \\
\alpha\gamma = \overline{q}\gamma\alpha, \\
\alpha\gamma^* = q\gamma^*\alpha.\n\end{cases} (1.1)
$$

For real q , the algebra A coincides with the algebra of continuous functions on the quantum SU_q(2) group described in [\[10\]](#page-14-0): $A = C(SU_q(2))$. Then there is a unique morphism $\Delta: A \to A \otimes A$ with

$$
\Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma,
$$

\n
$$
\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.
$$
\n(1.2)

It is coassociative, that is,

$$
(\Delta \otimes id_A) \circ \Delta = (id_A \otimes \Delta) \circ \Delta, \tag{1.3}
$$

and has the following cancellation property:

$$
A \otimes A = \Delta(A)(A \otimes I),
$$

\n
$$
A \otimes A = \Delta(A)(I \otimes A);
$$
\n(1.4)

here and below, EF for two closed subspaces E and F of a C^* -algebra denotes the norm-closed linear span of the set of products ef for $e \in E$, $f \in F$.

If q is not real, then the operators on the right hand sides of (1.2) do not satisfy the relations [\(1.1\)](#page-1-2), so there is no morphism Δ satisfying [\(1.2\)](#page-1-1). Instead, (1.2) defines a T-equivariant morphism $A \to A \boxtimes_{\xi} A$ for the monoidal functor \boxtimes_{ξ} with $\zeta = q/\overline{q}$. This morphism in $\ddot{C}_{\mathbb{T}}^*$ $*$ satisfies appropriate analogues of the coassociativity and cancellation laws (1.3) and (1.4) , so we get a braided compact quantum group. Here the action of T on A is defined by $\rho_z(\alpha) = \alpha$ and $\rho_z(\gamma) = z\gamma$ for all $z \in T$.

For $X, Y \in Obj(\mathcal{C}^*)$, $X \otimes Y$ contains commuting copies $X \otimes I_Y$ of X and $I_X \otimes Y$ of Y with $X \otimes Y = (X \otimes I_Y)(I_X \otimes Y)$. Similarly, $X \boxtimes_{\xi} Y$ for $X, Y \in C^*$ ^{*}/_T is a C^{*}-algebra with injective morphisms $j_1 \in \text{Mor}(X, X \boxtimes_{\zeta} Y)$ and $j_2 \in \text{Mor}(Y, X \boxtimes_{\xi} Y)$ such that $X \boxtimes_{\xi} Y = j_1(X)j_2(Y)$. For T-homogeneous elements $x \in X_k$ and $y \in Y_l$ (as defined in [\(3.4\)](#page-5-0)), we have the commutation relation

$$
j_1(x)j_2(y) = \zeta^{kl}j_2(y)j_1(x) \tag{1.5}
$$

The following theorem contains the main result of this paper:

Theorem 1.1. Let $q \in \mathbb{C} \setminus \{0\}$ and $\zeta = q/\overline{q}$. Then

(1) *there is a unique* \mathbb{T} -equivariant morphism $\Delta \in \text{Mor}(A, A \boxtimes_{\xi} A)$ with

$$
\Delta(\alpha) = j_1(\alpha) j_2(\alpha) - q j_1(\gamma)^* j_2(\gamma),
$$

\n
$$
\Delta(\gamma) = j_1(\gamma) j_2(\alpha) + j_1(\alpha)^* j_2(\gamma);
$$
\n(1.6)

(2) Δ *is coassociative, that is,*

$$
(\Delta \boxtimes_{\zeta} id_{A}) \circ \Delta = (id_{A} \boxtimes_{\zeta} \Delta) \circ \Delta;
$$

(3) Δ *obeys the cancellation law*

$$
j_1(A)\Delta(A) = \Delta(A) j_2(A) = A \boxtimes_{\zeta} A.
$$

We also describe some important features of the representation theory of $SU_a(2)$ to explain the definition of $SU_a(2)$, and we relate $SU_a(2)$ to the quantum $U(2)$ groups defined by Zhang and Zhao in [\[12\]](#page-14-2).

Braided Hopf algebras that deform $SL(2, \mathbb{C})$ are already described in [\[3\]](#page-13-3). We could, however, find no precise relationship between Majid's braided Hopf algebra BSL(2) and our braided compact quantum group $SU_q(2)$.

2. The algebra of $SU_q(2)$

The following elementary lemma explains what the defining relations [\(1.1\)](#page-1-2) mean:

Lemma 2.1. *Two elements* α *and* γ *of* a C^{*}-algebra satisfy the relations [\(1.1\)](#page-1-2) *if and only if the following matrix is unitary:*

$$
\begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix}
$$

There are at least two ways to introduce a C^* -algebra with given generators and relations. One may consider the algebra A of all non-commutative polynomials in the generators and their adjoints and take the largest C^* -seminorm on $\tilde{\mathcal{A}}$ vanishing on the given relations. The set $\mathfrak N$ of elements with vanishing seminorm is an ideal in A. The seminorm becomes a norm on A/\mathfrak{N} . Completing A/\mathfrak{N} with respect to this norm gives the desired C^* -algebra A. Another way is to consider the operator domain consisting of all families of operators satisfying the relations. Then A is the algebra of all continuous operator functions on that domain (see $[1]$). Applying one of these procedures to the relations [\(1.1\)](#page-1-2) gives a C^* -algebra A with two distinguished elements $\alpha, \gamma \in A$ that is universal in the following sense:

Theorem 2.2. Let \widetilde{A} be a C^* -algebra with two elements $\widetilde{\alpha}, \widetilde{\gamma} \in \widetilde{A}$ satisfying

$$
\begin{cases}\n\tilde{\alpha}^* \tilde{\alpha} + \tilde{\gamma}^* \tilde{\gamma} = \mathbf{I}, \\
\tilde{\alpha} \tilde{\alpha}^* + |q|^2 \tilde{\gamma}^* \tilde{\gamma} = \mathbf{I}, \\
\tilde{\gamma} \tilde{\gamma}^* = \tilde{\gamma}^* \tilde{\gamma}, \\
\tilde{\alpha} \tilde{\gamma} = \overline{q} \tilde{\gamma} \tilde{\alpha}, \\
\tilde{\alpha} \tilde{\gamma}^* = q \tilde{\gamma}^* \tilde{\alpha}.\n\end{cases}
$$
\n(2.1)

Then there is a unique morphism $\rho \in \text{Mor}(A, \widetilde{A})$ *with* $\rho(\alpha) = \widetilde{\alpha}$ *and* $\rho(\gamma) = \widetilde{\gamma}$. \Box

The elements $\widetilde{\alpha} = I_{C(T)} \otimes \alpha$ and $\widetilde{\gamma} = z \otimes \gamma$ of $C(T) \otimes A$ satisfy [\(2.1\)](#page-3-0). Here $z \in C(\mathbb{T})$ denotes the coordinate function on \mathbb{T} . (Later, we also denote elements of $\mathbb T$ by z.) Theorem [2.2](#page-2-0) gives a unique morphism $\rho^A \in \text{Mor}(A, \text{C}(\mathbb T) \otimes A)$ with

$$
\rho(\alpha) = I_{C(T)} \otimes \alpha, \n\rho(\gamma) = z \otimes \gamma.
$$
\n(2.2)

This is a continuous $\mathbb T$ -action, so we may view (A, ρ^A) as an object in the category $\mathcal{C}^*_\mathbb T$ T described in detail in the next section.

Theorem 2.3. *The* C^* -algebras A for different q with $|q| \neq 0, 1$ are isomorphic.

Proof. During this proof, we write A_q for our C^{*}-algebra with parameter q.

First, $A_q \cong A_{q'}$ for $q' = q^{-1}$ by mapping $A_q \ni \alpha \mapsto \alpha' = \alpha^* \in A_{q'}$ and $A_q \ni \gamma \mapsto \gamma' = q^{-1}\gamma \in A_{q'}$. Routine computations show that α' and γ' satisfy the relations [\(1.1\)](#page-1-2), so that Theorem [2.2](#page-2-0) gives a unique morphism $A_q \rightarrow A_{q'}$ mapping $\alpha \mapsto \alpha'$ and $\gamma \mapsto \gamma'$. Doing this twice gives $q'' = q$, $\alpha'' = \alpha$ and $\gamma'' = \gamma$, so we get an inverse for the morphism $A_q \rightarrow A_{q'}$. This completes the first step. It reduces to the case $0 < |q| < 1$, which we assume from now on.

Secondly, we claim that $A_q \cong A_{|q|}$ if $0 < |q| < 1$. Equation [\(1.1\)](#page-1-2) implies that γ is normal with $\|\gamma\| \leq 1$. So we may use the functional calculus for continuous functions on the closed unit disc $\mathbb{D}^1 = {\lambda \in \mathbb{C} : |\lambda| \leq 1}.$

We claim that

$$
\alpha f(\gamma) = f(\overline{q}\gamma)\alpha \tag{2.3}
$$

for all $f \in C(\mathbb{D}^1)$. Indeed, the set $B \subseteq C(\mathbb{D}^1)$ of functions satisfying [\(2.3\)](#page-3-1) is a norm-closed, unital subalgebra of $C(\mathbb{D}^1)$. The last two equations in [\(1.1\)](#page-1-2) say that B contains the functions $f(\lambda) = \lambda$ and $f^*(\lambda) = \overline{\lambda}$. Since these separate the points of \mathbb{D}^1 , the Stone–Weierstrass Theorem gives $B = C(\mathbb{D}^1)$.

Let $q = e^{i\theta} |q|$ be the polar decomposition of q. For $\lambda \in \mathbb{D}^1$, let

$$
g(\lambda) = \begin{cases} \lambda e^{i\theta \log_{|q|} |\lambda|} & \text{for } \lambda \neq 0, \\ 0 & \text{for } \lambda = 0. \end{cases}
$$

This is a homeomorphism of \mathbb{D}^1 because we get the map g^{-1} if we replace θ by $-\theta$. Thus γ and $\gamma' = g(\gamma)$ generate the same C*-algebra. We also get $g(\overline{q}\lambda) = |q| g(\lambda)$, so inserting $f = g$ and $f = \overline{g}$ in [\(2.3\)](#page-3-1) gives

$$
a\gamma' = |q|\gamma'\alpha, \qquad a(\gamma')^* = |q|(\gamma')^*\alpha.
$$

Moreover, $|g(\lambda)| = |\lambda|$ and hence $|\gamma'| = |\gamma|$. Thus we may replace γ by γ' in the first three equations of [\(1.1\)](#page-1-2). As a result, α and γ' satisfy the relations (1.1) with |q| instead of q. Since g is a homeomorphism, an argument as in the first step now shows that $A_q \cong A_{|q|}$. Finally, [\[10,](#page-14-0) Theorem A2.2, page 180] shows that the C*-algebras A_q for $0 < q < 1$ are isomorphic. \Box

3. Monoidal structure on T**-C -algebras**

We are going to describe the monoidal category $(\mathcal{C}_{\mathbb{T}}^*)$ $(\mathcal{L}^*, \boxtimes_{\zeta})$ for $\zeta \in \mathbb{T}$ that is the framework for our braided quantum groups. Monoidal categories are defined in [\[2\]](#page-13-0).

The C*-algebra $C(T)$ is a compact quantum group with comultiplication

$$
\delta: C(\mathbb{T}) \to C(\mathbb{T}) \otimes C(\mathbb{T}), \qquad z \mapsto z \otimes z.
$$

An object of $C^*_{\mathbb{T}}$ ^{*}/_T is, by definition, a pair (X, ρ^X) where X is a C^{*}-algebra and $\rho^X \in \text{Mor}(X, \text{C}(\mathbb{T}) \otimes X)$ makes the diagram

$$
X \longrightarrow C(\mathbb{T}) \otimes X
$$

\n
$$
\rho^{X} \downarrow \qquad \qquad \downarrow \delta \otimes id
$$

\n
$$
C(\mathbb{T}) \otimes X \longrightarrow C(\mathbb{T}) \otimes C(\mathbb{T}) \otimes X
$$

\n
$$
(3.1)
$$

\n
$$
C(\mathbb{T}) \otimes X \longrightarrow \text{Id}_{C(\mathbb{T}) \otimes \rho^{X}} C(\mathbb{T}) \otimes C(\mathbb{T}) \otimes X
$$

commute and satisfies the *Podleś condition*

$$
\rho^X(X)(C(\mathbb{T}) \otimes I_X) = C(\mathbb{T}) \otimes X. \tag{3.2}
$$

This is equivalent to a continuous $\mathbb T$ -action on X by [\[9,](#page-14-3) Proposition 2.3].

Let X, Y be \mathbb{T} -C*-algebras. The set of morphisms from X to Y in $\mathcal{C}_{\mathbb{T}}^*$ T^* is the set $Mor_{\mathbb{T}}(X, Y)$ of \mathbb{T} -equivariant morphisms $X \to Y$. By definition, $\varphi \in \mathcal{M}$ or (X, Y) is T-equivariant if and only if the following diagram commutes:

$$
X \xrightarrow{\rho^X} C(\mathbb{T}) \otimes X
$$

\n
$$
\varphi \downarrow \qquad \qquad \downarrow id_{C(\mathbb{T})} \otimes \varphi
$$

\n
$$
Y \xrightarrow{\rho^Y} C(\mathbb{T}) \otimes Y
$$

\n(3.3)

Let $X \in C^*$ $\mathcal{L}_{\mathbb{T}}^*$. An element $x \in X$ is *homogeneous of degree* $n \in \mathbb{Z}$ if

$$
\rho^X(x) = z^n \otimes x. \tag{3.4}
$$

The degree of a homogeneous element x is denoted by $deg(x)$. Let X_n be the set of homogeneous elements of X of degree n . This is a closed linear subspace of X , and $X_n X_m \subseteq X_{n+m}$ and $X_n^* = X_{-n}$ for $n, m \in \mathbb{Z}$. Moreover, finite sums of homogeneous elements are dense in X.

Let $\zeta \in \mathbb{T}$. The monoidal functor $\boxtimes_{\xi}: \mathcal{C}_{\mathbb{T}}^* \times \mathcal{C}_{\mathbb{T}}^* \to \mathcal{C}_{\mathbb{T}}^*$ $\frac{1}{\mathbb{T}}$ is introduced as in [\[5\]](#page-13-2). We describe $X \boxtimes_{\xi} Y$ using quantum tori. By definition, the C*-algebra $C(\mathbb{T}_{\xi}^2)$ of the quantum torus is the C*-algebra generated by two unitary elements U, V subject to the relation $UV = \zeta VU$.

There are unique injective morphisms $\iota_1, \iota_2 \in \text{Mor}(\mathbb{C}(\mathbb{T}), \mathbb{C}(\mathbb{T}_{\xi}^2))$ with $\iota_1(z) = U$ and $\iota_2(z) = V$. Define $j_1 \in \text{Mor}(X, \text{C}(\mathbb{T}_\xi^2) \otimes X \otimes Y)$ and $j_2 \in \text{Mor}(Y, \text{C}(\mathbb{T}_\xi^2) \otimes Y)$ $X \otimes Y$ by

$$
j_1(x) = (\iota_1 \otimes id_X) \circ \rho^X(x) \quad \text{for all } x \in X,
$$

$$
j_2(y) = (\iota_2 \otimes id_Y) \circ \rho^Y(y) \quad \text{for all } y \in Y.
$$

Let $x \in X_k$ and $y \in Y_l$. Then $j_1(x) = U^k \otimes x \otimes 1$ and $j_2(y) = V^l \otimes 1 \otimes y$, so that we get the commutation relation [\(1.5\)](#page-1-4). This implies $j_1(X)$ $j_2(Y) = j_2(Y)$ $j_1(X)$, so that $j_1(X)j_2(Y)$ is a C^{*}-algebra. We define

$$
X \boxtimes_{\zeta} Y = j_1(X) j_2(Y).
$$

This construction agrees with the one in [\[5\]](#page-13-2) because $C(\mathbb{T}_{\xi}^2) \cong C(\mathbb{T}) \boxtimes_{\xi} C(\mathbb{T})$, see also the end of [\[5,](#page-13-2) Section 5.2].

There is a unique continuous \mathbb{T} -action $\rho^{X \boxtimes_{\zeta} Y}$ on $X \boxtimes_{\zeta} Y$ for which j_1 and j_2 are T-equivariant, that is, $j_1 \in \text{Mor}_{\mathbb{T}}(X, X \boxtimes_{\xi} Y)$ and $j_2 \in \text{Mor}_{\mathbb{T}}(Y, X \boxtimes_{\xi} Y)$. This action is constructed in a more general context in [\[6\]](#page-13-5). We always equip $X \boxtimes_{\xi} Y$ with this T-action and thus view it as an object of $C^*_{\mathbb{T}}$ \mathbb{T} .

The construction \boxtimes_{ζ} is a bifunctor; that is, T-equivariant morphisms $\pi_1 \in$ $Mor_{\mathbb{T}}(X_1, Y_1)$ and $\pi_2 \in Mor_{\mathbb{T}}(X_2, Y_2)$ induce a unique \mathbb{T} -equivariant morphism $\pi_1 \boxtimes_{\xi} \pi_2 \in \text{Mor}_{\mathbb{T}}(X_1 \boxtimes_{\xi} X_2, Y_1 \boxtimes_{\xi} Y_2)$ with

$$
(\pi_1 \boxtimes_{\xi} \pi_2)(j_{X_1}(x_1)j_{X_2}(x_2)) = j_{Y_1}(\pi_1(x_1))j_{Y_2}(\pi_2(x_2))
$$
\n(3.5)

for all $x_1 \in X_1$ and $x_2 \in X_2$.

Proposition 3.1. *Let* $x \in X$ *and* $y \in Y$ *be homogeneous elements. Then*

$$
j_1(x)j_2(Y) = j_2(Y)j_1(x),
$$

$$
j_1(X)j_2(y) = j_2(y)j_1(X).
$$

Proof. Equation [\(1.5\)](#page-1-4) shows that

$$
j_1(x)j_2(y) = j_2(y)j_1(\rho_{\xi^{\deg(y)}}^X(x))
$$

for any $x \in X$ and any homogeneous $y \in Y$. Since ρ_{ϵ}^X $d_{\zeta^{\deg(y)}}$ is an automorphism of X, this implies $j_1(X)j_2(y) = j_2(y)j_1(X)$. Similarly, $j_1(x)j_2(y) =$ $j_2(\rho_{\zeta^{\deg(x)}}^Y(y))j_1(x)$ for homogeneous $x \in X$ and any $y \in Y$ implies $j_1(x)j_2(Y) =$ $j_2(Y)j_1(x)$. \Box

4. Proof of the main theorem

Let α and γ be the distinguished elements of A. Let $\widetilde{\alpha}$ and $\widetilde{\gamma}$ be the elements of $A \boxtimes_{\zeta} A$ appearing on the right hand side of (1.6) :

$$
\widetilde{\alpha} = j_1(\alpha) j_2(\alpha) - q j_1(\gamma)^* j_2(\gamma), \n\widetilde{\gamma} = j_1(\gamma) j_2(\alpha) + j_1(\alpha)^* j_2(\gamma).
$$
\n(4.1)

We have $deg(\alpha) = deg(\alpha^*) = 0$, $deg(\gamma) = 1$ and $deg(\gamma^*) = -1$ by [\(2.2\)](#page-3-2). Assume $\overline{q}\zeta = q$. Using [\(1.5\)](#page-1-4) we may rewrite [\(4.1\)](#page-6-0) in the following form:

$$
\widetilde{\alpha} = j_2(\alpha) j_1(\alpha) - \overline{q} j_2(\gamma) j_1(\gamma)^*,
$$

$$
\widetilde{\gamma} = j_2(\alpha) j_1(\gamma) + j_2(\gamma) j_1(\alpha)^*.
$$

Therefore,

$$
\widetilde{\alpha}^* = j_1(\alpha)^* j_2(\alpha)^* - qj_1(\gamma) j_2(\gamma)^*,
$$

$$
\widetilde{\gamma}^* = j_1(\gamma)^* j_2(\alpha)^* + j_1(\alpha) j_2(\gamma)^*.
$$
\n(4.2)

The four equations (4.1) and (4.2) together are equivalent to

$$
\begin{pmatrix}\n\widetilde{\alpha} & -q\widetilde{\gamma}^* \\
\widetilde{\gamma} & \widetilde{\alpha}^*\n\end{pmatrix} = \begin{pmatrix}\nj_1(\alpha) & -qj_1(\gamma)^* \\
j_1(\gamma) & j_1(\alpha)^*\n\end{pmatrix} \begin{pmatrix}\nj_2(\alpha) & -qj_2(\gamma)^* \\
j_2(\gamma) & j_2(\alpha)^*\n\end{pmatrix}.
$$
\n(4.3)

Lemma [2.1](#page-2-2) shows that the matrix

$$
u = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \in M_2(A) \tag{4.4}
$$

is unitary. Hence so is the matrix $j_1(u)j_2(u)$ on the right hand side of [\(4.3\)](#page-6-2). Now Lemma [2.1](#page-2-2) shows that $\widetilde{\alpha}, \widetilde{\gamma} \in A \boxtimes_{\zeta} A$ satisfy [\(2.1\)](#page-3-0). So the universal property of A in Theorem 2.2 gives a unique membiem A with $\Lambda(\alpha) = \widetilde{\alpha}$ and $\Lambda(\alpha) = \widetilde{\alpha}$. in Theorem [2.2](#page-2-0) gives a unique morphism Δ with $\Delta(\alpha) = \tilde{\alpha}$ and $\Delta(\gamma) = \tilde{\gamma}$.

The elements α and γ are homogeneous of degrees 0 and 1, respectively, by [\(2.2\)](#page-3-2). Hence $\tilde{\alpha}$ and $\tilde{\gamma}$ are homogeneous of degree 0 and 1 as well. Since α and γ generate A, it follows that Δ is T-equivariant. This proves statement (1) in Theorem [1.1.](#page-2-3) Here

we use the action $\rho^{A \boxtimes_{\xi} A}$ of \mathbb{T} with $\rho_z^{A \boxtimes_{\xi} A}(j_1(a_1)j_2(a_2)) = j_1(\rho_z^A(a_1))j_2(\rho_z^A(a_2)).$ We may rewrite (4.3) as

$$
\begin{pmatrix}\n\Delta(\alpha) & -q\Delta(\gamma)^* \\
\Delta(\gamma) & \Delta(\alpha)^*\n\end{pmatrix} = \begin{pmatrix}\nj_1(\alpha) & -qj_1(\gamma)^* \\
j_1(\gamma) & j_1(\alpha)^*\n\end{pmatrix} \begin{pmatrix}\nj_2(\alpha) & -qj_2(\gamma)^* \\
j_2(\gamma) & j_2(\alpha)^*\n\end{pmatrix}.
$$

Identifying $M_2(A)$ with $M_2(\mathbb{C}) \otimes A$, we may further rewrite this as

$$
(\mathrm{id} \otimes \Delta)(u) = (\mathrm{id} \otimes j_1)(u) (\mathrm{id} \otimes j_2)(u), \tag{4.5}
$$

where id is the identity map on $M_2(\mathbb{C})$.

Now we prove statement (2) in Theorem [1.1.](#page-2-3) Let j_1, j_2, j_3 be the natural embeddings of A into $A \boxtimes_{\zeta} A \boxtimes_{\zeta} A$. Since Δ is T-equivariant, we may form $\Delta \boxtimes_{\xi}$ id and id $\boxtimes_{\xi} \Delta$. The values of id $\otimes (\Delta \boxtimes_{\xi} id_A)$ and id $\otimes (id_A \boxtimes_{\xi} \Delta)$ on the right hand side of (4.5) are equal:

$$
(\mathrm{id} \otimes (\Delta \boxtimes_{\zeta} \mathrm{id}_{A}) \circ \Delta) (u) = (\mathrm{id} \otimes j_{1})(u) (\mathrm{id} \otimes j_{2})(u) (\mathrm{id} \otimes j_{3})(u),
$$

$$
(\mathrm{id} \otimes (\mathrm{id}_A \boxtimes_{\zeta} \Delta) \circ \Delta) (u) = (\mathrm{id} \otimes j_1)(u) (\mathrm{id} \otimes j_2)(u) (\mathrm{id} \otimes j_3)(u).
$$

Thus $(\Delta \boxtimes_{\xi} id_{A}) \circ \Delta$ and $(id_{A} \boxtimes_{\xi} \Delta) \circ \Delta$ coincide on $\alpha, \gamma, \alpha^{*}, \gamma^{*}$. Since the latter generate A, this proves statement (2) of Theorem [1.1.](#page-2-3)

Now we prove statement (3). Let

$$
S = \{ x \in A : j_1(x) \in \Delta(A) j_2(A) \}.
$$

This is a closed subspace of A. We may also rewrite (4.5) as

$$
\begin{pmatrix} j_1(\alpha) & -qj_1(\gamma)^* \\ j_1(\gamma) & j_1(\alpha)^* \end{pmatrix} = \begin{pmatrix} \Delta(\alpha) & -q\Delta(\gamma)^* \\ \Delta(\gamma) & \Delta(\alpha)^* \end{pmatrix} \begin{pmatrix} j_2(\alpha) & -qj_2(\gamma)^* \\ j_2(\gamma) & j_2(\alpha)^* \end{pmatrix}^*.
$$
 (4.6)

Thus α , γ , α^* , $\gamma^* \in S$. Let $x, y \in S$ with homogeneous y. Proposition [3.1](#page-5-1) gives

$$
j_1(xy) = j_1(x)j_1(y) \in \Delta(A)j_2(A)j_1(y) = \Delta(A)j_1(y)j_2(A)
$$

\n
$$
\subseteq \Delta(A)\Delta(A)j_2(A)j_2(A) = \Delta(A)j_2(A).
$$

That is, $xy \in S$. Therefore, all monomials in α , γ , α^* , γ^* belong to S, so that $S = A$. Hence $j_1(A) \subseteq \Delta(A) j_2(A)$. Now $A \boxtimes_{\xi} A = j_1(A) j_2(A) \subseteq \Delta(A) j_2(A) j_2(A) =$ $\Delta(A)$ $j_2(A)$, which is one of the Podleś conditions. Similarly, let

$$
R = \{x \in A : j_2(x) \in j_1(A)\Delta(A)\}.
$$

Then R is a closed subspace of A. We may also rewrite (4.5) as

$$
\begin{pmatrix} j_2(\alpha) & -qj_2(\gamma)^* \\ j_2(\gamma) & j_2(\alpha)^* \end{pmatrix} = \begin{pmatrix} j_1(\alpha) & -qj_1(\gamma)^* \\ j_1(\gamma) & j_1(\alpha)^* \end{pmatrix}^* \begin{pmatrix} \Delta(\alpha) & -q\Delta(\gamma)^* \\ \Delta(\gamma) & \Delta(\alpha)^* \end{pmatrix}.
$$
 (4.7)

Thus α , γ , α^* , $\gamma^* \in R$. Let $x, y \in R$ with homogeneous x. Proposition [3.1](#page-5-1) gives

$$
j_2(xy) = j_2(x)j_2(y) \in j_2(x)j_1(A)\Delta(A) = j_1(A)j_2(x)\Delta(A)
$$

\n
$$
\subseteq j_1(A)j_1(A)\Delta(A)\Delta(A) = j_1(A)\Delta(A).
$$

Thus $xy \in R$. Therefore, all monomials in α , γ , α^* , γ^* belong to R, so that $R = A$, that is, $j_2(A) \subseteq j_1(A) \Delta(A)$. This implies $A \boxtimes_{\zeta} A = j_1(A) j_2(A) \subseteq$ $j_1(A)j_1(A)\Delta(A) = j_1(A)\Delta(A)$ and finishes the proof of Theorem [1.1.](#page-2-3)

5. The representation theory of SU^q

For real q, the relations defining the compact quantum group $SU_q(2)$ are dictated if we stipulate that the unitary matrix in Lemma [2.1](#page-2-2) is a representation and that a certain vector in the tensor square of this representation is invariant. Here we generalise this to the complex case. This is how we found $SU_a(2)$.

Let H be a T -Hilbert space, that is, a Hilbert space with a unitary representation $U: \mathbb{T} \to \mathcal{U}(\mathcal{H})$. For $z \in \mathbb{T}$ and $x \in \mathcal{K}(\mathcal{H})$ we define

$$
\rho_z^{\mathcal{K}(\mathcal{H})}(x) = U_z x U_z^*.
$$

Thus $(K(\mathcal{H}), \rho^{K(\mathcal{H})})$ is a \mathbb{T} -C^{*}-algebra. Let $(X, \rho^X) \in Obj(\mathcal{C}^*_\mathbb{T})$ $\int_{\mathbb{T}}^*$). Since $\rho^{\mathcal{K}(\mathcal{H})}$ is inner, the braided tensor product $\mathcal{K}(\mathcal{H}) \boxtimes_{\zeta} X$ may (and will) be identified with $K(H) \otimes X$; see [\[5,](#page-13-2) Corollary 5.18] and [5, Example 5.19].

Definition 5.1. Let H be a T-Hilbert space and let $v \in M(\mathcal{K}(\mathcal{H}) \otimes A)$ be a unitary element which is T-invariant, that is, $(\rho_z^{\mathcal{K}(H)} \otimes \rho_z^X)(v) = v$. We call v a *representation* of $SU_a(2)$ on H if

$$
(\mathrm{id}_{\mathcal{H}} \otimes \Delta)(v) = (\mathrm{id}_{\mathcal{H}} \otimes j_1)(v) (\mathrm{id}_{\mathcal{H}} \otimes j_2)(v).
$$

Theorem [6.1](#page-12-0) below will show that representations of $SU_a(2)$ are equivalent to representations of a certain compact quantum group. This allows us to carry over all the usual structural results about representations of compact quantum groups to $SU_q(2)$. In particular, we may tensor representations. To describe this directly, we need the following result:

Proposition 5.2. Let X, Y, U, T be \mathbb{T} -C^{*}-algebras. Let $v \in X \otimes T$ and $w \in Y \otimes U$ *be homogeneous elements of degree* 0*. Denote the natural embeddings by*

$$
i_1: X \to X \boxtimes_{\xi} Y, \qquad i_2: Y \to X \boxtimes_{\xi} Y,
$$

$$
j_1: U \to U \boxtimes_{\xi} T, \qquad j_2: T \to U \boxtimes_{\xi} T.
$$

Then $(i_1 \otimes j_2)(v)$ *and* $(i_2 \otimes j_1)(w)$ *commute in* $(X \boxtimes_{\xi} Y) \otimes (U \boxtimes_{\xi} T)$ *.*

Proof. We may assume that $v = x \otimes t$ and $w = y \otimes u$ for homogeneous elements $x \in X$, $t \in T$, $y \in Y$ and $u \in U$. Since $deg(v) = deg(w) = 0$, we get $deg(x) = -deg(t)$ and $deg(y) = -deg(u)$. The following computation completes the proof:

$$
(i_1 \otimes j_2)(v) (i_2 \otimes j_1)(w) = (i_1(x) \otimes j_2(t)) (i_2(y) \otimes j_1(u))
$$

= $i_1(x)i_2(y) \otimes j_2(t)j_1(u) = \zeta^{\deg(x) \deg(y) - \deg(t) \deg(u)}i_2(y)i_1(x) \otimes j_1(u)j_2(t)$
= $(i_2(y) \otimes j_1(u)) (i_1(x) \otimes j_2(t)) = (i_2 \otimes j_1)(w) (i_1 \otimes j_2)(v).$

Proposition 5.3. *Let* \mathcal{H}_1 *and* \mathcal{H}_2 *be* \mathbb{T} *-Hilbert spaces and let* $v_i \in M(\mathcal{K}(\mathcal{H}_i) \otimes A)$ *for* $i = 1, 2$ *be representations of* $SU_a(2)$ *. Define*

$$
v = (\iota_1 \otimes \mathrm{id}_A)(v_1)(\iota_2 \otimes \mathrm{id}_A)(v_2) \in \mathrm{M}(\mathcal{K}(\mathcal{H}_1) \boxtimes_{\xi} \mathcal{K}(\mathcal{H}_2) \otimes A)
$$

and identify $K(\mathcal{H}_1) \boxtimes_{\xi} K(\mathcal{H}_2) \cong K(\mathcal{H}_1 \otimes \mathcal{H}_2)$. Then $v \in M(\mathcal{K}(\mathcal{H}_1 \otimes \mathcal{H}_2) \otimes A)$ is *a representation of* $SU_q(2)$ *on* $H_1 \otimes H_2$ *. It is denoted* $v_1 \oplus v_2$ *and called the tensor* product *of* v_1 *and* v_2 *.*

Proof. It is clear that v is T -invariant. We compute

$$
(\mathrm{id}_{\mathcal{H}_1 \otimes \mathcal{H}_2} \otimes \Delta)(v) = (\mathrm{id}_{\mathcal{H}_1 \otimes \mathcal{H}_2} \otimes \Delta)((\iota_1 \otimes \mathrm{id}_A)(v_1)(\iota_2 \otimes \mathrm{id}_A)(v_2))
$$

\n
$$
= (\iota_1 \otimes j_1)(v_1) (\iota_1 \otimes j_2)(v_1) (\iota_2 \otimes j_1)(v_2) (\iota_2 \otimes j_2)(v_2)
$$

\n
$$
= (\iota_1 \otimes j_1)(v_1) (\iota_2 \otimes j_1)(v_2) (\iota_1 \otimes j_2)(v_1) (\iota_2 \otimes j_2)(v_2)
$$

\n
$$
= (\mathrm{id}_{\mathcal{H}_1 \otimes \mathcal{H}_2} \otimes j_1)(v) (\mathrm{id}_{\mathcal{H}_1 \otimes \mathcal{H}_2} \otimes j_2)(v),
$$

where the third step uses Proposition [5.2.](#page-8-0)

Now consider the Hilbert space \mathbb{C}^2 , let $\{e_0, e_1\}$ be its canonical orthonormal basis. We equip it with the representation $U: \mathbb{T} \to \mathcal{U}(\mathbb{C}^2)$ defined by $U_z e_0 = z e_0$ and $U_z e_1 = e_1$. Let $\rho^{M_2(\mathbb{C})}$ be the action implemented by U:

$$
\rho_z^{\mathsf{M}_2(\mathbb{C})} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & z a_{12} \\ \overline{z} a_{21} & a_{22} \end{pmatrix},
$$

where $a_{ij} \in \mathbb{C}$. We claim that

$$
u = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \in M_2(\mathbb{C}) \otimes A
$$

is a representation of $SU_q(2)$ on \mathbb{C}^2 . By Lemma [2.1,](#page-2-2) the relations defining A are equivalent to u being unitary. The $\mathbb T$ -action on A is defined so that u is $\mathbb T$ -invariant. The comultiplication is defined exactly so that u is a representation, see [\(4.5\)](#page-7-0).

$$
\Box
$$

The particular shape of u contains further assumptions, however. To explain these, we consider an arbitrary compact quantum group $\mathbb{G} = (C(\mathbb{G}), \Delta_{\mathbb{G}})$ in $\mathcal{C}_{\mathbb{T}}^*$ T with a unitary representation

$$
u = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(C(\mathbb{G})),
$$

such that a, b, c, d generate the C^{*}-algebra C(G). We assume that u is $\mathbb T$ -invariant for the above T-action on \mathbb{C}^2 . Thus $deg(a) = deg(d) = 0$, $deg(b) = -1$, $deg(c) = 1$. **Theorem 5.4.** *Let* G *be a braided compact quantum group with a unitary representation u as above.* Assume $b \neq 0$ *and that the vector* $e_0 \otimes e_1 - q e_1 \otimes e_0 \in$ $\mathbb{C}^2 \otimes \mathbb{C}^2$ for $q \in \mathbb{C}$ *is invariant for the representation* $u \oplus u$ *. Then* $q \neq 0$ *,* $\overline{q}\zeta = q$ *,* $d = a^*$, $b = -qc^*$, and there is a unique morphism π : $C(SU_q(2)) \rightarrow C(\mathbb{G})$ with $\pi(\alpha) = a$ and $\pi(\gamma) = c$. This is \mathbb{T} -equivariant and satisfies $(\pi \boxtimes_{\xi} \pi) \circ \Delta_{SU_q(2)} =$

 Δ ^{*G*} \circ π .

Proof. The representation $u \oplus u \in M_4(C(\mathbb{G}))$ is given by Proposition [5.3,](#page-9-0) which uses a canonical isomorphism $M_2(\mathbb{C}) \boxtimes_{\xi} M_2(\mathbb{C}) \cong M_4(\mathbb{C})$. This comes from the following standard representation of $M_2(\mathbb{C}) \boxtimes_{\xi} M_2(\mathbb{C})$ on $\mathbb{C}^2 \otimes \mathbb{C}^2$. For $T, S \in$ $M_2(\mathbb{C})$ of degree k, l and $x, y \in \mathbb{C}^2$ of degree m, n, we let $\iota_1(T) \iota_2(S) (x \otimes y) =$ $\overline{\zeta}^{lm} Tx \otimes Sy$. By construction, $u \oplus u$ is $(\iota_1 \otimes \text{id}_{C(\mathbb{G})})(u) \cdot (\iota_2 \otimes \text{id}_{C(\mathbb{G})})(u)$. So we may rewrite the invariance of $e_0 \otimes e_1 - q e_1 \otimes e_0$ as

 $(\iota_1 \otimes \mathrm{id}_{C(\mathbb{G})})(u^*)(e_0 \otimes e_1 - qe_1 \otimes e_0) = (\iota_2 \otimes \mathrm{id}_{C(\mathbb{G})})(u)(e_0 \otimes e_1 - qe_1 \otimes e_0)$ (5.1)

in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes C(\mathbb{G})$. The left and right hand sides of [\(5.1\)](#page-10-0) are

$$
e_0 \otimes e_1 \otimes a^* + e_1 \otimes e_1 \otimes b^* - qe_0 \otimes e_0 \otimes c^* - qe_1 \otimes e_0 \otimes d^*,
$$

$$
e_0 \otimes e_0 \otimes b + e_0 \otimes e_1 \otimes d - qe_1 \otimes e_0 \otimes a - q\overline{\zeta}e_1 \otimes e_1 \otimes c,
$$

respectively. These are equal if and only if $b = -qc^*$, $d = a^*$, and $b^* = -q\overline{\zeta}c$. Since $b \neq 0$, this implies $q \neq 0$ and $\overline{q}\zeta = q$, and u has the form in Lemma [2.1.](#page-2-2) Since u is a representation, it is unitary. So a, c satisfy the relations defining $SU_a(2)$ and Theorem [2.2](#page-2-0) gives the unique morphism π . The conditions on u in Definition [5.1](#page-8-1) imply that π is $\mathbb T$ -equivariant and compatible with comultiplications. \Box

The proof also shows that q is uniquely determined by the condition that $e_0 \otimes e_1$ – $qe_1 \otimes e_0$ should be $SU_q(2)$ -invariant. An invariant vector for $SU_q(2)$ should also be homogeneous for the T-action. There are three cases of homogeneous vectors in $\mathbb{C}^2 \otimes \mathbb{C}^2$: multiples of $e_0 \otimes e_0$, multiples of $e_1 \otimes e_1$, and linear combinations of $e_0 \otimes e_1$ and $e_1 \otimes e_0$. If a non-zero multiple of $e_i \otimes e_j$ for $i, j \in \{0, 1\}$ is invariant, then the representation u is reducible. Ruling out such degenerate cases, we may normalise the invariant vector to have the form $e_0 \otimes e_1 - q e_1 \otimes e_0$ assumed in Theorem [5.4.](#page-10-1) Roughly speaking, $SU_a(2)$ is the universal family of braided quantum groups generated by a 2-dimensional representation with an invariant vector in $u \oplus u$.

Up to scaling, the basis e_0 , e_1 is the unique one consisting of joint eigenvectors of the T-action with degrees 1 and 0. Hence the braided quantum group $(C(SU_a(2)), \Delta)$ determines q uniquely. There is, however, one extra symmetry that changes the T-action on $C(SU_q(2))$ and that corresponds to the permutation of the basis e_0, e_1 . Given a \mathbb{T} -algebra A, let $S(A)$ be the same C*-algebra with the \mathbb{T} -action by $\rho_z^{S(A)} =$ $(\rho_2^A)^{-1}$. Since the commutation relation [\(1.5\)](#page-1-4) is symmetric in k, l, there is a unique isomorphism

$$
S(A \boxtimes_{\zeta} B) \cong S(A) \boxtimes_{\zeta} S(B), \qquad j_1(a) \mapsto j_1(a), \quad j_2(b) \mapsto j_2(b).
$$

Hence the comultiplication on $C(SU_q(2))$ is one on $S(C(SU_q(2)))$ as well.

Proposition 5.5. *The braided quantum groups* $S(C(SU_q(2)))$ *and* $C(SU_{\tilde{q}}(2))$ *for* $\tilde{q} = \overline{q}^{-1}$ are isomorphic as braided quantum groups.

Proof. Let α , γ be the standard generators of $A_q = C(SU_q(2))$ and let $\tilde{\alpha}$, $\tilde{\gamma}$ be the standard generators of $A_{\tilde{q}}$. We claim that there is an isomorphism $\varphi: A_q \to A_{\tilde{q}}$ that maps $\alpha \mapsto \tilde{\alpha}^*$ and $\gamma \mapsto \dot{\tilde{q}} \tilde{\gamma}^*$ and that is an isomorphism of braided quantum groups from $S(A_q)$ to $A_{\tilde{q}}$. Lemma [2.1](#page-2-2) implies that the matrix

$$
\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \tilde{\alpha} & -\tilde{q}\tilde{\gamma}^* \\ \tilde{\gamma} & \tilde{\alpha}^* \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \tilde{\alpha}^* & -\tilde{\gamma} \\ \tilde{q}\tilde{\gamma}^* & \tilde{\alpha} \end{pmatrix} = \begin{pmatrix} \varphi(\alpha) & \varphi(-q\gamma^*) \\ \varphi(\gamma) & \varphi(\alpha^*) \end{pmatrix}
$$

is unitary. Now Lemma [2.1](#page-2-2) and Theorem [2.2](#page-2-0) give the desired morphism φ . Since the inverse of φ may be constructed in the same way, φ is an isomorphism. On generators, it reverses the grading, so it is \mathbb{T} -equivariant as a map $S(A_q) \to A_{\tilde{q}}$.

Let Δ and $\tilde{\Delta}$ denote the comultiplications on $S(A_q)$ and $A_{\tilde{q}}$. We compute

$$
(\varphi \boxtimes_{\xi} \varphi) \Delta(\alpha) = (\varphi \boxtimes_{\xi} \varphi) (j_1(\alpha) j_2(\alpha) - q j_1(\gamma^*) j_2(\gamma))
$$

\n
$$
= j_1(\varphi(\alpha)) j_2(\varphi(\alpha)) - q j_1(\varphi(\gamma^*)) j_2(\varphi(\gamma))
$$

\n
$$
= j_1(\tilde{\alpha}^*) j_2(\tilde{\alpha}^*) - \tilde{q} j_1(\tilde{\gamma}) j_2(\tilde{\gamma}^*),
$$

\n
$$
\tilde{\Delta}(\varphi(\alpha)) = \tilde{\Delta}(\tilde{\alpha}^*) = j_2(\tilde{\alpha})^* j_1(\tilde{\alpha})^* - q^{-1} j_2(\tilde{\gamma})^* j_1(\tilde{\gamma})
$$

\n
$$
= j_1(\tilde{\alpha})^* j_2(\tilde{\alpha})^* - q^{-1} \xi j_1(\tilde{\gamma}) j_2(\tilde{\gamma})^*.
$$

These are equal because $\tilde{q} = \overline{q}^{-1} = q^{-1}\zeta$. Similarly, $(\varphi \boxtimes_{\xi} \varphi) \Delta(\gamma) = \tilde{\Delta}(\varphi(\gamma))$. Thus φ is an isomorphism of braided quantum groups. \Box

6. The semidirect product quantum group

A quantum analogue of the semidirect product construction for groups turns the braided quantum group $SU_q(2)$ into a genuine compact quantum group (B, Δ_B) ,

see [\[6,](#page-13-5) Section 6]. Here *B* is the universal C^{*}-algebra with three generators α , γ , *z* with the $SU_a(2)$ -relations for α and γ and

$$
z\alpha z^* = \alpha,
$$

\n
$$
z\gamma z^* = \zeta^{-1} \gamma,
$$

\n
$$
zz^* = z^* z = I;
$$

the comultiplication is defined by

$$
\Delta_B(z) = z \otimes z,
$$

\n
$$
\Delta_B(\alpha) = \alpha \otimes \alpha - q\gamma^* z \otimes \gamma,
$$

\n
$$
\Delta_B(\gamma) = \gamma \otimes \alpha + \alpha^* z \otimes \gamma.
$$

There are two embeddings $\iota_1, \iota_2: A \implies B \otimes B$ defined by

$$
\iota_1(\alpha) = \alpha \otimes I \qquad \iota_2(\alpha) = I \otimes \alpha,
$$

$$
\iota_1(\gamma) = \gamma \otimes I \qquad \iota_2(\gamma) = z \otimes \gamma.
$$

Homogeneous elements $x, y \in A$ satisfy

$$
u_1(x)u_2(y) = \zeta^{\deg(x)\deg(y)}u_2(y)u_1(x).
$$
 (6.1)

Thus we may rewrite the comultiplication as

$$
\Delta_B(z) = z \otimes z,
$$

\n
$$
\Delta_B(\alpha) = \iota_1(\alpha)\iota_2(\alpha) - q\iota_1(\gamma)^* \iota_2(\gamma),
$$

\n
$$
\Delta_B(\gamma) = \iota_1(\gamma)\iota_2(\alpha) + \iota_1(\alpha)^* \iota_2(\gamma).
$$

In particular, Δ_B respects the commutation relations for (α, γ, z) , so it is a welldefined *-homomorphism $B \to B \otimes B$. It is routine to check the cancellation conditions [\(1.4\)](#page-1-0) for B, so (B, Δ_B) is a compact quantum group.

This is a compact quantum group with a projection as in $[7, 8]$ $[7, 8]$ $[7, 8]$. Here the projection $\pi: B \to B$ is the unique *-homomorphism with $\pi(\alpha) = 1_B$, $\pi(\gamma) = 0$ and $\pi(z) = z$; this is an idempotent bialgebra morphism. Its "image" is the copy of C(T) generated by z, its "kernel" is the copy of A generated by α and γ .

For $q = 1$, $B \cong C(T \times SU(2))$ as a C^{*}-algebra, which is commutative. The representation on \mathbb{C}^2 combines the standard embedding of SU(2) and the representation of $\mathbb T$ mapping z to the diagonal matrix with entries z, 1. This gives a homeomorphism $\mathbb{T} \times SU(2) \cong U(2)$. So (B, Δ_B) is the group U(2), written as a semidirect product of $SU(2)$ and T .

For $q \neq 1$, (B, Δ_B) is the coopposite of the quantum $U_q(2)$ group described previously by Zhang and Zhao in [\[12\]](#page-14-2): the substitutions $a = \alpha^*, b = \gamma^*$ and $D = z^*$ turn our generators and relations into those in [\[12\]](#page-14-2), and the comultiplications differ only by a coordinate flip.

Theorem 6.1. Let $U \in M(\mathcal{K}(\mathcal{H}) \otimes C(\mathbb{T}))$ be a unitary representation of \mathbb{T} on a *Hilbert space* H. *There is a bijection between representations of* $SU_q(2)$ *on* H *and representations of* (B, Δ_B) *on* H *that restrict to the given representation on* T *.*

Proof. Let $v \in M(\mathcal{K}(\mathcal{H}) \otimes A)$ be a unitary representation of $SU_q(2)$ on H. Since B contains copies of A and C(T), we may view $u = vU^*$ as an element of $M(K(H) \otimes B)$. The T -invariance of v,

$$
(\mathrm{id} \otimes \rho^A)(v) = U_{12}^* v_{13} U_{12}
$$

and the formula for ι_2 (which is basically given by the action ρ^A) show that

$$
U_{12}(\mathrm{id} \otimes \iota_2)(v)U_{12}^* = v_{13}.
$$

Using $(id \otimes \iota_2)(v) = v_{12}$, we conclude that u is a unitary representation of (B, Δ_B) :

$$
(\mathrm{id} \otimes \Delta_B)(u) = v_{12}(\mathrm{id} \otimes v_2)(v)U_{12}^*U_{13}^* = v_{12}U_{12}^*v_{13}U_{13}^* = u_{12}u_{13}.
$$

Going back and forth between u and v is the desired bijection.

References

- [1] P. Kruszyński and S. L. Woronowicz, A noncommutative Gelfand–Naĭmark theorem, *J. Operator Theory*, **8** (1982), no. 2, 361–389. [Zbl 0499.46036](https://zbmath.org/?q=an:0499.46036) [MR 0677419](http://www.ams.org/mathscinet-getitem?mr=0677419)
- [2] S. MacLane, *Categories for the working mathematician*, Graduate Texts in Mathematics, 5, Springer, New York, 1971. [Zbl 0906.18001](https://zbmath.org/?q=an:0906.18001) [MR 1712872](http://www.ams.org/mathscinet-getitem?mr=1712872)
- [3] S. Majid, Examples of braided groups and braided matrices, *J. Math. Phys.*, **32** (1991), no. 12, 3246–3253. [Zbl 0821.16042](https://zbmath.org/?q=an:0821.16042) [MR 1137374](http://www.ams.org/mathscinet-getitem?mr=1137374)
- [4] S. Majid, *Foundations of quantum group theory*, Cambridge University Press, Cambridge, 1995. [Zbl 0857.17009](https://zbmath.org/?q=an:0857.17009) [MR 1381692](http://www.ams.org/mathscinet-getitem?mr=1381692)
- [5] R. Meyer, S. Roy and S. L. Woronowicz, Quantum group-twisted tensor products of C^{*}-algebras, *Internat. J. Math.*, **25** (2014), no. 2, 1450019, 37pp. [Zbl 1315.46076](https://zbmath.org/?q=an:1315.46076) [MR 3189775](http://www.ams.org/mathscinet-getitem?mr=3189775)
- [6] R. Meyer, S. Roy and S. L. Woronowicz, Quantum group-twisted tensor products of C -algebras. II, *J. Noncommut. Geom.*, **10** (2016), no. 3, 859–888. [Zbl 06655304](https://zbmath.org/?q=an:06655304) [MR 3554838](http://www.ams.org/mathscinet-getitem?mr=3554838)
- [7] R. Meyer, S. Roy and S. L. Woronowicz, Semidirect products of C^* -quantum groups: multiplicative unitaries approach, *Comm. Math. Phys.*, (2016), 34pp. [doi:10.1007/s00220-016-2727-3](http://link.springer.com/article/10.1007/s00220-016-2727-3)

 \Box

- [8] S. Roy, C*-Quantum groups with projection, Ph.D. Thesis, Georg-August Universität Göttingen, 2013. Available at: [http://hdl.handle.net/11858/](http://hdl.handle.net/11858/00-1735-0000-0022-5EF9-0) [00-1735-0000-0022-5EF9-0](http://hdl.handle.net/11858/00-1735-0000-0022-5EF9-0)
- [9] P. M. Sołtan, Examples of non-compact quantum group actions, *J. Math. Anal. Appl.*, **372** (2010), no. 1, 224–236. [Zbl 1209.46045](https://zbmath.org/?q=an:1209.46045) [MR 2672521](http://www.ams.org/mathscinet-getitem?mr=2672521)
- [10] S. L. Woronowicz, Twisted SU(2) group. An example of a noncommutative differential calculus, *Publ. Res. Inst. Math. Sci.*, **23** (1987), no. 1, 117–181. [Zbl 0676.46050](https://zbmath.org/?q=an:0676.46050) [MR 0890482](http://www.ams.org/mathscinet-getitem?mr=0890482)
- [11] S. L. Woronowicz, Compact quantum groups, in *Symétries quantiques, (Les Houches, 1995)*, 845–884, North-Holland, Amsterdam, 1998. [Zbl 0997.46045](https://zbmath.org/?q=an:0997.46045) [MR 1616348](http://www.ams.org/mathscinet-getitem?mr=1616348)
- [12] X. X. Zhang and E. Y. Zhao, The compact quantum group $U_q(2)$. I, *Linear Algebra Appl.*, **408** (2005), 244–258. [Zbl 1093.46042](https://zbmath.org/?q=an:1093.46042) [MR 2166867](http://www.ams.org/mathscinet-getitem?mr=2166867)

Received 10 April, 2015

P. Kasprzak, Katedra Metod Matematycznych Fizyki, Wydział Fizyki, Uniwersytet Warszawski, Pasteura 5, 02-093 Warszawa, Poland E-mail: pawel.kasprzak@fuw.edu.pl

R. Meyer, Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstraße 3–5, 37073 Göttingen, Germany E-mail: rmeyer2@uni-goettingen.de

S. Roy, School of Mathematical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatni 752050, India

E-mail: sutanu@niser.ac.in

S. L. Woronowicz, Instytut Matematyczny PAN, and Katedra Metod Matematycznych Fizyki, Wydział Fizyki, Uniwersytet Warszawski, Pasteura 5, 02-093 Warszawa, Poland E-mail: stanislaw.woronowicz@fuw.edu.pl