J. Noncommut. Geom. 10 (2016), 1611–1625 DOI 10.4171/JNCG/268 Journal of Noncommutative Geometry © European Mathematical Society

Braided quantum SU(2) groups

Paweł Kasprzak, Ralf Meyer, Sutanu Roy** and Stanisław Lech Woronowicz[‡]

Abstract. We construct a family of q-deformations of SU(2) for complex parameters $q \neq 0$. For real q, the deformation coincides with Woronowicz' compact quantum SU_q(2) group. For $q \notin \mathbb{R}$, SU_q(2) is only a braided compact quantum group with respect to a certain tensor product functor for C*-algebras with an action of the circle group.

Mathematics Subject Classification (2010). 81R50; 46L55, 46L06. *Keywords.* Braided compact quantum group, $SU_q(2)$, $U_q(2)$.

1. Introduction

The *q*-deformations of SU(2) for real deformation parameters 0 < q < 1 discovered in [10] are among the first and most important examples of compact quantum groups. Here we construct a family of *q*-deformations of SU(2) for *complex* parameters $q \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$. For $q \notin \mathbb{R}$, SU_{*q*}(2) is not a compact quantum group, but a braided compact quantum group in a suitable tensor category.

A compact quantum group \mathbb{G} as defined in [11] is a pair $\mathbb{G} = (A, \Delta)$ where $\Delta: A \to A \otimes A$ is a coassociative morphism satisfying the cancellation law (1.4) below. The C^{*}-algebra A is viewed as the algebra of continuous functions on \mathbb{G} .

The theory of compact quantum groups is formulated within the category C^* of C^{*}-algebras. This category with the minimal tensor functor \otimes is a monoidal category (see [2]). A more general theory may be formulated within a monoidal category (\mathcal{D}^*, \boxtimes), where \mathcal{D}^* is a suitable category of C^{*}-algebras with additional structure and $\boxtimes: \mathcal{D}^* \times \mathcal{D}^* \to \mathcal{D}^*$ is a monoidal bifunctor on \mathcal{D}^* . Braided Hopf algebras may be defined in braided monoidal categories (see [4, Definition 9.4.5]). The braiding becomes unnecessary when we work in categories of C^{*}-algebras.

Let *A* and *B* be C^{*}-algebras. The multiplier algebra of *B* is denoted by M(*B*). A *morphism* $\pi \in Mor(A, B)$ is a *-homomorphism $\pi: A \to M(B)$ with $\pi(A)B = B$. If *A* and *B* are unital, a morphism is simply a unital *-homomorphism.

^{*}Partially supported by the NCN (National Centre of Science) grant 2015/17/B/ST1/00085.

^{**}Supported by a Fields–Ontario Postdoctoral fellowship.

[‡]Supported by the Alexander von Humboldt Stiftung.

Let \mathbb{T} be the group of complex numbers of modulus 1 and let $\mathcal{C}^*_{\mathbb{T}}$ be the category of \mathbb{T} -C*-algebras; its objects are C*-algebras with an action of \mathbb{T} , arrows are \mathbb{T} -equivariant morphisms. We shall use a family of monoidal structures \boxtimes_{ζ} on $\mathcal{C}^*_{\mathbb{T}}$ parametrised by $\zeta \in \mathbb{T}$, which is defined as in [5].

The C^{*}-algebra A of $SU_q(2)$ is defined as the universal unital C^{*}-algebra generated by two elements α , γ subject to the relations

$$\begin{cases} \alpha^* \alpha + \gamma^* \gamma = \mathbf{I}, \\ \alpha \alpha^* + |q|^2 \gamma^* \gamma = \mathbf{I}, \\ \gamma \gamma^* = \gamma^* \gamma, \\ \alpha \gamma = \overline{q} \gamma \alpha, \\ \alpha \gamma^* = q \gamma^* \alpha. \end{cases}$$
(1.1)

For real q, the algebra A coincides with the algebra of continuous functions on the quantum $SU_q(2)$ group described in [10]: $A = C(SU_q(2))$. Then there is a unique morphism $\Delta: A \to A \otimes A$ with

$$\Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma, \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$
(1.2)

It is coassociative, that is,

$$(\Delta \otimes \mathrm{id}_A) \circ \Delta = (\mathrm{id}_A \otimes \Delta) \circ \Delta, \tag{1.3}$$

and has the following cancellation property:

$$A \otimes A = \Delta(A)(A \otimes I),$$

$$A \otimes A = \Delta(A)(I \otimes A);$$
(1.4)

here and below, EF for two closed subspaces E and F of a C*-algebra denotes the norm-closed linear span of the set of products ef for $e \in E$, $f \in F$.

If q is not real, then the operators on the right hand sides of (1.2) do not satisfy the relations (1.1), so there is no morphism Δ satisfying (1.2). Instead, (1.2) defines a \mathbb{T} -equivariant morphism $A \to A \boxtimes_{\zeta} A$ for the monoidal functor \boxtimes_{ζ} with $\zeta = q/\overline{q}$. This morphism in $\mathcal{C}_{\mathbb{T}}^*$ satisfies appropriate analogues of the coassociativity and cancellation laws (1.3) and (1.4), so we get a braided compact quantum group. Here the action of \mathbb{T} on A is defined by $\rho_z(\alpha) = \alpha$ and $\rho_z(\gamma) = z\gamma$ for all $z \in \mathbb{T}$.

For $X, Y \in \text{Obj}(\mathcal{C}^*)$, $X \otimes Y$ contains commuting copies $X \otimes I_Y$ of Xand $I_X \otimes Y$ of Y with $X \otimes Y = (X \otimes I_Y)(I_X \otimes Y)$. Similarly, $X \boxtimes_{\xi} Y$ for $X, Y \in \mathcal{C}^*_{\mathbb{T}}$ is a C*-algebra with injective morphisms $j_1 \in \text{Mor}(X, X \boxtimes_{\xi} Y)$ and $j_2 \in \text{Mor}(Y, X \boxtimes_{\xi} Y)$ such that $X \boxtimes_{\xi} Y = j_1(X)j_2(Y)$. For \mathbb{T} -homogeneous elements $x \in X_k$ and $y \in Y_l$ (as defined in (3.4)), we have the commutation relation

$$j_1(x)j_2(y) = \zeta^{kl}j_2(y)j_1(x) \tag{1.5}$$

The following theorem contains the main result of this paper:

Theorem 1.1. Let $q \in \mathbb{C} \setminus \{0\}$ and $\zeta = q/\overline{q}$. Then

(1) there is a unique \mathbb{T} -equivariant morphism $\Delta \in Mor(A, A \boxtimes_{\xi} A)$ with

$$\Delta(\alpha) = j_1(\alpha)j_2(\alpha) - qj_1(\gamma)^* j_2(\gamma),$$

$$\Delta(\gamma) = j_1(\gamma)j_2(\alpha) + j_1(\alpha)^* j_2(\gamma);$$
(1.6)

(2) Δ is coassociative, that is,

$$(\Delta \boxtimes_{\xi} \operatorname{id}_{A}) \circ \Delta = (\operatorname{id}_{A} \boxtimes_{\xi} \Delta) \circ \Delta;$$

(3) Δ obeys the cancellation law

$$j_1(A)\Delta(A) = \Delta(A)j_2(A) = A \boxtimes_{\xi} A$$

We also describe some important features of the representation theory of $SU_q(2)$ to explain the definition of $SU_q(2)$, and we relate $SU_q(2)$ to the quantum U(2) groups defined by Zhang and Zhao in [12].

Braided Hopf algebras that deform $SL(2, \mathbb{C})$ are already described in [3]. We could, however, find no precise relationship between Majid's braided Hopf algebra BSL(2) and our braided compact quantum group $SU_q(2)$.

2. The algebra of $SU_q(2)$

The following elementary lemma explains what the defining relations (1.1) mean:

Lemma 2.1. Two elements α and γ of a C^{*}-algebra satisfy the relations (1.1) if and only if the following matrix is unitary:

$$\begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$$

There are at least two ways to introduce a C^{*}-algebra with given generators and relations. One may consider the algebra \mathcal{A} of all non-commutative polynomials in the generators and their adjoints and take the largest C^{*}-seminorm on \mathcal{A} vanishing on the given relations. The set \mathfrak{N} of elements with vanishing seminorm is an ideal in \mathcal{A} . The seminorm becomes a norm on \mathcal{A}/\mathfrak{N} . Completing \mathcal{A}/\mathfrak{N} with respect to this norm gives the desired C^{*}-algebra \mathcal{A} . Another way is to consider the operator domain consisting of all families of operators satisfying the relations. Then \mathcal{A} is the algebra of all continuous operator functions on that domain (see [1]). Applying one of these procedures to the relations (1.1) gives a C^{*}-algebra \mathcal{A} with two distinguished elements $\alpha, \gamma \in \mathcal{A}$ that is universal in the following sense:

Theorem 2.2. Let \widetilde{A} be a C^{*}-algebra with two elements $\widetilde{\alpha}, \widetilde{\gamma} \in \widetilde{A}$ satisfying

$$\begin{cases} \tilde{\alpha}^* \tilde{\alpha} + \tilde{\gamma}^* \tilde{\gamma} = \mathbf{I}, \\ \tilde{\alpha} \tilde{\alpha}^* + |q|^2 \tilde{\gamma}^* \tilde{\gamma} = \mathbf{I}, \\ \tilde{\gamma} \tilde{\gamma}^* = \tilde{\gamma}^* \tilde{\gamma}, \\ \tilde{\alpha} \tilde{\gamma} = \overline{q} \tilde{\gamma} \tilde{\alpha}, \\ \tilde{\alpha} \tilde{\gamma}^* = q \tilde{\gamma}^* \tilde{\alpha}. \end{cases}$$
(2.1)

Then there is a unique morphism $\rho \in Mor(A, \widetilde{A})$ with $\rho(\alpha) = \widetilde{\alpha}$ and $\rho(\gamma) = \widetilde{\gamma}$. \Box

The elements $\widetilde{\alpha} = I_{C(\mathbb{T})} \otimes \alpha$ and $\widetilde{\gamma} = z \otimes \gamma$ of $C(\mathbb{T}) \otimes A$ satisfy (2.1). Here $z \in C(\mathbb{T})$ denotes the coordinate function on \mathbb{T} . (Later, we also denote elements of \mathbb{T} by *z*.) Theorem 2.2 gives a unique morphism $\rho^A \in Mor(A, C(\mathbb{T}) \otimes A)$ with

$$\rho(\alpha) = I_{C(\mathbb{T})} \otimes \alpha,
\rho(\gamma) = z \otimes \gamma.$$
(2.2)

This is a continuous \mathbb{T} -action, so we may view (A, ρ^A) as an object in the category $\mathcal{C}^*_{\mathbb{T}}$ described in detail in the next section.

Theorem 2.3. The C^{*}-algebras A for different q with $|q| \neq 0, 1$ are isomorphic.

Proof. During this proof, we write A_q for our C^{*}-algebra with parameter q.

First, $A_q \cong A_{q'}$ for $q' = q^{-1}$ by mapping $A_q \ni \alpha \mapsto \alpha' = \alpha^* \in A_{q'}$ and $A_q \ni \gamma \mapsto \gamma' = q^{-1}\gamma \in A_{q'}$. Routine computations show that α' and γ' satisfy the relations (1.1), so that Theorem 2.2 gives a unique morphism $A_q \to A_{q'}$ mapping $\alpha \mapsto \alpha'$ and $\gamma \mapsto \gamma'$. Doing this twice gives q'' = q, $\alpha'' = \alpha$ and $\gamma'' = \gamma$, so we get an inverse for the morphism $A_q \to A_{q'}$. This completes the first step. It reduces to the case 0 < |q| < 1, which we assume from now on.

Secondly, we claim that $A_q \cong A_{|q|}$ if 0 < |q| < 1. Equation (1.1) implies that γ is normal with $\|\gamma\| \le 1$. So we may use the functional calculus for continuous functions on the closed unit disc $\mathbb{D}^1 = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$.

We claim that

$$\alpha f(\gamma) = f(\overline{q}\gamma)\alpha \tag{2.3}$$

for all $f \in C(\mathbb{D}^1)$. Indeed, the set $B \subseteq C(\mathbb{D}^1)$ of functions satisfying (2.3) is a norm-closed, unital subalgebra of $C(\mathbb{D}^1)$. The last two equations in (1.1) say that *B* contains the functions $f(\lambda) = \lambda$ and $f^*(\lambda) = \overline{\lambda}$. Since these separate the points of \mathbb{D}^1 , the Stone–Weierstrass Theorem gives $B = C(\mathbb{D}^1)$.

Let $q = e^{i\theta} |q|$ be the polar decomposition of q. For $\lambda \in \mathbb{D}^1$, let

$$g(\lambda) = \begin{cases} \lambda e^{i\theta \log_{[q]} |\lambda|} & \text{for } \lambda \neq 0, \\ 0 & \text{for } \lambda = 0. \end{cases}$$

This is a homeomorphism of \mathbb{D}^1 because we get the map g^{-1} if we replace θ by $-\theta$. Thus γ and $\gamma' = g(\gamma)$ generate the same C*-algebra. We also get $g(\overline{q}\lambda) = |q|g(\lambda)$, so inserting f = g and $f = \overline{g}$ in (2.3) gives

$$a\gamma' = |q| \gamma' \alpha, \qquad a(\gamma')^* = |q| (\gamma')^* \alpha.$$

Moreover, $|g(\lambda)| = |\lambda|$ and hence $|\gamma'| = |\gamma|$. Thus we may replace γ by γ' in the first three equations of (1.1). As a result, α and γ' satisfy the relations (1.1) with |q| instead of q. Since g is a homeomorphism, an argument as in the first step now shows that $A_q \cong A_{|q|}$. Finally, [10, Theorem A2.2, page 180] shows that the C^{*}-algebras A_q for 0 < q < 1 are isomorphic.

3. Monoidal structure on T-C*-algebras

We are going to describe the monoidal category $(\mathcal{C}^*_{\mathbb{T}}, \boxtimes_{\zeta})$ for $\zeta \in \mathbb{T}$ that is the framework for our braided quantum groups. Monoidal categories are defined in [2].

The C*-algebra $C(\mathbb{T})$ is a compact quantum group with comultiplication

$$\delta: \mathbf{C}(\mathbb{T}) \to \mathbf{C}(\mathbb{T}) \otimes \mathbf{C}(\mathbb{T}), \qquad z \mapsto z \otimes z.$$

An object of $\mathcal{C}^*_{\mathbb{T}}$ is, by definition, a pair (X, ρ^X) where X is a C*-algebra and $\rho^X \in Mor(X, C(\mathbb{T}) \otimes X)$ makes the diagram

$$\begin{array}{c|c}
X & \xrightarrow{\rho^{X}} & C(\mathbb{T}) \otimes X \\
\downarrow^{\rho^{X}} & & \downarrow^{\delta \otimes \mathrm{id}} \\
C(\mathbb{T}) \otimes X & \xrightarrow{\mathrm{id}_{C(\mathbb{T})} \otimes \rho^{X}} & C(\mathbb{T}) \otimes C(\mathbb{T}) \otimes X
\end{array}$$
(3.1)

commute and satisfies the Podles condition

$$\rho^X(X)(\mathcal{C}(\mathbb{T}) \otimes \mathcal{I}_X) = \mathcal{C}(\mathbb{T}) \otimes X.$$
(3.2)

This is equivalent to a continuous \mathbb{T} -action on *X* by [9, Proposition 2.3].

Let *X*, *Y* be \mathbb{T} -C^{*}-algebras. The set of morphisms from *X* to *Y* in $\mathcal{C}^*_{\mathbb{T}}$ is the set $Mor_{\mathbb{T}}(X, Y)$ of \mathbb{T} -equivariant morphisms $X \to Y$. By definition, $\varphi \in Mor(X, Y)$ is \mathbb{T} -equivariant if and only if the following diagram commutes:

$$\begin{array}{ccc} X & \stackrel{\rho^{X}}{\longrightarrow} C(\mathbb{T}) \otimes X \\ \varphi & & & & \downarrow^{\mathrm{id}_{C(\mathbb{T})} \otimes \varphi} \\ Y & \stackrel{\rho^{Y}}{\longrightarrow} C(\mathbb{T}) \otimes Y \end{array}$$
(3.3)

Let $X \in C^*_{\mathbb{T}}$. An element $x \in X$ is homogeneous of degree $n \in \mathbb{Z}$ if

$$\rho^X(x) = z^n \otimes x. \tag{3.4}$$

The degree of a homogeneous element x is denoted by deg(x). Let X_n be the set of homogeneous elements of X of degree n. This is a closed linear subspace of X, and $X_n X_m \subseteq X_{n+m}$ and $X_n^* = X_{-n}$ for $n, m \in \mathbb{Z}$. Moreover, finite sums of homogeneous elements are dense in X.

Let $\zeta \in \mathbb{T}$. The monoidal functor $\boxtimes_{\xi} : \mathcal{C}_{\mathbb{T}}^* \to \mathcal{C}_{\mathbb{T}}^*$ is introduced as in [5]. We describe $X \boxtimes_{\xi} Y$ using quantum tori. By definition, the C^{*}-algebra $C(\mathbb{T}_{\xi}^2)$ of the quantum torus is the C^{*}-algebra generated by two unitary elements U, V subject to the relation $UV = \zeta VU$.

There are unique injective morphisms $\iota_1, \iota_2 \in Mor(C(\mathbb{T}), C(\mathbb{T}^2_{\xi}))$ with $\iota_1(z) = U$ and $\iota_2(z) = V$. Define $j_1 \in Mor(X, C(\mathbb{T}^2_{\xi}) \otimes X \otimes Y)$ and $j_2 \in Mor(Y, C(\mathbb{T}^2_{\xi}) \otimes X \otimes Y)$ by

$$j_1(x) = (\iota_1 \otimes \mathrm{id}_X) \circ \rho^X(x) \quad \text{for all } x \in X,$$

$$j_2(y) = (\iota_2 \otimes \mathrm{id}_Y) \circ \rho^Y(y) \quad \text{for all } y \in Y.$$

Let $x \in X_k$ and $y \in Y_l$. Then $j_1(x) = U^k \otimes x \otimes 1$ and $j_2(y) = V^l \otimes 1 \otimes y$, so that we get the commutation relation (1.5). This implies $j_1(X)j_2(Y) = j_2(Y)j_1(X)$, so that $j_1(X)j_2(Y)$ is a C^{*}-algebra. We define

$$X \boxtimes_{\xi} Y = j_1(X)j_2(Y).$$

This construction agrees with the one in [5] because $C(\mathbb{T}^2_{\zeta}) \cong C(\mathbb{T}) \boxtimes_{\zeta} C(\mathbb{T})$, see also the end of [5, Section 5.2].

There is a unique continuous \mathbb{T} -action $\rho^{X \boxtimes_{\zeta} Y}$ on $X \boxtimes_{\zeta} Y$ for which j_1 and j_2 are \mathbb{T} -equivariant, that is, $j_1 \in \operatorname{Mor}_{\mathbb{T}}(X, X \boxtimes_{\zeta} Y)$ and $j_2 \in \operatorname{Mor}_{\mathbb{T}}(Y, X \boxtimes_{\zeta} Y)$. This action is constructed in a more general context in [6]. We always equip $X \boxtimes_{\zeta} Y$ with this \mathbb{T} -action and thus view it as an object of $\mathcal{C}_{\mathbb{T}}^*$.

The construction \boxtimes_{ξ} is a bifunctor; that is, \mathbb{T} -equivariant morphisms $\pi_1 \in Mor_{\mathbb{T}}(X_1, Y_1)$ and $\pi_2 \in Mor_{\mathbb{T}}(X_2, Y_2)$ induce a unique \mathbb{T} -equivariant morphism $\pi_1 \boxtimes_{\xi} \pi_2 \in Mor_{\mathbb{T}}(X_1 \boxtimes_{\xi} X_2, Y_1 \boxtimes_{\xi} Y_2)$ with

$$(\pi_1 \boxtimes_{\xi} \pi_2)(j_{X_1}(x_1)j_{X_2}(x_2)) = j_{Y_1}(\pi_1(x_1))j_{Y_2}(\pi_2(x_2))$$
(3.5)

for all $x_1 \in X_1$ and $x_2 \in X_2$.

Proposition 3.1. Let $x \in X$ and $y \in Y$ be homogeneous elements. Then

$$j_1(x)j_2(Y) = j_2(Y)j_1(x),$$

 $j_1(X)j_2(y) = j_2(y)j_1(X).$

Proof. Equation (1.5) shows that

$$j_1(x)j_2(y) = j_2(y)j_1(\rho_{\lambda}^X(x))$$

for any $x \in X$ and any homogeneous $y \in Y$. Since $\rho_{\zeta^{\deg(y)}}^X$ is an automorphism of X, this implies $j_1(X)j_2(y) = j_2(y)j_1(X)$. Similarly, $j_1(x)j_2(y) = j_2(\rho_{\zeta^{\deg(x)}}^Y(y))j_1(x)$ for homogeneous $x \in X$ and any $y \in Y$ implies $j_1(x)j_2(Y) = j_2(Y)j_1(x)$.

4. Proof of the main theorem

Let α and γ be the distinguished elements of A. Let $\widetilde{\alpha}$ and $\widetilde{\gamma}$ be the elements of $A \boxtimes_{\xi} A$ appearing on the right hand side of (1.6):

$$\widetilde{\alpha} = j_1(\alpha) j_2(\alpha) - q j_1(\gamma)^* j_2(\gamma),$$

$$\widetilde{\gamma} = j_1(\gamma) j_2(\alpha) + j_1(\alpha)^* j_2(\gamma).$$
(4.1)

We have $\deg(\alpha) = \deg(\alpha^*) = 0$, $\deg(\gamma) = 1$ and $\deg(\gamma^*) = -1$ by (2.2). Assume $\bar{q}\zeta = q$. Using (1.5) we may rewrite (4.1) in the following form:

$$\widetilde{\alpha} = j_2(\alpha) j_1(\alpha) - \overline{q} j_2(\gamma) j_1(\gamma)^*,$$

$$\widetilde{\gamma} = j_2(\alpha) j_1(\gamma) + j_2(\gamma) j_1(\alpha)^*.$$

Therefore,

$$\widetilde{\alpha}^{*} = j_{1}(\alpha)^{*} j_{2}(\alpha)^{*} - q j_{1}(\gamma) j_{2}(\gamma)^{*},$$

$$\widetilde{\gamma}^{*} = j_{1}(\gamma)^{*} j_{2}(\alpha)^{*} + j_{1}(\alpha) j_{2}(\gamma)^{*}.$$
(4.2)

The four equations (4.1) and (4.2) together are equivalent to

$$\begin{pmatrix} \widetilde{\alpha} & -q\widetilde{\gamma}^* \\ \widetilde{\gamma} & \widetilde{\alpha}^* \end{pmatrix} = \begin{pmatrix} j_1(\alpha) & -qj_1(\gamma)^* \\ j_1(\gamma) & j_1(\alpha)^* \end{pmatrix} \begin{pmatrix} j_2(\alpha) & -qj_2(\gamma)^* \\ j_2(\gamma) & j_2(\alpha)^* \end{pmatrix}.$$
 (4.3)

Lemma 2.1 shows that the matrix

$$u = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \in \mathbf{M}_2(A) \tag{4.4}$$

is unitary. Hence so is the matrix $j_1(u)j_2(u)$ on the right hand side of (4.3). Now Lemma 2.1 shows that $\tilde{\alpha}, \tilde{\gamma} \in A \boxtimes_{\xi} A$ satisfy (2.1). So the universal property of Ain Theorem 2.2 gives a unique morphism Δ with $\Delta(\alpha) = \tilde{\alpha}$ and $\Delta(\gamma) = \tilde{\gamma}$.

The elements α and γ are homogeneous of degrees 0 and 1, respectively, by (2.2). Hence $\tilde{\alpha}$ and $\tilde{\gamma}$ are homogeneous of degree 0 and 1 as well. Since α and γ generate *A*, it follows that Δ is \mathbb{T} -equivariant. This proves statement (1) in Theorem 1.1. Here we use the action $\rho^{A\boxtimes_{\zeta}A}$ of \mathbb{T} with $\rho_z^{A\boxtimes_{\zeta}A}(j_1(a_1)j_2(a_2)) = j_1(\rho_z^A(a_1))j_2(\rho_z^A(a_2))$. We may rewrite (4.3) as

$$\begin{pmatrix} \Delta(\alpha) & -q\Delta(\gamma)^* \\ \Delta(\gamma) & \Delta(\alpha)^* \end{pmatrix} = \begin{pmatrix} j_1(\alpha) & -qj_1(\gamma)^* \\ j_1(\gamma) & j_1(\alpha)^* \end{pmatrix} \begin{pmatrix} j_2(\alpha) & -qj_2(\gamma)^* \\ j_2(\gamma) & j_2(\alpha)^* \end{pmatrix}.$$

Identifying $M_2(A)$ with $M_2(\mathbb{C}) \otimes A$, we may further rewrite this as

$$(\mathrm{id} \otimes \Delta)(u) = (\mathrm{id} \otimes j_1)(u) \ (\mathrm{id} \otimes j_2)(u), \tag{4.5}$$

where id is the identity map on $M_2(\mathbb{C})$.

Now we prove statement (2) in Theorem 1.1. Let j_1, j_2, j_3 be the natural embeddings of A into $A \boxtimes_{\xi} A \boxtimes_{\xi} A$. Since Δ is \mathbb{T} -equivariant, we may form $\Delta \boxtimes_{\xi} id$ and $id \boxtimes_{\xi} \Delta$. The values of $id \otimes (\Delta \boxtimes_{\xi} id_A)$ and $id \otimes (id_A \boxtimes_{\xi} \Delta)$ on the right hand side of (4.5) are equal:

$$(\mathrm{id} \otimes (\Delta \boxtimes_{\zeta} \mathrm{id}_{A}) \circ \Delta) (u) = (\mathrm{id} \otimes j_{1})(u) (\mathrm{id} \otimes j_{2})(u) (\mathrm{id} \otimes j_{3})(u), (\mathrm{id} \otimes (\mathrm{id}_{A} \boxtimes_{\zeta} \Delta) \circ \Delta) (u) = (\mathrm{id} \otimes j_{1})(u) (\mathrm{id} \otimes j_{2})(u) (\mathrm{id} \otimes j_{3})(u).$$

Thus $(\Delta \boxtimes_{\xi} \operatorname{id}_{A}) \circ \Delta$ and $(\operatorname{id}_{A} \boxtimes_{\xi} \Delta) \circ \Delta$ coincide on $\alpha, \gamma, \alpha^{*}, \gamma^{*}$. Since the latter generate *A*, this proves statement (2) of Theorem 1.1.

Now we prove statement (3). Let

$$S = \{ x \in A : j_1(x) \in \Delta(A) j_2(A) \}.$$

This is a closed subspace of A. We may also rewrite (4.5) as

$$\begin{pmatrix} j_1(\alpha) & -qj_1(\gamma)^* \\ j_1(\gamma) & j_1(\alpha)^* \end{pmatrix} = \begin{pmatrix} \Delta(\alpha) & -q\Delta(\gamma)^* \\ \Delta(\gamma) & \Delta(\alpha)^* \end{pmatrix} \begin{pmatrix} j_2(\alpha) & -qj_2(\gamma)^* \\ j_2(\gamma) & j_2(\alpha)^* \end{pmatrix}^*.$$
(4.6)

Thus $\alpha, \gamma, \alpha^*, \gamma^* \in S$. Let $x, y \in S$ with homogeneous y. Proposition 3.1 gives

$$j_1(xy) = j_1(x)j_1(y) \in \Delta(A)j_2(A)j_1(y) = \Delta(A)j_1(y)j_2(A)$$

$$\subseteq \Delta(A)\Delta(A)j_2(A)j_2(A) = \Delta(A)j_2(A).$$

That is, $xy \in S$. Therefore, all monomials in α , γ , α^* , γ^* belong to S, so that S = A. Hence $j_1(A) \subseteq \Delta(A)j_2(A)$. Now $A \boxtimes_{\xi} A = j_1(A)j_2(A) \subseteq \Delta(A)j_2(A)j_2(A) = \Delta(A)j_2(A)$, which is one of the Podleś conditions. Similarly, let

$$R = \{ x \in A : j_2(x) \in j_1(A) \Delta(A) \}.$$

Then R is a closed subspace of A. We may also rewrite (4.5) as

$$\begin{pmatrix} j_2(\alpha) & -qj_2(\gamma)^* \\ j_2(\gamma) & j_2(\alpha)^* \end{pmatrix} = \begin{pmatrix} j_1(\alpha) & -qj_1(\gamma)^* \\ j_1(\gamma) & j_1(\alpha)^* \end{pmatrix}^* \begin{pmatrix} \Delta(\alpha) & -q\Delta(\gamma)^* \\ \Delta(\gamma) & \Delta(\alpha)^* \end{pmatrix}.$$
(4.7)

Thus $\alpha, \gamma, \alpha^*, \gamma^* \in R$. Let $x, y \in R$ with homogeneous x. Proposition 3.1 gives

$$j_{2}(xy) = j_{2}(x)j_{2}(y) \in j_{2}(x)j_{1}(A)\Delta(A) = j_{1}(A)j_{2}(x)\Delta(A)$$
$$\subseteq j_{1}(A)j_{1}(A)\Delta(A)\Delta(A) = j_{1}(A)\Delta(A).$$

Thus $xy \in R$. Therefore, all monomials in $\alpha, \gamma, \alpha^*, \gamma^*$ belong to R, so that R = A, that is, $j_2(A) \subseteq j_1(A)\Delta(A)$. This implies $A \boxtimes_{\xi} A = j_1(A)j_2(A) \subseteq j_1(A)j_1(A)\Delta(A) = j_1(A)\Delta(A)$ and finishes the proof of Theorem 1.1.

5. The representation theory of SU_q

For real q, the relations defining the compact quantum group $SU_q(2)$ are dictated if we stipulate that the unitary matrix in Lemma 2.1 is a representation and that a certain vector in the tensor square of this representation is invariant. Here we generalise this to the complex case. This is how we found $SU_q(2)$.

Let \mathcal{H} be a \mathbb{T} -Hilbert space, that is, a Hilbert space with a unitary representation $U: \mathbb{T} \to \mathcal{U}(\mathcal{H})$. For $z \in \mathbb{T}$ and $x \in \mathcal{K}(\mathcal{H})$ we define

$$\rho_z^{\mathcal{K}(\mathcal{H})}(x) = U_z x U_z^*.$$

Thus $(\mathcal{K}(\mathcal{H}), \rho^{\mathcal{K}(\mathcal{H})})$ is a \mathbb{T} -C*-algebra. Let $(X, \rho^X) \in \text{Obj}(\mathcal{C}^*_{\mathbb{T}})$. Since $\rho^{\mathcal{K}(\mathcal{H})}$ is inner, the braided tensor product $\mathcal{K}(\mathcal{H}) \boxtimes_{\xi} X$ may (and will) be identified with $\mathcal{K}(\mathcal{H}) \otimes X$; see [5, Corollary 5.18] and [5, Example 5.19].

Definition 5.1. Let \mathcal{H} be a \mathbb{T} -Hilbert space and let $v \in M(\mathcal{K}(\mathcal{H}) \otimes A)$ be a unitary element which is \mathbb{T} -invariant, that is, $(\rho_z^{\mathcal{K}(\mathcal{H})} \otimes \rho_z^X)(v) = v$. We call v a *representation* of $SU_q(2)$ on \mathcal{H} if

$$(\mathrm{id}_{\mathcal{H}} \otimes \Delta)(v) = (\mathrm{id}_{\mathcal{H}} \otimes j_1)(v) \; (\mathrm{id}_{\mathcal{H}} \otimes j_2)(v).$$

Theorem 6.1 below will show that representations of $SU_q(2)$ are equivalent to representations of a certain compact quantum group. This allows us to carry over all the usual structural results about representations of compact quantum groups to $SU_q(2)$. In particular, we may tensor representations. To describe this directly, we need the following result:

Proposition 5.2. Let X, Y, U, T be \mathbb{T} - C^* -algebras. Let $v \in X \otimes T$ and $w \in Y \otimes U$ be homogeneous elements of degree 0. Denote the natural embeddings by

$$i_1: X \to X \boxtimes_{\zeta} Y, \qquad i_2: Y \to X \boxtimes_{\zeta} Y, j_1: U \to U \boxtimes_{\zeta} T, \qquad j_2: T \to U \boxtimes_{\zeta} T.$$

Then $(i_1 \otimes j_2)(v)$ *and* $(i_2 \otimes j_1)(w)$ *commute in* $(X \boxtimes_{\xi} Y) \otimes (U \boxtimes_{\xi} T)$ *.*

Proof. We may assume that $v = x \otimes t$ and $w = y \otimes u$ for homogeneous elements $x \in X$, $t \in T$, $y \in Y$ and $u \in U$. Since $\deg(v) = \deg(w) = 0$, we get $\deg(x) = -\deg(t)$ and $\deg(y) = -\deg(u)$. The following computation completes the proof:

$$(i_1 \otimes j_2)(v) (i_2 \otimes j_1)(w) = (i_1(x) \otimes j_2(t)) (i_2(y) \otimes j_1(u))$$

= $i_1(x)i_2(y) \otimes j_2(t)j_1(u) = \zeta^{\deg(x)\deg(y)-\deg(u)}i_2(y)i_1(x) \otimes j_1(u)j_2(t)$
= $(i_2(y) \otimes j_1(u)) (i_1(x) \otimes j_2(t)) = (i_2 \otimes j_1)(w) (i_1 \otimes j_2)(v).$

Proposition 5.3. Let \mathcal{H}_1 and \mathcal{H}_2 be \mathbb{T} -Hilbert spaces and let $v_i \in M(\mathcal{K}(\mathcal{H}_i) \otimes A)$ for i = 1, 2 be representations of $SU_q(2)$. Define

$$v = (\iota_1 \otimes \mathrm{id}_A)(v_1)(\iota_2 \otimes \mathrm{id}_A)(v_2) \in \mathrm{M}(\mathcal{K}(\mathcal{H}_1) \boxtimes_{\mathcal{E}} \mathcal{K}(\mathcal{H}_2) \otimes A)$$

and identify $\mathcal{K}(\mathcal{H}_1) \boxtimes_{\xi} \mathcal{K}(\mathcal{H}_2) \cong \mathcal{K}(\mathcal{H}_1 \otimes \mathcal{H}_2)$. Then $v \in \mathcal{M}(\mathcal{K}(\mathcal{H}_1 \otimes \mathcal{H}_2) \otimes A)$ is a representation of $SU_q(2)$ on $\mathcal{H}_1 \otimes \mathcal{H}_2$. It is denoted $v_1 \oplus v_2$ and called the tensor product of v_1 and v_2 .

Proof. It is clear that v is \mathbb{T} -invariant. We compute

$$(\mathrm{id}_{\mathcal{H}_1\otimes\mathcal{H}_2}\otimes\Delta)(v) = (\mathrm{id}_{\mathcal{H}_1\otimes\mathcal{H}_2}\otimes\Delta)((\iota_1\otimes\mathrm{id}_A)(v_1)(\iota_2\otimes\mathrm{id}_A)(v_2))$$

= $(\iota_1\otimes j_1)(v_1) \ (\iota_1\otimes j_2)(v_1) \ (\iota_2\otimes j_1)(v_2) \ (\iota_2\otimes j_2)(v_2)$
= $(\iota_1\otimes j_1)(v_1) \ (\iota_2\otimes j_1)(v_2) \ (\iota_1\otimes j_2)(v_1) \ (\iota_2\otimes j_2)(v_2)$
= $(\mathrm{id}_{\mathcal{H}_1\otimes\mathcal{H}_2}\otimes j_1)(v) \ (\mathrm{id}_{\mathcal{H}_1\otimes\mathcal{H}_2}\otimes j_2)(v),$

where the third step uses Proposition 5.2.

Now consider the Hilbert space \mathbb{C}^2 , let $\{e_0, e_1\}$ be its canonical orthonormal basis. We equip it with the representation $U: \mathbb{T} \to \mathcal{U}(\mathbb{C}^2)$ defined by $U_z e_0 = z e_0$ and $U_z e_1 = e_1$. Let $\rho^{M_2(\mathbb{C})}$ be the action implemented by U:

$$\rho_z^{M_2(\mathbb{C})} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & za_{12} \\ \overline{z}a_{21} & a_{22} \end{pmatrix},$$

where $a_{ij} \in \mathbb{C}$. We claim that

$$u = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}) \otimes A$$

is a representation of $SU_q(2)$ on \mathbb{C}^2 . By Lemma 2.1, the relations defining *A* are equivalent to *u* being unitary. The \mathbb{T} -action on *A* is defined so that *u* is \mathbb{T} -invariant. The comultiplication is defined exactly so that *u* is a representation, see (4.5).

The particular shape of u contains further assumptions, however. To explain these, we consider an arbitrary compact quantum group $\mathbb{G} = (C(\mathbb{G}), \Delta_{\mathbb{G}})$ in $\mathcal{C}^*_{\mathbb{T}}$ with a unitary representation

$$u = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{M}_{2}(\mathrm{C}(\mathbb{G})),$$

such that a, b, c, d generate the C^{*}-algebra C(G). We assume that u is T-invariant for the above T-action on \mathbb{C}^2 . Thus deg(a) = deg(d) = 0, deg(b) = -1, deg(c) = 1.

Theorem 5.4. Let \mathbb{G} be a braided compact quantum group with a unitary representation u as above. Assume $b \neq 0$ and that the vector $e_0 \otimes e_1 - qe_1 \otimes e_0 \in \mathbb{C}^2 \otimes \mathbb{C}^2$ for $q \in \mathbb{C}$ is invariant for the representation $u \oplus u$. Then $q \neq 0$, $\overline{q}\zeta = q$, $d = a^*$, $b = -qc^*$, and there is a unique morphism $\pi: C(SU_q(2)) \to C(\mathbb{G})$ with $\pi(\alpha) = a$ and $\pi(\gamma) = c$. This is \mathbb{T} -equivariant and satisfies $(\pi \boxtimes_{\xi} \pi) \circ \Delta_{SU_q(2)} = \Delta_{\mathbb{G}} \circ \pi$.

Proof. The representation $u \oplus u \in M_4(\mathbb{C}(\mathbb{G}))$ is given by Proposition 5.3, which uses a canonical isomorphism $M_2(\mathbb{C}) \boxtimes_{\zeta} M_2(\mathbb{C}) \cong M_4(\mathbb{C})$. This comes from the following standard representation of $M_2(\mathbb{C}) \boxtimes_{\zeta} M_2(\mathbb{C})$ on $\mathbb{C}^2 \otimes \mathbb{C}^2$. For $T, S \in$ $M_2(\mathbb{C})$ of degree k, l and $x, y \in \mathbb{C}^2$ of degree m, n, we let $\iota_1(T)\iota_2(S)(x \otimes y) =$ $\overline{\zeta}^{lm}Tx \otimes Sy$. By construction, $u \oplus u$ is $(\iota_1 \otimes id_{\mathbb{C}(\mathbb{G})})(u) \cdot (\iota_2 \otimes id_{\mathbb{C}(\mathbb{G})})(u)$. So we may rewrite the invariance of $e_0 \otimes e_1 - qe_1 \otimes e_0$ as

 $(\iota_1 \otimes \mathrm{id}_{\mathcal{C}(\mathbb{G})})(u^*)(e_0 \otimes e_1 - qe_1 \otimes e_0) = (\iota_2 \otimes \mathrm{id}_{\mathcal{C}(\mathbb{G})})(u)(e_0 \otimes e_1 - qe_1 \otimes e_0)$ (5.1)

in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes C(\mathbb{G})$. The left and right hand sides of (5.1) are

$$e_0 \otimes e_1 \otimes a^* + e_1 \otimes e_1 \otimes b^* - qe_0 \otimes e_0 \otimes c^* - qe_1 \otimes e_0 \otimes d^*,$$

$$e_0 \otimes e_0 \otimes b + e_0 \otimes e_1 \otimes d - qe_1 \otimes e_0 \otimes a - q\overline{\xi}e_1 \otimes e_1 \otimes c,$$

respectively. These are equal if and only if $b = -qc^*$, $d = a^*$, and $b^* = -q\overline{\zeta}c$. Since $b \neq 0$, this implies $q \neq 0$ and $\overline{q}\zeta = q$, and u has the form in Lemma 2.1. Since u is a representation, it is unitary. So a, c satisfy the relations defining $SU_q(2)$ and Theorem 2.2 gives the unique morphism π . The conditions on u in Definition 5.1 imply that π is \mathbb{T} -equivariant and compatible with comultiplications.

The proof also shows that q is uniquely determined by the condition that $e_0 \otimes e_1 - qe_1 \otimes e_0$ should be $SU_q(2)$ -invariant. An invariant vector for $SU_q(2)$ should also be homogeneous for the \mathbb{T} -action. There are three cases of homogeneous vectors in $\mathbb{C}^2 \otimes \mathbb{C}^2$: multiples of $e_0 \otimes e_0$, multiples of $e_1 \otimes e_1$, and linear combinations of $e_0 \otimes e_1$ and $e_1 \otimes e_0$. If a non-zero multiple of $e_i \otimes e_j$ for $i, j \in \{0, 1\}$ is invariant, then the representation u is reducible. Ruling out such degenerate cases, we may normalise the invariant vector to have the form $e_0 \otimes e_1 - qe_1 \otimes e_0$ assumed in

Theorem 5.4. Roughly speaking, $SU_q(2)$ is the universal family of braided quantum groups generated by a 2-dimensional representation with an invariant vector in $u \oplus u$.

Up to scaling, the basis e_0 , e_1 is the unique one consisting of joint eigenvectors of the \mathbb{T} -action with degrees 1 and 0. Hence the braided quantum group (C(SU_q(2)), Δ) determines q uniquely. There is, however, one extra symmetry that changes the \mathbb{T} -action on C(SU_q(2)) and that corresponds to the permutation of the basis e_0 , e_1 . Given a \mathbb{T} -algebra A, let S(A) be the same C*-algebra with the \mathbb{T} -action by $\rho_z^{S(A)} = (\rho_z^A)^{-1}$. Since the commutation relation (1.5) is symmetric in k, l, there is a unique isomorphism

$$S(A \boxtimes_{\xi} B) \cong S(A) \boxtimes_{\xi} S(B), \quad j_1(a) \mapsto j_1(a), \quad j_2(b) \mapsto j_2(b).$$

Hence the comultiplication on $C(SU_q(2))$ is one on $S(C(SU_q(2)))$ as well.

Proposition 5.5. The braided quantum groups $S(C(SU_q(2)))$ and $C(SU_{\tilde{q}}(2))$ for $\tilde{q} = \overline{q}^{-1}$ are isomorphic as braided quantum groups.

Proof. Let α, γ be the standard generators of $A_q = C(SU_q(2))$ and let $\tilde{\alpha}, \tilde{\gamma}$ be the standard generators of $A_{\tilde{q}}$. We claim that there is an isomorphism $\varphi: A_q \to A_{\tilde{q}}$ that maps $\alpha \mapsto \tilde{\alpha}^*$ and $\gamma \mapsto \tilde{q}\tilde{\gamma}^*$ and that is an isomorphism of braided quantum groups from $S(A_q)$ to $A_{\tilde{q}}$. Lemma 2.1 implies that the matrix

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \tilde{\alpha} & -\tilde{q}\tilde{\gamma}^* \\ \tilde{\gamma} & \tilde{\alpha}^* \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \tilde{\alpha}^* & -\tilde{\gamma} \\ \tilde{q}\tilde{\gamma}^* & \tilde{\alpha} \end{pmatrix} = \begin{pmatrix} \varphi(\alpha) & \varphi(-q\gamma^*) \\ \varphi(\gamma) & \varphi(\alpha^*) \end{pmatrix}$$

is unitary. Now Lemma 2.1 and Theorem 2.2 give the desired morphism φ . Since the inverse of φ may be constructed in the same way, φ is an isomorphism. On generators, it reverses the grading, so it is \mathbb{T} -equivariant as a map $S(A_q) \to A_{\tilde{q}}$.

Let Δ and $\overline{\Delta}$ denote the comultiplications on $S(A_q)$ and $A_{\overline{q}}$. We compute

$$\begin{aligned} (\varphi \boxtimes_{\xi} \varphi) \Delta(\alpha) &= (\varphi \boxtimes_{\xi} \varphi)(j_{1}(\alpha) j_{2}(\alpha) - q j_{1}(\gamma^{*}) j_{2}(\gamma)) \\ &= j_{1}(\varphi(\alpha)) j_{2}(\varphi(\alpha)) - q j_{1}(\varphi(\gamma^{*})) j_{2}(\varphi(\gamma)) \\ &= j_{1}(\tilde{\alpha}^{*}) j_{2}(\tilde{\alpha}^{*}) - \tilde{q} j_{1}(\tilde{\gamma}) j_{2}(\tilde{\gamma}^{*}), \\ \tilde{\Delta}(\varphi(\alpha)) &= \tilde{\Delta}(\tilde{\alpha}^{*}) = j_{2}(\tilde{\alpha})^{*} j_{1}(\tilde{\alpha})^{*} - q^{-1} j_{2}(\tilde{\gamma})^{*} j_{1}(\tilde{\gamma}) \\ &= j_{1}(\tilde{\alpha})^{*} j_{2}(\tilde{\alpha})^{*} - q^{-1} \zeta j_{1}(\tilde{\gamma}) j_{2}(\tilde{\gamma})^{*}. \end{aligned}$$

These are equal because $\tilde{q} = \overline{q}^{-1} = q^{-1} \zeta$. Similarly, $(\varphi \boxtimes_{\zeta} \varphi) \Delta(\gamma) = \tilde{\Delta}(\varphi(\gamma))$. Thus φ is an isomorphism of braided quantum groups.

6. The semidirect product quantum group

A quantum analogue of the semidirect product construction for groups turns the braided quantum group $SU_q(2)$ into a genuine compact quantum group (B, Δ_B) ,

see [6, Section 6]. Here *B* is the universal C^{*}-algebra with three generators α , γ , *z* with the SU_q(2)-relations for α and γ and

$$z\alpha z^* = \alpha,$$

$$z\gamma z^* = \zeta^{-1}\gamma,$$

$$zz^* = z^*z = I;$$

the comultiplication is defined by

$$\Delta_B(z) = z \otimes z,$$

$$\Delta_B(\alpha) = \alpha \otimes \alpha - q\gamma^* z \otimes \gamma,$$

$$\Delta_B(\gamma) = \gamma \otimes \alpha + \alpha^* z \otimes \gamma.$$

There are two embeddings $\iota_1, \iota_2: A \Rightarrow B \otimes B$ defined by

$$\iota_1(\alpha) = \alpha \otimes I \qquad \iota_2(\alpha) = I \otimes \alpha,$$

$$\iota_1(\gamma) = \gamma \otimes I \qquad \iota_2(\gamma) = z \otimes \gamma.$$

Homogeneous elements $x, y \in A$ satisfy

$$\iota_1(x)\iota_2(y) = \zeta^{\deg(x)\deg(y)}\iota_2(y)\iota_1(x).$$
(6.1)

Thus we may rewrite the comultiplication as

$$\Delta_B(z) = z \otimes z,$$

$$\Delta_B(\alpha) = \iota_1(\alpha)\iota_2(\alpha) - q\iota_1(\gamma)^*\iota_2(\gamma),$$

$$\Delta_B(\gamma) = \iota_1(\gamma)\iota_2(\alpha) + \iota_1(\alpha)^*\iota_2(\gamma).$$

In particular, Δ_B respects the commutation relations for (α, γ, z) , so it is a well-defined *-homomorphism $B \to B \otimes B$. It is routine to check the cancellation conditions (1.4) for B, so (B, Δ_B) is a compact quantum group.

This is a compact quantum group with a projection as in [7, 8]. Here the projection $\pi: B \to B$ is the unique *-homomorphism with $\pi(\alpha) = 1_B$, $\pi(\gamma) = 0$ and $\pi(z) = z$; this is an idempotent bialgebra morphism. Its "image" is the copy of $C(\mathbb{T})$ generated by z, its "kernel" is the copy of A generated by α and γ .

For q = 1, $B \cong C(\mathbb{T} \times SU(2))$ as a C*-algebra, which is commutative. The representation on \mathbb{C}^2 combines the standard embedding of SU(2) and the representation of \mathbb{T} mapping *z* to the diagonal matrix with entries *z*, 1. This gives a homeomorphism $\mathbb{T} \times SU(2) \cong U(2)$. So (B, Δ_B) is the group U(2), written as a semidirect product of SU(2) and \mathbb{T} .

For $q \neq 1$, (B, Δ_B) is the coopposite of the quantum $U_q(2)$ group described previously by Zhang and Zhao in [12]: the substitutions $a = \alpha^*, b = \gamma^*$ and $D = z^*$ turn our generators and relations into those in [12], and the comultiplications differ only by a coordinate flip. **Theorem 6.1.** Let $U \in M(\mathcal{K}(\mathcal{H}) \otimes C(\mathbb{T}))$ be a unitary representation of \mathbb{T} on a Hilbert space \mathcal{H} . There is a bijection between representations of $SU_q(2)$ on \mathcal{H} and representations of (B, Δ_B) on \mathcal{H} that restrict to the given representation on \mathbb{T} .

Proof. Let $v \in M(\mathcal{K}(\mathcal{H}) \otimes A)$ be a unitary representation of $SU_q(2)$ on \mathcal{H} . Since *B* contains copies of *A* and $C(\mathbb{T})$, we may view $u = vU^*$ as an element of $M(\mathcal{K}(\mathcal{H}) \otimes B)$. The \mathbb{T} -invariance of v,

$$(\mathrm{id} \otimes \rho^A)(v) = U_{12}^* v_{13} U_{12}$$

and the formula for ι_2 (which is basically given by the action ρ^A) show that

$$U_{12}(\mathrm{id} \otimes \iota_2)(v)U_{12}^* = v_{13}.$$

Using $(id \otimes \iota_2)(v) = v_{12}$, we conclude that *u* is a unitary representation of (B, Δ_B) :

$$(\mathrm{id} \otimes \Delta_B)(u) = v_{12}(\mathrm{id} \otimes \iota_2)(v)U_{12}^*U_{13}^* = v_{12}U_{12}^*v_{13}U_{13}^* = u_{12}u_{13}.$$

Going back and forth between u and v is the desired bijection.

References

- P. Kruszyński and S. L. Woronowicz, A noncommutative Gelfand–Naĭmark theorem, J. Operator Theory, 8 (1982), no. 2, 361–389. Zbl 0499.46036 MR 0677419
- [2] S. MacLane, *Categories for the working mathematician*, Graduate Texts in Mathematics, 5, Springer, New York, 1971. Zbl 0906.18001 MR 1712872
- [3] S. Majid, Examples of braided groups and braided matrices, *J. Math. Phys.*, 32 (1991), no. 12, 3246–3253. Zbl 0821.16042 MR 1137374
- [4] S. Majid, *Foundations of quantum group theory*, Cambridge University Press, Cambridge, 1995. Zbl 0857.17009 MR 1381692
- [5] R. Meyer, S. Roy and S. L. Woronowicz, Quantum group-twisted tensor products of C*-algebras, *Internat. J. Math.*, 25 (2014), no. 2, 1450019, 37pp. Zbl 1315.46076 MR 3189775
- [6] R. Meyer, S. Roy and S. L. Woronowicz, Quantum group-twisted tensor products of C*-algebras. II, *J. Noncommut. Geom.*, **10** (2016), no. 3, 859–888. Zbl 06655304 MR 3554838
- [7] R. Meyer, S. Roy and S. L. Woronowicz, Semidirect products of C*-quantum groups: multiplicative unitaries approach, *Comm. Math. Phys.*, (2016), 34pp. doi:10.1007/s00220-016-2727-3

- [8] S. Roy, C*-Quantum groups with projection, Ph.D. Thesis, Georg-August Universität Göttingen, 2013. Available at: http://hdl.handle.net/11858/ 00-1735-0000-0022-5EF9-0
- [9] P. M. Sołtan, Examples of non-compact quantum group actions, J. Math. Anal. Appl., 372 (2010), no. 1, 224–236. Zbl 1209.46045 MR 2672521
- S. L. Woronowicz, Twisted SU(2) group. An example of a noncommutative differential calculus, *Publ. Res. Inst. Math. Sci.*, 23 (1987), no. 1, 117–181. Zbl 0676.46050 MR 0890482
- S. L. Woronowicz, Compact quantum groups, in Symétries quantiques, (Les Houches, 1995), 845–884, North-Holland, Amsterdam, 1998. Zbl 0997.46045 MR 1616348
- [12] X. X. Zhang and E. Y. Zhao, The compact quantum group $U_q(2)$. I, *Linear Algebra Appl.*, **408** (2005), 244–258. Zbl 1093.46042 MR 2166867

Received 10 April, 2015

P. Kasprzak, Katedra Metod Matematycznych Fizyki, Wydział Fizyki, Uniwersytet Warszawski, Pasteura 5, 02-093 Warszawa, Poland E-mail: pawel.kasprzak@fuw.edu.pl

R. Meyer, Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstraße 3–5, 37073 Göttingen, Germany E-mail: rmeyer2@uni-goettingen.de

S. Roy, School of Mathematical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatni 752050, India

E-mail: sutanu@niser.ac.in

S. L. Woronowicz, Instytut Matematyczny PAN, and Katedra Metod Matematycznych Fizyki, Wydział Fizyki, Uniwersytet Warszawski, Pasteura 5, 02-093 Warszawa, Poland E-mail: stanislaw.woronowicz@fuw.edu.pl