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Abstract. We make a comprehensive and self-contained study of compact bicrossed products
arising from matched pairs of discrete groups and compact groups. We exhibit an automatic
regularity property of such a matched pair and describe the representation theory and the fusion
rules of the associated bicrossed product G. We investigate the relative co-property .T / and the
relative co-Haagerup property of the pair comprising of the compact group and the bicrossed
product, discuss property .T / and Haagerup property of the discrete dual bG, and review co-
amenability of G as well. We distinguish two such non-trivial compact bicrossed products
with relative co-property .T / and also provide an infinite family of pairwise non isomorphic
non-trivial discrete quantum groups with property .T /, the existence of even one of the latter
was unknown. Finally, we examine all the properties mentioned above for the crossed product
quantum group given by an action by quantum automorphisms of a discrete group on a compact
quantum group, and also establish the permanence of rapid decay and weak amenability and
provide several explicit examples.
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1. Introduction

In the eighties, Woronowicz [44–46] introduced the notion of compact quantum
groups and generalized the classical Peter–Weyl representation theory. However, the
theory of quantum groups goes back to Kac [23,24] in the early sixties, and his notion
of ring groups in modern terms are known as finite dimensional Kac algebras. In
the fundamental work [25] on extensions of finite groups, Kac introduced the notion
of matched pair of finite groups and developed the bicrossed product construction
giving the first examples of semisimple Hopf algebras that are neither commutative
nor cocommutative. It was later generalized by Baaj and Skandalis [2] in the context
of Kac algebras and then by Vaes and Vainerman [38] in the framework of locally
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compact1 (l.c. in the sequel) quantumgroups; the latter was introduced byKustermans
and Vaes in [28]. In the classical case, i.e. in the ambience of groups, Baaj and
Skandalis concentrated only on the case of regular matched pairs of l.c. groups.
In [38], the authors extended the study to semi-regular matched pairs of l.c. groups.
The case of a general matched pair of locally compact groups was settled by Baaj,
Skandalis and Vaes in [3].

As a standing assumption, all throughout the paper, all Hilbert spaces and all
C�-algebras are separable, all von Neumann algebras have separable preduals, all
discrete groups are countable and all compact groups are Hausdorff and second
countable.

Akey direction of research in the theory of quantumgroups is to generate and study
many explicit examples. The bicrossed product construction is a way to get abundant
non-trivial examples of quantum groups which are very far from groups [16]. A
compact bicrossed product is one, in which the resulting quantum group is compact.
Without being bogged technically, the bicrossed product construction in the classical
case associates a l.c. quantum group to a matched pair of l.c. groups .G1; G2/. The
associated l.c. quantum group .in the bicrossed product construction/ has aHaar state,
i.e. is a compact quantum group, if and only ifG1 is discrete andG2 is compact [38].
In this paper, such a pair will be called as a compact matched pair. Moving to
the quantum case, one can introduce the notion of matched pair of l.c. quantum
groups, and perform an analogous bicrossed product construction to manufacture a
l.c. quantum group that generalizes the classical bicrossed product construction. This
construction is quite technical and we refer the interested reader to [38] for details.
It is to be noted that, in the same vein, the crossed product of a compact quantum
group G by a countable discrete group � acting on G by quantum automorphisms
(see Section 2.2 for precise definition), as considered by Wang [41], is subsumed in
the quantum bicrossed product construction and hence is a simple case of compact
bicrossed product. Needless to say, that the aforesaid class of bicrossed products in
the quantum setup, does not exhaust the entire class of compact bicrossed products.
We point out though, that despite the intricacy in the bicrossed product construction,
the “compactness” of the matched pair in the classical case (for groups) alleviates
numerous technical obstacles.

This paper investigates compact bicrossed products in both classical and
quantum setting and studies their approximation properties, namely, amenability,
K-amenability, weak amenability, (relative) Haagerup property, (relative) prop-
erty (T) and rapid decay, which enables one to manufacture explicit examples. The
paper has two major parts: one dealing with the classical case and one dealing with
the quantum case. In the quantum case, we only concentrate on compact crossed
products.

We provide a totally self-contained and direct approach dedicated towards
the construction of a compact bicrossed product arising from matched pair of

1All l.c. spaces are assumed to be Hausdorff.
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groups .�;G/, where � is discrete and G is compact. An advantage with our
construction is that it avoids technical intricacies that are obligatory when dealing
with l.c. groups. In the process, we observe that the compactness of G constrains
the matched pair to automatically satisfy a regularity property, notably, �;G are
subgroups of a l.c. group H such that �G D H and the canonical action of either
group on its complementary pair is continuous. Moreover, the action of � on G
happens viameasure preserving homeomorphisms. This regularity is not automatic in
the l.c. setting and one has to compensate with “almost everywhere statements”. The
aforesaid regularity makes it comparatively easier to directly perform the bicrossed
construction; the bicrossed product is, in this case, known to be a Kac algebra. The
continuous action of the groupG on the countable set � yields magic unitaries, which
along with the irreducible unitary representations of G and the action of � on G by
measure preserving homeomorphisms assist us in listing the entire representation
theory and fusion rules of the bicrossed product (Theorems 3.4 and 3.8). Some easy
consequences on amenability (which is known from [15]),K-amenability, Haagerup
property are also presented in Corollary 3.7. We also compute the intrinsic group and
the spectrum of the full C�-algebra of the associated bicrossed product in terms of the
fixed points of the canonical actions and the spectrum of the groups in Proposition 3.9.
These are, of course, isomorphism invariants for compact quantum groups.

With the help of the construction above, we explore the approximation properties
of the dual of a compact bicrossed product arising from a compact matched pair of
groups. We characterize the relative co-property .T / for the pair .G;G/, where G is
the bicrossed product of the compact matched pair .�;G/, in terms of the action
of � on G. More precisely, the negation of relative co-property .T / for the
pair .G;G/ amounts to the existence of an asymptotically �-invariant sequence
of Borel probability measures onG each of which assign zero weight to the identity e
of the group but yet converge to the Dirac measure ıe in the weak� topology
(Theorem 4.2). In the event of existence of such a sequence of measures on G,
by a standard result in measure theory (due to Parthasarathy and Steernman [34]), the
measures in the sequence versus their push forwards with respect to the group action
implemented by � have large common support. Thus, along the way, we show that
such a sequence of measures can be replaced by one for which the �-action on G
is nonsingular. This result generalizes the classical characterization of the relative
property .T / for the pair .H0; �0 Ë H0/ (originally defined in [29]), where �0 is a
countable discrete group acting on a countable discrete abelian group H0 [11]. We
show that if the dual bG of the bicrossed product has property .T /, then � necessarily
has property .T / and the set of fixed points inG of the action of � onG is finite. We
also show that if � has .T / and G is finite then bG has .T / and the converse holds
when the action of � on G is compact (Theorem 4.3).

Proceeding further, we characterize the relative co-Haagerup property for the
pair .G;G/ again in terms of the action of � on G. Like before, we prove that
this property is equivalent to the existence of an approximately �-invaraint sequence
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of probability measures on G which converge in weak� topology to ıe and whose
Fourier transform (regarded as an element of the multiplier algebra of C �r .G// fall
in C �r .G/ (Theorem 5.3), and, like before, we show that the measures can be chosen
such that the action of � on G is nonsingular. Again, this result generalizes the
classical characterization of the relativeHaagerup property for the pair .H0; �0ËH0/,
where �0 is a countable discrete group acting on the countable discrete abelian
groupH0 [11].

In the quantum setting, an example of a matched pair of a classical countable
discrete group with a compact quantum group is the pair arising in a crossed
product in which the discrete group acts on the compact quantum group by quantum
automorphisms [41]. Since one of the involved actions is trivial, the representation
theory is easier to study. But as the compact quantum group need not be commutative,
Kac or co-amenable, approximation properties become harder to exhibit. We provide
a self-contained and very short approach to this construction and study all the
properties mentioned above for the associated crossed product quantum group.
Let ˛ W � Õ G be an action of the discrete group � on the compact quantum
group G by quantum automorphisms and G be the crossed product quantum group.
In this context, we first provide a short account of the quantum group structure of G
and its representation theory which was initially studied by Wang in [41] (but, in
contrast with the work of Wang, we do not invoke free products). We deduce obvious
consequences on amenability andK-amenability of bG in Corollary 6.4 and describe
the intrinsic group and the spectrum of the full C�-algebra of G in Proposition 6.5.

In the quantum setting, we study weak amenablity of bG. In [26], it was proved
that when G is Kac, then ƒcb.bG/ D ƒcb.C.G// D ƒcb.L1.G//. In our setup
we estimate (in Theorem 6.7) the Cowling–Haagerup constants under compactness.
When the action ˛ of � is compact we show that ƒcb.C.G// � ƒcb.�/ƒcb.bG/.

Rapidly decreasing functions on group C�-algebras were first studied by Jolissaint
in [22]. Generalizing this notion, rapid decay .(RD) in the sequel/ for quantum groups
was studied in [40] and subsequently this notion was calibrated in [5]. Following [5],
we show the permanence of (RD) in the setup of crossed products. To be precise, we
show that if � acts on G via quantum automorphisms, there is a length function l
on Irr.G/ which is invariant with respect to the canonical action of � on Irr.G/ such
that .bG; l/ has (RD), and � has (RD), then bG has (RD) with respect to a pertinent
length function on Irr.G/ (Theorem 6.11).

Our characterization of the relative co-property .T / for the pair .G;G/ is
analogous to the classical bicrossed product case: the approximating measures
and ıe in the characterization of the classical case are replaced in the quantum
setting respectively by states onCm.G/ and the counit ofG. This proof is technically
more involved than the classical case (Theorem 6.13). We also obtain a statement
about property .T / for bG analogous to the property .T / statement we mentioned
above for classical bicrossed products (Theorem 6.14).

Analogous statements hold for the relative co-Haagerup property of the pair
.G;G/ as well (Theorem 6.17). Moreover, we generalize a result of Jolissaint
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regarding Haagerup property to the setup of non tracial von Neumann algebras [21]:
for a compact, state .faithful normal/ preserving action of a countable discrete group
with Haagerup property on a von Neumann algebra with the same property, the
crossed product has theHaagerup property (Poposition 6.18). Hence, if� andL1.G/
have the Haagerup property and the action ˛ is compact then L1.G/ also has the
Haagerup property. It is known that, for any compact quantum group G, if bG has
the Haagerup property then L1.G/ also has the Haagerup property and the converse
holds when G is Kac [13]. In general, one needs to assume that bG is strongly inner
amenable [32]. Nevertheless, we show that if bG and � both have the Haagerup
property and the action of � on G is compact, then bG has the Haagerup property
(Theorem 6.20).

It is now appropriate to highlight our examples. We point out that it is, in
general, hard to generate examples of compact matched pairs of groups for which
both the actions are non-trivial. Thus, starting with a bicrossed product arising
from a compact matched pair for which any one of the actions is trivial, we use a
crossed homomorphism .see Section 7 for definition/ to deform the original matched
pair into one for which both the canonical actions become possibly non-trivial .see
discussions in the beginning of Sections 7.1.1 and 7.1.2). The added advantages with
this deformation process are two fold. Firstly, the computations of the spectrum of the
maximal C�-algebra and the intrinsic group of the deformed bicrossed product are
still convenient. Secondly, all the approximation properties and notably the relative
co-property .T / and the relative co-Haagerup property are inherited by the deformed
bicrossed product. This allows us to provide a concrete infinite family of pairwise non-
isomorphic, non-commutative and non-cocommutative infinite dimensional compact
quantumgroupswhose duals have the property .T / (Theorem7.10). Wemention that,
as far as we are aware, these are the first explicit non-trivial examples of such compact
quantum groups, since the twisting example of [17] is based on [17, Theorem 3] and
the proof of this theorem is erroneous.

We also provide examples of non-trivial crossed product compact quantum groups
by considering the canonical conjugation action induced by a countable subgroup of
the spectrum of the full C�-algebra of a non-trivial compact quantum group. For
these specific crossed products, we compute the intrinsic groups and the spectrum
of the full C�-algebras, estimate the Cowling–Haagerup constants and characterize
the property .RD/, the Haagerup property and the property .T / in terms of the
discrete group � and the compact quantum group G in Corollary 7.11 and we apply
this results to the free orthogonal and free unitary quantum groups in Example 7.12.
Finally, we provide some explicit non-trivial examples of crossed product without
the Haagerup property but with the relative Haagerup property in Example 7.13.

The lay out of the paper is as follows. In Section 2, we jot down all the notations,
recall preliminary facts and basics of compact quantum groups that is used all
throughout this paper. In the same section, we also prove that co-Haagerup property
and co-weak amenability of a finite index quantum subgroup extend to the compact
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quantum group. Section 3 concentrates on the bicrossed product construction from
compact matched pairs of groups and studies the representation theory of a compact
(classical) bicrossed products. In Section 4 and Section 5, we respectively study
(relative)Kazhdan property and (relative)Haagerup property for the dual of a compact
bicrossed products. Section 6 is divided into many subsections, and in this section,
we study the properties of crossed products of compact quantum groups by discrete
groups. Section 7 is dedicated to examples.

Acknowledgements. The authors are very grateful to Prof. Karl H. Hofmann for his
illuminating remarks that led the authors to the explicit examples in Section 7. The
authors would also like to thankMakoto Yamashita and Christian Voigt for comments
and discussions.

2. Preliminaries

Notations. Throughout the paper, B.H/ denotes the von Neumann algebra of all
bounded operators on the Hilbert spaceH . The inner products of Hilbert spaces are
assumed to be linear in the first variable. The same symbol˝ will denote the tensor
product of Hilbert spaces, the minimal tensor product of C�-algebras and as well as
the tensor product of von Neumann algebras.

2.1. Compact group action on countable sets. Wefirst record some facts regarding
actions of compact groups on countable sets. This will be necessary in studying the
bicrossed product construction for compact matched pairs of groups.

Let X be a countable infinite set and let S.X/ be the group of bijections of X . It
is a Polish group equipped with the topology of pointwise convergence which is the
topology generated by the sets Sx;y D f˛ 2 S.X/ W ˛.x/ D yg for x; y 2 X . Since
Scx;y D [z2XnfygSx;z , these sets are clopen in S.X/. Moreover, for any compact
subset K � S.X/ and for any x 2 X , the orbit K � x � X is finite. Indeed, from
the open cover K � [y2XSx;y , we find y1; : : : ; yn 2 X such that K � [niD1Sx;yi ,
which implies that K � x � fy1; : : : ; yng.

Let ˇ W G ! S.X/ be a continuous right action of G on X . To simplify the
notations, we write x � g D ˇg.x/ for g 2 G and x 2 X .

Observe that, since ˇ is continuous andG is compact, every ˇ-orbit inX is finite.
Fix r; s 2 X and denote by Ar;s the set

Ar;s D
˚
g 2 G W r � g D s

	
D ˇ�1.Sr;s/:
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Note that, since ˇ is continuous, Ar;s is open and closed inG for all r; s 2 X . Hence,
1Ar;s 2 C.G/. Moreover, 1Ar;s ¤ 0 if and only if r and s are in the same orbit and
we have the following relations:

(1) 1As;r1At;r D ıt;s1As;r for all r; s; t 2 X ;

(2) 1As;r1As;t D ır;t1As;r for all r; s; t 2 X ;

(3)
P
s2X 1Ar;s D

P
s2r �G 1Ar;s D 1 for all r 2 X ;

(4)
P
r2X 1Ar;s D

P
r2s�G 1Ar;s D 1 for all r 2 X ;

(5) If r �G D s �G, then �G.1As;r / D
P
t2s:G 1As;t ˝ 1At;r ,

where�G is the usual comultiplication onC.G/. In other words, for every orbit x �G,
the matrix .1Ar;s /r;s2x�G 2 Mjx�Gj.C/ ˝ C.G/ is a magic unitary and a unitary
representation of G. We note also that formally, equality also holds in the case
r �G ¤ s �G, as is easily checked.

2.2. Compact and discrete quantum groups. In this section, we recall well known
and basic facts about compact quantum groups that will be indispensable. For the
general theory of compact quantum groups, we refer the reader to [44,46].

For a compact quantum groupG with comultiplication� (or�G when there can
be ambiguity), we denote byh (orhG/ theHaar state onG and byC.G/ (resp. L1.G/)
the C�-algebra (resp. the von Neumann algebra) generated by the GNS construction
of h. Hence we view C.G/ � B.L2.G//, where L2.G/ is the GNS space of h.
The reader should be cautious that the symbol � .or �G/ will be used to denote the
comultiplications of all three compact quantum groups C.G/, Cm.G/, the universal
quantum group of C.G/ and L1.G/. For two finite dimensional representations
of G, we denote by Mor.u; v/ the space of intertwiners from u to v and by u ˝ v
their tensor product. The trivial representation is denoted by 1. We also denote
by Irr.G/ the set of equivalence classes of irreducible unitary representations of G.
For x 2 Irr.G/, we choose a representative ux 2 B.Hx/ ˝ C.G/, where ux is a
irreducible representation on the Hilbert spaceHx .

Recall that there is a natural involution x 7! x such that ux is the unique (up
to equivalence) irreducible representation of G such that Mor.1; x ˝ x/ ¤ f0g ¤
Mor.x ˝ x; 1/. For any x 2 Irr.G/, take a non-zero element Ex 2 Mor.1; x ˝ x/
and define an anti-linear map Jx W Hx ! Hx by letting � 7! .�� ˝ 1/Ex . Define
Qx D JxJ

�
x 2 B.Hx/. We normalizeEx in such a way that Trx.Qx/ D Trx.Q�1x /,

where Trx is the unique trace on B.Hx/ such that Trx.1/ D dim.x/. This uniquely
determines Qx and fixes Ex up to a complex number of modulus 1. The number
dimq.x/ WD Trx.Qx/ D Trx.Q�1x / is called the quantum dimension of x. Let
uxcc D .id˝ S2G/.u

x/, where SG denotes the antipode of G. It is well known (see
e.g. [44, Section 5]) that Qx is also uniquely determined by the fact that Qx 2
Mor.ux; uxcc/ and thatQx is invertible and Trx.Qx/ D Trx.Q�1x / > 0.
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We denote by Pol.G/ the linear span of the coefficients of fux W x 2 Irr.G/g,
which is a unital dense �-subalgebra of C.G/. We also denote by Cm.G/ the
envelopingC �-algebra of Pol.G/, by � (or �G) the canonical surjection fromCm.G/
to C.G/ and by " (or "G) the counit on Cm.G/.

For a unital C�-algebra A, we use the standard notation Sp.A/ to denote the
spectrum of A.

LetG be a compact quantum group and write �.G/ WD Sp.Cm.G//. It is a group
with the product defined by gh D .g˝ h/ ı�, for g; h 2 �.G/. The unit of �.G/ is
the counit "G 2 Cm.G/� and the inverse of g 2 �.G/ is given by gıSG , where SG is
the antipode onCm.G/. Viewing �.G/ as a closed subset of the unit ball ofCm.G/�,
one can consider the weak� topology on �.G/which turns �.G/ to a compact group.

Finally, let Int.G/ D fu 2 U.Cm.G// W �G.u/ D u ˝ ug denote the intrinsic
group ofG. It is the set of all 1-dimensional irreducible unitary representations ofG
and it is countable (since Cm.G/ is supposed to be separable).

For a classical l.c. groupH , we denote by Sp.H/ the spectrum of C �.H/. It is a
l.c. abelian group (with pointwise multiplication and weak� topology arising from the
inclusion Sp.H/ � C �.H/�) and is compact ifH is discrete and mutatis mutandis;
we will view it as the group of 1-dimensional unitary representations of H . It is the
Pontryagin dual of H (when H is abelian). We do not use the standard notation bH
since we reserve this notation for the dual quantum group and, in the non-abelian
case, it does not correspond to the dual quantum group.

We also denote by Aut.G/ the set of quantum automorphisms of a compact
quantum group G. More precisely,

Aut.G/ D
˚
˛ 2 Aut.Cm.G// W � ı ˛ D .˛ ˝ ˛/ ı�

	
:

Hence, Aut.G/ as a closed subgroup of the Polish2 group Aut.Cm.G//, is itself
a Polish group.

Observe that each ˛ 2 Aut.G/ induces a bijection ˛ 2 S.Irr.G//. Indeed, for
x 2 Irr.G/, ˛.x/ is the equivalence class of the irreducible unitary representation
.id ˝ ˛/.ux/. By construction, the map Aut.G/ ! S.Irr.G// is a group homo-
morphism.

We will need the following auxiliary result which is certainly well known to
specialists. We include a proof since we could not locate any reference in the
literature.

Proposition 2.1. The map Aut.G/! S.Irr.G// is continuous.

Proof. We shall need the following well known lemma which is of independent
interest. We include a proof for the convenience of the reader.

2with respect to the topology of pointwise norm convergence
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Lemma 2.2. Let u; v 2 B.H/ ˝ Cm.G/ be two unitary representations of G on
the same finite dimensional Hilbert space H . If ku � vk < 1, then u and v are
equivalent.

Proof. Definex D .id˝h/.v�u/ 2 B.H/. Sinceu andv are unitary representations,
h being theHaar state forces .x˝1/u D v.x˝1/. We haveu�.x�x˝1/u D x�x˝1.
Hence, u�.jxj ˝ 1/u D jxj ˝ 1. Now observe that

k1 � xk D k.id˝ h/.1 � v�u/k � k1 � v�uk D kv � uk < 1:

Hence x is invertible, and in the polar decomposition x D wjxj, the polar part w is
a unitary. Consequently,

v�.wjxj ˝ 1/u D v�.w ˝ 1/u.jxj ˝ 1/ D .w ˝ 1/.jxj ˝ 1/:

By uniqueness of the polar decomposition of x ˝ 1, we deduce that v�.w ˝ 1/u D
w ˝ 1. Hence, u and v are equivalent.

We can now prove the proposition. Let .˛n/n be a sequence in Aut.G/ which
converges to ˛ 2 Aut.G/. Let F � Irr.G/ be a finite subset and let N 2 N be such
that for all n � N

k.id˝ ˛n/.ux/ � .id˝ ˛/.ux/k <
1

2
for all x 2 F :

It follows from Lemma 2.2 that .id˝ ˛n/.ux/ and .id˝ ˛/.ux/ are equivalent for
all n � N and for all x 2 F . This means that ˛n.x/ D ˛.x/ for all x 2 F whenever
n � N . This establishes the continuity.

Remark2.3. Wecan also defineAutr.G/Df˛ 2 Aut.C.G// W � ı ˛D.˛ ˝ ˛/ ı�g
which is again a Polish group as it is a closed subgroup of the Polish group
Aut.C.G//. Since any ˛ 2 Aut.G/ preserves the Haar state, it defines a unique
element in Autr.G/. Hence, we have a canonical map Aut.G/ ! Autr.G/ which
is obviously a group homomorphism. Moreover, it is actually bijective. The inverse
bijection is constructed in the following way. Since any ˛ 2 Autr.G/ restrict to
an automorphism of Pol.G/, it extends uniquely by the universal property to an
automorphism in Aut.G/. It is also easy to check that the map Aut.G/! Autr.G/
is continuous.

Also, since any automorphism of C.G/ intertwining � has a unique normal
extension to L1.G/, it induces a map Autr.G/ ! Aut1.G/, where Aut1.G/ D
f˛ 2 Aut.L1.G// W � ı ˛ D .˛ ˝ ˛/ ı�g. As before, this map is a bijective group
homomorphism and is continuous (the topology on Aut.L1.G// being governed by
the pointwise k � k2;h convergence).
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For a discrete group � and a compact quantum groupG, a group homomorphism
˛ W � ! Aut.G/ is called an action by quantum automorphisms and is denoted
by ˛ W � Õ G, see [35, Section 6]. We call such an action compact if the closure
of the image of � in Aut.G/ is compact. By remark 2.3, it follows that for compact
actions, the associated actions of � on the C�-algebra C.G/ (and Cm.G/) and the
von Neumann algebra L1.G/ are compact. By Proposition 2.1, it follows that for
compact actions the induced action of � on Irr.G/ has all orbits finite. It is shown
in [31] that the converse is actually true: � Õ G is compact if and only if the induced
action of � on Irr.G/ has all orbits finite.

The associated operator algebras of the discrete dual bG of G are denoted by

`1.bG/ D `1M
x2Irr.G/

B.Hx/ and c0.bG/ D c0M
x2Irr.G/

B.Hx/:

We denote by VG D
L
x2Irr.G/ u

x 2M.c0.bG/˝Cm.G// themaximal multiplic-
ative unitary. Let px be the minimal central projection of `1.bG/ corresponding to
the block B.Hx/. We say that a 2 `1.bG/ has finite support if apx D 0 for all but
finitely many x 2 Irr.G/. The set of finitely supported elements of `1.bG/ is dense in
c0.bG/ and the latter is equal to the algebraic direct sum cc.bG/ DLalg

x2Irr.G/ B.Hx/.
The (left-invariant) Haar weight on bG is the n.s.f. weight on `1.bG/ defined by

hbG.a/ D X
x2Irr.G/

Trx.Qx/Trx.Qxapx/;

whenever the formula makes sense. It is known that the GNS representation of hbG
is of the form .b�G ;L2.G/;ƒbG/, where ƒbG W cc.bG/ ! L2.G/ is linear with dense
range andb�G W `1.bG/! B.L2.G// is a unital normal �-homomorphism such that
�G.x/ D WG.x ˝ 1/W

�
G for all x 2 C.G/, where WG D .b�G ˝ �G/.VG/. We

call WG the reduced multiplicative unitary.

2.3. Approximation properties. In this section we recall the definition of the
Haagerup property, weak amenability and Cowling–Haagerup constants for discrete
quantum groups. We also show some basic facts we could not find in the literature:
permanence of the (co)-Haagerup property and (co)-weak amenability from a
quantum subgroup of finite index to the ambiance compact quantum group.

Let G be a compact quantum group. For ! 2 Cm.G/
�, define its Fourier

transform b! D .id˝ !/.V / 2M.c0.bG//;
where

V D
M

x2Irr.G/

ux 2M.c0.bG/˝ Cm.G//
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is the maximal multiplicative unitary. Observe that ! 7! b! is linear and
kb!kB.L2.G// � k!kCm.G/� for all ! 2 Cm.G/�.

When G is a classical compact group with Haar measure � and � is a complex
Borel measure on G, then the Fourier transformb� 2M.C �r .G// is the operator

b� D Z
G

�gd�.g/ 2M.C
�
r .G// � B.L2.G//:

Following [13], we say thatbG has theHaagerup property if there exists a sequence
of states !n 2 Cm.G/� such that !n ! "G in the weak� topology and b!n 2 c0.bG/
for all n 2 N.

For a 2 `1.bG/ with finite support, we define a finite rank map ma W C.G/ !
C.G/ by .id ˝ ma/.ux/ D ux.apx ˝ 1/. We say that a sequence ai 2 `1.bG/
converges pointwise to 1, if kaipx � pxkB.Hx/ ! 0 for all x 2 Irr.G/.

Recall that bG is said to be weakly amenable if there exists a sequence of finitely
supportedai2`1.bG/ converging pointwise to 1 and such thatC Dsupi kmaikcb<1.
The infimum of those C , called the Haagerup constant of bG, is denoted by ƒcb.bG/
(and is, by definition, infinite if bG is not weakly amenable). It was proved in [26] that,
when G is Kac, we have ƒcb.bG/ D ƒcb.C.G// D ƒcb.L1.G//. We refer to [7]
for more on the notion of Haagerup constants for C �-algebras and von-Neumann
algebras.

Definition 2.4. We say that a compact quantum group H is a (quantum) subgroup
of G is there exists a surjection � W Cm.G/ ! Cm.H/ such that .� ˝ �/ ı �G D
�H ı �. We define the (left) coset space by

Cm.G=H/ WD
˚
a 2 Cm.G/ j .id˝ �/�G.a/ D a˝ 1

	
:

We say thatH is a finite index subgroup of G if Cm.G=H/ is finite dimensional.

We refer to [14] for a systematic treatment of the notion of (closed) subgroups of
locally compact quantum groups.

Theorem 2.5. Let H be a finite index quantum subgroup of G. Then the following
holds.

(1) If bH has the Haagerup property, then bG has the Haagerup property.

(2) ƒcb.bG/ � ƒcb.bH/.
Proof. We will need the following claim.

Claim. If H is a finite index quantum subgroup of G with surjective morphism
� W Cm.G/! Cm.H/ then the setN �

y Dfx 2 Irr.G/ W Mor.vy ; .id˝ �/.ux//¤f0gg
is finite for all y 2 Irr.H/, where fvy W y 2 Irr.H/g is a complete set of
representatives.
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Proof of the claim. We first show that N �
1 is finite. Let x 2 N �

1 and � 2 Hx be
such that k�k D 1 and .id˝ �/.ux/� ˝ 1 D � ˝ 1. Choose an orthonormal basis
.ex
k
/k of Hx such that ex1 D �. Observe that the coefficients of ux with respect with

this orthonormal basis satisfy �.ux11/ D 1 and �.ux
k1
/ D 0 for all k ¤ 1. It follows

that ux11 2 Cm.G=H/. Since the coefficients of non-equivalent representations are
linearly independent and since Cm.G=H/ is finite dimensional, it follows that the
set N �

1 is finite.
Suppose that there exists y 2 Irr.H/ n f1g such that N �

y is infinite and let
.xn/n2N[f0g be an infinite sequence of elements in N �

y . Since .id˝ �/.ux0 ˝ uxi /
has a sub-representation isomorphic to vy˝vy , it contains the trivial representation.
It follows that, for all i � 1, there exists zi 2 N �

1 such that zi � x0 ˝ xi . Hence,
xi � x0 ˝ zi and the set fzi W i � 1g is infinite, a contradiction.

(1) Let .�n/n2N be a sequence of states on Cm.H/ such that c�n 2 c0.bH/ for all
n 2 N and �n ! "H in the weak� topology. Define !n D �n ı� 2 Cm.G/�, where
� W Cm.G/ ! Cm.H/ is the subgroup surjection. Since "G D "H ı �, we have
!n ! "G in the weak� topology. Let n 2 N and � > 0. We need to show that the
set Gn;� D fx 2 Irr.G/ W k.id˝ !n/.ux/k � �g is finite. Since c�n 2 c0.bH/, the set
Hn;� D fy 2 Irr.H/ W k.id˝�n/.vy/k � �g is finite, and sinceGn;� D [y2Hn;�N

�
y ,

by the previous claim we are done.

(2) Wemay andwill suppose that bH is weakly amenable. Let � > 0 and ai 2 `1.bH/
be a sequence of finitely supported elements that converges to 1 pointwise and such
that supikmaikcb � ƒcb.bH/C �.

We consider the dual morphismb� W c0.bH/ ! M.c0.bG//, which is the unique
non-degenerate �-homomorphism satisfying .id˝ �/.VG/ D .b�˝ id/.VH /.

We first show thatb�.ai / 2 `1.bG/ is finitely supported for all i and the sequence
.b�.ai //i converges to 1 pointwise. Consider the functional !ai 2 Cm.H/� defined
by .id ˝ !ai /.vy/ D aipy for all y 2 Irr.H/ so .id ˝ !ai /.VH / D ai and, by
definition of the dual morphismb�.ai / D .id ˝ !ai ı �/.VG/, we haveb�.ai /px D
.id˝!ai ı �/.ux/ and fx 2 Irr.G/ Wb�.ai /px ¤ 0g D [y2Irr.H/;aipy¤0N �

y . Hence,b�.ai / is finitely supported for all i . Moreover, for all x 2 Irr.G/,

kb�.ai /px � pxk D k.id˝ !ai ı �/.ux/ � pxk D sup
y2Irr.H/;
x 2 N

�
y

k.id˝ !ai /.v
y/ � pyk

D sup
y2Irr.H/;
x 2 N

�
y

kaipy � pyk !i 0:

We now show that supi kmb�.ai /kcb < ƒcb.bH/ C �. First let us note that, by
Fell’s Absorption Principle, we have .WG/12.VG/13 D .VG/23.WG/12.VG/�23. Thus,
there exists a �-homomorphism Q�G W C.G/ ! C.G/ ˝ Cm.G/ which extends
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the comultiplication �G on Pol.G/. We now define a unital �-homomorphism
� W C.G/! C.G/˝ C.H/ such that

�.x/ D .id˝ �H ı �/ ı Q�G ;

where �H W Cm.H/ ! C.H/ denotes the canonical surjection given by the GNS-
representation with respect to the Haar state of H . Clearly, � extends the map
.id˝ �/ ı�G on Pol.G/. Now it not hard to see that the map � is a right quantum
homomorphism (see Section 1 of [30]); in other words � satisfies the equations:

.�G ˝ id/ ı � D .id˝ �/ ı�G ;
.id˝�H / ı � D .� ˝ id/ ı �:

Both of the above equations follow easily from the coassociativity condition of the
co-multiplication of G and H and from the fact that � D .id ˝ �/ ı �G and
.�˝ �/ ı�G D �H ı � on Pol.G/. This together with Theorem 5.3 of [30] implies
that there exists a unitary operator V� 2 B.L2.G//˝ C.H/ such that

�.x/ D V�.x ˝ 1/V
�
� :

Hence, it follows that, � is isometric.

It is now not hard to see that .id ˝ mai /� D � ı mb�.ai / for all i . Indeed,
since mai .x/ D .id ˝ !ai /�H .x/ and mb�.ai /.x/ D .id ˝ !ai ı �/�G.x/ for all
x 2 Pol.G/, we find that for x 2 Pol.G/,

.id˝mai /�.x/ D .id˝ id˝ !ai /.id˝�H / ı �.x/
D .id˝ id˝ !ai /.� ˝ �/ ı�G.x/
D �

�
.id˝ !ai ı �/.�G.x/

�
D � ımb�.ai /.x/:

Since � is isometric, we have kmb�.ai /kcb � kmaik � ƒcb.bH/ C � for all i .
Hence, ƒcb.bG/ � ƒcb.bH/C �. Since � is arbitrary the proof is complete.

3. Representation theory of bicrossed products

This section has two parts. In the first part, we discuss matched pair of groups of
which one is compact and show an automatic regularity property of such matched
pairs (Proposition 3.2). In the second part, we study bicrossed products of compact
matched pair of groups and study their representation theory and related concepts.
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3.1. Matched pairs.
Definition 3.1 ([3]). We say that a pair of l.c. groups .G1; G2/ is matched if both
G1; G2 are closed subgroups of a l.c. group H satisfying G1 \ G2 D feg and such
that the complement of G1G2 inH has Haar measure zero.

From a matched pair .G1; G2/ as above, one can construct a l.c. quantum group
called the bicrossed product and it follows from [38] that the bicrossed product is
compact if and only if G1 is discrete and G2 is compact. In the next proposition, we
show some regularity properties of matched pairs .G1; G2/ with G2 being compact.
Proposition 3.2. Let .G1; G2/ be a matched pair and suppose that G2 is compact.
ThenG1G2 D H , and, for all .; g/ 2 G1�G2 there exists unique .˛ .g/; ˇ .g// 2
G2 �G1 such that g D ˛ .g/ˇg./. Moreover,
(1) for g; h 2 G2 and r; s 2 G1, we have

˛r.gh/ D ˛r.g/˛ˇg.r/.h/; ˇg.rs/ D ˇ˛s.g/.r/ˇg.s/

and ˛r.e/ D e; ˇg.e/ D e:
(3.1)

(2) ˛ is a continuous left action of G1 on the topological space G2. Moreover, the
Haar measure on G2 is ˛-invariant whenever G1 is discrete.

(3) ˇ is a continuous right action of G2 on the topological space G1.
(4) ˛ is trivial, G1 is normal inH . Also, ˇ is trivial, G2 is normal inH .

Proof. First observe that, since G2 is compact, H is Hausdorff and G1 is closed,
the set G1G2 is closed. Hence, the complement of G1G2 is open and has Haar
measure zero. It follows that G1G2 D H D H�1 D G�12 G�11 D G2G1. Since
G1 \ G2 D feg, the existence and uniqueness of ˛ .g/ and ˇg./ for all  2 G1
and g 2 G2 are obvious. Then, the relations in .1/ and the facts that ˛ (resp. ˇ) is
a left (resp. right) action as in the statement easily follow from the aforementioned
uniqueness.

Now let us check the continuity of these actions. Since the subgroupG1 is closed
in the l.c. group H , so H=G1 is a l.c. Hausdorff space equipped with the quotient
topology and the projection map � W H ! H=G1 is continuous. Hence, �jG2 W
G2 ! H=G1 is continuous and bijective since G1 \ G2 D feg and G1G2 D H .
Since G2 is compact, �jG2 is an homeomorphism. Let � W H=G1 ! G2 be the
inverse of �jG2 and observe that the map ˛ W G1 � G2 ! G2, .; g/ 7! ˛ .g/

satisfies ˛ D � ı � ı  , where  W G1 � G2 ! H is the continuous map given by
 .; g/ D g, for  2 G1; g 2 G2. Consequently, the action ˛ is continuous. Since
for all  2 G1 and g 2 G2, we have ˇg./ D ˛ .g/�1g, we deduce the continuity
of ˇ W G1 � G2 ! G1, .; g/ 7! ˇg./ from the continuity of ˛ and the continuity
of the product and inverse operations inH .

Moreover, suppose that G1 is discrete. Then G1 is a co-compact lattice in H
and it follows from the general theory (see, for example, [19, Section 2.6]) thatH is



On compact bicrossed products 1535

unimodular and hence there exists a uniqueH -invariant Borel probability measure �
on H=G1. Consider the homeomorphism �jG2

W G2 ! H=G1 and the Borel
probability measure � D .�jG2

/�.�/ on G2. Since, for all  2 G1, the map �jG2
intertwines the homeomorphism ˛ of G2 with the left translation by  on H=G1
and since � is invariant under the left translation by  , it follows that � is invariant
under ˛ . Also, �jG2 intertwines the left translation by h on G2 with the left
translation by h on H=G1 for all h 2 G2. Hence, � is invariant under the left
translation by h for all h 2 G2. It follows that � is the Haar measure.

Suppose that G1 is normal is H . Then for all  2 G1, g 2 G2, we have
g�1g D g�1˛ .g/ˇg./ 2 G1. Since g�1˛ .g/ 2 G2 and G1 \ G2 D f1g, we
deduce that g�1˛ .g/ D 1 for all  2 G1, g 2 G2. For the reverse implication in (4),
suppose that ˛ is trivial. Then for all  2 G1, g 2 G2, we have g D gˇg./ 2 G1.
Hence, g�1G1g � G1 for all g 2 G2 and since we trivially have �1G1 � G1 for
all  2 G1 andH D G1G2, we deduce thatG1 is normal inH . The proof of the last
assertion of the proposition is analogous.

In the next proposition, we discuss the well known Zappa–Szép product (also
known as the Zappa–Rédei–Szép product, general product or knit product). It is a
converse of Proposition 3.2. We include a proof for the convenience of the reader.
Proposition 3.3. Suppose that G1 and G2 are two l.c. groups with a continuous
left action ˛ of G1 on the topological space G2 and a continuous right action ˇ
of G2 on the topological space G1 satisfying the relations .3:1/. Then there exists
a l.c. group H for which G1; G2 are closed subgroups satisfying G1 \ G2 D feg,
H D G1G2, and for all  2 G1; g 2 G2, g D ˛ .g/ˇg./.

Proof. Consider the l.c. space H D G1 � G2 and define a product on H by the
formula:

.r; g/.s; h/ D .ˇh.r/s; g˛r.h// for all r; s 2 G1, g; h 2 G2:

It is routine to check that this multiplication turnsH into a l.c. group. Moreover, we
may identifyG1 with a closed subgroup ofH by the mapG1 3 r 7! .r; 1/ 2 G1�G2
and G2 with a closed subgroup of H by the map G2 3 g 7! .1; g/ 2 G1 � G2.
After these identifications, we have H D G1G2, G1 \ G2 D feg, and for all
 2 G1; g 2 G2, g D ˛ .g/ˇg./.

3.2. Representation theory. We first construct the bicrossed product from a com-
pact matched pair and then study its representation theory. Along the way we prove
some straight forward consequences e.g. amenability, K-amenability and Haagerup
property of the dual of the bicrossed product. We also compute the intrinsic group
and the spectrum of the maximal C�-algebra of the bicrossed product.

Let .�;G/ be a matched pair of a countable discrete group � and a compact
group G. Associated to the continuous action ˇ of the compact group G on the
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countable infinite set � , we have a magic unitary

v �G D .vrs/r;s2 �G 2Mj �Gj.C/˝ C.G/

for every  �G 2 �=G, where vrs D 1Ar;s and Ar;s D fg 2 G W ˇg.r/ D sg.
We define the C�-algebra Am D � ˛;f Ë C.G/ to be the full crossed product

and the C�-algebra A D �˛ Ë C.G/ to be the reduced crossed product. With abuse
of notation, we denote by ˛ the canonical injective maps from C.G/ to Am and
from C.G/ to A. We also denote by u ,  2 � , the canonical unitaries viewed in
eitherAm orA. Observe thatAm is the enveloping C�-algebra of the unital �-algebra

A D Span
˚
u˛.u

x
ij / W  2 �; x 2 Irr.G/; 1 � i; j � dim.x/

	
:

Let � W Am ! A be the canonical surjection. Since the action ˛ on .G;�/ is
�-preserving and � is a probability measure, so there exists a unique faithful trace �
on A such that

�.u˛.F // D ı;e

Z
F d�;  2 �; F 2 C.G/:

Theorem 3.4. There exists a unique unital �-homomorphism�m W Am ! Am˝Am
such that

�m ı ˛ D .˛ ˝ ˛/ ı�G and �m.u / D
X
r2 �G

u˛.v;r/˝ ur ; 8 2 �:

Moreover, G D .Am; �m/ is a compact quantum group and we have:
(1) The Haar state of G is h D � ı �, hence G is Kac.
(2) The set of unitary representations of G of the form V  �G ˝ vx for some  �G 2

�=G andx 2 Irr.G/, whereV  �G D
P
r;s2 �G er;s˝ur˛.vr;s/ 2Mj �Gj.C/˝A

and vx D .id˝ ˛/.ux/, is a complete set of irreducible unitary representations
of G.

(3) We have Cm.G/ D Am, C.G/ D A, Pol.G/ D A, � is the canonical surjection
and L1.G/ is the von Neumann algebraic crossed product.

(4) The counit "G W Cm.G/ ! C is the unique unital �-homomorphism such that
"G.˛.F // D F.e/ for all F 2 C.G/ and "G.u / D 1 for all  2 � .
The compact quantum group G associated to the compact matched pair .�;G/ in

Theorem 3.4 is called the bicrossed product.

Proof. The uniqueness of �m is obvious. To show the existence, it suffices to check
that �m satisfies the universal property of Am.

Let us check that  7! �m.u / is a unitary representation of � . Let  2 � . We
first check that �m.u / is unitary. Observe that, for all g 2 G and  2 � , we have

1 D ˇg.
�1/ D ˇ˛ .g/.

�1/ˇg./:
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Hence, .ˇg.//�1 D ˇ˛ .g/.
�1/. From this relation it is easy to check that

��1 �G D fr�1 W r 2  �Gg and ˛ .v;r�1/ D v�1;r for all r 2 � . It follows that

�m.u /
�
D

X
r2 �G

˛.v;r/u�1 ˝ ur�1 D
X
r2 �G

u�1˛
�
˛ .v;r/

�
˝ ur�1

D

X
r2�1�G

u�1˛.v�1;r/˝ ur D �m.u�1/:

Let 1; 2 2 � . We have

�m.u1/�m.u2/ D
X

r21�G;
s22�G

u1˛.v1;r/u2˛.v2;s/˝ urs

D

X
r;s

u12˛
�
˛�1
2
.v1;r/v2;s

�
˝ urs:

Observe that ˛�1
2
.v1;r/v2;s D 1B1;2;r;s , where

B1;2;r;s D
˚
g 2 G W ˇ˛2 .g/.1/ D r and ˇg.2/ D s

	
� A12;rs D

˚
g 2 G W ˇg.12/ D rs

	
;

since ˇ˛2 .g/.1/ˇg.2/ D ˇg.12/. In particular, B1;2;r;s D ; whenever rs …
12 �G; hence

�m.u1/�m.u2/ D
X

t212�G;
r21�G

u12˛
�
1B

1;2;r;r
�1t

�
˝ ut D

X
t212�G

u12˛.Ft /˝ ut ;

where

Ft D
X
r

1B
1;2;r;r

�1t
D 1trB1;2;r;r�1t

D 1A12;t ;

and A12;t D
˚
g 2 G W 12 � g D t

	
:

Consequently, 1A12;t D v12;t and �m.u1/�m.u2/ D �m.u12/. Since
�m.ue/ D 1, it follows that  7! �m.u / is a unitary representation of � .

Let us now check that the relations of the crossed product are satisfied. For  2 �
and F 2 Pol.G/ we have:

�m.u /�m.˛.F //�m.u
�
 /

D

X
r;s

.u ˝ ur/.˛ ˝ ˛/
�
.v;r ˝ 1/�G.F /

�
.u�1˛.v�1;s/˝ us/

D

X
r;s

.u ˝ ur/.˛ ˝ ˛/
�
.v;r˛�1.v�1;s/˝ 1/�G.F /

�
.u�1 ˝ us/
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D

X
r;s

.˛ ˝ ˛/
�
.˛ .v;r/v�1;s ˝ 1/.˛ ˝ ˛r/.�G.F //

�
.1˝ urs/

D

X
r;t

.˛ ˝ ˛/
�
.˛ .v;r/v�1;r�1t ˝ 1/.˛ ˝ ˛r/.�G.F //

�
.1˝ ut /

D

X
t

.˛ ˝ ˛/.Ht /.1˝ ut /;

whereHt D
P
r.˛ .v;r/v�1;r�1t ˝ 1/.˛ ˝ ˛r/.�G.F //.

Observe that ˛ .v;r/v�1;r�1t D 1B;r;t , where

B;r;t D
˚
g 2 G W ˇ˛

�1
.g/./ D r and ˇg.�1/ D r�1t

	
:

Since ˇ˛
�1

.g/./ˇg.
�1/ D ˇg.

�1/ D ˇg.e/ D e, we deduce that B;r;t D ;
whenever t ¤ e, and it is easy to see that tr2 �GB;r;e D G. Hence, Ht D 0 for
t ¤ e. Again for g 2 B;r;e and h 2 G, one has

He.g; h/ D F.˛�1.g/˛r�1.h// D F.˛�1.g/˛ˇg.�1/.h// D F.˛�1.gh//:

It follows thatHe D �G.˛ .F //. Consequently,

�m.u /�m.˛.F //�m.u
�
 / D .˛ ˝ ˛/.He/:

This completes the proof of the existence of �m.
It is clear that vx .as defined in the statement/ is unitary and since .˛˝ ˛/�G D

�mı˛, we have�m.vxij / D
P
k v

x
ik
˝vx

kj
. Observe thatV  �G D D .id˝˛/.v �G/ 2

Mj �Gj.C/˝A, whereD is the diagonal matrix with entries ur , r 2  �G. Hence,
V  �G is unitary. Moreover,

�m.V
 �G
rs / D �m

�
ur˛.vrs/

�
D

X
t2r �GD �G

�
ur˛.vrt /˝ ut

�
.˛ ˝ ˛/

�
�G.vrs/

�
D

X
t;z2 �G

ur˛.vrtvrz/˝ ut˛.vzs/ D
X
t2 �G

ur˛.vrt /˝ ut˛.vts/

D

X
t2 �G

V
 �G
rt ˝ V

 �G
ts :

It follows from [42, Definition 2.1’] that G is a compact quantum group and V  �G ,
vx are unitary representations of G for all  �G 2 �=G and x 2 Irr.G/.
(1) Since

P
s V

 �G
rs D ur , the linear span of the coefficients of the representations

V  �G ˝ vx for  2 �=G and x 2 Irr.G/ is equal to A. Hence, it suffices to check
the invariance of h on the coefficients of V  �G ˝ vx . We have

h.V  �Grs vxij // D h.ur˛.vrsv
x
ij // D ır;e

Z
G

vesv
x
ijd�

D ır;eıs;e

Z
G

vxijd� D ır;eıs;eıx;1;
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since ves D ıs;e1 and vx is irreducible. Hence, if x ¤ 1, we have

.id˝ h/�m.V  �Grs vxij / D
X
t;k

V
 �G
rt vxikh

�
V
 �G
ts vxkj

�
D 0

D

X
t;k

h
�
V
 �G
rt vxik

�
V
 �G
ts vxkj D .h˝ id/�m

�
V  �Grs vxij

�
:

And, if x D 1, we have

.id˝ h/�m
�
V  �Grs

�
D

X
t

V
 �G
rt h

�
V

ts

�
D ı;e1 D .h˝ id/�m

�
V  �Grs

�
:

It follows that h is the Haar state.
(2) To simplify the notations, we write  �G˝x D V :G˝vx during this proof. For
a unitary representation u (of G or G), we denote by �.u/ D

P
i ui i its character.

Observe that

�. �G ˝ x/ D �
�
V  �G

�
˛
�
�.x/

�
D

X
r2 �G

ur˛.vrr/˛
�
�.x/

�
:

Hence, for all ;  0 2 � , and all x; y 2 Irr.G/, we have

�
�
 0 �G ˝ y ˝  �G ˝ x

�
D �. 0 �G ˝ y/��. �G ˝ x/

D

X
s2 0�G;
r2 �G

˛
�
�.y/vss

�
us�1r˛

�
vrr�.x/

�
D

X
s2 0�G;
r2 �G

us�1r˛
�
˛r�1s

�
�.y/vss

�
vrr�.x/

�
:

Hence,

h
�
�
�
 0 �G ˝ y ˝  �G ˝ x

��
D ı 0�G; �G

X
s2 �G

Z
G

vss�.y/�.x/ d�

D ı 0�G; �G

Z
G

�.y ˝ x/ d� D ı 0�G; �Gıx;y :

(3.2)
Taking  0 D  and y D x this shows that dim.Mor. �G ˝ x;  �G ˝ x// D 1.

Hence, such representations are irreducible. Since the linear span of the coefficients
of  � G ˝ x is equal to A and hence dense in Am, it follows that any irreducible
representation of G is equivalent to some  �G ˝ x.

It also follows from Equation .3:2/ that  � x '  0 �y if and only if  �G D  0 �G
and x D y.
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(3) We have already shown that Pol.G/ D A. It follows that Cm.G/ D Am. Since �
is surjective and � is faithful on A, it follows that C.G/ D A and L1.G/ is the
bicommutant ofA in B.`2.�/˝L2.G// i.e. it is the von Neumann algebraic crossed
product. Finally, since � is the identity on A D Pol.G/, it follows that � is the
canonical surjection.
(4) The fact that "G.˛.F // D F.e/ for all F 2 C.G/ is obvious since ˛ intertwines
the colmultiplication. Fix  2 � . Since V  �G is irreducible, we have that .id˝ "G/

.V  �G/ D 1. Hence,

1 D
X

r;s2:G

er;s"G.ur/vr;s.e/ D
X
r2:G

er;r"G.ur/:

It follows that "G.u / D 1.

Remark 3.5. Let G be the bicrossed product coming from a compact matched pair
.�;G/ as above. From the definition, it is easy to check that Cm.G/ is commutative
if and only if the action ˛ is trivial and � is abelian. Moreover, G is cocommutative
if and only if the action ˇ is trivial and G is abelian.
Remark 3.6. The following observation is well known. Let ˛ W � Õ A be an action
of the countable group � on the unital C�-algebra A and let C be the full crossed
product which is generated by the unitaries u ,  2 � , and by the copy ˛.A/ of the
C�-algebra A. If A has a character " 2 A� such that ".˛ .a// D ".a/ for all a 2 A
and  2 � , then the C�-subalgebra B � C generated by fu W  2 �g is canonically
isomorphic to C �.�/. Indeed, it suffices to check that B satisfies the universal
property of C �.�/. Let v W � ! U.H/ be a unitary representation of � on H .
Consider the unital �-homomorphism � W A ! B.H/ given by �.a/ D ".a/idH ,
a 2 A. We have v�.a/v�1 D ".a/idH D ".˛ .a//idH D �.˛ .a//. Hence, we
obtain a representation of C that we can restrict to B to get the universal property.

Let .�;G/ be a matched pair. Since the map " W C.G/ ! C defined by
F 7! F.e/ is a ˛-invariant character, it follows from the preceding observation
that the C�-subalgebra of Am generated by u ,  2 � , is canonically isomorphic
to C �.�/.

We now give some obvious consequences of the preceding result concerning
amenability, K-amenability and the Hagerup property. The first assertion of the
following corollary is already known [15] but we include an easy proof for the
convenience of the reader. We refer to [39] for the definition of K-amenability of
discrete quantum groups.
Corollary 3.7. The following holds:
(1) G is co-amenable if and only if � is amenable.
(2) If � is K-amenable, then bG is K-amenable.
(3) If bG has the Haagerup property, then � has the Haagerup property.
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(4) If the action of� on L1.G/ is compact and� has the Haagerup property, then bG
has the Haagerup property.

Proof. (1) If � is amenable, then we trivially have that � is an isomorphism; hence,
G is co-amenable. Conversely, if G is co-amenable, then the Haar state h D � ı � is
faithful on Am. Since h.u / D ı;e ,  2 � , we conclude from Remark 3.6, that the
canonical trace on C �.�/ has to be faithful. Hence, � is amenable.

(2) It is an immediate consequence of [12, Theorem 2.1 (c)].

(3) It follows from [13, Theorem 6.7], since L.�/ is a von Neumann subalgebra
of L1.G/.

(4) This is a direct consequence of [21, Corollary 3.4] and [13, Theorem 6.7].

Now we describe the fusion rules of a bicrossed product.
For r; s 2 � , let Brs � G be the clopen set defined by

Br;s D
˚
g 2 G W ˇ˛s.g/.r/ D r and ˇg.s/ D s

	
:

To reduce notation, we denote by  � G 2 Irr.G/ the equivalence class of V  �G for
 �G 2 �=G, and we view Irr.G/ � Irr.G/.

Theorem 3.8. The following holds:

(1) The set of unitary representations of G of the form vx ˝ V  �G for  �G 2 �=G
and x 2 Irr.G/ is a complete set of irreducible unitary representations of G.
In particular, for all  � G 2 �=G and all x 2 Irr.G/, there exists a unique
˛ �G.x/ 2 Irr.G/ and a unique ˇx. �G/ 2 �=G such that

 �G ˝ x ' ˛ �G.x/˝ ˇx. �G/:

Moreover, for all  �G 2 �=G and all x 2 Irr.G/, the maps

˛ �G W Irr.G/! Irr.G/ and ˇx W �=G ! �=G

are bijections.

(2) For all r; s;  2 � and x 2 Irr.G/ we have

dim
�
Mor

�
 �G˝ x; r �G˝ s �G

��
D

X
s02s�G;
r 02r �G

ˇ̌˚
t 2  �G W t D r 0s0

	ˇ̌ Z
Br0;s0

�.x/ d�:

Proof. (1) The proof of .1/ is exactly as the proof of assertion .2/ in Theorem 3.4.
The second assertion is trivial, since the representations V  �G ˝ vx are irreducible.
Finally, the fact that the maps are bijective follows from uniqueness.
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(2) For all ; r; s 2 � , we have

�
�
 �G ˝ x ˝ r �G ˝ s �G

�
D

X
 02 �G;

r 02r �G; s02s�G

˛
�
�.x/v 0 0

�
u. 0/�1r 0˛.vr 0r 0/us0˛.vs0s0/

D

X
 02 �G;

r 02r �G; s02s�G

u. 0/�1r 0s0˛
�
˛.r 0s0/�1 0

�
�.x/v 0 0

�
˛.s0/�1.vr 0r 0/vs0s0

�
:

It follows that

dim
�
Mor

�
 �G ˝ x; r �G ˝ s �G

��
D h

�
�
�
 �G ˝ x ˝ r �G ˝ s �G

��
D

X
 02 �G;

r 02r �G; s02s�G

ı 0;r 0s0

Z
G

�.x/vr 0s0;r 0s0˛.s0/�1.vr 0r 0/vs0s0 d�

D

X
s02s�G;
r 02r �G

ˇ̌˚
t 2  �G W t D r 0s0

	ˇ̌ Z
G

�.x/vr 0s0;r 0s0˛.s0/�1.vr 0r 0/vs0s0 d�:

Observe that vr 0s0;r 0s0˛.s0/�1.vr 0r 0/vs0s0 D 1Dr0;s0 , where

Dr 0;s0 D
˚
g 2 G W ˇg.r

0s0/ D r 0s0
	
\ Br 0;s0 :

Since ˇg.r 0s0/ D ˇ˛s0 .g/.r
0/ˇg.s

0/, it follows that Br 0;s0 � Dr 0;s0 . Hence, Dr 0;s0 D
Br 0;s0 .

We end this section with a description of the Int.G/ and �.G/ (see Section 2.2)
in terms of the matched pair .G; �/. It will be used to distinguish various explicit
examples in Section 7.

Observe that the relations in Equation .3:1/ imply that

�ˇ D
˚
 2 � W ˇg./ D  8g 2 G

	
and G˛ D

˚
g 2 G W ˛ .g/ D g 8 2 �

	
are respectively subgroups of � and G. Moreover, since ˇ is continuous, Gˇ is
closed, hence compact. Thus, when .�;G/ is a compact matched pair, the relations
in Equation .3:1/ imply that the associations

 �! D !ı˛ and g�� D �ıˇg ; for all  2 � , g 2 G, ! 2 Sp.G/, � 2 Sp.�/;

define two actions by group homomorphisms, namely: (i) right action of �ˇ on
Sp.G/ that we still denote by ˛, and (ii) left action of G˛ on Sp.�/ that we still
denote by ˇ. Also, ˇ is a continuous action by homeomorphisms.
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Proposition 3.9. There are canonical group isomorphisms:

Int.G/ ' Sp.G/ Ì˛ �ˇ and �.G/ ' G˛ ˇ Ë Sp.�/:

The second isomorphism is moreover a homeomorphism.

Proof. The irreducible representation V :G of G is of dimension 1, j � Gj D 1

,  2 �ˇ . By assertion .2/ of Theorem 3.4, there is a bijective map

� W Sp.G/ Ì˛ �ˇ ! Int.G/ W .!; / 7! u˛.!/ 2 Cm.G/; ! 2 Sp.G/;  2 �ˇ :

The relations of the crossed product and the group law in the right semi-direct product
imply that � is a group homomorphism.

Let .g; �/ 2 G˛ � Sp.�/. Since g 2 G˛ , the unital �-homomorphism
C.G/ ! C given by F 7! F.g/ and the unitary representation � W � ! S1

give a covariant representation. Hence, we get a unique �.g; �/ 2 �.G/ such
that �.g; �/.u˛.F // D �./F.g/ for all  2 � , F 2 C.G/. It defines a map
� W G˛ ˇ Ë Sp.�/! �.G/ which is obviously injective.

For all g; h 2 G˛ , 2 � and F 2 C.G/, one has�
�.g; !/ � �.h; �/

��
u˛.F /

�
D
�
�.g; !/˝ �.h; �/

��
�m

�
u˛.F /

��
D

X
r2 �G

!./v;r.g/�.r/F.gh/

D !./�
�
ˇg./

�
F.gh/

D
�
�
�
gh; ! � � ı ˇg

���
u˛.F /

�
:

Hence, � is a group homomorphism.
Let us check that � is surjective. Let � 2 �.G/, then � ı ˛ 2 Sp.C.G//. Let

g 2 G be such that �.˛.F // D F.g/ for all F 2 C.G/. Actually g 2 G˛ . Indeed,
for all  2 � and all F 2 C.G/, one has

F
�
˛�1.g/

�
D �

�
˛
�
˛ .F /

��
D �

�
u˛.F /u

�


�
D �

�
˛.F /

�
D F.g/I

now use the fact that C.G/ separates points of G to establish g 2 G˛ . Define
! D . 7! �.u // 2 Sp.�/. Consequently, � D �.g; !/ and � is surjective.

Finally, the map ��1 W �.G/ ! G˛ ˇ Ë Sp.�/ is continuous, since p1 ı ��1 W
�.G/ ! Sp.C.G// D G by � 7! � ı ˛ and p2 ı ��1 W �.G/ ! Sp.�/ by
� 7! . 7! �.u //; are obviously continuous, where p1 and p2 are the canonical
projections. By compactness, � is an homeomorphism.

4. Property .T / and bicrossed product

This section is dedicated to the relative co-property .T / of the pair .G;G/ and
Kazhdan property of the dual of the bicrossed product G constructed in Section 3.
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The results in this section generalize classical results on relative property .T / for
inclusion of groups of the form .H; � Ë H/, where H and � are discrete groups
andH is abelian [11].

4.1. Relative property .T / for compact bicrossed product.
Definition 4.1. LetG and G be two compact quantum groups with an injective unital
�-homomorphism ˛ W Cm.G/ ! Cm.G/ such that �G ı ˛ D .˛ ˝ ˛/ ı �G . We
say that the pair .G;G/ has the relative co-property .T /, if for every representation
� W Cm.G/! B.H/ we have "G � � H) "G � � ı ˛.

Observe that, by [27, Proposition 2.3], bG has the property .T / in the sense of [17]
if and only if the pair .G;G/ has the relative co-property .T / (with ˛ D id). Also,
ifƒ, � are countable discrete groups andƒ < � , then the pair .bƒ;b�/ has the relative
co-property .T / if and only if the pair .ƒ; �/ has the relative property .T / in the
classical sense.

Let .�;G/ be a matched pair of a countable discrete group � and a compact
groupG. Let G be the bicrossed product. In the following result, we characterize the
relative co-property .T / of the pair .G;G/ in terms of the action ˛ of � on C.G/.
This is a non-commutative version of [11, Theorem 1] and the proof is similar. We
will use freely the notations and results of Section 3.
Theorem 4.2. The following are equivalent:
(1) The pair .G;G/ does not have the relative co-property .T /.
(2) There exists a sequence .�n/n2N of Borel probability measures on G such that

(a) �n.feg/ D 0 for all n 2 N;
(b) �n ! ıe weak�;
(c) k˛ .�n/ � �nk ! 0 for all  2 � .

Proof. For a representation � W Cm.G/! B.H/, we have "G � � ı ˛ if and only
if K� ¤ f0g, where

K� D
˚
� 2 H W � ı ˛.F /� D F.e/� for all F 2 C.G/

	
:

Define � D � ı ˛ W C.G/ ! B.H/, and for all �; � 2 H , let ��;� be the unique
complex Borel measure on G such that

R
G
Fd��;� D h�.F /�; �i for all F 2 C.G/.

Let B.G/ be the collection of Borel subsets of G and E W B.G/ ! B.H/

be the projection-valued measure associated to � i.e. for all B 2 B.G/, the
projection E.B/ 2 B.H/ is the unique operator such that hE.B/�; �i D ��;�.B/

for all �; � 2 H .
Observe that a vector � 2 H satisfies �.F /� D F.e/� for all F 2 C.G/, if

and only if ��;� D h�; �iıe for all � 2 H , which in turn is true if and only if
hE.feg/�; �i D h�; �i for all � 2 H . Hence, E.feg/ is the orthogonal projection
onto K� .
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.1/ H) .2/. Suppose that the pair .G;G/ does not have the relative co-
property .T /. Let � W Cm.G/ ! B.H/ be a representation such that "G � �

and K� D f0g. Hence, ��;�.feg/ D hE.feg/�; �i D 0 for all �; � 2 H .

Since "G � � , let .�n/n2N be a sequence of unit vectors inH such that

k�.x/�n � "G.x/�nk ! 0

for all x 2 Cm.G/. Define �n D ��n;�n . Then, we have �n.feg/ D 0 for all n 2 N.
Since �n is a probability measure,

j�n.F /�ıe.F /j D

ˇ̌̌̌ Z
G

.F�F.e// d�n

ˇ̌̌̌
� kF�F.e/kL1.�n/ � kF�F.e/kL2.�n/;

for all F 2 C.G/. Moreover,

kF � F.e/k2
L2.�n/

D k�.F � F.e/1/�nk
2
D k�.˛.F //�n � "G.˛.F //�nk

2
! 0:

Hence, �n ! ıe weak�. Finally, for all  2 � and all F 2 C.G/, we have:Z
G

F d˛ .�n/ D

Z
G

˛�1.F / d�n D h�.˛�1.F //�n; �ni

D h�.u /
��.F /�.u /�n; �ni

D h�.F /�.u /�n; �.u /�ni:

It follows thatˇ̌̌̌Z
G

F d˛ .�n/ �

Z
G

F d�n

ˇ̌̌̌
D
ˇ̌
h�.F /�.u /�n; �.u /�ni � h�.F /�n; �ni

ˇ̌
�
ˇ̌
h�.F /.�.u /�n � �n/; �.u /�ni

ˇ̌
C
ˇ̌
h�.F /�n; �.u /�n � �ni

ˇ̌
� 2kF k k�.u /�n � �nk;

for all F 2 C.G/ and  2 � . Hence,

k˛ .�n/ � �nk � 2k�.u /�n � �nk D 2k�.u /�n � "G.u /�nk ! 0

.see .4/ of Theorem 3.4/.

.2/ H) .1/. We first prove the following claim.

Claim. If .2/ holds, then there exists a sequence .�n/n2N of Borel probability
measures on G satifying .a/, .b/ and .c/ and such that ˛ .�n/ � �n for all  2 � ,
n 2 N.
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Proof of the claim. Denote by `1.�/1;C the set of positive `1 functions on � with
kf k1 D 1. For � a Borel probability measure on G and f 2 `1.�/1;C, define the
Borel probability measure f � � on G by the convex combination

f � � D
X
2�

f ./˛ .�/:

Observe that for all  2 � , we have ı �� D ˛ .�/ and ˛ .f ��/ D f ��, where
f 2 `

1.�/1;C is defined by f .r/ D f .�1r/, r 2 � .

Moreover, if f 2 `1.�/1;C is such that f ./ > 0 for all  2 � , then since
.f � �/.E/ D

P
 f ./�.˛�1.E// .E is Borel subset of G/, so we have that

.f ��/.E/ D 0 if and only if �.˛ .E// D 0 for all  2 � . This last condition does
not depend on f . Hence, if f 2 `1.�/1;C is such that f > 0, then since f .r/ > 0
for all ; r 2 � , it follows that f � � � ˛ .f � �/ D f � � for all  2 � as
they have the same null sets: the Borel subsets E of G such that �.˛s.E// D 0 for
all s 2 � .

Therefore, since ˛ .e/ D e for all  2 � , so

.f � �/.feg/ D
X


f ./�
�
˛�1.feg/

�
D

X


f ./�.feg/ D �.feg/;

for all f 2 `1.�/1;C. Let .�n/n2N be a sequence of Borel probability onG satisfying
(a), (b) and (c). For all f 2 `1.�/1;C with finite support we have,

kf ��n��nk �
X


f ./kı ��n��nk D
X


f ./k˛ .�n/��nk ! 0: (4.1)

Since such functions are dense in `1.�/1;C (in the `1-norm), it follows that

kf � �n � �nk ! 0

for all f 2 `1.�/1;C.

Let � 2 `1.�/1;C be any function such that � > 0 and define �n D � � �n. By
the preceding discussion, we know that ˛ .�n/ � �n for all  2 � and �n.feg/ D
�n.feg/ D 0 for all n 2 N. Moreover, by Equation .4:1/,

k˛ .�n/ � �nk D k� � �n � � � �nk

� k� � �n � �nk C k�n � � � �nk ! 0;

for all  2 � .
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Finally, since �n ! ıe weak� and ˛ .e/ D e, one has j�n.F ı˛ /�F.e/j ! 0

for all  2 � and for all F 2 C.G/. Hence, for all F 2 C.G/, the dominated
convergence theorem implies that

j�n.F / � ıe.F /j D

ˇ̌̌̌X


f ./.�n.F ı ˛ / � F.e//

ˇ̌̌̌
�

X


f ./j�n.F ı ˛ / � F.e/j ! 0:

It follows that �n ! ıe weak� and this finishes the proof of the claim.

We now finish the proof of the theorem. Let .�n/n2N be a sequence of Borel
probability measures on G as prescribed in the claim. For n 2 N and  2 � ,
let hn./ D d˛ .�n/

d�n
; then 0 � hn./ � 1, �n a.e., and by uniqueness of the

Radon–Nikodym derivatives and since ˛ is an action, we have for all n 2 N,
hn.; g/hn.

�1; ˛�1.g// D 1, �n a.e. g 2 G, and for all  2 � . Define
Hn D L2.G;�n/ and let un W � ! U.Hn/ be the unitary representations defined
by .un./�/.g/ D �.˛�1.g//hn.; g/

1
2 for  2 �; g 2 G; � 2 Hn. Also consider

the representations �n W C.G/ ! B.Hn/, defined by �n.F /�.g/ D F.g/�.g/,
for � 2 Hn, g 2 G and F 2 C.G/. Observe that the projection valued measure
associated to �n is given by .En.B/�/.g/ D 1B.g/�.g/ for all B 2 B.G/,
� 2 Hn and g 2 G. Using the identity hn.; �/hn.�1; ˛�1.�// D 1, we find
un./�n.F /un.

�1/ D �n.˛ .F // for all  2 �; F 2 C.G/; g 2 G. Therefore,
by the universal property of Am, for each n 2 N there is a unital �-homomorphism
�n W Am ! B.Hn/ such that �n.u / D un./ and �n ı˛ D �n for all n 2 N. Since
�n.feg/ D 0, we have En.feg/ D 0 for all n 2 N. Hence, K�n D f0g for all n 2 N.
Consequently, on defining H D ˚nHn and � D ˚n�n W Cm.G/ ! B.H/, it
follows that K� D f0g as well. Hence, it suffices to show that "G � � .

Define the unit vectors �n D 1 2 L2.G;�n/ � H , n 2 N. Observe that�
�n � ˛ .�n/

�
.F / D

Z
G

F
�
1 � hn./

�
d�n;

for all F 2 C.G/. Hence,

k�n � ˛ .�n/k D k1 � hn./kL1.G;�n/ ! 0;

for all  2 � . Moreover, as 0 � 1 �
p
t �
p
1 � t for all 0 � t � 1, it follows that

k�.u /�n � �nk
2
H D kun./1 � 1k

2
Hn
D

Z
G

.1 � hn./
1
2 /2 d�n

�

Z
G

.1 � hn.// d�n D k1 � hn./kL1.G;�n/ ! 0
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for all  2 � . Since �n ! ıe weak�, for all F 2 C.G/, we also have that,

k�.˛.F //�n � F.e/�nk
2
H D k�n.F /1 � F.e/1k

2
Hn

D

Z
G

jF.g/ � F.e/j2d�n ! 0:

Consequently, for all x D u˛.F / 2 Cm.G/, we have

k�.x/�n � "G.x/�nk D k�.u /�.˛.F //�n � F.e/�nk

� k�.u /.�.˛.F //�n � F.e/�n/k C jF.e/j k�.u /�n � �nk

� k�.˛.F //�n � F.e/�nk C jF.e/j k�.u /�n � �nk ! 0:

By linearity and the triangle inequality, we have k�.x/�n � "G.x/�nk ! 0 for all
x 2 A. The proof is complete by density of A in Cm.G/.

4.2. Property (T). Now we discuss property .T / of G. Let G˛ be the set of fixed
points in G under the action ˛ of � . It is a closed subset of G, and, by the relations
in Equation .3:1/ it is also a subgroup of G.

Theorem 4.3. The following holds:

(1) If bG has property .T /, then � has property .T / and G˛ is finite.

(2) If bG has property .T / and ˛ is compact3 then � has .T / and G is finite.

(3) If � has property .T / and G is finite, then bG has property .T /.

Proof. (1) Let � W C.G/ ! C �.�/ be the unital �-homomorphism defined by
�.F / D F.e/1 and consider the canonical unitary representation of � given by
� 3  7! � 2 C

�.�/. For all  2 � and F 2 C.G/, we have

�.˛ .F // D ˛ .F /.e/1 D F.˛�1.e//1 D F.e/1 D ��.F /�
�
 :

Hence, there exists a unique unital �-homomorphism � W Cm.G/ ! C �.�/ such
that � ı ˛ D � and �.u / D � for all  2 � . Observe that � is surjective and, for
all F 2 C.G/,

.� ˝ �/�G

�
˛.F /

�
D .�˝ �/

�
�G.F /

�
D �G.F /.e; e/1˝ 1

D F.e/1˝ 1 D �b����˛.F /��:
3We only need to assume that the closure of the image of � in the group of homeomorphisms ofG is

compact for some Hausdorff group topology for which the evaluation map at e is continuous.
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Moreover, since for all ; r 2 � one has 1A;r .e/ D ı;r , we find, for all  2 � ,

.� ˝ �/�G.u / D
X
r2 �G

�
�
u˛.v


;r/

�
˝ �.ur/

D

X
r2 �G

�1A;r .e/˝ �r D � ˝ � D �b���.u /�:
So � intertwines the comultiplications and property .T / for � follows from [17,
Proposition 6].

To show thatG˛ is finite it suffices, sinceG˛ is closed inG hence compact, to show
that G˛ is discrete. Let .gn/ be any sequence in G˛ such that gn ! e. Consider
the unital �-homomorphism � W C.G/ ! B.`2.N// defined by .�.F /�/.n/ D
F.gn/�.n/, for all � 2 `2.N/, and the trivial representation of � on `2.N/. Since
gn 2 G

˛ for all n 2 N this pair gives a covariant representation. Hence, there exists
a unital �-homomorphism � W Cm.G/! B.`2.N// such that �.u˛.F // D �.F /

for all  2 � and F 2 C.G/. Define �n D ın 2 `2.N/. One has

k�.u˛.F //�n � "G.u˛.F //�nk D jF.gn/ � F.e/j ! 0

for all F 2 C.G/. Hence, � has almost invariant vectors. By property .T /, � has
a non-zero invariant vector and for such a vector � 2 `2.N/ we have F.gn/�.n/ D
F.e/�.n/ for all F 2 C.G/ and all n 2 N. Let n0 2 N for which �.n0/ ¤ 0. We
have F.gn0/ D F.e/ for all F 2 C.G/, which implies that gn0 D e and shows
that G˛ must be discrete.

(2) It suffices to show thatG is finite. The proof is similar to .1/. Let gn 2 G be any
sequence such that gn ! e. We view ˛ as a group homomorphism ˛ W � ! H.G/,
 7! ˛ , where H.G/ is the group of homeomorphisms of G and we write K D
˛.�/ � H.G/. By assumptions,K is a compact group and we denote by � the Haar
probability on K. Note that, since ˛ .e/ D e for all  2 � , by continuity of the
evaluation at e and density, we also havex.e/ D e for allx 2 K. Wedefine a covariant
representation .�; v/, � W C.G/! B.L2.K �N// and v W � ! U.L2.K �N// by
.�.F /�/.x; n/ D F.x.gn//�.x; n/ and .v�/.x; n/ D �.˛�1x; n/. By the universal
property ofCm.G/, we get a unital �-homomorphism � W Cm.G/! B.L2.K�N//
such that �.u˛.F // D v�.F / for all  2 � and F 2 C.G/. Define, for k 2 N,
the vector �k.x; n/ D ık;n. Since � is a probability it follows that �k is a unit vector
in L2.K �N/. Moreover, for all  2 � and F 2 C.G/,

k�.u˛.F //�k � "G.u˛.F //�kk
2
D

Z
K

jF.˛�1x.gk// � F.e/j
2 d�.x/! 0;

where the convergence follows from the dominated convergence theorem since, by
continuity, we have F.˛�1/x.gk// ! F.e/ for all  2 � , x 2 K and F 2 C.G/
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and the domination is obvious since � is a probability. By property .T /, there exists
a non-zero � 2 L2.K �N// such that

F.e/� D "G.˛.F //� D �.˛.F //� D �.F /�

for all F 2 C.G/. Define

Y WD

�
x 2 K W

X
n2N

j�.x; n/j2 > 0

�
and, for F 2 C.G/,

XF WD

�
x 2 K W

X
n2N

jF.x.gn//�.x; n/ � F.e/�.x; n/j
2
¤ 0

�
:

The condition on � means that �.Y / > 0 and, for all F 2 C.G/, �.XF / D 0. Let
Fk 2 C.G/ be a dense sequence andX D [k2NXFk then �.X/ D 0 so �.Y nX/ > 0.
Hence, Y nX ¤ ;. Let x 2 Y nX , we have

P
n j�.x; nj

2 > 0 and, for all k; n 2 N,
Fk.x.gn//�.x; n/ D Fk.e/�.x; n/. By density and continuity, F.x.gn//�.x; n/ D
F.e/�.x; n/ for all n 2 N and F 2 C.G/. Since

P
n j�.x; nj

2 > 0, there exists
n0 2 N such that �.x; n0/ ¤ 0 which implies that F.x.gn0// D F.e/ for all
F 2 C.G/. Hence, x.gn0/ D e which implies that gn0 D e. Hence G must be
discrete and, by compactness, G is finite.

(3) Let � W Cm.G/ D �˛;f Ë C.G/! B.H/ be a unital �-homomorphism and K
be the closed subspaceH given by C.G/-invariant vectors i.e.

K D
˚
� 2 H W � ı ˛.F /� D F.e/� for all F 2 C.G/

	
:

Then P D �.˛.ıe// is the orthogonal projection onto K which is an invariant
subspace of the unitary representation  7! �.u / since

�.u /P�.u /
�
D �.˛.ı˛g.e/// D �.˛.ıe// D P

for all  2 � . Let  7! v be the unitary representation of � on K obtained by
restriction.

Suppose that "G � � and let �n 2 H be a sequence of unit vectors such that
k�.x/�n � "G.x/�nk ! 0 for all x 2 Cm.G/. Since G is finite (hence bG has
property .T /), so K ¤ f0g. Moreover, since j kP�nk � 1j � kP�n � �nk, we
have kP�nk ! 1 and hence we may and will assume that P�n ¤ 0 for all n. Let
�n D

P�n
kP�nk

2 K. We have

kv�n � �nk D
1

kP�nk
kP.v�n � �n/k �

k�.u /�n � �nk

kP�nk
! 0:
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Hence,  7! v has almost invariant vectors. Since � has property .T /, let � 2 K
be a non-zero invariant vector. Then, for all x 2 Cm.G/ of the form x D u˛.F /,
we have

�.x/� D F.e/�.u /� D F.e/� D "G.x/�:

By linearity, continuity, and density of A in Cm.G/, we have �.x/� D "G.x/� for
all x 2 Cm.G/.

Wemention that the third assertion of the previous theorem appears in [10]whenˇ
is supposed to be the trivial action.
Remark 4.4. The compactness assumption on ˛ in assertion .2/ of the preceding
Corollary can not be removed. Indeed, for n � 3, the semi-direct product H D
SLn.Z/ Ë Zn (for the linear action of SLn.Z/ on Zn) has property .T / and H
may be viewed as the dual of the bicrossed product associated to the matched pair
.SLn.Z/;Tn/ with the non-compact action ˛ W SLn.Z/ Õ Tn given by viewing
Tn D cZn and dualizing the linear action SLn.Z/ Õ Zn and the action ˇ being
trivial. In this example, the compact group G D Tn is infinite.

5. Relative Haagerup property and bicrossed product

In this section, we study the relative co-Haagerup property of the pair .G;G/
constructed in Section 3. The main result in this section also generalizes the
characterization of relative Haagerup property of the pair .H; � Ë H/, where H
and � are discrete groups and H is abelian [11]. We refer to Section 2.3 for the
definitions of the Fourier transform and the Haagerup property.
Definition 5.1. Let G and G be two compact quantum groups with an injective
unital �-homomorphism ˛ W Cm.G/! Cm.G/ such that �G ı ˛ D .˛ ˝ ˛/ ı�G .
We say that the pair .G;G/ has the relative co-Haagerup property, if there exists a
sequence of states !n 2 Cm.G/� such that !n ! "G in the weak� topology and
1!n ı ˛ 2 c0.bG/ for all n 2 N.

Observe that, for any compact quantum group G, the dual bG has the Haagerup
property if and only if the pair .G;G/ has the co-Haagerup property. Moreover, it
is clear that if ƒ;� are discrete groups with ƒ < � , then the pair .C �.ƒ/; C �.�//
has the relative co-Haagerup property if and only if the pair .ƒ; �/ has the relative
Haagerup property in the classical sense.

Let .�;G/ be a matched pair of a discrete group � and a compact groupG. Let G
be the bicrossed product. In the following theorem, we characterize the relative
co-Haagerup property of the pair .G;G/ in terms of the action ˛ of � on C.G/. This
is a non commutative version of [11, Theorem 4] and the proof is similar in spirit.
However, one of the arguments of the classical case does not work in our context
since ˛ is not a group homomorphism and substitutive ideas are required. Actually,
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for a general automorphism � 2 Aut.C.G// and � 2Prob.G/, there is no guarantee
thatb� 2 C �r .G/) b�.�/ 2 C �r .G/. However, in the event of automorphisms coming
from the action ˛ given by a matched pair the aforesaid statement turns out to be true.
We provide details of this idea in the next lemma. We will freely use the notations
and results of Section 3.
Lemma 5.2. Let � be a complex Borel measure on G. Ifb� 2 C �r .G/, then 1̨

 .�/ 2

C �r .G/ for all  2 � .

Proof. Observe that for all  2 � and all x 2 Irr.G/ by choosing uy such that
u
y
ij D .u

y
ji /
� for all i; j , we haveZ

G

.u
y

kl
/�uxij ı ˛d� D h

�
˛.u

y

lk
/u�1 ˛.u

x
ij /u

�
D h

�
u˛.u

y

lk
/u�1˛.u

x
ij /
�

D

X
r2 �G;

s2�1�G

h
�
u˛.vru

y

lk
/u�1˛.v�1su

x
ij /
�

.see Section 3 definition of magic unitary/
D 0; whenever y ¤ ˛�1�G.x/:

Indeed, since each term of the above sum is the Haar state of a coefficient of

. �G ˝ y/˝ .�1 �G ˝ x/;

the aforesaid term is 0 whenever  �G ˝ y ¤ �1 �G ˝ x. Since

 �G ˝ y ' y ˝  �G and �1 �G ˝ x ' ˛�1�G.x/˝ ˇx.
�1
�G/;

we have

 �G ˝ y ¤ �1 �G ˝ x, y ¤ ˛�1�G.x/ or  �G ¤ ˇx.
�1
�G/:

Since the set �
uxijp
dim.x/

W x 2 Irr.G/; 1 � i; j � dim.x/
�

is a Hilbertian basis of L2.G/, we can write uxij ı ˛ as a finite sum uxij ı ˛ DP
k;l �



k;l
u
y

kl
, where y D ˛�1�G.x/ and �



k;l
2 C. Now observe that for any

complex Borel � measure on G, we have

b� 2 C �r .G/ if and only if the function x 7!
Z
G

uxij d� 2 c0
�
Irr.G/

�
for all 1 � i; j � dim.x/. Let � be a complex Borel measure on G and  2 � . We
have Z

G

uxij d˛ .�/ D

Z
G

uxij ı ˛ d� D
X
k;l

�


k;l

Z
G

u
y

kl
d�;

wherey D ˛�1�G.x/. Suppose thatb� 2 C �r .G/. Wewill show that˛ .�/ 2 C �r .G/.
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It suffices to check that�
x 7!

Z
G

u
˛
�1�G

.x/

ij d�

�
2 c0

�
Irr.G/

�
:

Let � > 0. We have�
x 2 Irr.G/ W

ˇ̌̌̌ Z
G

u
˛
�1�G

.x/

ij d�

ˇ̌̌̌
� �

�
D .˛�1�G/

�1

��
x 2 Irr.G/ W

ˇ̌̌̌ Z
G

uxij d�

ˇ̌̌̌
� �

��
:

The right hand side is a finite set, since ˛�1�G is injective and by the assumptions�
x 2 Irr.G/ W

ˇ̌̌̌ Z
G

uxij d�

ˇ̌̌̌
� �

�
is finite.

Theorem 5.3. The following are equivalent:
(1) The pair .G;G/ has the relative co-Haagerup property.
(2) There exists a sequence .�n/n2N of Borel probability measures on G such that

(a) b�n 2 C �r .G/ for all n 2 N;
(b) �n ! ıe weak�;
(c) k˛ .�n/ � �nk ! 0 for all  2 � .

Proof. .1/ H) .2/. Let !n 2 Cm.G/� be a sequence of states such that !n ! "G

in the weak� topology and 1!n ı ˛ 2 C �r .G/. For each n view !n ı ˛ 2 C.G/� as a
Borel probability measure �n on G. By hypothesis, b�n 2 C �r .G/ for all n 2 N and
�n ! ıe in the weak� topology. Writing .Hn; �n; �n/ the GNS construction of !n
and doing the same computation as in the proof of .1/ H) .2/ of Theorem 4.2, we
findˇ̌̌̌Z
G

F d˛ .�n/ �

Z
G

F d�n

ˇ̌̌̌
� kF k k�n.u /�n��nk D kF k

q
2.1 � Re.!n.u //:

Hence,

k˛ .�n/ � �nk �

q
2.1 � Re.!n.u //!

q
2.1 � Re."G.u // D 0:

.2/ H) .1/. We first prove the following claim.
Claim. If .2/ holds, then there exists a sequence .�n/n2N of Borel probability
measures on G satisfying .a/, .b/ and .c/ and such that ˛ .�n/ � �n for all  2 � ,
n 2 N.
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Proof of the claim. By the proof of the claim in Theorem 4.2, it suffices to check
that whenever � is a complex Borel measure on G and f 2 `1.G/, we have b� 2
C �r .G/)

1f � � 2 C �r .G/.
Now suppose thatb� 2 C �r .G/ and f 2 cc.�/, then f � � DP

f ./˛ .�/ is a
finite sum and by Lemma 5.2 we find that 1f � � DPf ./1̨ .�/ 2 C �r .G/.

Suppose that b� 2 C �r .G/ and f 2 `1.�/. Let fn 2 cc.�/ be such that
kf � fnk1 ! 0. Since for all g 2 `1.�/ and all � 2 C.G/� the estimate
kf � �k � kf k1 k�k holds, we find

k1f � � � 1fn � �kB.L2.G// D k5.f � fn/ � �kB.L2.G//
� k.f � fn/ � �kC.G/� � k�kC.G/�kf � fnk1 ! 0:

Consequently, as 1fn � � 2 C �r .G/ for all n, it follows that 1f � � 2 C �r .G/.
We can now finish the proof of the Theorem. Let .�n/n2N be a sequence of

Borel probability measures on G as in the Claim. As in the proof of Theorem 4.2,
we construct a representation � W Cm.G/ ! B.H/ with a sequence of unit vector
�n 2 H such that k�.x/�n � "G.x/�nk ! 0 for all x 2 Cm.G/ and

R
Fd�n D

!�n ı � ı ˛.F /, for all F 2 C.G/. It follows that the sequence of states !n D
!�n ı � 2 Cm.G/

� satisfies !n ! "G weak� and 1!n ı ˛ D c�n 2 C �r .G/ for
all n 2 N.

6. Crossed product quantum group

This section deals with a matched pair of a discrete group and a compact quantum
group that arises in a crossed product, where the discrete group acts on the compact
quantum group via quantum automorphisms. This section is longer and has four
subsections. First, we analyze the quantum group structure and the representation
theory of such crossed products which was initially studied by Wang in [41], but
unlike Wang we do not rely on free products which allows us to shorten the proofs.
We also obtain some obvious consequences related to amenability andK-amenability
and the computation of the intrinsic group and the spectrum of the full C�-algebra
of a crossed product quantum group. The subsections deal with weak amenability,
rapid decay, (relative) property .T / and (relative) Haagerup property.

LetG be a compact quantumgroup,� a discrete group acting onG i.e.˛ W � Õ G

be an action by quantum automorphisms. We will denote by the same symbol ˛ the
action of � onCm.G/ orC.G/. LetAm D �˛;mËCm.G/ be the full crossed product
and A D �˛ Ë C.G/ be the reduced crossed product. By abuse of notation, we still
denote by ˛ the canonical injective map from Cm.G/ to Am and from C.G/ to A.
We also denote by u , for  2 � , the canonical unitaries viewed in either Am or A.
This will be clear from the context and cause no confusion.
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By the universal property of the full crossed product, we have a unique surjective
unital �-homomorphism � W Am ! A such that �.u / D u and �.˛.a// D
˛.�G.a// for all  2 � and for all a 2 Cm.G/. Finally, we denote by ! 2 A�, the
dual state of hG i.e. ! is the unique (faithful) state such that

!.u˛.a// D ıe;hG.a/ for all a 2 C.G/,  2 �:

Again by the universal property of the full crossed product, there exists a unique
unital �-homomorphism �m W Am ! Am ˝ Am such that �m.u / D u ˝ u and
�m ı ˛ D .˛ ˝ ˛/ ı�G .

The following theorem is due to Wang [41]. We include a short proof.
Theorem 6.1. G D .Am; �m/ is a compact quantum group and the following holds.
(1) The Haar state of G is h D ! ı �, hence, G is Kac if and only if G is Kac.
(2) For all  2 � and all x 2 Irr.G/, ux D .1˝ u /.id˝ ˛/.ux/ 2 B.Hx/˝ Am

is an irreducible representation of G and the set fux W  2 �; x 2 Irr.G/g is a
complete set of irreducible representations of G.

(3) One has Cm.G/ D Am, C.G/ D A, Pol.G/ D Spanfu˛.a/ W  2 �;

a 2 Pol.G/g, � is the canonical surjection from Cm.G/ to C.G/ and L1.G/ is
the von Neumann algebraic crossed product.

Proof. (1) Write A D Spanfu˛.a/ W  2 �; a 2 Pol.G/g. Since, by definition
of Am, A is dense in Am it suffices to show the invariance of h on A and one has

.id˝ h/
�
�m

�
u˛.u

x
ij /
��
D

X
k

u˛.u
x
ik/h

�
u˛.u

x
kj /
�

D ı;eıx;1 D h
�
u˛.u

x
ij /
�

D .h˝ id/
�
�m

�
u˛.u

x
ij /
��
;  2 �; x 2 Irr.G/:

(2) By the definition of�m, it is obvious that ux is a unitary representation of G for
all  2 � and x 2 Irr.G/. The representations ux , for  2 � and x 2 Irr.G/, are
irreducible and pairwise non-equivalent since

h
�
�.uxr /

��.uys /
�
D h

�
˛.�.x//ur�1s˛.�.y//

�
D h

�
ur�1s˛

�
˛r�1s.�.x//�.y/

��
D ır;shG.�.x/�.y// D ır;sıx;y :

Finally, fux W  2 �; x 2 Irr.G/g is a complete set of irreducibles since the linear
span of the coefficients of the ux is A, which is dense in Cm.G/.
(3) We established in .2/ thatA D Pol.G/. Since, by definition,Am is the enveloping
C�-algebra of A, we have Cm.G/ D Am. Since � W Am ! A is surjective and !
is faithful on A, we have C.G/ D A. Moreover, since � is identity on A D Pol.G/,
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it follows that � is the canonical surjection. Finally, L1.G/ is, by definition, the
bicommutant ofC.G/ D Awhich is also the vonNeumann algebraic crossed product.

Remark 6.2. Observe that the counit satisfies "G.u˛.a// D "G.a/ for any  2 �
and a 2 Pol.G/. This follows from the uniqueness of the counit with respect to the
equation ."˝ id/ı� D id D .id˝ "/ı� and also the fact that "G ı˛ .a/ D "G.a/,
for any  2 � and a 2 Pol.G/. Similarly, SG.u˛.a// D u�1˛.SG.˛�1.a///.
Hence, for any  2 � , we have ˛ ı SG D SG ı ˛ .
Remark 6.3. From Section 2.2, we have a group homomorphism � ! S.Irr.G//,
 7! ˛ , where ˛ .x/, for x 2 Irr.G/, is the class of the irreducible representation
.id ˝ ˛ /.u

x/. Let  � x 2 Irr.G/ be the class of ux . Observe that, we have
˝x˝�1 D ˛ .x/ and  �x D ˝x, by viewing� � Irr.G/ and Irr.G/ � Irr.G/.
Hence, the fusion rules of G are described as follows:

r � x ˝ s � y D rs � ˛s�1.x/˝ y D
M

t2Irr.G/
t�˛

s�1
.x/˝y

rs � t; for all r; s 2 � , x; y 2 Irr.G/:

Moreover, we have  � x D �1 � ˛ .x/ for all  2 � and x 2 Irr.G/.
Corollary 6.4. The following hold.

(1) G is co-amenable if and only if G is co-amenable and � is amenable.

(2) If G is co-amenable and � is K-amenable, then bG is K-amenable.

Proof. (1) LetG be co-amenable and � be amenable. Then as Cm.G/ D C.G/ and
since the full and the reduced crossed products are the same for actions of amenable
groups, it follows from the previous theorem that G is co-amenable. Now, if Gm is
co-amenable, its Haar state is faithful onAm. In particular, hı�ı˛ D hG ı�G must
be be faithful on Cm.G/ which implies that G is co-amenable. Since h.u / D ı;e ,
 2 � , we conclude, from Remark 3.6 (since the counit "G is an ˛ invariant character
on Cm.G/), that the canonical trace on C �.�/ has to be faithful. Hence, � is
amenable.

(2) Follows from [12, Theorem 2.1 (c)] since Cm.G/ D C.G/.

Note that, from the action ˛ W � Õ Cm.G/ by quantum automorphisms, we
have a natural action, still denoted ˛, of � on �.G/ by group automorphisms and
homeomorphisms. The set of fixed points

�.G/˛ D
˚
� 2 �.G/ W � ı ˛ D � for all  2 �

	
is a closed subgroup. Also note thatwe have a natural action by group automorphisms,
still denoted ˛, of � on Int.G/.
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Proposition 6.5. There are canonical group isomorphisms:

Int.G/ ' � ˛ Ë Int.G/ and �.G/ ' �.G/˛ � Sp.�/:

The second one is, moreover, a homeomorphism.

Proof. The proof is the same as the proof of Proposition 3.9. The dimension of the
irreducible representation .id˝ ˛/.ux/.1˝ u / is equal to the dimension of x and
such representations, for x 2 Irr.G/ and  2 � , form a complete set of irreducibles
of G. Hence we get a bijection

� W � ˛ Ë Int.G/! Int.G/ W .; u/ 7! ˛.u/u 2 Cm.G/:

Moreover, the relations in the crossed product and the group law in the semi-direct
product imply that it is a group homomorphism.

Let .�; �/ 2 �.G/˛ � Sp.�/. Since � ı ˛ D � for all  2 � , the pair .�; �/
gives a covariant representation in C, hence a unique character �.�; �/ 2 �.G/
such that �.�; �/.u˛.a// D �./�.a/ for all  2 � , a 2 Cm.G/. It defines a map
� W �.G/˛�Sp.�/! �.G/which is obviously injective. Adirect computation shows
that � is a group homomorphism. Let us show that � is surjective. Let ! 2 �.G/,
then � WD ! ı ˛ 2 �.G/ and, for all a 2 Cm.G/, � ı ˛ .a/ D !.u˛.a/u

�
 / D

!.u /!.˛.a//!.u
�
 / D �.a/. Hence, � 2 �.G/˛ and we have ! D �.�; �/, where

� D . 7! !.u //. Moreover, as in the proof of Proposition 3.9, it is easy to see
that the map ��1 is continuous, hence � also, by compactness.

6.1. Weak amenability. This subsection deals with weak amenability of bG con-
structed in Section 6. We first prove an intermediate technical result to construct finite
rank u.c.p. maps from C.G/ to itself using compactness of the action and elements
of `1.bG/ of finite support. Using this construction, we estimate the Cowling–
Haagerup constant of C.G/ and show that C.G/ is weakly amenable when both �
and bG are weakly amenable and when the action is compact. This enables us to
compute Cowling–Haagerup constants in some explicit examples given in Section 7.
We freely use the notations and definitions of Section 2.3.
Lemma6.6. Suppose that the action˛ W � Õ G is compact. Denote byH < Aut.G/
the compact group obtained by taking the closure of the image of � in Aut.G/.
If a 2 `1.bG/ has finite support, then the linear map ‰ W C.G/ ! C.G/, defined
by ‰.z/ D

R
H
.h�1 ıma ı h/.z/dh has finite rank and k‰kcb � kmakcb , where dh

denotes integration with respect to the normalized Haar measure onH .

Proof. First observe that‰ is well defined since, for all z 2 C.G/, the mapH 3 h 7!
.h�1 ı ma ı h/.z/ 2 C.G/ is continuous. Moreover, the linearity of ‰ is obvious.
Since a has finite support, themapma is of the formma.�/ D !1.�/y1C� � �C!n.�/yn,
where!i 2 C.G/� and yi 2 Pol.G/. Hence, to show that‰ has finite rank, it suffices
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to show that the map ‰1.z/ D
R
H
.h�1 ı ' ı h/.z/dh, z 2 C.G/, has finite rank

when '.�/ D !.�/y, with ! 2 C.G/� and y 2 Pol.G/.
In this case, we have ‰1.z/ D

R
H
!.h.z//h�1.y/dh, z 2 C.G/. Write y as a

finite sum y D
PN
iD1

P
k;l �i;k;lu

xi
kl
, where F D fx1; : : : ; xN g � Irr.G/. Since H

is compact, the action of H on Irr.G/ has finite orbits. Writing h � x for the action
of h 2 H on x 2 Irr.G/, the set H � F D fh � x W h 2 H; x 2 F g � Irr.G/ is
finite and, for all h 2 H , h�1.y/ 2 F , where F is the finite subspace of C.G/
generated by the coefficients of the irreducible representations x 2 H � F . Hence,
the map h 7! !.h.z//h�1.y/ takes values in F , for all z 2 C.G/. It follows that
‰1.z/ D

R
H
!.h.z//h�1.y/dh 2 F for all z 2 C.G/. Hence, ‰ has finite rank.

Now we proceed to show that k‰kcb � kmakcb . For n 2 N, denote by ‰n the
map

‰n D id˝‰ WMn.C/˝ C.G/!Mn.C/˝ C.G/:

Observe that‰n.X/ D
R
H
.id˝ .h�1 ıma ıh//.X/dh for allX 2Mn.C/˝C.G/.

Hence, for n 2 N, one has

k‰n.X/k �

Z
H

k.id˝ .h�1 ıma ı h//.X/k dh

� kXk

Z
H

k.h�1 ıma ı h/kcb dh � kXk kmakcb:

It follows that k‰kcb � kmakcb .

Theorem 6.7. We have max.ƒcb.�/;ƒcb.C.G/// � ƒcb.C.G//. Moreover, if the
action � Õ G is compact, then ƒcb.C.G// � ƒcb.�/ƒcb.bG/.
Proof. The first inequality is obvious by the existence of conditional expectations
from C.G/ to C �r .�/ and from C.G/ to C.G/. Let us prove the second inequality.
We may and will assume that � and bG are weakly amenable. Fix � > 0.

Let ai 2 `1.bG/ be a sequence of finitely supported elements such that
supi kmaikcb � ƒcb.bG/ C � and mai converges pointwise in norm to identity.
Consider themaps‰i associated to ai as in Lemma 6.6. Observe that the sequence‰i
converges pointwise in norm to identity. Indeed, for x 2 C.G/,

k‰i .x/ � xk D

 Z
H

�
.h�1 ımai ı h/.x/ � x

�
dh


D

 Z
H

�
h�1.mai .h.x// � h.x/

�
dh

 � Z
H

kmai .h.x// � h.x/k dh:
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Now the right hand side of the above expression is converging to 0 for all x 2 C.G/
by the dominated convergence theorem, since kmai .h.x// � h.x/k !i 0 for all
x 2 C.G/ and all h 2 H , and

kmai .h.x// � h.x/k � .kmaikcb C 1/kxk

� .ƒcb.bG/C � C 1/kxk for all i and all x 2 C.G/:

By definition, the maps ‰i are �-equivariant i.e. ‰i ı ˛ D ˛ ı‰i . Hence, for
all i , there is a unique linear extension e‰i W C.G/! C.G/ such that e‰i .u˛.x// D
u˛.‰i .x// for all x 2 C.G/ and all  2 � . Moreover, ke‰ikcb � k‰ikcb �
kmaikcb � ƒcb.

bG/C �.
Consider a sequence of finitely supported maps  j W � ! C going pointwise

to 1 and such that sup km j kcb � .ƒcb.�/C�/, and denote byf j W C.G/! C.G/

the unique linear extension such that f j .u˛.x// D  j ./u˛.x/. Then, we have
ke j kcb � km j kcb � ƒcb.�/C �.

Define the maps 'i;j D e j ı e‰i W C.G/ ! C.G/. Then for all i; j we have
k'i;j kcb � .ƒcb.�/C �/.ƒcb.bG/C �/. Since 'i;j .u˛.x// D  j ./u˛.‰i .x//,
it is clear that 'i;j has finite rank, and .'i;j /i;j is going pointwise in norm to identity.
Since � was arbitrary, the proof is complete.

6.2. Rapid decay. In this subsection we study property .RD/ for crossed products.
We use the notion of property .RD/ developed in [5] and recall the definition below.
Since for a discrete quantum subgroup bG < bG, i.e. such that there exists a faithful
unital �-homomorphismCm.G/! Cm.G/which intertwines the comultiplications,
property .RD/ for bG implies property .RD/ for bG and, since for a crossed product bG
coming from an action � Õ G of a discrete group � on a compact quantum groupG,
both � and bG are discrete quantum subgroups of bG, it follows that property .RD/
for bG implies property .RD/ for � and bG. Hence, we will only concentrate on
proving the converse.

For a compact quantum group G and a 2 Cc.bG/ we define its Fourier transform
as:

FG.a/ D .hbG ˝ 1/.V .a˝ 1//
D

X
x2Irr.G/

dimq.x/.Trx ˝ id/
�
.Qx ˝ 1/u

x.apx ˝ 1/
�
2 Pol.G/;

and its “Sobolev 0-norm” by

kak2G;0 D
X

x2Irr.G/

dimq.x/2

dim.x/
Trx

�
Q�x.a

�a/pxQx
�
:

Let ˛ W � Õ G be an action by quantum automorphisms and denote by G the
crossed product. Recall that Irr.G/ D f � x W  2 � and x 2 Irr.G/g, where  � x is
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the equivalence class of

ux D .1˝ u /.id˝ ˛/.u
x/ 2 B.Hx/˝ C.G/:

LetV �x W H �x ! Hx be the unique unitary such thatu �x D .V � �x˝1/ux .V �x˝1/.
Lemma 6.8. For any  2 � and x 2 Irr.G/, one has Q �x D V � �xQxV �x and
dimq. � x/ D dimq.x/.

Proof. Since V �x is unitary, it suffices to show the first assertion. Recall that
Q �x is uniquely determined by the properties that it is invertible, Tr �x.Q �x/ D
Tr �x.Q�1 �x/ > 0 and thatQ �x 2 Mor.u �x; u �xcc /, where u �xcc D .id˝S2G/.u

 �x/. It
is obvious thatQ WD V � �xQxV �x is invertible and that Tr �x.Q/ D Tr �x.Q�1/ > 0.
Hence, we will be done once we show thatQ 2 Mor.u �x; u �xcc /. To this end, we first
note that we have, by Remark 6.2, for any  2 � and a 2 Pol.G/, S2G.u˛.a// D
u˛.S

2
G.a//. Thus, .id˝ S

2
G/.u

x
 / D .1˝ u /.id˝ ˛/..id˝ S2G/.u

x//. It follows
thatQx 2 Mor.ux ; .ux /cc/ henceQ 2 Mor.u �x; u �xcc /.

Lemma 6.9. Let a 2 Cc.bG/ and write

a D
X

2S;x2T

ap �x;

where S � � and T � Irr.G/ are finite subsets. For  2 S , define a 2 Cc.bG/ by
a D

X
x2T

V �xap �xV
�
 �xpx :

The following holds.
(1) FG.a/ D

P
2S u˛.FG.a //.

(2) kak2G;0 D
P
2S kak

2
G;0.

Proof. Observe that, since V �x is unitary, Tr �x.V � �xAV �xB/ D Trx.AV �xBV � �x/
for all  2 � , all x 2 Irr.G/ and all A 2 B.Hx/, B 2 B.H �x/. Hence,

FG.a/ D
X

2S;x2T

dimq. � x/.Tr �x ˝ id/
�
.Q �x ˝ 1/u

 �x.ap �x ˝ 1/
�

D

X
2S;x2T

dimq.x/.Tr �x ˝ id/
�
.V � �x ˝ 1/.Qx ˝ 1/.V �x ˝ 1/.V

�
 �x ˝ 1/

� ux .V �x ˝ 1/.ap �x ˝ 1/
�

D

X
2S;x2T

dimq.x/.Trx ˝ id/
�
.Qx ˝ 1/u

x
 .V �xap �xV

�
 �x ˝ 1/

�
D

X
2S

u˛

�X
x2T

dimq.x/.Trx ˝ id/
�
.Qx ˝ 1/u

x.V �xap �xV
�
 �x ˝ 1/

��
D

X
2S

u˛.FG.a //:
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This shows assertion .1/. Assertion .2/ follows from a similar computation using
again Lemma 6.8.

A function l W Irr.G/! Œ0;1/ is called a length function on Irr.G/ if l.1/ D 0,
l.x/ D l.x/ and that l.x/ � l.y/C l.z/ whenever x � y ˝ z.
Lemma 6.10. Let ˛ W � Õ G be an action of � on G by quantum automorphisms
and let l be a length function on Irr.G/ which is ˛-invariant, i.e. l.x/ D l.˛ .x//

for all  2 � and x 2 Irr.G/. Let l� be a length function on � . Let G be the crossed
product. The function l0 W Irr.G/! Œ0;1/, defined by l0. � x/ D l�./C l.x/ is
a length function on Irr.G/.

Proof. We have l0.1/ D l�.e/C l.1/ D 0 and, by Remark 6.3,

l0. � x/ D l0.
�1
� ˛ .x// D l�.

�1/C l.˛ .x// D l�./C l.x/ D l0. � x/:

Again, fromRemark 6.3,  �x � r �y˝s �z if and only if  D rs and x � ˛�1.y/˝z.
Hence,

l0. � x/ D l�./C l.x/ � l�.r/C l�.s/C l.˛�1.y//C l.z/

D l�.r/C l.y/C l�.s/C l.z/ D l0.r � y/C l0.s � z/:

Given a length function l W Irr.G/ ! Œ0;1/, consider the element L DP
x2Irr.G/ l.x/px which is affiliated to c0.bG/. Let qn denote the spectral projections

of L associated to the interval Œn; nC 1/. We say that .bG; l/ has property .RD/, if
there exists a polynomial P 2 RŒX� such that for every k 2 N and a 2 qkcc.bG/, we
have kF .a/kC.G/ � P.k/kakG;0. Finally, bG is said to have Property .RD/ if there
exists a length function l on Irr.G/ such that .bG; l/ has property .RD/.

We prove property .RD/ for the dual of a crossed product in the following
theorem. In case the action of the group is trivial, i.e. when the crossed product
reduces to a tensor product, this result is proved in [8, Lemma 4.5]. For semi-direct
products of classical groups, this result is due to Jolissaint [22].
Theorem 6.11. Let ˛ W � Õ G be an action by quantum automorphisms. Let l
be a ˛-invariant length function on Irr.G/. If .bG; l/ has property .RD/ and � has
property .RD/, then .bG; l0/ has property .RD/, where G is the crossed product
and l0 is as in Lemma 6.10.

Proof. Let l� be any length function on � for which .�; l�/ has property (RD) and
let l0 be the length function on Irr.G/ defined by l0. �x/ D l�./C l.x/, for  2 �
and x 2 Irr.G/. Let

L0 D
X
2�;

x2Irr.G/

l0. � x/p �x D
X
2�;

x2Irr.G/

.l�./C l.x//p �x and L D
X

x2Irr.G/

l.x/px :
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Finally, let pn and qn be the spectral projections of respectively L0 and L associated
to the interval Œn; nC 1/. Let a 2 cc.bG/ and write

a D
X

2S;x2T

ap �x;

where S � � and T � Irr.G/ are finite subsets. Now suppose that a 2 pkcc.bG/.
Since

pk D
X

2�;x2Irr.G/;
k�l� ./Cl.x/<kC1

p �x;

we must have

S �
˚
 2 � W l�./ < k C 1

	
and T �

˚
x 2 Irr.G/ W l.x/ < k C 1

	
:

It follows that, for all  2 S , the element a defined in Lemma 6.9 is in qKcc.bG/,
where qK D

Pk
jD0 qj .

Let P1 and P2 be polynomials witnessing .RD/ respectively for .bG; l/ and
.�; l�/. Let, for i D 1; 2, Ci 2 RC and Ni 2 N be such that Pi .k/ � Ci .k C 1/Ni
for all k 2 N. Then, for all b 2 qKcc.bG/,
kFG.b/k �

X
j�k

kFG.bqj /k �
X
j�k

P1.j /kbqj kG;0 �
X
j�k

C1.j C 1/
N1kbqj kG;0

� C1.k C 1/
N1
X
j�k

kbqj kG;0 D C1.k C 1/
N1C1kbkG;0:

Similarly, k � �k`2.�/ � C2.k C 1/N2C1k k`2.�/k�k`2.�/ for all � in `2.�/ and
all functions  on � (finitely) supported on words of l� -length less than equal to k.

Let y be a finite sum y D
P
s us˛.bs/ 2 Pol.G/. We have kyk2

2;hG
DP

s kbsk
2
2;hG

and, by Lemma 6.9 and the preceding discussion,

kFG.a/yk
2
2;hG

D

 X
2S; s

us˛
�
˛s�1.FG.a //bs

�2
2;hG

D

 X
2S; t

ut˛
�
˛t�1 .FG.a //b�1t

�2
2;hG

D

X
t

X
2S

˛t�1 .FG.a //b�1t

2
2;hG

�

X
t

�X
2S

k˛t�1 .FG.a //b�1tk2;hG

�2
� C 21 .k C 1/

2.N1C1/
X
t

�X
2S

kakG;0kb�1tk2;hG

�2
D C 21 .k C 1/

2.N1C1/k � �k2
l2.�/

;
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where  ; � 2 `2.�/ are defined by  ./ D kakG;0 and �.s/ D kbsk2;hG where
; s 2 � . We note that

k k2
`2.�/

D

X
2S

kak
2
G;0 D kak

2
G;0 and k�k2

`2.�/
D

X
s

kbsk
2
2;hG
D kyk22;hG

:

But since  is supported on S i.e. on elements of � of length less than equal to k,
we have

kFG.a/yk
2
2;hG
� .C1C2/

2.k C 1/2.N1CN2C2/k k2
l2.�/
k�k2

`2.�/

D P.k/2kak2G;0kyk
2
2;hG

;

where P.x/ D C1C2.x C 1/N1CN2C2. As y is arbitrary, the proof is complete.

Remark 6.12. There may not exist an ˛-invariant length function on Irr.G/.
However, if � Õ G is compact, then the action ˛ W � Õ Irr.G/ has finite
orbits. Hence, for any length function l on Irr.G/, the length function l˛ defined
by l˛.x/ D sup2� l.˛ .x//, for x 2 Irr.G/, is ˛-invariant. Hence, bG has .RD/
whenever � and bG have .RD/. We refer to the last section and to [31] for several
examples of compact group actions on compact quantum groups.

6.3. Property (T). We characterize relative co-property .T / of the pair .G;G/ in a
similar way we did characterize relative co-property .T / for bicrossed product. We
study the the property .T / for bG.

When � W A! B.H/ is a unital �-homomorphism from a unital C�-algebra A,
we denote bye� W A�� ! B.H/ its unique normal extension. Also, we view any state
! 2 A� as a normal state on A��. Observe that if .H; �; �/ is the GNS construction
for the state ! on A, then .H;e�; �/ is the GNS construction for the normal state !
on A��.

Let M D Cm.G/
�� and p0 2 M be the unique central projection such that

p0xp0 De"G.x/p0 for all x 2M .
In the following theorem, we characterize the relative co-property .T / of the pair

.G;G/ in terms of the action ˛ of � on G. The proof is similar to the proof of
Theorem 4.2 but technically more involved.
Theorem 6.13. The following are equivalent:

(1) The pair .G;G/ does not have the relative co-property .T /.

(2) There exists a sequence .!n/n2N of states on Cm.G/ such that

(a) !n.p0/ D 0 for all n 2 N;

(b) !n ! "G weak�;

(c) k˛ .!n/ � !nk ! 0 for all  2 � .
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Proof. For a representation � W Cm.G/! B.H/, we have "G � � ı ˛ if and only
if K� ¤ f0g, where

K� D
˚
� 2 H W � ı ˛.a/� D "G.a/� for all a 2 Cm.G/

	
:

Let � D � ı ˛ W Cm.G/ ! B.H/ and observe that the orthogonal projection
onto K� is the projection e�.p0/. Indeed, for all � 2 H , a 2 Cm.G/, we have
� ı ˛.a/e�.p0/� De�.ap0/� D "G.a/e�.p0/� , which implies that Im.e�.p0// � K� .
Moreover, if � 2 K� , we havee�.a/� De"G.a/� for all a 2 Cm.G/. Since Cm.G/
is � -weakly dense inM and the representationse� ande"G are normal, it follows that
the equation e�.a/� D e"G.a/� is valid for all a 2 M . Hence, for a D p0 we gete�.p0/� De"G.p0/� D � , which in turn implies that K� � Im.e�.p0//.
.1/ H) .2/. Suppose that the pair .G;G/ does not have the relative co-
property .T /. Let � W Cm.G/ ! B.H/ be a representation such that "G � �

and K� D f0g. Denote by !�;� 2 Cm.G/� the functional given by !�;�.a/ D
h� ı ˛.a/�; �i. Hence, !�;�.p0/ D he�.p0/�; �i D 0 for all �; � 2 H .

Since "G � � , let .�n/n2N be a sequence of unit vectors in H such that
k�.x/�n � "G.x/�nk ! 0 for all x 2 Cm.G/. Define !n D !�n;�n . Then, we
have !n.p0/ D 0 for all n 2 N. For all a 2 Cm.G/ we have,

j!n.a/�"G.a/j D jh�.˛.a//�n�"G.a/�n; �nij � k�.˛.a//�n�"G.˛.a//�nk ! 0:

Moreover, exactly as in the proof of Theorem 4.2, we find

k˛ .!n/ � !nk � 2k�.u /�n � �nk D k�.u /�n � "G.u /�nk ! 0:

.2/ H) .1/. For a state ! 2 Cm.G/� D M� we denote by s.!/ 2 M its support.
Recall that s.!/ 2 M is the unique projection inM such that N! D M.1 � s.!//,
whereN! is the � -weakly closed left ideal defined byN! D fx 2M W !.x�x/ D 0g
and note that ! is faithful on s.!/Ms.!/. In the sequel, we still denote by ˛ the
unique �-isomorphism of M which extends ˛ 2 Aut.Cm.G//. We first prove the
following claim.
Claim. If .2/ holds, then there exists a sequence .!n/n2N of states on Cm.G/
satifying .a/, .b/ and .c/ and such that ˛ .s.!n// D s.!n/ for all  2 � , n 2 N.

Proof of the claim. Denote by `1.�/1;C the set of positive `1 functions f on � with
kf k1 D 1. For a state ! 2 Cm.G/� D M� and f 2 `1.�/1;C, define the state
f � ! 2 Cm.G/

� by the convex combination

f � ! D
X
2�

f ./˛ .!/:
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Observe that, for all  2 � we have

ı � ! D ˛ .!/ and ˛ .f � !/ D f � !;

where f 2 `1.�/1;C is defined by f .r/ D f .�1r/, r 2 � . Moreover, if
f 2 `1.�/1;C is such that f ./ > 0 for all  2 � , then since

.f � !/.x�x/ D
X


f ./!.˛�1.x
�x//;

we have that .f � !/.x�x/ D 0 if and only if !.˛�1.x�x// D 0 for all  2 � . It
follows that

Nf �! D \2�˛ .N!/ DM
�
^2�

�
1 � ˛ .s.!//

��
:

Hence,
s.f � !/ D 1 � ^2�.1 � ˛ .s.!/// D _2�˛ .s.!//:

Hence, we have ˛ .s.f �!// D s.f �!/ for all  2 � . Finally, since "G ı˛ D "G ,
we deduce that, for all  2 � , ˛ .p0/ is a central projection of M satisfying
a˛ .p0/ D ˛ .˛�1.a/p0/ D "G.˛�1.a//˛ .p0/ D "G.a/˛ .p0/,  2 � . By
uniqueness of such a projection, we find ˛ .p0/ D p0 for all  2 � . Hence, for all
f 2 `1.�/1;C,

.f � !/.p0/ D
X


f ./!.˛�1.p0// D
X


f ./!.p0/ D !.p0/:

Let .!n/n2N be a sequence of states on Cm.G/ satisfying .a/, .b/ and .c/. We have,
for all f 2 `1.�/1;C with finite support

kf �!n�!nk �
X


f ./kı �!n�!nk D
X


f ./k˛ .!n/�!nk ! 0: (6.1)

Since such functions f are dense in `1.�/1;C (in the `1-norm), it follows that
kf � !n � !nk ! 0 for all f 2 `1.�/1;C.

Let � 2 `1.�/1;C be any function such that � > 0 and define �n D � � !n.
By the preceding discussion, we know that ˛ .s.�n// D s.�n/ for all  2 � and
�n.p0/ D !n.p0/ D 0 for all n 2 N. Moreover, by Equation .6:1/, we have

k˛ .�n/ � �nk D k� � !n � � � !nk � k� � !n � !nk C k!n � � � !nk ! 0

for all  2 � . Since !n ! "G in the weak� topology and "G ı ˛ D "G , we have,
j!n.˛ .a// � "G.a/j ! 0 for all a 2 Cm.G/ and all  2 � . Hence, the Lebesgue
dominated convergence theorem implies that, for all a 2 Cm.G/,

j�n.a/ � "G.a/j D

ˇ̌̌̌X


f ./.!n.˛�1.a// � "G.a//

ˇ̌̌̌
�

X


f ./j!n.˛�1.a// � "G.a//j ! 0:

It follows that �n ! "G in the weak� topology and this completes the proof of the
claim.
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We can now finish the proof of the theorem. Let .!n/n2N be a sequence of
states on Cm.G/ as in the Claim. LetMn D s.!n/Ms.!n/ and, since !n is faithful
onMn, viewMn � B.Hn/ where .Hn; �n/ is the GNS construction of the f.n.s. !n
on Mn. Define �n W Cm.G/ � M ! Mn � B.Hn/ by a 7! s.!n/as.!n/. By
definition, the unique normal extension of �n is the mape�n W M ! Mn, defined by
x 7! s.!n/xs.!n/. Since ˛ .s.!n// D s.!n/, the action ˛ restricts to an action, still
denoted by ˛ of � onMn. SinceMn � B.Hn/ is in standard form, we may consider
the standard implementation (see [37, Definition 1.6]) of the action of � on Mn to
get a unitary representation un W � ! U.Hn/ such that ˛ .x/ D un./xun.

�1/

for all x 2Mn and  2 � .
By the universal property of Am, for n 2 N there exists a unique unital

�-homomorphism

�n W Am ! B.Hn/ such that �n.u / D un./ and �n ı ˛ D �n:

Since!n.p0/D0, we have s.!n/p0s.!n/D0. Hence,e�n.p0/D0 andK�nDf0g,
8n2N. It follows that, if we define H D˚nHn and �D˚n�n W Cm.G/!B.H/,
then K� D f0g as well. Hence, it suffices to show that "G � � . Since �n is in
the self-dual cone of !n and un./ is the standard implementation of ˛ , it follows
from [37, Theorem 1.14] that un./�n is also in the self-dual cone of!n for all n 2 N.
Hence, we may apply [37, Theorem 1.2] to get kun./�n� �nk2 � k!un./�n �!�nk
for all n 2 N,  2 � . Observe that !un./�n.x/ D ˛ .!n/.x/ and !�n.x/ D !n.x/
for all x 2M . Hence,

kun./�n � "G.u /�nk D kun./�n � �nk � k˛ .!n/ � !nk
1
2 ! 0:

Since !n!"G in the weak� topology, it follows that for all xDu˛.a/2Cm.G/,
we have

k�.x/�n � "G.x/�nk D k�.u /�.˛.a//�n � "G.a/�nk

� k�.u /.�.˛.a//�n � "G.a/�n/k C j"G.a/j k�.u /�n � �nk

� k�.˛.a//�n � "G.a/�nk C j"G.a/j kun./�n � �nk ! 0:

By linearity and the triangle inequality, we have k�.x/�n � "G.x/�nk ! 0 for all
x 2 A. We conclude the proof using the density of A in Cm.G/.

We now turn to Property (T).
Theorem 6.14. The following holds:
(1) If bG has property (T), then � has property T and �.G/˛ is finite.
(2) If bG has property (T) and ˛ is compact then bG and � have property (T).
(3) If bG has property (T) and � has property (T), then bG has property (T).
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Proof. (1) This is the same proof as of assertion (1) of Theorem 4.3. First, we use
the counit on Cm.G/ and the universal property of Cm.G/ to construct a surjective
�-homomorphism Cm.G/ ! C �.�/ which intertwines the comultiplications. We
then use [17, Proposition 6] to conclude that � has property .T /. To end the
proof of .1/, we show that �.G/˛ is discrete. Let �n 2 �.G/˛ be any sequence
such that �n ! "G weak� in Cm.G/�. We define a unital �-homomorphism
� W Cm.G/! B.l2.N// by .�.a/�/.n/ D �n.a/�.n/ for all a 2 Cm.G/ and
� 2 l2.N/. Since �n 2 Sp.Cm.G//˛ we have � ı ˛ D � for all  2 � .
Hence, considering the trivial representation of � on l2.N/ we obtain a covariant
representation so there exists a unique unital �-homomorphism � W Cm.G/ !
B.l2.N// such that �.u˛.a// D �.a/ for all a 2 Cm.G/ and all  2 � . Since
�n ! "G weak� the sequence of unit vectors defined by �n D ın 2 l

2.N/ is a
sequence of almost invariant vectors. By property .T / we have "G � � which easily
implies that, for some n 2 N, �n D "G .
(2) We repeat again the proof of assertion .2/ of Theorem 4.3. By .1/, it suffices to
show that bG has Property .T /. Let � W Cm.G/ ! B.H/ with "G � � and define
the compact group K D ˛.�/ � Aut.G/ with its Haar probability �. Note that any
x 2 Aut.G/, in particular any x 2 K, satisfies "G ı x D "G . Define the covariant
representation .�˛; v/, �˛ W Cm.G/ ! B.L2.K;H// and v W � ! U.L2.K;H//
by .�˛.a/�/.x/ D �.x�1.a//�.x/ and .v�/.x/ D �.˛�1x/. By the universal
property of Cm.G/ we get a unital �-homomorphism � W Cm.G/! B.L2.K;H//
such that �.u˛.a// D v�˛.a/. Let �n 2 H be a sequence of unit vectors such
that k�.a/�n � "G.a/�nk ! 0 for all a 2 Cm.G/ and define the vectors �n.x/ D �n
for all x 2 K, n 2 N. Since � is a probability, �n is a unit vector in L2.K;H/ for
all n 2 N. Moreover, for all a 2 Cm.G/ and  2 � ,

k�.u˛.a//�n � "G.u˛.a//�nk
2

D

Z
K

k�.x�1.˛ .a///�n � "G.a/�nk
2 d�.x/! 0;

where the convergence follows from the dominated convergence theorem, since

k�.x�1.˛ .a///�n � "G.a/�nk D k�.x
�1.˛ .a///�n � "G.x

�1.˛ .a///�nk ! 0;

for all a 2 Cm.G/, x 2 K and  2 � and the domination hypothesis is obvious
since � is a probability. Hence, "G � � and it follows from Property .T / that there
exists a non-zero �-invariant vector � 2 L2.G;H/. In particular, for all a 2 Cm.G/,
�.˛.a/� D "G.a/�. Hence, �.Y / > 0where Y D fx 2 K W k�.x/k > 0g and, for all
a 2 Cm.G/, �.Xa/ D 0 where Xa D fx 2 K W �.x�1.a//�.x/ ¤ "G.a/�.x/g. As
in the proof of assertion (2) of Theorem4.3, we deduce from the separability ofCm.G/
that there exists x 2 K for which �.x/ ¤ 0 and �.x�1.a//�.x/ D "G.a/�.x/ for
all a 2 Cm.G/. It follows that the vector � WD �.x/ 2 H is a non-zero �-invariant
vector.



1568 P. Fima, K. Mukherjee and I. Patri

(3) We use the notations introduced in the proof of Theorem 6.13. Let � W
Cm.G/ ! B.H/ be a representation and consider the representation � D � ı ˛ W

Cm.G/ ! B.H/ and the unitary representation v D �.u / of � on H . Let
K� D f� 2 H W �.a/� D "G.a/� for all a 2 Cm.G/g and recall that the orthogonal
projection onto K� is P D e�.p0/ and that ˛ .p0/ D p0 for all  2 � . Hence,
vPv�1 D e�.˛ .p0// D P for all  2 � , and it follows that K� is an invariant
subspace of  7! v . Suppose that "G � � . By property .T / of bG, the space K�
is non-zero and we can argue exactly as in the proof of Theorem 4.3 to conclude the
result.

Remark 6.15. It follows from the proof of the first assertion of the previous theorem
that C �.�/ is a compact quantum subgroup of the compact quantum group G. Now,
an irreducible representation of G of the form ux (with dimension say m), when
restricted to the subgroup C �.�/, decomposes as a direct sum of m copies of  .
It now follows from [35, Theorem 6.3] that C �.�/ is a central subgroup (see [35,
Definition 6.1]). Furthermore, � induces an action on the chain group c.G/ [35,
Definition 7.4] of G and it follows from Remark 6.3 that the chain group (and hence
the center, see [35, Section 7]) of G is the semidirect product group c.G/ Ì � .

Remark6.16 (KazhdanPair forG). Let .E1; ı1/ be aKazhdan pair forG and .E2; ı2/
be a Kazhdan Pair for � . Then it is not hard to show that E D .E1 [ E2/ � Irr.G/
and ı D min.ı1; ı2/ is a Kazhdan pair for G. Indeed, let � W Cm.G/ ! B.H/ be
a �-representation having a .E; ı/-invariant (unit) vector � . Then restricting to the
subalgebra Cm.G/ (and denoting the corresponding representation by �G), we get
an .E1; ı1/ invariant vector and hence, there is an invariant vector � 2 H . We may
assume k� � �k < 1 (this follows from a quantum group version of Proposition 1.1.9
of [4], which can be proved in an exactly similar fashion). Now, by restricting �
to � , denoting the corresponding representation by u, we have that the closed linear
u-invariant subspace generated by u�;  2 � (which we denote by H�), is a
subspace of the space of �G-invariant vectors (as u�G.a/u�1 D �G.˛ .a//).
Let PH� denote the orthogonal projection onto H� . Now, the vector PH�� , which
is non-zero, as k� � �k < 1, is an .E2; ı2/-invariant vector for the representation u,
restricted to H� . So, there exists an u-invariant vector �0 2 H� . This vector is, of
course then, �-invariant and hence, we are done.

6.4. Haagerup property. In this section, we study the relative co-Haagerup prop-
erty of the pair .G;G/ given by a crossed product and provide a characterization
analogous to the bicrossed product case. We also extend a result of Jolissaint on
Haagerup property for finite von Neumann algebra crossed product to a non-finite
setting. Thus, we can decide whether L1.G/ has the Haagerup property. Finally, we
provide sufficient conditions for bG to posses the Haagerup property.
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For the relative Haagerup property of crossed product, we obtain the following
result similar to Theorem 5.3. The proof is even simpler in the crossed product case,
since ˛ is an action by quantum automorphisms.

Theorem 6.17. The following are equivalent:

(1) The pair .G;G/ has the relative co-Haagerup property.

(2) There exists a sequence .!n/n2N of states on Cm.G/ such that

(a) b!n 2 c0.bG/ for all n 2 N;

(b) !n ! "G weak�;

(c) k˛ .!n/ � !nk ! 0 for all  2 � .

Proof. .1/) .2/. The argument is exactly the same as the proof of .1/ H) .2/

of Theorem 5.3.

.2/) .1/. We first prove the following claim.
Claim. If .2/ holds, then there exists a sequence .�n/n2N of states on Cm.G/
satisfying .a/, .b/ and .c/ and such that ˛ .s.�n// D s.�n/ for all  2 � , n 2 N.

Proof of the claim. By the proof of the claim in Theorem 6.13, it suffices to check
that, whenever � is a state on Cm.G/ and f 2 `1.�/, we have

b� 2 c0.bG/) 1f � � 2 c0.bG/:
We first show thatb� 2 c0.bG/) 1̨

 .�/ 2 c0.bG/. Note that we still denote by ˛
the action of � on Irr.G/ (see Remark 6.3). Now let � be a state on Cm.G/ such thatb� 2 c0.bG/ and let � > 0. By assumptions, the set

F D
˚
x 2 Irr.G/ W k.id˝ �/.ux/kB.Hx/ � �

	
is finite. Hence, the set˚
x 2 Irr.G/ W k.id˝ �/.u˛�1 .x//kB.Hx/ � �

	
D
˚
x 2 Irr.G/ W ˛�1.x/ 2 F

	
D ˛ .F /

is also finite. Since

1̨
 .�/ D

�
.id˝ �/.u˛�1 .x//

�
x2Irr.G/;

it follows that 1̨ .�/ 2 c0.bG/.
From this we can now conclude that for all f 2 `1.�/, we haveb� 2 c0.bG/ )

1f � � 2 c0.bG/ as in the proof of the claim in Theorem 5.3.
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We can now finish the proof of the theorem. Let .�n/n2N be a sequence of
states on Cm.G/� as in the claim. As in the proof of Theorem 6.13, we construct a
representation � W Cm.G/ ! B.H/ with a sequence of unit vectors �n 2 H such
that k�.x/�n � "G.x/�nk ! 0 for all x 2 Cm.G/ and �n D !�n ı � ı ˛. It follows
that the sequence of states !n D !�n ı� 2 Cm.G/�, satisfies !n ! "G in the weak�

topology and 1!n ı ˛ Db�n 2 c0.bG/ for all n 2 N.

We now turn to the Haagerup property. We will need the following result which
is of independent interest. This is the non-tracial version of [21, Corollary 3.4] and
the proof is similar. We include a proof for the convenience of the reader. We refer
to [9,33] for the Haagerup property for arbitrary von Neumann algebras.
Proposition 6.18. Let .M; �/ be a von Neumann algebra with a f.n.s. � and let
˛ W � Õ M be an action which leaves � invariant. If ˛ is compact, � andM have
the Haagerup property, then � ËM has the Haagerup property.

Proof. Let H < Aut.M/ be the closure of the image of � in Aut.M/. By
assumptionH is compact. Let L2.M/ denote the GNS space of �.

Let  W M ! M be a ucp, normal and �-preserving map and suppose that T ,
the L2 extension of  , is compact. Then it is easy to see that for all x 2M , the map

H 3 h 7! h�1 ı  ı h.x/ 2M

is � -weakly continuous. Hence, we can define

‰.x/ D

Z
H

h�1 ı  ı h.x/ dh;

wheredh is the normalizedHaarmeasure onH . By construction, themap‰ WM!M

is ucp, �-preserving, �-equivariant and normal. Moreover, for all � 2 L2.M/, the
map

H 3 h 7! Th�1 ı T ı Th� 2 L2.M/;

where Th denotes the L2-extension of h, is norm continuous. Consequently,Z
H

Th�1 ı T ı Th dh 2 B
�
L2.M/

�
and by definition of ‰ we have that the L2-extension of ‰ is given by

T‰ D

Z
H

Th�1 ı T ı Th dh 2 B
�
L2.M/

�
:

Let B denote the unit ball of L2.M/. Consider the set

A D
˚
h 7! Th�1 ı T ı Th� W � 2 B

	
� C.H;B/:
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It is easy to check that A is equicontinuous and, since T is compact, the set
A.h/ D ff .h/ W f 2 Ag is precompact for all h 2 H . By Ascoli’s theorem,
A is precompact in C.H;B/. Since the map H � C.H;B/ ! B; defined by
.h; f / 7! f .h/ is continuous, the image ofH � A is compact and contains

B D
˚
Th�1 ı T ı Th.B/; h 2 H

	
:

Since the image of B under T‰ is contained in the closed convex hull of B , it
follows that T‰ is compact.

We use the standard notations

N D � ÌM D
˚
ux W  2 �; x 2M

	00
� B

�
`2.�/˝ L2.M/

�
:

We write e� for the dual state of � on N . Let  i be a sequence of normal, ucp,
�-preserving and L2-compact maps on M which converge pointwise in k � k2;�
to identity. Consider the sequence of �-preserving, ucp, normal, L2-compact and
�-equivariant maps ‰i given by

‰i .x/ D

Z
H

h�1 ı  ı h.x/ dh

for all x 2 M . Note that .‰i /i is still converging pointwise in k � k2;� to identity
since, by the dominated convergence theorem we have,

k‰i .x/ � xk2;� D

 Z
H

h�1
�
 i .h.x// � h.x/

�
dh


2;�

�

Z
H

k i .h.x// � h.x/k2;� dh! 0:

By the �-equivariance, we can consider the normal ucp e�-preserving maps on N
given by f‰i .ux/ D u‰i .x/. Observe that the sequence .e‰i / is still converging
pointwise in k:k2;e� to identity and the L2-extension of e‰i is given by

Te‰i D 1˝ T‰i 2 B
�
`2.�/˝ L2.M/

�
:

Let �i be a sequence of positive definite and c0 functions on � converging
to 1 pointwise and consider the normal ucp e�-preserving maps on N given bye�i .ux/ D �i ./ux. Observe that the sequence .e�i / is converging pointwise
in k � k2;e� to identity and the L2-extension ofe�i is given by

Te�i D T�i ˝ 1 2 B
�
`2.�/˝ L2.M/

�
;

where T�i .ı / D �i ./ı is a compact operator on `2.�/.
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Hence, if we define the sequence of normal, ucp, e�-preserving maps on N
by 'i;j D f�j ı e‰i , we have 'i;j .ux/ D �j ./u‰i .x/; the sequence .'i;j / is
converging pointwise in k � k2;e� to identity and the L2-extension of 'i;j given by

T'i;j D T�j ˝ T‰i 2 B
�
`2.�/˝ L2.M/

�
is compact.

Corollary 6.19. The following holds.

(1) If L1.G/ has theHaagerup property, thenL1.G/ and� both have theHaagerup
property.

(2) If L1.G/ has the Haagerup property, ˛ W � Õ L1.G/ is compact and � has
the Haagerup property, then L1.G/ has the Haagerup property.

Proof. (1) Follows from the fact that there exist normal, faithful, Haar-state
preserving conditional expectations from L.G/ to L.�/ and to L1.G/. The former
is given by ua 7! hG.a/u and the latter is given by ua 7! ı;ea, a 2 L1.G/
and  2 � .

(2) It is an immediate consequence of Proposition 6.18.

Theorem 6.20. Suppose bG has the Haagerup property and � has the Haagerup
property, and further suppose that the action of � on G is compact. Then bG has the
Haagerup property.

Proof. Since bG has the Haagerup property, this assures the existence of states
.�n/n2N on Cm.G/ such that .1/ c�n 2 c0.bG/ for all n 2 N and .2/ �n ! "G
weak�. Our first task is to construct a sequence of ˛-invariant states on Cm.G/
satisfying (1) and (2) above. This is similar to our arguments before (while dealing
with property (T) and Haagerup property). Since the action of � is compact, the
closure of � in Aut.G/ is compact, and we denote this subgroup by H . Letting dh
denote the normalized Haar measure onH , we define states �n 2 Cm.G/� by

�n.a/ D

Z
H

�n.h
�1.a// dh;

for all a 2 Cm.G/. It is easily seen that �n is invariant under the action of � for
each n. Now, since the action is compact, all orbits of the induced action on Irr.G/
are finite. We need this to show that �n satisfy (1) above. So, let � > 0. As �n
satisfied (1), the set

L D
n
x 2 Irr.G/ W k.id˝ �n/.ux/k �

�

2

o
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is finite and the setK D H �L � Irr.G/ is also finite, as all the orbits are finite. For
h 2 H � Aut.G/ and x 2 Irr.G/ write Vh;x 2 B.Hx/ to be the unique unitary such
that �

id˝ h�1
�
.ux/ D

�
V �h;x ˝ 1

��
id˝ uh�1.x/

�
.Vh;x ˝ 1/:

If x … K then, for all h 2 H , h�1.x/ … L. Hence, k.id˝�n/.uh
�1.x//k < �

2
for all

h 2 H and it follows that

k.id˝ �n/.ux/k D
 Z

H

.id˝ �n/
�
.id˝ h�1/.ux/

�
dh


�

Z
H

V �h;x.id˝ �n/�uh�1.x/�Vh;x dh
�

Z
H

.id˝ �n/�uh�1.x/� dh � �

2
< � for all x … K:

Hence, ˚
x 2 Irr.G/ W k.id˝ �n/.ux/k � �

	
� K

is a finite set and (1) holds for �n. To show that (2) holds, we first note that given any
a 2 Cm.G/, one has

�n.h
�1.a//! "G.h

�1.a// D "G.a/

for all h 2 H (since H acts on G by quantum automorphisms). By the dominated
convergence Theorem, we see that (2) holds for �n. Now, since � has the Haagerup
property, we can construct states �n on C �.�/ satisfying (1) and (2) above. And
since the states �n on Cm.G/ are ˛-invariant, we can construct the crossed product
states �n D �n Ë�n on Cm.G/ .see [41, Proposition and Definition 3.4] and also [7,
Exercise 4.1.4] for the case of c.c.p. maps/. The straightforward computations that
need to be done to see that the sequence of states .�n/n2N satisfy (1) and (2) above,
are left to the reader. This then shows that bG has the Haagerup property.

Remark 6.21. We note that in case G is Kac, the above theorem already follows
from Corollary 6.19(2) and Theorem 6.7 of [13].

7. Examples

For coherent reading, we have dedicated this section only to examples arising from
both matched pairs and crossed products. It is to be noted that it is not hard to
come up with examples of compact matched pairs of groups for which only one of
the actions ˛ or ˇ is non-trivial which means that the other is an action by group
homomorphisms. However, it is harder to come up with examples for which both ˛
and ˇ are non-trivial. We called such matched pairs non-trivial. Starting out with
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a compact matched pair for which either ˛ or ˇ is trivial, we describe a process to
deform the original matched pair by what we call a crossed homomorphism in such
a way that we manufacture a new compact matched pair for which both actions are
non-trivial. For pedagogical reasons, we have made two subsections dealing with
matched pairs: the first one .Section 7.1.1/, in which we describe how to perturb ˇ
when it is trivial, followed by Section 7.1.2 in which we construe how to perturb ˛
when it is trivial. It has to be noted that it is indeed possible to formalize our process
of deformation in a unified way but, since such a formulation would increase the
technicalities and would not produce any new explicit examples, we have chosen
to separate the presentation in the two basic deformations described above. Our
deformations are chosen carefully so as to ensure that the geometric group theoretic
properties .that we have studied in detail throughout the paper/ passes from the
initial bicrossed product to the one obtained after the deformation very naturally.
Such deformations also allow us to keep track of the invariants �.�/ and Int.�/ of
the associated compact quantum groups. These explicit constructions allow us to
exhibit: (i) a pair of non-isomorphic non-trivial compact bicrossed products each
of which has relative property .T / but the duals do not have property .T /, (ii) an
infinite family of pairwise non-isomorphic non-trivial compact bicrossed products
whose duals are non-amenable with the Haagerup property, (iii) an infinite family of
pairwise non-isomorphic non-trivial compact bicrossed products whose duals have
property .T /.

We also provide non-trivial examples of crossed products of a discrete group on
a non-trivial compact quantum group in Section 7.2. The action is coming from
the conjugation action of a countable subgroup of �.G/ on the compact quantum
group G. In this situation we completely understand weak amenability, .RD/,
Haagerup property and property .T / in terms ofG and � and we also discuss explicit
examples involving the free orthogonal and free unitary quantum groups.

7.1. Examples of bicrossed products. In this section, we focus on deformation of
actions in matched pairs when one of them is trivial. The analysis involved helps to
construct non-trivial examples.

7.1.1. Frommatched pairs with trivialˇ. Let ˛ be any action of a discrete group�
on a compact group G by group homomorphisms. Taking ˇ to be the trivial action
ofG on � , the relations in Equation .3:1/ are satisfied and we get a compact matched
pair. It is possible to upgrade this example in order to obtain a new compact matched
pair .�;eG/ for which the associated actions ę and ě are both non-trivial.

Indeed, given an action ˛ of the discrete group � on the compact group G and a
continuous map � W G ! � , we define a continuous map

G �G ! G by .g; h/ 7! g � h; where g � h D g˛�.g/.h/ for all g; h 2 G:
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Observe that e � g D g � e D g for all g 2 G if and only if �.e/ 2 Ker.˛/.
Moreover, it is easy to check that the map .g; h/ 7! g � h is associative if and only if

�.gh/�1�.g/�
�
˛�.g/�1.h/

�
2 Ker.˛/

for all g; h 2 G. Finally, under the preceding hypothesis, the map .g; h/ 7! g � h

turns G into a compact group since the inverse of g 2 G exists and is given by
˛�.g/�1.g

�1/ and this inversion is a continuous map from G to itself.
Hence it is natural to define a crossed homomorphism as a continuous map

� W G ! � such that �.e/ D e and �.gh/ D �.g/�.˛�.g/�1.h// for all g; h 2 G.
Observe that the continuity of �, the compactness of G and the discreteness of � all
together imply that the image of � is finite. By the preceding discussion, any crossed
homomorphism � gives rise to a new compact group structure on G. We denote
this compact group by G�. Observe that, since the Haar measure on G is invariant
under ˛, so the Haar measure on G� is equal to the Haar measure on G. Hence we
have G� D G as probability spaces.

The group G� can also be defined as the graph of � in the semi-direct product
H D �˛ ËG. Indeed, it is easy to check that the graph

Gr.�/ D
˚
.�.g/; g/ W g 2 G

	
of a continuous map � W G ! � , which is a closed subset of H , is a subgroup
ofH if and only if � is a crossed homomorphism. Moreover, the map G� ! Gr.�/,
g 7! .�.g/; g/, g 2 G, is an isomorphism of compact groups.

Since G� D G as topological spaces, ˛ still defines an action of � on the
compact space G� by homeomorphisms. However, ˛ may not be an action by group
homomorphisms anymore. Actually, for  2 � , ˛ is a group homomorphism ofG�
if and only if

�.g/�1�1�
�
˛ .g/

�
 2 Ker.˛/

for all g 2 G which happens for example if � satisfies � ı ˛ D �.�/�1.
We define a continuous right action of G� on the discrete space � by ˇg./ D

�.˛ .g//
�1�.g/ for all  2 � , g 2 G. It is an easy exercise to check that ˛ and ˇ

satisfy the relations in Equation .3:1/, hence, by Proposition 3.3we get a new compact
matched pair .�;G�/ with possibly non-trivial actions ˛ and ˇ. To see that the pair
.�;G�/ is matched without using Proposition 3.3, it suffices to view � and G� as
closed subgroups of H D �˛ Ë G via the identification explained before and check
that �G� D H and � \ G� D feg. It is easy to check that the actions ˛ and ˇ
obtained by this explicit matching are the ones we did define.

Let G� denote the bicrossed product associated with the matched pair .�;G�/.
Proposition 7.1. If the action ˛ W � Õ Irr.G/ has all orbits finite and the group �
has the Haagrup property, then bG� has the Haagerup property for all crossed
homomorphisms � W G ! � .
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Proof. Recall that if ˛ W � Õ G is an action by compact group automorphisms,
then the action ˛ W � Õ L1.G/ is compact if and only if the image of � in Aut.G/
is precompact which in turn is equivalent to the associated action of � on Irr.G/
to have all orbits finite. Now let � W G ! � be a crossed homomorphism. Since
G� D G as compact spaces and as probability spaces, the action ˛ W � Õ L1.G/
is compact if and only if the action � Õ L1.G�/ is compact and the former is
equivalent to the action � Õ Irr.G/ to have all orbits finite. Hence, the proof follows
from assertion .4/ of Corollary 3.7.

Observe that a continuous group homomorphism � W G ! � is a crossed
homomorphism if and only if � ı ˛ D � for all  2 Im.�/.

Now we give a systematic way to construct explicit non-trivial examples of the
situation considered in the first part of this section. So, consider a non-trivial action ˛
of a countable discrete group � on a compact group G by group homomorphisms
and let ƒ < � be a finite subgroup. Define the action ˛ƒ of � on Gƒ D ƒ �G by
˛ƒ .r; g/ D .r; ˛ .g// and the ˛ƒ-invariant group homomorphism � W Gƒ ! � by
�.r; g/ D r , r 2 ƒ, g 2 G,  2 � . Thus, we get a compact matched pair .�;Gƒ� /
where Gƒ� D ƒ �G as a compact space and the group law is given by

.r; g/ � .s; h/ D .r; g/˛�.r;g/.s; h/ D .rs; g˛r.h//; r; s 2 ƒ and g; h 2 G:

Hence, Gƒ� D ƒ ˛ ËG as a compact group and the action ˇ of Gƒ� on � is given by

ˇ.r;g/./ D r
�1r; r 2 ƒ; g 2 G;  2 �:

Hence, ˇ is non-trivial if and only if ƒ is not in the center of � .
One has

�
Gƒ�

�˛
D ƒ � G˛ and, since the action ˇ of

�
Gƒ�

�˛ on � is by inner
automorphisms, the associated action on Sp.�/ is trivial. Hence, if we denote by Gƒ

the associated bicrossed product, then Proposition 3.9 implies that

�.Gƒ/ ' ƒ �G
˛
� Sp.�/:

We claim that there is a canonical group isomorphism

� W Sp.Gƒ� /! Sp.ƒ/ � Spƒ.G/;

where
Spƒ.G/ D

˚
! 2 Sp.G/ W ! ı ˛r D ! for all r 2 ƒ

	
is a subgroup of Sp.G/. Indeed, denoting by

�G W G ! Gƒ� ; g 7! .1; g/ and �ƒ W ƒ! Gƒ� ; r 7! .r; 1/

the two canonical injective (and continuous) group homomorphisms, we may define
�.!/ D .! ı �ƒ; ! ı �G/. Using the relations in the semi-direct product and the fact
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that ! is invariant on conjugacy classes, we see that ! ı �G 2 Spƒ.G/. Since Gƒ� is
generated by �ƒ.ƒ/ and �G.G/, so � is injective. The surjectivity of � follows from
the universal property of semi-direct products.

Observe that �ˇ D C�.ƒ/ is the centralizer of ƒ in � . Since, ˛ .Spƒ.G// D
Spƒ.G/ for every  2 C�.ƒ/, so ˛ induces a right action of C�.ƒ/ on Spƒ.G/ and
we have, by Proposition 3.9,

Int.Gƒ/ ' Sp.ƒ/ �
�
Spƒ.G/ Ì˛ C�.ƒ/

�
:

We will write G D Gf1g. We have thus proved the first assertion of the following
theorem.

Theorem 7.2. Let ƒ < � be any finite subgroup. Then the following holds.

(1) �.Gƒ/ ' ƒ �G
˛ � Sp.�/ and Int.Gƒ/ ' Sp.ƒ/ � .Spƒ.G/ Ì˛ C�.ƒ//.

(2) The following conditions are equivalent.

� .G;G/ has the relative property .T /.
� .Gƒ� ;Gƒ/ has the relative property .T /.

(3) The following conditions are equivalent.

� .G;G/ has the relative Haagerup property.
� .Gƒ� ;Gƒ/ has the relative Haagerup property.

(4) If the action � Õ Irr.G/ has all orbits finite and � has the Haagerup property,
then bGƒ has the Haagerup property.

(5) If the action � Õ Irr.G/ has all orbits finite and � is weakly amenable, then bGƒ

is weakly amenable and ƒcb.bGƒ/ � ƒcb.�/.

Proof. (2) .+/ Suppose that the pair .Gƒ� ;Gƒ/ does not have the relative
property .T /. Let .�n/ be a sequence of Borel probability measures on ƒ � G
satisfying the conditions of assertion .2/ of Theorem 4.2. Since feg � G is open
and closed in ƒ � G, we have 1feg�G 2 C.ƒ � G/, and since �n ! ı.e;e/ in
the weak� topology we deduce that �n.feg � G/ ! 1. Hence, we may and will
assume that �n.feg � G/ ¤ 0 for all n 2 N. Define a sequence .�n/ of Borel
probability measures on G by �n.A/ D �n.feg�A/

�n.feg�G/
, where A � G is Borel. Then

�n.feg/ D �n.f.e; e/g/ D 0 for all n 2 N and it is easy to check that, for all
F 2 C.G/,

1feg ˝ F 2 C.ƒ �G/ and
Z
G

F d�n D
1

�n.feg �G/

Z
ƒ�G

1feg ˝ F d�n:
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It follows from this formula and the fact that �n ! ı.e;e/ in the weak� topology that
we also have �n ! ıe in the weak� topology. Finally, the previous formula also
implies that, for all F 2 C.G/,

j˛ .�n/.F / � �n.F /j D
1

�n.feg �G/
j˛ƒ .�n/.1feg ˝ F / � �n.1feg ˝ F /j

�
k1feg ˝ F k

�n.feg �G/
k˛ƒ .�n/ � �nk

�
kF k

�n.feg �G/
k˛ƒ .�n/ � �nk:

Hence,

k˛ .�n/ � �nk �
k˛ƒ .�n/ � �nk

�n.feg �G/
! 0

and thus .G;G/ does not have the relative property .T /.
.*/ Now suppose that the pair .G;G/ does not have the relative property .T /.

Let .�n/ be a sequence of Borel probability measures on G satisfying the conditions
of assertion .2/ of Theorem 4.2. For each n define the probability measure �n on
Gƒ� D ƒ ˛ ËG by �n D ıe ˝ �n. We have

�n.fe; eg/ D �n.feg/ D 0 and
Z
Gƒ�

F d�n D

Z
G

F.e; g/ d�n.g/

for all F 2 C.Gƒ� /. Hence �n ! ıe in the weak� topology. Moreover, since for all
F 2 C.Gƒ� /, we have

j˛ƒ .�n/.F / � �n.F /j D

ˇ̌̌̌ Z
G

F.e; ˛ .g// d�n.g/ �

Z
G

F.e; g/ d�n

ˇ̌̌̌
D j˛ .�n/.Fe/ � �n.Fe/j

� kFek k˛ .�n/ � �nk � kF k k˛ .�n/ � �nk;

where Fe D F.e; �/ 2 C.G/, we have k˛ƒ .�n/ � �nk � k˛ .�n/ � �nk ! 0.
(3) By Theorem 5.3 and the proof of .2/, it suffices to prove the following claim.
Claim. Let ˛ W ƒ Õ G be an action of a finite group ƒ on a compact group G by
group automorphisms and define the compact group H D ƒ ˛ Ë G. The following
holds.

(a) Let � be a Borel probability measure on G and define the Borel probability
measure � onH by � D ıe ˝ �. If b� 2 C �r .G/ thenb� 2 C �r .H/.

(b) Let � be a Borel probability on H such that �.feg � G/ ¤ 0 and define the
Borel probability � onG by �.A/ D �.feg�A/

�.feg�G/
for allA 2 B.G/. Ifb� 2 C �r .H/

thenb� 2 C �r .G/.
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Proof of the claim. Let�G and�H denote the left regular representations ofG andH
respectively. For F 2 C.G/ (resp. F 2 C.H/), write �G.F / (resp. �H .F /) the
convolution operator by F on L2.G;�G/ (resp. L2.H;�H /), where �G (resp. �H ),
is the Haar probability onG (resp.H ). Observe that �H D m˝�G , wherem is the
normalized counting measure on ƒ.

(a) Recall that, for all F 2 C.H/,Z
H

F d� D

Z
G

F.e; g/ d�.g/:

Moreover, using the definition of the group law inH , we find that

�H.e;g/ D 1˝ �
G
g 2 B

�
l2.ƒ/˝ L2.G/

�
;

for all g 2 G. It follows that

b� D Z
G

�H.e;g/ d�.g/ D

Z
G

.1˝ �Gg / d�.g/

D 1˝b� 2M.C �r .H// � B
�
l2.ƒ/˝ L2.G/

�
:

Note that for all F 2 C.G/, 1feg ˝ F 2 C.H/, since ƒ is finite. We claim that
�H .1feg ˝ F / D

1
jƒj
.1˝ �G.F //. Indeed,

�H .1feg ˝ F / D

Z
H

ır;eF.g/�
H
.e;g/ d�H .r; g/ D

Z
H

ır;eF.g/.1˝ �
G
g / d�H .r; g/

D

Z
G

�
1

jƒj

X
r2ƒ

ır;eF.g/.1˝ �
G
g /

�
d�G.g/ D

1

jƒj
.1˝ �G.F //:

Suppose that b� 2 C �r .G/ and let Fn 2 C.G/ be a sequence such that
kb� � �G.Fn/k ! 0. Hence, 1˝ �G.Fn/!b�. Since

1˝ �G.Fn/ D jƒj�
H .1feg ˝ Fn/ 2 C

�
r .H/ 8n 2 N;

we haveb� 2 C �r .H/.
(b) Recall that, for all F 2 C.G/,

1feg˝ F 2 C.ƒ�G/ D C.H/ and
Z
G

F d� D
1

�.feg �G/

Z
ƒ�G

1feg˝ F d�:

Using the definition of the group law in H , an easy computation shows that for all
r 2 ƒ, � 2 L2.G/,

�H.r;g/.ıe ˝ �/ D ır ˝ �
G
g .� ı ˛r�1/:
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It follows that,

hb��; �i D Z
G

h�Gg �; �i d�.g/ D
1

�.feg �G/

Z
ƒ�G

ıe;rh�
G
g �; �i d�.r; g/

D
1

�.feg �G/

Z
ƒ�G

h�H.r;g/ıe ˝ �; ıe ˝ �i d�.r; g/ for all �; � 2 L2.G/:

Hence, b� D 1

�.feg �G/
V �b�V;

where
V W L2.G/! l2.ƒ/˝ L2.G/ D L2.H/

is the isometry defined by V � D ıe ˝ � , � 2 L2.G/. To end the proof it suffices to
show that V �C �r .H/V � C �r .G/.

Let F 2 C.H/ and define Fe 2 C.G/ by Fe.g/ D F.e; g/, g 2 G. We will
actually show that

V ��H .F /V D
1

jƒj
�G.Fe/

and this will finish the argument. For �; � 2 L2.G/, we have

hV ��H .F /V �; �i D h�H .F /ıe ˝ �; ıe ˝ �i

D

Z
H

F.r; g/h�H.r;g/ıe ˝ �; ıe ˝ �i d�H .r; g/

D

Z
H

ır;eF.e; g/h�
G
g �; �i d�H .r; g/

D

Z
G

1

jƒj

X
r2ƒ

ır;eF.e; g/h�
G
g �; �i d�G.g/

D
1

jƒj

Z
G

F.e; g/h�Gg �; �i d�G.g/ D
1

jƒj
h�G.Fe/�; �i:

(4) It is easy to check that, if ˛ W � Õ G is compact then ˛ƒ D id˝˛ W � Õ ƒ�G

is compact, for all finite group ƒ. Hence, the proof follows from Proposition 7.1.
(5) Observe that, for a general compactmatched pair .�;G/with associated actions˛
and ˇ, the continuity of ˇ forces each stabilizer subgroup G , for  2 � , to be open,
hence finite index by compactness ofG. Consider the closed normal subgroupG0 D
\2�G D Ker.ˇ/ < G. Equation 3.1 implies that G0 is globally invariant under ˛
and the ˛-action of � on G0 is by group automorphisms. Hence, we may consider
the crossed product quantum group G0, with Cm.G0/ D �˛;f Ë C.G0/, which
is a quantum subgroup (in fact normal subgroup in the sense of Wang [43]) of the
bicrossed product quantumgroupG withCm.G/ D �˛;f ËC.G/. This is becauseG0
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is globally invariant under the action ˛ of � and hence, by the universal property,
we have a surjective unital �-homomorphism � W �˛;f Ë C.G/ ! �˛;f Ë C.G0/
which is easily seen to intertwines the comultiplications. Since � acts as identity
on Cm.�/, it follows using Theorem 3.4(2) that Cm.G=G0/ D ˛.Cm.G=G0// (see
Definition 2.4). Hence, if we assume thatG0 is a finite index subgroup ofG, then G0

is a finite index subgroup of G. If we further assume that � is weakly amenable
and the action ˛ of � on G is compact then the action ˛ of � restricted to G0 is
also compact and Theorem 6.7 (with the fact that G0 is Kac) implies that bG0 is
weakly amenable with ƒcb.bG0/ � ƒcb.�/. Using part .2/ of Theorem 2.5, we
conclude that bG is weakly amenable and ƒcb.bG/ � ƒcb.�/. In our case, with
G D Gƒ� , the finiteness of ƒ forces G0 to be always of finite index in G. Since,
by assumption, the action of � on Irr.G/ has all orbits finite, we conclude, as in the
proof of Proposition 7.1, that the action ˛ is compact.

Example 7.3 (Relative Property (T)). Take n 2 N, n � 2, � D SLn.Z/, G D Tn

and ˛ the canonical action of SLn.Z/ onTn D Sp.Zn/ coming from the linear action
of SLn.Z/ on Zn. Taking a finite subgroupƒ < SLn.Z/, we manufacture a compact
bicrossed product Gƒ with non-trivial actions ˛ and ˇ .described in the beginning
of this section/ whenever ƒ is a non-central subgroup. Note that .Tn/SLn.Z/ D feg

hence �.Gƒ/ ' ƒ � Sp.SLn.Z//.
Suppose n � 3. In this case, D.SLn.Z// D SLn.Z/, where D.F / denotes the

derived subgroup of a group F . Since every element of Sp.SLn.Z// is trivial on
commutators, we have Sp.SLn.Z// D f1g, for all n � 3. It follows that �.Gƒ/ ' ƒ.
Hence, for all n;m � 3 and all finite subgroups ƒ < SLn.Z/, ƒ0 < SLm.Z/, we
have Gƒ ' Gƒ0 implies ƒ ' ƒ0.

However, for n D 2, the group Sp.SL2.Z// is non-trivial. Actually, we have

Sp.SL2.Z// '
˚
.k; l/ 2 Z=4Z � Z=6Z W k � l mod 2

	
; (7.1)

which is a finite group of order 12. Indeed, by the well known isomorphism

SL2.Z/ ' Z=4Z �
Z=2Z

Z=6Z;

it suffices to compute the group of 1-dimensional unitary representations of an amal-
gamated free product �1 �

†
�2. It is easy to check that the map  WSp.�1 �

†
�2/!T

defined by  .!/ D .!j�1 ; !j�2/, where T is the subgroup of Sp.�1/ � Sp.�2/
defined by

T D
˚
.!; �/ 2 Sp.�1/ � Sp.�2/ W !j† D �j†

	
;

is an isomorphism of compact groups. Hence, using the canonical identification
Sp.Z=mZ/ ' Z=mZ, we obtain the isomorphism in Equation .7:1/.
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Since the pair .Z2;SL2.Z/ Ë Z2/ has the relative property .T /, we deduce from
Theorem 7.2 that, for any finite subgroup ƒ < SL2.Z/, the pair .Gƒ� ;Gƒ/ has the
relative property .T /. Identifying SL2.Z/ with

Z=4Z �
Z=2Z

Z=6Z;

one finds that every finite subgroup is conjugated to f1g or Z=2Z or Z=4Z or Z=6Z.
The only non-central subgroups are conjugated to ƒ1 D Z=4Z or ƒ2 D Z=6Z.
Hence, we get two non-trivial compact bicrossed products Gƒi , i D 1; 2, such
that .Gƒi� ;Gƒi / has the relative property .T / and bGƒi does not have property .T /
since SL2.Z/ has theHaagerup property. Moreover,Gƒ1 andGƒ2 are not isomorphic
since jƒ1j ¤ jƒ2j.

Remark 7.4 (Haagerup property and weak amenability). We depict here a procedure
to construct compact bicrossed products with the Haagerup property and Weak
Amenability. Suppose that � is a countable subgroup of a compact group G and
consider the action ˛ W � Õ G by inner automorphisms i.e. ˛ .g/ D g�1 for
all  2 � , g 2 G. Let ƒ < � be any finite subgroup and consider the matched
pair .Gƒ� ; �/ introduced earlier in this section. Let Gƒ be the bicrossed product.
Observe that, since the action ˛ is inner, the associated action on Irr.G/ is trivial.
Indeed, for any unitary representation � of G, the unitary �./ is an intertwiner
between ˛ .�/ and � for all  2 � . Hence, if � has the Haagerup property, then
for any finite subgroupƒ < � the bicrossed product bGƒ has the Haagerup property.
Similarly, if � is weakly amenable, then for any finite subgroupƒ < � the bicrossed
product bGƒ is weakly amenable and ƒcb.bGƒ/ � ƒcb.�/.

7.1.2. From matched pair with trivial ˛. In this section, we consider the dual
situation, i.e. starting with a matched pair with ˛ being trivial and modifying it to
some non-trivial action for a probably different matched pair.

Let ˇ be any continuous right action of the compact group G on the discrete
group � by group automorphisms. Taking ˛ to be the trivial action of � on G, the
relations in Equation .3:1/ are satisfied and we get a matched pair.

Remark 7.5. Note that if the group � is finitely generated then the right semi-direct
product group H D � Ìˇ G is virtually a direct product. In other words, there is a
finite index subgroup ofH which is a direct product of a subgroup of G (which acts
trivially on �) and � .

Indeed, since � is discrete and ˇ is continuous, the stabilizer subgroup

G WD
˚
g 2 G W  � g D 

	
is open in G for all  2 � . Since G is compact, G has finite index in G. Now
consider the subgroupGˇ D \2�G , which acts trivially on � . In case � is finitely
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generated, it follows that Gˇ is also finite index in G and thus the direct product
� �Gˇ is a finite index subgroup ofH .

However, if the discrete group is not finitely generated then this need not be the
case. For instance, let a compact group K act on a finite group F non-trivially. Let
Kn D K for n 2 N. One can then induce, in the natural way, an action of the
compact group G D

Q
n2N Kn on the discrete group � D ˚n2NFn, where Fn D F

for all n. In this case, it is easy to see that the subgroup Gˇ is not of finite index.

Getting back to the process of modifying ˛, we call a map � W � ! G a crossed
homomorphism if

�.e/ D e and �.rs/ D �.ˇ�.s/�1.r//�.s/

for all r; s 2 � . Given a crossed homomorphism, we define a new discrete group ��
which is equal to � as a set and the group multiplication is given by r � s D ˇ�.s/.r/s
for all r; s 2 � . As before, �� is canonically isomorphic to the graph

Gr.�/ D
˚
.; �.// W  2 �

	
of �, which is a subgroup of the right semi-direct product H D � Ìˇ G (since � is
a crossed homomorphism).

Observe that ˇ still defines a continuous right action ofG on the countable set ��
and for g 2 G, ˇg is a group homomorphism of �� if and only if

g�1�./�1g�.ˇg.// 2 Ker.ˇg/

for all  2 � , which happens for example if � ı ˇg D g�1�.�/g. Moreover, the
formula

˛ .g/ D �./g�.ˇg.//
�1;

for all  2 � , g 2 G, defines an action of �� on the compact space G by
homeomorphisms and in addition ˛ and ˇ satisfy the relations in Equation .3:1/.
Consequently, we get a new matched pair .��; G/ with possibly non-trivial actions ˛
and ˇ. As before, one can describe this new matched pair explicitly by viewing ��
and G as closed subgroups of the right semi-direct productH D � Ìˇ G.

Observe that a group homomorphism � W � ! G is a crossed homomorphism if
and only if � D � ı ˇg for all g 2 Im.�/.

Remark 7.6. Suppose that the crossed homomorphism satisfies � ı ˇg D � for
all g 2 G and let �G be the associated bicrossed product. Then the following are
equivalent.

(1) �� has the Haagerup property.

(2) c�G has the Haagerup property.
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Indeed, by Corollary 3.7, it suffices to show that the action ˛ of �� on G is compact
when viewed as an action of �� on L1.G/. Since ˛ .g/ D �./g�./�1 for g 2 G
and  2 ��, ˛ is an action by inner automorphisms, thus it is always compact since it
is trivial on Irr.G/. Indeed, for any unitary representation u ofG, the unitary u.�.//
is an intertwiner between ˛ .u/ and u for  2 ��.

A systematic way to construct explicit examples using the deformation above is to
consider any countable discrete group �0 which has a finite non-abelian quotient G
and take� D �0�G with the right action ofG on� given byˇg.; h/ D .; g�1hg/,
g; h 2 G and  2 �0. Since G is non-abelian, ˇ is non-trivial. Let q W �0 ! G be
the quotient map and define the morphism � W � ! G by �.; h/ D q./,  2 �0,
h 2 G. Then, we obviously have �ıˇg D � for all g 2 G . Therefore, � is a crossed
homomorphism and the action ˛ of �� on G is given by ˛.;h/.g/ D q./gq.�1/,
 2 �0, h; g 2 G, which is also non-trivial since G is non-abelian. Thus .��; G/ is
a compact matched pair. Let �G denote the bicrossed product.
Proposition 7.7. We have

�.�G/ ' Z.G/ � Sp.�0/ � Sp.G/ and Int.�G/ D Sp.G/ � �0 �Z.G/:

Proof. Note that �� D �0 �G as a set and the group law is given by

.r; g/.s; h/ D .rs; q.s/�1gq.s/h/

for all r; s 2 �0 and g; h 2 G. Since the action ˇ of G on �� is given by
ˇg.s; h/ D .s; g�1hg/, s 2 �0; g; h 2 G, we have �ˇ� D �0 � Z.G/ and the
action of Z.G/ on �� is trivial. Since the action ˛ of �ˇ� on G is given by
˛.r;g/.h/ D q.r/hq.r/�1, r 2 �0; g; h 2 G, we find G˛ D Z.G/. Again,
since the action ˛ is by inner automorphisms, the associated action on Sp.G/
is trivial. It follows from Proposition 3.9 that �.�G/ ' Z.G/ � Sp.��/ and
Int.�G/ D Sp.G/ � �0 �Z.G/. Let ��0 W �0 ! ��, r 7! .r; 1/ and �G W G ! ��,
g 7! .1; g/. Observe that ��0 and �G are group homomorphisms. To finish the proof,
we claim that the map

 W Sp.��/! Sp.�0/ � Sp.G/;
defined by

! 7! .! ı ��0 ; ! ı �G/; ! 2 Sp.��/;

is a group isomorphism. Indeed, it is obviously a group homomorphism. Since �� is
generated by ��0.�0/ and �G.G/, so is injective. Let!1 2 Sp.�0/ and!2 2 Sp.G/.
Define the continuous map ! W �� ! S1 by !.r; g/ D !1.r/!2.g/, r 2 �0; g 2 G.
Then, for all r; s 2 �0, g; h 2 G,

!..r; g/ � .s; h// D !.rs; q.s/�1gq.s/h/

D !1.r/!1.s/!2.q.s/
�1/!2.g/!2.q.s//!2.h/

D !1.r/!2.g/!1.s/!2.h/ D !.r; g/!.s; h/:

Hence, ! 2 Sp.��/ and  .!/ D .!1; !2/, so  is surjective.
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Example 7.8 (Haagerup property). Observe that any finite non-abelian group G
provides an example with �0 D Fn, where n is bigger than the number of generators
of G, so that G is a quotient of �0 in the obvious way. Let us note here that the
corresponding �� have the Haagerup property. This is because ��, being canonically
isomorphic to the graph Gr.�/, and sinceG is finite, is easily seen to be a finite index
subgroup of the right semi-direct product H D � Ìˇ G. But in this case, as � is
finitely generated and has the Haagerup property (as it is a direct product of a finite
group and a group with the Haagerup property), we have that H has the Haagerup
property, since by Remark 7.5,H has a group with the Haagerup property as a finite
index subgroup and hence, �� has the Haagerup property. Thus, it follows that all
bicrossed products obtained in this way are not co-amenable but their duals do have
the Haagerup property by Remark 7.6.

To get explicit examples we take, for n � 4, G D An the alternating group
which is simple, has only one irreducible representation of dimension 1 (the trivial
representation) so that Z.G/ D f1g and Sp.G/ D f1g. Moreover, viewing An
generated by the n � 2 3-cycles, we have a surjection �0 D Fn�2 ! An D G.
Associated to this data, we get a non-trivial compact bicrossed product Gn non
co-amenable and whose dual has the Haagerup property and such that �.Gn/ '

Sp.Fn�2/ D Tn�2. In particular Gn and Gm are not isomorphic for n ¤ m.
It shows the existence of an infinite family of pairwise non-isomorphic non-trivial
compact bicrossed product whose dual are non amenable with the Haagerup property.

We now consider more explicit examples on property .T /.
Example 7.9 (Property .T /). Let n � 3 be a natural number and p � 3 be a
prime number. Let Fp denote the finite field of order p. Define �0 D SLn.Z/,
G D SLn.Fp/ and let q W SLn.Z/ ! SLn.Fp/ be the canonical quotient map. We
get a matched pair .��; G/ with both actions ˛ and ˇ non-trivial and we denote the
bicrossed product by Gn;p . Since for n; p � 3, we have

D.SLn.Z// D SLn.Z/ and D.SLn.Fp// D SLn.Fp/;

we deduce as in Example 7.3 that Sp.SLn.Fp// D f1g D Sp.SLn.Z//. It follows
from Proposition 7.7 that

Int.Gn;p/ ' SLn.Z/ �Z.SLn.Fp// ' SLn.Z/ � Z=dZ

and �.Gn;p/ D Z.SLn.Fp// ' Z=dZ;

where d D gcd.n; p � 1/. In particular, the quantum groups Gp D Gp;p for p
prime and p � 3, are pairwise non-isomorphic. They are non-commutative and non-
cocommutative by Remark 3:5. We note also that �� in this case has Property .T /,
since it is a finite index subgroup ofH D �ÌˇG which itself has the Property .T / as
it has a groupwith Property .T / as a finite index subgroup (follows, using Remark 7.5,
from the fact that � is finitely generated and has Property .T /). Thus, assertion .3/
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of Theorem 4.3 implies that bGp have property .T /. We record this in the form of a
theorem.
Theorem 7.10. There exists an infinite family of pairwise non isomorphic non-trivial
compact bicrossed products whose duals have property .T /.

These are the first explicit examples of non-trivial discrete quantum groups with
property .T /.

One can also consider a similar but easier family of examples with ˇ being
trivial. We still take a natural number n � 3 and a prime number p � 3. But
we consider � D SLn.Z/ and G D SLn.Fp/ with the action ˛ being given by
˛ .g/ D Œ�gŒ��1,  2 �; g 2 G, and ˇ being the trivial action. Let Hn;p denote
the bicrossed product associated to thematched pair .�;G/. One can check, as before,
that Int.Hn;p/ ' SLn.Z/ and Sp.Cm.Hn;p// ' Z=dZ, where d D gcd.n; p � 1/.
Hence, the quantum groups Hp D Hp;p for p prime and p � 3, are pairwise
non-isomorphic. They arise from matched pairs for which the ˇ action is trivial
but still they are non-commutative and non-cocommutative since � and G are both
non-abelian. Also, their duals have property .T /.

7.2. Examples of crossed products. In this section, we provide non-trivial ex-
amples of crossed products. Our examples are of the type considered in [41].
Let G be a compact quantum group and define, for all g 2 �.G/, the map ˛g D
.g�1 ˝ id˝ g/ ı�.2/. It defines a continuous group homomorphism

�.G/ 3 g 7! ˛g 2 Aut.G/:

Since �.G/ is compact, it follows that the action � Õ G is always compact, for any
countable subgroup � < �.G/. Actually, the action of �.G/ on Irr.G/ is trivial
since, for g 2 �.G/ and x 2 Irr.G/ a straightforward computation gives

.id˝ ˛g/.ux/ D .V �g ˝ 1/u
x.Vg ˝ 1/;

where Vg D .id ˝ g/.ux/. Let G� denote the crossed product. For a subgroup
† < H , we denote by CH .†/ the centralizer of † in H . Applying our results on
crossed products to G� we get the following Corollary.
Corollary 7.11. The following holds.
(1) Int.G�/ ' Int.G/ � � and �.G�/ ' C�.G/.�/ � Sp.�/.

(2) max.ƒcb.C.G//;ƒcb.�// � ƒcb.C.G�// � ƒcb.bG/ƒcb.�/.

(3) bG and � have .RD/ if and only if bG� has .RD/.

(4) cG� has the Haagerup property if and only if bG and � have the Haagerup
property.

(5) bG� has property .T / if and only if bG and � have property .T /.
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Proof. All the statements directly follow from the results of Section 6 and the
discussion preceding the statement of the corollary except assertion .1/ for which
there is something to check: the action of �.G/ on Int.G/ associated to the action ˛
is trivial indeed, for all unitary u 2 Cm.G/ for which �.u/ D u˝ u, one has

˛g.u/ D g.u/ug.u
�/ D u:

Moreover, the action of �.G/ on itself associated to the action ˛ is, by definition, the
action by conjugation. Hence assertion .1/ directly follows from Proposition 6.5.

Example 7.12. We consider examples with G D UCN , the free unitary quantum
group or G D OCN , the free orthogonal quantum group. It is well known that

�.UCN / D U.N/ and �.OCN / D O.N/

and that
Int.UCN / D Int.ON /C D f1g:

It is also known that the Cowling–Haagerup constant forOCN andUCN are both 1 [20],
and bOCN and bUCN have (RD) [40] and the Haagerup property [6]. Hence, for any
N � 2 and any subgroups † < O.N/ and � < U.N/ the following holds.
� Int..OCN /†/ ' † and Int..UCN /�/ ' � .
� �..OCN /†/ ' CO.N/.†/ � Sp.†/ and �..UCN /�/ ' CU.N/.�/ � Sp.�/.

� ƒcb.
2.OCN /†/ D ƒcb.†/ and ƒcb.

2.UCN /�/ D ƒcb.�/.

�
2.OCN /† (resp. .2.UCN /� ) has .RD/ if and only if † (resp. �) has .RD/.

�
2.OCN /† (resp. .2.UCN /� ) has the Haagerup property if and only if † (resp. �) has
the Haagerup property.

�
2.OCN /† and .2.UCN /� do not have Property .T /.

Example 7.13 (Relative Haagerup property). Since the action of �.G/ on Cm.G/ is
given by .id˝˛g/.ux/ D .V �g ˝1/ux.Vg ˝1/, where Vg D .id˝g/.ux/, we have,

˛g.!/.u
x
ij / D

X
r;s

g.uxir/!.u
x
rs/g..u

x
js/
�/; for all ! 2 Cm.G/�: (7.2)

Define the sequence of dilated Chebyshev polynomials of second kind by the initial
conditions P0.X/ D 1, P1.X/ D X and the recursion relation

XPk.X/ D PkC1.X/C Pk�1.X/; k � 1:

It is proved in [6] (see also [18]) that the net of states !t 2 Cm.OCN /
� defined by

!t .u
k
ij / D

Pk.t/

Pk.N /
ıi;j ;
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for k 2 Irr.OCN / D N and t 2 .0; 1/ realize the co-Haagerup property for OCN ,
i.e.b!t 2 c0.bOCN / for t close to 1 and !t ! "

O
C

N

in the weak� topology when t ! 1.
Now let g 2 �.OCN /. By Equation .7:2/, we have

˛g.!t /.u
k
ij / D

Pk.t/

Pk.N /

X
r

g.ukir/g..u
k
jr/
�/ D

Pk.t/

Pk.N /
ıi;j D !t .u

k
ij /:

Hence, ˛g.!t / D !t for all g 2 �.G/ and all t 2 .0; 1/. It follows that for any
N � 2 and any subgroup � < O.N/, the pair .OCN ; .O

C

N /�/ has the relative co-
Haagerup property however, the dual of .OCN /�/ does not have the Haagerup property
whenever � does not have the Haagerup property.
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