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Large scale index of multi-partitioned manifolds

Thomas Schick and Mostafa Esfahani Zadeh

Abstract. Let M be a complete n-dimensional Riemannian spin manifold, partitioned by q
two-sided hypersurfaces which have a compact transverse intersection N and which in addition
satisfy a certain coarse transversality condition. Let E be a Hermitean bundle on M with
connection. We define a coarse multi-partitioned index of the spin Dirac operator onM twisted
by E.

Our main result is the computation of this multi-partitioned index as the Fredholm index of
the Dirac operator on the compact manifold N , twisted by the restriction of E to N .

We establish the following main application: if the scalar curvature ofM is bounded below
by a positive constant everywhere (or even if this happens only on one of the quadrants defined
by the partitioning hypersurfaces) then the multi-partitioned index vanishes. Consequently, the
multi-partitioned index is an obstruction to uniformly positive scalar curvature onM .

The proof of the multi-partitioned index theorem proceeds in two steps: first we establish
a strong new localization property of the multi-partitioned index which is the main novelty of
this note. This we establish even when we twist with an arbitrary Hilbert A-module bundle E
(for an auxiliary C�-algebra A). This allows to reduce to the case whereM is the product of N
with Euclidean space of dimension q. For this special case, standard methods for the explicit
calculation of the index in this product situation can be adapted to obtain the result.
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1. Introduction

Consider a complete Riemannian spin manifold .M; g/. IfM is non-compact, which
is the situation we are interested in, the classical index theory of elliptic operators
(like the Dirac operator) usually can not be applied because of lack of the Fredholm
property.

In this situation, using non-commutative geometry and operator algebras, John
Roe has initiated an adapted index theory which we call “large scale index theory”
or sometimes “coarse index theory” (compare e.g. [16]). The main player is the
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Roe algebra C �.X/, associated to a complete proper metric space X . This is
an algebra of operators (acting on function spaces on X ), mildly depending on
choices. Its K-theory K�.C �.X// is canonically and functorially associated to X ,
with functoriality for proper and uniformly expansive maps.

If M is a complete Riemannian spin manifold of dimension n and E ! M

is a Hermitian bundle with connection, we have the twisted Dirac operator DE .
More generally, if A is an auxiliary C �-algebra and E is a Hilbert A-module bundle
with A-linear connection one can form DE as regular unbounded operator in the
Hilbert A-module sense. One of the main virtues of large scale index theory is the
construction of its coarse index indc.DE / 2 Kn.C �.M IA//. This index contains
information about the geometry: on the one hand it depends on the metric only up
to bilipschitz equivalence. On the other hand, it vanishes if the metric has uniformly
positive scalar curvature and E is flat (actually, it suffices to have this property on
sufficiently large subsets ofM ). It is therefore important to get information about this
coarse index. In the present paper, we will do this for multi-partitioned manifolds.
Definition 1.1. A complete n-dimensional Riemannian manifold M is multi-
partitioned by codimension 1 hypersurfacesM1; : : : ;Mq if
� each of theMk is two-sided, separatingM DMCk [M

�
k
withMC

k
\M�K DMk;

� N WD
Tq

kD1
Mk is compact, and in a neighborhood ofN theMi intersect mutually

transversally. In particular, N is itself a submanifold of dimension n � q with
trivial normal bundle;

� the collection of hypersurfaces is coarsely transversal in the sense that for each
r > 0 there is s > 0 such that

Tq

kD1
Ur.Mk/ � Us.N /. Here, for a subset

X �M we set
Ur.X/ WD fp 2M j d.p;X/ � rg;

the r-neighborhood of X .
In Section 3 we will prove

Lemma 1.2. If M is a multi-partitioned manifold, partitioned by M1; : : : ;Mq , the
signed distance to theMk defines a proper and uniformly expansivemap f WM ! Rq

which is smooth near N WD f �1.0/ and such that 0 is a regular value.
The notion of uniform expansiveness is recalled in Definition 2.3. Also the other

notions of coarse index theory used in this introduction are recalled in Section 2.
Definition 1.3. Let M be a multi-partitioned spin manifold and E ! M a Hilbert
A-module bundle with connection. We define the multi-partitioned index of the
Dirac operator twisted by E as

indp.DE / WD �
�
f�
�
indc.DE /

��
2 Kn�p

�
C �.RnIA/

�
:

Here,
f�WK�

�
C �.M IA/

�
! K�

�
C �.RqIA/

�
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is obtained by functoriality of the K-theory of the twisted Roe algebra and

�WK�
�
C �.RqIA/

�
! K��q.A/

is a canonical isomorphism we recall in Corollary 2.11.
Our main result is the calculation of this multi-partitioned manifold index:

Theorem 1.4. Let M be a complete spin manifold of dimension n with proper
continuous uniformly expansive map f WM ! Rq . Assume that f is smooth near
N WD f �1.0/ and that 0 is a regular value. This implies that N is a compact
submanifold with trivial normal bundle of dimension n�q. In particular,N inherits
a spin structure fromM . For example,M could bemulti-partitioned byM1; : : : ;Mq .
Let E !M be a Hermitean bundle with connection. Then

�
�
f�
�
indc.DM;E /

��
D ind.DN;E jN / 2 Kn�q.C/:

Note that Kn�q.C/ D Z if n � q is even, and Kn�q.C/ D f0g if n � q is odd and
ind.DN;E jN / 2 Kn�q.C/ is the index of the Dirac operator on the compact spin
manifold N , twisted by the Hermitean bundle EjN .
Remark 1.5. We strongly expect that Theorem 1.4 generalizes to arbitrary C �-alge-
bras A and Hilbert A-modules E overM , equating the multi-partitioned index with
the Mishchenko–Fomenko index ind.DN;E jN / 2 Kn�q.A/ of the Dirac operator
on the compact manifold N , twisted with the Hilbert A-module bundle EjN . We
comment more on this in Section 4.

Historically the first version of Theorem 1.4 is the partitioned manifold index
theorem of Roe and Higson, for the case q D 1with several proofs, e.g. in [16] or [5].
Here only the case n odd is interesting (and treated), as otherwise the target group
K1.C/ D 0. In [21, 22], the approach of [5] is generalized, still for q D 1, from C
to arbitrary coefficient algebras A, as long as n is odd. Finally, Siegel treats the case
of multi-partitioned manifolds with additional geometric restrictions in [20].

All these proofs consist of two steps. The first is a reduction to the product case
M D N � Rq , and the second is a more or less explicit calculation in this product
case.

In this note we develop a new and particularly strong method for the reduction
step. Indeed, we prove in particular the following:
Proposition 1.6. Assume that f WM ! Rq with Hilbert A-module bundle E !M

with connection and f 0WM 0 ! Rq with Hilbert A-module bundle E 0 ! M 0 with
connection are two complete Riemannian spin manifolds as in Theorem 1.4. Assume
there are open neighborhoods U of f �1.0/ in M and U 0 of f �1.0/ in M 0 and a
spin-structure preserving isometry  WU ! U 0 which is covered by an A-isometry
‰WEjU ! E 0jU 0 preserving the connections. Then

f�
�
indc.DE /

�
D f 0�

�
indc.DE 0/

�
2 Kn

�
C �.RqIA/

�
:
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Indeed, Proposition 1.6 is a corollary of a localization theorem for classes in
K�.C

�.RqIA//: if two such are obtained as indices of operators which coincide on
an arbitrary non-empty open subset of Rq , then they are already equal.

A consequence of Theorem 1.4 is the following obstruction to positive scalar
curvature.

Theorem 1.7. Let .M; g/ be a complete Riemannian spin manifold, partitioned
transversally and coarsely by q hypersurfaces whose intersection is a compact
manifold N . If yA.N/ ¤ 0 then the scalar curvature of g (or of any other complete
Riemannian metric which is bilipschitz equivalent to g) can not be uniformly positive
outside a compact subset of any quadrant formed by the partitioning hypersurfaces.

2. Basics of large scale index theory

We start with a very brief review of the Roe algebra C �.X IA/ and a companion, the
structure algebra D�.X IA/, inside which C �.X IA/ is an ideal. For simplicity, we
assume that X is a positive dimensional Riemannian manifold throughout (possibly
with boundary). We follow [14, 16]. For the basics of Hilbert A-modules and their
operators (adjointability, A-compactness,. . . ), compare [11].

Definition 2.1. Given a Hilbert A-module bundle S ! X , consider the Hilbert A-
module L2.S/ of square integrable sections of S with A-valued inner product given
by integration of the pointwise A-valued inner product.

One defines the structure algebra D�.X IA/ as C �-closure of the algebra of
bounded adjointable A-linear operators T on L2.S/ which satisfy

(1) T has finite propagation, i.e. there is R > 0 such that supp.T s/ � UR.supp.s//
for each s 2 L2.S/.

(2) T is pseudolocal: for any compactly supported continuous functions �; with
� D 0 the operator �T is an A-compact operator, where we let � act
on L2.S/ as multiplication operator.

The Roe algebra C �.X IA/ is the norm closure of operators T as above which
satisfy

(1) T has finite propagation

(2) T is locally compact, i.e. for every compactly supported continuous function �,
T� and �T are A-compact operators.

One checks immediately that C �.X IA/ is an ideal inD�.X IA/.

Remark 2.2. Strictly speaking, one has to enlarge E by tensoring with l2.N/; we
gloss over these details, as all we have to do happens in a fixed summand canonically
isomorphic to E, as in [2].
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Definition 2.3. Let f WX ! Y be a continuous map between complete Riemannian
manifolds.
� f is called proper if the inverse image of every compact subset of Y is compact;
� f is uniformly expansive if for every r > 0 there is s > 0 such that
d.f .x/; f .y// � s whenever d.x; y/ � r .

Given, in addition, Hilbert A-module bundles E ! X and F ! Y , an isometric
A-embedding W WL2.E/ ! L2.F / is said to cover f in the D�-sense if W is a
norm-limit of operators V such that
� V has finite propagation, i.e. there isR > 0 such that supp.Vs/�UR.f .supp.s///;
� whenever � is a compactly supported continuous function on X and  is a
compactly supported continuous function on Y such that � � . ı f / D 0 then
 V� is A-compact.

By [7, Lemma 7.7] one can always find an isometryV covering f in theD�-sense,
even itself with prescribed finite propagation R > 0.

Given such an isometry V , AdV .T / WD V T V � then defines a map

AdV WD
�.X IA/! D�.Y IA/

which restricts to a map C �.X IA/! C �.Y IA/.
As in [9, Lemma 3], the induced map on K-theory does not depend on the choice

of V , but only on f . This implies that
� C �.X IA/ andD�.X IA/, and therefore also the quotient algebra

D�.X IA/=C �.X IA/

are well defined up to non-canonical isomorphism;
� K�.C

�.X IA//, K�.D�.X IA// and K�.D�.X IA/=C �.X IA// are well defined
up to canonical isomorphism and are functorial for proper continuous uniformly
expansive maps.

One defines

K�.X IA/ WD K�C1
�
D�.X IA/=C �.X IA/

�
;

the locally finite K-homology of X with coefficients in A.

In the original papers of Roe the compactness condition on V was forgotten to be
mentioned. It is introduced (with this terminology) in [14, Definition 1.7] or (under
the name “covers topologically”) in [20, Definition 2.4].

We will use vanishing of these K-groups in a number of situations. The most
powerful and useful concept in this context is flasqueness.
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Definition 2.4. A complete Riemannian manifold M (possibly with boundary) is
called flasque if there is a continuous, proper and uniformly expansive mapf WM!M

with the following properties:

(1) there is a continuous uniformly expansive proper homotopy between f and the
identity;

(2) for every compact subsetK �M there is anN 2 N such that f N .M/\K D ;.

Example 2.5. For an arbitrarymanifoldX , the productX�Œ0;1/ is flasque. Indeed,
the map

f WX � Œ0;1/! X � Œ0;1/I .x; t/ 7! .x; t C 1/

satisfies the conditions required in the definition of flasqueness.

Proposition 2.6. IfM is flasque, then

K�
�
C �.M IA/

�
D 0; K�

�
D�.M/IA

�
D 0; K�.M IA/ D 0:

Proof. For A D C, this is proved in [16, Proposition 9.4]. The proof carries over to
general A almost literally.

The final ingredient we will need from the basics of large scale index theory is a
Mayer–Vietoris principle.

Definition 2.7. Let M be a complete Riemannian manifold and Y � M a closed
subset. We define C �.Y � M IA/ � C �.M IA/ as the closure of the set of all
operators T 2 C �.M IA/ which have support near Y , i.e. such that there is R > 0

such that T� D 0 and �T D 0 whenever supp.�/ \ UR.Y / D ;.
We defineD�.Y �M IA/ as the closure of the set of all operatorsT 2 D�.M I a/

such that T has support near Y and in addition T� and �T are A-compact operators
whenever supp.�/ \ Y D ;. Then C �.Y � M IA/ and D�.Y � M IA/ are both
ideals inD�.M IA/.

Proposition 2.8. In the situation of Definition 2.7, the canonical maps

C �.Y IA/ ,! C �.Y �M IA/; D�.Y IA/ ,! D�.Y �M IA/;

D�.Y IA/=C �.Y IA/! D�.Y �M IA/=C �.Y �M IA/

induce isomorphism in K-theory.

Proof. This is proved for A D C in [20], the proof carries over almost literally to
general A.

Definition 2.9. Assume thatM DM1 [M2 with intersectionM0 WDM1 \M2 for
closed subsets M1;M2. This decomposition is called coarsely excisive if for each
r > 0 there is s > 0 such that Ur.M1/ \ Ur.M2/ � Us.M0/.
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Theorem 2.10. Assume thatM is a complete Riemannian manifold with a coarsely
excisive decompositionM DM1 [M2 into closed subset. Then we have long exact
Mayer–Vietoris sequences

� � � ! Kj
�
C �.M1IA/

�
˚Kj

�
C �.M2IA/

�
! Kj

�
C �.M IA/

�
ıMV
���! Kj�1

�
C �.M0IA/

�
! � � �

� � � ! Kj
�
D�.M1IA/

�
˚Kj

�
D�.M2IA/

�
! Kj

�
D�.M IA/

�
ıMV
���! Kj�1

�
D�.M0IA/

�
! � � �

� � � ! Kj .M1IA/˚Kj .M2IA/! Kj .M IA/
ıMV
���! Kj�1.M0IA/! � � �

These long exact sequences are compatible with the long exact sequences in K-theory
of the extensions 0! C � ! D� ! D�=C � ! 0.

Proof. For A D C, this is the main result of [20, Section 3]. The proof carries over
almost literally to general A.

Corollary 2.11. For an arbitrary complete Riemannian manifold M there is a
commuting diagram with horizontal isomorphisms

K�.D
�.M �RIA//

ıMV
����!
Š

K��1.D
�.M IA//??y ??y

K�.D
�.M �RIA/=C �.M �RIA//

ıMV
����!
Š

K��1.D
�.M IA/=C �.M IA//??y ??y

K��1.C
�.M �RIA//

ıMV
����!
Š

K��2.C
�.M IA//:

In particular, for arbitrary j; q we obtain a canonical isomorphism

�WKj
�
C �.RqIA/

�
! Kj�q.A/:

Proof. The decomposition M � R D M � .�1; 0� [ M � Œ0;1/ is coarsely
excisive, and the half spacesM � .�1; 0�,M � Œ0;1/ are flasque. Combining 2.6
and Theorem 2.10, the Mayer–Vietoris boundary map gives an isomorphism

ıMV WKj
�
D�.M �RIA/

� Š
�! Kj�1

�
D�.M IA/

�
;

and similarly for the other algebras.
The q-fold iteration of this then gives an isomorphism

Kj
�
C �.RqIA/

�
! Kj�q

�
C �.R0IA/

�
with a canonical isomorphism, C �.pt IA/ D A˝K, and of course

K�.A˝K/ Š K�.A/:



446 T. Schick and M. E. Zadeh

Finally, we recall from [2, 16] how to define the coarse index of a twisted
Dirac operator and we mention its main properties. Assume therefore that M is
a complete spin manifold (without boundary) and E ! M a Hilbert A-bundle with
connection. The twisted Dirac operator DE with its natural domain is then a self-
adjoint unbounded operator on the Hilbert module L2.S ˝E/ where S is the spinor
bundle ofM . If we assume thatM is even dimensional, S D SC˚S� isZ=2-graded
and DE is an odd operator with respect to this grading. Let �WR! Œ�1; 1� an odd
continuous function such that �.t/

t!˙1
�����! ˙1. Then �.DE / is still an odd operator.

The Fourier inversion formula and unit propagation of the wave operator imply that
�.DE / 2 D

�.M IA/ and that �.DE /2 � 1 2 C �.M IA/; compare [2].
Definition 2.12. If dim.M/ is even, choose ameasurable fiberwise isometrySC!S�

with induced A-linear isometry of propagation zero

V WL2
�
SC ˝E

�
! L2

�
S� ˝E

�
:

Because �.DE /2 � 1 2 C �.M IA/, the operator

V ��.DE /CWL
2
�
SC ˝E

�
! L2

�
SC ˝E

�
is a unitary operator inD�.M IA/=C �.M IA/ and therefore represents a class

ŒDE � 2 K1
�
D�.M IA/=C �.M IA/

�
D K1.M IA/;

the fundamental K-homology class.
One has the long exact sequence in K-theory associated to the extension

0! C �.M IA/! D�.M IA/! D�.M IA/=C �.M IA/! 0

with boundary map

@WK1
�
D�.M IA/=C �.M IA/

�
! K0

�
C �.M IA/

�
:

The large scale index is defined to be

indc.DE / WD @
�
ŒDE �

�
2 K0

�
C �.M IA/

�
:

Because of homotopy invariance of K-theory, ŒDE � as well as indc.DE / does not
depend on the choices made.

If the dimension ofM is odd,�
.�.DE / � 1/=2

�
2 D�.M IA/=C �.M IA/

is a projector and therefore represents a fundamental class ŒDE � 2 K0.M IA/. In
this case the large scale index is defined by

indc.DE / WD @
�
ŒDE �

�
2 K1

�
C �.M IA/

�
:
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Remark 2.13. Let M be a compact, closed, even dimensional spin manifold with
Dirac operatorDE acting on L2.S ˝E/. Let B andK denote respectively the space
of all bounded and all compact operators onL2.S˝E/. It is clear thatC �.M/ D K.
Therefore the coarse index indc.DE / being an element in K0.K/ D Z is an integer.
This is the usual Fredholm index ofDE , compare [16, Example after Definition 3.7].

We recall the following well known vanishing result (compare [2, 16]).
Proposition 2.14. LetM be a complete Riemannian spin manifold and E a Hilbert
A-module bundle onM as above. If 0 is not in the spectrum ofDE (in particular by
the Schrödinger–Lichnerowicz formula ifM has scalar curvature � C > 0 and E is
flat), then

indc.DE / D 0 2 KdimM
�
C �.M IA/

�
:

Proof. In this case, we can use for � a function such that �2 D 1 on the spectrum
of DE . Consequently, the formula defining ŒDE � shows that this class canonically
lifts to a class �.DE / 2 KdimMC1.D

�.M IA//. Because of the exactness of the
K-theory sequence

K�
�
D�.M IA/

�
! K��1.M IA/

@
�! K��1

�
C �.M IA/

�
this implies that indc.DE / D @.ŒDE �/ D 0.

Proposition 2.15. Given a complete Riemannian spin manifold M of dimension n
with Hermitean bundle E ! M , write E also for the pullback to M � R. The
Mayer–Vietoris isomorphism ıMV of Corollary 2.11 sends ŒDM�R;E � to ŒDM;E �
and consequently also indc.DM�R;E / to indc.DM;E /:

KnC1.M �R/
ıMV
����!
Š

Kn.M/I ŒDM�R� 7! ŒDM;E �??y@ ??y@ ??y
KnC1.C

�.M �R//
ıMV
����!
Š

Kn.C
�.M//I indc.DM�R/ 7! indc.D/

Proof. This crucial property of the Dirac operator is based on the principle that
“boundary of Dirac is Dirac”. The proof is given in [20, Lemma 4.6] and is based on
the precise meaning of “boundary of Dirac is Dirac” as treated in [8, Chapter 11].

3. Multi-partitioned manifolds and their large scale index

Throughout this section, assume that M is a complete Riemannian manifold which
is multi-partitioned by the separating hypersurfaces M1; : : : ;Mq . Recall that this
means in particular that the latter are coarsely transversal in the sense of Definition 1.1
and near their common intersection N WD

Tq

kD1
Mk the mutual intersections are
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transversal in the usual sense, and such that finally N is compact. We now prove
Lemma 1.2.
Definition 3.1. We writeM D MC

k
[M�

k
for the decomposition ofM induced by

the hypersurfaceMk . Define hk WM ! R as the signed distance toMk , i.e.

hk.x/ D d.x;Mk/ if x 2MC
k

and hk.x/ D �d.x;Mk/ if x 2M�k :

Set f WM ! RqI x 7! .h1.x/; : : : ; hq.x//.

Proof of Lemma 1.2. By the triangle inequality, we have

jd.x;X/ � d.y;X/j � d.x; y/

for an arbitrary subset X � M . Moreover, as M has a length metric and Mk is
separating, x 2MC

k
and y 2M�

k
satisfy

d.x;Mk/C d.y;Mk/ � d.x; y/:

It follows that hk WM ! R is a 1-Lipschitz map, therefore f is pq-Lipschitz. The
condition thatN is compact and that theMk are coarsely transversal implies that the
inverse image of every bounded subset of Rk under f is bounded. This finishes the
proof of Lemma 1.2.

We have now explained all the ingredients for the statement of Theorem 1.4.
Indeed, in Section 2 we essentially already proved the model case of this theorem,
which reads as follows:
Lemma 3.2. Let N be a compact n-dimensional spin manifold and E ! N a
Hermitean bundle. Write E also for the pullback to N �Rq . Let f WN �Rq ! Rq

be the projection. For this special case, the assertion of Theorem 1.4 holds.

Proof. Bynaturality of theMayer–Vietoris sequence, the following diagram is comm-
utative:

KnCq.C
�.N �Rq//

f�
����! KnCq.C

�.Rq//

Š

??yıq
MV Š

??yıq
MV

Kn.C
�.N //

pr�
����!
Š

Kn.C
�.R0//??yŠ ??yŠ

Kn.C/
D

����! Kn.C/

By definition, the right vertical composition is � so that indp.DN�Rq ;E / 2 Z is
the image of indc.DN�Rq ;E / under the map to the right lower corner. However, by
Proposition 2.15,

ı
q
MV

�
indc.DN�Rq ;E /

�
D indc.DN;E / 2 Kn

�
C �.N /

�
;
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and the latter is mapped to ind.DN;E / 2 Kn.C/ under the isomorphism

Kn
�
C �.N /

�
! Kn.C/ Š Z;

by Remark 2.13.

The main novelty of this note is the localization result for the partitioned manifold
index. It follows from the following localization result for the K-theory of C �.Rn/.

Definition 3.3. Two operators T1; T2 2 D�.RqIA/ are said to coincide on an open
set U � Rq if and only if T1s D T2s for all s with supp.s/ � U .

Proposition 3.4. Let T1; T2 2 D�.Rq/ be two operators which coincide on a
non-empty open set U � Rq . Assume that ŒT1� and ŒT2� represent elements in
Kj .D

�.RqIA/=C �.RqIA//, i.e. are either idempotents (for j even) or invertible
(for j odd) modulo C �.RqIA/.

Just from the fact that T1 and T2 coincide on U , it then follows that

ŒT1� D ŒT2� 2 Kj
�
D�.RqIA/=C �.RqIA/

�
:

Proof. By translation invariance of K�.D�.RqIA// and making U smaller, if
necessary, we can assume that U D Br.0/ for some r > 0.

We use the auxiliary space Rq nU . We apply the Mayer–Vietoris principle to the
decomposition

Rq n Br.0/ D
�
Rq� n Br.0/

�
[
�
RqC n Br.0/

�
:

The intersection is Rq�1 n Br.0/ and the half spaces are flasque. For q > 1 the
decomposition is coarsely excisive and, using Proposition 2.6 and Theorem 2.10 we
get a Mayer–Vietoris isomorphism

K�
�
Rq n Br.0/IA

�
! K��1

�
Rq�1 n Br.0/IA

�
:

Finally, in the case q D 1, write R0 WD .�1;�r� [ Œr;1/ � R. Using the
notation of Definition 2.7, thenD�.R0IA/=C �.R0IA/ decomposes as a direct sum

�
D�..�1;�r� � R0IA/C C �.R0IA/

�
=C �.R0IA/

˚
�
D�.Œr;1/IA/C C �.R0IA/

�
=C �.R0IA/:
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By the Noether isomorphism theorems for the two summands we have�
D�..�1;�r� � R0IA/C C �.R0IA/

�
=C �.R0IA/

Š D�..�1;�r�IA/=C �..�1;�r�IA/;�
D�.Œr;1/ � R0IA/C C �.R0IA/

�
=C �.R0IA/

Š D�.Œr;1/IA/=C �.Œr;1/IA/:

Therefore

K�.R
0
IA/ D K�..�1;�r�IA/˚K�.Œr;1/IA/ D 0

again using that the half line is flasque.
By assumption, T1; T2 coincide on U . We claim that this implies that

T1 � T2 2 D
�.Y � RqIA/

with Y DRq nU . The support condition is automatic, asUr.Y /DRq . If �WRq ! C
has support onU then .T1�T2/� D 0 by assumption, therefore .T1�T2/� is compact.
Because T1; T2 are in D�.RqIA/, the commutator Œ�; T1 � T2� is compact. This
gives then the required remaining compactness of �.T1 � T2/.

From this, we conclude that the images of T1 and T2 in

D�.RqIA/=
�
D�.Y � RqIA/C C �.RqIA/

�
coincide.

By Proposition 2.8,

K�
�
D�.Y � RqIA/=C �.Y � RqIA/

�
Š K��1.Y IA/ D 0:

Therefore, the long exact K-theory sequence of the extension

0! D�.Y � RqIA/=C �.Y � RqIA/! D�.RqIA/=C �.RqIA/

! D�.RqIA/=
�
D�.Y � RqIA/C C �.RqIA/

�
! 0

gives the isomorphism, induced by the projection,

K�.R
q
IA/

Š
�! K�

�
D�.RqIA/=

�
D�.Y � RqIA/C C �.RqIA/

��
:

We observed above that the images of T1 and T2 in the right hand algebra coincide.
Because of the isomorphism, ŒT1� D ŒT2� 2 K�.RqIA/, as we had to prove.

The localization theorem, Proposition 1.6, now is a rather direct corollary, as
we want to prove next. Assume therefore the situation of Proposition 1.6, with two
manifolds f WM ! Rq , f 0WM 0 ! Rq together with HilbertA-module bundles with
connection which are locally isometric on open neighborhoods U , U 0 of the inverse
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images N;N 0 of 0 via isometries  ;‰. As f is proper and continuous and U is an
open neighborhood ofN (and the corresponding situation forM 0), if we choose t > 0
sufficiently small then

f �1.Bt .0// � U and .f 0/�1.Bt .0// � U
0:

Choose r > 0 such that

Ur.f
�1.Bt=2.0/// � f

�1.Bt .0//:

Because U;U 0 are isometric, the same is then also true for M 0. Next, choose
a smooth chopping function � as for the definition of ŒDE � such that its Fourier
transform y� (which is a distributionwhich is smooth outside 0, as explained in [2]) has
support in .�r=4; r=4/. By the Fourier inversion formula and unit propagation speed
of the wave operator (which implies that �.DE /; �.DE 0/ have propagation r=4),
�.DE /s D ‰�.DE 0/‰

�1s for each s with support in f �1.Bt=2.0//. Next, for the
construction of

f�WD
�.M IA/! D�.RqIA/ and f 0�WD

�.M 0IA/! D�.RqIA/

choose isometries V; V 0 as in Definition 2.3 with propagation smaller than r=4.
These isometries can be constructed locally and patched together. We can therefore
in addition arrange that

Vs D V 0‰s if supp.s/ � U3r=4
�
f �1.Bt=2.0//

�
� U : (3.1)

As
hV �u; siL2.S˝E/ D hu; VsiL2.Rq/;

the fact that V has propagation r=4 implies that if supp.u/ � Bt=2.0/ then the
support of V �u is contained in Ur=4.f �1.Bt=2.0///. Then Equation (3.1) implies
that ‰V �u D .V 0/�u for these u.

Taken together, we get that

V�.DE /V
�u D V 0�.DE 0/.V

0/�u

if u is supported on Bt=2.0/. This implies that

f�
�
.�.DE /C 1/=2

�
and f 0�

�
.�.DE 0/C 1/=2

�
coincide on Bt=2.0/ � Rq . IfM has even dimension, in addition we have to choose
the measurable bundle isomorphisms VS ; V 0S 0 between the positive and negative
spinor bundles. Again, this construction is local and we can therefore arrange that
for sections supported on U the isometry ‰ intertwines these bundle isomorphisms,
i.e. ‰VSs D V 0S 0‰s if supp.s/ � U .
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It then follows that, if u is supported on Bt=2.0/ � Rq then

f�.V
�
S �.DE /C/u

Def
D V.V �S �.DE /C/V

�u

D V 0.V 0S 0�.DE 0/C/.V
0/�u D f 0�.V

0
S 0�.DE 0/C/.u/:

To summarize: in all dimensions the representatives of the classes f�ŒDE �
and f 0�.ŒD

0
E 0 �/ coincide on the non-empty open subset Bt=2.0/ � Rq . By

Proposition 3.4,

f�
�
ŒDE �

�
D f 0�

�
ŒDE 0 �

�
2 KdimM .R

q
IA/:

By naturality of the boundary map of the K-theory long exact then also

f�
�
indc.DE /

�
D f 0�

�
indc.DE 0/

�
2 KdimM

�
C �.RqIA/

�
;

as we have to prove.
Finally, we now can give the proof of the multi-partitioned manifold index

Theorem 1.4.
Given f WM ! Rq as in Theorem 1.4, by homotopy invariance of the index we

can deform the metric on M and connection on E in a neighborhood U of N such
that it is isometric to a neighborhood of N � f0g in N �Rq (with product structure)
without changing ind.DM;E /.

By Proposition 1.6, which we just proved,

f�
�
indc.DM;E /

�
D f�

�
indc.DN�Rq ;E jN /

�
:

But for the latter we already proved in Lemma 3.2 that

�
�
indc.DN�Rq ;E jN /

�
D ind.DN;E jN / 2 Z:

Therefore Theorem 1.4 is established.
We next apply the multi-partitioned manifold index theorem to prove non-

existence theorems for metrics with positive scalar curvature.
Lemma 3.5. Let M be a spin manifold with spinor bundle S and let E be a flat
Hilbert A-module bundle bundle onM . LetDE be a Dirac operator twisted by E.
(1) If there is a constant C > 0 such that the scalar curvature of g is grater than C

outside Y , then indc.DE / is in the image of

K�
�
C �.Y �M IA/

�
! K�

�
C �.M IA/

�
:

(2) Let .M 0; g0/ be another complete manifold. If f WM !M 0 is a proper and uni-
formly expanding map with f .Y /�Y 0�M 0 then f�.indcD/2K�.C �.M 0IA//
takes its value in the image of

K�
�
C �.Y 0 �M 0IA/

�
! K�

�
C �.M 0IA/

�
:
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Proof. The first part for the case A D C is stated in [16, page 22] without proof.
In [17] a proof of this special case is provided using the Friedrichs extension of
symmetric operators which are bounded below. A sketch of a proof using similar
ideas for general A is given in [22]. Simultaneously, a detailed proof using Fourier
inversion techniques was given in the Göttingen thesis of Daniel Pape [13] and
appeared in [2].

The second part is a direct consequence of the first part and of naturality.

With this lemma, we are in the position to prove Theorem 1.7. Assume therefore
that f WM ! Rq is a proper and uniformly expansive map defined on a complete
spin manifold M and assume that f is smooth near N WD f �1.0/ such that 0 is
a regular value. Let D stand for the Dirac operator of M . If the scalar curvature
of M is uniformly positive on the quadrant

Tq

kD1
MC
k
D f �1.Œ0;1/q/, then by

Lemma 3.5 f�.indc.D// lies in the image of

K�
�
C �.Rq n Œ0;1/q � Rq/

�
! K�

�
C �.Rq/

�
:

Now, Rq n Œ0;1/q is a flasque space, therefore by Proposition 2.6,

K�
�
C �.Rp n Œ0;1/q/

�
D K�

�
C �.Rq n Œ0;1/q � Rq/

�
vanishes. It follows, under the positivity assumption on the scalar curvature, that
f�.indc.D// D 0. On the other hand, by Theorem 1.4,

�f�.indc.D// D ind.DN / D yA.N/ ¤ 0:

This contradiction proves the theorem.

4. Generalization to arbitrary coefficient C �-algebras and open questions

The partitioned manifold index theorem (q D 1) for Hilbert A-module coefficients
is established in [21] and plays an important role in [2] in the proof of the
codimension 2-obstruction to positive scalar curvature. Generalizations of this
obstruction to higher codimensions, which would be very interesting, most likely
would require to generalize Theorem1.4 to arbitraryC �-algebrasA. Themost natural
example is A D C �.�1.M//, the (reduced or maximal) group C �-algebra, and
E D zM ��1M C �.�1.M/), the Mishchenko line bundle, in line with the principle
that the optimalC �-index information can be obtained twisting with this bundle [19].

Our proof of Theorem 1.4 generalizes, provided the following two facts of input
are established:

The generalization of Remark 2.13, namely the identification of the coarse index
of a compact space with the Mishchenko–Fomenko index (or any other version
classically used) — this is folk knowledge, but it is hard to find suitable references.
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The product formula for the A-module twisted index generalizing Proposi-
tion 2.15. Actually, one should establish a more general product formula for coarse
indices as follows:
Theorem 4.1. Given complete Riemannian manifolds M1 with Hilbert A1-module
bundle E1 ! M1 andM2 with Hilbert A2-module bundle E2 ! M2, the external
tensor product of operators on

L2.M1; S1 ˝E1/˝ L
2.M2; S2 ˝E2/

Š
�! L2.M1 �M2; S1 ˝ S2 ˝E1 ˝E2/

defines an algebra homomorphism

C �.M1IA1/˝ C
�.M2IA2/! C �.M1 �M2IA1 ˝ A2/

(which in general is not an isomorphism) and an induced map in K-theory

˛WKi
�
C �.M1IA1/

�
˝Kj

�
C �.M2IA2/

�
! KiCj

�
C �.M1 �M2IA1 ˝ A2/

�
:

In this situation, we should have a product formula for the index of the Dirac
operator: If M1;M2 (and therefore also M1 �M2) are spin manifolds then for the
coarse indices we obtain

˛
�
indc.DM1;E1

/˝ indc.DM2;E2
/
�
D indc.DM1�M2;E1˝E2

/

2 Kdim.M1/Cdim.M2/

�
C �.M1 �M2IA1 ˝ A2/

�
:

Indeed, this is the most non-trivial generalization as this index formula at some
point requires explicit calculations, using e.g. basics of Hilbert C �-index theory as
in [18]. However, the best route to prove this is probably to give a new description
of the coarse index, e.g. using the picture of [6] or Kasparov theory, which is more
directly adapted to such product situations. Of course, then the task remains to
identify the new definition of the index with the old one. This will follow from the
methods of Rudolf Zeidler’s [23].

It would perhaps also be desirable to give a written account of the details of the
generalizations of 2.6, 2.8, 2.10, on the other hand this is really straightforward.
Remark 4.2. Note that the proof of Theorem 1.7 works without any change replac-
ing C by a general C �-algebra A, as soon as Theorem 1.4 is generalized.
Question 4.3. (1) It would be interesting to work out explicit example situations
where our theorem, in particular the obstruction to positive scalar curvature, can be
applied.
(2) In particular, can one establish a higher version of the codimension 2-obstruction
to positive scalar curvature, using e.g. intersections of several transversal codimension
2-submanifolds, or an iterative procedure (with a second codimension 2-submanifold
inside the first,. . . ).

Very speculatively, can one perhaps pass to even higher codimension submanifold
obstructions?
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(3) In [14], the secondary invariants �.g/ 2 K�C1.D
�M/ are studied and a

secondary partitioned manifold index theorem for them is established. However,
Rudolf Zeidler, in his Göttingen doctoral thesis, provides examples which show that
the localization methods of this paper do not carry over to the secondary invariants.
This is despite the fact that a product formula for the secondary invariants is proved
in [23].
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