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Zappa–Szép products for partial actions of groupoids
on left cancellative small categories

Eduard Ortega and Enrique Pardo

Abstract. We study groupoid actions on left cancellative small categories and their associated
Zappa–Szép products. We show that certain left cancellative small categories with nice length
functions can be seen as Zappa–Szép products. We compute the associated tight groupoids, char-
acterizing important properties of them, like being Hausdorff, effective, and minimal. Finally, we
determine amenability of the tight groupoid under mild, reasonable hypotheses.

1. Introduction

In [15], Spielberg described a new method of defining C �-algebras associated to oriented
combinatorial data, generalizing the construction of algebras from directed graphs, higher-
rank graphs, and (quasi-)ordered groups. To this end, he introduced categories of paths –
i.e. cancellative small categories with no (nontrivial) inverses – as a generalization of
higher rank graphs, as well as ordered groups. The idea is to start with a suitable combina-
torial object and define a C �-algebra directly from what might be termed the generalized
symbolic dynamics that it induces. Associated to the underlying symbolic dynamics, he
presents a natural groupoid derived from this structure. The construction also gives rise
to a presentation by generators and relations, tightly related to the groupoid presentation.
In [16], he showed that most of the results hold when relaxing the conditions, so that right
cancellation or having no (nontrivial) inverses are taken out of the picture.

In [12], the authors studied Spielberg’s construction, using a groupoid approach based
on Exel’s tight groupoid construction [5], showing that the tight groupoid for these inverse
semigroups coincide with Spielberg’s groupoid [14]. With this tool at hand, they were able
to characterize simplicity for the algebras associated to finitely aligned left cancellative
small categories, and in particular in the case of Exel–Pardo systems [7]. Finally, they
gave, under mild and necessary hypotheses, a characterization of amenability for such a
groupoid.

Therefore, it becomes important to understand the internal structure of the left can-
cellative small category to check the desired properties of the associated groupoid, and
hence of its associated (C �-)algebra. A classical idea is to decompose our complex object
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in different simple pieces with well-behaved relations between them. This was well stud-
ied in [10, 11], where it was proved that categories with length functions on Nk with cer-
tain decomposition properties can be written as the Zappa–Szép product of the groupoid
of invertible elements of the category and a higher-rank graph subcategory generated by a
transversal of generators of maximal right ideals. Zappa–Szép products of left cancellative
small categories and groups were studied by Bédos, Kaliszewski, Quigg, and Spielberg
in [2], where they studied the representation theory for the Spielberg algebras of the new
left cancellative small category associated to this construction.

In the present paper, we extend the scope of [2] to actions of groupoids, To this end,
we define groupoid actions on a left cancellative small category and their Zappa–Szép
products, and we show that Zappa–Szép products appear naturally in the context of left
cancellative small categories with length functions. Finally, we will extend the results of
[12, Sections 7 and 8] to determine the essential properties of the tight groupoid asso-
ciated to Zappa–Szép products of groupoid actions on a left cancellative small category,
including the amenability of its tight groupoid.

The contents of this paper can be summarized as follows: in Section 2, we recall
some known results on small categories, and we define length functions and factoriza-
tion properties we will need in the sequel. In Section 3, we define groupoid actions on
left cancellative small categories. In Section 4, we define the Zappa–Szép products of
certain groupoid actions on left cancellative small categories. In Section 5, we show
that left cancellative small categories with nice length functions can be described as
Zappa–Szép products of the action of their groupoid of invertible elements on certain
nice subcategories. In Section 6, we analyze the structure of the tight groupoid associ-
ated to Zappa–Szép products of groupoid actions to left cancellative small categories. We
close the paper studying, in Section 7, the amenability of the tight groupoid of this kind
of Zappa–Szép products.

2. Small categories

In this section, we collect all the basic background material about small categories we
need for the rest of the paper. For more details, see [12].

Given a small category ƒ, we will denote by ƒı its objects, and we will identify
ƒı with the identity morphisms, so that ƒı � ƒ. Given ˛ 2 ƒ, we will denote s.˛/ WD
dom.˛/ 2 ƒı and r.˛/ WD ran.˛/ 2 ƒı. The right invertible elements of ƒ are

ƒ�1 WD
®
˛ 2 ƒ W 9ˇ 2 ƒ such that ˛ˇ D s.ˇ/

¯
:

Definition 2.1. Given a small category ƒ, with ˛; ˇ; 
 2 ƒ, we have the following:

(1) ƒ is left cancellative: if ˛ˇ D ˛
 , then ˇ D 
 ,

(2) ƒ is right cancellative: if ˇ˛ D 
˛, then ˇ D 
 ,

(3) ƒ has no inverses: if ˛ˇ D s.ˇ/, then ˛ D ˇ D s.ˇ/.
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A category of paths is a small category that is right and left cancellative and has no
inverses.

Notice that if ƒ is either left or right cancellative, then the only idempotents in ƒ are
ƒı. Therefore, given ˛ 2 ƒ�1 with right inverse ˇ, we have that ˇ˛ D s.˛/. Thus, ƒ�1

is the set of the right and left invertible morphisms. Given ˛ 2 ƒ�1, we will denote by
˛�1 its inverse.

Definition 2.2. Let ƒ be a small category. Given ˛; ˇ 2 ƒ, we say that ˇ extends ˛
(equivalently, ˛ is an initial segment of ˇ) if there exists 
 2 ƒ such that ˇ D ˛
 . We
denote Œˇ� D ¹˛ 2 ƒ W ˛ is an initial segment of ˇº. We write ˛ � ˇ if ˛ 2 Œˇ�.

Let ƒ be a left cancellative small category (LCSC). Then, given ˛; ˇ 2 ƒ, the follow-
ing is equivalent:

(1) ˛ � ˇ and ˇ � ˛ (˛ � ˇ),

(2) ˇ 2 ˛ƒ�1,

(3) ˛ 2 ˇƒ�1,

(4) ˛ƒ D ˇƒ,

(5) Œ˛� D Œˇ�.

Notation 2.3. Let ƒ be a LCSC. Given ˛; ˇ 2 ƒ, we say that

(1) ˛ e ˇ if and only if ˛ƒ \ ˇƒ ¤ ;,

(2) ˛ ? ˇ if and only if ˛ƒ \ ˇƒ D ;.

Definition 2.4. Let ƒ be a LCSC and let F � ƒ. The elements of
T

2F 
ƒ are the

common extensions of F . A common extension " of F is minimal if for any common
extension 
 with " 2 
ƒ we have that 
 � ".

When ƒ has no inverses, given F � ƒ and given any minimal common extension "
of F , if 
 is common extension of F with " 2 
ƒ, then 
 D ". We will denote

˛ _ ˇ WD ¹the minimal extensions of ˛ and ˇº:

Notice that if ˛ _ ˇ ¤ ;, then ˛ e ˇ, but the converse fails in general.

Definition 2.5. A LCSC ƒ is finitely aligned if for every ˛; ˇ 2 ƒ there exists a finite
subset � � ƒ such that ˛ƒ \ ˇƒ D

S

2� 
ƒ.

When ƒ is a finitely aligned LCSC, we can always assume that ˛ _ ˇ D � , where �
is a finite set of minimal common extensions of ˛ and ˇ.

Definition 2.6. Let ƒ be a LCSC and ˛ 2 ƒ. A subset F � r.˛/ƒ is exhaustive with
respect to ˛ if for every 
 2 ˛ƒ there exists a ˇ 2 F with ˇ e 
 . We denote by FE.˛/ the
collection of finite sets of r.˛/ƒ that are exhaustive with respect to ˛.

Definition 2.7. Let ƒ be a LCSC and let � � Q be a submonoid of a group Q with unit
element 1Q, and such that �\��1D¹1Qº. A map d W ƒ!� is called a length function if
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(1) d.˛ˇ/ D d.˛/d.ˇ/ for every ˛; ˇ 2 ƒ with s.˛/ D r.ˇ/.

A length function is said to satisfy the weak factorization property (WFP) if

for every ˛ 2 ƒ and 
1; 
2 2 � with d.˛/ D 
1
2, there are ˛1; ˛2 2 ƒ with
s.˛1/ D r.˛2/, d.˛i / D 
i for i D 1; 2, such that ˛ D ˛1˛2, and moreover for
every ˇ1;ˇ2 2ƒwith s.ˇ1/D r.ˇ2/, d.ˇi /D 
i for i D 1;2, such that ˛D ˇ1ˇ2,
there exists g1; g2 2 ƒ�1 such that ˇ1 D ˛1g1 and ˇ2 D g2˛2.

Observe that, given a LCSC ƒ, there always exists what we will call the trivial length
function d W ƒ! � , defined by d.˛/ D 1Q for every ˛ 2 ƒ.

The above definition is motivated by the one given in [10, Section 3], where there the
authors only consider the case when � D Nk .

We recall that a length function d W ƒ! � satisfies the unique factorization property
(UFP) if for every ˛ 2 ƒ and 
1; 
2 2 � with d.˛/ D 
1
2, there are unique ˛1; ˛2 2 ƒ
with ˛ D ˛1˛2 and d.˛i / D 
i for i D 1; 2 [13, Defintion 6.1].

Remarks 2.8. Let ƒ be a LCSC and let � � Q be a submonoid of a group Q with unit
element 1Q, and such that � \ ��1 D ¹1Qº. Then, given a length function d W ƒ! �

satisfying the WFP, we have the following.

(1) d�1.1Q/ D ƒ�1. Indeed, first observe that, given v 2 ƒ0, we have that d.v/ D
d.vv/ D d.v/d.v/, and hence d.v/ D 1Q. Now, let g 2 ƒ�1. Then

1Q D d
�
s.g/

�
D d.g�1g/ D d.g�1/d.g/:

Therefore, d.g�1/ D d.g/�1, whence d.g/ D 1Q. Now, let ˛ 2 ƒ such that d.˛/
D 1Q. Since ˛ D ˛s.˛/ D r.˛/˛, we have that

d.˛s.˛// D 1Q1Q D d.r.˛/˛/:

By the WFP, there exists g1; g2 2 ƒ�1 such that ˛ D r.˛/g1 and s.˛/ D g2˛.
Thus, ˛ D g1 2 ƒ�1.

(2) d W ƒ ! � satisfies the UFP if and only if it satisfies the WFP and ƒ has no
inverses.

Definition 2.9. A LCSC ƒ is called action-free if the action of ƒ�1 on ƒ is free; that is,
whenever g
 D 
 for some 
 2 ƒ and g 2 ƒ�1, then g D r.
/.

Observe that if ƒ has no inverses, then ƒ is action-free.

Lemma 2.10. Let ƒ be a LCSC and let d W ƒ! � be a length function satisfying the
WFP. Then ƒ is right cancellative if and only if ƒ is action-free.

Proof. Suppose that ƒ is action-free. Let ˛; ˇ; 
 2 ƒ with ˛
 D ˇ
 . Applying the WFP,
we see that there exists g1; g2 2 ƒ�1 with ˇ D ˛g1 and 
 D g2
 . Therefore, ˛
 D
˛g1g2
 , so 
 D g1g2
 by left cancellation and g1g2 D r.
/ by action-freeness. Hence
g2 D g

�1
1 . Finally, we have that g�11 
 D 
 , and using action-freeness again we have that

g�11 D r.
/ and so ˇ D ˛. The converse is straightforward.
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Definition 2.11. A groupoid is a small category such that every morphism has an inverse.
Given a groupoid G , we denote by G .0/ the set of identity functions on its objects (units of
G ). Moreover, we define the range and source functions r W G ! G .0/ and s W G ! G .0/ by
r.g/ D gg�1 and s.g/ D g�1g for every g 2 G . We denote by G .2/ WD ¹.g; h/ 2 G � G W

s.g/D r.h/º the set of composable morphisms. A topological groupoid is a groupoid with
a topology that makes the product and inverse operations continuous. A discrete groupoid
is a topological groupoid with the discrete topology.

Example 2.12. Given a LCSC ƒ, ƒ�1 is a (discrete) groupoid where we can identify
.ƒ�1/.0/ with ƒ0.

3. Groupoid partial actions

In this section, we will define actions of groupoids on left cancellative small categories.
This is inspired by the construction of partial actions of groupoids on graphs [8, Sections
2 and 3].

For the rest of the paper, we will assume that � � Q is a submonoid of a group Q
with unit element 1Q such that � \ ��1 D ¹1Qº.

The first step is to define the notion of partial isomorphism of a small category ƒ
inspired by [8, Definition 3.1].

Definition 3.1. Let ƒ be a LCSC with length function d W ƒ! � . Let PIso.ƒ; d/ be the
set of partial isomorphisms of ƒ, f 2 PIso.ƒ;d/, such that it satisfies the following:

(1) f W vƒ! wƒ is a bijection for some v;w 2 ƒ0,

(2) f .˛ƒ/ D f .˛/ƒ for every ˛ 2 vƒ,

(3) f .v/ D w,

(4) d.f .˛// D d.˛/ for every ˛ 2 vƒ.

We will denote by v DW d.f / (the domain of f ) and by w DW c.f / (the codomain of f ).

Remark 3.2. (1) Observe that condition (3) does not follow from the previous conditions.
Indeed, given g 2 ƒ�1, the map f W s.g/ƒ ! r.g/ƒ given by f .
/ D g
 for every

 2 s.g/ƒ satisfies conditions (1)–(2) but not .3/ whenever g 2 ƒ�1 nƒ0.

(2) Given f W vƒ! wƒ in PIso.ƒ; d/ and g 2 vƒ�1, we have that f .gg�1/ D w
by condition (3), and hence by condition (2) there exists h 2 ƒ such that f .g/h D w, so
f .g/ 2 ƒ�1.

Lemma 3.3. Letƒ be a LCSC with length function d Wƒ!� . Then, given f 2PIso.ƒ;d/
and ˛ 2 d.f /ƒ, there exists a unique function fj˛ W s.˛/ƒ! s.f .˛//ƒ in PIso.ƒ; d/
such that f .˛ˇ/ D f .˛/fj˛.ˇ/ for every ˇ 2 s.˛/ƒ.

Proof. Given f 2 PIso.ƒ;d/ and ˛ 2 d.f /ƒ, we define

fj˛ W s.˛/ƒ! s
�
f .˛/

�
ƒ;

ˇ 7! 
;
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where 
 2 s.f .˛//ƒ is such that f .˛ˇ/ D f .˛/
 . The existence of 
 is guaranteed
by condition (2). Now, suppose that there exist 
1; 
2 2 s.f .˛//ƒ such that f .˛ˇ/ D
f .˛/
1 D f .˛/
1. Then, by left cancellation, we have that 
1 D 
2, so fj˛ is well defined.

Now, suppose that there exist ˇ1; ˇ2 2 s.˛/ƒ that satisfy f .˛/
 D f .˛ˇ1/D f .˛ˇ2/
for some 
 2 s.f .˛//ƒ. Since f is bijective, ˛ˇ1 D ˛ˇ2, whence ˇ1 D ˇ2 by left cancel-
lation. Thus, fj˛ is injective. Finally, if 
 2 s.f .˛//ƒ, then f .˛/
 2 f .˛/ƒ D f .˛ƒ/,
so that there exists ˇ 2 s.˛/ƒ such that f .˛ˇ/ D f .˛/
 . Thus, fj˛.ˇ/ D 
 , whence fj˛
is onto, as desired.

Now, let ˇ 2 s.˛/ƒ and let ı 2 s.ˇ/ƒ. Then f .˛ˇı/D f .˛ˇ/fj˛ˇ .ı/D f .˛/fj˛.ˇı/.
On the other hand, f .˛ˇ/D f .˛/fj˛.ˇ/, whence f .˛/fj˛.ˇı/D f .˛/fj˛.ˇ/fj˛ˇ .ı/. By
left cancellation, fj˛.ˇı/ D fj˛.ˇ/fj˛ˇ .ı/. Thus, fj˛ satisfies condition (2). Also, fj˛ is
such that

f .˛/ D f
�
˛s.˛/

�
D f .˛/fj˛

�
s.˛/

�
;

and again by left cancellation fj˛.s.˛// D s.f .˛//, so condition (3) is fulfilled. Finally,

d.˛/d.ˇ/ D d.˛ˇ/ D d
�
f .˛ˇ/

�
D d

�
f .˛/fj˛.ˇ/

�
D d

�
f .˛/

�
d
�
fj˛.ˇ/

�
D d.˛/d

�
fj˛.ˇ/

�
for every ˇ 2 s.˛/ƒ. Thus, d.ˇ/ D d.fj˛.ˇ// for every ˇ 2 s.˛/ƒ, so condition (4) is
satisfied.

Lemma 3.4. Letƒ be a LCSC with length function d Wƒ! � . Then, given ˛;ˇ 2ƒ with
s.˛/ D r.ˇ/ and f 2 PIso.ƒ;d/ with r.˛/ D d.f /, we have that

(1) fjd.f / D f ,

(2) s.f .˛// D fj˛.s.˛// D c.fj˛/,

(3) ids.˛/ D .idr.˛//j˛ ,

(4) fj˛ˇ D .fj˛/jˇ .

Proof. (1)–(3) are straightforward by the definition. To prove .4/, let ˛; ˇ; 
 2 ƒ with
s.˛/ D r.ˇ/ and s.ˇ/ D r.
/, and let f 2 PIso.ƒ;d/ with r.˛/ D d.f /. Then

f .˛ˇ
/ D f .˛/fj˛.ˇ
/ D f .˛/fj˛.ˇ/.fj˛/jˇ .
/;

and on the other hand,

f .˛ˇ
/ D f .˛ˇ/fj˛ˇ .
/ D f .˛/fj˛.ˇ/fj˛ˇ .
/:

By left cancellation ofƒ, we have that .fj˛/jˇ .
/D fj˛ˇ .
/. Since this equality holds for
every ˛ 2 s.ˇ/ƒ, it follows that fj˛ˇ D .fj˛/jˇ .

Next step is to show that PIso.ƒ;d/ has a natural groupoid structure.

Lemma 3.5. Let ƒ be a LCSC with length function d W ƒ ! � . Then, given f; g 2
PIso.ƒ;d/ such that d.f / D c.g/, the composition f ı g 2 PIso.ƒ;d/.
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Proof. Given f; g 2 PIso.ƒ;d/ such that d.f / D c.g/, we have that

.f ı g/ W d.g/ƒ! c.f /ƒ

is given by f .g.˛// for every ˛2d.g/ƒ. Clearly, f ıg is a bijection and .f ı g/.d.g//D
c.f /. It remains to check that f ı g satisfies condition (2). Let ˛ 2 d.g/ƒ and ˇ 2 s.˛/ƒ.
Then

.f ı g/.˛ˇ/ D f
�
g.˛ˇ/

�
D f

�
g.˛/gj˛.ˇ/

�
D f

�
g.˛/

�
fjg.˛/

�
gj˛.ˇ/

�
D .f ı g/.˛/fjg.˛/

�
gj˛.ˇ/

�
:

Since by Lemma 3.3 the maps gj˛ and fjg.˛/ are surjective, it follows that .f ı g/.˛ƒ/D
.f ı g/.˛/ƒ, as desired. Finally, given ˛ 2 d.g/ƒ, then d..f ı g/.˛// D d.f .g.˛/// D
d.g.˛// D d.˛/, so condition (4) is satisfied.

For each v 2 ƒ0, we define idv W vƒ ! vƒ to be the identity map on vƒ, so that
idv 2 PIso.ƒ;d/.

Lemma 3.6. Let ƒ be a LCSC with length function d W ƒ! � , and let f 2 PIso.ƒ; d/.
Then f �1 2 PIso.ƒ;d/.

Proof. If f 2 PIso.ƒ/, then f �1 W c.f /ƒ ! d.f /ƒ is the unique function such that
.f �1 ı f / D idd.f / and .f ı f �1/ D idc.f /. Clearly, f �1 satisfies conditions (1), (3),
and (4). Let ˛ 2 c.f /ƒ and ˇ 2 s.˛/ƒ. Then f �1.˛ˇ/ D f �1.f .f �1.˛//ˇ/, but since
f .f �1.˛/ƒ/D f .f �1.˛//ƒD ˛ƒ and f is bijective, it follows that there exists a unique

 2 s.f �1.˛//ƒ such that ˛ˇ D f .f �1.˛//ˇ D f .f �1.˛/
/. Therefore, f �1.˛ˇ/ D
f �1.f .f �1.˛/
// D f �1.˛/
 . Moreover, since for every 
 2 s.f �1.˛//ƒ there exists
ˇ 2 s.˛/ƒ such that ˛ˇ D f .f �1.˛/
/, it follows that f �1.˛ƒ/ D f �1.˛/ƒ.

Now, using Lemmas 3.5 and 3.6, we can define a groupoid structure in PIso.ƒ;d/.

Definition 3.7. If ƒ is a LCSC with length function d W ƒ ! � , then PIso.ƒ; d/ is a
discrete groupoid, where, given f;g 2 PIso.ƒ;d/, the product fg is defined as the compo-
sition f ı g whenever d.f /D c.g/, and f �1 is the set-theoretical inverse of f . Moreover,
we can identify unit space of .PIso.ƒ;d//.0/ D ¹idv W v 2 ƒ0º with ƒ0.

With this in mind, we can define the notion of action of a groupoid on a LCSC that we
need.

Definition 3.8. Letƒ be a LCSC with length function d W ƒ! � , and let G be a discrete
groupoid. An action of G on ƒ is a groupoid homomorphism � W G ! PIso.ƒ;d/. Given
g 2 G and ˛ 2 d.�.g//ƒ, we write the action of g on ˛ by g � ˛ WD �.g/.˛/.

Using the identification .PIso.ƒ;d//.0/Dƒ0, so that �.G .0//�ƒ0, and that �.s.g//D
d.�.g// and �.r.g// D c.�.g// for any g 2 G , we have that

�.g/ W �
�
s.g/

�
ƒ! �

�
r.g/

�
ƒ:
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Remarks 3.9. Let ƒ be a LCSC with length function d W ƒ ! � , and let � W G !

PIso.ƒ;d/ be a groupoid action on ƒ. Then the following hold.
(1) Suppose that �0 WD �.G .0// ¤ ƒ0. Let us define

� WD
®
˛ 2 ƒ W s.˛/; r.˛/ 2 �0

¯
:

Then� is a LCSC and �.G / � PIso.�;d/. However,� is not necessarily finitely aligned
if so isƒ. Thus, such a restriction will affect the arguments. Hence, we will always assume
that, given an action of G on ƒ, either �.G .0// D ƒ0 or that the restricted subcategory
� inherits the finitely aligned property. In practice, that means that, after restricting if
necessary, we will assume that �.G .0// D ƒ0.

(2) Suppose that �jG .0/ is not an injective map. Then it can happen that there exists
.g; h/ … G .2/, that is s.g/ ¤ r.h/, but .�.g/; �.h// 2 .PIso.ƒ;d//.2/, that is

�
�
s.g/

�
D d

�
�.g/

�
D c

�
�.h/

�
D �

�
r.h/

�
;

and hence �.g/�.h/ 2 PIso.ƒ; d/ n �.G /. This will affect defining composability of
elements in the corresponding Zappa–Szép product. Since our model should include non-
faithful self-similar actions of a groupoid G on ƒ, we cannot skip that case. Then, for a
non-injective action, we will need to include the condition that for every g; h 2 G , then
s.g/D r.h/ if and only if d.�.g//D �.s.g//D �.r.h//D c.�.h//, or equivalently, that
�jG .0/ is injective.

According to Remarks 3.9, we will assume during the whole paper that an action of a
discrete groupoid G on a small category ƒ through a (not necessarily injective) groupoid
homomorphism � W G ! PIso.ƒ; d/ satisfies that �jG .0/ is a bijection. Therefore, we will
identify G .0/ D ƒ.0/ D PIso.ƒ;d/.0/ omitting �.

4. Zappa–Szép products for groupoid actions

In this section, we will define the Zappa–Szép product of a LCSC. This is inspired in
the construction of the Zappa–Szép product of a groupoid on a finite graph [8, Section 3]
and the Zappa–Szép product of a group acting on a LCSC [3, 12]. This has also been
recently done in [10], where they construct Zappa–Szép products of groupoids acting on
higher-rank graphs.

First we will state the abstract notion of self-similar action, in order to boil up the exact
definition of 1-cocycle we will need.

Definition 4.1. Let G be a discrete groupoid acting on a LCSC ƒ with length function
d Wƒ!� . We say that the action is self-similar if for every g 2 G and for every ˛ 2 s.g/ƒ
there exists h 2 G such that

g � .˛�/ D .g � ˛/.h � �/

for every � 2 s.˛/ƒ.
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Clearly, in the above definition h depends on g and ˛. A natural question is to decide
whether such an h is unique. Suppose that h1; h2 2 G satisfy g � .˛�/ D .g � ˛/.hi � �/
(i D 1; 2) for every � 2 s.˛/ƒ. Then

.g � ˛/.h1 � �/ D .g � ˛/.h2 � �/:

Since ƒ is left cancellative, then

.h1 � �/ D .h2 � �/

for every � 2 s.˛/ƒ. Hence, we can only guarantee that �.h1/ D �.h2/, and h1 D h2
only holds when � is injective. We will use this fact to define a suitable notion of cocycle
for such an action. We will essentially follow [2, Section 4], taking care of the fact that
the action is partial.

Definition 4.2. Letƒ be a LCSC with length function d W ƒ! � , and let G be a discrete
groupoid acting on ƒ. Consider the set

G s �r ƒ WD
®
.g; ˛/ 2 G �ƒ W s.g/ D r.˛/

¯
:

A (partial) cocycle of the action of G on ƒ is a function ' W G s �r ƒ! G satisfying the
cocycle identity

'.gh; ˛/ D '.g; h � ˛/'.h; ˛/

for any .g; h/ 2 G .2/ and any ˛ 2 ƒ such that s.h/ D r.˛/.
Observe that, in particular, '.r.˛/; ˛/ 2 G .0/ for every ˛ 2 ƒ.

Now, we state the properties that a cocycle will enjoy (in a similar list as that of [12,
Section 7]). But instead of imposing them, we will try to deduce from the definition, as in
[8, Section 3].

First step is to fix the requirement to guarantee that the action of G is compatible
with the composition in ƒ. We will introduce minimal requirements to guarantee this fact
when constructing our “self-similar” actions, and also that we can associate a suitable
small category to the action and the cocycle.

Definition 4.3. Letƒ be a LCSC with length function d W ƒ! � , and let G be a discrete
groupoid acting on ƒ. A (partial) cocycle ' for the action of G on ƒ is said to be a
category cocycle if, for every g 2 G , ˛ 2 ƒ with s.g/ D r.˛/ and every ˇ 2 s.˛/ƒ, we
have that

(CC1) '.g; d.�.g/// D g,

(CC2) '.g; ˛ˇ/ D '.'.g; ˛/; ˇ/,

(CC3) g � .˛ˇ/ D .g � ˛/.'.g; ˛/ � ˇ/.

If we have an action of G on ƒ, and ' is a category cocycle for this action, we will say
that .ƒ;d;G ; '/ is a category system.
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Remark 4.4. Let ƒ be a LCSC with length function d W ƒ ! � , let G be a discrete
groupoid acting onƒ, and let .ƒ;d;G ; '/ be a category system. Then, by condition (CC3)
in Definition 4.3, the action of G onƒ is self-similar. Moreover, given g2G and ˛2s.g/ƒ,
we have that �.'.g; ˛// D �.g/j˛ . Indeed, if ˇ 2 s.˛/ƒ, then

�.g/.˛ˇ/ D �.g/.˛/�.g/j˛.ˇ/:

On the other hand, �.g/.˛ˇ/D g � .˛ˇ/D .g � ˛/.'.g;˛/ �ˇ/D �.g/.˛/.�.'.g;˛//.ˇ//.
By left cancellation of ƒ, it follows that �j˛.ˇ/ D �.'.g; ˛//.ˇ/, and hence

�.g/j˛ D �
�
'.g; ˛/

�
:

Lemma 4.5. Let ƒ be a LCSC with length function d W ƒ! � , and let G be a discrete
groupoid acting on ƒ. Let ' be a category cocycle for the action of G on ƒ. Then, for
every g 2 G , ˛ 2 ƒ with s.g/ D r.˛/, we have that

(CC4) s.g � ˛/ D '.g; ˛/ � s.˛/ D r.'.g; ˛//,

(CC5) s.˛/ D '.r.˛/; ˛/.

Proof. For (CC4), using Remark 4.4,

'.g; ˛/ � s.˛/ D �.g/j˛
�
s.˛/

�
; by (CC3)

D c
�
�.g/j˛

�
; by Lemma 3.4 (2)

D s
�
�.g/.˛/

�
; by Lemma 3.4 (2)

D s.g � ˛/I

this gives the first half of (CC4). For the second half,

c.�.g/j˛/ D c
�
�
�
'.g; ˛/

��
; by (CC3)

D r
�
'.g; ˛/

�
:

For (CC5), ˛ D r.˛/ � ˛, so s.˛/ D s.r.˛/ � ˛/ D '.r.˛/; ˛/ � s.˛/ by (CC3). There-
fore, '.r.˛/; ˛/ D s.˛/.

Remark 4.6. Similarly, (CC1) and (CC2) will follow from (CC3), modulo the action
homomorphism �. In particular, when the action homomorphism is injective, (CC1) and
(CC2) are direct consequences of (CC3).

Example 4.7. If ƒ is a LCSC with length function d W ƒ! � , then ' W PIso.ƒ; d/d �r
ƒ! PIso.ƒ;d/ defined by '.f; ˛/D fj˛ is a category cocycle (Lemmas 3.3 and 3.4), so
.ƒ;d;PIso.ƒ;d/; '/ is a category system.

The property of being a category cocycle is the correct version of [7, (2.3)], as we
will see. Let us determine which are the basic properties satisfied by a category cocycle.
These properties, joint with Definition 4.3, are analog to those proved in [8, Lemma 3.4
and Proposition 3.6].
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Proposition 4.8. Let ƒ be a LCSC with length function d W ƒ! � , let G be a discrete
groupoid acting on ƒ, and let .ƒ; d; G ; '/ be a category system. Then, for every g 2 G ,
every ˛; ˇ 2 ƒ with s.g/ D r.˛/, s.˛/ D r.ˇ/, we have that

(1) r.g � ˛/ D g � r.˛/,

(2) s.'.g; ˛// D s.˛/,

(3) '.g; ˛/�1 D '.g�1; g � ˛/.

Proof. Let g 2 G , let ˛; ˇ 2 ƒ with s.g/ D r.˛/, s.˛/ D r.ˇ/.
(1) Since r.˛/ D s.g/ and g � s.g/ D r.g/, we have that

r.g � ˛/ D r.g/ D g � s.g/ D g � r.˛/:

(2) By (CC4), '.g; ˛/ � s.˛/ D r.'.g; ˛//. Thus, s.'.g; ˛// D s.˛/.
(3) By the cocycle condition and (CC5)

s.˛/ D '.g�1g; ˛/ D '.g�1; g � ˛/'.g; ˛/;

whence '.g; ˛/�1 D '.g�1; g � ˛/.

Now, we will fix a definition of Zappa–Szép product for a category system .ƒ;G ; '/,
similar to that in [2, Section 4], using the strategy introduced in [4].

Definition 4.9. Let ƒ be a LCSC with length function d W ƒ! � , let G be a discrete
groupoid acting on ƒ, and let .ƒ; d; G ; '/ be a category system. We denote by ƒ‰' G

the set
ƒ‰' G WD ƒs �r G D

®
.˛; g/ 2 ƒ � G W s.˛/ D r.g/

¯
;

with distinguished elements

.ƒ‰' G /.0/ WD ƒ0 ‰' G .0/:

We equip this pair of sets with range and source maps r; s W ƒ ‰' G ! .ƒ ‰' G/.0/

defined by

r.˛; g/ WD
�
r.˛/; r.˛/

�
and s.˛; g/ WD

�
s.g/; s.g/

�
D
�
g�1 � s.˛/; s.g/

�
;

for every .˛; g/ 2 ƒ‰' G . Observe that the latter equality holds because

g � s.g/ D r.g/ D s.˛/;

whence g�1 � s.˛/ D g�1 � r.g/ D s.g/.
Moreover, given .˛; g/; .ˇ; h/ 2 ƒ‰' G with s.˛; g/ D r.ˇ; h/, we define the com-

position of two elements as follows:

.˛; g/.ˇ; h/ WD
�
˛.g � ˇ/; '.g; ˇ/h

�
:
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We now adapt the arguments of [2, Propositions 4.6 and 4.13] to prove the next results.

Proposition 4.10. Let ƒ be a LCSC with length function d W ƒ! � , let G be a discrete
groupoid acting on ƒ, and let .ƒ; d;G ; '/ be a category system. If given .˛; g/; .ˇ; h/ 2
ƒ‰' G with s.˛; g/ D r.ˇ; h/, we define the composition of these two elements by

.˛; g/.ˇ; h/ WD
�
˛.g � ˇ/; '.g; ˇ/h

�
;

then ƒ‰' G is a small category.

Proof. First observe that, given .˛; g/; .ˇ; h/ 2 ƒ‰' G with s.˛; g/ D r.ˇ; h/,

r.ˇ/ D g�1 � s.˛/ and r.ˇ/ D s.g/:

Whence g � ˇ is well defined, and since r.ˇ/ D g�1 � s.˛/ so does ˛.g � ˇ/.
On the other hand, we have that

s
�
˛.g � ˇ/

�
D s.g � ˇ/ D r

�
'.g; ˇ/

�
D r

�
'.g; ˇ/h

�
and

s
�
'.g; ˇ/

�
D s.ˇ/ D r.h/:

Then the product
.˛; g/.ˇ; h/ WD

�
˛.g � ˇ/; '.g; ˇ/h

�
is well defined.

Now, observe that

r
�
.˛; g/.ˇ; h/

�
D r

��
˛.g � ˇ/; '.g; ˇ/h

��
D
�
r
�
˛.g � ˇ/

�
; r
�
˛.g � ˇ/

��
D
�
r.˛/; r.˛/

�
D r.˛; g/

and

s
�
.˛; g/.ˇ; h/

�
D s

��
˛.g � ˇ/; '.g; ˇ/h

��
D
�
s
�
'.g; ˇ/h

�
; s
�
'.g; ˇ/h

��
D
�
s.h/; s.h/

�
D s.ˇ; h/:

Also, given .
; f / 2 ƒ‰' G , we have that�
.˛; g/.ˇ; h/

�
.
; f / D

�
˛.g � ˇ/; '.g; ˇ/h

�
.
; f /

D
�
˛.g � ˇ/

�
'.g; ˇ/h � 


�
; '
�
'.g; ˇ/h; 


�
f
�

D
�
˛
�
g �
�
ˇ.h � 
/

��
; '
�
'.g; ˇ/h; 


�
f
�

D
�
˛
�
g �
�
ˇ.h � 
/

��
; '
�
'.g; ˇ/; h � 


�
'.h; 
/f

�
D
�
˛
�
g �
�
ˇ.h � 
/

��
; '
�
g; ˇ.h � 
/

�
'.h; 
/f

�
D .˛; g/

�
ˇ.h � 
/; '.h; 
/f

�
D .˛; g/

�
.ˇ; h/.
; f /

�
:
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Now, let .u; u/ 2 ƒ0 ‰' G .0/, so u 2 ƒ0 D G .0/. Then

r.u; u/ D .u; u/ and s.u; u/ D .u; u/:

Finally,

r.˛; g/.˛; g/ D
�
r.˛/; r.˛/

�
.˛; g/ D

�
r.˛/

�
r.˛/ � ˛

�
; '
�
r.˛/; ˛

�
g
�
D .˛; g/

and

.˛; g/s.˛; g/ D .˛; g/
�
s.g/; s.g/

�
D
�
˛
�
g � s.g/

�
; '
�
g; s.g/

�
s.g/

�
D
�
˛r.g/; gs.g/

�
D .˛; g/:

So we are done.

Lemma 4.11. Let ƒ be a LCSC with length function d W ƒ ! � , let G be a discrete
groupoid acting on ƒ, and let .ƒ;d;G ; '/ be a category system. Then

.ƒ‰' G /�1 D ƒ�1s �r G :

Proof. If .˛; g/ 2 .ƒ‰' G /�1, then there exists .ˇ; h/ 2 ƒ‰' G such that

.˛; g/.ˇ; h/ D
�
˛.g � ˇ/; '.g; ˇ/h

�
D r.˛; g/ D

�
r.˛/; r.˛/

�
:

Therefore, ˛.g � ˇ/ D r.˛/ and so ˛ 2 ƒ�1. Hence, .˛; g/ 2 ƒ�1s �r G . If .˛; g/ 2
ƒ�1s �r G , then

.˛; g/
�
g�1 � ˛�1; '.g; g�1 � ˛�1/�1

�
D
�
r.˛/; r.˛/

�
;

and so .˛; g/ 2 .ƒ‰' G /�1.

Proposition 4.12. Let ƒ be a LCSC with length function d W ƒ! � , let G be a discrete
groupoid acting on ƒ, and let .ƒ;d;G ; '/ be a category system. Then the following hold.

(1) ƒ‰' G is left cancellative.

(2) If ƒ is finitely (singly) aligned, then

(a) .˛; g/.ƒ‰' G / \ .ˇ; h/.ƒ‰' G / D .˛ƒ \ ˇƒ/s �r G ,

(b) ƒ‰' G is finitely (singly) aligned.

Proof. (1) By hypothesis, ƒ is left cancellative. Let .˛; g/; .ˇ; h/; .
; k/ 2 ƒ‰' G such
that .˛; g/.ˇ; h/ D .˛; g/.
; k/. Then�

˛.g � ˇ/; '.g; ˇ/h
�
D
�
˛.g � 
/; '.g; 
/k

�
:

Thus, we have that ˛.g � ˇ/ D ˛.g � 
/, and by left cancellation we get g � ˇ D g � 
 ,
whence ˇ D 
 . Moreover, '.g;ˇ/hD '.g; 
/k D '.g;ˇ/k, and so hD k. Thus, .ˇ;h/D
.
; k/, as desired.
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(2) Let us prove both assertions:

(a) First let .˛; g/; .ˇ; h/ 2 ƒ‰' G such that .˛; g/e .ˇ; h/. This means that there
exist .
; k/; .ı; l/ 2 ƒ‰' G such that z WD .˛; g/.
; k/ D .ˇ; h/.ı; l/, whence

z D
�
˛.g � 
/; '.g; 
/k

�
D
�
ˇ.h � ı/; '.h; ı/l

�
:

In particular, ˛.g � 
/ D ˇ.h � ı/ 2 ˛ƒ \ ˇƒ. Moreover, since z 2 ƒ‰' G , we
conclude that z 2 .˛ƒ \ ˇƒ/s �r G .
Conversely, suppose that z2.˛ƒ\ˇƒ/s�rG . Then zD.";m/ with "2˛ƒ\ˇƒ,
m2 G , and s."/D c.�.m//. Set "D ˛�, and notice that, for any .˛;g/2ƒ‰' G ,
.˛;g/D .˛; s.˛//.s.˛/;g/ 2ƒ‰' G , with .s.˛/;g/ 2 .ƒ‰' G /�1 with inverse
.g�1 � s.˛/; g�1/. Thus, .˛; ids.˛// � .˛; g/ in ƒ. Hence,

z D .˛�;m/ D .˛; s.˛//.�;m/ 2 .˛; s.˛//.ƒ‰' G / D .˛; g/.ƒ‰' G /:

Similarly, we prove that z 2 .ˇ; h/.ƒ‰' G /. Thus,

z 2 .˛; g/.ƒ‰' G / \ .ˇ; h/.ƒ‰' G /;

so we are done.

(b) By part (a), for any 
 2 ƒ we have 
ƒs �r G D .
; s.
//.ƒ‰' G /.
Suppose that ƒ is finitely (singly) aligned. Then, using part (a), we have that

.˛; g/.ƒ‰' G / \ .ˇ; h/.ƒ‰' G / D .˛ƒ \ ˇƒ/s �r G

D

� [

2˛_ˇ


ƒ
�
s �c G

D

[

2˛_ˇ

.
ƒs �r G/

D

[

2˛_ˇ

�

; s.
/

�
.ƒ‰' G /

D

[
�2.˛_ˇ/s�rƒ0

�.ƒ‰' G /:

Thus, ƒ‰' G is finitely (singly) aligned, as desired.

Also, we can prove an analog of [2, Lemma 4.15].

Lemma 4.13. Letƒ be a LCSC with length function d Wƒ!�, let G be a discrete groupoid
acting onƒ, and let .ƒ;d;G ; '/ be a category system. Take any .v; v/ 2 .ƒ‰' G /0, and
let F � .v; v/.ƒ‰' G /. Set

H WD
®
˛ 2 vƒ W there is g 2 G such that .˛; g/ 2 F

¯
:

Then F is exhaustive at .v; v/ if and only if H is exhaustive at v.
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Proof. Since .˛; s.˛// � .˛; g/ for all .˛; g/ 2 ƒ ‰' G , by [2, Lemma 2.3] we can
assume without loss of generality that F D H s �r ƒ

0.
First suppose that F is exhaustive at .v; v/. If ˇ2vƒ, then .ˇ; s.ˇ//2.v; v/.ƒ‰' G /.

Then there exists .˛; s.˛// 2 F such that

; ¤
�
˛; s.˛/

�
.ƒ‰' G / \

�
ˇ; s.ˇ/

�
.ƒ‰' G / D .˛ƒ \ ˇƒ/s �r G :

Hence, ˛ƒ \ ˇƒ ¤ ;, and since ˛ 2 H , we conclude that H is exhaustive at v.
Conversely, suppose that H is exhaustive at v. Set .ˇ; g/ 2 .v; v/.ƒ ‰' G /. Then

ˇ 2 vƒ, so that there exists ˛ 2 H such that ˛ƒ \ ˇƒ ¤ ;. Since .ˇ; g/ � .ˇ; s.ˇ// in
ƒ‰' G , we have that�
˛; s.˛/

�
.ƒ‰' G / \ .ˇ; g/.ƒ‰' G / D

�
˛; s.˛/

�
.ƒ‰' G / \

�
ˇ; s.ˇ/

�
.ƒ‰' G /

D .˛ƒ \ ˇƒ/s �r G ¤ ;:

Since .˛; s.˛// 2 F , we conclude that F is exhaustive at .v; v/, as desired.

Proposition 4.14. Let ƒ be a LCSC with length function d W ƒ! � satisfying the WFP,
let G be a discrete groupoid acting on ƒ, and let .ƒ; d;G ; '/ be a category system. Then
the map d W ƒ ‰' G ! � defined by d.˛; g/ D d.˛/ for every .˛; g/ 2 ƒ ‰' G is a
length function satisfying the WFP.

Proof. The map d W ƒ‰' G ! � given by d.˛; g/ D d.˛/ for every .˛; g/ 2 ƒ‰' G

is clearly well defined. Now, let .˛; g/; .ˇ; h/ 2 ƒ‰' G with s.˛; g/ D r.ˇ; h/. Then

d
�
.˛; g/.ˇ; h/

�
D d

�
˛.g � ˇ/; '.g; ˇ/h

�
D d

�
˛.g � ˇ/

�
D d.˛/d.g � ˇ/ D d.˛/d

�
�.g/.ˇ/

�
D d.˛/d.ˇ/ D d.˛; g/d.ˇ; h/;

since �.g/ 2 PIso.ƒ;d/. So, d is a length function of ƒ‰' G .
Now, let .˛;g/2ƒ‰' G , with d.˛;g/D d.˛/ WD 
 . Then, by the WFP, given 
1; 
2 2

� such that 
 D 
1
2, there exist ˛1; ˛2 2ƒwith ˛ D ˛1˛2, d.˛1/D 
1, and d.˛2/D 
2.
Thus, we have that

.˛; g/ D
�
˛1; s.˛1/

�
.˛2; g/

and

 D d.˛/ D d.˛; g/ D d

�
˛1; s.˛1/

�
d.˛2; g/ D d.˛1/d.˛2/ D 
1
2:

Let us suppose that there exist .ˇ1; h1/; .ˇ2; h2/ 2 ƒ‰' G with

.ˇ1; h1/.ˇ2; h2/ D
�
ˇ1.h1 � ˇ2/; '.h1; ˇ2/h2

�
D .˛; g/

such that d.ˇ1; h1/ D d.ˇ1/ D 
1 and d.ˇ2; h2/ D d.ˇ2/ D 
2. By the WFP, there exists
f1; f2 2 ƒ

�1 such that ˇ1 D ˛1f1 and h1 � ˇ2 D f2˛2, whence

.ˇ1; h1/ D .˛1f1; h1/ D
�
˛1; s.˛1/

�
.f1; h1/
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and

.ˇ2; h2/ D
�
h�11 � .h1 � ˇ2/; '.h1; ˇ2/

�1g
�

D
�
h�11 � .h1 � ˇ2/; '.h1; h

�1
1 � f2˛2/

�1g
�

D
�
h�11 � .f2˛2/; '.h

�1
1 ; f2˛2/g

�
D
�
.h�11 � f2/

�
'.h�11 ; f2/ � ˛2

�
; '
�
'.h�11 ; f2/; ˛2

�
g
�

D
�
h�11 � f2; '.h

�1
1 ; f2/

�
.˛2; g/

D
�
h�11 � f2; '.h1; h

�1
1 � f2/

�1
�
.˛2; g/

D .f �12 ; h1/
�1.˛2; g/;

as desired.

Remark 4.15. Observe that, in the proof of the above proposition, if ƒ satisfies the WFP
as it is defined in [10], then so does the Zappa–Szép product.

Definition 4.16. Letƒ be a LCSC with length function d Wƒ! � , and let G be a discrete
groupoid acting on ƒ. We say that a category system .ƒ; d; G ; '/ is pseudo-free if ƒ is
an action-free category, and whenever g � ˛ D f ˛ and '.g; ˛/ D s.˛/ for some ˛ 2 ƒ,
g 2 G and f 2 ƒ�1, then g 2 G .0/.

Proposition 4.17. Let ƒ be a LCSC with length function d W ƒ! � satisfying the WFP,
let G be a discrete groupoid acting on ƒ, and let .ƒ; d;G ; '/ be a category system. Then
ƒ‰' G is right cancellative if and only if .ƒ;d;G ; '/ is pseudo-free.

Proof. First suppose that ƒ‰' G is right cancellative. Then ƒ is right cancellative too,
and hence action-free. Now, let us suppose that there exist ˛ 2 ƒ, g 2 G , and f 2 ƒ�1

such that g � ˛ D f ˛ and '.g; ˛/ 2 G .0/. Thus,�
r.g/; g

��
˛; s.˛/

�
D
�
f ˛; s.˛/

�
D
�
f; s.f /

��
˛; s.˛/

�
;

but by right cancellation g D s.f / 2 G .0/. Hence, .ƒ;d;G ; '/ is pseudo-free.
On the other hand, suppose that .ƒ;d;G ; '/ is pseudo-free, and let .˛; g/ 2 ƒ‰' G

and .f; h/ 2 .ƒ‰' G /�1 such that

.f; h/.˛; g/ D
�
f .h � ˛/; '.h; ˛/g

�
D .˛; g/;

so ˛ D f .h � ˛/ and '.h; ˛/ D r.g/, and hence f �1˛ D h � ˛. But then, by pseudo-
freeness, we have that h D r.˛/. Hence, f �1˛ D ˛, but since ƒ is action-free we have
f D r.˛/. Therefore, .f; h/D .r.˛/; r.˛// 2 .ƒ‰' G /0, soƒ‰' G is action-free, and
hence right cancellative.

5. Length functions in a LCSC
Now, we will see that Zappa–Szép products of a LCSC arises naturally among LCSCs. In
[9], they defined the generalized higher rank k-graphs categories and described them as
Zappa–Szép products. Here we slightly generalize their arguments to a more general class
of LCSC.
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Let ƒ be a LCSC, let M be a monoid with neutral element 1, and let d W ƒ! M be
a length function satisfying

(LF1) d�1.1/ D ƒ�1,

(LF2) for every ˛ 2ƒ, if d.˛/Dm1m2 form1;m2 2M , then there exist ˛1; ˛2 2M
such that ˛ D ˛1˛2 and d.˛i / D mi for i D 1; 2.

Observe that if d W ƒ! M satisfies the WFP, then it satisfies conditions (LF1) and
(LF2).

Remark 5.1. A length function d W ƒ! M satisfying the conditions (LF1) and (LF2)
forces the monoid M to be conical. Let m1; m2 2 M such that 1 D m1m2. Take any
˛ 2 ƒ�1, so 1 D d.˛/ D m1m2, and hence by (LF2) there exist ˛1; ˛2 such that ˛ D
˛1˛2 with d.˛i / D mi for i D 1; 2. Thus, s.˛/ D .˛�1˛1/˛2, so that ˛2 2 ƒ�1. Hence,
˛1 D ˛˛

�1
2 2 ƒ

�1. By (LF1), mi D d.˛i / D 0 for i D 1; 2. Thus, M is conical.

We say that e 2M is an atom if e …M�1 and whenever eDm1m2, then eitherm1D 1
or m2 D 1. We denote by Ma the set of atoms of M . We say that M is atomic if M is
generated by its atoms. We say that ˛ 2 ƒ n ƒ�1 is an atom if whenever ˛ D ˇ
 , then
either ˇ or 
 is in ƒ�1. We denote by ƒa the atoms of ƒ.

Lemma 5.2. Let ƒ be a LCSC, let M be a conical monoid, and let d W ƒ ! M be a
length function satisfying (LF1) and (LF2). Then ˛ is an atom if and only if d.˛/ is an
atom. In particular, ƒa D

S
e2Ma

d�1.e/.

Proof. Let e 2M be an atom, and let ˛ 2 ƒ with d.˛/ D e. If ˛ D ˇ
 , then e D d.˛/ D
d.ˇ
/ D d.ˇ/d.
/. Hence, either d.ˇ/ D 1 or d.
/ D 1, or equivalently either ˇ 2 ƒ�1

or 
 2 ƒ�1. Thus, ˛ is an atom.
Now, let ˛ 2 ƒ be an atom of ƒ. Suppose that d.˛/ D m is not an atom, so there

exist m1;m2 2M n ¹1º such that m D m1m2. By (LF2), there exist ˛1; ˛2 in ƒ such that
˛ D ˛1˛2 and d.˛i / D mi for i D 1; : : : ; k, and, by (LF1), ˛1 and ˛2 are not invertible.
This contradicts that ˛ is an atom.

The following lemma is an easy consequence of Lemma 5.2.

Lemma 5.3. Let ƒ be a LCSC, let M be an atomic and conical monoid, and let d W
ƒ!M be a length function satisfying (LF1) and (LF2). Then every ˛ 2 ƒ nƒ�1 can be
written as a finite composition of atoms.

Remark 5.4. Under the hypothesis of Lemma 5.3, the decomposition need not be unique.
For example, let a length function d W ƒ ! M satisfying conditions (LF1) and (LF2),
where M D h2; 5iZC ¨ ZC. Then, by Lemma 5.2, we have that

ƒa D d�1.2/ [ d�1.5/:

Thus, for any ˛ 2ƒwith d.˛/D 10, there exist atomic factorizations ˛Dˇ1 � � �ˇ5D 
1
2
with d.ˇi / D 2 for every i D 1; : : : ; 5 and d.
j / D 5 for every j D 1; 2.
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Given a LCSCƒ and ˛ 2ƒ, we denote by ˛ƒD ¹˛
 W r.
/D s.˛/º a principal right
ideal of ƒ. A principal ideal ˛ƒ is called maximal if it is a maximal principal ideal prop-
erly contained in r.˛/ƒ. From the above observations, we can easily adapt the following
results from [10, Section 2] to our context.

Proposition 5.5 ([10, Lemma 2.3]). Letƒ be a LCSC, letM be a conical atomic monoid,
and let d W ƒ!M be a length function satisfying (LF1) and (LF2). Then ˛ƒ is maximal
if and only if ˛ is an atom.

Proposition 5.6 ([10, Proposition 2.6]). Let ƒ be a LCSC, let M be a conical atomic
monoid, let d W ƒ!M be a length function satisfying (LF1) and (LF2), and let B � ƒa
be a transversal of generators of maximal principal right ideals. ThenƒDB�ƒ�1, where
B� is the subcategory of ƒ generated by B .

The next step is to realize such a ƒ as a Zappa–Szép product B� ‰ ƒ�1. In order to
do that we need to impose an extra condition in the category ƒ.

Definition 5.7. Let B � ƒa be a transversal of generators of maximal principal right
ideals, then we say that B satisfies the R-condition if whenever ˛ D ˇg for ˛; ˇ 2 B�

and g 2 ƒ�1 we have that g 2 ƒ0.

Proposition 5.8 ([10, Theorem 4.2]). Let ƒ be a LCSC, let M be a conical atomic
monoid, let d W ƒ ! M be a length function satisfying (LF1) and (LF2), let B � ƒa
be a transversal of generators of maximal principal right ideals, and suppose that B sat-
isfies the R-condition. Then every element ofƒ has a unique representation as an element
of B�ƒ�1. Thus, ƒ is the Zappa–Szép product B� ‰ ƒ�1. Moreover, if ƒ satisfies the
WFP, then the restriction of d to B� satisfies the UFP.

Now, let ƒ be a LCSC, let M be a conical atomic monoid, let d W ƒ!M be a length
function satisfying (LF1) and (LF2), let G be a discrete groupoid acting on ƒ, and let
.ƒ;d;G ; '/ be a category system. We can naturally extend d to a length function d Wƒ‰'

G ! M by d.˛; g/ D d.˛/ that trivially satisfies conditions (LF1) and (LF2). Also, if d
satisfies the WFP on ƒ, then it also does ƒ‰' G by Proposition 4.14. Moreover, since
any transversal of generators of maximal principal right ideals of ƒ is also a transversal
of maximal principal right ideals of ƒ‰' G , it is straightforward to check that ƒ‰' G

satisfies R-condition whenever ƒ does. Finally, observe that the action of the groupoid G

onƒ restricts to an action ofƒ�1 (Remark 3.2 (2)) and hence .ƒ�1;d;G ; '/ is a category
system too. So, we can conclude the following.

Corollary 5.9. Let ƒ be a LCSC, let M be a conical atomic monoid, let d W ƒ! M be
a length function, let G be a discrete groupoid acting on ƒ, let .ƒ; d;G ; '/ be a category
system, let B � ƒa be a transversal of generators of maximal principal right ideals of ƒ,
and suppose that ƒ satisfies the R-condition. Then ƒ‰' G is the Zappa–Szép product
B� ‰ .ƒ�1 ‰' G /. Moreover, if ƒ satisfies the WFP, then the restriction of d to B�

satisfies the UFP.
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6. Properties of the tight groupoid associated to a LCSC

In this section, we will extend the application of the results of [12, Sections 7 and 8] to
category systems.

First we will recall the essential facts needed to understand what it follows.

Definition 6.1. A semigroup � is an inverse semigroup if for every s 2 � there exists a
unique s� 2 � such that s D ss�s and s� D s�ss�.

Equivalently, � is an inverse semigroup if and only if the subsemigroup

E.�/ WD ¹e 2 � W e2 D eº

of idempotents of � is commutative.

Definition 6.2. Let � be an inverse semigroup, and let E.�/ be its subsemigroup of idem-
potents. Given e; f 2 E.�/, we say that e � f if and only if e D ef . We extend this
relation to a partial order as follows: given s; t 2 � , we say that s � t if and only if
s D ss�t D ts�s.

Given a LCSC ƒ, we will define some inverse semigroups associated to ƒ. First we
define the (symmetric) inverse semigroup on ƒ as

	.ƒ/ WD ¹f W Y ! Z W Y;Z � ƒ and f is a bijectionº;

endowed with operation

g ı f W f �1
�
ran.f / \ dom.g/

�
! g

�
ran.f / \ dom.g/

�
and involution

f � WD f �1 W ran.f /! dom.f /:

Notice that 	.ƒ/ has unit Idƒ W ƒ! ƒ and zero being the empty map 0 W ; ! ;.

Definition 6.3. Let ƒ be a LCSC. For any ˛ 2 ƒ, we define two elements of 	.ƒ/:

(1) �˛ W ˛ƒ! s.˛/ƒ given by ˛ˇ 7! ˇ,

(2) �˛ W s.˛/ƒ! ˛ƒ given by ˇ 7! ˛ˇ.

Definition 6.4 ([12, Lemma 2.3]). Given a LCSC ƒ, we define the inverse semigroup

�ƒ WD h�
˛; �˛ W ˛ 2 ƒi:

Given s 2 �ƒ, we denote by dom.s/ and ran.s/ the domain and the range of s respec-
tively.

Definition 6.5. Let ƒ be a finitely aligned LCSC. A nonempty subset F of ƒ is

(1) hereditary, if ˛ 2 ƒ, ˇ 2 F , and ˛ � ˇ implies ˛ 2 F ,

(2) (upwards) directed, if ˛; ˇ 2 F implies that there exists 
 2 F with ˛; ˇ � 
 .

We denote by ƒ� the set of nonempty, hereditary, directed subsets of ƒ.
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Definition 6.6. Given ƒ a LCSC, we say that F 2 ƒ� is maximal if whenever F � G
with G 2 ƒ� we have that G D ƒ. We will denote ƒ�� WD ¹F 2 ƒ� W F is maximalº.

Definition 6.7. Let ƒ be a LCSC and v 2 ƒ0. We say that F 2 vƒ� is tight if, for every
˛ 2 F and every finite set C ofƒ with C \ F D ;, there exists G 2 ƒ�� with ˛ 2 G and
G \ C D ;. We denote by ƒtight the set of tight hereditary directed sets.

In [12, Definition 3.21], there is a topology defined on ƒtight that makes it a locally
compact, Hausdorff and totally disconnected space.

Definition 6.8. Let s D �˛�ˇ 2 �ƒ. Then we define

E˛ WD ¹F 2 ƒ
�
W ˛ 2 C º and Eˇ WD ¹F 2 ƒ

�
W ˇ 2 C º

and a map s W Eˇ ! E˛ given by

s � F D
[

ˇ�
; 
2F

�
˛�ˇ .
/

�
;

for every F 2ƒ�. This action restricts to a continuous action onƒtight [12, Corollary 4.7].

Given �ƒ � ƒtight WD ¹.s; F / W F \ dom.s/ ¤ ;º, we define the following groupoid
structure. Given .s; F /; .t; G/ 2 �ƒ �ƒtight,

(1) d.s; F / D F and r.s; F / D s � F ,

(2) .s; F / � .t; G/ is defined if t �G D F , and then .s; F / � .t; G/ D .st; G/,

(3) .s; F /�1 D .s�; s � F /.

We say that .s; F / � .t; G/ if and only if F D G and there exists e 2 E.�ƒ/ with
x 2 dom.e/ and se D te. This is an equivalence relation, compatible with the groupoid
structure. Thus, we define the tight groupoid of ƒ as Gtight.ƒ/ WD �ƒ � ƒtight= �, with
the induced operations defined above, and the topology generated by the open sets of the
form

‚.s; U / D
®
Œs; F � W F 2 U \ dom.s/

¯
;

for s 2 �ƒ and an open set U � ƒtight. Then Gtight.ƒ/ is a locally compact étale groupoid.
A nice description of Gtight.�ƒ/ is given in [12, Lemma 4.8]:

Gtight.ƒ/ D
®
Œ�˛�ˇ ; F � W s.˛/ D s.ˇ/; ˇ 2 F

¯
:

Let ƒ be a LCSC with length function d W ƒ! � , let G be a discrete groupoid acting
on ƒ, let .ƒ; d; G ; '/ be a category system, and let ƒ ‰' G be the associated Zappa-
Szép product. Then observe that ƒ can be identified with the full subcategory ƒ‰' G .0/

of ƒ‰' G , and hence Gtight.ƒ/ can be seen as an open subgroupoid of Gtight.ƒ‰
' G /.

Remark 6.9. Let ƒ be a LCSC with length function d W ƒ ! � , let G be a discrete
groupoid acting on ƒ, let .ƒ; d; G ; '/ be a category system, and let ƒ ‰' G be the
associated Zappa- Szép product.
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(1) Let .˛; g/; .ˇ; f / 2 ƒ‰' G , and suppose that .˛; g/ � .ˇ; f /. Then there exists
.ı; h/ 2 ƒ‰' G with r.ı; h/ D s.˛; g/, that is, r.ı/ D g�1 � s.˛/ such that

.ˇ; f / D .˛; g/.ı; h/ D
�
˛.g � ı/; '.g; ı/h

�
:

Hence, ˛.g � ı/ D ˇ and f D '.g; ı/h. Thus, g � ı D �˛.ˇ/ by left cancellation, and
so ı D g�1 � �˛.ˇ/ and h D '.g; g�1 � �˛.ˇ//�1f D '.g�1; �˛.ˇ//f because of the
cocycle identity. Therefore,

.˛; g/ � .ˇ; f / if and only if ˛ � ˇ;

and then we have that

� .˛;g/.ˇ; f / D
�
g�1 � �˛.ˇ/; '

�
g�1; �˛.ˇ/

�
f
�
:

The above observation, together with Proposition 4.12 (2)(a), shows that the map

F 7! F ‰' G WD
®
.˛; g/ 2 ƒ‰' G W ˛ 2 F

¯
is a bijection betweenƒ� and .ƒ‰' G /�. This bijection clearly restricts to a bijection of
their tight (maximal) hereditary upper-directed subsets, so we will identify .ƒ‰' G /tight

with ƒtight.
(2) Let .˛;g/; .ˇ;f /2ƒ‰' G with s.˛;g/D s.ˇ;f /, and let � .˛;g/� .ˇ;f / 2 �ƒ‰'G .

Observe that, since .ˇ; f /.ƒ‰' G /D .ˇ; s.f //.ƒ‰' G /, we have that � .˛;g/� .ˇ;f / D
� .˛;gf

�1/� .ˇ;s.f //.
(3) Given F 2 ƒtight and .˛; g/; .ˇ; f / 2 ƒ‰' G with s.˛; g/ D s.ˇ; f /, we have

that
� .˛;g/� .ˇ;f / � .F ‰' G / D F 0 ‰' G ;

where F 0 WD
S
ˇ�
; 
2F Œ˛..gf

�1/ � �ˇ .
//� 2 ƒtight.

First we will give necessary and sufficient conditions for Gtight.ƒ‰
' G / to be a Haus-

dorff groupoid.

Proposition 6.10. Let ƒ be a LCSC with length function d W ƒ! � , let G be a discrete
groupoid acting on ƒ, let .ƒ; d; G ; '/ be a category system, and let ƒ ‰' G be the
associated Zappa–Szép product. Then Gtight.ƒ‰

' G / is a Hausdorff groupoid if and only
if, given ˛;ˇ 2ƒ and g 2 G with g�1 � s.˛/D s.ˇ/, there exists a finite subsetH � s.ˇ/ƒ
such that

(1) ˛.g � 
/ D ˇ
 and '.g; 
/ D s.
/ for every 
 2 H ,

(2) for every ı 2 s.ˇ/ƒ with ˛.g � ı/ D ˇı and '.g; ı/ D s.
/, then ı e 
 for some

 2 H .

Proof. According to [6, Theorem 3.16], the groupoid Gtight.ƒ‰
' G / is Hausdorff if and

only if for any s 2 �ƒ‰'G the set

	s WD
®
e 2 E.ƒ‰' G / W e � s

¯
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admits a finite cover, that is, a finite setH � 	s such that for every e 2 	s there exists f 2
H with ef ¤ 0. Now, we will translate this equivalence to our language in terms of ele-
ment of the categoryƒ. By Remark 6.9 (2), we can assume without loss of generality that
s D � .˛;g/� .ˇ;s.g//. Observe that, given an idempotent of the form e D � .
;s.
//� .
;s.
//

for some 
 2 ƒ, es D se D s is equivalent to say that 
 D ˛.g � �ˇ .
// D ˇ�ˇ .
/ and
'.g; �ˇ .
// D s.
/. Therefore, we can identify 	s with the set

Ts WD
®

 2 r.ˇ/ƒ W ˛.g � 
/ D ˇ
 and '.g; 
/ D s.
/

¯
:

Now, given 
; ı 2 Ts , we have that

.� .ˇ
;s.
//� .ˇ
;s.
///.� .ˇı;s.ı//� .ˇı;s.ı/// ¤ 0

if and only ˇ
 e ˇı, that by left cancellation is equivalent to 
 e ı. Then having a finite
cover of 	s is equivalent to having a finite subsetH � Ts such that for every 
 2 Ts there
exists ı 2 H with 
 e ı.

Corollary 6.11. Let ƒ be a LCSC with length function d W ƒ! � satisfying the WFP,
let G be a discrete groupoid acting on ƒ, let .ƒ; d; G ; '/ be a category system, and
let ƒ ‰' G be the associated Zappa–Szép product. If .ƒ; d; G ; '/ is pseudo-free, then
Gtight.ƒ‰

' G / is a Hausdorff groupoid.

Proof. Let ˛;ˇ 2 ƒ and g�1 � s.˛/D s.ˇ/, and suppose that there exists 
 2 s.ˇ/ƒ with
˛.g � 
/ D ˇ
 and '.g; 
/ D s.
/. Then we have that

d.˛/d.
/ D d.˛/d.g � 
/ D d
�
˛.g � 
/

�
D d.ˇ/d.
/ D d.ˇ/d.
/;

whence d.˛/ D d.ˇ/, and by the WFP there exists f 2 ƒ�1 such that g � 
 D f 
 . Since
.ƒ; d; G ; '/ is pseudo-free, g D s.˛/, so ˛
 D ˛.g � 
/ D ˇ
 . But by Lemma 2.10, ƒ
is right cancellative, and so ˛ D ˇ. Hence, taking H D ¹˛º we can apply Proposition
6.10.

Now, we are ready to characterize minimality and effectiveness for the corresponding
tight groupoid. The following results are straightforward translations of the results in [12,
Sections 6 and 7].

Proposition 6.12. Let ƒ be a LCSC with length function d W ƒ! � , let G be a discrete
groupoid acting on ƒ, let .ƒ; d; G ; '/ be a category system, and let ƒ ‰' G be the
associated Zappa–Szép product. If Gtight.ƒ‰

' G / is Hausdorff or ƒtight D ƒ
��, then the

following are equivalent.

(1) Gtight.ƒ‰
' G / is topologically free.

(2) Given .˛; a/; .ˇ; b/ 2 ƒ ‰' G with r.˛; a/ D r.ˇ; b/ and s.˛; a/ D s.ˇ; b/, if
.˛; a/.ı; d/ e .ˇ; b/.ı; d/ for every .ı; d/ 2 s.˛; a/.ƒ‰' G /, then there exists
C 2 FE.s.˛; a// such that .˛; a/.
; d/ D .ˇ; b/.
; d/ for every .
; d/ 2 C .
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(3) Given ˛; ˇ 2 ƒ, a; b 2 G with r.a/ D s.˛/, r.b/ D s.ˇ/, r.˛/ D r.ˇ/ and a�1 �
s.˛/ D b�1 � s.ˇ/, if ˛.a � ı/ e ˇ.b � ı/ for every ı 2 .a�1 � s.˛//ƒ, then there
exists C 2 FE.a�1 � s.˛// such that ˛.a � 
/ D ˇ.b � 
/ and '.a; 
/ D '.b; 
/ for
every 
 2 F .

Proposition 6.13. Let ƒ be a LCSC with length function d W ƒ! � , let G be a discrete
groupoid acting on ƒ, let .ƒ; d; G ; '/ be a category system, and let ƒ ‰' G be the
associated Zappa–Szép product. If Gtight.ƒ‰

' G / is Hausdorff or ƒtight D ƒ
��, then the

following are equivalent.

(1) Gtight.ƒ‰
' G / is minimal.

(2) For every .˛; a/; .ˇ; b/ 2 ƒ ‰' G , there exists C 2 FE.˛; a/ such that for each
.
; g/ 2 C , s.ˇ; b/.ƒ‰' G/s.
; g/ ¤ ;.

(3) For every ˛; ˇ 2 ƒ, there exists C 2 FE.˛/ such that for each 
 2 C , there exists
g 2 G with s.ˇ/ƒ.g � s.
// ¤ ;.

Given an étale groupoid G with totally disconnected unit space and a field K, one can
construct the so-called Steinberg algebra K.G / [17], and in [18, Theorem 3.5] there are
given conditions for the simplicity of K.G /. Thus, we conclude with the following result.

Theorem 6.14. Let ƒ be a LCSC with length function d W ƒ! � , let G be a discrete
groupoid acting on ƒ, let .ƒ; d; G ; '/ be a category system, and let ƒ ‰' G be the
associated Zappa–Szép product. If Gtight.ƒ‰

' G / is Hausdorff or ƒtight D ƒ
��, then the

following are equivalent.

(1) C �r .Gtight.ƒ‰
' G // (the reduced groupoid C �-algebra) is simple.

(2) For any field K, K.ƒ‰' G/ (the Steinberg algebra) is simple.

(3) The following properties hold:

(a) given ˛; ˇ 2 ƒ, a; b 2 G with r.˛/ D r.ˇ/ and a�1 � s.˛/ D b�1 � s.ˇ/, if
˛.a � ı/e ˇ.b � ı/ for every ı 2 .a�1 � s.˛//ƒ, then there exists C 2 FE.a�1 �
s.˛// such that ˛.a � 
/ D ˇ.b � 
/ and '.a; 
/ D '.b; 
/ for every 
 2 C ;

(b) for every ˛; ˇ 2 ƒ, there exists C 2 FE.˛/ such that for each 
 2 C , there
exists g 2 G with s.ˇ/ƒ.g � s.
// ¤ ;.

7. Amenable groupoids

Now, we will discuss the amenability of Gtight.ƒ‰
' G /, following the same strategy used

in [12, Section 8].
Recall that � is a submonoid of a group Q with unit element 1Q, and such that

� \ ��1 D ¹1Qº:

Then, given two elements 
1; 
2 2 � ,


1 � 
2 if and only if 
�11 
2 2 �:
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Lemma 7.1 (cf. [12, Lemma 8.2]). Let ƒ be a LCSC with length function d W ƒ! �

satisfying the WFP. Let ˛; ˇ 2 ƒ with ˛ e ˇ. Then ˛ � ˇ if and only if d.˛/ � d.ˇ/. In
particular, ˛ � ˇ whenever d.˛/ D d.ˇ/.

Lemma 7.2 (cf. [12, Lemma 8.5]). Let ƒ be a LCSC with length function d W ƒ! �

satisfying the WFP, let G be a discrete groupoid acting onƒ, let .ƒ;d;G ; '/ be a category
system, and let ƒ‰' G be the associated Zappa–Szép product. Then the map

Nd W Gtight.ƒ‰
' G /! Q; Œ� .˛;a/� .ˇ;b/; F ‰' G � 7! d.˛/d.ˇ/�1

is a well-defined continuous groupoid homomorphism. In particular, Nd restricts toGtight.ƒ/.

Proof. The proof is verbatim that of [12, Lemma 8.5], replacing [12, Remark 8.4] by
Remark 6.9 (1) and [12, Lemma 8.2] by Lemma 7.1, with the observation that, by the
WFP, we have d�1.1Q/ D ƒ�1 (Remark 2.8 (1)).

Let Nd W Gtight.ƒ‰
' G /! Q be the cocycle defined in Lemma 7.2, and let us define

K.ƒ‰' G / WD . Nd/�1.1G/

D
®
Œ� .˛;g/� .ˇ;f /; F ‰' G � 2 Gtight.ƒ‰

' G / W d.˛/d.ˇ/�1 D 1G
¯
;

which is an open subgroupoid of Gtight.ƒ‰
' G /.

In order to be able to decompose the groupoid K.ƒ‰' G / as a union of more treat-
able groupoids, we need to impose some conditions on the semigroup � .

Definition 7.3. Let � �Q be a subsemigroup of a groupQ with � \ ��1 D 1Q. We say
that � is a join-semilattice if, given g1; g2 2 � ,

inf¹g 2 � W g1; g2 � gº

exists and is unique. We will denote it by g1 _ g2.

Remark 7.4. Let ƒ be a LCSC with length function d W ƒ ! � satisfying the WFP,
and assume that � is a join-semilattice. Then, given ˛;ˇ with ˛ e ˇ, we have that d.
/D
d.˛/_ d.ˇ/ for every 
 2 ˛ _ ˇ. Indeed, let 
 2 ˛ _ ˇ. Since ˛;ˇ � 
 , then d.˛/;d.ˇ/�
d.
/, so d.˛/_ d.ˇ/ � d.
/. By the WFP, there exist 
1; 
2 2ƒ such that 
 D 
1
2 with
d.
1/ D d.˛/ _ d.ˇ/. Now, d.˛/; d.ˇ/ � d.
1/, and so we have that ˛; ˇ � 
1 � 
 by
Lemma 7.1. But since 
 is a minimal extension of ˛ and ˇ, it follows that 
 � 
1, so
d.
/ D d.
1/ D d.˛/ _ d.ˇ/.

We now assume that � is a join-semilattice. Then, given g 2 � , we define

Kg.ƒ‰
' G / WD

®
Œ� .˛;h/� .ˇ;f /; F ‰' G � W d.˛/ D d.ˇ/ � g

¯
:

We claim that Kg.ƒ‰
' G / is an open subgroupoid of K.ƒ‰' G /. Since

Kg.ƒ‰
' G / D

[
d.˛/Dd.ˇ/�g

‚
�
� .˛;h/� .ˇ;f /; dom.� .˛;h/� .ˇ;f //

�
;
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we have that Kg.ƒ‰
' G / is an open subgroupoid. Let

Œ� .˛;h/� .ˇ;f /; F ‰' G �; Œ� .ı;k/� .�;l/; F 0 ‰' G � 2Kg.ƒ‰
' G /

be two composable elements with g1 WD d.ˇ/ D d.˛/ � g and g2 WD d.ı/ D d.�/ � g.
Since ˇ; ı 2 F , there exists " 2 .ˇ _ ı/ \ F , and d."/ D d.˛/ _ d.ˇ/ D g1 _ g2 � g

(Remark 7.4). Then

Œ� .˛;h/� .ˇ;f /; F � D Œ� .˛;hf
�1/� .ˇ;s.f //; F �

D Œ� .˛;hf
�1/� .ˇ;s.f //� .";s."//� .";s."//; F �

D Œ� .˛.hf
�1��ˇ ."//;'.�ˇ ."/;hf �1//� .";s.f //; F �

and

Œ� .ı;k/� .�;l/; F 0� D Œ� .ı;r.k//� .�;lk
�1/; F 0�

D Œ� .";s."//� .";s."//� .ı;r.k//� .�;lk
�1/; F 0�

D Œ� .";s."//� .�
ı ."/�;lk�1/; F �

while the product gives us

Œ� .˛.hf
�1��ˇ ."//;'.�ˇ ."/;hf �1//� .";s.f //; F �Œ� .";s."//� .�

ı ."/�;lk�1/; F �

D Œ� .˛.hf
�1��ˇ ."//;'.�ˇ ."/;hf �1//� .�

ı ."/�;lk�1/; F 0�:

But

d
�
˛
�
hf �1 � �ˇ ."/

��
D d.˛/d

�
hf �1 � �ˇ ."/

�
D d.˛/d

�
�ˇ ."/

�
D d.˛/d.ˇ/�1d."/

D d.˛/d.˛/�1d."/ D d."/ D g1 _ g2

and
d
�
�ı."/�

�
D d."/d.ı/�1d.�/ D d."/d.�/�1d.�/ D d."/ D g1 _ g2:

Therefore, Œ� .˛;h/� .ˇ;f /; F �Œ� .ı;k/� .�;l/; F 0� 2 Kg1_g2.ƒ ‰
' G / � Kg.ƒ ‰

' G /, as
desired.

Moreover, as a consequence of the above computation, given g1; g2 � g, we have that
Kg1.ƒ ‰

' G /Kg2.ƒ ‰
' G / � Kg.ƒ ‰

' G /. Then if � is countable, there exists an
ascending sequence of elements g1; g2; : : : 2 � such that for every g 2 � there exists
n 2 N with g � gn. Hence, K.ƒ‰' G / D

S1
iD1 Kgi .ƒ‰

' G /.
The next step will be to define a cocycle of the groupoids Kg.ƒ‰

'G / ontoƒ�1‰' G.
In order to do that, we will need to make the following assumption.

Definition 7.5. Let ƒ be a LCSC with length function d W ƒ! � satisfying the WFP.
We will say that ƒ satisfies property .F/ if given F 2 ƒtight and g 2 � , then there exists
ˇg 2 F (non-necessarily unique) with d.ˇg/ � g such that, whenever ˛ 2 F satisfies
d.˛/ � g, we have that ˛ � ˇ.
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Remark 7.6. Let ƒ be a LCSC with length function d W ƒ! � satisfying the WFP and
property .F/.

(1) Let F 2ƒtight, let g 2� , and let ˇg 2ƒ, satisfying the conditions of Definition 7.5.
Suppose that there exists another ˇ0g satisfying the same properties as ˇg . Then d.ˇg/ D
d.ˇ0g/, and hence by Lemma 7.1 we have that ˇg � ˇ0g . Thus, ˇg is unique up to an
invertible element.

(2) Let F 2 ƒtight, let g 2 � , and let ˇg 2 ƒ, satisfying the conditions of Definition
7.5. Now, let ˛ 2 ƒ such that s.ˇg/ D s.˛/ and d.ˇg/ D d.˛/. Recall that

F 0 WD �˛�ˇg � F D
[

ˇg�
; 
2F

�
˛�ˇg .
/

�
:

Let ˇ0g 2 F
0, satisfying the conditions of Definition 7.5. Then ˛ � ˇ0g . On the other

hand, there exists 
 2 F such that ˛�˛.ˇ0g/ D ˇ0g � ˛�
ˇg .
/, whence by left cancel-

lation �˛.ˇ0g/ � �
ˇg .
/ and ˇg�˛.ˇ0g/ � ˇg�

ˇg .
/ D 
 . Thus, ˇg�˛.ˇ0g/ 2 F and
d.ˇg�˛.ˇ0g//D d.ˇ0g/� g. Then by property .F/ we have that ˇg�˛.ˇ0g/� ˇg , whence
by left cancellation �˛.ˇ0g/ must be an invertible element. Thus, ˇ0g � ˛.

Proposition 7.7 (cf. [12, Lemma 8.8]). Letƒ be a LCSC with length function d W ƒ! �

satisfying the WFP, and assume that every bounded ascending sequence of elements of �
stabilizes. Then ƒ satisfies property .F/.

Given a LCSCƒ, a discrete groupoid G acting onƒ and a category system .ƒ;d;G ;'/,
by Lemma 4.11 we have that .ƒ‰' G /�1 D ƒ�1 ‰' G . Thus, ƒ�1 ‰' G is a discrete
groupoid.

Before proving the connection between amenability of both groupoids Gtight.ƒ‰
' G /

and Gtight.ƒ/, we need a key technical result.

Proposition 7.8. Letƒ be a LCSC with length function d Wƒ! � satisfying the WFP, let
G be a discrete groupoid acting on ƒ, let .ƒ; d; G ; '/ be a pseudo-free category system,
let ƒ‰' G be the associated Zappa–Szép product, and suppose that ƒ satisfies property
.F/. Then, for every g 2 � , there exists a continuous groupoid homomorphism

t.g/ WKg.ƒ‰
' G /! ƒ�1 ‰' G :

Proof. Fix g 2 � , and for every F 2 ƒtight choose ˇF satisfying property .F/. Let

Œ� .˛;f /� .
;s.f //; F � 2Kg.ƒ‰
' G /:

Then d.˛/ D d.
/ � g, and hence 
 � ˇF . Therefore,

Œ� .˛;f /� .
;s.f //; F � D Œ� .˛;f /� .
;s.f //� .ˇF ;s.ˇF //� .ˇF ;s.ˇF //; F �

D Œ� .˛.f ��

 .ˇF //;'.f;�


 .ˇF ///� .ˇF ;s.ˇF //; F �:

By Remark 7.6, we have that ˛.f � �
 .ˇF //D ˇF 0�, where F 0 WD � .˛;f /� .
;s.f // �F and
� 2 ƒ�1. So,

Œ� .˛;f /� .
;s.f //; F � D Œ� .ˇF 0�;'.f;�

 .ˇF ///� .ˇF ;s.ˇF //; F �:
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Therefore, every element in Kg.ƒ‰
' G / is of the form Œ� .ˇF 0�;h/� .ˇF ;s.ˇF //;F � for some

� 2 ƒ�1 and h 2 G , and then we define

t.g/
�
Œ� .ˇF 0�;h/� .ˇF ;s.ˇF //; F �

�
D .�; h/:

Let us check that t.g/ is well defined. To this end, let Œ� .ˇF 0�1;h1/� .ˇF ;s.ˇF //; F � and
Œ� .ˇF 00�2;h2/� .ˇF ;s.ˇF //; F � in Kg.ƒ‰

' G / with

Œ� .ˇF 0�1;h1/� .ˇF ;s.ˇF //; F � D Œ� .ˇF 00�2;h2/� .ˇF ;s.ˇF //; F �:

First observe that since the germ of � .ˇF 0�1;h1/� .ˇF ;s.ˇF // and � .ˇF 00�2;h2/� .ˇF ;s.ˇF // on
F is the same, this means that the image of F by these maps are the same, so F 0 D F 00.
Moreover, there exists 
 2 F with ˇF � 
 such that

.� .ˇF 0�1;h1/� .ˇF ;s.ˇF ///.� .
;s.
//� .
;s.
/// D � .ˇF 0�1.h1��
ˇF .
//;'.h1;�

ˇF .
///� .
;s.
//

D .� .ˇF 0�2;h2/� .ˇF ;s.ˇF ///.� .
;s.
//� .
;s.
///

D � .ˇF 0�2.h2��
ˇF .
//;'.h2;�

ˇF .
///� .
;s.
//:

Therefore,

ˇF 0�1
�
h1 � �

ˇF .
/
�
D ˇF 0�2

�
h2 � �

ˇF .
/
�

and '
�
h1; �

ˇF .
/
�
D '

�
h2; �

ˇF .
/
�
:

In particular, by left cancellation we have that

�1
�
h1 � �

ˇF .
/
�
D �2

�
h2 � �

ˇF .
/
�

and

��12 �1
�
h1 � �

ˇF .
/
�
D h2 � �

ˇF .
/;

h�12 �
�
��12 �1

�
h1 � �

ˇF .
/
��
D �ˇF .
/;

.h�12 � �
�1
2 �1/

�
'.h�12 ; �

�1
2 �1/h1 � �

ˇF .
/
�
D �ˇF .
/;

'.h�12 ; �
�1
2 �1/h1 � �

ˇF .
/ D .h�12 � �
�1
2 �1/

�1�ˇF .
/:

On the other hand, we have that

s.
/ D '
�
h2; �

ˇF .
/
��1

'
�
h1; �

ˇF .
/
�
D '

�
h�12 ; h2 � �

ˇF .
/
�
'
�
h1; �

ˇF .
/
�

D '
�
h�12 ; �

�1
2 �1

�
h1 � �

ˇF .
/
��
'
�
h1; �

ˇF .
/
�

D '
�
'.h�12 ; �

�1
2 �1/; h1 � �

ˇF .
/
�
'
�
h1; �

ˇF .
/
�

D '
�
'.h�12 ; �

�1
2 �1/h1; �

ˇF .
/
�
:

Since the system is pseudo-free, we have that

'.h�12 ; �
�1
2 �1/h1 D s.h1/ and .h�12 � �

�1
2 �1/

�1
D s.ˇF /:
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From the second equality, we deduce that ��12 �1 D s.ˇF /, and hence �1 D �2. Thus,

'.h�12 ; �
�1
2 �1/h1 D '

�
h�12 ; s.�1/h1

�
D h�12 h1 D s.h1/;

and so h2 D h1. Hence, t.g/ is a well-defined map, as desired.
Now, two composable elements .x; y/ 2Kg.ƒ‰

' G /.2/ are of the form

x D Œ� .ˇF 00�1;h1/� .ˇF 0 ;s.ˇF 0 //; F 0� and y D Œ� .ˇF 0�2;h2/� .ˇI ;s.ˇF //; F �;

where �1; �2 2 ƒ�1, h1; h2 2 G , F 2 ƒtight, F 0 WD � .ˇF 0�2;h2/� .ˇF ;s.ˇF // � F , and F 00 WD
� .ˇF 00�1;h1/� .ˇF 0 ;s.ˇF 0 // � F 0. Since

xy D Œ� .�1.h1��2/;'.h1;�2/h2/� .ˇF ;s.ˇF //; F �;

we have that

t.g/.xy/ D
�
�1.h1 � �2/; '.h1; �2/h2

�
D .�1; h1/.�2; h2/ D t.g/.x/t.g/.y/:

Thus, t.g/ is a groupoid homomorphism.
Finally, given any x D .�; h/ 2 ƒ�1 ‰' G , we have that�

t.g/.�; h/
��1

.x/

D
®
Œ� .ˇF 0�;h/� .ˇF ;s.ˇF //; F � W F 2 ƒtight

¯
D

[
F 2ƒtight; s.ˇF /Ds.h/

®
Œ� .ˇF 0�;h/� .ˇF ;s.ˇF //; G� W G 2 ƒtight and ˇF 2 G

¯
;

that is a union of open sets of Kg.ƒ‰
' G /, so t.g/ is continuous.

Given two groupoids G and H , a groupoid homomorphism p W G ! H is called
strongly surjective if p is surjective and for every x 2 G .0/ we have that p.r�1.x// D
r�1.p.x// (see [1, Definition 5.2.7]).

In general, the map

t.g/ WKg.ƒ‰
' G /! ƒ�1 ‰' G

defined in Proposition 7.8 is not strongly surjective. However, we can consider the sub-
groupoid

Hg WD t.g/
�
Kg.ƒ‰

' G /
�

D
®
.�; g/ 2 ƒ�1 ‰' G W 9F;F 0 2 ƒtight; s.ˇF / D d

�
�.g/

�
; r.�/ D s.ˇF 0/

¯
:

Let F 0 2Kg.ƒ‰
' G /.0/ (here we identify Kg.ƒ‰

' G /.0/ with ƒtight), then

t.g/
�
r�1.F 0/

�
D t.g/

�®
Œ� .ˇF 0�;h/� .ˇF ;s.ˇF //; F � W r.�/ D s.ˇF 0/; 9F 2 ƒtight with s.ˇF / D s.g/

¯�
D
®
.�; g/ 2 ƒ�1 ‰' G W r.�/ D s.ˇF 0/; 9F 2 ƒtight with s.ˇF / D s.g/

¯
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and

r�1
�
t.g/.F 0/

�
\Hg

D r�1
�
s.ˇF 0/; s.ˇF 0/

�
\Hg D

®
.�; g/ 2 ƒ�1 ‰' G W r.�/ D s.ˇF 0/

¯
\Hg

D
®
.�; g/ 2 ƒ�1 ‰' G W r.�/ D s.ˇF 0/; 9F 2 ƒtight with s.ˇF / D s.g/

¯
:

Therefore, the map t.g/ WKg.ƒ‰
' G /! Hg is strongly surjective.

Now, we are ready to prove the main result in this section.

Proposition 7.9. Letƒ be a LCSC with length function d Wƒ! � satisfying the WFP, let
G be a discrete groupoid acting on ƒ, let .ƒ; d; G ; '/ be a pseudo-free category system,
let ƒ ‰' G be the associated Zappa–Szép product, and suppose that ƒ satisfies prop-
erty .F/. Suppose that the groupoidƒ�1‰' G and the groupQ are amenable. Moreover,
assume that � is a join-semilattice. Then the following statements are equivalent:

(1) Gtight.ƒ‰
' G / is amenable,

(2) the kernel of the map Nd W Gtight.ƒ/! Q is amenable,

(3) Gtight.ƒ/ is amenable.

Proof. .2/ and .3/ are equivalent due to [13, Corollary 4.5] and that ker Nd is an open
subgroupoid of Gtight.ƒ/. That .1/ implies .3/ is because Gtight.ƒ/ is an open subgroupoid
of Gtight.ƒ‰

' G /. So, it is enough to prove that .2/ implies .1/.
Let Nt W Gtight.ƒ‰

' G /! Q be the cocycle defined in Lemma 7.2. By [13, Corollary
4.5], it is enough to prove that Nd�1.1Q/ DK.ƒ‰' G / is amenable. Moreover, since

K.ƒ‰' G / D
[
g2�

Kg.ƒ‰
' G /;

we have that K.ƒ‰' G / is amenable if Kg.ƒ‰
' G / is amenable for every g 2 � [1,

Section 5.2 (c)]. Now, let t.g/ WKg.ƒ‰
' G /!ƒ�1‰' G defined in Proposition 7.8. By

assumption,ƒ�1‰' G is amenable, and thus Hg WD t.g/.Kg.ƒ‰
' G //�ƒ�1‰' G is

amenable and the map t.g/ WKg.ƒ‰
' G /!Hg is strongly surjective (see the comments

after Proposition 7.8). Then, by [1, Theorem 5.2.14], Kg.ƒ‰
' G / is amenable if ker t.g/

is amenable. But observe that, if we identify Gtight.ƒ/ with Gtight.ƒ ‰
' G .0//, then we

have that
ker t.g/ DKg.ƒ‰

' G / \ Gtight.ƒ/ � ker Nd \ Gtight.ƒ/;

so ker t.g/ is an open subgroupoid of ker Nd. Thus, ker t.g/ is amenable by hypothesis.

With the above notation observe that if ƒ�1 D ƒ0, then ƒ�1 ‰' G Š G .

Corollary 7.10. Let ƒ be a LCSC with length function d W ƒ! � satisfying the UFP, let
G be a discrete groupoid acting on ƒ, let .ƒ; d; G ; '/ be a pseudo-free category system,
let ƒ ‰' G be the associated Zappa–Szép product, and suppose that ƒ satisfies prop-
erty .F/. Moreover, assume that � is a join-semilattice. Suppose that the groupoid G and
the group Q are amenable. Then Gtight.ƒ‰

' G / is an amenable groupoid.
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Proof. First observe that, since d Wƒ! � has the UFP,ƒ has no inverses. So,ƒ�1‰' G

is isomorphic to G . Then, by Proposition 7.9, it is enough to prove that the kernel of the
map Nd W Gtight.ƒ/! Q is amenable. But this was shown in [12, Section 8].

Example 7.11. Let ƒ be the category with objects ¹viºi2Z and freely generated by the
morphisms ¹˛iºi2Z, ¹
iºi2Z and ¹
�1i ºi2Z, such that

s.˛i / D vi and r.˛i / D viC1;

s.
i / D vi and r.
i / D vi ;

s.
�1i / D vi and r.
�1i / D vi ;

for every i 2 Z, modulo the relation


i

�1
i D 


�1
i 
i D vi ;

for every i 2 Z. ƒ is a left and right cancellative small category. We can define the
length function d W ƒ! N given by d.˛i / D 1 and d.
i / D d.
�1i / D 0 for every i 2 Z.
Then d satisfies the WFP and ƒ�1 is generated by ¹
i ; 
�1i ºi2Z. Now, we define the
groupoid G with unit space G .0/ D ¹viºi2Z and generated by ¹giºi2Z with s.gi /D vi and
r.gi / D vi�1. We define � W G ! PIso.ƒ;d/ such that �.gi / W viƒ! vi�1ƒ is such that
it translates the path one position to the left. Observe that then

�.gi /j
i D �.gi / and �.gi /j˛i�1 D �.gi�1/

for every i 2 Z. Therefore, the action of G on ƒ is self-similar, and we define the cocy-
cle ' W G s �r ƒ ! G by '.gi ; 
i / WD gi and '.gi ; ˛i�1/ WD gi�1. Observe also that
.ƒ; d; G ; '/ is a pseudo-free category system, and hence Gtight.ƒ ‰

' G / is a Hausdorff
groupoid by Corollary 6.11.

We will check that the groupoid Gtight.ƒ‰
' G / is topologically free and minimal. Let

ˇ1; ˇ2 2 ƒ with r.ˇ1/ D r.ˇ2/, let a1; a2 2 G such that r.a1/ D s.ˇ1/ D vk , r.a2/ D
s.ˇ2/ D vl and s.a1/ D s.a2/ D vj , and assume that ˇ1.a1 � ı/ e ˇ2.a2 � ı/ for every
ı 2 vjƒ. We claim that then ˇ1 D ˇ2. Indeed, first observe that ˇ1.a1 � vj /e ˇ2.a2 � vj /,
so ˇ1 e ˇ2. But this means that either ˇ1 � ˇ2 or ˇ2 � ˇ1. Suppose that ˇ1 � ˇ2, so that
there exists 
 2 vkƒ such that ˇ1
 D ˇ2. But, by hypothesis, ˇ1.a1 � ı/e ˇ1
.a2 � ı/ for
every ı 2 vjƒ. Thus, ˇ1.a1 � ı/�ˇ1
.a2 � ı/ for every ı 2 vjƒ. Then, by left cancellation,
a1 � ı � 
.a2 � ı/ for every ı 2 vjƒ. But this forces 
 D vk , and hence ˇ1 D ˇ2.

Now, since ˇ1 D ˇ2, we have that a1 D a2, and therefore the set F D ¹vj º satisfies
the conditions of Proposition 6.12 (3). So, Gtight.ƒ‰

' G / is topologically free.
To check minimality, take ˇ1; ˇ2 2 ƒ and let F D ¹r.ˇ2/º. Now, let g 2 G be the

unique element such that s.g/ D r.ˇ2/ and r.g/ D s.ˇ1/. Then we have that

s.ˇ1/ƒ
�
g � r.ˇ2/

�
D s.ˇ1/ƒs.ˇ1/ ¤ ;:

Thus, condition (3) of Proposition 6.13 is satisfied, and hence Gtight.ƒ‰
' G / is minimal.
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Now, we will show that Gtight.ƒ‰
' G / is an amenable groupoid. First we will check

that ƒ�1 ‰' G is an amenable groupoid. Indeed,

ƒ�1 ‰' G D
®
.
ni ; g/ 2 ƒ‰

' G W i; n 2 Z; r.g/ D vi
¯
;

with
.
ni ; g/ � .


m
j ; h/ D .


nCm
i ; gh/;

for n; m 2 Z, g; h 2 G with r.g/ D vi , s.g/ D vj , and r.h/ D vj . Then we can define
the homomorphism c W ƒ�1 ‰' G ! Z by c.
ni ; g/ D n, with ker c isomorphic to G .
Therefore, ƒ�1 ‰' G is amenable.

Now, by Proposition 7.9, the groupoid Gtight.ƒ ‰
' G / is amenable if and only if

Gtight.ƒ/ is amenable. To determine amenability of Gtight.ƒ/, first observe that .ƒ; d/ is
a Levi category [10, Theorem 3.3] and, since ƒ is left cancellative, we have that ƒ is
the Zappa–Szép product of the free category B� generated by a transversal of genera-
tors of maximal right principal ideals and the groupoid ƒ�1 [11, Theorem 5.10]. Thus,
ƒ Š B� Ì ƒ�1. But then .B�; d/ has the UFP and ƒ�1 Š

F
i2Z Z is an amenable

groupoid. Moreover, since ƒ is right cancellative, we have that .ƒ; d; G ; '/ is a pseudo-
free category system by Proposition 4.17. Thus, Gtight.ƒ/ is amenable by Corollary 7.10.
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