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Quotients of singular foliations and Lie 2-group actions
Alfonso Garmendia and Marco Zambon

Abstract. Androulidakis—Skandalis (2009) showed that every singular foliation has an associated
topological groupoid, called holonomy groupoid. In this note, we exhibit some functorial properties
of this assignment: if a foliated manifold (M, F)s) is the quotient of a foliated manifold (P, ¥p)
along a surjective submersion with connected fibers, then the same is true for the corresponding
holonomy groupoids. For quotients by a Lie group action, an analogue statement holds under suit-
able assumptions, yielding a Lie 2-group action on the holonomy groupoid.

1. Introduction

The space of leaves of a foliation is typically not smooth and might fail to be Hausdorff.
As a replacement for the leaf space, one often takes a smooth group-like object canoni-
cally associated to the foliation, namely the holonomy Lie groupoid, and declares two Lie
groupoids to model the same space if they are Morita equivalent.

Singular foliations extend the classical notion of foliation by allowing singularities.
In this note, we will adopt the definition of singular foliation that appears in [1] and is
inspired by the work of Stefan and Sussmann (among others) in the 1970s. Not only
does it entail a smooth partition of the underlying manifold in immersed submanifolds of
varying dimension, but also it contains information about the dynamics along the leaves,
i.e., the ways that one can flow along them. This notion of singular foliation allows for
Lie-theoretic constructions. The most prominent of them is the canonical assignment of a
topological groupoid by Androulidakis—Skandalis [1], which is called holonomy groupoid
since, in the case of (regular) foliations, it recovers the holonomy Lie groupoid mentioned
above.

The assignment of the holonomy groupoid to a singular foliation satisfies functoriality
properties: under certain conditions, a map 7 between foliated manifolds induces canoni-
cally a morphism of holonomy groupoids, which can be regarded as a replacement for the
induced map of leaf spaces. In this paper, we prove properties of this assignment when
7 satisfies a surjectivity property, and thus it can be regarded as a quotient map. We do
so motivated by the desire to establish to which extent the construction of the holonomy
groupoid satisfies functorial properties. Since every holonomy groupoid has an associ-
ated C*-algebra [1], this is relevant also in non-commutative geometry, and the natural
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appearance of higher Lie groupoids in our work seems an interesting phenomenon in that
context too.
We now outline the main results.

Statement of results. Let ¥ be a singular foliation on a manifold P, and let w: P — M
be a surjective submersion with connected fibers. Under mild invariance conditions, ¥
can be pushed forward along 7 to a singular foliation 34 on M. Since the foliation F3¢
is obtained from ¥ by a quotient procedure, it is natural to wonder whether the holonomy
groupoid J (F)y) is also quotient of the holonomy groupoid J# (¥). We show that this is
always the case (see Theorem 2.25).

Theorem. The map w induces a canonical open surjective morphism
B:H(F) —> H(Fy).

We emphasize that this is a statement about (typically not source simply connected)
topological groupoids. It is an analogue of the following fact in Lie groupoid theory: let
A, B be integrable Lie algebroids and §, # the source simply connected Lie groupoids
integrating them. Given a morphism of integrable Lie algebroids ¢: A — B which is fiber-
wise surjective and covers a surjective submersion between the manifolds of objects',
there is a unique Lie groupoid morphism ®:§ — # integrating ¢, and further ® is a’
surjective submersion.

We then refine the above result in the case of Lie group actions. That is, we suppose
that w: P — M = P/G is the quotient map of the action of a Lie group G on P, which
we assume to be free, proper, and preserving the singular foliation % . The action lifts
naturally to a G-action on J¢ ("), but a simple dimension count shows that the quotient
cannot be isomorphic to # (F3s) in general. In Section 3, we show that when ¥ contains
the infinitesimal generators of the G-action, there is a natural action of a semidirect prod-
uct Lie group G x G on (¥ ) — not by Lie groupoid automorphisms — with quotient
H (Far). Remarkably, this is a Lie 2-group action (see Theorem 3.7). In other words:

Theorem. When ¥ contains the infinitesimal generators of the G-action, the induced

morphism & is the quotient map of a Lie group action in the category of topological
groupoids.

We expect the above conclusion to hold in greater generality, namely, under a regular-
ity condition on the intersection of ¥ with the foliation generated by the G-action on P.
We hope to address this in a future paper.

In the general case that ¥ does not necessarily contain the infinitesimal generators
of the G-action, the fibers of E coincide with the orbits of a groupoid action on #(¥),
which we describe in Proposition 5.14.

We also obtain a canonical Lie 2-group action, whose orbits however may be smaller
than the fibers of E (see Proposition 4.9 and Corollary 4.11).

'Such a morphism is called a Lie algebroid fibration in [10].
2® may fail to be a Lie groupoid fibration; see, for instance, Example 5.7.
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Proposition. There is a canonical Lie ideal §) of @ which gives rise to a Lie 2-group
H x G and a Lie 2-group action on # (¥ ), whose orbits are contained in the E-fibers.

The concrete form of this Lie 2-group action is inspired by the special case in which
F contains the infinitesimal generators of the G-action (hence H = G). Indeed, in that
case, we recover the Lie 2-group action given in Section 3.

We now return to the general setup of the first theorem (in particular, the surjective
submersion 7: P — M does not necessarily arise from a Lie group action). In Section 5,
we address the question of when the open surjective morphism E: #(F) — H(Fpr)
obtained in the first theorem is a fibration. This is useful because when = is a fibration of
Lie groupoids [10], it allows to describe the holonomy groupoid J (F37) without knowing
Fur - Namely, # (Fpy) is the quotient of # (¥ ) by a normal subgroupoid system; the latter
— as we explain just before Example 5.17 — is a set of data defined directly and explicitly
in terms of () and the projection 7w: P — M. There is also a notion of fibration of
topological groupoids [7], which however appears to be less useful for the purpose of
describing the quotient groupoid.

We summarize as follows Example 5.7 and Propositions 5.9, 5.11, and 5.15.

Proposition. (1)  The open surjective morphism &: H(F) — H(Fpr) generally
fails to be a fibration of topological groupoids. In the smooth case, E gener-
ally fails to be a fibration of Lie groupoids.

—~

(i)  Suppose that F is the pullback foliation of Fp;. Then the morphism E is a

fibration of topological groupoids. In the smooth case, B is a fibration of Lie
groupoids.

(iii) Suppose that 7 is the quotient map of a free, proper G-action on P which pre-
serves F . Then the morphism E is a fibration of topological groupoids, provided
a technical condition is satisfied. In the smooth case, B is always a fibration of
Lie groupoids.

Conventions. Given a groupoid ¥ with space of objects P, its source map is denoted
by s: § — P, its target map is denoted by t: § — P, and its product (multiplication)
§x¢§ — § is denoted by o.

2. Quotients of foliations by surjective submersions

We start reviewing singular foliations in the sense of [1] and the topological groupoids
associated to them. As recalled in Section 2.2, given a surjective submersion with con-
nected fibers P — M, an “invariant” singular foliation ¥ on P induces a singular foliation
Fp on M, which can be regarded as a quotient of the former. The main statement of the
paper is that the holonomy groupoid of %7 is a quotient of the holonomy groupoid of ¥ ;
see Theorem 2.25. In Section 2.3, we give an explicit characterization of the quotient map
when ¥ is a pullback foliation.
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2.1. Background on singular foliations and holonomy groupoids

We review first the notions of singular foliation and holonomy groupoid from the work
[1] by Androulidakis—Skandalis.

Singular foliations.

Definition 2.1. A singular foliation on a manifold P is a C°°(P)-submodule ¥ of the
compactly supported vector fields X (P), closed under the Lie bracket and locally finitely
generated. A foliated manifold is a manifold with a singular foliation.

Remark 2.2. Let P be a manifold and ¥ a submodule of X, (P). Take an openset U C P
and consider
p'F = {X|y: X € ¥ and supp(X) C U}.

The module ¥ is locally finitely generated if, for every point of P, there is an open
neighborhood U and finitely many vector fields X1, ..., X, € X(U) such that t{,l? is
SpanCCoo(U){Xl, ey Xn}

Any singular foliation gives rise to a singular distribution that satisfies the assumptions

of the Stefan—Sussmann theorem; therefore, it induces a partition of the manifold into
immersed submanifolds called leaves.

Example 2.3. (i) Given an involutive regular distribution D C TP, which corresponds to
a regular foliation by the Frobenius theorem, we obtain a singular foliation ¥ := T (D).

(ii) If A is a Lie algebroid over P with anchor ff: A — TP, then §(I";(A4)) is a singular
foliation.

The following vector spaces measure the regularity of a singular foliation at a given
point.

Definition 2.4. Let (P, ¥) be afoliated manifold and p € P. Denote [, :={f € C*(P):
f(p) =0}

The tangent of ¥ at pis F, :={X(p) : X € F} C T, P.

The fiber of ¥ at pis ¥, :=F /[, F.

If dim(F),) is constant, then ¥ is a regular foliation. If dim(%}) is constant, then ¥ is
a projective module and it is isomorphic to the sections of a vector bundle.

Definition 2.5. Let (M, $37) be a foliated manifold and 7r: P — M a submersion. Denote
T Fy = SpanceopyiX o : X € Fir},

a submodule of sections of the pullback vector bundle 7*TM over P. The pullback foli-

ation of ¥ under 7 is
7 Y Fy) = dn) L7 Fu).

where the preimage is taken with respect to d7: X.(P) —> I'(w*TM),Y +— dn(Y). The
pullback foliation is a singular foliation on P [1, Proposition 1.10].



Quotients of singular foliations and Lie 2-group actions 1255

Remark 2.6. The original definition in [1] is given in more generality, for any smooth
map 7 transverse to F37. When x is a submersion, we also have the description

7 (Fm) = Spanceepy {(dm) T ({X o : X € Fu})}.

i.e., the pullback foliation is generated by projectable vector fields whose projection lies
in f’(VM.

Definition 2.7. Given a submodule ¥ of X.(P), its global hull is given by
F={XecX(P): fX eF VfeCXP)).

Given a surjective submersion 7: P — M (not necessarily with compact fibers) and
a singular foliation ¥ on M, it may happen that the set of projectable vector fields in
7~ (Far) consists just of the zero vector field, but, by definition of a pullback foliation,

71 (Far) is the C°(P)-span of projectable vector fields in 71 (Far).

Holonomy groupoids. Singular foliations as in Definition 2.1 contain more information
than just the underlying partition of P into leaves since they carry “dynamics” on P.
This extra information was used in [1] to define the holonomy groupoid via the following
“building blocks.”

Definition 2.8. Given a foliated manifold (P, ¥), a bisubmersion for ¥ is a triple (U, t,s),
where U is a manifold and t: U — P, s: U — P are submersions such that

sTHF) =t71(F) = [(ker(ds)) + T¢(ker(dt)).

Example 2.9. Let § = P be a Lie groupoid and Fy¢ the singular foliation on P given
by the Lie algebroid of . Any Hausdorff open set U C &, together with t|yy and s|y,
is a bisubmersion for Fg. In particular, if ¥ is a Hausdorff Lie groupoid, then it is a
bisubmersion.

The following proposition, proven in [1, §2.3], assures the existence of bisubmersions
at any given point pg € P.

Proposition 2.10. Given pg € P, let X1, ..., Xy € F be vector fields whose classes in
the fiber ¥, form a basis. For v = (vy,...,Vg) € RX, put ¢, := exp(}_; vi Xi), where
exp denotes the time one flow. Put W = RF x P, t(v, p) = ¢y(p), and s(v, p) = p. There
is a neighborhood U C W of (0, po) such that (U, t,s) is a bisubmersion.

Definition 2.11. A bisubmersion as in Proposition 2.10, when it has s-connected fibers,
is called a path holonomy bisubmersion.

Definition 2.12. Let (P, ) be a foliated manifold, (U, t, s) a bisubmersion, and u € U.
Denote x = s(u).

o A bisection at u consists of an s-section o: V' — U, defined on an open subset V C P,
whose image is transverse to the fibers of t and passes through u.
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e Given a diffeomorphism f: P DV — V' C P, abisubmersion (U, t,s) is said to carry
f atu € U if there exists a bisection o at u such that f =too.

Definition 2.13. Let (P, ) be a foliated manifold, and let (U, t;,s1) and (Us, t5,s,) be
bisubmersions for ¥ .

e The inverse bisubmersion of Uy is U; ! := (Uy, s1, t1), obtained by interchanging the
source and target maps.

e The composition bisubmersion is Uy o U, := (Ujs, X¢, Uz, t1,82).

e A morphism of bisubmersions is a map u: U; — U, that commutes with the respective

source and target maps. We will say that it is a local morphism if it is defined on an
open set of Uj.

If there is a morphism of bisubmersions u: U; — Ua, then any local diffeomorphism
carried by U; atu € U; will be carried by U, at pu(u).

Definition 2.14. Let (P, ¥) be a foliated manifold, and let (Uy, t1,s1) and (U, t2,s,) be
bisubmersions for ¥, u; € Uy, and u, € U,. We say that u is equivalent to u, if there is
a local morphism of bisubmersions u: Uy D U{ — U, with pu(u) = us.

The previous definition gives an equivalence relation on any family of bisubmersions,
as becomes clear from the following useful proposition.

Proposition 2.15. Let (P, ¥) be a foliated manifold, and let (U1, t1,s1) and (U, t3,87)
be bisubmersions for ¥, uy € Uy, and uy € Uy. Then uy is equivalent to u, if and only if
Uy and U, carry the same local diffeomorphism at uy and u,, respectively.

Proof. This is a direct consequence of [1, Corollary 2.11]. |

Definition 2.16. Let U = {U; };cs be a family of bisubmersions for ¥ .

e A bisubmersion U’ is adapted to U if, for any u’ € U’, there isu € U € U which is
equivalent to u’. A family of bisubmersions U’ is adapted to U if any bisubmersion
U’ € U is adapted to U.

e We say that U is an atlas if

(1) for all p € P, there is a U € U that carries the identity diffeomorphism
nearby p;

(2) the inverse and finite compositions of elements of U are adapted to U.

Example 2.17. Let § = P be a Lie groupoid and Fy its associated foliation. Any cover
Ug = {U;}ie; of § by open Hausdorff subsets is an atlas of bisubmersions for Fg. In
particular, if ¢ is Hausdorff, it is also an atlas. Any two atlases given by Hausdorff covers
of § are adapted to each other by the identity morphism on §.
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Proposition 2.18 (Groupoid of an atlas). Let U be an atlas of bisubmersions for ¥ .
Denote
W= | | U/~
UeUu
where ~ is the equivalence relation given in Definition 2.14, and endow it with the quotient
topology. There is a natural structure of an open topological groupoid on §(U), where
the source and target maps are given by the source and target maps of the elements of U.

The proof of the following statement can be found in [9, §3.1] and in [8].

Proposition 2.19. Two atlases U and U’ are adapted to each other if and only if their
corresponding topological groupoids are isomorphic: §(U) = §(U’).

Definition 2.20. Let § be a family of source connected bisubmersions such that
Upes s(U) = M, satisfying this condition: for every U € § and p € s(U), there is an
element e, € U carrying the identity diffeomorphism nearby p. The atlas U generated by
§ is called a source connected atlas.

For instance, consider a family § of path holonomy bisubmersions for ¥ such that
Uyes sS(U) = M generates a source connected atlas. It is called a path holonomy atlas.
Also, any source connected Hausdorff Lie groupoid giving rise to ¥ constitutes a source
connected atlas.

The groupoid of a source connected atlas is source connected, and one can show [8]
that it is the same” for all source connected atlases.

Definition 2.21. The holonomy groupoid # (¥ ') of ¥ is the groupoid of any source con-
nected atlas.

In particular, the holonomy groupoid is an open source connected topological
groupoid, which does not depend (up to isomorphism) on the choice of source connected
atlas.

Remark 2.22. Let § =2 P be a source connected Lie groupoid and F¢ its associated
foliation. Then, as we now explain, the holonomy groupoid # (F¢) is a quotient of §.
Let S¢ be a Hausdorff source connected cover of a neighborhood of the identity bisec-
tion in § and Uyg the atlas generated by Sg. Then Uyg is a source connected atlas; hence
5(Ug) = H(Fg). One can show that Ug is adapted to the atlas given in Example 2.17
and, therefore, that (Ug) = ¥/ ~, where the latter equivalence relation identifies two
points when they carry the same local diffeomorphism. Consequently, # (Fg) = §/ ~.
When ¥ is a regular foliation, J (¥ ') agrees with the classical notion of holonomy
groupoid of a regular foliation. Indeed, by the Frobenius theorem, there is a Lie algebroid
D C TP suchthat ¥ =I'. (D). The monodromy groupoid I1(¥), consisting of homotopy
classes of paths in the leaves of F, is a source connected Lie groupoid integrating D.

3Proposition 2.19 then implies that all source connected atlases are adapted to each other.
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Therefore, # (¥) = (II(¥)/ ~), and the latter is the well-known holonomy groupoid of
a regular foliation.

Remark 2.23. A singular foliation  on M is called projective if there is a vector bundle
E suchthat ¥ =~ I';:(E) as C° (M )-modules. These are exactly the singular foliations for
which the holonomy groupoid H(¥") is a Lie groupoid. The class of projective foliations
contains the regular foliations as a proper subclass.

2.2. The main theorem
We reproduce [2, Lemma 3.2] about quotients of foliated manifolds.

Proposition 2.24. Let w: P — M be a surjective submersion with connected fibers. Let
F be a singular foliation on P such that T'c(kerd &) C ¥ . Then there is a unique singular
foliation Fpr on M withn =" (Fyy) = F.

The following theorem is our main result and will be proven in Appendix A.1.

Theorem 2.25. Let w: P — M be a surjective submersion with connected fibers. Let ¥
be a singular foliation on P such that

[Fc(kerdm), ] C Te(kerdm) + . .1

Denote by Fy the singular foliation on M obtained from F%¢ := T'o.(kerdn) + F as
in Proposition 2.24. Then there is a canonical, open, surjective morphism of topological
groupoids

E:H(F)—> H(Fu)

covering 7.
This should be interpreted as follows. The singular foliation 37 is obtained from ¥

by a quotient procedure (more precisely ¥y = 7+F ; see Lemma A.1 (ii)). The theorem
states that the same is true for the respective holonomy groupoids.

Remark 2.26. We now give a characterization of the morphism E. By Lemma A.1 (i) and
Corollary A.6, any source connected atlas U for ¥ satisfies that 7 U := {(U,wr ot,w 05s) :
U € U} is an atlas equivalent to a path holonomy atlas for 7. The map E is characterized
by

E([u]) = [ulm 2.2)

for all u € U, where [u]ps is the class of u € (U, w ot, w 0s), a bisubmersion for Fjy.

Remark 2.27. When J# (§) and J# (F)s) are Lie groupoids, E is a surjective submersion
(cf. Remark A.3).

For regular foliations, the morphism E admits a familiar description.
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Y

Figure 1. The foliated manifolds in Example 2.29.

Proposition 2.28 (Regular foliations). When both ¥ and Fur are regular foliations, the
morphism E: H (F) — H (Fpr) can be easily described by

E([¥]hot) = [ © ¥]hot:

for each curve y:[0,1] — P inside a leaf of ¥ . Here [—|no denotes holonomy classes.

Proof. We may assume that ¢ (') is Hausdorff (when not, one needs to argue using a
Hausdorff cover of it as in Remark 2.22). The Lie groupoids (# (F), t,s) and (K (Fpr),
tar, syr) are source connected atlases for ¥ and Fjy, respectively. The map 7: H (F) —
H(Fum); [V]lhot = [ © ]not is @ submersion since it is a Lie groupoid morphism inte-
grating the fiber-wise surjective Lie algebroid morphism . This implies that (# (¥),
tyr o 7T, 8p o 7) is a bisubmersion for £, by [1, Lemma 2.3]. Notice that the latter triple
equals (H (¥ ), ot,  os), which hence is a bisubmersion.

Using that v has connected fibers, we have that (J (¥ ), = o t, w o s) is a source con-
nected atlas for #37, and, by Remark 2.26, we can thus compute the map E as follows:

E([ylhot) = A ([YInot) = [7 © Y]nol,

where the first equality holds by (2.2) and the fact that 7: (#(F), w ot, w 0o S) —
(H (Far), tar, sar) is a morphism of bisubmersions. |

We present an example for Theorem 2.25 where ¥ is a regular foliation and F)y is
a genuinely singular foliation. Notice that the holonomy groupoid of the former foliation
has discrete isotropy groups, whereas for the latter the isotropy groups are not all discrete.

Example 2.29. Consider the cylinder P := S! x R with coordinates (6, y) and the regular
foliation ¥ given by the integral curves of the nowhere vanishing vector field X := % +
y%. The foliation ¥ is the quotient by the natural Z-action of the foliation on the x-y-
plane whose leaves are given by graph(e**¢) on the open upper plane, graph(—e**¢)
on the open lower plane (with ¢ varying through all real numbers), and the line {y = 0}.
The circle U(1) acts on the cylinder P by rotations of the first factor, preserving the
foliation & . The singular foliation ¥ on P has three leaves (two open leaves, separated

by the middle circle). The quotient map
7P =S'xR— M:=P/Ul)=R

is the second projection. On the quotient, the induced foliation is 3y = (y %) a genuinely
singular foliation. See Figure 1.
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For the holonomy groupoids, we have J () = R x P, the transformation groupoid
of the action of the Lie group R on P by the flow of X, which reads ¢;(6 mod 27, y) =
(0 + t mod 27, e'y). Further, J(F31) = R x M, the transformation groupoid of the
action of the Lie group R on M by the flow of y%, which reads ¢;(y) = e’y. This
follows from [2, Example 3.7 (ii)]. The canonical surjective morphism of Theorem 2.25 is

E:RxP —>RxM, (t,p)+ (t.7(p)).

This can be seen from (2.2) since the vector field X m-projects to y%. Notice that, at
points S! x {0}, the isotropy groups of # () are discrete, as for all regular foliations,
while the isotropy group of J (Fyy) at the point 0 € M is isomorphic to R.

2.3. A characterization of the quotient map for pullback foliations

We make the map E in Theorem 2.25 more explicit in the special case that I (kerd ) C
% .Inthis case, ¥ = Fbie ;= 71 %), is the pullback of Fs by 7.
We will need [9, Theorem 3.21], stated as follows.

Theorem 2.30. Given a foliated manifold (M, %)) and a surjective submersion with
connected fibers w: P — M, there is a canonical isomorphism

@ H (n~ N (Far)) — n Y (H(Fu)),
where the left-hand side denotes the pullback groupoid P 5 X¢ H (Far)s X P.

Remark 2.31. Let U be a path holonomy atlas for 3. Then 7' U := {7z~ U : U € U},
where
77U = Py xiUgxz P

is a source connected atlas for 7! (Fys); see [9]. We describe the isomorphism ¢ by
[(p.u.@)] = (p.[ul. q).

Our alternative description of the map & is as follows.

Proposition 2.32. Let w: P — M be a surjective submersion with connected fibers. Let
F be a singular foliation on P such that Tc(kerdm) C F. Denote by Fy the unique
singular foliation on M such that w="(Fy) = F. Under the canonical isomorphism
o H(F) 5ol (H (Fpr)) given in Theorem 2.30, the following two morphisms coincide:

o the morphism B: H (F) — H (Fpr) given by Theorem 2.25,
e the second projection pry: 1N (H (Far)) = P xpr H(Fyr) xp P — H(Fur).

Proof. Fix apath holonomy atlas Uy, for F37. By Remark 2.31, the family U := 71 Uy,
is a source connected atlas for ¥ = 7 ~!(F37). Moreover, one can show that, for all U €
Uy, the triple (=1 (U), w o t, w o s) is a bisubmersion for 3.

We want to show that E o ¢~ = pr,. To this aim, take any (p, ¢, q) € 7~ 1 (H (Fur))
(so, in particular, ¢ € J(Fpr)). Fix a representative u € U € U such that [u] = ¢; then
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o Y (p.t.q) = [(p.u.q)], where (p,u,q) € m~'U.Itis sufficient to show that
E([(p.u,)]) = [u]. 2.3)

Note that 7: (w~'U, w ot,m0s) = U; (p,u, q) — u is a morphism of bisubmersions for
Fu, therefore (p,u,q) € (m~'U, m ot, w o5s) is equivalent to u € (U, t,s). Then (2.3)
holds by the characterization of & given in Remark 2.26. ]

3. Lie 2-group actions on holonomy groupoids

We start reviewing Lie 2-groups and Lie 2-group actions. In Section 3.2, we present an
important special case of Theorem 2.25 in which the map Z is the quotient map of a Lie 2-
group action on # (F) (see Theorem 3.7 and Proposition 3.8). We will revisit this special
case later on, in Section 4.3.

3.1. Background on Lie 2-groups
In the sequel, we will need the notion of Lie 2-group, which we recall here.
Definition 3.1. A Lie 2-group is a group in the category of Lie groupoids.

In other words, a Lie 2-group is a Lie groupoid § = G such that § and G are Lie
groups, so that the group multiplication and group inverse are Lie groupoid morphisms,
and the inclusion of the neutral elements is a Lie groupoid morphism.

Remark 3.2. Equivalently, a Lie 2-group is a groupoid in the category of Lie groups.

Example 3.3. Let G be a Lie group and H C G a normal Lie subgroup. Then H acts on
G by left multiplication, leading to the action Lie groupoid H x G = G. In particular,
the groupoid composition is

(h2,h1g) o (h1,g) = (hahy, g).

Note that its space of arrows has a group structure, namely the semidirect product by the
conjugation action Cg(h) = ghg™! of G on H. Explicitly, the group multiplication is
given by
(h1,81) - (h2.82) = (h1Cg, (h2). 8182).
We write H x G for H x G endowed with this group structure.
One can check that H x G = G is a Lie 2-group.

Remark 3.4. For the sake of completeness, we provide the description of a Lie 2-group in
full generality. A crossed module of Lie groups consists of Lie groups H and G, Lie group
morphisms C: G — Aut(H); g + C, and t: H — G such that t(Cq (h)) = gt(h)g™!
and Cyy(j) = hjh™! for all g € G and h, j € H. There is a bijection between Lie
2-groups and crossed modules of Lie groups [6]. Given a Lie 2-group ¥ = G, the asso-
ciated crossed module is given by G, by H := ker(s) (a normal subgroup of §), by the
restriction t: H — G of the target map, and the Lie group morphisms C: G — Aut(H);
g+> Cg(h) := ghg™!. Then ¢, as a Lie group, is isomorphic to the semidirect product of
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G and H by the action C, and, as a Lie groupoid, it is isomorphic to the transformation
groupoid of the H-action on G by left multiplication with t(-).

Definition 3.5. A Lie 2-group action is a group action in the category of Lie groupoids.

Hence an action of a Lie 2-group § = G on a Lie groupoid # = P consists of group
actions of § on J and of G on P such that the action map

GxXH — H

tx tus XS t\H/s

GxP ——P

is a Lie groupoid map. Notice that such an action is not by Lie groupoid automorphisms
of #. Nevertheless, the following result holds.

Proposition 3.6. Consider a free and proper action x of the Lie 2-group § = G on a
Lie groupoid 3 = P. Then #' .= H/§ and M := P/G are manifolds, and ' =
M acquires a canonical Lie groupoid structure. Further, the projection # — K’ is a
surjective submersion and Lie groupoid morphism.

Although we do not need the above result, we mention it here because it puts in
perspective Theorem 3.7 below. (One can prove Proposition 3.6 and also the stronger
statement that the projection is a fibration; see Definition 5.3. To do so, one can follow
[10, §2.4]: define R = {(gp,p) e PxP:pePandge G}and R ={((h,g) x£,§)
H x H & e and (h, g) € §}, and show that (R, R) is a smooth congruence for J.
Then Theorem 5.6 gives the desired conclusion. See [8, §5.3] for more details.)

3.2. Lie 2-group action on the holonomy groupoid of a pullback foliation

Fix a foliated manifold (P, ¥') and a free and proper action of a connected Lie group G
on P preserving . We denote the quotient map by 7: M — M/G. We assume that the
infinitesimal generators of the G-action lie in the global hull F ,1e., [c(kerdm) C 7.
This occurs exactly when ¥ is the pullback of #3s by 7, as in Section 2.3.

Theorem 3.7. Let G be a connected Lie group acting freely and properly on a foliated
manifold (P, ). Assume that T'c(kerdw) C & . Then there is a canonical Lie 2-group
action* of G x G = G on the holonomy groupoid ¥ (F).

Here G x G = G is endowed with the Lie 2-group structure of Example 3.3.

Proof. We make use of the canonical isomorphism J(F) = 7~ }(H(Fp)) given in
Theorem 2.30.

There is a canonical Lie 2-group action of G x G on w1 (H (Far)), extending the
given action of G on the base P, given by

(h.g) * (p.[v].q) = (hgp.[v].£q). 3.1)

“Here we use the term “Lie 2-group action” in a loose way since J (F ) is generally not a Lie groupoid.



Quotients of singular foliations and Lie 2-group actions 1263

It can be checked by computations that this defines a group action and groupoid mor-
phism. Alternatively, we can use the isomorphism of Lie 2-groups to G x G =2 G (the
pair groupoid, with product group structure) givenby G x G = G x G, (h, g) — (hg, g).
Under this isomorphism, (3.1) becomes

(G x G) xn™ (H(Fum)) = o~ (K (Far)).  ((h.g). (p.[v].9)) = (hp.[v].g9).
which is easily checked to be a Lie 2-group action. ]

Proposition 3.8. Assume the setup of Theorem 3.7.

The orbits of the Lie 2-group action of G X G = G on K (¥ ) are exactly the fibers
of the canonical map &: H(F) — H(Fu). In particular, the quotient of H (¥ ) by the
action is canonically isomorphic to # (Fpr).

Proof. The formula (3.1) makes clear what the orbits are, and Proposition 2.32 shows that
they agree with the Z-fibers. ]

4. Quotients of foliations by group actions: the general case

In this section, we consider the following setup:

a foliated manifold (P, ¥),

a free and proper action of a connected Lie group G on P preserving 5 .

Condition (2.1) in Theorem 2.25 is satisfied. Hence we obtain an open surjective groupoid
morphism
EH(F)—> H(Fu) 4.1

covering the projection 7: P — M := P /G, where the latter is endowed with the foliation
Fur specified there.

Unlike the special case considered in Section 3.2, I'c (ker d ) may not be contained
in ¥ ; hence the E-fibers are not the orbits of a Lie 2-group action in general. In this
section, we make two general statements about the E-fibers.

In Section 4.1, we lift the G-action on P to an action on # (F) by groupoid automor-
phisms. Using this action, later in Proposition 5.14 we can characterize the fibers of 2 as
the orbits of a groupoid action.

In Section 4.2, we establish the existence of a canonical Lie 2-group action on # (F)
whose orbits lie inside the E-fibers but which might fail to be the whole fiber (see Propo-
sition 4.9 and Corollary 4.11).

4.1. The lifted group action

We show that the G-action on P admits a canonical lift to #(F). We start with the
following lemma.
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Lemma 4.1. Let g: P — P be the diffeomorphism given by the action of g € G. Take a
path holonomy atlas U and a bisubmersion W € U. The triple

gW =W, t, :=got, sg :=gos)
is a bisubmersion. Moreover, gW is adapted to U.

Proof. Because the G-action preserves ¥, the pullback foliation §~' ¥ equals  , imply-
ing that gW is a bisubmersion.

We prove that gW is adapted to U. Notice that g(W; o W) = gW; o gW, for any
W1, Wa € U. Hence it is sufficient to assume that W is a path holonomy bisubmersion as
any element in the path holonomy atlas is a composition of such elements.

Denote by vy, ..., v, € F the vector fields that give rise to the path holonomy bisub-
mersion W (hence W C R”" x P). Consider the push-forward vector fields g«vq, ...,
&+Vy € F . The associated path holonomy bisubmersion is defined on

W' :={(v.gp) : (v.p) e W} CR" x P.

Since gW — W’, (v, p) — (v, gp) is an isomorphism of bisubmersions and since W’
is adapted to U (being a path holonomy bisubmersion), we conclude that gW is adapted
to U. |

Now we introduce the lifted action
*GXH(F)—> H(F), gx[v]:=[vlgw 4.2)

where, for any v in a path holonomy bisubmersion W, we denote by [v]gw the class of v
regarded as an element of gW . This is clearly well defined and indeed a Lie group action.
Further, this action is by groupoid automorphisms.

Lemma 4.2. For all g € G, the map gx(—): H(F) — H(F) is a groupoid morphism
covering the diffeomorphism g¢: P — P.

Proof. Using the construction of gx(—), it is clear that the source and target map commute
with the map g. Further, gx(—) preserves the groupoid composition since g(W; o W) =
gW; o gW, for any path holonomy bisubmersions Wy, W,. [

Lemma 4.3. The orbits of the lifted action * lie in the fibers of B: H(F) — H (Fu).

—

Proof. Let U be a source connected atlas for . The morphism E is induced by the
identity map U to & U; see the characterization of E given in Remark 2.26.

Fix g € G,and u € U € U. By the above and since 7 o § = x, the images under E of
both [u] and g*[u] = [u]g are the class of the element u € (U, 7 o t, 7w os). In particular,
E([u]) = E(gx[u]), showing the desired statement. |
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Example 4.4 (Regular foliations). As discussed in Remark 2.22, if ¥ is a regular foli-
ation, then #(F) coincides with the classical notion of holonomy groupoid given by
holonomy classes of paths in the leaves. The Lie group G acts canonically on # (¥) by
translating paths: G X H(F) — H(F); (g, [V]no1) > [€¥]hol- It is easy to see that this
action agrees with the lifted action (4.2), i.e., that [g¥]nol = g*[]nol, because [g¥]hol €
(H(F).t,s) is equivalent to [y]ho1 € (H(F ), tg,sg). Moreover, using the characterization
of E given by Proposition 2.28, it is clear that E(g*[¥]no1) = E([¥]ho1), in accordance
with Lemma 4.3.

4.2. A canonical Lie 2-group action on the holonomy groupoid

In this subsection, we prove that there is always a Lie 2-group action on J#(¥) whose
orbits lie inside the fibers of the morphism E. In general, however, the orbits do not coin-
cide with the (connected components of) the E-fibers. The formulae for this Lie 2-group
action are suggested by the special case we will spell out in Section 4.3.

Denote the Lie algebra of G by g, and by vy € X(P) the generator of the action
corresponding to x € g.

Lemma 4.5. The subspace ) ;= {x € g : vy € f/?} is a Lie ideal of g.

Proof. Since ¥ is G-invariant, for all y € g we have [v,, ] C ¥, or equivalently [v,, f’c] C
¥ .Letx € h. Then forall y € g we have v, 5] = [vy,vx] € F; thatis, [y, x] € b. L]

Denote by H the unique connected Lie subgroup of G with Lie algebra §. Lemma 4.5
implies that H is a normal subgroup; hence, as in Example 3.3, we obtain a Lie 2-group
HxG=G.

We define a Lie group action of H of J#(¥). It is not by groupoid automorphisms,
unlike the lifted G-action % introduced in Section 4.1, but rather it preserves every source
fiber. In order to do so, we need a lemma.

Lemma 4.6. There is a canonical groupoid morphism
¢:HxP — HF),

where H x P denotes the transformation groupoid of the H -action on P obtained restrict-
ing the action of G.

The morphism ¢ can be described as follows: take (h, p) € H x P and denote by
h: P — P the diffeomorphism corresponding to h under the G-action. Then ¢ (h, p) is
the unique element of J (¥) carrying the diffeomorphism h near p.

Proof of Lemma 4.6. Denote by ¥ the regular foliation on P by orbits of the H -action.
Its holonomy groupoid is exactly H x P, as follows from [1, Example 3.4 (4)] (use that
the Lie groupoid H x P gives rise to the foliation ¥z and is effective; i.e., the identity
diffeomorphism on M is carried only by identity elements of the Lie groupoid, due to the
freeness of the action).

Since g C ¥, we are done applying [11, Lemma 4.4] in the special case of the pair
groupoid over P.
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gy(0)
y(0)

h(t)-gy(1l)
y(D) gy()

g
Figure 2. On the left, a curve representing the holonomy class (%, g) = [y].

The description of ¢ given in the statement holds since ¢ is a groupoid morphism
covering Idp. ]

Lemma 4.7. One has $(H x P) C K := ker(E).

Proof. We use Lemma 4.6. A point ¢(h, p) of the left-hand side carries near p the dif-
feomorphism h (the diffeomorphism corresponding to 4 under the G-action). If 2 € H is
sufficiently close to the unit element, ¢ (%, p) admits a representative ¥ in a path holonomy
bisubmersion (U, t,s) for ¥ satisfying the properties of Remark 2.26. The point u, viewed
as apointin (U, ot, 7 os), carries Idys since h preserves each w-fiber. This implies that
E([u]) = 14(g), by the characterization of E given in Remark 2.26. |

Example 4.8 (Regular foliations). As discussed in Remark 2.22, if ¥ is a regular foli-
ation, there is a groupoid morphism Q: IT1(F) — J# (¥ ). The orbits of the H -action lie
inside the leaves of ¥ ; hence for every path 4(¢) in H and p € P, the homotopy class
[A(?) p] is an element of I1(¥ ). Moreover, the freeness of the G-action implies that the
elements [A(?)p], [E(t)p] € I1(¥) have the same holonomy if and only if 4(1) = E(l)
and h(0) = h (0). Therefore, there is a well-defined injective groupoid morphism

HxP— HF);, (hp) Q[h(f)P],

where /(¢) is any path in H with £(0) = e and h(1) = h. This morphism is precisely ¢.
It is clear using Proposition 2.28 that its image lies inside K = ker(ZE).

Consider now the following map, obtained applying the morphism ¢ of Lemma 4.6
and left-multiplying:

SHXH(F) - H(F), h3E:=¢(ht(©)ok. 4.3)

Notice that ¢ being a groupoid morphism implies that % is a group action. We now assem-
ble the group action x and the lifted action *. See also Figure 2.
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Proposition 4.9. The map
*x:(HXG)x H(F)— H(F), (h g)*E:=hx(gx§)
is a Lie 2-group action.

Proof. We first observe that if § € J¢(F) carries a diffeomorphism v/, then g * £ carries
the diffeomorphism gy g~!.

We also observe the following two facts, which hold because both the left and the
right sides carry the same diffeomorphism (as can be seen using the above observation)
and because of Proposition 2.15,

(i) the map ¢p: H x P — J(¥F) satisfies the following equivariance property:

g*xp(h, p) = ¢(cgh,gp).

where cg denotes conjugation by g,
(ii) forall h € H and £ € J(F), we have

hx&=¢(ht(§)) o & op(h™", hs(£)).

To show that x defines a group action, the main requirement is to show that
((h1, g1)(h2, g2)) * & equals (h1, g1) * ((h2, g2) * &) for all (h;, g;) € Hx G and § €
H (F). This holds by a straightforward computation, in which the second term is re-
written using the fact that ¢ is a groupoid morphism and is G-equivariant (fact (i) above).

To show that x defines a groupoid morphism, the main requirement is to show that
(hiha, g2) x (€1 0 &) and ((hy, g1) * &1) o ((ha, g2) * &) agree, where g1 = hpgo and
s(£1) = t(&). Upon using that ¢ is a groupoid morphism and the action  is by groupoid
automorphisms, this boils down to applying® fact (ii) above. ]

Example 4.10 (Regular foliations). When both ¥ and F)s are regular foliations, using
Examples 4.4 and 4.8, the Lie 2-group action x can be described as follows: for any path
y in a leaf of ¥,

(h,g) x [yl = [(®) - gy(D] o [g¥],

where ¢ — h(t) is any path in the Lie group H starting at the unit element and ending in &
and the dot denotes the group action of H on P. Thus the right-hand side is the (holonomy
class of the) concatenation of the following two paths in P: the translate gy of the original
curve y by the group element g and the path obtained acting on its endpoint gy (1) by the
path A(¢) in H.

Lemmas 4.3 and 4.7 imply the following.

Corollary 4.11. The orbits of the Lie 2-group action * of Proposition 4.9 lie inside the
& -fibers.

Swith b := hy and £ := gy *£1.
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4.3. An alternative description for the Lie 2-group action of Section 3.2

We obtained the formula for the Lie 2-group action of H x G in Section 4.2 by considering
a special case, as we now explain. Assume the setup of Theorem 3.7, in particular, that
Ic(kerdm) C F (ie., ¥ contains the infinitesimal generators of the G-action). There we
defined an action of G x G on # (¥ ) by means of the canonical isomorphism ¢: # (£') =
T H (Fy).

The goal of this subsection is to prove the following proposition.
Proposition 4.12. Consider these Lie 2-group actions of G X G on J (F):
e the action® x described in Proposition 4.9,

e the action described in Theorem 3.7.

These two actions coincide. In other words, under the canonical isomorphism @: H (F) =
7 Y H (Far) given in Theorem 2.30, one has

¢((h,g) x§) = (h,8) * (&)
forall (g,h) € G xG and & € H(F), where * is the action given in (3.1).

We will prove this statement by analyzing the restrictions of the actions to {e} x G
and G x {e}. (Notice that these two subgroups generate G x G as a group since every
element (4, g) can be written as (%, e)(e, g).) We denote by ¢: H (F) St H (Fpr) the
canonical isomorphism given in Theorem 2.30.

Lemma 4.13. Under the isomorphism ¢, the lifted action x of G introduced in Section 4.1
and the restriction of the Lie 2-group action * of (3.1) agree:

o(gx€) = (e.8) * 9(§)
forallg € Gand & € H(F).

Proof. Let U be a path holonomy atlas for . Recall that, by Remark 2.31, the pullback
atlas 7~1 U is an atlas for 7! (%)) equivalent to a path holonomy atlas. Fix £ € #(F).
Take a representative w in a bisubmersion W in the path holonomy atlas of 7! (F3). By
the above, there is a path holonomy bisubmersion U in U and a locally defined morphism
of bisubmersions

(W, t,s) »> (771U, t,5)

mapping w to some point (p, v, ¢). By definition, ¢([w]) = (p, [v], ).
Now fix g € G. Recall that the bisubmersion gW := (W, g o's, g o t) was defined in
Lemma 4.1. The same map t is also a morphism of bisubmersions

gW — (n7 U, got, gos).

®Note that, under our assumptions on %, in the setting of Proposition 4.9 we have H = G, because
the Lie subalgebra ) introduced in Lemma 4.5 equals the whole of g.
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The latter bisubmersion is isomorphic to (71U, t,s) via (p’,v",q') — (gp’. V", gq’). By
composition, we obtain a morphism of bisubmersions gW — (7 ~!U, t, s) mapping w to
(gp, v, gq). Hence gx[w] := [w]yw agrees with [(gp, v, gq)] € K (F), and therefore,
under ¢, it is mapped to (gp, [v], gq) = (e, g) * p([w]). L]

Lemma 4.14. Under the isomorphism ¢, the action * of H introduced in (4.3) and the
restriction of the Lie 2-group action x of (3.1) agree:

p(hxE) = (h.e) x p(§)
forallh € G and & € H(F).

Proof. Take an arbitrary element § € J(F) and a path holonomy atlas U for Fps. Let
(p.u,q) € U € 771U be a representative of &, and let f be a local diffeomorphism
carried at (p, u, q).

Fix h € G, and denote by h: P — P the diffeomorphism corresponding to /& under
the G-action. Note that the transformation groupoid G x P carries the diffeomorphism h
at (h, p). Hence any representative of ¢ (h, p) € #(F) in 7~ U carries this diffeomor-
phism, where ¢ is the groupoid morphism of Lemma 4.6. In turn, this implies that any
representative of ¢ (h, p) o [(p,u, q)] € H(F) will carry ho f. Note that (hp,u,q) €
71U also carries h o f. By the definition of a holonomy groupoid (using Proposition
2.15) it follows that ax[(p,u, q)] = [(hp,u,q)].

We conclude that

o(hx[(p.u.)]) = o([(hp.u.q)]) = (hp.[ul.q) = (h.e) x o([(p.u.q)]).

using in the second equality the description of the isomorphism ¢ given in Remark 2.31.

|
Proof of Proposition 4.12. The proposition follows from

o((h,g) » §) = p(h*(g*€)) = (h.e)  ((e. ) * (£)) = (h.g) * p(§),
where we used Lemmas 4.13 and 4.14 in the second equality. ]

Remark 4.15. The image of ¢: G x P — H(F) is the kernel of E: H(F) — H (Fur)-
Indeed, for every (h,q) € G x P, we have ¢(h,q) = hx1, € #(F). Under the iden-
tification ¢@: H (F) = n 1 H(Fpr), this element corresponds to (h, €) * ¢(1,) =
(hq, 1y, 9) € 7' H (Fum) by Lemma 4.14. Under the same identification, ker(Z) cor-
responds to ker(pr,) = P X, M x5 P, by Proposition 2.32.

5. Groupoid fibrations

In this section, we investigate when the map E of Theorem 2.25 is a fibration. Loosely
speaking, fibrations are the notion of a “nice” quotient map in the category of (topological
or Lie) groupoids.
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5.1. Background on fibrations
We first present the recent notion of fibration for open topological groupoids.

Definition 5.1 ([7, Definition 2.1]). Let #¢ = P and #' = M be open topological
groupoids. A morphism of topological groupoids E: # — J#' covering a continuous map
m: P — M is called fibration if

EqH — H'sxx Py £ (B(5),5(5) (5.1

is a surjective open map.

Remark 5.2. In Definition 5.1, the base map 7: P — M is required to be neither open nor
surjective; see [7, Remark 2.7] for a motivation of this choice. In all the instances of fibra-
tion appearing in this note, the base map is a surjective submersion between manifolds,
thus also open.

We now review fibrations of Lie groupoids and equivalent characterizations, after [10].

Definition 5.3 ([10, Definition 2.4.3]). Let #/ = P and #’ = M be Lie groupoids. A

morphism of Lie groupoids E: J¢ — J’ covering a smooth map 7: P — M is called
fibration if & and E5: H — H's x5 P (as in (5.1)) are both surjective submersions.

The surjectivity conditions in the previous definition assure that, for any two compos-
able elements in J¢’, there exist composable preimages in J¢, and thus the composition on
JH’ is entirely determined by the composition in J.

In [10], two notions are used to describe fibrations of Lie groupoids: smooth congru-
ences and normal subgroupoid systems.

Before introducing them, recall that a smooth equivalence relation on a manifold P
is an embedded wide Lie subgroupoid R of the pair groupoid P x P. By the Godement
criterium, P/ R is a smooth manifold such that the projection map from P is a submersion
if and only if R is a smooth equivalence relation.

Definition 5.4 ([10, §2.4.5]). Let #/ = P be a Lie groupoid. A smooth congruence on

H consists of two smooth equivalence relations & on # and R on P such that

e QR =3 Risa Lie subgroupoid of the Cartesian product # x # = P x P,

o themap R — H ¢ xp, R; (£2,61) = (£2,8(62),s(€1)) is a surjective submersion’.
Normal subgroupoid systems allow to describe a Lie groupoid fibration in terms of

data on the domain, analogously to how a surjective group morphism can be described by

its kernel. Note that if K is a closed embedded wide Lie subgroupoid of #, then, by the
Godement criterion, the set of left cosets

KNI = (K ok &e )

7In [10], Mackenzie describes this condition as a certain square diagram being “versal.”
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has a unique manifold structure making the quotient map H — K\H; & > K& =
(K o &) a surjective submersion. Note also that the source map s: # — P quotients to a
well-defined surjective submersion K \JH — P, which we also denote by s.

Definition 5.5 ([10, Definition 2.4.7]). A normal subgroupoid system in # = P is a
triple (KX, R, 0), where K is a closed, embedded, wide Lie subgroupoid of #; R is a
smooth equivalence relation on P; and 6 is an action of R on the map s: X\ H — P such
that, for all (p, q) € R, the following holds.

(1) Let& € # withs(§) = g and & € H with 0(p, q)(KE) = K&p; then
(t(51).t(§)) € R.

2) 8(p.q)(Keg) = Kep.

(3) Let & and &, be composable elements in # such that s(§,) = ¢. Consider £{ and
& such that 8(p. q)(K£,) = K& and 0(t(E}). (E2)) (&) = KE: then

0(p.q)(K (1 08)) = K(E 0 &).

The following theorem says that smooth congruences, fibrations, and normal sub-
groupoids systems are equivalent descriptions for the quotients of Lie groupoids.

Theorem 5.6 ([10, Theorems 2.4.6 and 2.4.8]). Let J{ =2 P be a Lie groupoid.

(1) If B is a fibration defined on ¥ covering w, then the pair (R, R) is a congruence,
where R = H xg H and R := P X, P. Conversely, given a congruence, the
induced quotient map is a fibration.

2) If (X, R, 0) is a normal subgroupoid system on ¥, then R, together with the
equivalence relation on # given by

R o= {(€.6) € H x 2 (55).5(9) € Rand 6(s(¥).5(6) K& = K&},

is a smooth congruence on ¥ .
Conversely, let (R, R) be a smooth congruence on . Let K consist of elements
of # which are related to an identity element e,, where p € P.
Let 0 be the following action of R on K\ K : for every (p,q) € R and & € J with
source ¢,

0(p.q)(K§) = K¢,
where &' is any element related to & and with source p. Then (X, R, 0) is a normal
subgroupoid system on ¥ .

5.2. The morphism Z is not always a fibration

Let 7: P — M be a surjective submersion with connected fibers, let ¥ be a singular foli-
ation on P satisfying condition (2.1), and denote by 37 the induced singular foliation on
M . In Theorem 2.25, we obtained an open surjective morphism of topological groupoids
E:H(F) > H(Fp).

This morphism is not always a fibration, as the following example shows. What fails
here is the surjectivity of the map Eg (as in (5.1)).
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Example 5.7. Let P = R? — ({0} x R, ) (the plane with a vertical half-line removed),
M =R, and w: P — M the first projection. Take F to be the foliation on P given by
the horizontal lines and half-lines; then 34 is the full foliation on M. In particular, the
foliation ¥ has no holonomy, and # () = M x M.

The map Eg: H(F) = H(Fuy)sxx P (as in (5.1)) is not surjective. Indeed, take
¢ € H(Fp) such that s(¢) = 1 and t({) = —1. For all y > 0, the element (¢, (1, y))
lies in H (Fps)sx P, but there is no £ in K (F) satisfying s(§) = (1, y) and E(§) = ¢
(otherwise t(£) would be of the form (—1, *) and thus not lie in the same leaf as s(§),
leading to a contradiction).

Remark 5.8. The above example also shows that, in general, Lie algebroid fibrations
do not integrate to Lie groupoid fibrations. To explain this, recall that a Lie algebroid
fibration [10] is a morphism of Lie algebroids ¢: A — B which is fiber-wise surjective and
covers a surjective submersion between the manifolds of objects. Suppose A, B integrate
to source simply connected Lie groupoids &, #. Then the unique Lie groupoid morphism
®: 6§ — J integrating ¢ is a surjective submersion, but, in general, it fails to be a Lie
groupoid fibration. An instance is the above example, in which A and B are the involutive
distributions tangent to the foliations, ¢ = 7, and consequently ® = E.

It was pointed out to us that a sufficient condition for a Lie algebroid fibration to
integrate to Lie groupoid fibration is the existence of a complete Ehresmann connection,
as realized by Brahic in [3]. See [3, Example 4.12] for an instance involving foliations.

5.3. Fibrations from pullback foliations

In this and the next subsection, we present two cases in which & is a fibration. A simple
instance is when ¥ is a pullback foliation.

Proposition 5.9. As in Proposition 2.24, let w: P — M be a surjective submersion with
connected fibers, and let ¥ be a singular foliation on P satisfying I'c(kerd ) C ¥ . Then
the map &: H (F) — H (Fpr) of Theorem 2.25 is a fibration of topological groupoids.

Proof. There is an isomorphism of topological groupoids ¢: H (F) — 7w~ (H (Fur)) by
Theorem 2.30. By Proposition 2.32, the map E corresponds to the projection

pry: (K (Fm)) — H(Fum).
which is clearly a fibration. ]

Remark 5.10. As the proof of Proposition 5.9 shows, when J(¥) and H#(Fps) are
smooth, then E is a fibration of Lie groupoids. The normal subgroupoid system (X, R, )
corresponding to it (as in Theorem 5.6) is given by K = P xpr 1y Xpr P, by R =
P xpr P, and the following Lie groupoid action 8 of R on K\§ = K (Fpr) xp P:

0(p.[E 0] =[E p)].

Here the square bracket denotes the equivalence class in K\ §.
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5.4. Fibrations from group actions

‘We exhibit one more case when E is a fibration. In this whole subsection, we assume the
setup at the beginning of Section 4, that is, a foliated manifold (P, ), and a free and
proper action of a connected Lie group G on P preserving ¥ .

Denote M := P /G, denote by F)s the induced singular foliation there, and use the
short-hand notation # := H (¥ ) and H’ := H (Fps). The groupoid morphism E defined
in (4.1) and the lifted Lie group action  in (4.2), thanks to Lemmas 4.2 and 4.3, provide
us with the following data:

(1) a free and proper action of a Lie group G on a manifold P, with quotient map
n:P > M:=P/G,

(2) an open surjective morphism of holonomy groupoids &: # — H#’ covering 7,

(3) a group action x of G on J by groupoid automorphisms covering the G-action

on P and preserving each fiber of E:

J —E g0

Il

P X5 M

—

Fibrations of topological groupoids.

Proposition 5.11. Assume the setup at the beginning of Section 4. Make the following
technical assumption: the diffeomorphism G x P — G x P, (g, p) > (g, &(p)) is an
automorphism of the product foliation 0 x ¥ . (This is a reasonable assumption since,
for every g € G, g is an automorphism of (P, ¥).) Then the map E is a fibration of
topological groupoids.

Proof. According to Definition 5.3, we need to show that the map
EqH — H'sxz Py £ (E(E).5(8))

is surjective and open. For the surjectivity, we argue as follows. Let (¢, p) € #H'sx, P.
There exists a £ € K such that E(§) = ¢. Then 7 (s(¢)) = 7 (p), which means that there
exists a (unique) g € G such that gs(§) = p. This implies E¢(g*£) = ({, p), i.e., By is
surjective.

To prove that E is an open map, let @ C J€ be an open subset. It suffices to prove that,
for any point £ € O, there is a subset V' C @ containing & such that E¢(1/) is open. Take a
slice through s(£), i.e., a sufficiently small submanifold S C P through s(§) transverse to
the 7r-fibers. We will construct such V as G %o, where G is a neighborhood of the identity
element in G and o is a neighborhood of £ in s™1(S).

Step 1. There is a relatively compact neighborhood o of £ in s~'(S) such that its closure
satisfies 0 C O.

To construct o, take a bisubmersion U and a point u € U such that the quotient map
qu:U — H satisfies gy (u) = £. As U is a manifold, there exists a relatively compact
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(open) neighborhood Uy of u, and furthermore we can assume that its closure 170 lies in
the open subset qal((9). Since gy is an open map by [9, Lemma 3.1], ¢(Up) is open.
Hence

o :=quUs) Ns~'(S)

is an open subset of s71(S).

We now show that &, the closure of o in s~! (S), is compact. To do so, we make use
of &, the closure of o in s71(S). We have & C qy (Up) N's~'(S). This shows that & is
compact, being a closed subset of a compact set. Further, it shows that, shrinking Uy if
necessary, we can arrange that & is contained in s~ (S). This in turn implies that 6 C &:
the right-hand side is a closed subset of s 1 (S) containing o, and, by definition, the left-
hand side is the smallest such subset. Hence &, being a closed subset of a compact set, is
itself compact.

Step 2. There is a neighborhood GcG of the identity element e such that G*o C 0.

The preimage of () under the action map *: G x # — J is open, and, by Step 1,
it contains {e} x 0. Hence it contains G x & for some neighborhood G of e, using the
compactness of .

Step 3. V := G*0 is an open subset of J.
Notice that, for every g € G,

gx0 = {qeu(v) : v € sg'(S) N Uy}, (5.2)

where gy denotes the quotient map of the bisubmersion obtained as in Lemma 4.1. We
want to describe this set in terms of the bisubmersion U. This is possible because gy (U)
is an open subset of J# containing o, thus gxo will lie in gy (U) provided g is close
enough to the unit element e € G. In the following claim, we might need to shrink Gtoa
smaller neighborhood of e.

Claim. Let g € G. There is a morphism of bisubmersions ¢&: gU — U (defined only on
an open subset of gU) which is a diffeomorphism onto its image and depends smoothly®
ong.

Assume first that U is a path holonomy bisubmersion, associated to local generators
X1,...,Xg of ¥ nears(§). Fix Y; € I'(ker(dsy)) such that dty (Y;) = X; (this is possible
by the proof of [1, Proposition 2.10 (b)]). We then have dtgyy (¥;) = &+« X;. There exist
smooth functions cfj , defined on an open subset of sy (U) N g(sy (U)), such that g, X; =
> 7 cigj X . Further, these functions can be chosen to vary smoothly with g, by the technical
assumption in the statement of the proposition and since X7, ..., Xy — viewed as vector
fields on G x P —locally generate the singular foliation 0 x ¥ .

Consider the map

$5:gU > U, expo (Do MiYi) o expozm (D MGe)Y).  53)

8Recall that the manifold underlying the bisubmersion gU is U, and thus it is independent of g.
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which actually is defined only on an open subset of gU (namely, when x € sy (U) N
& Y (sy (U))). It preserves source fibers since the ¥; are tangent to the source fibers of
both bisubmersions. Applying tg¢ to the above point of the domain and applying ty to
its image, we obtain the same point of P (namely, exp(g s)(>_ Ai&xXi)). Thus ¢¢ is a
morphism of bisubmersions. Further, ¢ is a diffeomorphism onto its image (see the proof
of [1, Proposition 2.10 (b)]; this was also checked explicitly in [2, Lemma 2.6]). Finally,
looking at (5.3), it is clear that ¢4 depends smoothly on g.

In the general case, U = Uj o --- o U is a composition of path holonomy bisubmer-
sions. We can apply the above construction to obtain, foreach k = 1,...,/, a morphism of
bisubmersions ¢ : gUy — Uy. Assembling them, we obtain a morphism of bisubmersions
¢8:gU — U satisfying the properties of the claim. This proves the claim.

From (5.2) and the claim, we deduce that gxo = {qy (¢p&v) :v € 551 (S) N Up}. Define

®:G x (sgi(S) N Up) = U, (g,v) > ¢%(v).

Then G*0 = gy (image(®)). As gy is an open map, it suffices to argue that image(®)
isopenin U.
The map & fits in the commutative diagram

G x(sg'(S)NUp) ——2—— U

where pr, is the first projection and « is mapping u to the unique group element g such
that sy (4) € gS. The maps pr; and « are submersions. Further, for every g € G, the map

q’|pr;1(g)5551 (S)NUy — ' (g) =s5'(8S)

equals ¢&, which is a diffeomorphism onto its image by the above claim. Hence @ is a
diffeomorphism onto its image, which consequently is open in U by dimension reasons.

Step 4. E5(V) is open in H'sx, P

As B xs: H x H — JH' x P is an open map, and by Step 3, the image of V' x V under
this map is open. Hence its intersection with J¢'sx, P is open there. This intersection is
exactly

A:={(E(v1),8(v2)) : v1.v2 € V and 7 (s(v1)) = 7(s(v2))}.

We now show that A = Eg(V). We just need to prove “C” since the other inclusion is
obvious. To this aim, take an arbitrary element a := (E (vy), s(v2)) of A. Since s(v1) and
s(vy) lie in the same n-fiber, there is a unique g € G such that g - s(vy) = s(vy). It is
immediate to check that E¢(g*v;) = a; hence we are done if we show that gxv; € V. To
this aim, write v; = g; *&; forunique g; € G and & € o (i = 1,2). We have s(£;) = s(&2)
since these elements belong to the same 7-fiber and s(o) lies inside a slice transverse to
such fibers. This implies that g = g5 gl_l. Hence gxv; = gox&1, which by construction
liesin V. ]
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Assuming the setup at the beginning of Section 4, in Lemma 5.12 and Proposition
5.14 we describe the fibers of E: # — H’'. Denote by K := ker(E) a topological sub-
groupoid of J with space of objects P. Given a fibration of open topological groupoids,
the kernel — called “fiber” in the terminology of [7] — is an open topological subgroupoid
[7, Lemma 2.3]. Hence X is an open topological subgroupoid when the technical assump-
tion in Proposition 5.11 is satisfied.

Lemma 5.12. The fibers of E are given by the orbits of the action of G on # composed’
with elements in K. More precisely, the fiber through & € K is
Ko (G*§):={xo(gxE): x € Kand g € G}.

Proof. Fix & € J#. Thanks to Lemma 4.3, the above subset K o (G*&;) is certainly
contained in the E-fiber through &;.

To show the converse, let &, lie in the same E-fiber as &1; then s(&;) and s(&;) lie in
the same mr-fiber. Let g € G such that gs(£;) = s(£). As this equals s(g*£;), the groupoid
composition £, o (gx&;) ! is well defined, and

E(&20(g*E1) ") = E(E2) 0 E(g*£1) ' = E(&2) 0 E(51) " = Lo
where we used that 2 is a groupoid morphism and the action of G preserves the E-fibers,

respectively, in the first and second equalities. As a consequence, £, o (gx£1) ! €ker E =
XK. |

Remark 5.13. While the fibers of a group morphism are just translates of the kernel, for
morphisms of groupoids over different bases this is no longer true. This explains why the
description of the fibers in Lemma 5.12 is slightly involved.

A first consequence of Lemma 5.12 is that the fibers of E: # — J’ are orbits of a
groupoid action.

Proposition 5.14. There is a topological groupoid structure on K x G and a groupoid
action of X x G on t. # — P, whose orbits coincide with the fibers of E.

An instance of this proposition is Example 2.29, where we have G = U(1) and
ker& = 1p.

Proof. Since the Lie group G acts by groupoid automorphisms on the groupoid X, we can
form the semidirect product groupoid (see [4, §2] and [5, §11.4]). We obtain a groupoid
structure on K x G with space of objects P, for which

(a) the source and target maps are, respectively, (£, g) — g~ 's(§) and (£, g) > t(£),
(b) the composition is (£2, g2) © (51, 81) = (52 © (g2%€1), g281)-
One checks that the groupoid K x G acts on the map t: # — P via
WK X G)xp H—>H: ((1.8).§) = (1.8 % &= yo(gxf). (54

The orbits of this groupoid action are precisely the fibers of E, by Lemma 5.12. ]

°Recall that the composition (multiplication) of the groupoid #¢ is denoted by o.
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Fibrations of Lie groupoids. To conclude this section, we show that for Lie groupoids
E is a fibration in the sense of Definition 5.3. Denote X := ker(ZE). Denote

R=Pxy P=GxP,

where the isomorphism is given by (¢, p) — (g, p) for g € G, the unique element satisfy-
ing gp = ¢. Note that since the action * of G on # preserves each fiber of E, we obtain
by restriction a group action of G on K, also by groupoid automorphisms. This ensures
that the following groupoid action 6 of R ons: K\H — P is well defined:

0(g. P)(KE) = K(g*).
Hence 6 essentially amounts to the lifted G-action.

Proposition 5.15. Assume the setup at the beginning of Section 4, and that J and #' are
Lie groupoids. Then

(i)  E isafibration of Lie groupoids,

(i) (K, R, 0) is the normal subgroupoid system corresponding to it, via
Theorem 5.6.

Proof. We first prove that (X, R, 0) is a normal subgroupoid system. Because E and 7
are surjective submersions (see Remark 2.27), we have that X is a closed, embedded wide
Lie subgroupoid of # and R is a smooth equivalence relation. Because x is a smooth Lie
group action, we have that 0 is also a smooth action. The three conditions in Definition 5.5
are satisfied because * is a group action on J by Lie groupoid automorphisms, covering
the group action of G on P.

Since (X, R, 0) is a normal subgroupoid system, by Theorem 5.6 (R, R) is a smooth
congruence, where

={(§".§) € H x H : (s(§).5()) € Rand (s(§').s(§)) K& = K§&'}.

Lemma 5.12 shows that (¢, &) € R if and only if (') = E(&). This means that the
quotient map of the smooth congruence (R, R) is exactly E. In particular, by Theorem
5.6, & is a fibration. n

Remark 5.16. Proposition 5.15 holds also replacing the hypothesis that ¢’ is an embed-
ded Lie groupoid with the hypothesis that J is a Lie subgroupoid of #, with the same
proof.

When # (¥) is a Hausdorff Lie groupoid, Remark 2.26 allows to give a description
of K that does not make reference to the morphism E. Namely, K consists of the ele-
ments £ € J(F) that carry a diffeomorphism ¢ such that, for some slice S through s(&)

transverse to the w-fibers, this diagram commutes:

s —2 5 0(S)

N
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In the following simple example, we describe J# (¥3s) using Proposition 5.15.

Example 5.17. Let P = S! x R be the cylinder with coordinates # and y, endowed with
the (free) action of G = (R, +) by vertical translations. The action preserves the (regular)

foliation

T < 9 Ai>

F = 39 + 3
by spirals, where A is a fixed non-zero real number. The quotient M := P/G is S!. It
is easy to see that the induced foliation Fs is the full foliation, but we want to describe
H (Far) without using this fact.

We have # () =R x P, the transformation groupoid of the flow of % + A %. By the
above characterization of J, we have X = Z x P, which is an embedded Lie subgroupoid
of #(¥). Hence K\H (F) = (R/Z) x P, and quotienting by the groupoid action 6 we
obtain (R/Z) x S'. One checks easily that the induced groupoid structure is given by
the transformation groupoid of the Lie group R/Z acting by rotations on S, which is
isomorphic to the pair groupoid structure on S! x S!. Proposition 5.15 and Remark 5.16
state that it is isomorphic to J (Far).

A. A lemma about generating sets

We prove the following statement, which will be used in Appendix A.l. Recall that 7
denotes the global hull of ¥'; see Definition 2.7.

Lemma A.1. Let w: P — M be a surjective submersion with connected fibers. Let ¥ be
a singular foliation on P such that [T (kerdn), ¥] C T'c(kerdm) + F.
(i) The set

Frroi .= {X € F:Xis 7 -projectable to a vector field on M }

generates ¥ as a C°(P)-module.
(ii) The singular foliation 3y on M introduced in Theorem 2.25 admits the following
description:
Fam = 1 (F) 1= Spangeoay){m X 1 X € FP).

Proof. We first make a claim.
Claim. Lemma A.1 holds in the special case that ;. (kerd ) C F.

Indeed, in this special case, by Proposition 2.24, there is a unique singular foliation
Far on M with m=1(Fr) = F . Given this, (i) is a consequence of Definition 2.5. For (ii),
note that 7~ (7 (¥)) = ¥, as can be checked using (i). Since ¥ = 7! F)s, we obtain
Fu = 7«(F) by the uniqueness statement in Proposition 2.24. This proves the claim.

Take F¢ := I'.(kerdn) + ¥, a singular foliation satisfying the condition of the
above claim. We now proceed to prove the two items of the lemma.
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(i) By the claim, fﬁfﬁgpr"j generates F "¢ as a C>°(P)-module. Take X € ¥ C Fie.
There exist finitely many ¥; € F%€P and f; € C2°(P) such that X = > 1iYi. By
definition of ¢, we can write ¥; = )7_/ + Z; with ?i € FPo and Z; e I'(Ker(dm)).

Then R
X=3"fiY; =Y Y+ fiZ;
j j j

Thelastterm } ; f;Z; = X =3, f; Yj lies in F as the difference of two elements of

and is w-projectable (to the zero vector field on M ). Hence this last term lies in 7 Proj and
we have proven (i).

(i) We have 771 (74 (F)) = 71 (7« (F¢)) = FP¢, using the claim in the second
equality, and ¢ = 771(F}4) by definition. The uniqueness in Proposition 2.24 implies
that Fpy = m.(F). |

A.1. Proof of Theorem 2.25

The following proposition is a special case'’ of [11, Proposition D.4], augmented with the
statement that E is an open map.

Proposition A.2. Let w: P — M be a surjective submersion.

Let ¥ be a singular foliation on P, and assume that it satisfies the following condition:

FPO = (X € F : X is w-projectable to a vector field on M}
generates ¥ as a CZ°(P)-module. (A.1)

Let . (F) := Spanceoapny{ms X : X € FPoiV which is a singular foliation on M.

Then there is a canonical, open, surjective morphism of topological groupoids

E:H(F)— Jf(n*(?))

covering .
Remark A.3. If #(¥) and J(F)s) are Lie groupoids, then E is a submersion. This

follows from the proof of Proposition A.2 given below since, in that case, the quotient
maps from bisubmersions to holonomy groupoids are submersive.

We can now prove Theorem 2.25.

Proof of Theorem 2.25. Apply Proposition A.2. Notice that condition (A.1) is satisfied by
Lemma A.1 (i) and n+F = F)s by Lemma A.1 (ii). [

In order to keep this paper self-contained, we now provide a proof for Proposition A.2.
It differs from the proof found in [11, Proposition D.4], in that it allows to write down the

morphism E more explicitly, and makes clear that & is an open map. We start with a
lemma.

10This special case is obtained from [11, Proposition D.4] taking 8B to be the singular foliation %, G;
to be the pair groupoid M; x M; and F := 7 X m.
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LemmaAd. Letw: P — M and ¥ be as in Proposition A.2, and let Fpp := 704 (F). Then
there exists a family of path holonomy bisubmersions § for ¥ so that | Jycs s(U) = P,
with the following properties.

(i) Forany U € § one has that (U, w ot, w o8) is a bisubmersion for Fyy. Further,
it is adapted to a path holonomy bisubmersion for Fyy.

(i) Let U be the atlas generated by S. Then for any U € U one has that (U, 7 ot,
7 08) is a (source connected) bisubmersion for ¥yy. Further, the atlas generated
by

rU:={({Umotmos):U € U},

is equivalent to a path holonomy atlas for Fyy.
Proof. We first make a claim.
Claim. ¥ is locally generated by finitely many m-projectable vector fields in 7.

Indeed, for any p € P there is a neighborhood Vy C P and finitely many generators
Yi,...,Yr € X(Vy) of LI_,Ol (), for 1y, the inclusion. Take any precompact open set V C Vjp
containing p and py € C°(Vp) such that py =1 on V. For each i, since pyY; € ¥,
condition (A.1) assures that there is a finite number of -projectable elements X i] € Foroj
and fij € CX(P) such that

pvYi=Y_ f'X].
J

Therefore, every element of LI_/I (¥)is a C2°(V)-linear combination of the X ij , which are
m-projectable and lie in % . This proves the claim.

(i) Now, for every point po of P, take a minimal set of m-projectable elements
{X1,..., Xy} in # that are local generators of ¥ nearby that point. Let (U, t, s) be the
corresponding path holonomy bisubmersion, where U C R” x P. Then (U, w ot,w os)
is a bisubmersion for 37, with source map (A, p) — 7 (p) and target map (A, p) —
eXPr(p) (2. Ai s« X;). A way to see this is to apply [1, Lemma 2.3] to the path holonomy
bisubmersion W C R” x M for )y corresponding to the generators {m« X1, ..., 7+« Xn}
and to the submersion!' (Idg», 7): R” x P — R” x M. We observe that (Idg», ) is
a morphism of bisubmersions from (U, & o t, w o s) to W. This shows that the former
bisubmersion is adapted (see Definition 2.16) to the latter.

(ii) Take U € U; without loss of generality, assume U = Uy o --- o Uy for U; € §.
Denote 7wU; := (U;, w o t, w o s), which are bisubmersions for s by (i). Note that the
inclusion map w: Uy o+ o Uy — wUj o--- o wUy makes the following diagram commute:

U—25 aUjo--onl

(|| 1[5 (A2)

P—" M

More precisely, to its restriction to (Idg», 7)1 (W) N U.
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Because of this commutative diagram and since wU; o - - - o w Uy, is a bisubmersion for F3y,
one gets that
A= oty 1 Fy = (ros) ' Fy. (A3)

The left-hand side is

(mot) ' Fa = t(F +kere(dm)) =t (F) + t ! (ker.(d 7))
= ker¢(ds) + kere(dt) + t ' (kerc(d 7))
= ker(ds) + t ! (kerc(d 7)),

using, respectively, that 77 ¥y = F + ker.(d ), that t is a submersion, and that U is
a bisubmersion for . Here we use the short-hand notation ker.(d ) := I'c(ker(d)).
Repeating for the right-hand side, from (A.3) we obtain

A = ker.(ds) + t_l(kerc(dﬂ)) = ker(dt) +s7! (kerc(dn)).
This implies that
A=t (kerc(dn)) +s7! (kerc(dn)) = ker, (d(n ) t)) + ker, (d(n ) s)),

i.e., that (U, ot, w o) is a bisubmersion for 5.

By construction, the bisubmersion 7Uj o --- o wUy lies in the atlas for 3, generated
by 7§. Thus the commutative diagram (A.2) shows that (U, & o t, w o s) is adapted to the
atlas for ¥y generated by 7§, which in turn is adapted to a path holonomy atlas by (i).
This shows that the atlas generated by 7 U is adapted to a path holonomy atlas for Fj;.
It is actually equivalent to such an atlas because a path holonomy atlas is adapted to any
other atlas. ]

Remark A.5. Not every bisubmersion (U, t,s) for ¥ satisfies that (U, w o t, w os) is
a bisubmersion for Fj4. For instance, take P := R?, ¥ = 0, and M = R with map
w: P — M given by the first projection. Then F3; = 0. Now take any diffeomorphism
¢: P — P that does not preserve the foliation w1 ($)4) by the fibers of 7. Then (P,1d, ¢)
is a bisubmersion for ¥ but (P, 7, & o ¢) is not a bisubmersion for Fps.

Proof of Proposition A.2. Let U be an atlas for ¥ as in Lemma A.4. For every U € U,
we use the short-hand notation 7U to denote (U, w o t, w os), a bisubmersion for Fjs.
Define & as follows:

B H(F) > H(Fm):  [u] — [ulm, (A.4)

where u € U € U and [u]ps is the class of u seen as an element of 7U € 7 U. Here
we used that, by Lemma A.4, #(F)s) agrees with the groupoid associated to the atlas
generated by 7 U.

The map E is well defined. If u; € U; € U and u, € U, € U are equivalent, then
there exists a morphism of bisubmersions sending 1 to u,. Using the same morphism, it
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is clear that u; € wlU; € wU is equivalent to u, € wU, € U, i.e., that [ug]y = [u2]m-
The same argument shows that E is independent of the specific choice of the atlas U, thus
canonical.

It is clear that E covers 7 and sends the identity bisection of #(¥) to the identity
bisection of J (F3s). To prove that it is a morphism of set theoretic groupoids, we only
need to prove that it preserves the composition. It does because, for any Uy, U, € U, the
inclusion map 7 (Uy o U,) — wU; o wU, is a morphism of bisubmersions for .

We check that E is a continuous open map. This holds because in the following com-
mutative diagram the quotient maps Q and Qs are continuous and open (see [9, Lemma
3.1]) and because Q is surjective:

Id
|_|Ue‘u U—— I_er‘u nU

o o

H(F) —=—s J(Fu).

The map E is surjective. By the above, & (H (F)) is a neighborhood of the identities
of H (Fur). Because E is a morphism of topological groupoids, E (# (¥)) is a symmetric
set closed under compositions. It is well known that any s-connected topological groupoid
is generated by any symmetric neighborhood of the identities [10]. Because F# (Far) is
s-connected, we obtain E (J (¥)) = H(Fu), i.e., E is surjective. |

The following corollary extends the conclusions of Lemma A.4 (ii) to arbitrary source
connected atlases (as defined in Definition 2.20).

Corollary A.6. Letm: P — M, ¥ C X.(P), and Fpy C X.(M) as in Proposition A.2.
Then for any source connected atlas U’ for ¥ one has that U = {xU’ : U' € W'} is
an atlas equivalent to a path holonomy atlas for ¥yy.

Proof. We first observe that, in Lemma A.4, actually 7 U is already an atlas. This follows
from the fact that the map &, given as in (A.4), is surjective.

Now let U’ be any source connected atlas for . Then U’ is adapted to U (see [8, §4]).
This means that, for any element u € U’ € U/, there exists a morphism of bisubmersions
wy from a neighborhood U;, C U’ to a bisubmersion U € U. In particular, the following
diagram commutes:

U, 25U

tus i Otuﬂ *

P25 M

The triple (U,,,t o 7, s o 1) is a bisubmersion for 3 since the argument following dia-
gram (A.2) can be applied identically to the diagram above. Moreover, since being a
bisubmersion is a local property, we have that 7U’ := (U’,t o 7, s o 7r) is a bisubmer-
sion for Fjy.
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The families 7 U := {xU’ : U’ € U’} and 7 U are adapted to each other since the
atlases U’ and U are equivalent. This implies that 7 U’ is already an atlas for Fps,
equivalent to 7w U. The latter is equivalent to a path holonomy atlas by Lemma A.4 (ii),
so we are done. ]
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