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On the precise cusped behaviour of extreme solutions to
Whitham-type equations

Mats Ehrnström, Ola I. H. Mæhlen, and Kristoffer Varholm

Abstract. We prove exact leading-order asymptotic behaviour at the origin for nontrivial solutions
of two families of nonlocal equations. The equations investigated include those satisfied by the
cusped highest steady waves for both the uni- and bidirectional Whitham equations. The problem
is therefore analogous to that of capturing the 120ı interior angle at the crests of classical Stokes’
waves of greatest height. In particular, our results partially settle conjectures for such extreme waves
posed in the series of recent papers by Ehrnström, Johnson, and Claassen (2019), Ehrnström and
Wahlén (2019), and Truong, Wahlén, and Wheeler (2022). Our methods may be generalised to
solutions of other nonlocal equations, and can moreover be used to determine asymptotic behaviour
of their derivatives to any order.

1. Introduction

The Whitham equation
@t� C @x.KW � � C �

2/ D 0; (1.1)

where � represents the surface profile and

yKW .�/ D

Z
R
KW .x/e

�ix� dx WD

s
tanh.�/
�

;

is a fully dispersive variant of the classical Korteweg–de Vries (KdV) equation, originally
proposed in [37]. It features some properties that the KdV equation lacks, such as wave
breaking [24, 34], highest waves [15, 16, 36], and better high-frequency modelling [18].
While Whitham added the dispersion in an ad hoc manner, the model has since been both
justified experimentally and derived from the full water-wave problem in several ways.
See for instance [9, 25, 28], in addition to the aforementioned [18].

Another water-wave model is similarly obtained by making the Boussinesq system –
of which the KdV equation can be viewed as a unidirectional version – fully dispersive,
so as to arrive at the Whitham–Boussinesq system

@t� C @x.KB � v C �v/ D 0;

@tv C @x.� C v
2=2/ D 0;

(1.2)
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also called the bidirectional Whitham equation. Here, � again denotes the surface profile,
v relates to the fluid velocity at the surface, and the convolution kernel KB is defined by
its symbol

yKB WD yK
2
W D

tanh.�/
�

: (1.3)

Strictly speaking, there are several ways to make the Boussinesq system fully dispersive,
but (1.2) represents one of the natural candidates that have been investigated in the liter-
ature; see for instance [1, 17, 29, 32]. It is also currently the only of these fully dispersive
systems that is known to admit highest steady waves [14].

Various steady solutions to the Whitham equations, both uni- and bidirectional, have
been found and studied. Of particular interest to us here are the global, locally analytic
curves of periodic steady waves found in [14, 16], bifurcating from the line of trivial
waves and approaching a so-called limiting highest wave. These are waves whose heights
reach the maximal value of c=2 for the unidirectional Whitham equation, and c2=3 for
the bidirectional Whitham equation, where c denotes the velocity of the wave. In the full
water-wave problem, it is part of the famous Stokes’ conjecture that the analogous highest
Stokes’ waves have angled crests, with interior angles of exactly 120ı. That is, a highest
steady wave with a crest at the origin satisfies

'.0/ � '.x/ D
� 1
p
3
C o.1/

�
jxj

as x ! 0. This was ultimately proved in [3, 33].
For the Whitham equation (1.1), it was conjectured by Whitham1 [38] that the local

behaviour of an analogous highest wave should instead be the cusped variant

c

2
� '.x/ D

�r
�

8
C o.1/

�
jxj1=2 (1.4)

as x ! 0. The authors of [13, 16] were able to determine that there indeed was a highest
periodic wave ' for the Whitham equation. Furthermore, they showed that any bounded
solution reaching that height must satisfy both

0 < lim inf
x!0

c=2 � '.x/

jxj1=2
and lim sup

x!0

c=2 � '.x/

jxj1=2
<1; (1.5)

but did not establish the full limit described in (1.4).
More recently, the existence of full global curves of solitary waves up to a highest

wave has also been proved [15, 36]. The same asymptotic estimates (1.5) from [16] apply
equally well for these. Furthermore, there is also an innovative computer-assisted proof
[19], where a highest periodic wave satisfying the limiting behaviour (1.4) is constructed.
A form of local uniqueness and the convexity of this highest wave are also obtained. The

1With a minor error in the exact constant, which was pointed out in [16].
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idea is to build an approximate ansatz for the solution using special functions, sufficiently
good for a fixed-point argument to go through. A very large number of terms is required,
as the map involved is just barely a contraction. Two recent papers in the same direction
for the Burgers–Hilbert and fractional KdV equations are [10, 11].

Concerning the bidirectional Whitham equation (1.2), it was shown in [14] that there
exists a highest periodic wave ' with a corresponding v that satisfies

lim sup
x!0

.1 � 1=
p
3/c � v.x/

jxj log.1=jxj/
<1:

The corresponding lower bound is stated, but a flaw in one of the preceding lemmas
hinders a correct estimate. This is due to slightly subtle estimates where logarithmic
factors are easily lost, making the proof more delicate than for the unidirectional Whitham
equation.

The main purpose of this paper is to provide an analytic, and relatively transparent,
argument establishing both the limit (1.4) for the Whitham equation, and the analogous
result

c2

3
� '.x/ D

� 1
3�
C o.1/

�
jxj log.1=jxj/ (1.6)

as x! 0, for the bidirectional Whitham equation. These results will follow from a some-
what more general method for calculating the local behaviour of solutions to two classes
of nonlocal equations on the half-line. As the proofs are quite technical, we first provide
some background, describing how these nonlinear waves are related to the more general
formulation and results found in Sections 3 to 5.

2. Background and overview

The Whitham equation (1.1) is a prototypical example of a more general family of non-
local, nonlinear shallow-water-wave models of the form

@t� C @x.K � � CN.�// D 0; (2.1)

where K 2 L1.R/ is an even, positive integral kernel that is convex on RC WD .0;1/.
Generally, this kernel will arise from a Fourier multiplier symbol yK.�/ of negative order.
We will here consider the orders �1 and �1=2, appearing in the bi- and unidirectional
gravity water-wave problems respectively [26]. The decay and smoothness of the symbol
are realised as a corresponding singularity at the origin of an otherwise smooth kernel K
of exponential decay; see [22, 35].

Seeking steady solutions �.t; x/ D '.x � ct/ to (2.1), one arrives at

K � ' D f .'/C A; where f .t/ WD ct �N.t/; (2.2)

for some constant A 2 R after integration. Under quite general conditions, equations like
(2.1) have only symmetric solitary waves of elevation [5, 7]. A similar statement is true
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for steady periodic waves under an additional reflection assumption [8]. This property is
inherited via the maximum principle for the elliptic convolution operator. Naturally, this
leads to the study of a possible maximal height '.0/ for solutions of (2.2).

Supposing now that f is increasing to the left of a nondegenerate local maximum at
t D  , and is sufficiently smooth, we can write

f ./ � f .t/ D
�
�
1

2
f 00./C g. � t /

�
. � t /2;

with g.0/ D 0. Thus, if ' is a solution to (2.2) that achieves '.0/ D  from below, then
u D  � ' is a nonnegative solution to

K � u � .K � u/.0/ D
�
�
1

2
f 00./C g.u.x//

�
u.x/2;

vanishing at the origin.
Motivated by this computation, we therefore consider the condensed equation�

1C n.u.x//
�
u.x/2 D

Z
R
.K.y � x/ �K.y//u.y/ dy; (2.3)

where K again has the properties described after (2.1), and n.0/ D 0. We see that any
pointwise solution will necessarily have to satisfy u.0/ D 0. Equations similar to (2.3)
also appear in a plethora of other contexts: examples include harmonic, functional, and
stochastic analysis.

Finally, note further that (2.3) is equivalent to the equation�
1C n.u.x//

�
u.x/2 D

Z 1
0

ı2xK.y/u.y/ dy (2.4)

for even functions, where we have conveniently recognised the second-order central dif-
ference

ı2xK.y/ WD K.y C x/CK.y � x/ � 2K.y/ (2.5)

in the integrand. Whereas the first-order difference in (2.3) is very useful when one wants
to establish global estimates for u, (2.4) is able to take direct advantage of the convexity
of K. It is therefore especially well adapted for studying u precisely at x D 0.

We will consider (2.4) under general assumptions, but first formally outline the the-
ory below for kernels capturing the same singular behaviour. The exact assumptions and
rigorous statements follow in Section 3.

2.1. Homogeneous singularity (Whitham)

If we replace K in (2.4) with the homogeneous, but merely locally integrable

Hs.x/ WD jxj
s�1
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for s 2 .0; 1/, and let n D 0, we obtain the toy equation

u.x/2 D

Z 1
0

ı2xHs.y/u.y/ dy; (2.6)

which in fact has an explicit unbounded solution. It is convenient to introduce

ˆs.�/ WD ı
2
1Hs.�/ D j� C 1j

s�1
C j� � 1js�1 � 2j� js�1;

for then the second difference in (2.6) satisfies

ı2xHs.�x/ D Hs.x/ˆs.�/: (2.7)

Lemma 2.1. The toy equation (2.6) has

u.x/ D ˇsjxj
s; ˇs WD

1

2
B.s; s/

as a solution for every s 2 .0; 1/, where B denotes the beta function.

Proof. This is an immediate consequence of the identity

ˇs D

Z 1
0

ˆs.�/�
s d�; (2.8)

which can most easily be seen for s 2 .0; 1=2/ by splitting the integral according toZ 1
0

ˆs.�/�
s d� D

Z 1

0

.1 � �/s�1� s d�„ ƒ‚ …
ˇs

�

Z 1

0

�2s�1 d�„ ƒ‚ …
1=.2s/

C

Z 1
0

..1C �/s�1 � � s�1/� s d�„ ƒ‚ …
I1

C

Z 1
1

..� � 1/s�1 � � s�1/� s d�„ ƒ‚ …
I2

;

where all but the first term will cancel.
Indeed, observe that

I2 D
1

s
�

Z 1
0

.� s � .� C 1/s/.� C 1/s�1 d�

through the change of variables � 7! .� C 1/ and integration by parts. It follows that

I1 C I2 D
1

s
C

Z 1
0

..� C 1/2s�1 � �2s�1/ d� D
1

2s
;

whence (2.8) holds. Finally, analytic continuation yields (2.8) also for s 2 Œ1=2; 1/.
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In particular, it is reasonable to expect that well-behaved solutions to (2.4) should still
satisfy

lim
x!0

u.x/

jxj1=2
D ˇ1=2 D

�

2
(2.9)

when K behaves like H1=2 near the origin, which is the case for a scaled version of the
Whitham kernel KW . Under mild conditions, equations such as (2.3) have the feature
that solutions are smooth away from where they vanish. This comes from a general “off-
diagonal” convolution property for pseudo-differential operators [35], and can be seen as
in [16].

The behaviour of a solution in the vicinity of the origin arises from a balancing act
between the square on the left-hand side, and the asymptotics of the second difference
(2.5) as x! 0. As the square root is not regular, one consequently faces an upper threshold
on the regularity of u. Simplifying to (2.6), an essential part of the argument in [16] relies
on first bootstrapping global C 1=2�-regularity, and then noting that�u.x/

jxj˛

�2
D jxj1=2�˛

Z 1
0

ˆ.�/�˛
u.�x/

j�xj˛
d�

� jxj1=2�˛ sup
y2R

u.y/

jyj˛

Z 1
0

jˆ.�/j�˛ d� (2.10)

for all ˛ 2 .0; 1=2/ and x ¤ 0, where

ˆ.�/ WD ˆ1=2.�/ D
1

j1C � j1=2
C

1

j1 � � j1=2
�

2

j� j1=2
: (2.11)

If we now, for the sake of argument, assume that the supremum of the left-hand side in
(2.10) is always achieved for jxj � 1, then we obtain

sup
x2R

u.x/

jxj˛
�

Z 1
0

jˆ.�/j�˛ d�; (2.12)

whereupon we can let ˛ ! 1=2.
A curious thing about this calculation is that if ˆ had been nonnegative, then (2.12)

would have immediately yielded

u.x/ �
�

2
jxj1=2

by (2.8), which would be optimal. Similarly, if one knew that the limit of u.x/=jxj1=2

existed as x ! 0, one could have chosen ˛ D 1=2 in (2.10) and let x ! 0 to find (2.9)
by dominated convergence. In reality, however, ˆ changes from negative to positive at a
point �0 2 .0; 1/, as seen in Figure 1, and the existence of a limit is exactly what is difficult
to show.

To establish (2.9), we therefore identify in (2.8) the significance of the points � 2
¹�0; 1º, and write (2.4) as�u.x/

x1=2

�2�
1C n.u.x//

�
D

1

jxj

�Z �0x

0

C

Z x

�0x

C

Z �

x

C

Z 1
�

�
ı2xK.y/u.y/ dy
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0 𝜏0 1
𝜏

Figure 1. The graph of ˆ.

for 0 < x < �, or, in essence,�u.x/
x1=2

�2
�

�Z �0

0

C

Z 1

�0

C

Z �=x

1

C

Z 1
�=x

�
ˆ.�/�1=2

u.�x/

.�x/1=2
d� (2.13)

under appropriate assumptions. The constant � > 0 is used to single out a small interval
where u has desirable properties, but can otherwise be made arbitrarily small. Its exact
value is therefore not important to the theory. Because �=x ! 1 as x & 0, the last
integral will vanish in the limit.

The remaining integrals are less straightforward, and the main obstacle in their treat-
ment is the limited information about monotonicity or the existence of the limit. Our trick
here is to consider sequences realising

m WD lim inf
x&0

u.x/

x1=2
or M WD lim sup

x&0

u.x/

x1=2
;

in a strategic manner. As ˆ changes sign at �0, we are thereby able to make the estimates

M 2
� m

Z �0

0

ˆ.�/�1=2 d� CM
Z 1
�0

ˆ.�/�1=2 d�;

m2 �M

Z �0

0

ˆ.�/�1=2 d� Cm
Z 1
�0

ˆ.�/�1=2 d�;
(2.14)

by taking limits in (2.13).
This system of inequalities will have solutions described by Figure 2. In addition to the

expected solution, which is isolated, there is also a wedge-like set of unwanted solutions
for which M > m. A refinement is made to the second inequality of (2.14) to exclude
this area, yielding the desired conclusion that m D M D �=2. The shapes of the curves
in Figure 2 are naturally determined by integrals involving ˆs , but there is some leeway.
Therefore, this method works essentially unmodified for a range of homogeneous singu-
larities, not only when s D 1=2. In fact, there is some s0 � 1=3 such that it works for
s 2 .s0; 1/, but fails for s 2 .0; s0/. The reason it breaks down is that the expected solu-
tionm DM D ˇs from Lemma 2.1 stops being isolated, even with the refined inequality.
A new idea would therefore be required to proceed past this value. Highest Hölder and
Lipschitz waves have been constructed in a number of settings [2, 4, 6, 21, 23, 27, 31], and
we expect a similar approach to go through for many such equations.
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(
𝜋
2 ,

𝜋
2
)

𝑚
𝑀

Figure 2. The inequalities in (2.14) are satisfied by the points below the solid curve, and above the
dashed curve, respectively. The refined version of the second inequality corresponds to the dotted
curve.

2.2. Logarithmic singularity (bidirectional Whitham)

For order �1, the singular behaviour of the kernel is instead captured by

L.x/ WD log.1=jxj/;

so that homogeneity is replaced by additivity. One finds that

ı2xL.�x/ D � log
ˇ̌̌
1 �

1

�2

ˇ̌̌
DW ƒ.�/ (2.15)

differs substantially from (2.7), in that it does not depend on x at all. This leads to an
entirely different set of estimates, and, in turn, changes the relative importance of the
integrals appearing in the governing equation.

The qualitative behaviour ofƒ is still the same asˆ in Figure 1, but in the logarithmic
case the contribution of the entire interval .0; x/ turns out to be negligible in the limit. In
fact, the final estimate hinges only on an integral over .x; �/. Explicitly, writing (2.4) as� u.x/

x log.1=x/

�2�
1C n.u.x//

�
D

1

x2 log.1=x/2

�Z x

0

C

Z �

x

C

Z 1
�

�
ı2xK.y/u.y/ dy;

we see that the analogue of (2.13) becomes� u.x/

x log.1=x/

�2
�

�Z 1

0

C

Z �=x

1

C

Z 1
�=x

�
ƒ.�/�

log.1=.�x//
log.1=x/2

u.�x/

�x log.1=.�x//
d�

for 0 < x < �.
The first integral is killed in the limit when u.x/=.x log.1=x// is bounded, and the

third integral is still negligible as before. The limit “should” therefore be

lim
x!0

u.x/

jxj log.1=jxj/
D lim
x&0

Z �=x

1

ƒ.�/�
log.1=.�x//
log.1=x/2

d� D
1

2
(2.16)
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in this case. Contrary to what we saw for a homogeneous singularity, it is possible to
obtain (2.16) directly using the aforementioned approach with sequences. There is no
need to thereafter go through a system of inequalities.

3. Setup

We have seen that, after an appropriate change of variables, the highest waves of both
(1.1) and (1.2) satisfy an equation of the form (2.4). The following assumptions are made
on the objects involved, where RC0 WD RC [ ¹0º:

Assumption 1. The nonlinearity n 2 C 1.RC0 / satisfies n.0/ D 0.

Assumption 2. The kernelK 2 L1.R/ is even, positive, and convex on RC. Moreover, it
admits a decomposition K D S CR, where the singular part S is of the form

L.x/ D log.1=jxj/ or H.x/ D jxj�1=2;

and the regular part R has a weak second derivative R00 2 L1.R/.

Assumption 3. The solution u 2 C.RC0 / is bounded, nonnegative, satisfies u.0/D 0, and
is, for sufficiently small x > 0, both continuously differentiable and increasing.

The regularity of n in Assumption 1 is only needed for the limit of the derivative in
our main result, not for the behaviour of u.x/ itself. One similarly would need to demand
higher regularity of n in order to prove asymptotics for higher-order derivatives of u. The
assumption of continuous differentiability of u close to the origin in Assumption 3 is in
fact redundant under the other properties; see Section 5. All of the assumptions may be
further weakened, but as added generality would come at the expense of clarity, we will
not push this question further here.

Our main result is the following.

Main Theorem. Suppose that the above Assumptions 1 to 3 hold. If the singular part of
K takes the logarithmic form L.x/ D log.1=jxj/, then the solution u admits the limits

lim
x!0

u.x/

x log.1=x/
D
1

2
and lim

x!0

u0.x/

log.1=x/
D
1

2
;

while if it takes the homogeneous form H.x/ D jxj�1=2, then u admits the limits

lim
x!0

u.x/

x1=2
D
�

2
and lim

x!0

u0.x/

x�1=2
D
�

4
:

This theorem combines Propositions 4.2, 4.4, 5.5, and 5.7, of which the first two are
proved in Section 4 and the latter two in Section 5. These results are in turn employed
in Section 4.2 to both establish the limit (1.6) and global regularity for the bidirectional
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highest waves obtained in [14], and in Section 5.2 to prove the limit (1.4) for the unidirec-
tional highest waves obtained in [16,36]. Furthermore, immediately preceding Section 5.2,
we outline how one would determine the asymptotic behaviour of derivatives to any order.

For reference, we include the following corollary, which lists the implied asymptotic
behaviour for the highest waves in the Whitham equations. The precise details are, as
explained above, presented in Sections 4.2 and 5.2.

Corollary 3.1 (Whitham equations, abridged). Let ' denote the surface profile of a
highest wave, with a peak at zero, of the Whitham equation. Then

lim
x!0

'.0/ � '.x/

jxj1=2
D

r
�

8
:

The corresponding limit for a highest wave in the bidirectional Whitham equation is

lim
x!0

'.0/ � '.x/

jxj log.1=jxj/
D

1

3�
:

3.1. Preliminaries

We will here list a few useful properties of the kernel K D S C R that follow from
Assumption 2. The first lemma shows that the tail of ı2xK is both nonnegative and small,
which will later ensure that it may be disregarded when analysing the local behaviour of
u near the origin. Introducing the antiderivative

K.x/ WD

Z x

0

K.y/ dy (3.1)

for the kernel will occasionally be useful.

Lemma 3.2. The second difference ı2xK is nonnegative on .x;1/ and satisfies

0 �

Z 1
�

ı2xK.y/ dy � �K 0.� � x/x2

for any 0 � x < �.

Proof. For 0 � x < y, the convexity of K on RC immediately yields

ı2xK.y/ D K.y C x/CK.y � x/ � 2K.y/ � 0;

and by virtue of (3.1), we getZ 1
�

ı2xK.y/ dy D �ı2xK.�/ D �

Z x

0

Z x

0

K 0.� C �1 � �2/

� �K 0.� � x/x2

for all 0 � x < �. Here we have used that �K 0 is nonincreasing on RC.
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The following lemma likewise demonstrates that ı2xR is small, and so it too will have
a negligible effect on the local behaviour of u.

Lemma 3.3. The second difference ı2xR is integrable and satisfies

kı2xRkL1 � x
2
kR00kL1

for all x 2 RC0 . Moreover, R0 admits the bound kR0kL1 � kR00kL1 .

Proof. By Assumption 2, R00 is integrable, and so

kı2xRkL1 D

Z
R

ˇ̌̌̌Z x

0

Z x

0

R00.y C t1 � t2/ dt1 dt2

ˇ̌̌̌
dy

�

Z x

0

Z x

0

Z
R
jR00.y C t1 � t2/j dy dt1 dt2 D x2kR00kL1

for all x � 0. For the second part, we note that R D K � S is necessarily even, and so
R0 is odd. Since R0 is also absolutely continuous, we therefore conclude that R0.x/ DR x
0
R00.y/ dy, which gives the desired bound.

4. Logarithmic kernel

In this section, we adopt Assumptions 1 to 3, and specifically assume that the singular part
of the kernelK is of the form S.x/D L.x/D log.1=jxj/. Additionally, we restrict x to an
interval .0; �� throughout, for some 0 < � � 1 such that u is continuously differentiable
and increasing on .0; ��. This is possible due to Assumption 3.

Since we will prove the first two limits of our Main Theorem here, we naturally intro-
duce the shorthands

`.x/ WD x log.1=x/; (4.1)

and

g.x/ WD
u.x/

`.x/
; (4.2)

which is well defined for all x 2 .0; ��. We also adopt the function ƒ from (2.15), whose
utility comes from the identity

ı2xK.�x/ D ı
2
xL.�x/C ı

2
xR.�x/

D ƒ.�/C ı2xR.�x/; (4.3)

which holds by linearity of ı2x .
Seeking to determine the limit of g at zero, we begin with a lemma that asymptotically

rephrases (2.4) in terms of g.
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Lemma 4.1. With ` and g as in (4.1) and (4.2), respectively, we have the equation

.1C o.1//g.x/2 D o.1/g.x/C

Z �

x

hı2xK.y/`.y/
`.x/2

i
g.y/ dy

C

Z 1
�

ı2xK.y/

`.x/2
u.y/ dy (4.4)

as x ! 0. Moreover, the square bracket is nonnegative and satisfies

lim
x!0

Z �

x

ı2xK.y/`.y/

`.x/2
dy D

1

2
; (4.5)

while the final term admits the bound

0 �

Z 1
�

ı2xK.y/

`.x/2
u.y/ dy � o.1/ (4.6)

as x ! 0.

Proof. Dividing each side of (2.4) by `.x/2, we find�
1C n.u.x//

�
g.x/2 D

1

`.x/2

�Z x

0

C

Z �

x

C

Z 1
�

�
ı2xK.y/u.y/ dy; (4.7)

where, since limx!0 n.u.x// D 0 by Assumptions 1 and 3, the left-hand side is indeed
like that of (4.4). As for the right-hand side, notice that

1

`.x/2

Z x

0

ı2xK.y/u.y/ dy D
�.x/

log.1=x/
g.x/

when � is defined through

�.x/ WD
1

xu.x/

Z x

0

ı2xK.y/u.y/ dy:

We exploit that u is increasing on .0; �� to conclude that � is bounded on this interval.
This is because

j�.x/j �
1

x

Z x

0

jı2xK.y/j dy �
Z 1

0

jƒ.�/j d� C �kR00kL1

by (4.3) and Lemma 3.3. In particular, the first term on the right-hand side of (4.7) is
o.1/g.x/, and after using u.y/ D `.y/g.y/ for the second term, we obtain the right-hand
side of (4.4).

Next, the nonnegativity of the expression inside the square bracket in (4.4) is an imme-
diate consequence of the first part of Lemma 3.2. To prove (4.5), we use Lemma 3.3 and
the boundedness of ` on .0; �� to conclude that

R �
0
ı2xR.y/`.y/ dy D O.x2/. Thus

lim
x!0

Z �

x

ı2xK.y/`.y/

`.x/2
dy D lim

x!0

Z �=x

1

ƒ.�/`.�x/

`.x/2
x d�
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from (4.3) and the change of variables � 7! �x. By simplifying the integrand, setting
z D �=x, and splitting the integral, this last limit is equal to

lim
z!1

�R z
1
ƒ.�/� d�

log.z=�/
C

R z
1
ƒ.�/`.�/ d�
log.z=�/2

�
D lim
z!1

ƒ.z/z2
�
1 �

log.z/
2 log.z=�/

�
D
1

2
:

The first equality follows from an application of L’Hôpital’s rule to each of the two
terms, while the second follows from the observation that ƒ.�/ D 1=�2 C O.1=�3/ as
� !1. The latter can be seen directly from its definition in (2.15). Finally, the bound in
(4.6) follows from Lemma 3.2 and u being nonnegative and bounded.

We are ready to prove the first limit of our Main Theorem.

Proposition 4.2. Under Assumptions 1 to 3, the solution enjoys the limit

lim
x!0

u.x/

x log.1=x/
D
1

2
(4.8)

when K has a logarithmic singularity.

Proof. With g as in (4.2), our strategy is to prove that

lim sup
x!0

g.x/ DWM �
1

2
� m WD lim inf

x!0
g.x/; (4.9)

which clearly implies the desired limit.
We first prove that m � 1=2. The function g defined by

g.x/ WD min
y2Œx;��

g.y/ (4.10)

is nondecreasing on .0; ��, and we find

g.x/2 � o.1/g.x/C g.x/
�1
2
C o.1/

�
(4.11)

as x ! 0 from (4.4). Here we have used both (4.5) and the nonnegativity of the square
bracket and the final term.

Now choose a sequence ¹xkºk2N � .0; �� realising m. Assuming, for the sake of con-
tradiction, that m D 0, we may specifically ensure that g D g along this sequence. This is
possible by positivity and continuity of g on .0; ��. Then (4.11) yields

g.xk/ �
1

2
C o.1/

as k !1, after division by g.xk/. Thus, in fact, m > 0, and we instead arrive at

m2 �
1

2
inf

y2.0;��
g.y/

from (4.11). Taking the limit � ! 0, we conclude that m � 1=2.
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For M , we similarly define

Ng.x/ WD max
y2Œx;��

g.y/;

which is nonincreasing on .0; ��, and find

g.x/2 � o.1/g.x/C Ng.x/
�1
2
C o.1/

�
(4.12)

from (4.4). The last term can no longer be discarded, but can be combined with the first
term. This is because of (4.6), and the fact thatm> 0 entails that 1=g is bounded on .0; ��.
Choosing a realising sequence for M in an analogous way, we find M <1 and

M 2
�
1

2
sup

y2.0;��

g.y/;

whence M � 1=2, after taking the limit � ! 0.

4.1. The limit for the derivative

We move on to proving the second limit of our Main Theorem. Analogously to the function
g in (4.2), we introduce the quotient

h.x/ WD
u0.x/

L.x/
D

u0.x/

log.1=x/
; (4.13)

which is well defined on .0; ��, where u0 is also continuous and nonnegative. By
L’Hôpital’s rule, a limit of h at zero would immediately imply a limit for g. Perhaps
curiously, we will go the other way, that is, we will prove the limit of h by exploiting the
already established limit for g in Proposition 4.2.

We also introduce – for notational convenience – the function

‰.�/ WD log
ˇ̌̌1C �
1 � �

ˇ̌̌
; (4.14)

which will serve a similar role to that of ƒ from (2.15). It is positive on RC and appears
in the relation

ı2xK.�x/ D ı2xL.�x/C ı2xR.�x/ D �‰.�/C ı2xR.�x/; (4.15)

where ı2xf D f .� C x/ � f .� � x/ denotes a first-order central difference.

Lemma 4.3. With h and ‰ as defined in (4.13) and (4.14) respectively, we have the
asymptotic equation

.1C o.1//h.x/ D
1

2
C

Z 2

0

h‰.�/L.�x/
L.x/2

i
h.�x/ d� C o.1/ (4.16)
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as x ! 0. Moreover, the expression inside the square brackets satisfies

lim
x!0

Z 2

0

‰.�/L.�x/

L.x/2
d� D 0 (4.17)

and is positive for small x > 0.

Proof. Recalling the antiderivative K from (3.1), the equation takes the form�
1C n.u.x//

�
u.x/2 D ı2xK.�/u.�/ �

Z �

0

ı2xK.y/u0.y/ dy C
Z 1
�

ı2xK.y/u.y/ dy

after integrating by parts on the right-hand side of (2.4). Subsequently differentiating, we
get

2u.x/u0.x/
�
1C Qn.u.x//

�
D ı2xK.�/u.�/

�

Z �

0

ı2xK.y/u
0.y/ dy C

Z 1
�

ı2xK
0.y/u.y/ dy (4.18)

for x 2 .0; �/, where Qn.t/ WD n.t/C 1
2
tn0.t/. This computation is justifiable because of

Assumptions 1 to 3.
Using the definition of h and L from (4.13), the left-hand side of (4.18) can be written

2u.x/u0.x/
�
1C Qn.u.x//

�
D xL.x/2h.x/.1C o.1// (4.19)

as x ! 0, where we have applied Proposition 4.2 and the properties of n from Assump-
tion 1. In particular, this motivates dividing (4.18) by xL.x/2. We investigate each term
on the right-hand side separately:

In the first term, we have ı2xK.�/ � 0 by monotonicity of K on RC, so

ı2xK.�/kukL1 � ı2xK.�/u.�/ � 0

for all x 2 .0; �/. Concerning the tail, we see that convexity of K on RC implies that
ı2xK

0.y/ � 0 for all 0 < x < y, and thus

0 �

Z 1
�

ı2xK
0.y/u.y/ dy � kukL1

Z 1
�

ı2xK
0.y/ dy D �kukL1ı2xK.�/

when x 2 .0; �/. Combined, we therefore haveˇ̌̌̌
ı2xK.�/u.�/C

Z 1
�

ı2xK
0.y/u.y/ dy

ˇ̌̌̌
� �kukL1ı2xK.�/ � �2kukL1xK

0.� � x/

on .0; �/, where the final inequality again is due to the convexity of K. Consequently,

1

xL.x/2

�
ı2xK.�/u.�/C

Z 1
�

ı2xK
0.y/u.y/ dy

�
D o.1/ (4.20)

as x ! 0.
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Turning to the final, evidently dominant, term on the right-hand side of (4.18), we see
that

�

Z �

0

ı2xK.y/u
0.y/ dy D x

Z �=x

0

‰.�/L.�x/h0.�x/ d� �
Z �

0

ı2xR.y/u
0.y/ dy

by (4.15) and (4.13). We have also made the change of variables � 7! �x in the first
integral. Sinceˇ̌̌̌Z �

0

ı2xR.y/u
0.y/ dy

ˇ̌̌̌
� jı2xR.y/ju.�/ � 2xkR

00
kL1kukL1

by Assumption 2, we arrive at

�
1

xL.x/2

Z �

0

ı2xK.y/u
0.y/ dy D

Z �=x

0

h‰.�/L.�x/
L.x/2

i
h.�x/ d� C o.1/ (4.21)

as x ! 0.
Thus, dividing (4.18) by xL.x/2, followed by inserting (4.19), (4.20), and (4.21), we

obtain

.1C o.1//h.x/ D

Z �=x

0

h‰.�/L.�x/
L.x/2

i
h.�x/ d� C o.1/

as x ! 0. The expression inside the square brackets is clearly nonnegative for 0 < x �
� � 1, and the auxiliary limit (4.17) follows directly from integrability of ‰.�/ and
‰.�/L.�/ on .0; 2/. The proof will therefore be complete once the limit

lim
x!0

Z �=x

2

h‰.�/L.�x/
L.x/2

i
h.�x/ d� D

1

2
(4.22)

is established.
To demonstrate this limit, we first argue that, for each fixed ı 2 .0; �/, we haveZ �=x

ı=x

h‰.�/L.�x/
L.x/2

i
h.�x/ d� D o.1/ (4.23)

and Z ı=x

2

‰0.�/�L.�x/

L.x/2
d� D �1C o.1/ (4.24)

as x ! 0. Indeed, assuming x is small enough for ı=x � 2 to hold, we get

‰.�/L.�x/ D log
�
1C

2

� � 1

�
log
� 1
�x

�
� 2

1

� � 1
log
�1
ı

�
.ı

1

�

for all � � ı=x. Using this, and the fact that h is bounded on Œı; �� (by continuity), we
obtain (4.23). The second limit, found in (4.24), follows from an argument very similar to
the one we used to prove (4.5).
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Since u.x/ D xL.x/g.x/ and u0.x/ D L.x/h.x/ by definition (see (4.2) and (4.13)),
we may use integration by parts to compute thatZ ı=x

2

h‰.�/L.�x/
L.x/2

i
h.�x/ d� D

Z ı=x

2

‰.�/u0.�x/

L.x/2
d�

D
‰.ı=x/u.ı/ �‰.2/u.2x/

xL.x/2

�

Z ı=x

2

‰0.�/u.�x/

xL.x/2
d�

D o.1/ �

Z ı=x

2

h‰0.�/�L.�x/
L.x/2

i
g.�x/ d� (4.25)

as x ! 0. On the second line, we deal with the first term by using that ‰.ı=x/ D O.x/
and u.2x/DO.xL.x// as x! 0. This latter identity is a consequence of Proposition 4.2.

Adding (4.23) and (4.25) together, and subtracting 1=2 from each side, we find thatZ �=x

2

h‰.�/L.�x/
L.x/2

i
h.�x/ d� �

1

2

D o.1/ �

Z ı=x

2

h‰0.�/�L.�x/
L.x/2

i�
g.�x/ �

1

2

�
d� (4.26)

upon using (4.24). Exploiting that the integrand in (4.24) is single signed, we can conclude
from (4.26) that

lim sup
x!0

ˇ̌̌̌Z �=x

2

h‰.�/L.�x/
L.x/2

i
h.�x/ d� �

1

2

ˇ̌̌̌
� sup
y2.0;ı�

ˇ̌̌
g.y/ �

1

2

ˇ̌̌
for every 0 < ı < �. Thus (4.22), and hence (4.16), follows by Proposition 4.2.

We may now prove the desired limit for the derivative in our Main Theorem.

Proposition 4.4. Under Assumptions 1 to 3, the derivative of the solution enjoys the limit

lim
x!0

u0.x/

log.1=x/
D
1

2

when K has a logarithmic singularity.

Proof. With h as in (4.13), the result follows immediately from (4.16) and (4.17), provided
we are able to show that h is bounded near the origin. We know that h is nonnegative
on .0; ��, so it is sufficient to prove that h is bounded above on this set. For the sake
of contradiction, suppose that this is not the case, which by continuity of h necessitates
blow-up at the origin. As a result, the set

A WD
®
x 2 .0; ��W h.x/ D maxz2Œx;�� h.z/

¯
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of points where h is larger than subsequent values must have the origin as an accumulation
point. Furthermore, the limit

lim
x!0
x2A

h.x/ D1 (4.27)

must also hold.
Observing that � 2 A, we see that the intersection Œx; �� \ A is nonempty and closed

for any x 2 .0; ��. In particular, the point

Nx WD min.Œx; �� \ A/

exists, and enjoys the property

h. Nx/ D max
z2Œx;��

h.z/ (4.28)

for every x 2 .0; ��. For convenience, we define the accompanying scaling factor

�x WD x= Nx 2 .0; 1�

for each x 2 .0; ��. Note also that
Nx D o.1/ (4.29)

as x ! 0, by the aforementioned fact that A admits zero as an accumulation point.
By differentiating, one sees that x 7! xL.x/2 is increasing on .0; e�2/, which we may

assume entirely contains .0; ��. From this, we obtain

1

�xL.x/2
D

Nx

xL.x/2
�

1

L. Nx/2
;

which will be exploited in our next calculation: The change of variables � 7! �=�x yieldsZ 1

0

h‰.�/L.�x/
L.x/2

i
h.�x/ d� D

Z �x

0

h‰.�=�x/L.� Nx/
�xL.x/2

i
h.� Nx/ d�

�

Z �x

0

h‰.�/L.� Nx/
L. Nx/2

i
h.� Nx/ d�; (4.30)

where we have also used that ‰ is positive, and increasing on .0; 1/. This can be seen
directly from its definition in (4.14).

As we will see, (4.30) actually implies that h.x/ is comparable to h. Nx/. Taking the
difference of (4.16) evaluated at x and Nx, respectively, we get

.1C o.1//h.x/ � .1C o.1//h. Nx/

D

Z 2

0

h‰.�/L.�x/
L.x/2

i
h.�x/ d� �

Z 2

0

h‰.�/L.� Nx/
L. Nx/2

i
h.� Nx/ d� C o.1/

as x ! 0, after using (4.29). On the right-hand side,Z 2

0

h‰.�/L.�x/
L.x/2

i
h.�x/ d� �

Z �x

0

h‰.�/L.� Nx/
L. Nx/2

i
h.� Nx/ d�
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by (4.30), and positivity of the integrand. Thus

.1C o.1//h.x/ � .1C o.1//h. Nx/ � �

Z 2

�x

h‰.�/L.� Nx/
L. Nx/2

i
h.� Nx/ d� C o.1/

� o.1/h. Nx/C o.1/ (4.31)

as x ! 0, in view of (4.29), (4.28), and (4.17).
As a consequence of (4.31), we conclude that

lim inf
x!0

h.x/

h. Nx/
� 1;

which, since limx!0 h. Nx/ D1 by (4.27), implies that

lim
x!0

h.x/ D1

holds. This leads to our contradiction: with g as in (4.2), we see through (4.8) and integ-
ration by parts that

1

x

Z x

0

h.y/ dy D g.x/ �
1

x

Z x

0

g.y/

log.1=y/
dy !

1

2

as x! 0. For this to be the case, we must necessarily have lim infx!0 h.x/ <1, contra-
dicting what we just demonstrated. In conclusion, h is bounded on .0; ��, and the proof is
complete.

4.2. The bidirectional Whitham equation

By inserting the steady-wave ansatz �.t; x/D '.x � ct/ and .t; x/ 7! v.x � ct/ into (1.2)
and integrating, the time-independent Whitham–Boussinesq system

�c' CKB � v C 'v D 0;

�cv C ' C v2=2 D 0;
(4.32)

is obtained. The constants of integration have been set to zero in order to match the setting
of [14]. By subsequently eliminating ', we find the steady bidirectional Whitham equation

KB � v D v.c � v/.c � v=2/ (4.33)

for v. Given a solution to (4.33), the associated ' can easily be recovered through the
second equation in (4.32).

We see that even if (4.33) arose from a system, it is of the exact same type as (2.2).
Repeating the procedure in Section 2, we first discern that the right-hand side of (4.33)
increases to the left of a local maximum at v D .1 � 1=

p
3/c. If v is even, and assumes

this value at the origin, then

u WD

p
3�c

2

��
1 �

1
p
3

�
c � v

�
(4.34)
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satisfies the equation�
1C

2

3�c2
u.x/

�
u.x/2 D

Z 1
0

ı2x.�KB/.y/u.y/ dy;

which is precisely of the form (2.4). Moreover, Assumption 1 holds trivially, and the
formula

KB.x/ D
1

�
log
�

coth
��jxj
4

��
from (1.3) and [30, I.7.37] shows that Assumption 2 is satisfied with S D L.

In [14, Theorem 5.9], the existence of a limiting 2�-periodic solution .v; c/ of (4.33)
is established. This solution is even, assumes v.0/ D .1 � 1=

p
3/c at the crest, decreases

on the half-period Œ0; ��, and is smooth on .0; 2�/. In particular, Assumption 3 holds
both for this solution, and for similar solutions with a different period. The hypotheses of
Propositions 4.2 and 4.4 are therefore satisfied for the rescaled variable in (4.34). From
this, we may deduce the asymptotic behaviour of v, and in turn that of '.

Corollary 4.5 (Asymptotic behaviour of highest waves). Let v be a solution of the steady
bidirectional Whitham equation (4.33) that is even, assumes v.0/ D .1 � 1=

p
3/c, and is

smooth and decreasing on a nonempty interval .0; �/. Then

v.x/ D
�
1 �

1
p
3

�
c �

� 1
p
3�c
C o.1/

�
x log.1=x/;

'.x/ D
c2

3
�

� 1
3�
C o.1/

�
x log.1=x/

(4.35)

as x & 0, with ' as described after (4.33). Moreover, one also has

v0.x/ D �
� 1
p
3�c
C o.1/

�
log.1=x/;

'0.x/ D �
� 1
3�
C o.1/

�
log.1=x/

(4.36)

as x & 0.

The authors of [14] also pose a natural question about the global regularity of these
waves: What is a reasonable function space that can capture the kind of asymptotic beha-
viour in (4.35) in an optimal way? A sensible candidate is the space of log-Lipschitz
functions [12]. This space appears, for instance, in critical Sobolev embeddings, and as a
simple example of a class of non-Lipschitz right-hand sides for which the Osgood criterion
[20] for the Picard–Lindelöf theorem holds.

This global regularity is not a direct consequence of the local behaviour in (4.35).
Oscillations may, even under additional assumptions of monotonicity and smoothness,
cause the estimates to blow up in the limit. We will show that the highest waves indeed are
log-Lipschitz by combining (4.36) with fairly straightforward bounds. To get the result, it
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is advantageous to introduce the concept of a modulus of continuity, commonly used in
approximation theory.

We will say that !WRC0 ! RC0 is a modulus of continuity if it is increasing, concave,
continuous, and vanishes at the origin. Any function f W I ! R is then said to admit ! as
a modulus of continuity if

jf .x/ � f .y/j � !.jx � yj/

for all x; y 2 I . The following simple lemma is ours, but is very likely known in some
form in the literature. It can be viewed as a kind of L’Hôpital rule for moduli of continuity.

Lemma 4.6. Suppose that f is absolutely continuous on an open interval I 3 0, and that

ess lim sup
t!0

jf 0.t/j

!0.jt j/
<1 (4.37)

for a modulus of continuity !. Then there are M; ı > 0 such that f admits M! as a
modulus of continuity on .�ı; ı/.

Proof. Note that ! is necessarily locally absolutely continuous. Due to (4.37), we are able
to find M; ı > 0 such that

jf 0.t/j �
M

2
!0.jt j/

for a.e. t 2 .�ı; ı/. It follows that

jf .y/ � f .x/j D

ˇ̌̌̌Z y

x

f 0.t/ dt
ˇ̌̌̌
�
M

2

Z y

x

!0.jt j/ dt D
M

2
Œ!.jt j/ sgn.t/�yx

for all x � y 2 .�ı; ı/.
Since ! is concave on RC0 , and !.0/ � 0, it is also subadditive. Thus

Œ!.jt j/ sgn.t/�yx D !.y/ � !.x/ � !.y � x/ D !.jy � xj/

when 0 � x � y, and a similar line of reasoning works for the case x � y � 0. Finally, if
x � 0 � y, then

Œ!.jt j/ sgn.t/�yx D !.y/C !.�x/ � !.y � x/C !.y � x/ D 2!.jy � xj/

by monotonicity of !. This concludes the proof.

It is furthermore straightforward to show that if f admits Mi! as a modulus of con-
tinuity on an interval Ii for i D 1; 2, and I1 \ I2 ¤ ¿, then f admits .M1 CM2/! as a
modulus of continuity on I1 [ I2. This follows since, for any x 2 I1 and y 2 I2, there is
some z 2 I1 \ I2 between x and y, whence

jf .y/ � f .x/j �M2!.jy � zj/CM1!.jz � xj/ � .M1 CM2/!.jy � xj/; (4.38)

by monotonicity of !. We use this to get the following result.



M. Ehrnström, O. Mæhlen, and K. Varholm 22

Theorem 4.7 (Global regularity of highest waves). Any periodic solution to (4.33) satis-
fying the hypothesis of Corollary 4.5 around its crests, belongs to the class of log-Lipschitz
functions. That is, there is a constant M > 0 such that

jv.x/ � v.y/j �M jx � yj log
�
1C

1

jx � yj

�
(4.39)

for all x; y 2 R.

Proof. Because of (4.36), we can apply Lemma 4.6 with !.t/ WD t log.1 C 1=t/ to get
(4.39) in a neighbourhood of each crest. Meanwhile, away from crests, the same conclu-
sion holds by the smoothness furnished by [14, Lemma 4.1]. Since we have a compact
domain from periodicity, the stitching argument in (4.38) enables us to infer that there is
a uniform constant M > 0 for which (4.39) holds globally.

Remark 4.8. For a highest solitary solution, the same conclusion can be reached by
combining compactness with a priori decay properties; see for instance [5]. Small solitary-
wave solutions to the Whitham–Boussinesq system (1.2) were constructed in [29], but at
present there is no existence result for extreme solutions in the solitary case.

5. Homogeneous kernel

Like in the previous section, we will adopt Assumptions 1 to 3, but now take the singular
part of the kernel K to be S.x/ D H.x/ D jxj�1=2. The same restriction of x to .0; �� for
some 0 < � � 1 will also be made. We will here prove the final two limits of our Main
Theorem, and so analogously to (4.2) define

g.x/ WD
u.x/

x1=2
(5.1)

for x > 0 in this section. We further remind the reader of ˆ from (2.11), which appears in
the identity

ı2xK.�x/ D ı
2
xH.�x/C ı

2
xR.�x/ D x

�1=2ˆ.�/C ı2xR.�x/ (5.2)

due to (2.7).
Understanding the properties of ˆ will clearly be paramount for the calculations in

this section, and we therefore start with a lemma listing a few of them. The bounds are
certainly not optimal, but sufficient for our purposes. See also Figure 1.

Lemma 5.1. The function ˆ is increasing on the interval .0; 1/, where it has a unique
root �0 2 .12 ;

2
3
/. In addition, ˆ is positive on .1;1/,Z 1

0

ˆ.�/ d� D 0;
Z 1
0

ˆ.�/�1=2 d� D
�

2
; (5.3)
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and
1

2
< �

Z �0

0

ˆ.�/�1=2 d� <
3

5
: (5.4)

Proof. The first integral in (5.3) is a trivial computation, while the second explicit integral
is simply a special case of (2.8). That ˆ is increasing on .0; 1/ follows directly from
differentiating (2.11), and, by explicit evaluation, one further sees that ˆ.1

2
/ < 0 < ˆ.2

3
/.

Hence there is a unique root �0 on the interval, which necessarily lies in .1
2
; 2
3
/. The

positivity on .1;1/ follows by the same computation as for ı2xK in Lemma 3.2, using the
strict convexity of H on RC.

For (5.4), it is easily verified that

�

Z t

0

ˆ.�/�1=2 d� D 2t �
2t3=2

.1C t /1=2 C .1 � t /1=2
C arsinh.t1=2/� arcsin.t1=2/ (5.5)

for all t 2 .0; 1/. Due to the sign change of ˆ at � D �0, this integral is maximised there,
and lower bounds can be found by evaluation at any other point. In particular, we find

�

Z �0

0

ˆ.�/�1=2 d� > �
Z 2=3

0

ˆ.�/�1=2 d� >
1

2

by evaluating (5.5) at 2=3.
To establish the upper bound, we observe through (5.5) and straightforward algebra

that

�

Z t

0

ˆ.�/�1=2 d� C t3=2ˆ.t/

D
1

.t�1 � 1/1=2
�

1

.t�1 C 1/1=2
C arsinh.t1=2/ � arcsin.t1=2/;

and that this expression is increasing on .0; 1/. Exploiting this, we get

�

Z �0

0

ˆ.�/�1=2 d� D �
Z �0

0

ˆ.�/�1=2 d� C �3=20 ˆ.�0/ <
3

5
;

after using the fact that �0 is a root of ˆ, and evaluating at 2=3 > �0.

We next provide an asymptotic rephrasing of (2.4) for g, analogous to the one provided
by Lemma 4.1. A fundamental difference from the logarithmic case is that the contribution
from the integral

R x
0
ı2xK.y/u.y/ dy can no longer be disregarded when passing to the

limit. This is unlike (4.4), and makes the subsequent arguments more involved.

Lemma 5.2. With g defined as in (5.1), there is a function �W .0; 1/! .0; 1/ such that

.1C o.1//g.x/2 D

�Z 1

�.x/

ˆ.�/ d� C o.1/
�
g.x/

C

Z �

x

hı2xK.y/y1=2
x

i
g.y/ dy C

Z 1
�

ı2xK.y/

x
u.y/ dy (5.6)
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as x ! 0. Moreover, the square bracket is positive and satisfies

lim
x!0

Z �

x

ı2xK.y/y
1=2

x
dy D

Z 1
1

ˆ.�/�1=2 d�; (5.7)

while the final term admits the bound

0 �

Z 1
�

ı2xK.y/

x
u.y/ dy � o.1/ (5.8)

as x ! 0

Proof. Dividing each side of (2.4) by x, we find�
1C n.u.x//

�
g.x/2 D

1

x

�Z x

0

C

Z �

x

C

Z 1
�

�
ı2xK.y/u.y/ dy;

where we observe that the left-hand side is of the same form as in (5.6). On the right-hand
side, the third integrals are identical, while in the second we have simply used the defini-
tion of g in (5.1) to write u.y/ D y1=2g.y/. The first integral requires more elaboration.

Recall from Lemma 5.1 that the singular part of ı2xK.y/ changes sign at �0x. As u
is increasing and nonnegative on Œ0; ��, we may still make use of the second mean value
theorem for integrals on the first integral. Explicitly, we are able to conclude that, for every
x 2 .0; ��, we have Z x

0

ı2xK.y/u.y/ dy D u.x/
Z x

�.x/x

ı2xK.y/ dy

for some �.x/ 2 .0; 1/. Here, combining identity (5.2) with Lemma 3.3, we further haveZ x

�.x/x

ı2xK.y/ dy D x1=2
Z 1

�.x/

ˆ.�/ d� CO.x2/

as x ! 0. Consequently, we find the first term in (5.6).
The positivity of the expression inside the square brackets in (5.6) for y 2 .x; �� is an

immediate corollary of Lemma 3.2, while the limit (5.7) follows directly from (5.2) and
Lemma 3.3. Finally, by an argument identical to the one used to prove (4.6), we obtain
(5.8).

As we have alluded to, applying the arguments in the proof of Proposition 4.2 to (5.6)
will not directly lead us to the desired limit for g. Instead, we will derive a system of two
inequalities for the limits inferior and superior of g at zero. As will be demonstrated in
Proposition 5.5, these inequalities are in fact sharp enough to ensure the limit for g.

Lemma 5.3. With g as in (5.1), we have

m WD lim inf
x!0

g.x/ > 0 and M WD lim sup
x!0

g.x/ <1;
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for which the inequalities

M 2
� m

Z �0

0

ˆ.�/�1=2 d� CM
Z 1
�0

ˆ.�/�1=2 d�; (5.9)

m2 �

Z �0

0

ˆ.�/min.m;M�1=2/ d� Cm
Z 1
�0

ˆ.�/�1=2 d�; (5.10)

hold. Here, ˆ is as defined in (2.11).

Remark 5.4. Compare (5.9) and (5.10) with the more symmetric (2.14) that was covered
in Section 2. Without the refinement of (5.10) over the second inequality in (2.14), the
system would be too weak to reach the conclusion of Proposition 5.5.

Proof of Lemma 5.3. We first prove that m > 0. Proceeding as in Proposition 4.2, we
deduce from (5.6) that

.1C o.1//g.x/2 �

�Z 1

0

ˆ.�/ d� C o.1/
�
g.x/C g.x/

Z �

x

hı2xK.y/y1=2
x

i
dy (5.11)

as x ! 0. Here, g is again defined according to (4.10). To bound the integral below,
we have used the monotonicity of ˆ on .0; 1/, along with

R 1
0
ˆ.�/ d� < 0, both from

Lemma 5.1.
Assuming that m D 0, we may pick a realising sequence ¹xkºk2N � .0; �� for m, in

such a way that g D g along the sequence. Then (5.11) reduces to

.1C o.1//g.xk/ �

Z 1

0

ˆ.�/ d� C
Z �

xk

hı2xkK.y/y1=2
xk

i
dy C o.1/

as k !1, after having divided by g.xk/. Going to the limit, we obtain

m �

Z 1

0

ˆ.�/ d� C
Z 1
1

ˆ.�/�1=2 d� D
Z 1
1

ˆ.�/.�1=2 � 1/ > 0;

where the equality comes from the first integral in (5.3). Meanwhile, the final inequality
stems from positivity of the integrand on .1;1/, which is part of Lemma 5.1. Regardless,
this is a contradiction, so m > 0.

Similarly, arguing like for (4.12), one has

.1C o.1//g.x/2 �

�Z 1

�0

ˆ.�/ d� C o.1/
�
g.x/C Ng.x/

Z �

x

hı2xK.y/y1=2
x

i
dy

as x! 0. Assuming thatM D1, we are again able to choose a realising sequence along
which g D Ng. This results in the contradiction

M �

Z 1

�0

ˆ.�/ d� C
Z 1
1

ˆ.�/�1=2 d� <1;

and so we do in fact have M <1.
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Armed with the knowledge that 0 < m � M < 1, we may now derive the sharper
inequalities (5.9) and (5.10): knowing that g is bounded, (5.6) can be replaced with the
simpler

g.x/2 D

Z �=x

0

ˆ.�/�1=2g.�x/ d� C o.1/ (5.12)

as x ! 0, by employing Lemmas 3.2 and 3.3. Since we recall from Lemma 5.1 that ˆ is
negative on .0; �0/, and positive on .�0;1/, we therefore see that

M 2
�

�
inf

y2.0;��
g.y/

� Z �0

0

ˆ.�/�1=2 d� C
�

sup
y2.0;��

g.y/
� Z 1

�0

ˆ.�/�1=2 d�;

which yields (5.9) in the limit � ! 0.
In order to establish (5.10), we note that, since u is increasing on .0; ��, we have

�1=2g.�x/ D
u.�x/

x1=2
�
u.x/

x1=2
D g.x/

for every � 2 .0; 1/ and x 2 .0; ��. Thus

�1=2g.�x/ � min
�
g.x/; �1=2

�
sup

y2.0;��

g.y/
��

for all such x, � , and the lower bound

g.x/2 �

Z �0

0

ˆ.�/min
�
g.x/; �1=2

�
sup

y2.0;��

g.y/
��

d�

C

�
inf

y2.0;��
g.y/

� Z 1
�0

ˆ.�/�1=2 d� C o.1/

as x ! 0, is therefore obtained from (5.12). Finally, we are left with (5.10) after first
taking the limit along a sequence realising m, and subsequently letting � ! 0.

While the inequalities (5.9) and (5.10) are more involved than the corresponding
inequalities found in the logarithmic case (4.9), it just so happens that the only point
.m; M/ 2 RC � RC that satisfies both (5.9), (5.10), and m � M is the one given by
m DM D �=2. We now prove this, resulting in the third limit of our Main Theorem.

Proposition 5.5. Under Assumptions 1 to 3, the solution enjoys the limit

lim
x!0

u.x/

x1=2
D
�

2

when K has a homogeneous singularity.

Proof. With M and m as in Lemma 5.3, we first introduce � WD M=m � 1, and rewrite
(5.9) and (5.10) purely in terms of � and m:

m � ��2
Z �0

0

ˆ.�/�1=2 d� C ��1
Z 1
�0

ˆ.�/�1=2 d�; (5.13)

m �

Z �0

0

ˆ.�/min.1; ��1=2/ d� C
Z 1
�0

ˆ.�/�1=2 d�: (5.14)
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When � D 1, both right-hand sides read
R1
0
ˆ.y/y1=2 dy D �=2 by Lemma 5.1, and

so �=2 D m D M=� D M . We will therefore be done once we are able to show that
no m > 0 simultaneously satisfies both (5.13) and (5.14) when � > 1. To that end, we
introduce

f .�/ WD

Z �0

0

ˆ.�/min.1; ��1=2/ d� C ��2b C
��
2
C b

�
.1 � ��1/ (5.15)

for � � 1, where

b WD �

Z �0

0

ˆ.�/�1=2 d�

is a positive constant. As
R1
�0
ˆ.�/�1=2 d� D �=2C b, it is not difficult to see that f .�/ is

precisely the right-hand side of (5.14) minus that of (5.13). Hence, if we can demonstrate
that f is positive on .1;1/, then there is no simultaneous solution to (5.13) and (5.14),
thereby completing the proof.

Since ˆ is negative on .0; �0/ by Lemma 5.1, we may use the trivial inequality

min.1; ��1=2/ � ��1=2

to see that

f .�/ � ��b C ��2b C
��
2
C b

�
.1 � ��1/

D .1 � ��1/
��
2
� b.� C ��1/

�
for all � � 1. Note that the first of the two factors is positive for all � > 1, while the second
factor is a decreasing function of � . As b < 3=5 by (5.4), we further have

f .2/ �
� � 3

4
> 0;

and thus conclude that f .�/ > 0 on .1; 2�.
Suppose finally that � > 21=2. Then ��2 < 1=2 < �0, by Lemma 5.1, so thatZ �0

0

ˆ.�/min.1; ��1=2/ d� D �
Z ��2

0

ˆ.�/�1=2 d� C
Z �0

��2
ˆ.�/ d�;

which we in turn can use in (5.15) to compute that

f 0.�/ D

Z ��2

0

ˆ.�/�1=2 d� � 2��3b C
��
2
C b

�
��2;

for all � > 21=2. Here,

ˆ.�/�1=2 D
� 1

.1C �/1=2
C

1

.1 � �/1=2

�
�1=2 � 2 � 2�1=2 � 2
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by (2.11) and the convexity of H.�/ D j� j�1=2 on RC. Therefore, we infer that

f 0.�/ � 2

Z ��2

0

.�1=2 � 1/ d� � 2��3b C
��
2
C b

�
��2

D

��
2
C b � 2

�
��2 C

�4
3
� 2b

�
��3

>
� � 3

2
��2 C

2

15
��3

for all � > 21=2, by using the bounds on b provided by (5.4). In conclusion, f is increasing
on .21=2;1/, and therefore positive on .1;1/, seeing as it is positive on .1; 2�.

5.1. The limit for the derivative

We will now prove the final limit of our Main Theorem. Whereas in Section 4.1 we first
proved the limit, and then obtained uniform regularity via Lemma 4.6, we will here prove
a sharper form of Hölder regularity first. This regularity is then used to establish the limit.
These two approaches are complementary. The counterpart to (4.15) in this case is still
useful, and becomes

ı2xK.�x/ D ı2xH.�x/C ı2xR.�x/ D ��.�/C ı2xR.�x/;

where
�.�/ WD

1

j� � 1j1=2
�

1

.� C 1/1=2
(5.16)

is also positive on RC.
To illustrate the idea, if one formally differentiates the toy equation in (2.6), then

2
�u.x/
x1=2

�
x1=2u0.x/ D p: v:

Z 1
0

ı2xH
0.y/u.y/ dy

D p: v:
Z 1
0

� 0.�/�1=2
� u.�x/
.�x/1=2

�
d�

for all x > 0. In principle, it should therefore be the case that

lim
x!0

x1=2u0.x/ D
1

2
p: v:

Z 1
0

� 0.�/�1=2 d� (5.17)

because of Proposition 5.5. This principal value integral can be shown to, in fact, equal
�=2, so we find the “correct” limit. Of course, to rigorously justify this computation,
especially for the full equation, we need to work harder.

Lemma 5.6. There is some � > 0 so that

x1=2.u.x C h/ � u.x � h// . h (5.18)
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for all 0 � h � x � �. As a consequence, u is C 1=2-Hölder continuous on Œ0; ��, and

u0.x/ . x�1=2

for x 2 .0; ��.

Proof. This proof is a variant of the proof of global regularity given for the Whitham
equation in [16], but adapted to obtain more information than just Hölder continuity. The
aim is to build up regularity by applying a bootstrap argument to (2.4). We begin by noting
that, if we introduce the notationN.t/ WD .1C n.t//t2 for the nonlinearity on the left-hand
side of (2.4), and for simplicity extend u to an even function on R, then

N.u.x C h// �N.u.x � h// D

Z 1
0

.ı2xChK.y/ � ı
2
x�hK.y//u.y/ dy

D �

Z 1
0

ı2hK.y/ı2xu.y/ dy (5.19)

for all x;h 2R. This equation was referred to as a double symmetrisation formula in [16].
On the left-hand side,

N.u.x C h// �N.u.x � h// D

Z u.xCh/

u.x�h/

N 0.t/ D .1C o.1//.u.x C h/2 � u.x � h/2/

for 0 < h < x as x! 0. This is because N 0.t/ D .2C o.1//t as t ! 0 by Assumption 1,
and because u.0/ D 0. Moreover, we further have

u.x C h/2 � u.x � h/2 D .u.x C h/C u.x � h//ı2hu.x/ Å x1=2ı2hu.x/

by Proposition 5.5.
We next turn to the right-hand side of (5.19), which we split as

�

Z 1
0

ı2hK.y/ı2xu.y/ dy D �
�Z x

0

C

Z �

x

�
ı2hH.y/ı2xu.y/ dy

�

Z �

0

ı2hR.y/ı2xu.y/ dy

�

Z 1
�

ı2hK.y/ı2xu.y/ dy (5.20)

for 0 < h < x � �, with H and R as in Assumption 2. Here, the final terms satisfyˇ̌̌̌Z 1
�

ı2hK.y/ı2xu.y/ dy
ˇ̌̌̌
� 2hK.� � h/kukL1 . h;ˇ̌̌̌Z �

0

ı2hR.y/ı2xu.y/ dy
ˇ̌̌̌
� 2�hkR00kL1kukL1 . h;
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where the first inequality follows by a similar argument to that for Lemma 3.2, while the
second follows from the bound on R0 from Lemma 3.3. Furthermore, the first term on the
right-hand side of (5.20) satisfiesˇ̌̌̌Z x

0

ı2hH.y/ı2xu.y/ dy
ˇ̌̌̌
D

h

x1=2

ˇ̌̌̌Z x=h

0

�.�/ı2xu.�h/ d�
ˇ̌̌̌

. h

Z 1
0

�.�/ d� . h

from Proposition 5.5, since � from (5.16) is integrable.
In summary, we have demonstrated that

x1=2jı2hu.x/j . h1=2
Z �=h

x=h

�.�/ı2xu.�h/ d� C h (5.21)

for 0 < h < x � �, after possibly shrinking �. Now define the possibly infinite quantity

C.˛/ WD sup
0<h<x��

x˛
jı2hu.x/j

h2˛
(5.22)

for each ˛ 2 Œ0; 1=2�. As a function taking extended real values, C is nondecreasing and
left-continuous in ˛, and is at least finite at ˛ D 0. We emphasise that the supremum is
not taken over �.

Let ˛ be such that C.˛/ is finite. Then

jı2xu.�h/j . min.C.˛/x2˛.�h/�˛; .�h/1=2/ � C.˛/1=2x˛.�h/1=2�˛=4

in the integrand in (5.21), by Proposition 5.5 and the definition of C.˛/ in (5.22). We have
also used that min.a; b/ �

p
ab for all a; b � 0. Inserting this into (5.21), we find

x1=2jı2hu.x/j . C.˛/1=2h3=4�˛=2x˛
Z 1
x=h

�.�/�1=4�˛=2 d� C h

. C.˛/1=2hx˛=2�1=4 C h (5.23)

for all 0 < h < x � �. The second inequality comes from the fact thatZ 1
z

�.�/�1=4�˛=2 d� .
1

z1=4C˛=2

uniformly in z � 1 and ˛. If we now divide (5.23) by h1=2C˛x1=4�˛=2, we arrive at

x1=4C˛=2
jı2hu.x/j

h1=2C˛
. C.˛/1=2

�h
x

�1=2�˛
C h1=4�˛=2

�h
x

�1=4�˛=2
for 0 < h < x � �. In particular, we thus have

C.1=4C ˛=2/ . C.˛/1=2 C 1 (5.24)

according to the definition in (5.23). Crucially, the implicit constant does not depend on ˛.
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From (5.24), we immediately conclude by induction that since C.0/ is finite, we have

C
�1
2
�
1

2k

�
<1

for all k � 1. Thus, since C is nondecreasing, it is in fact finite for all ˛ 2 Œ0; 1=2/.
Moreover,

C.˛/ � C.1=4C ˛=2/ . C.˛/1=2 C 1

implies a uniform bound on C.˛/ for all ˛ 2 Œ0; 1=2/. Continuity from the left ensures
that C.1=2/ is finite as well, concluding the proof.

Using the regularity furnished by (5.18) in Lemma 5.6, we are now able to fully justify
a version of the calculation in (5.17). We purposely avoid having to deal with principal
value integrals.

Proposition 5.7. Under Assumptions 1 to 3, the derivative of the solution enjoys the limit

lim
x!0

u0.x/

x�1=2
D
�

4

when K has a homogeneous singularity.

Proof. We return to (5.19), make the same splitting of the right-hand side as in (5.20), and
divide by 2h, so as to get

N.u.x C h// �N.u.x � h//

2h
D �

1

2h

�Z x

0

C

Z �

x

�
ı2hH.y/ı2xu.y/ dy

�
1

2h

Z �

0

ı2hR.y/ı2xu.y/ dy

�
1

2h

Z 1
�

ı2hK.y/ı2xu.y/ dy (5.25)

for all 0 < x � � and 0 < h � x=2. The intention is to obtain the desired limit from this
equation, by first letting h! 0, and subsequently x ! 0: after doing so to the left-hand
side of (5.25), it reads

lim
x!0

lim
h!0

N.u.x C h// �N.u.x � h//

2h
D lim
x!0

N 0.u.x//u0.x/

D � lim
x!0

u0.x/

x�1=2
; (5.26)

where the final equality follows fromN 0.u.x//D .2C o.1//u.x/ and Proposition 5.5. Of
course, we do not yet know that this limit actually exists.

Turning our attention to the right-hand side of (5.25), we next establish the limit of
each integral separately. To accomplish this, we will prove that the integrands are domin-
ated by integrable functions, independently of x and h. Consequently, limits and integrals
may be interchanged, by using the dominated convergence theorem.
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For the first integral, we use the symmetry ı2xu.y/ D ı2yu.x/ to write

�
1

2h

Z x

0

ı2hH.y/ı2xu.y/ dy D �
1

2h

�Z 2h

0

C

Z x

2h

�
ı2hH.y/ı2yu.x/ dy

D
1

2h1=2

Z 2

0

�.�/ı2�hu.x/ d�

�

Z 1

2h=x

ı2hH.�x/

2h
ı2�xu.x/x d� (5.27)

for all 0 < 2h � x � �. In the first term on the right-hand side,

1

2h1=2
�.�/ı2�hu.x/ D

1

2

�
h

x

�1=2
�.�/�

�
x1=2ı2�hu.x/

�h

�
; (5.28)

and therefore ˇ̌̌̌
1

2h1=2
�.�/ı2�hu.x/

ˇ̌̌̌
. �.�/�

by Lemma 5.6. Because � 7! �.�/� is integrable on Œ0; 2�, it follows from (5.28) and
dominated convergence that the first integral on the right hand-side of (5.27) vanishes as
h! 0, for each 0 < x � �.

As for the second term on the right-hand side of (5.27), its integrand may be expressed
as

�
ı2hH.�x/

2h
ı2�xu.x/x

D
�

.�2 � .h=x/2/1=2..� C h=x/1=2 C .� � h=x/1=2/

�x1=2ı2�xu.x/
�x

�
;

and is thus dominated by ˇ̌̌
�
ı2hH.�x/

2h
ı2�xu.x/x

ˇ̌̌
.

1

�1=2
(5.29)

for all 0 < 2h � x � � and 2h=x � � � 1. Moreover, we have the limit

lim
h!0

�
�
ı2hH.�x/

2h
ı2�xu.x/x

�
D

1

2�3=2
ı2�xu.x/

x1=2

for each fixed x 2 .0; �� and � 2 .0; 1�, where in turn

lim
x!0

� 1

2�3=2
ı2�xu.x/

x1=2

�
D

�

4�3=2
..1C �/1=2 � .1 � �/1=2/

for each � 2 .0; 1� by Proposition 5.5. Since the upper bound (5.29) is integrable on Œ0; 1�,
we may therefore conclude that

lim
x!0

lim
h!0

�
�
1

2h

Z x

0

ı2hH.y/ı2xu.y/ dy
�

D

Z 1

0

�

4�3=2
..1C �/1=2 � .1 � �/1=2/ d� (5.30)

from (5.27) and the pointwise limits.
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We move on to the second integral on the right-hand side of (5.25). It can be written
as

�
1

2h

Z �

x

ı2hH.y/ı2xu.y/ dy D �
Z �=x

1

ı2hH.�x/

2h
ı2xu.�x/x d�;

where Lemma 5.6 implies that the integrand

�
ı2hH.�x/

2h
ı2xu.�x/x

D
��1=2

.�2 � .h=x/2/1=2..� C h=x/1=2 C .� � h=x/1=2/

� .�x/1=2ı2xu.�x/
x

�
is bounded by ˇ̌̌

�
ı2hH.�x/

2h
ı2xu.�x/x

ˇ̌̌
.
1

�2
(5.31)

for all 0 < 2h � x � � and 2h=x � � � �=x. Furthermore, it admits the limit

lim
h!0

�
�
ı2hH.�x/

2h
ı2xu.�x/x

�
D

1

2�3=2
ı2xu.�x/

x1=2

for each fixed x 2 .0; �� and � 2 .0; �=x�, and we further have

lim
x!0

� 1

2�3=2
ı2xu.�x/

x1=2

�
D

�

4�3=2
..1C �/1=2 � .� � 1/1=2/

for every � > 0 by Proposition 5.5. The upper bound in (5.31) is integrable on Œ1;1/, and
we therefore have

lim
x!0

lim
h!0

�
�
1

2h

Z �

x

ı2hH.y/ı2xu.y/ dy
�

D

Z 1
1

�

4�3=2
..1C �/1=2 � .� � 1/1=2/ d�: (5.32)

For the third integral on the right-hand side of (5.25), we use the bound on R0 from
Lemma 3.3 to find that the integrand is dominated byˇ̌̌ı2hR.y/

2h
ı2xu.y/

ˇ̌̌
. 1

for all 0 < 2h � x � � and 0 < y < �. We note also the two limits

lim
h!0

�ı2hR.y/
2h

ı2xu.y/
�
D R0.y/ı2xu.y/

for every 0 < x; y � �, and

lim
x!0

.R0.y/ı2xu.y// D 0
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for all 0 < y � �. As before, we conclude that

lim
x!0

lim
h!0

�
�
1

2h

Z �

0

ı2hR.y/ı2xu.y/ dy
�
D 0 (5.33)

by using dominated convergence.
Finally, for the fourth integral on the right-hand side of (5.25) we exploit the convexity

of K to see that the integrand is dominated byˇ̌̌ı2hK.y/
2h

ı2xu.y/
ˇ̌̌

. �K 0.y � �=2/

for all 0 < x � �, 0 < h < x=2, and y � �. We observe also that

lim
h!0

�ı2hK.y/
2h

ı2xu.y/
�
D K 0.y/ı2xu.y/

for every 0 < x � � � y, and that

lim
x!0

.K 0.y/ı2xu.y// D 0

for all y � �, so this integral also vanishes in the limit:

lim
x!0

lim
h!0
�
1

2h

Z 1
�

ı2hK.y/ı2xu.y/ dy D 0: (5.34)

In summary, the four limits (5.30), (5.32), (5.33), and (5.34) show that we can conclude
from equation (5.25) that (5.26) exists, and therefore that

lim
x!0

u0.x/

x�1=2
D
1

4

Z 1
0

.1C �/1=2 � j1 � � j1=2

�3=2
d� D

�

4
;

after dividing by � . The last equality holds by an argument similar to the one utilised in
the proof of Lemma 2.1.

We remark that the method of proof in Lemma 5.6 and Proposition 5.7 may be repeated
inductively: It can be seen from the proof of Proposition 5.7 that u0 satisfies

N 0.u.x//u0.x/ D

Z 1

0

1

2�3=2
ı2�xu.x/

x1=2
d� C

Z 1
1

1

2�3=2
ı2xu.�x/

x1=2
d�

�

Z �

0

R0.y/ı2xu.y/ dy �
Z 1
�

K 0.y/ı2xu.y/ dy

for all 0 < x � � on which similar analysis can be applied to study u00. More generally,
given a nonlinearity n that is CN and vanishing up to order N � 1 at the origin, a more
regular R, a solution u that is CN .0; ��, with estimates u.k/.x/ D .�=2C o.1//Dkx1=2

and higher-order analogues of Lemma 5.6 for k D 0; 1; 2; : : : ;N � 1, one may prove that
uN .x/D .�=2C o.1//DNx1=2. This is done by taking another difference in the equation
satisfied by u.N�1/, establishing its analogue of Lemma 5.6, and then progressing in a
similar manner to the proof of Proposition 5.7. We refrain from pursuing this, and will be
content with asymptotics for the first derivative.
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5.2. The Whitham equation

Proceeding as for its bidirectional counterpart in Section 4.2, we insert the steady-wave
ansatz �.x; t/ D '.x � ct/ into (1.1) to arrive at the steady Whitham equation

KW � ' D '.c � '/ (5.35)

after integration. The integration constant is chosen to be zero, which can be done by
Galilean transformation, like in [16]. Again, one observes that the right-hand side of (5.35)
is increasing to the left of its maximum at ' D c=2. This is the height of a highest wave
for this equation. If ' assumes this height at the origin, and is even, then

u WD
p
2�
�c
2
� '

�
satisfies the equation

u.x/2 D

Z 1
0

ı2x.
p
2�KW /.y/u.y/ dy;

which is of the desired form (2.4). It is immediate that Assumption 1 holds, and it is well
known [16] that Assumption 2 is satisfied. See also the comment on the precise behaviour
of KW in Remark 5.9 below.

The existence of a limiting 2�-periodic solution .'; c/ of (5.35) was proved in [16].
This solution is even, assumes '.0/D c=2, decreases on .0; �/, and is smooth on .0; 2�/.
In particular, Assumption 3 holds. All assumptions required for Propositions 5.5 and 5.7
are therefore satisfied, and we may settle a conjecture posed in the aforementioned paper.
Our result also applies equally well to the highest solitary waves recently found in [36]
and [15]. As shown in [7, 8], such solitary waves are necessarily even, and smooth and
decreasing on RC.

Corollary 5.8. Let ' be a solution of the steady Whitham equation (5.35) that is even,
achieves '.0/ D c=2, and is smooth and decreasing on a nonempty interval .0; �/. Then

'.x/ D
c

2
�

�r
�

8
C o.1/

�
x1=2;

'0.x/ D �
1

2

�r
�

8
C o.1/

�
x�1=2

as x & 0.

Remark 5.9. It is possible to give the series expansion

KW .x/ D
1
p
2�

1X
nD0

.�1/n
�
bn=2c � 1=2

bn=2c

��
2nC

p
4n2 C x2

4n2 C x2

�1=2
for the Whitham kernel. To the best of our knowledge, this expansion of the kernel for
standard linear gravity wave dispersion is new. We note, in particular, that the first term
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is precisely the singular part of the kernel. As written, the series is only conditionally
convergent, but this can be remedied by merging the terms corresponding to n D 2k � 1
and n D 2k for k � 1. These all become smooth, even, negative, and increasing on RC.

To prove the series expansion, the key observation is that� tanh.�/
�

�1=2
D

1X
nD0

�
bn=2c � 1=2

bn=2c

�
.�1/n

e�2j�jn

j�j1=2

for � ¤ 0, which can be seen by writing the numerator in terms of a binomial series. Here

1

2�

Z
R

e�2j�jn

j�j1=2
ei�x d� D

1

�
Re
Z 1
0

e�.2n�ix/�

�1=2
d� D

1
p
�

Re .2n � ix/�1=2

D
1
p
2�

�2nCp4n2 C x2
4n2 C x2

�1=2
for all n � 1, and in the sense of distributions when n D 0.
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