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Pseudo-differential extension for graded nilpotent
Lie groups

Eske Ewert

Abstract. Classical pseudo-differential operators of order zero on a graded nilpotent Lie group G
form a �-subalgebra of the bounded operators onL2.G/. We show that its C�-closure is an extension
of a noncommutative algebra of principal symbols by compact operators. As a new approach, we
use the generalized fixed point algebra of an R>0-action on a certain ideal in the C�-algebra of the
tangent groupoid of G. The action takes the graded structure of G into account. Our construction
allows to compute the K-theory of the algebra of symbols.

1. Introduction

A homogeneous Lie group is a nilpotent Lie group G with a dilation action of R>0 by
group automorphisms. The dilation action allows to scale with different speed in different
tangent directions. A slightly less general class are graded Lie groups. A prominent exam-
ple is the Heisenberg group whose Lie algebra is generated by ¹X;Y;Zº with ŒX; Y �D Z
and ŒX;Z� D ŒY;Z� D 0. Then

A�.X/ D �X; A�.Y / D �Y and A�.Z/ D �
2Z for � > 0

define dilations on the Heisenberg algebra. The dilations induce a new notion of order and
homogeneity for differential operators on G. For example, in the case of the Heisenberg
group, one would assign order 2 to Z and order 1 to X and Y .

Certain hypoelliptic operators, like Hörmander’s sum of squares or Kohn’s Lapla-
cian�b , can be analyzed using homogeneous convolution operators on homogeneous Lie
groups [19]. Therefore, it is desirable to have a pseudo-differential calculus that takes the
homogeneous structure into account. In the 80s, a kernel-based pseudo-differential calcu-
lus for homogeneous Lie groups was developed in [7]. Recently, Fischer and Ruzhansky
introduced in [18] a symbolic calculus for graded Lie groups. Instead of functions on the
cotangent bundle as in the Euclidean case, the symbols are given here by fields of oper-
ators using operator valued Fourier transform. This uses that the representation theory
of nilpotent Lie groups is well known and the abstract Plancherel theorem [13] applies.
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In [17] homogeneous expansions, classical pseudo-differential operators and their princi-
pal symbols were defined for this calculus. Graded Lie groups are also instances of filtered
manifolds, for which a pseudo-differential calculus was developed in [47].

This article describes a different approach to pseudo-differential operators on homoge-
neous Lie groups using generalized fixed point algebras. Generalized fixed point algebras
were introduced by Rieffel [44, 45] to generalize proper group actions on spaces to the
noncommutative setting. If a locally compact group H acts properly on a locally com-
pact Hausdorff space X , the orbit space HnX is again locally compact. The generalized
fixed point algebra is in this case C0.HnX/, which can be viewed as a subalgebra of the
H -invariant multipliers of A D C0.X/. Moreover, R D Cc.X/ can be completed into an
imprimitivity bimodule between an ideal in the reduced crossed product C�r .H;C0.X//
and the generalized fixed point algebra. In [33] it is investigated for which group actions
˛WH Õ A on a C�-algebra A, one can build a generalized fixed point algebra which is
Morita–Rieffel equivalent to an ideal in C�r .H; A/. The crucial step is to find a dense
subset R � A that is continuously square-integrable. As it turns out, such R can fail to
exist or to be unique. If R satisfies the requirements, the generalized fixed point alge-
bra FixH .A;R/ is generated by averages

R
H
˛x.a

�b/ dx for a; b 2 R, understood as
H -invariant multipliers of A.

A classical pseudo-differential operator of order k on a manifoldM is determined up to
operators of lower order by its principal symbol. The principal symbol is a k-homogeneous
function on T �M n.M � ¹0º/. Hence, for k D 0 the principal symbol is a generalized
fixed point of the scaling action ofH D R>0 on T �M n.M � ¹0º/ in the cotangent direc-
tion. Therefore, the C�-closure of the 0-homogeneous symbols C0.S�M/ is a generalized
fixed point algebra. As it turns out, not only the principal symbols, but also the pseudo-
differential operators of order zero themselves are generalized fixed points. A special case
of the results in [11] is that the classical pseudo-differential calculus for a manifold M
can be recovered from Connes’ tangent groupoid [8]. Moreover, they observed that each
pseudo-differential operator of order zero can be written as an average

R1
0
ft

dt
t

, where
.ft /t2Œ0;1/ is an element of the C�-algebra of the tangent groupoid of M satisfying cer-
tain conditions. Elements of a generalized fixed point algebra are obtained in exactly this
fashion.

It was shown in [34] that the C�-closure of classical pseudo-differential operators of
order zero on Rn inside the bounded operators on L2.Rn/ is a generalized fixed point
algebra. In fact, it is the generalized fixed point algebra of a zoom action of R>0 on an
ideal in the C�-algebra of the tangent groupoid. In this article, we generalize this result to
graded Lie groups G. We describe a variant of Connes’ tangent groupoid

G D
�
TG � ¹0º [ .G �G/ � .0;1/� G � Œ0;1/

�
;

where the operation on the tangent bundle TG is given by group multiplication in the
fibres. This is a special case of the tangent groupoid of a filtered manifold which was
considered before in [6,23,46]. It is equipped with a zoom action of R>0, which is induced
by the dilations on G.
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Let J be the ideal in C�.G / that consists of all elements whose restriction to .x; 0/,
which is an element of C�.TxG/ Š C�.G/, lies in the kernel of the trivial representation
of G for all x 2 G. In the commutative case, this corresponds under Fourier transform
to taking out the zero section in T �Rn, which is necessary to obtain a proper action. We
show that there is a subset R � J such that FixR>0.J;R/ is defined. Let J0 and R0 be
the restriction of J and R to t D 0, respectively. Then we obtain another generalized fixed
point algebra FixR>0.J0;R0/. These fit into an extension

K.L2G/ ,! FixR>0.J;R/� FixR>0.J0;R0/:

We call this the pseudo-differential extension of G. We justify the name by showing
that this extension is the C�-completion of the order zero pseudo-differential extension
defined in [17]

‰�1cl ,! ‰0cl
princ
�� PS0c :

The C�-algebra FixR>0.J0;R0/ of principal symbols is, in general, noncommutative.
However, as it is a generalized fixed point algebra, it is Morita–Rieffel equivalent to an
ideal in C�r .R>0; J0/. Using the representation theory of nilpotent Lie groups and, in
particular, Kirillov theory [28] and Pukánszky’s stratification [38], we show that it is actu-
ally Morita–Rieffel equivalent to the whole crossed product. Furthermore, FixR>0.J;R/

is Morita equivalent to C�r .R>0; J /, which was observed before in [11] for the case of
dilations given by scalar multiplication.

The Morita equivalence allows us to prove that FixR>0.J0;R0/ is KK-equivalent to
C0.S�Rn/. Hence, although the symbols in the homogeneous and Euclidean case differ,
the resulting C�-algebras have the same K-theory. Moreover, our approach can be used to
recover the computation of the spectrum of C�. PS0c / in [17].

The article is organized as follows. Section 2 introduces generalized fixed point alge-
bras and examines their behavior for extensions of C�-algebras. Section 3 compiles some
facts about analysis on homogeneous Lie groups and their representation theory. The tan-
gent groupoid G of a homogeneous Lie group and its C�-algebra are defined in Section 4.
In Section 5 we build the pseudo-differential extension (1) using generalized fixed point
algebras. Section 6 relates FixR>0.J0;R0/ with operators of type 0 on G. In Section 7
we compare the generalized fixed point algebra extension to the calculus of Fischer–
Ruzhansky–Fermanian-Kammerer. In Section 8 we show the mentioned Morita–Rieffel
equivalences. Moreover, we compute the spectrum and K-theory of FixR>0.J0;R0/. The
results in this article are also contained in the author’s Ph.D. thesis [16].

2. Generalized fixed point algebras and extensions

Rieffel proposes a notion for proper group action on C�-algebras in [44,45], which gener-
alizes proper actions on locally compact Hausdorff spaces. This leads to the construction
of generalized fixed point algebras. We follow the approach taken in [33]. In this section,
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we recall the notions used there and prove some results regarding the behavior of gener-
alized fixed point algebras under extensions of C�-algebras, which will be needed in the
later chapters.

2.1. The construction

For this section, let H be a locally compact group and A a C�-algebra with a strongly
continuous action ˛WH ! Aut.A/.

If H acts properly on a locally compact Hausdorff space X , the generalized fixed
point algebra is given by C0.HnX/, where HnX denotes the orbit space. It is Morita–
Rieffel equivalent to an ideal in the reduced crossed product C�r .H; C0.X//. A feature
of the generalized fixed point algebra construction is that this property carries over to
noncommutative A: the generalized fixed point algebra is Morita–Rieffel equivalent to an
ideal in C�r .H;A/. The following definitions and results are taken from [33].

We recall first the definition of the crossed product C�r .H; A/. There are covariant
representation .�A; �H / of the C�-dynamical system .A; H; ˛/ on the right Hilbert A-
module L2.H;A/ defined by

.�Aa /.x/ D ˛x.a/ .x/ for a 2 A; x 2 H;

.�Hy  /.x/ D  .xy/ for x; y 2 H;

for  2 Cc.H;A/. Equip Cc.H;A/ with the following convolution and involution

.f � g/.x/ D

Z
H

f .y/˛y
�
g.y�1x/

�
dy;

f �.x/ D ˛x
�
f .x�1/

��
for x 2 H . The Haar measure on H is used to define the convolution. The I -norm is
defined by

kf kI D max
²Z

H



f .x/

 dx;
Z
H



f �.x/

 dx
³
:

The representation .�A; �H / integrates to the �-representation � of Cc.H;A/ with

.�f  /.x/ D

Z
H

˛x
�
f .x�1y/

�
 .y/ dy for f; 2 Cc.H;A/;

which satisfies
k�f k � kf kI

for all f 2 Cc.H; A/. The reduced crossed product C�r .H; A/ is the norm closure of
�.Cc.H;A// inside B.L2.H;A//.

Lemma 2.1. The representation �A maps to the multiplier algebra of C�r .H; A/. If .u�/
is an approximate identity for A, then

kF � �Au� ı F k ! 0 for each F 2 C�r .H;A/:
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Proof. The first claim follows from

�Aa ı �f D �af for all a 2 A and f 2 Cc.H;A/:

For the second claim note that

k�f � �
A
u�
ı �f k D k�f �u�f k � kf � u�f kI ;

which converges to zero for compactly supported f . As Cc.H;A/ is dense, the same holds
for arbitrary elements of C�r .H;A/ by continuity.

The diagonal action of H on Cb.H;A/ or Cc.H;A/ is given by

.h � f /.x/ D ˛h
�
f .h�1x/

�
:

For a 2 A the operators

hhajWA! Cb.H;A/;
�
hhajb

�
.x/ WD ˛x.a/

�b;

jaiiWCc.H;A/! A; jaiif WD

Z
H

˛x.a/f .x/ dx:

are H -equivariant and adjoint to each other with respect to the pairings ha j bi D a�b for
a; b 2 A and hf jgi D

R
H
f .x/�g.x/ dx for f 2 Cb.H;A/ and g 2 Cc.H;A/.

Let �i WH ! Œ0; 1�, i 2 I , be a net of continuous, compactly supported functions
with �i ! 1 uniformly on compact subsets. A function f 2 Cb.H; A/ is called square-
integrable if and only if .�if / converges in L2.H; A/. It is shown in [34, Lemma 1.13,
Corollary 1.15] that the convergence of .�if / and its limit do not depend on the chosen
net.

Definition 2.2. An element a 2 A is called square-integrable if hhajb 2 Cb.H; A/ is
square-integrable for all b 2 A.

In this case, we understand hhaj as an operator A ! L2.H; A/. By [33], a 2 A is
square-integrable if and only if jaii extends to an adjointable operatorL2.H;A/! A. We
also denote it by jaii. Its adjoint is hhaj. Let Asi be the vector space of all square-integrable
elements in A. It becomes a Banach space with respect to the norm

kaksi WD kak C


hhaj ı jaii

1=2 D kak C 

jaii

:

Definition 2.3. A subset R � Asi is called relatively continuous if for all a; b 2 R the
operator hha jbii WD hhaj ı jbii 2 B.L2.H;A// is contained in the reduced crossed product
C�r .H; A/ � B.L2.H; A//. It is called complete if R is a closed linear subspace of Asi

with respect to k � ksi and satisfies jaii.Cc.H;A// � R for all a 2 R.

Definition 2.4. A continuously square-integrable H -C�-algebra .A;R/ consists of a
C�-algebra A with a strongly continuous action of H and a subset R � A which is rela-
tively continuous, complete and dense in A.
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If H acts properly on a locally compact Hausdorff space X , .C0.X/;Cc.X/si/ is a
continuously square-integrable H -C�-algebra. Here, Cc.X/ is completed with respect
to the k � ksi-norm above. For an arbitrary C�-algebra A, a subset R � A satisfying the
requirements above can fail to exist or to be unique as shown in [33]. However, there is
a sufficient condition that guarantees the existence of a unique such R. Let the primitive
ideal space of A be equipped with the Jacobson topology. There is a continuous H -action
on Prim.A/ defined by x � P D ˛x.P / for x 2 H and P 2 Prim.A/. The H -C�-algebra
A is called spectrally proper, if the action on the primitive ideal space is proper.

Theorem 2.5 ([33, Theorem 9.1]). Let A be spectrally proper H -C�-algebra. Then there
is a unique relatively continuous, complete and dense subset.

Definition 2.6. Let .A;R/ be a continuously square-integrable H -C�-algebra. Define
F H .A;R/ as the closure of jRii � B.L2.H;A/;A/. The generalized fixed point algebra
FixH .A;R/ is defined as the closed linear span of jRiihhRj in the H -invariant multiplier
algebra MH .A/.

Since R is complete, there is a right Cc.H; A/-module structure on R defined by
a � f D jaii. Mf / for a 2 R and f 2 Cc.H;A/, where MWCc.H;A/! Cc.H;A/ is given
by Mf .h/ WD ˛h.f .h�1// for h 2H . Because of the identity jaii ı �f D ja � f ii for a 2R

and f 2 Cc.H;A/, this can be extended continuously to a right Hilbert C�r .H;A/-module
structure on F H .A;R/.

For a; b; c; d 2R the operator hhb jcii 2 C�r .H;A/ can be approximated by a sequence
.�fn/ with fn 2 Cc.H;A/. Therefore, the product�

jaiihhbj
��
jciihhd j

�
D lim
n!1
jaii ı �fn ı hhd j D lim

n!1
ja � fniihhd j

lies again in the generalized fixed point algebra. As .jaiihhbj/� D jbiihhaj, this shows that
FixH .A;R/ is a C�-subalgebra of MH .A/.

Now, we describe the elements of FixH .A;R/ more explicitly. In the commutative
case H Õ X , functions on the orbit space can be obtained by averaging functions in
Cc.X/ over the action:

Example 2.7. For H Õ X proper and f 2 Cc.X/ there is a function F 2 C0.HnX/
defined by

F.Hx/ WD

Z
H

f .h�1 � x/ dh for Hx 2 HnX:

The following lemma suggests to also think of elements of FixH .A;R/ for a noncom-
mutative A as averages over the group action of certain elements of A.

Lemma 2.8 ([33, (19)]). Let .�i /i2I be a net of continuous, compactly supported func-
tions on H that converges uniformly to 1 on compact subsets as above. Let a; b 2 R. The
net Z

H

�i .x/˛x.a
�b/ dx

converges to jaiihhbj with respect to the strict topology as multipliers of A.
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Returning to the construction, F H .A;R/ is a full left Hilbert FixH .A;R/-module.
Let JH .A;R/ denote the closed linear span of hhR jRii � C�r .H; A/, which is an ideal.
Then F H .A;R/ is a FixH .A;R/-JH .A;R/ imprimitivity bimodule.

The ideal JH .A;R/ need not be the whole reduced crossed product. The following
definition is due to Rieffel [44].

Definition 2.9. Let .A;R/ be a continuously square-integrableH-C�-algebra. Call .A;R/
saturated if JH .A;R/ D C�r .H;A/.

Example 2.10. For a proper actionH ÕX , Rieffel observed in [43] that .C0.X/;Cc.X//
is saturated if the action ofH onX is free. We will argue in Lemma 2.18 that the converse
is true as well.

The next lemma, proved in [34], gives a criterion when a set R�Asi can be completed
to a relatively continuous, complete and dense subset of A.

Lemma 2.11. Let R�A be a dense, linear subspace. Suppose R consists of square-inte-
grable elements, is relatively continuous andH -invariant, and satisfies R �R�R. Denote
by R the closure of R �Asi with respect to the k � ksi-norm. Then .A;R/ is a continuously
square-integrable H -C�-algebra. The generalized fixed point algebra FixH .A;R/ is the
closed linear span of jRiihhRj.

Proof. The inclusion Asi ,! A is continuous. Since R is dense in A, also R is a dense
subspace of A. As khhajk D kjaiik � kaksi for all a 2 Asi, elements of hhR jRii can be
approximated with respect to the operator norm on L2.H; A/ by elements of hhR jRii.
This shows that R is relatively continuous as well.

It remains to verify that R is complete. First, we show that R � A � R holds. Let
r 2 R and a 2 A and choose sequences .rn/; .an/ in R such that kr � rnksi ! 0 and
ka � ank ! 0. Note that ra 2 Asi because jraii D jrii ı �Aa and r is square-integrable.
By assumption rnan 2 R holds for all n 2 N. We estimate using [33, (17)] that

kra � rnanksi � krksikan � ak C kr � rnksikank;

which converges to zero. Furthermore, R is also H -invariant, which follows from the
invariance of R and [33, (18)]. This implies that jRii.Cc.H;A// � R.

Using similar arguments as for the relative continuity of R, one obtains that any
jaiihhbj with a; b 2 R is a norm limit of elements of jRiihhRj.

Remark 2.12. Suppose R � A is a dense, H -invariant �-subalgebra such that hhajb is
bounded with respect to the I -norm for all a;b2R as required in the original definition in
[44].Then by[33, Proposition 6.5]R is relatively continuous and square-integrable. There-
fore, Lemma 2.11 shows that .A;R/ is a continuously square-integrable H -C�-algebra.

2.2. Extensions of generalized fixed point algebras

Let I be an H -invariant ideal in A such that the sequence

C�r .H; I / ,! C�r .H;A/� C�r .H;A=I /
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is exact. If H is an exact group, this is true for all H -invariant ideals I G A. For example,
this holds in our applications in the later sections where H D .R>0; � / Š .R;C/.

Let .A;R/ be a continuously square-integrable H -C�-algebra. Consider R \ I � I

and the image of R under the projection qWA! A=I . We will show that the generalized
fixed point algebra construction can be applied to .I;R \ I / and .A=I; q.R//, and relate
the respective generalized fixed point algebras to each other.

In particular, we are interested in what can be said about saturatedness in this case.
This is inspired by the simple observation that if an H -space X can be partitioned into
twoH -invariant subsets X D X1 tX2, then the action on X is free if and only if it is free
on X1 and X2.

Lemma 2.13 ([34]). Let R � A be a relatively continuous, complete subspace of A. If
I G A is an H -invariant ideal such that (2.2) is exact, then R \ I D R � I holds.

Proof. Because I is an ideal in A and R �ADR by [33, Proposition 6.4], R � I �R\ I

follows. The other inclusion uses exactness in (2.2). Let r 2 R \ I . As

hhr jrii
�
L2.H;A/

�
� L2.H; I /

and (2.2) is exact, we have hhr jrii 2 C�r .H; I /. Now, let .u�/�2ƒ be an approximate unit
for I , satisfying u�

�
D u� and ku�k � 1 for all � 2 ƒ. One computes

jrii � jru�ii

2 D 

hhr � ru� jr � ru�ii


�


hhr jrii � �Iu�

�
ı hhr jrii



C 

hhr jrii ı �Iu� � �Iu�� ı hhr jrii ı �Iu�


� 2 �



hhr jrii � �Iu� ı hhr jrii

:
By Lemma 2.1 this converges to zero. Furthermore, kr � ru�k!0 holds. Hence, r 2R � I

follows from Cohen’s factorization theorem applied to .R;k � ksi/ as a right I -module.

Lemma 2.14. Let .A;R/ be a continuously square-integrable H -C�-algebra and let
I G A be an H -invariant ideal such that the sequence in (2.2) is exact. Let qWA! A=I

be the quotient map. Then the following holds:

(1) .I;R \ I / is a continuously square-integrable H -C�-algebra.

(2) .A=I; q.R// is a continuously square-integrable H -C�-algebra. Here, q.R/ denotes
the closure of q.R/ � .A=I /si in the k � ksi-norm.

Proof. We prove (1). The linear subspace R \ I D R � I is dense in I because any
element i 2 I can be factorized as i D a � j for some a 2 A and j 2 I . Since R is dense
in A, there is a net .r�/�2ƒ � R with r� ! a and hence i D lim� r� � j . The square-
integrability of elements in R \ I is inherited from R, and jR \ I ii.Cc.H; I // �R \ I

holds. Then hhR \ I jR \ I ii � C�r .H;I / follows from the same argument as in the proof
of Lemma 2.13 using that (2.2) is exact. Note that khhi j iiikC�r .H;I/ D khhi j iiikC�r .H;A/ for
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i 2 R \ I . Because I G A is closed and R is closed with respect to k � ksi;A, this means
that R \ I is closed with respect to k � ksi;I . Hence, .I;R \ I / is a continuously square-
integrable H -C�-algebra.

To prove (2) we show that Lemma 2.11 can be applied to q.R/ � A=I . As R � A

is a dense linear subspace, the same holds for q.R/ � A=I . For a 2 R and i 2 I their
product ai 2R � I DR \ I lies in R. All elements q.a/ for a 2R are square-integrable
because the quotient map L2.H;A/! L2.H;A=I / is continuous. Let

QWB
�
L2.H;A/

�
! B

�
L2.H;A=I /

�
be the canonical map. We have˝̋

q.a/jq.b/
˛̨
D Q

�
hha jbii

�
for a; b 2 R:

The relative continuity of q.R/ follows as Q maps C�r .H; A/ to C�r .H; A=I /. By [33,
Proposition 6.4], R is H -invariant and an essential right A-module, that is, R � A D R.
This implies that q.R/ is also H -invariant and satisfies q.R/ � q.R/ � q.R/. Therefore,
the claim follows from Lemma 2.11.

Remark 2.15. The restricted map qW Asi ! .A=I /si is continuous with respect to the
respective k � ksi-norms as for a 2 Asi

q.a/

C 

˝̋q.a/jq.a/˛̨ 

1=2 D 

q.a/

C 

Q�hha jaii�

1=2 � kak C 

hha jaii

:
In particular, for R � Asi one has q.R/ D q.R/ with respect to the k � ksi-norms.

In the situation of Lemma 2.14, F H .I;R \ I / is a closed FixH .A;R/-JH .A;R/
submodule of F H .A;R/. Under the Rieffel correspondence (see for example [41, Theo-
rem 3.22]), F H .I;R \ I / corresponds to the ideals FixH .I;R \ I / in FixH .A;R/ and
JH .I;R \ I / in JH .A;R/.

To study saturatedness, we relate the corresponding ideals in the reduced crossed prod-
ucts for I; A and A=I .

Lemma 2.16. Let .A;R/ be a continuously square-integrable H -C�-algebra and I G A
an H -invariant ideal such that (2.2) is exact.

The restrictions of

C�r .H; I /! C�r .H;A/ and QWC�r .H;A/! C�r .H;A=I /

to JH .I;R \ I / and JH .A;R/, respectively, yield a commutative diagram with exact
rows

JH .I;R \ I / JH .A;R/ JH
�
A=I; q.R/

�
C�r .H; I / C�r .H;A/ C�r .H;A=I /:

Q
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Proof. The ideal JH .I;R \ I / is mapped into JH .A;R/ under the inclusion. As

Q
�
hha jbii

�
D
˝̋
q.a/jq.b/

˛̨
for a; b 2 R;

we see that JH .A;R/ maps to JH .A=I; q.R//. Moreover, the linear span of elements
of this form is dense in JH .A=I; q.R// so that the restriction is onto. Hence, the claim
follows from exactness of the bottom row in (2.16) once we show that

JH .I;R \ I / D JH .A;R/ \ C�r .H; I /:

As JH .A;R/ and C�r .H; I / are both closed ideals in C�r .H;A/,

JH .A;R/ \ C�r .H; I / D J
H .A;R/ � C�r .H; I /

holds. Consequently, the linear span of hha jbii ı �f D hha jb � f ii for a; b 2 R and f 2
Cc.H; I / is dense in JH .A;R/ \ C�r .H; I /. Let .u�/�2ƒ be a approximate unit for I
consisting of self-adjoint u�. Lemma 2.1 implies that hha jb � f ii is the limit of �u� ı
hha jb � f ii D hhau� jb � f ii. This net lies in JH .I;R \ I / as au� 2R � I DR \ I and
b � f 2R\ I . Thus, the inclusion JH .A;R/\C�r .H;I /� J

H .I;R\ I / follows. The
converse inclusion is clear.

Corollary 2.17. Let .A;R/ be a continuously square-integrableH -C�-algebra and I GA
an H -invariant ideal such that (2.2) is exact. Then .A;R/ is saturated if and only if
.I;R \ I / and .A=I; q.R// are saturated.

Proof. Suppose first that .A;R/ is saturated. In the proof of Lemma 2.16 we showed that
JH .I;R \ I / D JH .A;R/ \ C�r .H; I /. Hence .I;R \ I / is saturated. Because (2.16)
has exact rows, this implies that .A=I; q.R// is saturated as well. If .I;R \ I / and
.A=I; q.R// are saturated, .A;R/ is saturated because (2.16) is exact.

As an application we show the following result for actions on spaces.

Lemma 2.18. Let H act properly on a locally compact Hausdorff space X and assume
that .C0.X/;Cc.X// is saturated. Then the action H Õ X is free.

Proof. Let x 2 X and let Hx � X be its orbit. Since the action is proper, Hx is H -
equivariantly homeomorphic to H=Hx . Here Hx is the stabilizer of x, which is a com-
pact subgroup of H . Hence, C0.Hx/ is a quotient of C0.X/ by an H -invariant ideal.
Because C0.Hx/ is spectrally proper, Cc.Hx/ is the unique relatively continuous, com-
plete and dense subset by Theorem 2.5. By Corollary 2.17, .C0.Hx/;Cc.Hx// is satu-
rated. Hence, FixH .C0.Hx/;Cc.Hx// is Morita–Rieffel equivalent to C�r .H;C0.Hx//.
By the imprimitivity theorem, C�r .H;C0.H=Hx// is Morita–Rieffel equivalent to C�.Hx/.

On the other hand, FixH .C0.Hx/; Cc.Hx// is isomorphic to the functions on the
orbit space. As Hx consists of a single H -orbit, this generalized fixed point algebra is
isomorphic to C. Hence, C and C�.Hx/ are Morita–Rieffel equivalent. This can only be
true if Hx D ¹eº. Therefore, the H -action on X is free.
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Not only the ideals in the crossed product algebras fit into an exact sequence. The
same is true for the corresponding generalized fixed point algebras. The surjective homo-
morphism qWA! A=I has a unique strictly continuous extension M.A/!M.A=I /. Let
Qq be its restriction to FixH .A;R/.

Proposition 2.19. Let .A;R/ be a continuously square-integrable H -C�-algebra and
I G A an H -invariant ideal such that (2.2) is exact. There is an extension of generalized
fixed point algebras

FixH .I;R \ I / ,! FixH .A;R/
Qq
� FixH

�
A=I; q.R/

�
:

Proof. For a;b 2R\ I , we can view jaiihhbj as a multiplier of I orA. As jaiihhbj.A/� I
it follows that kjaiihhbjkI D kjaiihhbjkA. Hence, by extending continuously we obtain an
injective �-homomorphism FixH .I;R \ I /! FixH .A;R/.

Denote by ˇ the induced H -action on A=I . Strict continuity of Qq and Lemma 2.8
imply

Qq
�
jaiihhbj

�
D lim

s

Z
H

q
�
˛x.a

�b/
�

dx D lim
s

Z
H

ˇx
�
q.a�b/

�
dx D

ˇ̌
q.a/

˛̨ ˝̋
q.b/

ˇ̌
for a; b 2 R. This shows that the image of Qq is contained in FixH .A; q.R//. Moreover,
the linear span of elements of this form is dense in FixH .A; q.R//. So Qq is onto.

It remains to show that the kernel of Qq is FixH .I;R \ I /. The computation above
yields Qq.jaiihhbj/ D jq.a/iihhq.b/j D 0 for a; b 2 R \ I . Thus, FixH .I;R \ I / is con-
tained in ker. Qq/. Let T 2 FixH .A;R/ be such that Qq.T / D 0. By the C�-identity in
FixH .A;R/=FixH .I;R \ I / it will suffice to show that T �T 2 FixH .I;R \ I /. By
[33, (13)], T �jaiihhbj D jT �aiihhbj holds for a; b 2 R. As T �a is square-integrable and
jT �aii D T �jaii 2 FixH .A;R/ � F H .A;R/ � F H .A;R/, [33, Theorem 6.1] implies
T �a 2R. Moreover, q.T �a/D Qq.T �/q.a/D 0 shows that T �a 2R \ I . The equalities
R \ I DR � I and I D I 2 imply that there are c 2R and i; j 2 I with T �a D cij . The
computation

jcij iihhbj D .jciii ı �j / ı hhbj D jciii.jbii ı �j�/
�
D jciiihhbj �j

shows that T �jaiihhbj 2 FixH .I;R\ I /. By definition of the generalized fixed point alge-
bra, T is the limit of a sequence in the linear span of jRiihhRj. Hence, it follows that
T �T 2 FixH .I;R \ I /.

2.3. Generalized fixed point algebras and C0.X/-algebras

In this section, we consider generalized fixed point algebras of H -C0.X/-algebras. For
the definition of C0.X/-algebras and their relation to continuous fields of C�-algebras
see [35].

Definition 2.20 ([26]). Let H act on a locally compact Hausdorff space X . Denote by

�h.f /.x/ D f .h
�1
� x/ for h 2 H; x 2 X
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the induced action on C0.X/. A C0.X/-algebra A with � W C0.X/ ,! ZM.A/ and an
H -action ˛WH Õ A is called an H -C0.X/-algebra if the actions are compatible in the
following sense

˛h
�
�.'/a

�
D �

�
�h.'/

�
˛h.a/ for all h 2 H; ' 2 C0.X/ and a 2 A:

In this case, one can relate the spectra of theH -C0.X/-algebra and the corresponding
generalized fixed point algebra as follows. If H Õ A is a strongly continuous action,
there is a continuous action of H on the spectrum yA given by .x � �/.a/ D �.˛x�1.a//
for Œ�� 2 yA, x 2 H and a 2 A.

Suppose now .A;R/ is a continuously square-integrable H -C�-algebra. Every non-
degenerate representation � of A can be extended to M.A/. Denote its restriction to
FixH .A;R/ by z� .

In the commutative case, this procedure allows to completely describe the represen-
tation theory of the generalized fixed point algebra. By Gelfand duality, the spectrum of
the commutative C�-algebra C0.X/ is X . If H Õ X is a proper action and .A;R/ D
.C0.X/;Cc.X//, the map � 7! z� induces a homeomorphism

Hn yA D HnX !5FixH .A;R/:

This generalizes to H -C0.X/-algebras as follows. We summarize some results con-
cerning H -C0.X/-algebras proved in [1, 2, 33, 45].

Proposition 2.21. Let H Õ X be a proper action on a locally compact Hausdorff space
X and A an H -C0.X/-algebra with � WC0.X/! ZM.A/.

(1) The subset R WD �.Cc.X//A is dense, relatively continuous and complete. Moreover,
it is the unique such subset.

(2) If the action of H on X is free, the map � 7! z� induces a homeomorphism Hn yA!
5FixH .A;R/ and .A;R/ is saturated.

Proof. An H -C0.X/-algebra with a proper action H Õ X is spectrally proper as argued
in [33, Section 9]. The R above is the unique, dense, relatively continuous and complete
subset constructed in [33, Theorem 9.1]. It is proved in [1, Proposition 3.9] that the map
� 7! z� induces a homeomorphism. That .A;R/ is saturated is due to Rieffel [45] and also
shown in [2, Lemma 4.1].

The following result applies to trivial continuous fields C0.X; A/, where the action is
taking place on the base space X .

Lemma 2.22 ([44, Example 2.6], [40, Proposition 3.2]). LetH ÕX be a free and proper
and A a C�-algebra. Let H act on C0.X; A/ by .�hf /.x/ D f .h�1 � x/ for h 2 H , f 2
C0.X;A/ and x 2 X . There is an isomorphism

‰WFixH
�
C0.X;A/;Cc.X;A/

�
! C0.HnX;A/;

‰
�
jf iihhgj

�
.Hx/ D

Z
H

.f � � g/.h�1 � x/ dh for Hx 2 HnX and f; g 2 Cc.H;A/:
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In contrast to the situation above, consider now what happens if the H -action only
takes place in the fibres of a field of C�-algebras.

Theorem 2.23 ([44, Theorem 3.2]). Let A be a continuous field of C�-algebras over X
with fibre projections px WA!Ax for x2X . Suppose that .A;R/ is a continuously square-
integrable H -C�-algebra such that ker.px/ is H -invariant for all x 2 X . Furthermore,
assume that H is a � -compact, exact group. Then FixH .A;R/ is a continuous field of
C�-algebras over X with fibre projections

Qpx WFixH .A;R/! FixH
�
Ax ; px.R/

�
:

Remark 2.24. The above theorem in [44] requires that the field A is Hilbert continuous
and that C�r .H; Ax/ D C�.H; Ax/ for all x 2 M . These assumptions are only needed
to show that C�r .H; A/ defines a continuous field of C�-algebras over X with fibres
C�r .H;Ax/. But this is true for any � -compact, exact group H by [27, Theorem 4.2].

Now we study what can be said about saturatedness in this case.

Lemma 2.25. Let A be an upper semi-continuous field of C�-algebras over X with fibre
projections px WA! Ax . If I ŒC A is a proper ideal, then there is x 2X such that px.I / G
Ax is a proper ideal.

Proof. By Lee’s theorem (see [32] or [35, Theorem 3.3]) there is a continuous map
 WPrim.A/! X satisfying

 .P / D x, P � Kx D
®
a 2 A j px.a/ D 0

¯
and Ax Š A=Kx for all x 2 X . As I can be written as the intersection of primitive ideals,
it follows that there is a primitive ideal P 2 Prim.A/ with I � P ¨ A. Let x D  .P /.
The homeomorphism ¹Q 2 Prim.A/ j Kx � P º ! Prim.A=Kx/ D Prim.Ax/ maps P
to px.P /. Then px.I / � px.P / � Ax , and px.P / ¤ Ax as otherwise px.P / would
correspond to A under this homeomorphism.

Corollary 2.26. In the situation of Theorem 2.23, .A;R/ is saturated if and only if
.Ax ; px.R// is saturated for all x 2 X .

Proof. Suppose first that .A;R/ is saturated. By Corollary 2.17 .Ax ; px.R// is saturated
for all x 2 X . Assume now that all .Ax ; px.R// are saturated. By assumption on H ,
C�r .H;A/ is a continuous field of C�-algebras over X with fibre projections

.px/�WC�r .H;A/! C�r .H;Ax/ for x 2 X:

Because
.px/�

�
hha jbii

�
D
˝̋
px.a/jpx.b/

˛̨
for a; b 2 R;

it follows that .px/�.JH .A;R// D C�r .H;Ax/ for all x 2 X . Now Lemma 2.25 implies
that JH .A;R/ D C�r .H;A/.
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3. Homogeneous Lie groups

In the following, we will consider homogeneous Lie groups, which are Lie groups that are
equipped with a dilation action of R>0. They allow to define homogeneity with respect to
the dilations. A detailed discussion of homogeneous Lie groups can be found in [20] or
[18]. We recall some notions used there, which proved to be convenient to do analysis on
these groups.

3.1. Homogeneous and graded Lie groups

Definition 3.1. A homogeneous Lie group is a simply connected Lie group G whose
Lie algebra g is equipped with a family of dilations ¹A�W g ! gº�>0. That is, there is
a diagonalizable, linear map DW g ! g with positive eigenvalues q1 � q2 � � � � � qn,
such that all A� WD Exp.D ln.�// are Lie algebra homomorphisms. Here, Exp denotes the
matrix exponential. The eigenvalues q1; : : : ; qn are called weights.

Folland and Stein assume in [20] that q1D 1. This can be achieved by scaling appropri-
ately. We shall also assume this in the following, in particular, all weights satisfy qj � 1.
Fix a corresponding basis of eigenvectors ¹X1; : : : ; Xnº of D. Then A�.Xj / D �qjXj
for 1 � j � n. If X; Y are eigenvectors to the eigenvalues qi ; qj of D, respectively,
it follows from A�ŒX; Y � D ŒA�.X/; A�.Y /� D �qiCqj ŒX; Y �, that ŒX; Y � D 0 or that
ŒX; Y � is an eigenvector of D to the eigenvalue qi C qj . From that one deduces that
g, and therefore G, is nilpotent. Consequently, the exponential map expW g ! G is a
diffeomorphism. In the following, we often identify .x1; : : : ; xn/ 2 Rn with its image
exp.x1X1 C � � � C xnXn/ 2 G under this global coordinate chart. In particular, 0 2 G
denotes the neutral element.

Because A� ıA� D A�� for �;� > 0, the dilations define an action A W R>0 Õ g by
Lie group automorphisms. Denote by ˛WR>0Õ G the corresponding action by Lie group
automorphisms.

Definition 3.2. A graded Lie group is a simply connected Lie group G such that its Lie
algebra g admits a finite decomposition

g D

NM
jD1

gj ;

with ŒX; Y � 2 gjCk for all X 2 gj and Y 2 gk , where gj D ¹0º for j > N .

For a graded Lie group G with grading as above, A�.X/ D �jX for X 2 gj and
� > 0 defines a family of dilations. So G becomes a homogeneous Lie group. However,
homogeneous Lie groups are slightly more general. If all weights of a homogeneous Lie
group are rational numbers, it is a (scaled) graded Lie group (see [18, Lemma 3.1.9]). Also
note that there are nilpotent Lie groups that do not admit a family of dilations as above
(see [15]).
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Example 3.3. A famous example of a homogeneous Lie group is the Heisenberg group.
Its Lie algebra g is generated by ¹X; Y; Zº and ŒX; Y � D Z, ŒX; Z� D 0 and ŒY; Z� D 0.
Hence, g1 D span¹X; Y º, g2 D span¹Zº and gj D 0 for j > 2 defines a grading on g.

Example 3.4. A Lie algebra g may be equipped with different dilations. Choose a basis
¹X1; : : : ;Xnº for the Lie algebra of the Abelian groupG DRn. Then for all .q1; : : : ; qn/ 2
Rn>0 there is a dilation defined by DXj D qjXj . The standard dilation action on Rn is
given by scalar multiplication, that is, qj D 1 for all j D 1; : : : ; n.

3.2. Analysis on homogeneous Lie groups

Definition 3.5. The homogeneous dimension of a homogeneous Lie groupG with weights
1 D q1 � q2 � � � � � qn is defined as Q D q1 C q2 C � � � C qn. A function f on Gn¹0º
is called �-homogeneous for � 2 C if f .˛�.x// D ��f .x/ for all � > 0 and x ¤ 0.

Lemma 3.6. Let G be a homogeneous Lie group of homogeneous dimension Q. The
pullback of the Lebesgue measure under the exponential map defines a Haar measure on
G. The group G is unimodular and the Haar measure is Q-homogeneous, that is,Z

G

f
�
˛�.x/

�
dx D ��Q

Z
G

f .x/ dx

for each � > 0 and f 2 L1.G/.

For simply connected nilpotent Lie groups it is true in general that the pullback of the
Lebesgue measure defines a left and right Haar measure, see [20, Proposition 1.2]. The
Q-homogeneity follows from the behavior of the Lebesgue measure under scaling.

Definition 3.7. For a multi-index ˛ 2 Nn
0 its homogeneous degree is defined as

Œ˛� WD ˛1q1 C � � � C ˛nqn:

A function P on G is called polynomial if P ı exp is polynomial.

Example 3.8. The polynomials x˛ for ˛ 2 Nn
0 are Œ˛�-homogeneous functions on G.

The group law of a homogeneous Lie group is of a triangular form. Using the Baker–
Campbell–Hausdorff formula and the homogeneity of the coordinate functions, the fol-
lowing is proved in [20, p. 23].

Proposition 3.9. For a homogeneous Lie groupG with weights q1 � � � � � qn and a basis
of eigenvectors X1; : : : ; Xn 2 g there are constants cj;˛;ˇ for j D 1; : : : ; n such that for
all x; y 2 G with respect to this basis

.x � y/j D xj C yj C
X

˛;ˇ2Nn
0 n¹0º

Œ˛�CŒˇ�Dqj

cj;˛;ˇx
˛yˇ :
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The basis of eigenvalues fixed above induces left- and right-invariant differential oper-
ators X1; : : : ; Xn and Y1; : : : ; Yn on G by setting for f 2 C1.G/

.Xjf /.x/ D
d
dt
f
�
x � exp.tXj /

�ˇ̌
tD0
;

.Yjf /.x/ D
d
dt
f
�

exp.tXj / � x
�ˇ̌
tD0
:

Define for a multi-index ˛ 2 Nn
0 the left-invariant differential operator

X˛ D X
˛1
1 X

˛2
2 � � �X

˛n
n :

The triangular group law allows to express these in terms of the partial differential opera-
tors as follows.

Proposition 3.10 ([18, Proposition 3.1.28]). Let G be a homogeneous Lie group with
weights q1 � � � � � qn. For j D 1; : : : ; n and k > j there are .qk � qj /-homogeneous
polynomials Pjk and Qjk such that the vector fields Xj and Yj defined above can be
written as

Xj D
@

@xj
C

X
qk>qj

Pjk
@

@xk
D

@

@xj
C

X
qk>qj

@

@xk
Pjk ;

Yj D
@

@xj
C

X
qk>qj

Qjk
@

@xk
D

@

@xj
C

X
qk>qj

@

@xk
Qjk :

The polynomials Pjk and Qjk only depend on x1; : : : ; xk�1 because otherwise they
would be homogeneous of a higher order than qk � qj . Hence, they commute with the
partial derivatives @

@xk
.

Because the Euclidean norm does not behave well with respect to the dilations, homo-
geneous quasi-norms are used instead.

Definition 3.11 ([18, Definition 3.1.33]). A homogeneous quasi-norm on a homogeneous
Lie group G is a continuous function k � kWG ! Œ0;1/ that satisfies kxk D 0 if and only
if x D 0, kx�1k D kxk and k˛�.x/k D �kxk for all x 2 G and � 2 R>0.

In the following, we fix a homogeneous quasi-norm on G. For instance, let

kxk WD

nX
jD1

jxj j
1=qj for x 2 G:

In fact, by [18, Proposition 3.1.35] all homogeneous quasi-norms on a given homoge-
neous Lie group are equivalent. There is an analogue of the triangle inequality and its
consequences for a homogeneous quasi-norm.

Lemma 3.12 ([20, (1.8), Lemma 1.10]). Let G be a homogeneous Lie group. There is a
constant C � 1 such that for all x; y 2 G

(a) kxyk � C.kxk C kyk/,

(b) .1C kxk/s.1C kyk/�s � C s.1C kxy�1k/s for all s > 0.
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Identifying G with Rn one can consider the Schwartz space �.G/. The following
family of seminorms will be useful later on.

Definition 3.13. For the fixed homogeneous quasi-norm k � k define for N 2 N0

kf kN WD sup
jI j�N;x2G

.1C kxk/.NC1/.QC1/j.@If /.x/j for f 2 C1.G/:

Polynomials in kxkE for the Euclidean norm can be estimated by polynomials in kxk
for a homogeneous quasi-norm and vice versa. Thus, a sequence .fn/ converges to f in
�.G/ if and only if kf � fnkN ! 0 for all N 2 N0.

The following integrability criterion for functions on a homogeneous Lie group is used
later on.

Lemma 3.14 ([20, Corollary 1.17]). Let ˛ 2 R and let f be a measurable function on a
homogeneous Lie group G of homogeneous dimension Q. Suppose jf .x/j D O.jxj˛�Q/.
If ˛ > 0 then f is integrable near 0. If ˛ < 0, then f is integrable near1.

3.3. Representation theory of homogeneous Lie groups

Now, we recall some facts about the representation theory of nilpotent Lie groups G and
their group C�-algebras. For homogeneous Lie groups the dilations induce actions on the
respective spaces of representations.

The space of continuous compactly supported functions Cc.G/ becomes a �-algebra
when equipped with the convolution and involution defined by

f �.x/ D f .x�1/ and .f � g/.x/ D

Z
G

f .y/g.y�1x/ dy for x 2 G:

Denote by yG the set of equivalence classes of irreducible, unitary representations � WG!
U.H�/. For such a representation � and f 2 Cc.G/ define the operator

y�.f / D

Z
G

f .x/�.x/ dx 2 B.H�/ for f 2 Cc.G/:

This defines a �-representation y� WCc.G/! B.H�/. The full group C�-algebra C�.G/ is
defined as the closure of Cc.G/ with respect to kf k D sup

�2 yG
ky�.f /k. By [12] homoge-

neous Lie groups are liminal so that all representations y� map onto the compact operators
K.H�/.

The homogeneous structure allows to define an R>0-action on yG. For an irreducible,
unitary representation � set .� � �/.x/ D �.˛�.x// for � > 0 and x 2 G. It is easy to see
that � � � is again an irreducible, unitary representation and that the action is well defined
on the equivalence classes.

Furthermore, define an action on C�.G/ by ��.f /.x/D �Qf .˛�.x// for f 2 Cc.G/.
Using Lemma 3.6 one checks that each �� is a �-homomorphism and an isometry with
respect to the C�-norm. This action induces in turn an action on the representations of
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C�.G/ by .� � �/.f / D �.��.f // for a �-representation �WC�.G/! B.H�/. It is well
defined on the equivalence classes of irreducible representations in 1C�.G/.
Proposition 3.15. Let G be a homogeneous Lie group. The map yG ! 1C�.G/ induced by
� 7! y� is an R>0-equivariant homeomorphism.

Proof. It is well known that the map above is a homeomorphism for each locally compact
group G. The equivariance under the R>0-action follows from the Q-homogeneity of the
Haar measure as

.� � y�/.f / D

Z
G

.��f /.x/�.x/ dx D
Z
G

f .x/�.� � x/ dx D b� � �.f /

for � > 0 and f 2 Cc.G/.

Kirillov’s orbit method [28] allows to describe yG as the orbit space of the coadjoint
action of G on g�, the dual of its lie algebra g. Recall that the adjoint representation
AdWG ! Aut.g/ is given by Ad.x/ D d.˛x/0W T0G ! T0G, where ˛x.y/ D xyx�1 is
given by conjugation. The coadjoint action is defined by˝

co-Ad.x/l; X
˛
WD
˝
l;Ad.x�1/X

˛
for l 2 g�; x 2 G and X 2 g:

The corresponding infinitesimal representation co-ad of g on g� is given by˝
co-ad.X/l; Y

˛
D
˝
l; ŒY;X�

˛
for l 2 g� and X; Y 2 g:

The orbit space Gng� is equipped with the quotient topology. For each l 2 g�, one
can construct a unitary representation �l of G as described in the following. Define a
skew-symmetric bilinear form bl Wg � g! R by

bl .X; Y / D
˝
l; ŒX; Y �

˛
for X; Y 2 g:

Denote by gl its radical. A subspace V � g is isotropic with respect to bl if bl .X; Y /D 0
for all X; Y 2 V . A maximal isotropic subspace has codimension 1

2
dim.g=gl /. A polar-

izing subalgebra for l is a subalgebra hl � g that is an isotropic subspace of codimension
1
2

dim.g=gl /. Such a polarizing subalgebra always exists (see [9, Theorems 1.3.3, 1.3.5]).
The formula �l .expX/D eihl;Xi forX 2 hl defines a one-dimensional representation

ofHl D exp.hl /. It is multiplicative because if expX � expY D expZ forX;Y 2 hl , then
Z is given by the Baker–Campbell–Hausdorff formula as

Z D X C Y C
1

2
ŒX; Y �C

1

12

�
X; ŒX; Y �

�
C � � � ;

so that all higher terms lie in Œhl ;hl � � ker l . Denote by �l D IndGHl �l the induced repre-
sentation of �l to G.

Let R>0 act on g� by h� � l;Xi D hl;A�.X/i for � > 0, l 2 g� andX 2 g. This action
descends to the orbit space of the co-adjoint action as A� ı Ad.x/ D Ad.˛�.x// ı A� for
� > 0 and x 2 G.
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Lemma 3.16 ([9, Lemma 2.1.3]). LetH be a subgroup of a locally compact groupG and
let ˛ be an automorphism ofG and � a unitary representation ofH . Then ˛�1.H/ is also
a subgroup and

IndG
˛�1.H/

.� ı ˛/ ' .IndGH �/ ı ˛:

Lemma 3.17. Kirillov’s mapGng�! yG induced by l 7!�l is an R>0-equivariant home-
omorphism.

Proof. Kirillov proved in [28] that the map is well defined, so in particular, the equivalence
class of �l does not depend on the choice of the polarizing subalgebra hl . Two represen-
tations �l1 and �l2 are equivalent if and only if l1 and l2 lie in the same co-adjoint orbit.
Moreover, he proved that the map is continuous and onto. The continuity of the inverse
map is due to [5]. To see that the map is equivariant, note that ��:l D �l ı ˛� and that
˛��1.Hl / is a polarizing algebra for � � l . Hence, Lemma 3.16 yields that ���l ' � ��l .

All l 2 g that vanish on Œg;g� induce one-dimensional representations �l . In particular,
l D 0 induces the trivial representation on C. If the polarizing algebra is not all of g, the
corresponding Hilbert space is infinite-dimensional.

3.4. Stratification

The goal of this section is to use Kirillov theory and the coarse stratification by Pukánszky
[38] to find a sequence of increasing, open, R>0-invariant subsets

; D V0 � V1 � V2 � � � � � Vm D yGn¹�trivº

such that all ƒi WD Vi n Vi�1 are Hausdorff and the R>0-action on each of these subsets
is free and proper. This sequence will play an essential role in Section 8. Note that the
following construction to find such a sequence of open subsets works for all simply con-
nected nilpotent Lie groups. However, a dilation action is only defined for homogeneous
Lie groups.

We start by describing Pukánszky’s stratification of g�. Recall that we fixed a basis
¹X1; : : : ; Xnº of g such that D�.Xj / D �qjXj for all 1 � j � n. By the triangular form
of the group law (3.9) all

ki D span¹XiC1; : : : ; Xnº for i D 0; : : : ; n

form an ideal in g. In particular, ¹X1; : : : ; Xnº is a strong Malcev basis of G as defined
in [9, Theorem 1.1.13], which is also called a Jordan–Hölder basis in [38]. Note that they
require span¹X1; : : : ; Xiº to be ideals. We stick to the reversed ordering of the basis as
this is standard for homogeneous Lie groups.

Let ¹X�1 ; : : : ; X
�
n º denote the corresponding dual basis of g� and let

k?i D span¹X�1 ; : : : ; X
�
i º for i D 0; : : : ; n:
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An element l 2 g� is contained in k?i if and only if hl; ki i D 0. As the ki are ideals and
are, therefore, invariant under the adjoint action, the k?i are invariant under the coadjoint
action. Hence G acts on each g�=k?i .

Write pi Wg� ! g�=k?i for the projections. By [9, Theorem 3.1.4] the orbits G � pi .l/
of pi .l/ under the coadjoint action are closed. Hence, they define submanifolds of g�=k?i .
Following [9], make the following definition.

Definition 3.18. For l 2 g� let d.l/D .d0.l/; d1.l/; : : : ; dn�1.l// denote the sequence of
orbit dimensions di .l/ D dim.G � pi .l//.

The entries of d.l/ are decreasing. The corresponding stabilizer subgroupsGpi .l/ form
an increasing sequence

Gp0.l/ � Gp1.l/ � � � � � Gpn�1.l/:

The same is true for their Lie algebras gpi .l/. By [9, Lemma 3.1.1] they are given by

gpi .l/ D
®
X 2 g j co-ad.X/l 2 k?i

¯
D
®
X 2 g j

˝
l; ŒX;Xk �

˛
D 0 for k D i C 1; : : : ; n

¯
:

Example 3.19. The computation in [9, Example 3.1.11] of the coadjoint action on the
3-dimensional Heisenberg group H1 yields

co-Ad.x; y; z/.˛X� C ˇY � C 
Z�/ D .˛ C y
/X� C .ˇ � x
/Y � C 
Z�

for .x; y; z/ 2 H1 and ˛; ˇ; 
 2 R. This shows for X1 D X , X2 D Y and X3 D Z that

d.˛X� C ˇY � C 
Z�/ D .2; 1; 0/ if 
 ¤ 0,

d.˛X� C ˇY �/ D .0; 0; 0/.

With the help of the next lemma an argument by Pukánszky [39, p. 70] shows that
the definition of d.l/ as above coincides with the one given, for example, in [4], by jump
indices.

Lemma 3.20. Let bWV � V ! R be a skew-symmetric bilinear form, V ? its radical and
W � V a subspace. Then

dim.W /C dim.W ?/ D dim.V /C dim.W \ V ?/:

Lemma 3.21. The dimensions in d.l/ decrease by steps of zero or one. There is a jump,
that is, di�1.l/ D di .l/C 1 if and only if

Xi … gl C span¹XiC1; : : : ; Xnº:

Proof. The orthogonal complement of gl C span¹XiC1; : : : ;Xnº with respect to the bilin-
ear form bl is gpi .l/. Hence, by Lemma 3.20 there is a change of dimension if and only
if the dimension of the orthogonal complement decreases. This is the case if and only if
Xi … gl C span¹XiC1; : : : ; Xnº.
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Let D denote the finite set of all dimension sequences that occur for G. Assemble all
l 2 g�n¹0º with the same sequence to

�d D
®
l 2 g�n¹0º j d.l/ D d

¯
for d 2 D. The sets �d are G-invariant because the projections pi are equivariant. As
gl D g��l for all � 2 R>0, Lemma 3.21 implies that they are also invariant under the
dilation action. For d D .d1; : : : ; dn/ 2 D set dnC1 D 0 and define

S.d/ D
®
i 2 ¹1; : : : ; nº j di D diC1 C 1

¯
;

T .d/ D
®
i 2 ¹1; : : : ; nº j di D diC1

¯
;

g�S.d/ D span
®
X�i j i 2 S.d/

¯
;

g�T.d/ D span
®
X�i j i 2 T .d/

¯
:

The following theorem is due to Pukánszky [39] and is also proved in [9].

Theorem 3.22 ([9, Theorem 3.1.14]). There is an ordering d1 � d2 � � � � � dm of D
such that allWi D

S
d�di

�d for i D 1; : : : ;m areG- and R>0-invariant and open. Each
G-orbit in �d meets g�

T.d/
in exactly one point.

This allows to find a sequence as in (3.4) using Kirillov’s map by setting Vi D GnWi
for i D 1; : : : ; m. It remains to check that the Vi n Vi�1 D Gn�di are Hausdorff and that
the corresponding R>0-action is free and proper.

Proposition 3.23. For d 2 D letƒd WD �d \ g�
T.d/

. The mapƒd ! Gn�d induced by
the inclusion is an R>0-equivariant homeomorphism. The corresponding R>0-action on
ƒd is free and proper.

Proof. In [9, Theorem 3.1.14] it is proved that there is a birational, nonsingular map
 d Wƒd � g�

S.d/
!�d . Furthermore, �1 ı �1d is G-invariant, where �1 denotes the pro-

jection to ƒd . Hence, it induces a continuous map Gn�d ! ƒd . It is inverse to the map
induced by the inclusion. Thus, the two spaces are homeomorphic. As �d and g�

T.d/
are

invariant under the dilation action, so is ƒd . Therefore, the inclusion is equivariant. Since
0 2 g� is not contained in any �d , the ƒd are subsets of some Rl n¹0º equipped with
the Euclidean subspace topology. Hence they are Hausdorff and the R>0-action, which is
given for � > 0 by multiplying the coordinate entries by different powers of �, is free and
proper.

Example 3.24. From the computations for the Heisenberg group in Example 3.19 we get
as in [9, Example 3.1.15], up to the reversed order,

�.2;1;0/ D ¹˛X
�
C ˇY � C 
Z� j ˛; ˇ 2 R and 
 ¤ 0º;

�.0;0;0/ D
®
˛X� C ˇY � j .˛; ˇ/ ¤ .0; 0/

¯
;

T .2; 1; 0/ D ¹3º;

T .0; 0; 0/ D ¹1; 2; 3º;

ƒ.2;1;0/ D ¹
Z
�
j 
 ¤ 0º;

ƒ.0;0;0/ D
®
˛X� C ˇY � j .a; b/ ¤ .0; 0/

¯
:
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Therefore, the desired sequence is ; � Gn�.2;1;0/ � yG n ¹�trivº. The dilation action on
ƒ.2;1;0/ Š R n ¹0º is multiplication with ��2 for � > 0, whereas on ƒ.0;0;0/ Š R2 n ¹0º
it is scalar multiplication with ��1.

3.5. Plancherel theory

For a locally compact group G, the operator-valued Fourier transform f 7! Of is defined
for f 2 L1.G/. It is given by

Of .�/ D

Z
G

f .x/�.x/ dx 2 B.H�/

for an irreducible, unitary representation � WG ! U.H�/. We recall some results from
Plancherel theory for locally compact, separable groupsG of type I (see [13, Section 18.8],
[9, Section 4.3], and [18, Appendix B]).

In this case, the topological space yG can be equipped with a certain Borel measure �,
which is called the Plancherel measure. For a simply connected nilpotent Lie group G, it
is supported within the orbits with maximal dimension sequence, these are the orbits in
�d1 � g� with notation as in Theorem 3.22 (see [9, p. 154]).

By [13, Section 8.6.1] there is a subspace

� �
Y
�2 yG

H�

that turns ..H�/�2 yG ; �/ into a �-measurable field of Hilbert spaces over yG as defined in
[18, Definition B.1.3]. The elements of � are called the measurable sections.

For a Hilbert space H denote by HS.H / the Hilbert space of Hilbert–Schmidt opera-
tors on H . Identifying H ˝H� with HS.H /, one obtains for a simply connected nilpotent
Lie group G the �-measurable field ..HS.H�//�2 yG ; � ˝ �

�/ over yG (see [18, Defini-
tion B.1.3]).

Define L2. yG; HS.H�// to be the direct integral of the Hilbert spaces HS.H�/. It
consists of sections x 2 � ˝ �� such that .� 7! kx.�/k/ 2 L2. yG; �/. It is a Hilbert
space with respect to hx; yi WD

R
yG
hx.�/; y.�/iHS d�.�/.

The Plancherel theorem [18, Theorem B.2.32] states that the Fourier transform defined
above yields an isometric isomorphism

y WL2.G/! L2
�
yG;HS.H�/

�
:

The left group von Neumann algebra VNL.G/ ofG consists of bounded, left-invariant
operators on L2.G/ (see [18, Proposition B.2.31]). The Plancherel theorem yields that the
Fourier transform extends to a �-isomorphism

y WVNL.G/! L1
�
yG;B.H�/

�
:

Here, L1. yG;B.H�// consists of a D .a.�//
�2 yG

with a.�/ 2 B.H�/ such that

(1) .a.�/x.�//� 2 � for all .x.�//� 2 � ,

(2) .� 7! ka.�/k/ 2 L1. yG;�/.
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It is a von Neumann algebra with the pointwise operations and the norm given by

kak D sup
�2 yG

ka.�/kB.H� /:

The inverse Fourier transform maps a field a 2 L1. yG; B.H�// to the operator Ta 2
VNL.G/ determined by

bTa .�/ D a.�/ y .�/ for  2 L2.G/; � 2 yG:

This operator-valued Fourier transform is essential for the definition of the symbolic
pseudo-differential calculus of Fischer–Ruzhansky described in Section 7.1.

4. The tangent groupoid and its C�-algebra

In this section, the tangent groupoid of a homogeneous Lie groupG is defined as the trans-
formation groupoid of an action of G. We explain how this groupoid can be understood
as a variant of Connes’ tangent groupoid [8]. The homogeneous structure is taken into
account by replacing addition of tangent vectors by multiplication in the group. Further-
more, the groupoid C�-algebra of the tangent groupoid can be described as a continuous
field of C�-algebras.

4.1. The tangent groupoid

Definition 4.1. For a homogeneous Lie group G the tangent groupoid is the continuous
action groupoid

G D
�
G � Œ0;1/

�
ÌG

of the action .G � Œ0;1//Ô G given by .x; t/ � v D .x˛t .v/; t/. Here, ˛t for t > 0 are
the dilations on G and

˛0.v/ D lim
t!0

˛t .v/ D 0 for all v 2 G:

The unit map uWG 0 WD G � Œ0;1/! G , the range and source map r; sWG ! G 0, the
inverse and the multiplication are given by

u.x; t/ D .x; t; 0/; r.x; t; v/ D .x; t/; s.x; t; v/ D
�
x˛t .v/; t

�
;

.x; t; v/�1 D
�
x˛t .v/; t; v

�1
�
; .x; t; v/ �

�
x˛t .v/; t; w

�
D .x; t; vw/;

for x; v; w 2 G and t 2 Œ0;1/. The range fibre of G over .x; t/ 2 G 0 is

G .x;t/ D r�1.x; t/ D
®
.x; t; v/ 2 G j v 2 G

¯
:

Let � WG ! Œ0;1/ denote the projection to the second coordinate. Recall that the pair
groupoid of G is the groupoid G � G with unit space G with r.x; y/ D x, s.x; y/ D y,
.x; y/�1 D .y; x/ and .x; y/ � .y; z/ D .x; z/ for x; y; z 2 G.
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Lemma 4.2. LetG be a homogeneous Lie group. Then .G ; Œ0;1/; �/ defines a continuous
field of locally compact, amenable groupoids. The subgroupoids ��1¹tº for t > 0 are
isomorphic to the pair groupoid of G. The subgroupoid TG WD ��1¹0º is the trivial field
of groups over G with fibre G.

Proof. It is easy to check that .G ; Œ0;1/; �/ defines a continuous field of locally compact
groupoids in the sense of [31] or [3]. All subgroupoids ��1¹tº for t � 0 are transformation
groupoids of actions ofG on itself. The groupG is amenable as a nilpotent group, for that
reason all ��1¹tº are amenable.

For all t > 0 the map 't .x; v/ D .x; x˛t .v// defines a groupoid isomorphism

't W �
�1
¹tº ! G �G:

Its inverse is given by .x; y/ 7! .x; ˛t�1.x
�1y//.

The subgroupoid TG D ��1¹0º corresponds to a (noncommutative) version of the
tangent bundle. For .x; v/ 2 TG we interpret x as the base point and v 2G Š gŠ TxG as
a tangent vector at x. The groupoid multiplication is defined if and only if two vectors lie
in the same fibre and is, in this case, defined by the group multiplication. Let qWTG ! G

denote the projection to the base point, then .TG; G; q/ defines itself a continuous field
of locally compact groupoids. It is the trivial field over G with fibre G. Again, all fibres
q�1¹xº Š G for x 2 G are amenable.

Remark 4.3. If G is a graded Lie group, the action G � Œ0;1/Ô G is smooth. Conse-
quently, the tangent groupoid G is a Lie groupoid. A graded Lie group is a special case of
a filtered manifold as considered in [46]. Therefore, one can define the tangent groupoid

TG D
�
TG � ¹0º [ .G �G/ � .0;1/� G � Œ0;1/

�
as a smooth field of groupoids over Œ0;1/ as in [6, 23, 46]. Using the isomorphisms
't W �

�1¹tº ! G � G from (4.1) and the definition of the smooth structure of TG, one
obtains that G and TG are isomorphic as Lie groupoids.

4.2. The groupoid C�-algebra

Now, we recall how the groupoid C�-algebra of the tangent groupoid G is constructed.
As the tangent groupoid of G is an action groupoid of an amenable group, C�.G / is
isomorphic to the reduced crossed product C�r .G;C0.G � Œ0;1/// as remarked in [42].
Here, the left G action on C0.G � Œ0;1// is given by

.v �  /.x; t/ D  
�
.x; t/ � v

�
D  

�
x˛t .v/; t

�
for  2 C0.G � Œ0;1//, v; x 2 G and t � 0. For f; g 2 Cc.G /, viewed as elements of
Cc.G;C0.G � Œ0;1/// the involution and convolution defined in (2.1) and (2.1) are

f �.x; t; v/ D f
�
x˛t .v/; t; v�1

�
;
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.f � g/.x; t; v/ D

Z
G

f .x; t; w/g
�
x˛t .w/; t; w

�1v
�

dw

for .x; t; v/ 2 G . The k � kI -norm is given by kf kI D max¹kf kI;1; kf kI;2º, where

kf kI;1 D sup
.x;t/

Z
G

ˇ̌
f .x; t; v/

ˇ̌
dv

and kf kI;2 D kf �kI;1. The groupoid C�-algebra C�.G / is the closure of Cc.G / under
the representation � as in (2.1). In particular, the C�-norm of f 2 Cc.G / is bounded by
kf kI .

Lemma 4.4. The continuous field of groupoids .G ; Œ0;1/; �/ gives rise to a continuous
field of C�-algebras C�.G / over Œ0;1/ with fibres isomorphic to K.L2G/ for t > 0 and
C�.TG/ at t D 0.

Proof. All groupoids ��1¹tº are amenable, therefore, C�.G / defines a continuous field of
C�-algebras with fibres C�.��1¹tº/ by [31, Corollary 5.6]. The groupoid ��1¹tº for t > 0
is isomorphic to the pair groupoid G �G by Lemma 4.2. The Haar measure on ��1¹tº is
taken under 't to the left Haar measure ¹�xt ºx2G on G �G withZ

K.
/ d�xt .
/ D t
�Q

Z
G

K.x; y/ dy for K 2 Cc.G �G/:

There is a well-known isomorphism ˇt WC�.G �G;�t /! K.L2G/ with

.ˇt .K/ /.x/ D t
�Q

Z
G

K.x; y/ .y/ dy

for K 2 Cc.G � G/ and  2 Cc.G/. For t > 0 compose ˇt and the homomorphism
induced by '�1t to pt WC�.G /! K.L2G/ given by�

pt .f / 
�
.x/ D t�Q

Z
G

f
�
x; t; ˛t�1.x

�1y/
�
 .y/ dy

for f 2 Cc.G /,  2 Cc.G/ and x 2G. It restricts to an isomorphism between C�.��1¹tº/
and K.L2G/.

Lemma 4.5. The subset G � .0;1/ � G 0 is open and invariant. Let

GG�.0;1/ D r�1
�
G � .0;1/

�
:

There is an isomorphism pW C�.GG�.0;1// ! C0.R>0;K.L2G// given by p.f /.t/ D
pt .f / for f 2 Cc.GG�.0;1//.

Proof. The subgroupoid GG�.0;1/ is isomorphic to the trivial field of groupoids over R>0
with the pair groupoidG �G as fibre via .x; t; v/ 7! .t; 't .x; v//. Composing the induced
isomorphism of the corresponding groupoid C�-algebras with the respective ˇt for t > 0
gives the claim.
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Denote by p0W C�.G / ! C�.TG/ the �-homomorphism induced by restricting to
t D 0. There is a short exact sequence by [25]

C0
�
R>0;K.L

2G/
�
,! C�.G /

p0� C�.TG/:

If G D Rn, the C�-algebra on the right is isomorphic to C0.T �Rn/ via Fourier transform.
In general, C�.TG/ can be noncommutative. It is the trivial field of C�-algebras over G
with fibres isomorphic to the group C�-algebra C�.G/.

5. Pseudo-differential extension using generalized fixed point
algebras

In this section we use the dilations on G to define a certain R>0-action on C�.G /. We
show that the generalized fixed point algebra construction can be applied when the action
is restricted to an ideal J G C�.G /. In particular, we prove the existence of a continuously
square-integrable subset in J . Moreover, we obtain the pseudo-differential extension.

5.1. The generalized fixed point algebra of the zoom action

In the Euclidean case, the principal symbol of a pseudo-differential operator of order zero
can be understood as a generalized fixed point of the proper action of R>0 on T �Rnn
.¹0º � Rn/ given by scaling in the fibres, that is, � � .x; �/ D .x; ��1�/ for x 2 Rn, � 2
T �x Rn and � > 0. Under Fourier transform this action corresponds to .��f /.x; X/ D
�nf .x;�X/ for x 2Rn,X 2 TxRn, f 2 Cc.TRn/ and � > 0. Using the dilations we can
define an analogous action on C�.TG/ for a homogeneous Lie group G and extend it to
C�.G /.

Lemma 5.1. For a homogeneous Lie group G of homogeneous dimension Q the maps
��WCc.G /! Cc.G / defined by .��f /.x; t; v/ D �Qf .x; t� ; ˛�.v// for � > 0 and f 2
Cc.G / extend to a strongly continuous R>0-action on C�.G /.

Proof. It is easy to check that �� are linear maps satisfying ��.f � g/ D .��f / � .��g/
and ��.f �/ D .��f /

� for all f; g 2 Cc.G / and � > 0. Moreover, �1 D id and ��� D
�� ı �� hold for all �; � > 0. Each �� is an isometry with respect to the I -norm and,
therefore, extends to an automorphism of C�.G /.

Remark 5.2. Let � WR>0 Õ C0.R>0/ be given by ��.f /.t/ D f .��1t / for �; t > 0 and
f 2 C0.R>0/. The identity pt ı �� D pt��1 for all t; � > 0 shows that the restriction of
� to the invariant ideal C�.GG�.0;1// is mapped to the action � ˝ 1WH Õ C0.R>0/˝
K.L2G/ under the isomorphism p from Lemma 4.5. In particular, � corresponds to the
zoom action of R>0 on TG defined in [46, Definition 17] or [23, Definition 10.6].

As described above, in the Euclidean case the scaling action on T �Rn is restricted to
T �Rnn.¹0º � Rn/. This is necessary as the zero section is fixed by the scaling action,
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hence, the action on T �Rn is not proper. For an arbitrary homogeneous Lie group, we
must also choose an ideal inside the C�-algebra of the tangent groupoid in order to obtain
a continuously square-integrable R>0-C�-algebra. For f 2�.Rn/ the property f .0/D0 is
equivalent to

R
Of .x/dxD0, where Of is the Fourier transform of f . Moreover, C0.Rnn¹0º/

corresponds under Fourier transform to ker.y�triv/ G C�.Rn/ where �triv is the trivial rep-
resentation of Rn.

For a homogeneous Lie group G let qx WC�.TG/! C�.G/ for x 2 G be the �-homo-
morphism induced by restricting f 2 Cc.TG/ to the fibre TxG.

Definition 5.3. Let G be a homogeneous Lie group and �triv its trivial representation. Let
J be the closed ideal in C�.G / defined by

J D
\
x2G

ker .y�triv ı qx ı p0/:

The ideal J is invariant under the action � WR>0 Õ C�.G / above. Now, we define a
linear subspace RG � J for the generalized fixed point algebra construction.

Definition 5.4. Let RG consist of f 2 C1.G / satisfying the following conditions:

(a) r.suppf / � G 0 is compact,

(b) .x; t/ 7! f jG .x;t/ and .x; t/ 7! .@tf /jG .x;t/ are continuous maps G 0 ! �.G/,

(c)
R
G
f .x; 0; v/ dv D 0 for all x 2 G.

Using the seminorms from Definition 3.13, set for N 2 N0

kf k.N/ WD sup
.x;t/2G 0



f jG .x;t/

N D sup
.x;t;v/2G ;jI j�N

�
1C kvk

�.NC1/.QC1/ ˇ̌
@Ivf .x; t; v/

ˇ̌
:

For f 2 RG conditions (a) and (b) ensure that kf k.N/ <1 and k@tf k.N/ <1 for
all N 2 N. Note that kf �k.0/ D kf k.0/ holds. Hence, by Lemma 3.14 kf kI �Dkf k.0/
holds for a constantD>0, so that the elements of RG lie indeed in the groupoid C�-algebra
C�.G /. Condition (c) forces them to be in the ideal J . The goal of this section is to
show that the generalized fixed point construction can be applied to the R>0-action � on
.J;RG /.

Lemma 5.5. For every k 2 N there is a group constant Ck > 0 and such that for all
g 2 C1.G / with kgk.k/ <1 and all x; v; w 2 G and t � 0

ˇ̌
g
�
.x; t; v/.x˛t .v/; t; w/

�
� g.x; t; v/

ˇ̌
� Ckkgk.k/

�
1C kwk

�.kC2/.QC1/�
1C kvk

�k.QC1/ nX
jD1

kwkqj :

Proof. It suffices to show the claim for real-valued g. Define a function

H WG � Œ0;1/ �G �G � Œ0; 1�! R

by
H.x; t; v; w; h/ D g

�
.x; t; v/ �

�
x˛t .v/; t; ˛h.w/

��
:
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Hence, we obtain

g
�
.x; t; v/

�
x˛t .v/; t; w

��
� g.x; t; v/ D

Z 1

0

@hH.x; t; v; w; s/ ds:

To estimate j@hH j note thatH D g ı .idG�Œ0;1/ �m/ ı .idG�Œ0;1/�G � ˛/, wheremWG �
G ! G denotes the group multiplication and ˛.w; h/ D ˛h.w/ for w 2 G and h 2 Œ0; 1�.
One calculates

@hH.x; t; v; w; s/ D

nX
i;jD1

.@vig/
�
x; t; v˛s.w/

�
� @nCjmi

�
v; ˛s.w/

�
� @h j̨ .w; s/:

By the polynomial form of the group law there is a group constant zD > 0 such thatˇ̌
@nCjmi

�
v; ˛s.w/

�ˇ̌
� zD

�
1C kvk

�Q�
1C



˛s.w/

�Q
� zD

�
1C kvk

�QC1�
1C kwk

�QC1
for all v;w 2 G and s 2 Œ0; 1�. Using Lemma 3.12 we estimateˇ̌

.@vig/
�
x; t; v˛s.w/

�ˇ̌
� kgk.k/

�
1C



v˛s.w/

��.kC1/.QC1/
� kgk.k/C

.kC1/.QC1/

�
1C



˛s.w/

�.kC1/.QC1/�
1C kvk

�.kC1/.QC1/
� kgk.k/C

.kC1/.QC1/

�
1C kwk

�.kC1/.QC1/�
1C kvk

�.kC1/.QC1/ :
As j̨ .w; h/ D h

qjwj , it follows that j@h j̨ .w; s/j � Qjwj j � Qkwk
qj . Together, these

estimates imply the claim.

Lemma 5.6. Consider the action � WR>0Õ J . For f 2R�
G

the operator hhf j, defined as
in (2.1), satisfies hhf jg 2 L1.R>0; J / for all g 2 R�

G
.

Proof. Let f; g 2 RG . We show that hhf �jg� 2 L1.R>0; J /. Because �� is an isometry
with respect to the I -norm for � > 0, the following equality holds

���1.f / � g�

I D 

f � ��.g�/

I D 

��.g/ � f �

I :
Hence, it suffices to prove for all f; g 2 RG thatZ 1

1



��.f / � g�

I d�
�
<1:

So let � � 1 in the following. Using the homogeneity of the Haar measure, we compute

��.f / � g�

I;1 D sup
.x;t/

Z
G

ˇ̌�
��.f / � g

�
�
.x; t; v/

ˇ̌
dv

D sup
.x;t/

Z
G

ˇ̌̌̌Z
G

f
�
x; t

�
; w
�
g
�
.x; t; v/�1

�
x; t; ˛��1.w/

��
dw
ˇ̌̌̌
dv:
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To estimate this integral, let

R1.x; t; v/ WD f .x; t; v/ � f .x; 0; v/ for x; v 2 G; t � 0;

R2.
; �/ WD g.
 � �/ � g.
/ for .
; �/ 2 G .2/:

As f satisfies condition (c), we get

��.f / � g�

I;1 � sup
.x;t/

�Z
G

Z
G

ˇ̌
R1
�
x; t

�
; w
�
g
�
x˛t .v/; t; v

�1˛��1.w/
�ˇ̌

dw dv

C

Z
G

Z
G

ˇ̌
f .x; 0; w/R2

�
.x; t; v/�1;

�
x; t; ˛��1.w/

��ˇ̌
dw dv

�
:

We start by estimating the first summand. As @tf is rapidly decaying, one has

R1.x; t; v/

 � tk@tf k.1/�1C kvk��2.QC1/ for all .x; t; v/ 2 G :

Let T > 0 be such that f .x; t; v/ D 0 holds whenever t > T . Using Lemma 3.12 and
� � 1, we findZ
G

Z
G

ˇ̌
R1
�
x; t

�
; w
�
g
�
x˛t .v/; t; v

�1˛��1.w/
�ˇ̌

dw dv

� ��1T k@tf k.1/kgk.0/

Z
G

Z
G

1�
1C kwk

�2.QC1/ � 1�
1C



v�1˛��1.w/

�QC1 dw dv

� ��1T k@tf k.1/kgk.0/C
QC1

Z
G

Z
G

1�
1C kwk

�2.QC1/ � �1C ��1kwk�QC1�
1C kvk

�QC1 dw dv

� ��1T k@tf k.1/kgk.0/C
QC1

�Z
G

1�
1C kvk

�QC1 dv
�2
:

This integral converges by Lemma 3.14. The estimate is independent of .x; t/ 2 G 0. For
the second summand, apply Lemma 5.5 to g with k D 1. We obtainˇ̌
R2
�
.x; t; v/�1;

�
x; t; ˛��1.w/

��ˇ̌
� C1kgk.1/

�
1C



˛��1.w/

�3.QC1/�
1C kv�1k

�QC1 nX
jD1



˛��1.w/

qi
D C1kgk.1/

�
1C ��1kwk

�3.QC1/�
1C kvk

�QC1 nX
jD1

��qi kwkqi

� nC1kgk.1/�
�1

�
1C kwk

�4.QC1/�
1C kvk

�QC1 :

Consequently, we obtain using the rapid decay of f thatZ
G

Z
G

ˇ̌
f .x; 0; w/R2

�
.x; t; v/�1;

�
x; t; ˛��1.w/

��ˇ̌
dw dv

� ��1C1kf k.5/kgk.1/

Z
G

Z
G

�
1C kwk

��5.QC1/ �1C kwk�4.QC1/�
1C kvk

�QC1 dw dv:
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Again, this converges by Lemma 3.14 and the estimate does not depend on .x; t/ 2 G 0.
For k��.f / � g�kI;2, one can estimate analogously by replacing .x; v; t/ by .x; v; t/�1 in
the argument above. Thus, the convergence of

R1
1
��2 d� implies (5.1).

Moreover, together with the respective estimate for � < 1 using (5.1), we obtain a
constant zD > 0 such that for all f; g 2 RG that vanish for t > T

hhf � jg�ii

 � 

jf �iig�



1
� zD

�
kf k.5/ C T k@tf k.1/

��
kgk.5/ C T k@tgk.1/

�
holds.

Definition 5.7. Let R be the �-subalgebra of J containing all f 2 C1c .G / withZ
G

f .x; 0; v/ dv D 0 for all x 2 G:

A function f 2 C1c .G / lies in J if and only if it satisfies the vanishing integral con-
dition (5.7). Note that R is contained in R�

G
.

Proposition 5.8. Let G be a homogeneous Lie group and J G C�.G / be defined as in
Definition 5.7. Denote by R the completion of R with respect to the k � ksi-norm. Then
.J;R/ is a continuously square-integrable R>0-C�-algebra.

Proof. First, we show that R is dense in J . Let f 2 J and " > 0. Then f can be approx-
imated by g 2 C1c .G / such that kf � gk < "=2. To adjust g to lie in R define a function
h by

h.x/ D

Z
G

g.x; 0; v/ dv for x 2 G:

As f lies in J , it satisfiesˇ̌
h.x/

ˇ̌
D
ˇ̌
y�triv

�
p0
�
qx.g/

��
� y�triv

�
p0
�
qx.f /

��ˇ̌
� kf � gk < "=2 for all x 2 G:

Choose a non-negative k2C1c .G/with
R
G
k.v/dvD1 and !2C1c .Œ0;1// with !.0/D1

and k!k1 � 1. The function Qg 2 C1c .G / defined by Qg.x; t; v/ D h.x/k.v/!.t/ satisfies
k QgkI � "=2. Then g � Qg 2 R and kf � .g � Qg/k < " holds.

As the Laurent symbol of hhf jgii is given by hhf jg, Lemma 5.6 implies hhf jgii 2
C�r .R>0; J /. Now, by [33, Proposition 6.5] the set R is square-integrable and relatively
continuous. It is also R>0-invariant, and f � g2R holds for f;g2R. Hence, Lemma 2.11
gives the claim.

Remark 5.9. The action � W R>0 Õ .J;R/ even satisfies Rieffel’s original definition
in [44], where he requires R to be a dense invariant �-subalgebra of J such that

� 7! f � ��.g
�/

is in L1.R>0; J / for all f; g 2 R.

In the following, it will be useful to know that the k � ksi-closure of R contains the
space R�

G
. In particular, this implies R�

G
D R.
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Lemma 5.10. The linear space R�
G

is contained in the completion of R with respect to
the k � ksi-norm.

Proof. Lemma 5.6 shows that hhf jgii 2 C�r .R>0; J / for all f; g 2 R�
G

. Hence, by [33,
Proposition 6.5] all elements of the dense subspace R�

G
are square-integrable.

For f 2 R�
G

we construct a sequence gn 2 R with kf � gnksi ! 0. Let T > 0 be
such that f vanishes for t > T . Choose a sequence .fn/ of fn 2 C1c .G / that vanish for
t > T , and satisfy

kf � � f �n k.5/ ! 0 and


@t .f �/ � @t .f �n /

.1/ ! 0:

Let k 2 C1c .G/ be non-negative with
R
G
k.v/ dv D 1 and let ! 2 C1.Œ0; T �/ satisfy

!.0/ D 1, k!k1 � 1 and k@t!k1 � 1. Define functions gn 2 R with

gn.x; t; v/ D fn.x; t; v/ � k.v/!.t/

Z
G

fn.x; 0; w/ dw:

It follows that kf � � g�nk.5/ ! 0 and k@t .f � � g�n/k.1/ ! 0. We estimate using (5.1)

kf � gnksi D kf � gnk C


hhf � gn jf � gnii

1=2

� Dkf � gnk.0/ C zD
1=2
�
kf � � g�nk.5/ C T



@t .f � � g�n/

.1/�:
Consequently, f lies in the closure of R with respect to the k � ksi-norm.

Therefore, the generalized fixed point algebra FixR>0.J;R/ of the R>0-action on J
is defined as in Definition 2.6. The elements jf iihhgj for f; g 2 R�

G
can be characterized

more explicitly. We fix for the rest of this article a monotone increasing sequence .�k/k2N

of continuous compactly supported functions �k WR>0 ! Œ0; 1� with �k ! 1 uniformly
on compact subsets to cut off at zero and infinity. We may assume that �k.��1/ D �k.�/
for all � > 0. As described in Lemma 2.8Z 1

0

�k.�/��.f
�
� g/ d�

�

converges to jf iihhgj with respect to the strict topology as multipliers of J .

5.2. The pseudo-differential extension

For a homogeneous Lie group G, let JG WD ker.b�triv/ G C�.G/ and RG D ¹f 2 C1c .G/ jR
G
f .v/ dv D 0º. In the following, we use generalized fixed point algebras to derive a

pseudo-differential extension

K.L2G/ ,! FixR>0.J;R/� C0
�
G;FixR>0.JG ;RG/

�
:

We will justify the name “pseudo-differential” extension in Section 7 by comparing it to
the calculus defined by Fischer–Ruzhansky–Fermanian-Kammerer in [17, 18] for graded
Lie groups.
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The homomorphism p0WC�.G /! C�.TG/ induced by restriction to t D 0 maps J
onto the R>0-invariant ideal J0 � C�.TG/ with

J0 D
\
x2G

ker .y�triv ı qx/:

The short exact sequence from (4.2) restricts to

C0.R>0/˝K.L2G/ ,! J
p0� J0:

Proposition 5.11. Let G be a homogeneous Lie group and let R0 D p0.R/. The zoom
action � on (5.2) induces an extension

K.L2G/ ,! FixR>0.J;R/
Qp0� FixR>0.J0;R0/:

Proof. Proposition 2.19 gives an extension of generalized fixed point algebras

FixR>0
�

ker.p0/;R \ ker.p0/
�
,! FixR>0.J;R/

Qp0� FixR>0
�
J0; p0.R/

�
:

By Remark 2.15 the completion of p0.R/with respect to the k � ksi-norm on the right hand
side is R0. The isomorphism p from Lemma 4.5 induces an isomorphism

p�WFixR>0
�

ker.p0/;R \ ker.p0/
�
! FixR>0

�
C0
�
R>0;K.L

2G/
�
; zR
�
;

where zR WD p.R\ ker.p0//. By the description of the R>0-action on C0.R>0;K.L2G//
in Lemma 4.5, it follows that zR is the unique relatively continuous, complete and dense
subset by Theorem 2.5. Lemma 2.22 gives an isomorphism

‰WFixR>0
�
C0
�
R>0;K.L

2G/
�
; zR
�
! K.L2G/:

Therefore, we obtain (5.11). The inclusion of K.L2G/ into FixR>0.J;R/ is given by
.‰ ı p�/

�1.

By Theorem 2.23 the symbol algebra FixR>0.J0;R0/ is a continuous field of C�-
algebras over G with fibres FixR>0.JG ;RG/. We show it is in fact a trivial continuous
field.

Lemma 5.12. The map ‚WFixR>0.J0;R0/! C0.G;FixR>0.JG ;RG// given by

‚
�
jf iihhgj

�
.x/ D Qqx

�
jf iihhgj

�
D
ˇ̌
qx.f /

˛̨ ˝̋
qx.g/

ˇ̌
for f; g 2 R0; x 2 G

is an isomorphism.

Proof. Proposition 2.19 and Remark 2.15 imply that each Qqx maps FixR>0.J0;R0/ onto
FixR>0.JG ;RG/ for x 2 G. Let f; g 2 R0, we show that ‚.jf iihhgj/ is continuous.
For " > 0 and x 2 G there is an open neighborhood U of x such that

qx.f / � qy.f /

5 < " and



qx.g/ � qy.g/

5 < " for all y 2 U:
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The estimate of the norm in (5.1) implies that there is a constant C > 0 such that kjhiik �
Ckhk5 for all h 2 RG . Hence for y 2 U we obtain

‚�jf iihhgj�.x/ �‚�jf iihhgj�.y/



�


ˇ̌qx.f /˛̨ 

 � 

ˇ̌qx.g/ � qy.g/˛̨ 

C 

ˇ̌qy.g/˛̨ 

 � 

ˇ̌qx.f / � qy.f /˛̨ 


� "

�
sup
x2G



qx.f /

5 C sup
x2G



qx.g/

5�:
As f and g are compactly supported in the x-direction it follows that‚.jf iihhgj/ is again
compactly supported. Extend‚ linearly to the span of jf iihhgj for f; g 2R0 and let T be
inside the linear span. As k Qqx.T /k � kT k for all x 2 G it follows that k‚.T /k � kT k.
Let  2 J0 satisfy k k D 1. As C�.TG/ is a continuous field of C�-algebras overG with
fibres C�.G/ it follows that

kT k D sup
x2G



qx.T  /

 D sup
x2G



 Qqx.T /qx. /

 � sup
x2G



 Qqx.T /

 D 

‚.T /

:
Hence, ‚ is an isometry and extends by continuity to FixR>0.J0;R0/. As Qqx is a homo-
morphism for each x 2 G, ‚ is a homomorphism.

Denote byW � FixR>0.JG ;RG/ the linear span of jf iihhgj with f;g 2RG , which is
dense in FixR>0.JG ;RG/. Then Cc.G/˝alg W is dense in C0.G;FixR>0.JG ;RG//. The
space Cc.G/˝alg W is contained in the image of ‚ as for a 2 Cc.G/ and f; g 2 RG we
can pick a function b 2 Cc.G/ with bjsuppa � 1 so that

‚
�
ja˝ f iihhb ˝ gj

�
D a˝ jf iihhgj:

As the image of ‚ is closed, the claim follows.

5.3. Representation as bounded operators on L2.G/

We show that the C�-algebra of “order zero pseudo-differential operators” FixR>0.J;R/

admits a faithful representation as bounded operators on L2.G/.
The �-homomorphisms pt W G ! K.L2G/ defined in (4.2) can be restricted to the

ideal J . The restrictions are still surjective. Hence, they yield strictly continuous repre-
sentations

Qpt WFixR>0.J;R/!M
�
K.L2G/

�
D B.L2G/ for all t > 0:

Lemma 5.13. The representation Qp1WFixR>0.J;R/! B.L2G/ is faithful.

Proof. As seen in Remark 5.2 the representations pt of J are related by

pt ı �� D pt��1 for t; � > 0:

This equality still holds for the corresponding extensions to the multiplier algebras. As
each T 2 FixR>0.J;R/ is invariant under � , it follows that Qpt .T / D Qp1.T / for all t > 0.
Therefore, T 2 ker. Qp1/ implies Qpt .T /D 0 for all t > 0. Then it follows for all f 2 J that
pt .Tf / D Qpt .T /pt .f / D 0 for all t > 0. As C�.G / is a continuous field of C�-algebras
this implies by continuity that Tf D 0. Since this holds for all f 2 J , it follows T D 0.
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Lemma 5.14. Let f; g 2 R�
G

and h D f � � g. Then the operators Tk.h/ given by

Tk.h/ .x/ D

Z 1
0

�k.�/�
�Q

Z
h
�
x; �; ˛��1.x

�1y/
�
 .y/ dy d�

�

for  2 L2.M/, x 2M , converge strictly to Qp1.jf iihhgj/ as multipliers of K.L2M/.

Proof. Strict continuity of Qp1 together with (5.3) imply that

Qp1
�
jf iihhgj

�
D lim

s

Z 1
0

�k.�/p1
�
��.f

�
� g/

� d�
�
D lim

s

Z 1
0

�k.�/p�.h/
d�
�
:

The operators Tk.h/ above are obtained by inserting the definition of p�.

Lemma 5.15. The following diagram commutes, where the horizontal maps are the inclu-
sions:

ker. Qp0/ FixR>0.J;R/

FixR>0
�
C0
�
R>0;K.L2G/

�
; zR
�

K.L2G/ B.L2G/:

.p/�Š

Qp1

‰Š

Proof. Let  1;  2 2 Cc.R>0;K.L2G//. Then by strict continuity of Qp1 and (5.3)

Qp1
�
.p�/

�1
�
j 1iihh 2j

��
D Qp1

�ˇ̌
p�1. 1/

˛̨ ˝̋
p�1. 2/

ˇ̌�
D Qp1

�
lim
s

Z 1
0

�k.�/��
�
p�1. �1 2/

� d�
�

�
D lim

s

Z 1
0

�k.�/p��1
�
p�1. �1 2/

� d�
�

D

Z 1
0

 1.�
�1/� 2.�

�1/ d�
�
D ‰

�
j 1iihh 2j

�
holds. The claim follows as the linear span of j 1iihh 2jwith 1; 2 2Cc.R>0;K.L2G//
is dense in FixR>0.C0.R>0;K.L2G//; zR/.

Lemma 5.16. Let h 2 R�
G
\ ker.p0/ and let Tk.h/ be defined as in (5.14). Then .Tk.h//

converges in norm in K.L2G/. In particular, its strict limit as multipliers of K.L2G/
exists and is contained in Qp1.FixR>0.J;R//.

Proof. As h2R�
G

vanishes at t D 0, it can be written as hD tf with f 2C1.G /\C�.G /.
By definition of the representation p� in (4.2), it follows that p�.h/ D �p�.f / for all
� > 0. Hence, for all � > 0 

p�.h/

 � �

p�.f /

 � �kf k:
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We show that .Tk.h// is Cauchy. Let T > 0 be such that h vanishes for t � T . For l � k,
we estimate

Tl .h/ � Tk.h/

 � Z 1

0

�
�l .�/ � �k.�/

�

p�.h/

 d�
�
� kf k

Z T

0

�
1 � �k.�/

�
d�:

As �k ! 1 on compact subsets, the first claim follows. The second claim holds as conver-
gence in norm implies strict convergence and K.L2G/ is contained in Qp1.FixR>0.J;R//

by Lemma 5.15.

6. Operators of type 0 as generalized fixed points

Let G be a homogeneous Lie group. In this section we show that FixR>0.JG ;RG/ is the
C�-closure of the operators of type 0 on G.

6.1. Homogeneous distributions

Recall that the dilations yield an R>0-action on �.G/ � C�.G/ given by

��f .x/ D �
Qf

�
˛�.x/

�
for � > 0; f 2 �.G/ and x 2 G:

This action can be extended to � 0.G/ by

h���u; f i WD �
Q
hu; ���1f i for u 2 � 0.G/; f 2 �.G/ and � > 0:

Definition 6.1 ([18, Definition 3.2.9]). Let G be a homogeneous Lie group and let � 2 R.
A distribution u 2 � 0.G/ is called a kernel of type � if it is smooth away from zero and
���.u/ D �

�u for all � > 0. Denote by K�.G/ the space of kernels of type �.
For u 2 K�.G/ the corresponding continuous operator TuW �.G/! � 0.G/ given by

Tu.f / D u � f is called an operator of type �.

Remark 6.2. Let Q be the homogeneous dimension of the group G. The kernels of type
� are also called .� �Q/-homogeneous distributions in the literature. This is because they
coincide with .� �Q/-homogeneous functions outside zero.

As in [18, Lemma 3.2.7] one calculates that an operator T of type � satisfies

T .���1f / D �
����1.Tf / for all � > 0 and f 2 �.G/:

Example 6.3. Let ı 2 � 0.G/ denote the delta distribution. For ˛ 2 Nn
0 the distribu-

tion X˛ı 2 � 0.G/ defines a kernel of type �Œ˛�. The corresponding operator TX˛ı is the
right-invariant differential operator Y ˛ on G defined as in (3.2).

6.2. The space �0.G/

Define the following subspace of �.G/ which is the Euclidean Fourier transform of the
space of Schwartz functions that vanish with all derivatives at 0.
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Definition 6.4 ([7]). For a homogeneous Lie group G, let �0.G/ consist of all functions
f 2 �.G/ with

R
G
v˛f .v/ dv D 0 for all ˛ 2 Nn

0 .

Lemma 6.5. The space �0.G/ has the following properties:

(1) �0.G/ is a �-subalgebra of �.G/,

(2) �0.G/ is closed in �.G/ with respect to the Schwartz semi-norms,

(3) u � f 2 �0.G/ for all u 2K�.G/, � 2 R and f 2 �0.G/,

(4) Xf 2 �0.G/ for all X 2 g and f 2 �0.G/.

Proof. It is clear that �0.G/ is a linear subspace of �.G/. It is left to show for (1) that
�0.G/ is closed under involution and convolution. Note that for v 2 G

.v�1/˛ D .�v/˛ D .�1/j˛jv˛:

Moreover, by the polynomial group law in Proposition 3.9 one can write v �w for v;w 2G
as a linear combination of vˇw
 .

To show (2), let f 2 �.G/ and ˛ 2 Nn
0 . We estimateˇ̌̌̌ Z

v˛f .v/ dv
ˇ̌̌̌
�

Z �
1C kvk

�Œ˛� ˇ̌
f .v/

ˇ̌
dv � kf kŒ˛�

Z �
1C kvk

��Q�1 dv:

The integral converges by Lemma 3.14. It follows that for a sequence .fk/k2N in �0.G/

which converges in �.G/, the limit lies in �0.G/ as well.
Property (3) is proved in [21, Lemma 4]. For (4) write X 2 g as X D

Pn
jD1 ajYj

with aj 2 R. Then

Xf D Xı � f D

nX
jD1

ajXj ı � f:

As the Xj ı define kernels of type �qj by Example 6.3, the claim follows from (3).

6.3. Operators of type 0

We compare now the operators of type 0 to FixR>0.JG ;RG/.

Proposition 6.6 ([20, Theorem 1.65]). LetG be a homogeneous Lie group and f 2 �.G/

with
R
G
f .v/ dv D 0. Then Z 1

0

�k.�/��.f /
d�
�

converges in � 0.G/ to a kernel of type 0.

We will show that, conversely, every u 2K0.G/ can be written as an average over the
dilation action as above. First, this is proved for u D ı, which is a kernel of type 0.

Lemma 6.7. There are fj 2 RG and gj 2 �0.G/, j D 1; : : : ; n, such that
nX

jD1

Z 1
0

�k.�/��.f
�
j � gj /

d�
�
! ı in � 0.G/:
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Proof. As noted in [7], one can find a � 2 �0.G/ with

ı D lim
k!1

Z 1
0

�k.�/��.�/.x/
d�
�
:

For example, take a function h 2 C1c .R>0/ with
R1
0
h.��1/ d�

�
D 1. Define  2 �.g�/

with .�/D h.k�k/, where k �k is a homogeneous quasi-norm on g� which is smooth out-
side zero. The invariance of the Haar measure on R>0 implies that

R1
0
 .˛��1.�//

d�
�
D 1

for all � ¤ 0. Therefore, � 2 �0.G/ can be taken as the inverse Euclidean Fourier trans-
form of  .

Now, � needs to be factorized appropriately. Dixmier and Malliavin proved in [14,
Theorem 7.2] that one can find k; l 2 �.G/ such that �D k � l . In the first step of the proof
they show � D � ��, where� is a measure and � is the limit of a sequence of polynomials
inX˛� in �.G/. It follows � 2 �0.G/ by Lemma 6.5. Repeating this procedure with � , the
factorization � D k � l is achieved after finitely many steps with k 2 �0.G/ and l 2 �.G/.
By [20, Lemma 1.60], k can be written as k D

Pn
jD1 Xjkj with k1; : : : ; kn 2 �0.G/.

Therefore, we obtain

� D

nX
jD1

.Xjkj / � l D

nX
jD1

kj � .Yj l/:

Using Proposition 3.10 one obtains that
R
.Yj l/.x/ dx D 0 holds. Consequently, the claim

holds with fj WD k�j 2 �0.G/ and gj WD Yj l 2 RG for j D 1; : : : ; n.

Corollary 6.8. Every u 2K0.G/ can be written as a finite sum of

lim
k!1

Z 1
0

�k.�/��.f
�
� g/ d�

�

with f 2 �0.G/ and g 2 RG .

Proof. Let fj 2 �0.G/ and gj 2RG for j D 1; : : : ; n be functions as in Lemma 6.7. Then
use the homogeneity of u to compute

u D u � ı D lim
k!1

� nX
jD1

Z 1
0

�k.�/u �
�
��.fj � gj /

� d�
�

�

D lim
k!1

� lX
jD1

Z 1
0

�k.�/��
�
.u � fj / � gj

� d�
�

�

D

lX
jD1

�
lim
k!1

Z 1
0

�k.�/��
�
.u � fj / � gj

� d�
�

�
:

Here we used that u � .� � /D .u � �/ � for all �; 2 �.G/. The last equality holds
as u � fj lies in �0.G/ for all j D 1; : : : ; n by Lemma 6.5, so that the expression in the
bottom line converges in � 0.G/ by Proposition 6.6.
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The description of the kernels of type 0 above is already very close to the generalized
fixed point algebra construction. We compare now the corresponding convolution opera-
tors to elements of

FixR>0.JG ;RG/ �MR>0.JG/:

To understand this fixed point algebra better, we show that the restrictions of the left
regular representation �G WC�.G/! B.L2G/ to JG is still non-degenerate.

Lemma 6.9. LetG be a homogeneous Lie groupG. The restriction of the left regular rep-
resentation �G WC�.G/! B.L2G/ to JG D ker.y�triv/ is a non-degenerate representation.

Proof. Suppose 2L2.G/ is such that f � D 0 holds for all f 2 JG . As C�.G/ acts by
right-invariant operators onL2.G/, this is equivalent to Of .�/ y .�/D 0 for all f 2 JG and
for almost all � 2 yG by the Plancherel theorem, see (3.5). The ideal JG GC�.G/ is liminal.
Hence for � 2cJG D yGn¹�trivºwe have that Of .�/ y .�/D 0 for all f 2 JG is equivalent to
K.H�/ y .�/D 0. But as y .�/ is Hilbert–Schmidt, this means that y .�/D 0 for � ¤�triv.
The Plancherel measure is supported within the representations corresponding to orbits of
maximal dimension sequence. In particular, ¹�trivº has measure zero and, therefore,  D 0
must hold.

Consequently, as the restriction is also faithful, the multiplier algebra M.JG/ can be
identified with the idealizer of �G.JG/ in B.L2G/. Therefore, elements of the generalized
fixed point algebra FixR>0.JG ;RG/ can be viewed as bounded, right-invariant operators
on L2.G/. This allows us to reprove the following theorem of [29].

Theorem 6.10. Let G be a homogeneous Lie group. Every operator T of type 0 extends
uniquely to a bounded operator L2.G/! L2.G/.

Proof. Note that if such an extension exists, it is unique as �.G/ � L2.G/ is dense. Let
f; g 2 RG and consider the kernel of type 0 given by

u D lim
k!1

Z 1
0

�k.�/��.f
�
� g/ d�

�
:

If we can show that TuW 7! u �  defined on �.G/ extends to an operator in B.L2G/,
the claim follows as every kernel of type 0 is a finite sum of kernels of this form by
Corollary 6.8. Let h 2 RG and  2 �.G/. The description of jf iihhgj as a strict limit as
in Lemma 2.8 shows that

z�G
�
jf iihhgj

�
.�G.h/ / D Tu

�
�G.h/ 

�
:

As the restricted left regular representation is non-degenerate by Lemma 6.9, ¹�G.h/ j
h 2RG and  2 �.G/º is dense inL2.G/. Hence, the operator z�G.jf iihhgj/ is the unique
continuous extension of Tu.

Proposition 6.11. Let G be a homogeneous Lie group G. Then FixR>0.JG ;RG/ is the
C�-closure of the operators of type 0 in B.L2G/.
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Proof. This follows from the one-to-one correspondence between the operators of type 0
and the linear span of jf iihhgj with f; g 2 RG obtained from Proposition 6.6, Corol-
lary 6.8, and Theorem 6.10. The latter is dense in the C�-algebra FixR>0.JG ;RG/.

7. Comparison to the calculus for graded Lie groups
For this section, let G be a graded Lie group. We compare the sequence

K.L2G/ ,! FixR>0.J;R/
‚ı Qp0
�� C0

�
G;FixR>0.JG ;RG/

�
:

from Section 5 to the pseudo-differential extension of order zero in the calculus of Fischer,
Ruzhansky, and Fermanian-Kammerer.

7.1. The calculus of Fischer–Ruzhansky–Fermanian-Kammerer

Recall the operator-valued Fourier transform for a nilpotent Lie group G described in
Section 3.5. It maps a left-invariant operator on L2.G/ to a field of operators ¹a.�/ 2
B.H�/ j � 2 yGº. It is used in [18] to define a symbolic pseudo-differential calculus.
In [17], homogeneous expansions for the symbols are defined. We give a short introduction
to their calculus. The symbols in their calculus are fields of operators®

a.x; �/WH1� ! H� j x 2 G; � 2 yG
¯
:

Here, H1� are the smooth vectors in H� .

Remark 7.1. Note that [18] uses a different convention for the Fourier transform

F .f /.�/ D

Z
G

f .x/�.x/� dx for f 2 L1.G/:

This leads to F .f � g/.�/ D F .g/.�/F .f /.�/.

The pseudo-differential calculus is defined in [18] using a positive Rockland operator.
Each � 2 yG yields an infinitesimal representation d� of U.g/ on H1� (see [18, Propo-
sition 1.7.3]). As in [18] we will write �.P / WD d�.P / for left-invariant differential
operators P on G.

Definition 7.2 ([18, Definitions 4.1.1 and 4.1.2]). Let G be a homogeneous Lie group.
A left-invariant differential operator P on G satisfies the Rockland condition if �.P / is
injective on H1� for all � 2 yG n ¹�trivº. A left-invariant differential operator P which is
homogeneous of positive degree and satisfies the Rockland condition is called a Rockland
operator.

Example 7.3. For G D Rn the Laplace operator �n D
Pn
jD1 @

2
j is a Rockland operator.

There is an isomorphism Rn ! cRn, � 7! �� , given by ��.x/ D e�ih�;xi. One computes
that ��.@j / D �i�j . Hence,

��.�n/ D �k�k
2
¤ 0 for � ¤ 0:

Example 7.4 ([18, Lemma 4.1.8]). Let G be a graded Lie group with weights q1 � q2 �
� � � � qn and corresponding basis X1; : : : ; Xn of g. Let q be a common multiple of the
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weights. Then the following operator is a Rockland operator
nX

jD1

.�1/q=qjX
2q=qj
j :

Remark 7.5. The existence of a positive Rockland operator on a homogeneous Lie group
is equivalent to the group being (up to rescaling) graded (see [18, Proposition 4.1.3,
Lemma 4.1.8]).

Remark 7.6. The Helffer–Nourrigat theorem [24] states that a left-invariant homoge-
neous differential operator on a graded Lie group satisfies the Rockland condition if and
only if it is hypoelliptic.

From now on, let R be a fixed positive Rockland operator of homogeneous degree q
on G. It will plays the role of the Laplace operator on Rn in the Euclidean calculus.

Using the positive Rockland operator and its functional calculus, the Sobolev spaces
L2s .G/ for s 2 R are defined in [18, Definition 4.4.2]. Moreover, the operator-valued
Fourier transform extends to a Fourier transform between left-invariant operators in
B.L2a.G/; L

2
b
.G// for a; b 2 R to a space of fields denoted by L1

a;b
. yG/, see [18, Def-

inition 5.1.21, Proposition 5.1.24]. The spaces of corresponding convolution kernels in
� 0.G/ are denoted by Ka;b.G/.

The derivatives in the cotangent direction in the Euclidean calculus are replaced with
difference operators �˛ for ˛ 2 Nn

0 , which are defined in the following. This is based on
the observation that the Euclidean Fourier transform intertwines @˛ and with multiplica-
tion by x˛ . For u2� 0.G/ denote by x˛u for ˛2Nn

0 the tempered distributions defined by

hx˛u; f i D hu; x˛f i for f 2 �.G/:

Let u 2 Ka;b.G/ be a kernel such that x˛u 2 Ka0;b0.G/ for some a0; b0 2 R. Then the
difference operator �˛ is defined as in [18, Definition 5.2.1] by

�˛ Ou.�/ WD bx˛u.�/ for � 2 yG:

The following symbol classes are adapted to the notion of order induced by the dilations.
Hence, the homogeneous degree Œ˛� for ˛ 2 Nn

0 as in Definition 3.7 is used.

Definition 7.7 ([18, Definition 5.2.11]). A field ¹a.x; �/WH1� ! H� j x 2 G; � 2 yGº

is a symbol of order m 2 R if for all ˛; ˇ 2 Nn
0 , the field of operators Xˇx�˛a.x; �/ is

defined on the smooth vectors and satisfies

sup
.x;�/2G� yG



Xˇx�˛a.x; �/�.I CR/ Œ˛��mq 


B.H� /

<1:

Denote the class of symbols of order m by Sm. For a 2 Sm and ˛; ˇ 2 Nn
0 set

kakSm;˛;ˇ D sup
.x;�/2G� yG



Xˇx�˛a.x; �/�.I CR/ Œ˛��mq 


B.H� /

:

The smoothing symbols are S�1 D
T
m2R S

m.
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One can form asymptotic expansions of these symbols in the following sense.

Proposition 7.8 ([18, Theorem 5.5.1]). Let ¹aj ºj2N0 be a sequence of symbols aj 2 Smj

with mj strictly decreasing to �1 as j !1. Then there is a symbol a 2 Sm0 , unique
modulo S�1, such that

a �

MX
jD0

aj 2 S
mMC1 for all M 2 N:

In this case, one writes a �
P1
jD0 aj .

Proposition 7.9 ([18, Proposition 5.2.12, Lemma 5.2.17]). The symbol classes have the
following properties:

(1) Sm1 � Sm2 for m1 < m2.

(2) Each differential operator
P
c˛.x/X

˛ with coefficients c˛ 2 C1.G/ is contained
in Sm, where m D max¹Œ˛� j c˛ ¤ 0º.

(3) For a 2 Sm and ˛; ˇ 2 Nn
0 the symbol Xˇ�˛a is contained in Sm�Œ˛�.

For a 2 Sm the following quantization formula is well defined and yields a continuous
operator Op.a/W �.G/! �.G/ by [18, Theorem 5.2.15]

Op.a/'.x/ D
Z
yG

tr
�
�.x/a.x; �/y'.�/

�
d�.�/ for ' 2 �.G/; x 2 G:

Let �x 2 � 0.G/ be the convolution kernel of the left-invariant operator whose Fourier
transform is ¹a.x;�/ j�2 yGº. Then Op.a/'.x/D' � �x holds. Denote by Ka2� 0.G�G/

the integral kernel of Op.a/. It is formally given by Ka.x; y/ D �x.y�1x/.
In the following, we will consider operators with compactly supported integral kernels.

Let Smcp consist of all symbols a 2 Sm such that Op.a/ has a compactly supported integral
kernel. Set S�1cp D

T
m2R S

m
cp .

The following properties for the symbols with compactly supported integral kernels
follow from the respective properties for the symbol classes Sm shown in [18, Corol-
lary 5.5.8, Theorem 5.5.12, Corollary 5.7.2, Theorem 5.4.9, Lemma 5.2.21].

Proposition 7.10. The pseudo-differential calculus has the following properties:

(1) Letm1;m2 2 R. Suppose A 2 Op.Sm1cp / and B 2 Op.Sm2cp /, then the composition AB
lies in Op.Sm1Cm2cp /.

(2) Let m 2 R. For A 2 Op.Smcp / the formal adjoint A� lies in Op.Smcp /.

(3) A 2 Op.Smcp / extends to a bounded operator L2s .G/! L2s�m.G/ for s 2 R.

(4) A 2 Op.S�1cp / if and only if its integral kernel lies in C1c .G �G/.

For the following lemma, see also [17, Theorem 4.24].

Lemma 7.11. LetA2Op.Smcp / form<0. ThenA extends to a compact operator onL2.G/.
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Proof. By Proposition 7.10, A extends to a bounded operator AWL2.G/! L2�m.G/. Let
� 2 C1c .G/ be constant 1 on the support of A in the x-direction and be supported in a
compact subset K � G. The map f 7! � � f extends to a bounded operator L2�m.G/!
H�m=qn.K/ by [17, Proposition 2.15], whereH�m=qn.K/ denotes the Euclidean Sobolev
space. By Rellich’s theorem the embedding

H
�m
qn .K/ ,! L2.Rn/ D L2.G/

is compact as�m=qn >0. Therefore, the compositionAWL2.G/!L2.G/ is compact.

Moreover, in [17] classical pseudo-differential operators, which admit a homogeneous
expansion of their symbol, are defined.

Definition 7.12 ([17, Definitions 4.1, 4.20]). Let m 2 R. A field ¹a.x; �/WH1� ! H� j

x 2 G; � 2 yGº is a regular m-homogeneous symbol if

(1) a.x; � � �/ D �ma.x; �/ for all x 2 G and almost all � and � > 0,

(2) for all ˛; ˇ 2 Nn
0 , the field of operators Xˇx�˛a.x; �/ is defined on smooth vectors

and satisfies
sup

.x;�/2G� yG



Xˇx�˛a.x; �/�.R/ Œ˛��mq 


B.H� /

<1:

Denote by PSm the class of all regular m-homogeneous symbols and by PSmc the ones with
compact support in the x-direction.

Example 7.13 ([17, Examples 4.3, 4.4]). For each c 2 C1c .G/ and multi-index ˛ 2 Nn
0 ,

the symbol c.x/�.X/˛ belongs to PS Œ˛�c .

In the Euclidean case, homogeneous symbols are cut off in a neighborhood of the zero
section to obtain actual elements of the symbol classes. This corresponds to the following
procedure for graded Lie groups.

Proposition 7.14 ([17, Proposition 4.6]). Let  2 C1.Œ0;1// be a cutoff function with
0�  � 1 and  jŒ0;1� � 0 and  jŒ2;1/ � 1. For allm2R there is a linear map cmW PSm!
Sm given by

a.x; �/ 7! a.x; �/ 
�
�.R/

�
:

This allows to define a homogeneous expansion of symbols.

Proposition 7.15 ([17, Proposition 4.14]). Let ¹aj ºj2N0 be a sequence of homogeneous
symbols aj 2 PSmj with mj strictly decreasing to �1 as j !1. Then there is a symbol
a 2 Sm0 , unique modulo S�1, such that

a.x; �/ �

MX
jD0

aj .x; �/ 
�
�.R/

�
2 SmMC1 for all M 2 N:

Moreover, if a 2 Sm for m < m0, it follows that a0 D 0.

In this case, we also write a �
P
aj . There is a well-defined principal symbol for

these operators.
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Definition 7.16 ([17, Definition 4.17]). Let a 2 Sm be a symbol that admits a homoge-
neous expansion a �

P1
jD0 aj with aj 2 PSm�j as above. The principal part of Op.a/ is

defined as
princm

�
Op.a/

�
WD a0:

Definition 7.17 ([17, Definition 4.20]). A symbol a 2 Smcp is a classical pseudodifferential
symbol of order m if it admits a homogeneous expansion a �

P1
jD0 aj with aj 2 PSm�j .

Denote by Smcl the classical pseudo-differential symbols of orderm and by‰mcl D Op.Smcl /

the corresponding operators.

Proposition 7.18 ([17, Proposition 4.19]). LetA 2Op.Sm/ andB 2Op.S l / be operators
whose symbols have a homogeneous expansion as above. Then the symbols of AB and A�

admit homogeneous expansions as well. Moreover, the following holds

princmCl .AB/ D princm.A/ � princl .B/;

princm.A
�/ D princm.A/

�:

On the right hand side, the pointwise operations are used.

In particular, princ0 is a �-homomorphism.

Lemma 7.19. For m 2 Z, there are short exact sequences

‰m�1cl ,! ‰mcl

princm
�� PSmc :

For m D 0, it is a short exact sequence of �-algebras.

Proof. Except for surjectivity of the principal symbol map, exactness is clear. Let a0 2 PSmc
and a.x;�/ WD a0.x;�/ .�.R// 2 Sm as in Proposition 7.14. Then princm.Op.a//D a0
holds. We need to adjust a in a way such that its integral kernel Ka is compactly sup-
ported. Let r > 0 be such that the support of a in the x-direction in contained in B.0; r/
with respect to the homogeneous quasi-norm. Choose c 2 C1c .G/ which is constant
1 on B.0; 2Cr/. Here, C is the constant from the homogeneous triangle inequality in
Lemma 3.12. Denote by

Mc WL
2.G/! L2.G/

the multiplication operator ' 7! c � '. It belongs to ‰0cl with symbol given by c.x/idH�

for x 2 G, � 2 yG. Let Q WD Op.a/Mc . Its integral kernel Ka.x; y/c.y/ is compactly
supported. Moreover, Q belongs to ‰mcl and

princm.Q/ D princm
�

Op.a/
�
� princm

�
Op.a/ �Q

�
:

We show that last term is zero. Let � denote the convolution kernel of Op.a/. The convolu-
tion kernel of Op.a/�Q is �x.y/.1� c.xy�1//. This is only non-zero if kxy�1k � 2Cr
and kxk < r . The homogeneous triangle inequality implies that kyk � r . But the �x are
smooth outside zero by [18, Theorem 5.4.1]. Therefore, Op.a/ �Q is a smoothing oper-
ator and its principal symbol vanishes.



E. Ewert 1366

7.2. Comparison of the symbol algebras

In this section, we identify FixR>0.JG ;RG/ with the C�-algebra of invariant 0-homoge-
neous symbols defined in [17, Definition 5.1, Proposition 5.6].

Definition 7.20. The �-algebra of invariant 0-homogeneous symbols zS0 consists of all
a 2 L1. yG;B.H�// with

(1) a.x; � � �/ D a.x; �/ for almost all � and � > 0,

(2) for all ˛ 2Nn
0 , the field of operators�˛a.�/ is defined on smooth vectors and satisfies

sup
�2 yG



�˛a.�/�.R/ Œ˛�q 


B.H� /

<1;

The C�-algebra of invariant 0-homogeneous symbols C�. zS0/ is the closure of zS0 with
respect to kak D sup

�2 yG=R>0
ka.�/k.

Lemma 7.21. The �-algebra K0.G/ of kernels of type 0 is isomorphic to zS0 under
Fourier transform. Moreover, FixR>0.JG ;RG/ is isomorphic to C�. zS0/.

Proof. By [17, Corollary 5.4] the kernels of type 0 correspond exactly to the invari-
ant, 0-homogeneous symbols under Fourier transform. By uniqueness of the C�-com-
pletion, C�. zS0/ is isomorphic to the C�-algebra generated by kernels of type 0. This is
FixR>0.JG ;RG/ by Proposition 6.11.

By Lemma 5.12, FixR>0.J0;R0/ is isomorphic C0.G; FixR>0.JG ;RG//. Identifying
the space of 0-homogeneous symbols with compact support in the x-direction PS0c with
C1c .G; zS

0/ as in the proof of [17, Proposition 5.11], yields the following result.

Corollary 7.22. The �-algebra of 0-homogeneous symbols PS0c is isomorphic under inverse
Fourier transform to a dense �-subalgebra of FixR>0.J0;R0/.

7.3. Comparison of the operators

To compare the sequence of generalized fixed point algebras to the order zero pseudo-
differential extension from (7.19), we show that operators in Qp1.FixR>0.J;R// can be
written as in (7.1) in terms of a symbol.

Lemma 7.23. Let f 2 R�
G

with f0 2 �0.TG/. Define operators Tk.f / by

Tk.f /'.x/ D

Z 1
0

�k.�/�
�Q

Z
f
�
x; �; ˛��1.x

�1y/
�
'.y/ dy d�

�

for ' 2 L2.G/ and x 2 G. Then .Tk.f // converges strictly to an element

T .f / 2 Qp1
�
FixR>0.J;R/

�
:

Proof. Using the Dixmier–Malliavin theorem as in the proof of Lemma 6.7 one can fac-
torize f0 D

Pn
iD1 g

�
i � hi with gi ; hi 2R0. Choose Gi ;Hi 2R�

G
that restrict to gi ; hi at
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t D 0. Then we can write

Tk.f / D Tk

�
f �

nX
iD1

G�i �Hi

�
�

nX
iD1

Tk.G
�
i �Hi /:

The first part converges strictly in Qp1.FixR>0.J;R// by Lemma 5.16, whereas the second
converges by Lemma 5.14.

We consider now a slightly different generalized fixed point algebra. The reason is that
one has to understand the convolution kernels �x as a family of left-invariant operators in
order to take their Fourier transform. Let B WD C�.TG/˝ C0.Œ0;1// with R>0-action
given by

ˇ�.h/.x; v; t/ D �
Qh.x; � � v; ��1t / for � > 0 and h 2 Cc

�
TG � Œ0;1/

�
:

For t � 0 let evt WB ! C�.TG/ be the homomorphism induced by the restriction. Define
the following R>0-invariant ideal JB with dense subset RB � JB :

JB D
\
x2G

ker.y�triv ı qx ı ev0/;

RB D

²
h 2 C1c

�
Œ0;1/ �G; �.G/

� ˇ̌̌ Z
G

h.x; v; 0/ dv D 0 for all x 2 G
³
:

Similar arguments as in Lemma 5.6 and Proposition 5.8 show the following.

Lemma 7.24. The �-subalgebra RB � JB is square-integrable for the action ˇ of R>0.
Furthermore, .JB ;RB/ is a continuously square-integrable R>0-C�-algebra.

Hence, FixR>0.JB ;RB/ is defined. The evaluations at t D 1 and x 2 G composed
with the right regular representation C�.G/! B.L2G/, yield strictly continuous repre-
sentations

z�x WFixR>0.JB ;RB/! VNL.G/:

Lemma 7.25. For h 2 RB with h0 2 �0.TG/Z 1
0

�k.�/ˇ�.h/
d�
�

converges strictly to an element of FixR>0.JB ;RB/. Its image under z�x is given by

z�x.h/' D lim
k!1

Z 1
0

�k.�/�
�Q�x

�
h.x; ˛��1. � /; �/

�
' d�

�
for ' 2 L2.G/:

Proof. The first claim is proved as in Lemma 7.23. This uses that there is an isomorphism

‰W ker.ev0/! C0.R>0/˝ C�.TG/

which is induced by ‰.h/.t/ D t�Qevt .h/. The action ˇ corresponds to � ˝ 1 under
the isomorphism. Here, � is induced by the action of R>0 on itself by scaling. The second
claim follows from strict continuity of z�x and the computation evt ıˇ�.h/D �Qev��1t .h/
for �; t > 0.
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Lemma 7.26. For f 2 R�
G

with f0 2 �0.TG/, there is a symbol®
af .x; �/ 2 B.H�/ j x 2 G; � 2 yG

¯
such that T .f / D Op.af /.

Proof. We show that one can write T .f /'.x/ D ' � �x for a smooth family of kernels
�x 2 � 0.G/ such that ' 7! ' � �x extends to a bounded operator on L2.G/ for all x 2 G.
This implies that one can apply Fourier transform to �x and one obtains a symbol as above
with af .x; �/ D b�x.�/.

For each k 2 N, one can write Tk.f /'.x/ D ' � �k;x with

�k;x.v/ D

Z 1
0

�k.�/�
�Qf

�
x; ˛��1.v

�1/; �
� d�
�
:

We claim that all .�k;x/ for x 2G converge to distributions �x 2 � 0.G/whose convolution
operators are bounded. Note that f can be understood as an element of RB with f0 2
�0.TG/. It follows from Lemma 7.25 that �k;x converges in � 0.G/ to the convolution
kernel of z�x.f /. In particular, af .x; �/ is the strict limit ofZ 1

0

�k.�/ Of .x; � � �; �/
d�
�

as multipliers of K.H�/.

Let a0 2 PS0c . As discussed in Proposition 7.14 a0 .�.R// is in S0. Using Lemma 7.25
we obtain a different way to attach a symbol to a0. By Corollary 7.22, there is a h0 2
�0.TG/ such that a0 is the Fourier transform ofZ 1

0

��.h0/
d�
�
2K0.TG/:

Let ! 2 C1c .Œ0;1// be a function with !jŒ0;1� � 1 and !jŒ2;1/ � 0. Define h 2 RB by
h.x; v; t/ WD !.t/h0.x; v/. By Lemma 7.26 this yields a symbol ah 2 C0.G;L1. yG//. We
compare now the symbols a0 .�.R// and ah. As a preparation, the following lemma is
proved.

Lemma 7.27. Let h0 2 �0.TG/ and let ! 2 C1c .Œ0;1// be a function with !jŒ0;1� � 1
and !jŒ2;1/� 0. Define h 2RB by h.x;v; t/ WD !.t/h0.x;v/. Let ah.x;�/ be the Fourier
transform of z�x.h/ and a0.x; �/ the Fourier transform ofZ 1

0

��.h0/
d�
�
:

Then for all m > 0, there exists a constant Cm > 0 with

�a0.x; �/ � ah.x; �/� ��.R/��1C �.R/�mq 

 � Cmkbh0kS�m;0;0
for all x 2 G and almost all � 2 yG.
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Proof. The symbols can be written as strict limits

a0.x; �/ D lim
s

Z 1
0

�k.�/bh0.x; � � �/ d�
�
;

ah.x; �/ D lim
s

Z 1
0

�k.�/!.�/bh0.x; � � �/ d�
�
;

as multipliers of K.H�/ for almost all � 2 yG. This implies that

bk.x; �/ WD

Z 1
0

�k.�
�1/

�
1 � !.�/

�bh0.x; � � �/ d�
�
 
�
�.R/

��
1C �.R/

�m
q

converges strongly to b.x; �/ WD .a0.x; �/ � ah.x; �// .�.R//.1C �.R//
m
q on H1� .

We show that bk.x; �/ is a Cauchy sequence. As H1� is dense, this will imply that
bk.x; �/ converges to b.x; �/ in norm. For l > k we estimate

bl .x; �/ � bk.x; �/


D





Z 1
0

�
�l .�/ � �k.�/

��
1 � !.�/

�bh0.x; � � �/ .�.R//.1C �.R//mq d�
�






� sup
t�1

�
1C t

t

�m
q
Z 1
0

�
�l .�/ � �k.�/

��
1 � !.�/

�
sup
.x;�/



bh0.x; � � �/�.R/mq 

 d�
�

.
Z 1
0

�
1 � �k.�/

� 1 � !.�/
�m

sup
.x;�/



bh0.x; � � �/.� � �/.R/mq 

 d�
�

. sup
t�0

�
t

1C t

�m
q
Z 1
0

�
1 � �k.�/

�1 � !.�/
�m

sup
.x;�/



bh0.x; � � �/�1C .� � �/.R/�mq 

 d�
�

.


bh0

S�m;0;0 Z 1

0

�
1 � �k.�/

�1 � !.�/
�mC1

d�:

The integral converges to 0 as the dominated convergence theorem can be applied due to
the assumptions on !. Note that bh0.x; �/ is a smoothing symbol by [18, Lemma 5.2.21],
so that kbh0kS�m;0;0 is finite for all m > 0. Using the same estimates there is a constant
Cm > 0 such that kbk.x; �/k � Cmkbh0kS�m;0;0 for all k 2 N and .x; �/ 2 G � yG. As
b.x; �/ is the norm limit of this sequence, the claim follows.

Remark 7.28. The same result holds when .�.R//.1C�.R//
m
q is replaced by �.R/

m
q .

Lemma 7.29. Let h02�0.TG/, h2RB , a0 and ah be as in Lemma 7.27. Then a0 .�.R//
� ah is a smoothing symbol.

Proof. Write a0 .�.R//� aD .a0 � a/ .�.R//� a.1� /.�.R//. We claim that both
summands are smoothing symbols. Recall that a symbol b is smoothing if for all m > 0

and ˛; ˇ 2 Nn
0

sup
.x;�/




Xˇx�˛®b.x; �/¯�1C �.R/� Œ˛�Cmq 


 <1:
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For .a0 � a/ .�.R// consider first the case ˛ D 0. Then the result follows by applying
Lemma 7.27 to Xˇx h0 2 �0.TG/. For arbitrary ˛ 2 Nn

0 , the Leibniz rule for difference
operators [17, (3.1)] yields

�˛
®
.a0 � a/.x; �/ 

�
�.R/

�¯
D

X
Œ˛1�CŒ˛2�DŒ˛�

�
�˛1.a0 � a/.x; �/

��
�˛2 

�
�.R/

��
:

For ˛2 ¤ 0, it is shown in [17, Lemma 4.8] that

sup
�




�.R/�m�Œ˛1�q �˛2 
�
�.R/

��
1C �.R/

�mCŒ˛�
q




 <1:
Applying Remark 7.28 and Lemma 7.27 to Xˇx v˛1h0 yields

sup
.x;�/



Xˇ�˛1.a0 � a/.x; �/�.R/mCŒ˛1�q


 <1:

For ˛2 D 0, Lemma 7.27 is applied to Xˇx v˛h0 2 �0.TG/.
Consider now the symbol a.1 �  /.�.R//. As .1 �  / is supported in Œ0; 2� and

.1C t /
Œ˛�Cm
q is bounded on this subset, it suffices to show for all ˛; ˇ 2 Nn

0 that

sup
.x;�/



Xˇx�˛a.x; �/

 <1:
For ˛ D 0, this follows from Lemma 7.26 applied to Xˇx h. For ˛ ¤ 0, the sequenceZ 1

0

�k.�/!.�/�
Œ˛�4.Xˇx v˛h0/.x; � � �/ d�

�

is Cauchy in C0.G; L1. yG//. This follows from !.�/�Œ˛� � !.�/2Œ˛� and Lemma 7.26
applied toXˇx v˛h0. ThenXˇx�˛ is the limit of this sequence as the respective convolution
kernels converge in � 0.G/.

Theorem 7.30. LetG be a graded Lie group. The order zero pseudo-differential extension
from Lemma 7.19 embeds into the generalized fixed point algebra extension for G such
that the following diagram commutes

‰�1cl ‰0cl
PS0c

K.L2G/ FixR>0.J;R/ FixR>0.J0;R0/:

princ0

Qp0

Proof. Every operator in ‰�1cl extends to a compact operator on L2.G/ by Lemma 7.11.
Let A be a classical pseudo-differential operator of order zero with principal symbol
a0 2 PS

0
c . Let Q 2 ‰0cl be the element constructed in the proof of Lemma 7.19 with
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princ0.Q/ D a0. Recall that Q D Op.a0.x; �/ .�.R///Mc for a certain c 2 C1c .G/. In
the following we show that there is an element T 2 Qp1.FixR>0.J;R// with Qp0.T / D a0
and Q � T 2 K.L2G/. Once is this established, writing

A D A �QCQ � T C T

shows that A lies in Qp1.FixR>0.J;R// as A �Q has order �1 since its principal symbol
vanishes. In particular, A�Q is compact by Lemma 7.11. The above decomposition also
shows that

Qp0.A/ D Qp0.T / D a0 D princ0.A/

so that the diagram in (7.30) commutes. To construct T , let h0 2 �0.TG/ be such that a0
is the Fourier transform of Z 1

0

��.h0/
d�
�
:

Let h 2 RB and ah be as in Lemma 7.27 and g.x; v; t/ WD h.x; v; t/c.x˛t .v//. Then
T .g/ D T .f /Mc holds. Lemma 7.26 implies that

Q � T .f / D Op.a0 .�.R// � ah/Mc :

This is a compact operator as its convolution kernel is smooth by Lemma 7.29 and com-
pactly supported.

Denote by C�.‰0cl/ the closure of the �-algebra ‰0cl in B.L2G/.

Corollary 7.31. The C�-algebra C�.‰0cl/ generated by classical order zero pseudo-differ-
ential operators on a graded Lie group G is isomorphic to FixR>0.J;R/. There is an
extension of C�-algebras

K.L2G/ ,! C�.‰0cl/
Qp0� C�. PS0c /;

such that Qp0 extends the principal symbol map princ0W‰
0
cl !

PS0c .

Proof. We show that C�.‰0cl/D Qp1.FixR>0.J;R//. The C�-algebra of pseudo-differential
operators of order 0 is contained in Qp1.FixR>0.J0;R// by Theorem 7.30.

For the converse, note first that K.L2G/ � C�.‰0cl/. This holds as ‰0cl contains the
kernels in C1c .G � G/ and these generate the compact operators on L2.M/. Now, let
f;g 2R. Let a2 PS0c be the inverse of jf0iihhg0j 2C0.G;K0.G// under Fourier transform.
Since the principal symbol map is surjective, there is a P 2‰0cl with princ0.P /D a. Then
the operator

Qp1
�
jf iihhgj

�
D Qp1

�
jf iihhgj

�
� Op.P /C Op.P /

is contained in C�.‰0cl/. This is because Op.P / is and Qp1.jf iihhgj/ � Op.P / 2 K.L2G/
as the diagram in (7.30) commutes. The C�-algebra FixR>0.J;R/ is generated by jf iihhgj
with f; g 2 R. Thus, the result follows.
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8. Morita equivalence and K-theory

In this section, we will show that .J;R/ and .J0;R0/ are saturated for the zoom action of
R>0. Therefore, for each homogeneous Lie groupG the C�-algebras of order zero pseudo-
differential operators FixR>0.J;R/ and principal symbols FixR>0.J0;R0/ are Morita–
Rieffel equivalent to C�r .R>0; J / and C�r .R>0; J0/, respectively. For the Euclidean scal-
ings on G D Rn this is a result of [11].

8.1. Stratification and saturatedness

First, consider a homogeneous Lie groupG. Recall the sequence of open, dilation invariant
subsets of yGn¹�trivº found in (3.4):

; D V0 � V1 � V2 � � � � � Vm D yGn¹�trivº;

whereƒiDVi nVi�1 are Hausdorff for all iD1; : : : ;m. Moreover, the induced R>0-action
on each ƒi is free and proper by Proposition 3.23. There is a corresponding increasing
sequence of closed, dilation invariant ideals in C�.G/

0 D J0 G J1 G J2 G � � � G Jm D JG

which is given by

Ji D
®
f 2 C�.G/ j y�.f / D 0 for � 2 yG n Vi

¯
:

In this section, it will be shown that the subquotients Ji=Ji�1 of the filtration in (8.1)
define continuous fields of C�-algebras over ƒi , respectively. This will allow us to prove,
using Corollary 2.17, that FixR>0.JG ;RG/ is Morita–Rieffel equivalent to the crossed
product C�r .R>0; JG/.

Remark 8.1. In [4] Pedersen’s fine stratification [37] is used to obtain a similar sequence
of increasing ideals, where the respective subquotients are even isomorphic to trivial fields
C0.zƒi ;K.Hi // for some finite- or infinite-dimensional Hilbert spaces Hi . For our pur-
poses the coarse stratification suffices.

Proposition 8.2. Each subquotient Ji=Ji�1 for i D 1; : : : ; m is isomorphic to a continu-
ous field of C�-algebras over ƒi with a unique dense, relatively continuous and complete
subset Ri for the induced R>0-action. Furthermore, .Ji=Ji�1;Ri / is saturated.

Proof. The subquotient Ji=Ji�1 has Hausdorff spectrum as

2Ji=Ji�1 Š bJi n bJi�1 Š Vi n Vi�1 D ƒi :
Therefore, Ji=Ji�1 is isomorphic to a continuous field of C�-algebras over ƒi , see [35,
Theorem 3.3]. The isomorphism takes Œf � 2 Ji=Ji�1 to the section Of defined by

Of .�/ D y�.f / D

Z
G

f .x/�.x/ dx 2 B.H�/ for � 2 ƒi :
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The dilation action on Ji=Ji�1 satisfies 1��.f /.�/ D Of .��1 � �/ for all � > 0. Denote by
˛�. Of / the section given by ˛�. Of /.�/ D Of .��1 � �/. Let �i WC0.ƒi / ,! ZM.Ji=Ji�1/

denote the non-degenerate homomorphism which is given by pointwise multiplication
when Ji=Ji�1 is viewed as a continuous field. It satisfies the compatibility condition

˛�
�
�i .�/ Of

�
D �i .���/˛�. Of / for � 2 C0.ƒi / and Œf � 2 Ji=Ji�1;

where � denotes the R>0-action on C0.ƒi / given by ��.�/.�/ D �.��1 � �/. Therefore,
Ji=Ji�1 is an R>0-C0.ƒi /-algebra. The dilation action onƒi is free and proper by Propo-
sition 3.23. By Proposition 2.21 Ji=Ji�1 is saturated with respect to the subset

Ri WD �i
�
Cc.ƒi /

�
.Ji=Ji�1/:

It is the unique dense, complete, relatively continuous subset by Theorem 2.5 as Ji=Ji�1
is spectrally proper.

Using Corollary 2.17 and an inductive argument for the sequence in (8.1), we obtain
as a consequence:

Corollary 8.3. For a homogeneous Lie group G the R>0-C�-algebra .JG ;RG/ is satu-
rated for the dilation action of R>0. The generalized fixed point algebra FixR>0.JG ;RG/

is Morita–Rieffel equivalent to C�r .R>0; JG/.

8.2. Computation of the spectrum of the symbol algebra

Recall that it was shown in Proposition 6.11 that for a homogeneous Lie group G, the
generalized fixed point algebra FixR>0.JG ;RG/ is the C�-algebra generated by kernels of
type 0. As an application of the above results, we give a different proof of the description
of its spectrum obtained in [17, Proposition 5.6].

Proposition 8.4. Let G be a homogeneous Lie group. Then FixR>0.JG ;RG/ is of type I.
Furthermore, there is a homeomorphism

. yGn¹�trivº/=R>0 !
8FixR>0.JG ;RG/

induced by � 7! .y�/� for � 2 yGn¹�trivº.

Proof. The ideals in (8.1) yield short exact sequences of generalized fixed point algebras
for i D 1; : : : ; m by Proposition 2.19:

FixR>0.Ji�1;RG \ Ji�1/ ,! FixR>0.Ji ;RG \ Ji /
Qq
� FixR>0.Ji=Ji�1;Ri /:

Each quotient Ji=Ji�1 is an R>0-C0.ƒi /-algebra with a free and proper R>0-action onƒi
by Proposition 8.2. Therefore, the spectrum of FixR>0.Ji=Ji�1;Ri / isƒi=R>0 by Propo-
sition 2.21. In particular, the spectrum is Hausdorff and, thus, T0. As FixR>0.Ji=Ji�1;Ri /

is separable, this implies that it is of type I by [13, Proposition 3.1.6, Section 9.1]. If
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an ideal I of a C�-algebra A and the quotient A=I are of type I, it follows that A is of
type I. Thus, one can use an inductive argument for the sequences above to show that
FixR>0.JG ;RG/ is of type I.

We proceed by showing the second claim. The spectrum of JG is given bycJG D yGn¹�trivº D ƒ1 [ � � � [ƒm:

By Proposition 3.23, R>0 acts freely onƒi for all i D 1; : : : ;m. Hence, the action of R>0
on the spectrum of JG is free. As JG and FixR>0.JG ;RG/ are of type I and separable,
their spectra can be identified with their primitive ideal spaces. We show that there is a
homeomorphism

 WPrim.JG/=R>0 ! Prim
�
FixR>0.JG ;RG/

�
with  .Œker.�/�/ D ker.z�/ for � 2 cJG . By [30, Theorems 6.3, 6.4] there is a continuous,
open and surjective quasi-orbit map

�WPrim
�
C�r .R>0; JG/

�
! Prim.JG/=R>0:

As the action of the amenable group R>0 on Prim.JG/ is free, the quasi-orbit map is also
injective by [22, Corollary 3.3]. Hence, it is a homeomorphism. In particular, JG separates
ideals in C�r .R>0; JG/. We describe now the inverse of �. First, there is a homeomorphism
�W Prim.JG/=R>0 ! Prime.IR>0.JG// by [30, Theorem 6.3], which is induced by map-
ping a primitive ideal P of JG to the largest R>0-invariant ideal contained in P :

P 7!
\

�2R>0

� � P:

It follows from [30, Propositions 2.12 and 6.1, Theorem 6.3] that ��1 D i ı � with

i WPrime
�
IR>0.JG/

�
! Prim

�
C�r .R>0; JG/

�
;

Q 7! C�r .R>0;Q/:

By Corollary 8.3, C�r .R>0; JG/ is Morita–Rieffel equivalent to FixR>0.JG ;RG/. There-
fore, the Rieffel correspondence gives a homeomorphism

r WPrim
�
C�r .R>0; JG/

�
! Prim

�
FixR>0.JG ;RG/

�
:

Together, we obtain a homeomorphism

 WD r ı ��1WPrim.JG/=R>0 ! Prim
�
FixR>0.JG ;RG/

�
:

It is left to show that  .Œker.�/�/ D ker.z�/ for � 2 cJG . Let Q D �.Œker.�/�/. Using that
the action on JG is saturated, Lemma 2.16 implies

��1
��

ker.�/
��
D C�r .R>0;Q/ D C�r .R>0;Q/ \ C�r .R>0; JG/ D J

R>0.Q;RG \Q/:

This ideal is mapped to FixR>0.Q;RG \Q/ under the Rieffel correspondence.
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We show that FixR>0.Q;RG \ Q/ D ker.z�/. Let a; b 2 RG \ Q. Then �.a/ D
�.b/ D 0 and, consequently, z�.jaiihhbj/ D j�.a/iihh�.b/j D 0. It follows that

FixR>0.Q;RG \Q/ � ker.z�/:

Now let T 2 ker.z�/. As elements of the generalized fixed point algebra are invariant
under the R>0-action, .� � �/�.T / D z�.T / D 0 holds for all � > 0. We use a similar
argument as in the proof of Proposition 2.19 and show that T �T 2 FixR>0.Q;RG \Q/.
For each a 2 RG , we obtain

.� � �/.T �a/ D .� � �/�.T �/.� � �/.a/ D 0 for all � > 0:

It follows that T �a 2RG \Q. Now the same argument as in Proposition 2.19 shows that
T 2 FixR>0.Q;RG \Q/.

As FixR>0.J0;R0/ is the trivial continuous field over G with fibre FixR>0.JG ;RG/

we obtain the following result (compare [17, Proposition 5.13]):

Corollary 8.5. For each homogeneous Lie group G there is a homeomorphism

7FixR>0.J0;R0/ Š G �
�
yGn¹�trivº

�
=R>0:

8.3. Morita equivalence

We deduce saturatedness for the respective ideals in the C�-algebras of TG and the tangent
groupoid G .

Proposition 8.6. Let G be a homogeneous Lie group. The C�-algebra of order 0 princi-
pal symbols FixR>0.J0;R0/ is Morita–Rieffel equivalent to C�r .R>0; J0/. The C�-algebra
of order 0 pseudo-differential operators FixR>0.J;R/ is Morita–Rieffel equivalent to
C�r .R>0; J /.

Proof. As .JG ;RG/ is saturated by Corollary 8.3, .J0;R0/ is saturated by Corollary 2.26.
Therefore, the generalized fixed point algebra construction gives the Morita–Rieffel equiv-
alence between FixR>0.J0;R0/ and C�r .R>0; J0/.

The second claim follows from Corollary 2.17 applied to the sequence in (5.2) if sat-
uratedness for the ideal C0.R>0/ ˝ K.L2G/ is shown. By Remark 5.2 the R>0-action
is given by � ˝ 1, where � is induced by the action of R>0 on itself by multiplication.
Then R \ .C0.R>0/˝K.L2G// is the unique dense, relatively continuous and complete
subspace and � is free and proper. Therefore, the action is saturated by Proposition 2.21.
The Morita–Rieffel equivalence follows again from the generalized fixed point algebra
construction.

8.4. K-theory of the C�-algebra of 0-homogeneous symbols

The Morita–Rieffel equivalence between the C�-algebra of 0-homogeneous symbols and
the crossed product C �r .R; J0/ allows us to compute its K-theory. We recover the same
result as in the Euclidean setting.
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Theorem 8.7. LetG be a homogeneous Lie group with nD dim g. Then FixR>0.JG ;RG/

is KK-equivalent to C.Sn�1/. The C�-algebra of principal symbols FixR>0.J0;R0/ is
KK-equivalent to C0.S�Rn/.

Proof. The Morita–Rieffel equivalences between FixR>0.JG ;RG/ and C�r .R;JG/ obtained
in Corollary 8.3 implies that they are KK-equivalent. By the Connes–Thom isomorphism,
C�r .R; JG/ is in turn KK-equivalent to C0.R/˝ JG .

Let g be the Lie algebra of G and for each t 2 Œ0; 1� define ŒX; Y �t WD t ŒX; Y � for
X; Y 2 g. Note that here the usual scalar multiplication by t 2 Œ0; 1� is used and not the
dilation action. One checks that Œ � ; � �t defines a Lie bracket for all t 2 Œ0; 1�. Denote by
gt the corresponding Lie algebra and by Gt its Lie group. All Lie algebras gt for t > 0
are isomorphic to g via X 7! tX .

Consider the groupoid DG DRn � Œ0;1�� Œ0;1�, where source and range are given by
the projection to the last coordinate and the multiplication in s�1.t/ D r�1.t/ D Rn,
identified withGt under the exponential map, is given by group multiplication inGt . This
is a continuous field of groups over Œ0; 1� that deforms the homogeneous Lie group G
into the Abelian group Rn. Using Fourier transform at t D 0 one obtains the short exact
sequence

C0
�
.0; 1�

�
˝ C�.G/ ,! C�.DG/

ev0� C0.Rn/:

Consider the associated KK-element Œev0��1˝ Œev1� 2KK.C0.Rn/;C�.G//, as described
in [10]. First, we shall prove as in [36] that it is a KK-equivalence for any simply con-
nected, nilpotent Lie groupG by induction on the dimension ofG. IfG is one-dimensional,
it must be Abelian, so that Gt is the constant field and Œev1��1 ˝ Œev0� is the inverse class.
IfG has dimension greater than one, it can be written as a semidirect productG DG0 ÌR.
Furthermore DG Š DG0 ÌR and C0.Rn/ Š C0.Rn�1/ ÌR such that the following dia-
gram commutes

C0.Rn/ C�.DG/ C�.G/

C0.Rn�1/ ÌR C�.DG0/ ÌR C�.G0/ ÌR:

Š

evG0 evG1

Š Š

.evG
0

0 /� .evG
0

1 /�

The naturality of the Connes–Thom isomorphism shows that the bottom row defines a
KK-equivalence by induction hypothesis, which yields that C�.G/ and C0.Rn/ are KK-
equivalent. We show that it restricts to a KK-equivalence between JG and C0.Rnn¹0º/.
Consider the ideal IG � C�.DG/ that consists of all sections .at / 2 C�.DG/ such that all
at 2 C�.Gt / lie in the kernel of the trivial representation ofGt . In the commuting diagram

JG C�.G/ C

IG C�.DG/ C.Œ0; 1�/

C0.Rnn¹0º/ C0.Rn/ C

ev1

ev0

ev1

ev0

ev1

ev0
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the associated KK-classes in the middle and on the right are KK-equivalences. The long
exact sequences in KK-theory show that the deformation element on the left is also a KK-
equivalence. In conclusion, FixR>0.JG ;RG/ is KK-equivalent to C0.R/˝C0.Rnn¹0º/. In
the Euclidean case, the generalized fixed point algebra C.Sn�1/ is likewise KK-equivalent
to C0.R/˝ C0.Rnn¹0º/.

By Proposition 8.6, FixR>0.J0;R0/ is Morita-equivalent to C�r .R; J0/, which is again
by the Connes–Thom isomorphism KK-equivalent to C0.R/˝J0. As J0ŠC0.Rn/˝JG ,
it follows that FixR>0.J0;R0/ is KK-equivalent to C0.S�Rn/.
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