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On the existence of uniformly bounded self-adjoint bases
in GNS spaces

Debabrata De and Kunal Mukherjee

Abstract. The Gelfand–Naimark–Segal (GNS) space of a diffuse finite von Neumann algebra with
respect to a faithful normal tracial state admits an orthonormal basis consisting of the image inside
the GNS space of a uniformly bounded sequence of self-adjoint operators.

1. Introduction

In this paper, all Hilbert spaces are separable, all von Neumann algebras have separable
preduals, inclusions of subalgebras are unital and inner products are linear in the left
variable. The orthounitary basis problem for II1 factors is an important and open problem
in the subject [4]. This problem has an affirmative solution in the context of group von
Neumann algebras of countable discrete groups by construction and finite von Neumann
algebras that arise from group measure space construction. In general, nothing is known.

In the classical case, it is well known that the Walsh functions, which take the values
˙1, form an orthonormal basis for L2.Œ0; 1�; �/, where � denotes the Lebesgue measure.
Note that the multiplication operators associated with the Walsh functions are self-adjoint
unitaries. In general, if � is a non-atomic probability measure (on a standard Borel space),
then L2.�/ contains an orthonormal basis consisting of images of (self-adjoint) unitaries
from L1.�/.

In the context of von Neumann algebras, it is therefore natural to ask how much the
aforesaid classical result still holds for GNS spaces of states given the interplay between
the Hilbert norm and operator norm. Given that one cannot leverage much on the algebraic
structure of the ambient algebra in general, a compromise with the operator norms of the
left multiplication operators associated with an orthonormal basis is forced. Thus, we ask:
does the GNS space of a von Neumann algebra with respect to a faithful normal state
contains an orthonormal basis consisting of images of a uniformly bounded sequence of
self-adjoint operators?

In this paper, we answer this question completely. We first observe that such an or-
thonormal basis is only possible when the underlying state is tracial. Following [6], we
demonstrate that the GNS space of a diffuse finite von Neumann algebra with respect to
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any faithful normal tracial state admits such a basis with the associated self-adjoint opera-
tors being bounded (in operator norm) by .1C

p
2/C " for every "> 0 (Theorem 3.2). The

conspicuous presence of .1C
p
2/ in the bound above is due to the effort to control the

operator norms by using the nature of Haar transformation matrices. For a more detailed
study of uniformly bounded orthonormal bases we refer the interested reader to [2]. This
paper has overlap of ideas with [2].

The layout of the paper is as follows: In Section 2, we collect all technical results
that are required to address the problem. Section 3 is the main section of this paper. In
Section 3, following [6], we provide a necessary and sufficient condition for the existence
of a uniformly bounded self-adjoint orthonormal basis in a closed subspace of the GNS
space (see Theorem 3.1). Theorem 3.2 is the main result of this paper. In Theorem 3.2,
we show that for every " > 0, the GNS space of a diffuse finite von Neumann algebra
with respect to a faithful normal tracial state admits an orthonormal basis consisting of
a uniformly bounded sequence of self-adjoint operators whose operator norm is bounded
by .1C

p
2/C ".

Finally in Theorem 3.4, we analyze how one can extend a uniformly bounded self-
adjoint basis of the GNS space of a subalgebra to a uniformly bounded self-adjoint basis
of the GNS space of the original von Neumann algebra.

Now, we record some basic facts which are essential for our purpose. This material is
standard and can be found in [8–10].

Let M be a von Neumann algebra equipped with a faithful normal state '. Let M be
represented on the GNS space H' WD L

2.M; '/ in standard form [3]. The inner product
and norm on H' are denoted by h�; �i' and k�k2;' respectively. The operator norm on
B.H'/ is denoted by k�k. The self-adjoint part of M is denoted by Ms.a.. Let M1 and
.Ms.a./1 denote the unit ball of M and Ms.a. respectively.

Let �' denote the standard vacuum vector associated with '. Then,

A' DM�'

becomes a (full) left Hilbert algebra endowed with the scalar product induced by H' , and
endowed with the product and involution ] respectively given by .x�'/.y�'/ D xy�'
and .x�'/] D x��' , x; y 2M .

Let S' denote the closure of the (densely defined) antilinear operator

A' 3 x�' 7! x��' 2 H' :

Let S' D J'�
1
2
' be the polar decomposition of S' . Then the Tomita’s modular operator

�' is nonsingular, positive and self-adjoint, and the conjugation operator J' is an anti-
unitary. It is well-known that ' is a trace if and only if �' D 1 and then S' D J' .

Suppose � is a faithful normal tracial state on a finite von Neumann algebra M . Then,
for x; y 2Ms.a., one has

hx�� ; y�� i� D �.yx/ D �.xy/ D hy�� ; x�� i� D hx�� ; y�� i� 2 R: (1.1)

Thus, Ms.a.�� � H� is a real subspace of H� . Moreover, spanC Ms.a.�� is dense in H� .
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2. Technical results

In this section, we discuss technical results that are required for the existence of a uni-
formly bounded self-adjoint basis in the GNS Hilbert space of a von Neumann algebra
with respect to a faithful normal state. We begin with the following result, which shows
that orthonormal bases consisting of images of self-adjoint operators are only possible for
finite von Neumann algebras.

Theorem 2.1. LetM be a von Neumann algebra equipped with a faithful normal state '.
Suppose the GNS space H' admits an orthonormal basis O �Ms.a.�' . Then, M is finite
and ' is a trace.

Proof. Let ¹xn�'º �Ms.a.�' be an orthonormal basis of H' . Fix y 2M and k 2N. Set

� D

kX
nD1

hy�' ; xn�'i'xn�' : (2.1)

Then, � 2D.S'/ and

S'� D

kX
nD1

hy�' ; xn�'i'S'xn�'

D

kX
nD1

hy�' ; xn�'i'x
�
n�'

D

kX
nD1

hy�' ; xn�'i'xn�' : (2.2)

By (2.1) and (2.2), one has

kS'�k
2
2;' D

kX
nD1

ˇ̌
hy�' ; xn�'i'

ˇ̌2
D k�k22;' :

Since ¹� D
Pk
nD1hy�' ; xn�'i'xn�' W k 2 N; y 2 M º is dense in H' , it follows that

S' extends to a anti-unitary operator on H' . Consequently, S' D J' and �' D 1. This
forces that M is finite and ' is tracial.

In the view of Theorem 2.1, from here onwards unless otherwise stated, we assume
that M is finite von Neumann algebra equipped with a faithful normal tracial state � .
Further, H will denote a closed and infinite-dimensional subspace of H� unless otherwise
stated.

Now we prove auxiliary technical lemmas that enable one to renorm M and control
both k�k and k�k2;� of operators inM . The following lemma appears in [6], but we describe
it for the sake of convenience.
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Lemma 2.2 ([6]). Let H0 be an inner product space. For n � 0, if �0; �1; : : : ; �2n�1, are
pairwise orthogonal in H0, then there exists a real unitary matrix .an

k;j
/ 2M2n.R/ such

that if �k D
P2n�1
jD0 a

n
k;j
�j ; 0 � k � 2

n � 1, then,

(1) �k , 0 � k � 2n � 1, are pairwise orthogonal in H0;

(2) spanR¹�k W 0 � k � 2
n � 1º D spanR¹�k W 0 � k � 2

n � 1º;

(3) if jjj � jjj is any norm on H0, then

max
0�k�2n�1

jjj�kjjj < .1C
p
2/ max
1�k�2n�1

jjj�kjjj C 2
�n=2
jjj�0jjj:

Proof. Conditions .1/ and .2/ in the statement are true for all U 2 U.M2n.R//. So we
need to exhibit only condition .3/ in the statement.

Define

ank;j D

8̂̂̂̂
<̂
ˆ̂̂:
2�n=2; if j D 0 and 0 � k � 2n � 1;

2.s�n/=2; if j D 2s C r and 2n�s�12r � k � 2n�s�1.2r C 1/ � 1;

�2.s�n/=2; if j D 2s C r and 2n�s�1.2r C 1/ � k � 2n�s�1.2r C 2/ � 1;

0; otherwise;

where s D 0; 1; : : : ; n � 1, and r D 0; 1; : : : ; 2s � 1. The matrix .an
k;j
/ is called the Haar

transformation matrix and transforms the standard basis of R2
n

to the Haar basis [5].
Observe that

2n�1X
jD1

jank;j j D

n�1X
sD0

2�.n�s/=2 < 1C
p
2; for 0 � k � 2n � 1:

Consequently, the result follows.

Lemma 2.3. Let M be a finite von Neumann algebra equipped with a faithful normal
tracial state � . Let ¹xn��º �Ms.a.�� be orthonormal in H� . Suppose

lim inf
n
kxnk D C <1:

Then, for any " > 0, there exists a sequence of operators ¹ynº �Ms.a. such that

(1) supnkynk < .1C
p
2/C C ";

(2) spanR¹xn W n 2 Nº D spanR¹yn W n 2 Nº;

(3) hyn�� ; ym�� i� D ın;m for all n;m 2 N.

Proof. Note that there is nothing to prove if supnkxnk � .1C
p
2/C . In that case, one

can take yn D xn, for all n.
Let "0 > 0 such that "0 < "=2.2C

p
2/. The hypothesis guarantees that there exists a

subsequence ¹xnk º �Ms.a. such that supkkxnkk � C C "
0 <1. Write I D ¹nk W k 2Nº.

Let I 0 D N n I and write
I 0 D ¹lk W k 2 Nº
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with lk < lkC1 for all k. For k 2 N, inductively choose mk 2 N such that kxlkk < "
02

mk
2

and mk � mkC1. Partition N D tk2NIk with jIkj D 2mk as follows:

I1 D ¹l1; n1; : : : ; n2m1�1º;

Ik D ¹lk ; n2m1C���C2mk�1�kC2; : : : ; n2m1C���C2mk�kº; k � 2:

Equip Ms.a.�� � H� with operator norm, i.e., define kx��k0 D kxk, x 2Ms.a.. For each
k 2N, apply Lemma 2.2 to the vectors ¹xs�� W s 2 Ikº to find ¹ys�� 2Ms.a.�� W s 2 Ikº

such that
S
k¹ys W s 2 Ikº has the desired properties.

Lemma 2.4. Let H be a closed subspace of H� intersecting Ms.a.�� nontrivially. Let
¹xn��º �Ms.a.�� be a normalized sequence in H such that xn��

w
�! 0 in H� . Suppose

that supnkxnk D C <1. Let " > 0. Then, for every finite-dimensional subspace F�� of
H \A� with F spanned by self-adjoint operators inM and k > 0, there exist n0 > k and
y 2Ms.a. such that the following hold:

(i) y�� 2 .H \A� / \ .F�� /
?;

(ii) spanR¹F [ ¹xn0ºº D spanR¹F [ ¹yºº;

(iii) ky��k2;� D 1;

(iv) kyk < C C "2�k .

Proof. Let m D dim F. Let z1�� ; : : : ; zm�� be an orthonormal basis of F�� with zj 2
Ms.a. for all 1 � j � m. Such self-adjoint basis exist by applying the Gram–Schmidt
process and using (1.1) on a linearly independent spanning set of F consisting of self-
adjoint elements. Choose ı > 0 such that

0 <
C C ı

Pm
jD1kzj k

1 � ım
< C C "2�k : (2.3)

As xn��
w
�! 0, there exists n0 > k such that jhxn0�� ; zj�� i� j < ı for 1 � j � m and

xn0�� 62 F�� (as dim.F/ <1). Let

y D
xn0 �

Pm
jD1hxn0�� ; zj�� i�zj

kxn0�� �
Pm
jD1hxn0�� ; zj�� i�zj��k2;�

: (2.4)

Consequently, y is self-adjoint (see (1.1)), and y satisfies (i), (ii), and (iii) in the statement.
For (iv), observe that




xn0 � mX

jD1

hxn0�� ; zj�� i�zj






 � kxn0k C





 mX
jD1

hxn0�� ; zj�� i�zj







� C C ı

mX
jD1

kzj k: (2.5)
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And by reverse triangle inequality,




xn0�� � mX
jD1

hxn0�� ; zj�� i�zj��







2;�

�

ˇ̌̌̌
ˇkxn0��k2;� �






 mX
jD1

hxn0�� ; zj�� i�zj��







2;�

ˇ̌̌̌
ˇ � 1 � ım: (2.6)

Therefore, from (2.3), (2.4), (2.5), and (2.6), it follows that kyk � C C "2�k .

Lemma 2.5. Let H � H� be a subspace such that H \ .Ms.a./1�� is not a totally
bounded subset of H� . Then, there exists a normalized sequence ¹xn��º � H \Ms.a.��

in H such that supnkxnk <1 and xn
w�

��! 0.

Proof. The proof of this result follows verbatim from [2, Lemma 3.6].

3. Uniformly bounded self-adjoint basis

Now we are in a position to generalize a classical result of Ovsepian and Pełczyński [6]
on the existence of a uniformly bounded self-adjoint orthonormal basis in GNS spaces.

Theorem 3.1 (Uniformly bounded self-adjoint basis). Let H � H� be a subspace. Then
H admits an orthonormal basis consisting of the image inside H� of a uniformly bounded
sequence of self-adjoint operators in M if and only if,

(1) spanC¹H \Ms.a.��º is dense in H in k�k2;� ;

(2) H \ .Ms.a./1�� is not a totally bounded subset of H� .

Moreover, if H satisfies the condition .1/ and if there exists a normalized sequence

¹xn��º � Ms.a.�� \H such that supnkxnk D C <1 and xn
w�

��! 0, then given " > 0,
H admits an orthonormal basis consisting of the image inside H� of a uniformly bounded
sequence of self-adjoint operators in M bounded by .1C

p
2/C C ".

Proof. First, we assume that H satisfies conditions .1/ and .2/ in the statement. We show
that H admits an orthonormal basis consisting of the image inside H� of a uniformly
bounded sequence of self-adjoint operators in M . Let

K D H \Ms.a.��
k�k2;�

:

Then, K becomes a real Hilbert space. We first show that K admits an orthonormal basis
O �Ms.a.�� such that supx��2Okxk <1.

Note that condition .1/ in the hypothesis implies that there exists an increasing se-
quence Fm�� � K \Ms.a.�� .Fm � Ms.a./, m D 1; 2; : : : ; of finite-dimensional sub-
spaces of K such that dim.Fm�� / D m for all m and

S
m Fm�� is dense in K .
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Again, by virtue of Lemma 2.5, condition .2/ in the hypothesis implies that there exists
a sequence

¹xn��º �K \Ms.a.��

such that C D supnkxnk <1, kxn��k2;� D 1 for all n, and xn
w�

��! 0.
Fix " > 0. Choose "0 > 0 such that .2C

p
2/"0 � "

2
holds. Now for "0 > 0, we will

inductively define an orthonormal sequence yn�� 2 K \Ms.a.�� , n 2 N, such that for
any m D 1; 2; : : : ;

Fm�� � H2m�1; ky2mk < C C "
02�m; (3.1)

where Hm D spanR¹yj�� W 1 � j � mº.
To start with, pick y1 2 F1 such that ky1��k2;� D 1. Suppose that for each k with

1 � k � n � 1, we have chosen yk 2Ms.a. that satisfies (3.1) and that

hyi�� ; yj�� i� D ıi;j

for all 1 � i; j � n � 1. In the n-th step, we analyze two cases separately depending on
the dimension of Fn.

Case 1: nD 2m for somem2N. In this case, apply Lemma 2.4 with F�� D spanC Hn�1

and k D m and ¹xl��º to extract y 2 Ms.a. satisfying the statement of Lemma 2.4. Put
yn D y. Thus, kynk < C C "02�m.

Case 2: n D 2m� 1 for some m � 2. If Fm�� �Hn�1, then define yn D y (as before),
where y is obtained by applying Lemma 2.4 to F�� D spanC Hn�1, k D 1 and ¹xl��º.

Now we work inside the real Hilbert space K and repeatedly use (1.1). If Fm�� ª
Hn�1, then there exists z 2Ms.a. such that z�� 2 Fm�� nHn�1 linearly independent of
Fm�1�� . Let Qz 2Ms.a. be such that Qz�� is the orthogonal projection of z�� from K onto
Hn�1. Put

yn D
z � Qz

.z � Qz/��

2;� :

Clearly, kyn��k2;� D 1 and yn�� 2 H?n�1. By induction hypothesis,

Fm�1�� � H2m�3 D Hn�2 � Hn�1

holds.
Note that yn�� 2 .Fm�1�� /

?. Also, by construction yn�� 2Fm�� 	Fm�1�� . As
Fm�1 � Fm, so Fm�� D Fm�1�� ˚Ryn�� . Consequently, we have

Fm�� � Hn D H2m�1:

Therefore, ¹ynº can be constructed by induction such that (3.1) is satisfied for all m.
Clearly, ¹yn��º is an orthonormal basis of K . Note that ¹y2nº satisfies the hypothesis

of Lemma 2.3. Now apply Lemma 2.3 to get the desired orthonormal basis O � Ms.a.��
of K bounded by

.1C
p
2/.C C "0/C "0 < .1C

p
2/C C ":

Clearly, O is an orthonormal basis of H .
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The converse is obvious, as H is infinite-dimensional. The proof of the last statement
is contained in the above argument.

The following theorem is the main result of this paper. Here, we discuss the existence
of a uniformly bounded self-adjoint orthonormal basis in the GNS Hilbert space of a
diffuse finite von Neumann algebra with respect to a faithful normal tracial state.

Theorem 3.2. Let M be a diffuse finite von Neumann algebra equipped with a faithful
normal tracial state � . Then for any " > 0, H� admits an orthonormal basis consisting of
the image inside the GNS space of a uniformly bounded sequence of self-adjoint operators
in M bounded by .1C

p
2/C ".

Proof. Fix " > 0. First note that spanC Ms.a.�� is dense in H� in k�k2;� . Let A be a masa
in M . Then, A ' L1.Œ0; 1�; �/ and ��A

D �, where � is the Lebesgue measure on Œ0; 1�
(see [7, Theorem 3.5.2 and Corollary 3.5.3]). Recall that the Rademacher system ¹rnºn2N

on Œ0; 1� is defined by

rn.t/ D sign sin.2n�t/; t 2 Œ0; 1�:

It is well known that the Rademacher system ¹rnºn2N forms an orthonormal set in
L2.Œ0; 1�; �/. Since rn is ˙1 valued, by functional calculus, rn can be realized as a self-
adjoint unitary in A. Thus, the associated operator un corresponding to rn is self-adjoint
unitary in M and un

w�

��! 0. In other words, kun��k2;� D 1 for all n, and supnkunk D
supnkrnk1 D 1. Consequently, by Theorem 3.1, there exists an orthonormal basis O �

Ms.a.�� of H� such that
sup

x��2O

kxk < .1C
p
2/C ":

This completes the proof.

In general, we have the following result.

Theorem 3.3. Let M be a finite von Neumann algebra with a diffuse central summand
and equipped with a faithful normal tracial state � . Then, H� admits an orthonormal basis
consisting of uniformly bounded sequence of self-adjoint operators.

Proof. By Theorem 3.1, it is enough to show that .Ms.a./1�� is not a totally bounded
subset of H� . Let B be a diffuse central summand of M . Let p 2 Z.M/ be the central
projection inM such thatMpDB . Set ��B D �.�p/ onB . By scaling if necessary, one can
assume that ��B is a faithful normal tracial state on B . By Theorems 3.2 and 3.1, it follows
that .Bs.a./1���B

is not a totally bounded subset of L2.B; ��B /. Since .Bs.a./1���B
�

.Ms.a./1�� , and L2.B; ��B / � H� , we have .Ms.a./1�� is not a totally bounded subset
of H� . This completes the proof.

Finally, one can extend a uniformly bounded self-adjoint orthonormal basis of a closed
subspace to that of the full GNS space when the closed subspace arises as the GNS space
of a diffuse subalgebra. This is the content of the following theorem.
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Theorem 3.4. Let M be a finite von Neumann algebra equipped with a faithful normal
tracial state � . Let B �M be a subalgebra of M . Then the following hold:

(i) Suppose L2.B; ��B/ admits an orthonormal basis consisting of a sequence of
uniformly bounded self-adjoint operators in B bounded by k. Then given " > 0,
H� admits an orthonormal basis consisting of a uniformly bounded sequence of
self-adjoint operators in M bounded by .1C

p
2/k C ".

(ii) SupposeB is diffuse. Then,L2.B; ��B/ admits a uniformly bounded self-adjoint
orthonormal basis. Moreover, the aforesaid orthonormal basis has an extension
to an orthonormal basis O �Ms.a.�� of H� such that

sup
x��2O

kxk <1:

Proof. Note that ��B is a faithful normal tracial state on B and L2.B; ��B/ is identified

with B��
k�k2;�

� H� .
(i) Fix " > 0. Let ¹xn��º � Bs.a.�� be an orthonormal basis of L2.B; ��B/ such

that supnkxnk � k. Note that ¹xn��º � Ms.a.�� is an orthonormal sequence such that
supnkxnk � k and xn

w�

��! 0. Thus, by Theorem 3.1, it follows that H� admits an orthonor-
mal basis consisting of a uniformly bounded sequence of self-adjoint operators in M
bounded by .1C

p
2/k C ". This completes the proof.

(ii) Suppose B is diffuse. By Theorem 3.2, L2.B; ��B/ admits a uniformly bounded
self-adjoint orthonormal basis O1 � Bs.a.�� . Note that O1 �Ms.a.�� . Now we show that
L2.B; ��B/

? admits an orthonormal basis O2 � Ms.a.�� such that supy��2O2
kyk <1.

Note that

spanC

�
L2.B; ��B/

?
\Ms.a.��

�
D spanC

®
x�� 2Ms.a.�� W EB.x/ D 0

¯
D
®
x�� 2 H� W x 2M and EB.x/ D 0

¯
is dense in L2.B; ��B/

?, where EB denotes the � -preserving faithful normal conditional
expectation from M onto B .

The argument is obvious if dimL2.B; ��B/
? <1. Thus, without loss of generality,

one can assume that dimL2.B; ��B/
? D 1. We show that L2.B; ��B/

? satisfies the
hypothesis of Theorem 3.1.

Denote D D L2.B; ��B/
? \ .Ms.a./1�� and � D L2.B; ��B/

? \M1�� . Then, � �

D C iD . Indeed, let x�� 2 � . There exist x1; x2 2 .Ms.a./1 such that

x D x1 C ix2:

Since EB.x1/C iEB.x2/ D EB.x/ D 0, we have

EB.x1/ D EB.x2/ D 0:

Thus, x1�� ; x2�� 2 D .
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Suppose to the contrary, D is a totally bounded subset of H� . Since � � D C iD , so
� is a totally bounded subset of H� as well. Fix 0 ¤ z 2 M1 such that EB.z/ D 0. Note
that B1z�� � � is a totally bounded subset of H� , where B1 denotes the unit ball of B .

Since B is diffuse, there exists a sequence of unitaries un 2 B such that un
w�

��! 0.
Thus, unz��

w
�! 0. SinceB1z�� is totally bounded, there exists a subsequence ¹nkº such

that unkz��! 0 in k�k2;� . But kunkz��k2;� Dkz��k2;� for all k. This is a contradiction.
Thus, � cannot be totally bounded subset of H� . Hence, D is not a totally bounded subset
of H� .

Thus, by Theorem 3.1, L2.B; ��B/
? admits an orthonormal basis O2 �Ms.a.�� such

that supy��2O2
kyk <1. Clearly, O D O1 [O2 is the required orthonormal basis of H� .

This completes the proof.

Remark 3.5. The condition set out in Theorem 3.4 (ii) is sufficient but not necessary. Let
N and R be finite von Neumann algebras equipped with faithful normal tracial states �1
and �2, respectively. Set

M WD N ˚R; B WD N ˚C1R; and � WD
1

2
.�1 ˚ �2/ on M:

Then, B �M is a von Neumann subalgebra of M . Note that

L2.B; ��B/
?
D L2.M; �/	 L2.B; ��B/

D
�
L2.N; �1/˚ L

2.R; �2/
�
	
�
L2.N; �1/˚C��2

�
D 0˚

�
L2.R; �2/	C��2

�
:

Suppose N is diffuse. Then, by Theorem 3.3, L2.B; ��B/ admits a uniformly bounded
self-adjoint orthonormal basis, though B is not diffuse.

(i) Set RDM2.C/. In this case, it is easy to see that L2.B; ��B/
? admits a uniformly

bounded self-adjoint orthonormal basis as dimL2.B; ��B/
? < 1. In other words, any

uniformly bounded self-adjoint orthonormal basis of L2.B; ��B/ has an extension to a
uniformly bounded self-adjoint orthonormal basis of the full space L2.M; �/.

(ii) Set R D ˚n�1Mn.C/. Suppose L2.B; ��B/
? admits a uniformly bounded self-

adjoint orthonormal basis, i.e., L2.R; �2/ 	 C��2 admits a uniformly bounded self-
adjoint orthonormal basis OR. Consequently, O D OR [ ¹��2º is a uniformly bounded
self-adjoint orthonormal basis of L2.R; �2/. Consequently, the symmetric embedding
R3x 7!x��2 2L

2.R; �2/ is not compact, which is a contradiction to [1, Theorem 5.6].
Thus, any uniformly bounded self-adjoint orthonormal basis of L2.B; ��B/ does not have
any extension to a uniformly bounded self-adjoint orthonormal basis of the full space
L2.M; �/.

Remark 3.6. In view of Theorem 3.2 it is natural to ask if this statement generalizes in
the context of faithful normal states. Let

P' D �
1=4
' MC�'

k�k2;'
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denote the standard positive cone in H' (see [9, Section 10.23] for details). Then

D WD P' �P'
k�k2;'

becomes a real Hilbert space. Observe that D is invariant with respect to J' andM1�' \

D � M1�' \M
0
1�' from Tomita’s fundamental theorem. Note that if � 2 M1�' \

M 01�' , then there exist unique �1; �2 2 D \M1�' such that � D �1 C i�2 (see [9, The-
orem 10.12] and [9, Section 10.23]). Thus,

M1�' \M
0
1�' � .M1�' \D/C i.M1�' \D/:

Thus, M1�' \D is not a totally bounded subset of D if and only if M1�' \M
0
1�' is

not a totally bounded subset of H' . And the latter happens if and only if M is not purely
atomic [2, Theorem 7.12]. Now by replacing the roles of H ,Ms.a.�� and .Ms.a./1�� with
D , M�' and M1�' in Theorem 3.1, the GNS space H' admits an orthonormal basis
O � M�' such that J'x�' D x�' , for all x�' 2 O, and supx�'2Okxk <1 if and
only if M is not purely atomic.
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