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On the rank of Leopoldt’s and Gross’s regulator maps

Alexandre Maksoud

Abstract. We generalize Waldschmidt’s bound for Leopoldt’s defect and prove a similar bound for
Gross’s defect for an arbitrary extension of number fields. As an application, we prove new cases
of Gross’s finiteness conjecture (also known as the Gross–Kuz’min conjecture) beyond the classical
abelian case, and we show that Gross’s p-adic regulator has at least half of the conjectured rank. We
also describe and compute non-cyclotomic analogues of Gross’s defect.

1. Introduction

Let p be a prime number. Given a number field K, we denote by Sp.K/ and S1.K/ the
sets of p-adic places and archimedean places of K respectively. Fix an algebraic closure
xQp of Qp and let A^ D xQp ˝Zp lim

 �n
A=pnA for any abelian group A. The Leopoldt

regulator map is the xQp-linear map

�K WO
�;^
K !

Y
P2Sp.K/

O
�;^
KP

induced by the diagonal embedding of the unit group ofK into all its p-adic completions.

Conjecture 1.1 (Leopoldt’s conjecture for .K; p/ [28]). The Leopoldt regulator map �K
is injective.

Ax’s method, combined with Brumer’s p-adic analogue of Baker’s theorem, implies
Leopoldt’s conjecture for abelian extensions of Q or of an imaginary quadratic field [1,3].
The same method also proves Leopoldt’s conjecture whenK is an imaginaryA4-extension
of Q [8].

Another classical result concerning Leopoldt’s conjecture is obtained by Waldschmidt
as an application of his study of transcendence properties of the exponential function in
several variables. Let ıL

K be the dimension of ker �K . Leopoldt’s conjecture then predicts
that ıL

K D 0 and ıL
K is called Leopoldt’s defect (we will omit its dependence on p).

Theorem 1.2 (Waldschmidt [37]). For every number field K, we have

ıL
K �

�ˇ̌
S1.K/

ˇ̌
� 1

�
=2:
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This bound is the best upper bound for Leopoldt’s defect so far. The main goal in this
work is to derive from Waldschmidt’s and Roy’s contributions in p-adic transcendence
theory similar results concerning the Gross regulator map and to prove new cases of the
Gross–Kuz’min conjecture, whose statement is now recalled.

Consider the Zp-hyperplane H of
Q

Pjp Zp given by the equation
P

Pjp sP D 0, and
the map

LK W

²
OK

�
1
p

��;^
! H^

x 7!
�
� logp

�
NP.x/

��
P
;

where OK Œ
1
p
�� is the group of p-units of K, NP is the local norm map for the extension

KP=Qp , and logp WQ
�
p !Qp is the usual Iwasawa p-adic logarithm. By the usual product

formula, LK is well defined. We shall refer to LK as the (cyclotomic) Gross regulator
map.

Conjecture 1.3 (Gross–Kuz’min’s conjecture for .K; p/ [12, 24]). The Gross regulator
map LK is surjective.

Like Leopoldt’s conjecture, the Gross–Kuz’min conjecture plays a central role in the
formulation of p-adic analogues of Dirichlet’s class number formula. Leopoldt’s regu-
lator appears in Colmez’s formula on the residue at s D 1 of the p-adic Dedekind zeta
function of a totally real number field [7], whereas Gross’s regulator plays the role of an
L-invariant in the celebrated Gross–Stark conjecture over a CM number field [12]. When
K is neither totally real nor CM, a conjectural interpretation of these regulators in terms of
p-adic Artin L-functions is still available (see [29]). Besides their potential applications
to the equivariant Tamagawa number conjecture (eTNC) as in [5], the Gross–Kuz’min
conjecture and its non-cyclotomic analogue discussed below also yield information on the
fine structure of class groups attached to Zp-extensions of K (see e.g. [9, 19, 23, 27]).

The Gross–Kuz’min conjecture is true when K=Q is abelian as shown by Greenberg
[11]. More recently, Kleine [22] proved the conjecture for anyK which has at most two p-
adic primes. (We note that Kleine’s approach does not use p-adic transcendence theory).
A proof of the conjecture for certain Galois extensions K=Q was obtained by Jaulent
[17, 18] and Kuz’min [25] under assumptions on Gal.K=Q/ and on the splitting behavior
of p in K (See Remark 4.8).

Our first result gives an upper bound for the Gross defect ıG
K D dim coker LK as well

as a slight generalization of Theorem 1.2. See also Hofer–Kleine [13] for other bounds for
ıG
K when K is a CM field.

Theorem 1.4. LetK=k be an extension of number fields. The following inequalities hold:

ıL
K � ı

L
k C

�ˇ̌
S1.K/

ˇ̌
�
ˇ̌
S1.k/

ˇ̌�
=2; ıG

K � ı
G
k C

�ˇ̌
Sp.K/

ˇ̌
�
ˇ̌
Sp.k/

ˇ̌�
=2:

Moreover, if K has at least one real place and jSp.K/j ¤ jSp.k/j, then the second bound
is strict.

A key observation that we use in the computation of ıL
K and ıG

K is that they are com-
patible with Artin formalism. Fix once and for all an algebraic closure xQ of Q. For any
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number field k � xQ of absolute Galois group Gk D Gal.xQ=k/, let Art xQp
.Gk/ be the

set of finite dimensional xQp-valued representations of Gk of finite image. We will define
defects ıL

k
.�/ and ıG

k
.�/ associated with � 2 Art xQp

.Gk/ which satisfy the usual Artin for-
malism. In particular, when � D IndkK1K is the induction from GK to Gk of the trivial
representation, they coincide with ıL

K and ıG
K respectively. We will also define quantities

d.�/, dC.�/ and f .�/ which compute ŒK WQ�, jS1.K/j and jSp.K/j, respectively, when
� D IndkK1K (see (3.7)). Our main theorem is the following.

Theorem 1.5. Let � 2 Art xQp
.GQ/ be an irreducible representation and let d D d.�/,

dCD dC.�/ and f D f .�/. If dCD f D 0, then we have ıL
Q.�/D ı

G
Q.�/D 0. Otherwise,

we have the following inequalities.

ıL
Q.�/ �

.dC/2

d C dC
; ıG

Q.�/ �
f 2

dC C 2f
:

By Artin formalism, this yields the upper bound (e.g. for Leopoldt’s defect) ıL
k
.�/ �

dC.�/=2 for an arbitrary representation � 2 Art xQp
.Gk/. We immediately obtain Theo-

rem 1.4 by choosing � such that IndkK1K D �˚ 1k .
The first bound in Theorem 1.5 is Laurent’s main theorem in [26], but we will pro-

vide a much shorter proof of this result via a lemma on local Galois representations
(Lemma 3.13). The second bound, however, does not seem to follow from the classical
methods employed by Laurent [26] and Roy [34] to study the p-adic closure of S -units
of K, for a given finite set of places S .

Theorem 1.5 together with Artin’s formalism easily implies Leopoldt’s conjecture for
abelian extensions of an imaginary quadratic field. In the same vein, we indicate the two
main applications of Theorem 1.5.

Corollary 1.6. Let k be a totally real field and let V be a totally odd Artin representation
of Gk . Then Gross’s p-adic regulator matrix Rp.V / defined in [12, (2.10)] has rank at
least half of its size.

This corollary strengthens Gross’s classical result stating that the matrix Rp.V / has
positive rank [12, Proposition 2.13].

Corollary 1.7. Let K be a number field. The Gross–Kuz’min conjecture holds for K in
the following situations:

(i) K is an abelian extension of an imaginary quadratic field.

(ii) K is an abelian extension of a real quadratic field and has at least one real
place.

(iii) K is a cubic extension of Q.

Theorem 4.7 provides a more extensive list of number fields for which the Gross–
Kuz’min conjecture holds unconditionally. A proof of the Gross–Kuz’min conjecture for
abelian extensions of imaginary quadratic fields when p ¤ 2 is already given in [29] and
the proof of Corollary 1.7 is very close to that of loc. cit..
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We highlight in the last part of this article some interesting connections between non-
cyclotomic analogues of the Gross–Kuz’min conjecture and algebraic independence of
p-adic logarithms of units of number fields.

Given an arbitrary Zp-extension K1 of K, we will define a map LK1=K specializing
to LK if K1 is the cyclotomic extension of K. As noted in [20, 21], there do exist exam-
ples of Zp-extensions K1=K for which ıG

K1=K
> 0, but a conjectural description of all

such K1=K is still missing.
In the next theorem, we fix an embedding xQ � xQp and we let ƒ be the xQ-linear

subspace of xQp generated by 1 and by p-adic logarithms of non-zero algebraic numbers.

Theorem 1.8. Let k be an imaginary quadratic field, and K an abelian extension of k
in which p splits completely. Then there exist at most finitely many distinct Zp-extensions
k1 of k for which ıG

Kk1=K
> 0. Moreover, no such Zp-extensions exist if the polynomial

XYZ2 � .AX � BY /.CX �DY / 2 ZŒA; B; C;D;X; Y;Z�

does not vanish on any 7-tuple .a; b; c; d; x; y; z/ 2 ƒ7 which form a xQ-linearly indepen-
dent set.

This last condition should be true according to the weak p-adic Schanuel conjecture.
In Proposition 3.1 we illustrate Theorem 1.8 with a classical application to the semi-
simplicity of Iwasawa modules attached to Kk1=K. Similar results (especially in the
case where p is non-split in k) have also been obtained by Bullach and Hofer [4], with
applications to the p-part of the eTNC for abelian extensions of imaginary quadratic fields.

Theorem 1.8 can be generalized to arbitrary base fields k having at most r linearly dis-
joint Zp-extensions with r � 2 (Theorem 5.1). The main idea is that, under our assumption
on p, one can parameterize Zp-extensions of k by points on a .r � 1/-dimensional linear
subspace L of Pn�1.Qp/, where n D Œk W Q�. The condition ıG

Kk1=K
> 0 then cuts out a

closed subvariety C of L given by polynomial equations with coefficients in

ƒ0 WD logp
�
OK

�
1
p

���
� xQp:

We then exploit the fact that any linear (resp. algebraic) independence between elements
of ƒ0 implies strong conditions on the xQ-points (resp. the xQp-points) of C .

Theorem 1.8 was inspired by Betina–Dimitrov’s work [2] where the authors show
the non-vanishing of a certain L-invariant for Katz’s p-adic L-function restricted to the
anticyclotomic Zp-extension. In fact, their result generalizes to any Zp-extension with
non-transcendental slope. We expect that our techniques can give further results on the
non-vanishing of L-invariants in more general contexts.

The paper is structured as follows. In Section 2, we recall all the classical results in
p-adic transcendence theory which we make use of. In Section 3, we describe Leopoldt’s
and Gross’s defects via class field theory and we show that they are compatible with
Artin formalism. Our main results and corollaries are proven in Section 4, except for
Theorem 1.8 whose proof is postponed to Section 5.
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2. p-adic transcendence theory

Throughout this section we fix an embedding �pW xQ ,! xQp , allowing us to view algebraic
numbers as p-adic numbers. The following very strong conjecture describes the algebraic
dependence between logarithms of algebraic numbers (see [6, Conjecture 3.10]).

Conjecture (Weak p-adic Schanuel conjecture). Let ˛1; : : : ; ˛n be nonzero algebraic
numbers. If logp.˛1/; : : : ; logp.˛n/ are linearly independent over Q, then they are alge-
braically independent over Q.

We recall some classical results of Brumer, Waldschmidt and Roy and deduce some
consequences that turn out to be useful in the study of the Gross–Kuz’min conjecture.

2.1. The Baker–Brumer theorem

Brumer [3] extended Baker’s method to the p-adic setting and proved the following theo-
rem on linear independence of logarithms.

Theorem 2.1 (Baker–Brumer theorem). Let ˛1; : : : ; ˛n be nonzero algebraic numbers. If
logp.˛1/; : : : ; logp.˛n/ are linearly independent over Q, then they are linearly indepen-
dent over xQ.

Recall that logp is normalized so that we have logp.p/ D 0.

Proposition 2.2. Let H � xQ be a number field. The xQ-linear extension

logpW xQ˝Z H
�
! xQp; c ˝ x 7! c logp

�
�p.x/

�
of the p-adic logarithm has kernel the line p xQ spanned by 1˝ p.

Proof. Let Hp be the completion of �p.H/ inside xQp , let O�Hp be its unit group and
consider the abelian group

T D
®
x 2 H� W �p.x/ 2 O�Hp

¯
:

Writing any x 2 H� as .x=pv/ � pv where v is the valuation of x (seen as an element
of Hp), we obtain a direct sum decomposition

xQ˝H� D
�
xQ˝ T

�
˚ p

xQ:

Moreover, any ˛ 2 H� whose p-adic logarithm is 0 must be a root of unity, so mul-
tiplicatively independent numbers ˛1; : : : ; ˛n 2 T have xQ-linearly independent p-adic
logarithms by the Baker–Brumer theorem. This shows that the restriction of logp to xQ˝ T

is injective, hence ker.logp/ D p
xQ.

2.2. Waldschmidt’s and Roy’s theorem

Recall that ƒ is the xQ-linear subspace of xQp generated by 1 and by p-adic logarithms of
non-zero algebraic numbers.
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Extensions of Baker’s method due to Waldschmidt and Roy give a lower bound for the
rank of matrices with coefficients in ƒ. To each matrix M with coefficients in xQp , of size
m � `, they assign a number �.M/ defined as the minimum of all ratios `0

m0
where .m0; `0/

runs among the pairs of integers satisfying 0 < m0 � m and 0 � `0 � `, for which there
exist matricesP2GLm.xQ/ andQ2GL`.xQ/ such that the product PMQ can be written as�

M 0 0

N M 00

�
with M 0 of size m0 � `0. Note that �.M/ � `

m
with equality if all the entries of M are

xQ-linearly independent. The following theorem is Roy’s sharpening of Waldschmidt’s
theorem ([37, Théorème 2.1.p], [34, Corollary 1]).

Theorem 2.3. Let M be a matrix with coefficients in ƒ, of size m � ` with m; ` > 0, and
let n be its rank. We have

n �
�.M/

1C �.M/
�m:

Roy also deduced a useful corollary for 3 � 2 matrices from Theorem 2.3 in [34,
Corollary 2].

Corollary 2.4 (Strong six exponentials theorem). Let M be a .3 � 2/-matrix with coef-
ficients in ƒ. If the rows of M are xQ-linearly independent, and if the columns of M are
also xQ-linearly independent, then M has rank 2.

3. Regulator maps and class groups
3.1. Galois cohomology

For all fields L � xQ and all finite sets S of places of L containing Sp.L/, we let X.L/
(resp. X 0S .L/) be the Galois group of the maximal abelian pro-p extension of L which
is unramified everywhere (resp. unramified everywhere and totally split at all v 2 S ). If
S D Sp.L/, we simply put X 0.L/ D X 0S .L/.

Given a Zp-extension K1 of K with Galois group � , we have X.K1/ D lim
 �L

X.L/

and X 0S .K1/ D lim
 �L

X 0S .L/, the limit being taken over all intermediate extensions K �
L � K1 with ŒLWK� < 1 and the transition maps being the restriction maps. There-
fore, X.K1/ and X 0S .K1/ are modules over the Iwasawa algebra ZpŒŒ���. They are
finitely generated torsion as shown by Iwasawa [14, Theorem 5]. In particular, the module
X 0S .K1/� of �-coinvariants, defined as the largest quotient of X 0S .K1/ on which � acts
trivially, is finitely generated over Zp . We let

ıG
K1=K

WD rkZp X
0.K1/� :

If K1 is the cyclotomic Zp-extension Kcyc of K we simply write ıG
K for ıG

K1=K
. We will

later see that this definition is compatible with that of the introduction. One motivation in
classical Iwasawa theory to compute ıG

K1=K
originates in the following simple result by

Jaulent and Sands [20, Proposition 6].
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Proposition 3.1. Let  be a topological generator of � . If no p-adic prime of K splits
completely in K1 and if ıG

K1=K
D 0, then  � 1 acts semi-simply on X.K1/. That is,

. � 1/2 does not divide the elements Pi 2 ZpŒŒ��� appearing in any elementary moduleL
i ZpŒŒ���=.Pi / pseudo-isomorphic to X.K1/.

Let S0 � Sp.K/
S
S1.K/ be a finite set of places of K. For any extension L of K

and any discrete (resp. compact) GL-module M which is unramified outside the places
of L above S0, we consider for all i � 0 the S0-ramified i -th cohomology group (resp.
continuous cohomology group) HiS0.L;M/ D Hi .Gal.LS0=L/;M/, where LS0=L is the
largest extension of L which is unramified outside the places of L above S0. Given any
subset S � S0, let

Xi
S .L;M/ D ker

�
HiS0.L;M/!

Y
v2S

Hi .Lv;M/ �
Y

v2S0�S

Hi .Lur
v ;M/

�
;

where Lur
v =Lv denotes the maximal unramified extension of Lv (so Rur DR in particular)

and the maps above are the usual localization maps. Note that the definition of Xi
S .L;M/

does not depend on the choice of S0. We simply write Xi .L;M/ instead of Xi
S .L;M/

if S D Sp.L/
S
S1.L/. We also write M � for the Pontryagin dual HomZp .M;Qp=Zp/

of a Zp-module M .

Lemma 3.2. Let L � xQ be a number field and let S � Sp.L/
S
S1.L/ be a finite set of

places of L. There are canonical isomorphisms X2
S .L;Zp.1// 'X1

S .L;Qp=Zp/� '
X 0S .L/.

Proof. The first isomorphism is given by the Poitou—Tate duality theorem [31, Theorem
4.10 (a)]. Since H1S .L;Qp=Zp/ D Hom.Gal.LS=L/;Qp=Zp/, class field theory easily
implies X1.L;Qp=Zp/ D Hom.X 0S .L/;Qp=Zp/.

The isomorphisms provided by Lemma 3.2 are functorial in L in the sense that, given
a finite extensionL0=L of number fields, the norm mapX.L0/!X.L/ corresponds to the
corestriction map (resp. to the Pontryagin dual of the restriction map) X2.L0;Zp.1//!
X2.L;Zp.1// (resp. X1.L0;Qp=Zp/� !X1.L;Qp=Zp/�).

Given any Zp-extensionK1 D
S
nKn ofK and any finite set S � Sp.K/

S
S1.K/,

Lemma 3.2 provides isomorphisms of ZpŒŒ���-modules

lim
 �
n

X2
S

�
Kn;Zp.1/

�
'X1

S .K1;Qp=Zp/
�
' X 0S .K1/:

We now make use of the inflation-restriction exact sequence to study the problem of Galois
descent. Noting that H2.�;Qp=Zp/ D ¹0º as � is pro-cyclic, we have a commutative
diagram with exact rows

0 // Hom.�;Qp=Zp/ //

��

H1
¹p;1º

.K;Qp=Zp/ //

��

H1
¹p;1º

.K1;Qp=Zp/� //

��

0

0 //
L
v Hom.�v;Qp=Zp/ //

L
v H1.Kv;Qp=Zp/ //

L
w H1.K1;w ;Qp=Zp/;

(3.1)
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where v (resp. w) in the second row runs over all the p-adic and archimedean places ofK
(resp. of K1).

Proposition 3.3. We have ıG
K1=K

D dim ker.LocK1=K/, where LocK1=K is the localiza-
tion map

LocK1=K WH
1
¹p;1º.K;

xQp/=H1.�; xQp/!
M

P2Sp.K/

H1.KP; xQp/=H1.�P; xQp/:

Proof. By Lemma 3.2, the kernel of the right vertical map of (3.1) is equal to the Pontrya-
gin dual of X 0.K1/� . Using that H1.Kv;Qp=Zp/ is finite when v 2 S1.K/, ıG

K1=K
is

thus equal to the Zp-rank of the Pontryagin dual of the kernel of the natural map

H1
¹p;1º.K;Qp=Zp/=H1.�;Qp=Zp/!

M
P2Sp.K/

H1.KP;Qp=Zp/=H1.�P;Qp=Zp/: (3.2)

Given G 2 ¹Gal.KS=K/;Gal. xKP=KP/;�;�Pº and A 2 ¹Zp;Qp=Zp; xQpº endowed with
the trivial G -action, we have

H1.G ; A/ D HomZp .G
ab;.p/; A/;

where G ab;.p/ is the maximal abelian pro-p-quotient of G . As rkZp G ab;.p/ is finite, the nat-
ural map H1.G ;Zp/˝Qp=Zp! H1.G ;Qp=Zp/ (resp. H1.G ;Zp/˝ xQp! H1.G ; xQp/)
has finite kernel and cokernel (resp. is an isomorphism). In particular, the corank of the
kernel of (3.2) is equal to dim ker.LocK1=K/, as wanted.

Remark 3.4. Since H1
¹p;1º

.K; xQp/ D Hom.GK ; xQp/ parameterizes the Zp-extensions
ofK, the domain of LocK1=K has dimension r2C ıL

K , where r2 is the number of complex
places of K [38, Theorem 13.4]. In particular, Proposition 3.3 yields an upper bound
ıG
K1=K

� r2 C ı
L
K . Therefore, Leopoldt’s conjecture for a totally real field K implies the

Gross–Kuz’min conjecture for K, as already noticed by Kolster in [23, Corollary 1.3].

Given a prime P 2 Sp.K/, let �P be the decomposition subgroup of � at P and denote
by rec�P

WK�P ! �P the corresponding local reciprocity map. Define also the Zp-module

HK1=K WD ker
� M

P2Sp.K/

�P ! �
�
:

By the usual product formula in class field theory the regulator map

LK1=K W

²
OK

�
1
p

��
! HK1=K

x 7!
�

rec�P
.x/
�

P
;

is well defined, and it extends to a xQp-linear map OK Œ
1
p
��;^ ! H^

K1=K
which we still

denote by LK1=K . IfK1 D Kcyc, then the character logp ı�cyc ı rec�P
WK�P !Qp coin-

cides with � logp ıNP, where �cyc is the cyclotomic character. Therefore, LKcyc=K is
essentially the same as the map LK of the introduction, and dim coker.LKcyc=K/ D ı

G
K .
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Proposition 3.5. We have ıG
K1=K

D dim coker.LK1=K/. In particular, ıG
Kcyc=K

D ıG
K .

Proof. For P 2 Sp.K/, consider the commutative diagram

H1
�
KP; xQp.1/

�
� H1.KP; xQp/ H2

�
KP; xQp.1/

�
K
�;^
P � Hom.K�;^P ; xQp/ xQp;

[

inv�� �

ev

(3.3)

where the left vertical map is Kummer’s isomorphism, the middle one is induced by the
reciprocity map K�P ! Gab

KP
, ev is the evaluation map and inv is Hasse’s invariant in

local class field theory. To see that the diagram is commutative, one first shows using e.g.
[36, Chapter 14, Section 1, Proposition 3] the commutativity of a similar diagram with
xQp.1/, xQp and K�;^P replaced with �pn , Z=pnZ and K�P=.K

�
P/
pn respectively and then

take an inverse limit over n 2 N.
The subspace H1.�P; xQp/ of H1.KP; xQp/ coincides via the middle equality of (3.3)

with
Hom.�P; xQp/ D ker

�
Hom.K�;^P ; xQp/! Hom

�
ker.rec�P

/; xQp

��
;

so its orthogonal complement under the pairing in (3.3) is equal to ker.rec�P
/. Using the

fact that X1.K;Qp/ D 0 by the finiteness of the class group of K, Poitou–Tate’s duality
then yields a perfect linear pairing

ker
�

H1
¹p;1º.K;

xQp/!
M

P2Sp.K/

H1.KP; xQp/

H1.�P; xQp/

�
� coker

�M
P

rec�P
W OK

�
1
p

��;^
!

M
P2Sp.K/

�^P
�
! xQp:

A comparison of dimensions gives

dim ker.LocK1=K/C 1 D dim coker.LK1=K/C 1;

so Proposition 3.3 yields the desired equality.

3.2. Isotypic components

We consider in this paragraph the situation where the Zp-extension K1=K comes from
the Zp-extension k1=k of a subfield k of K, which means that K1 D Kk1. Assume
that K=k is Galois with Galois group G.

Given an algebraically closed field Q of characteristic zero (typically, xQ or xQp), we
denote by ArtQ.G/ the set of (isomorphism classes of) Q-valued finite dimensional repre-
sentations ofG. With a slight abuse of notation, we sometimes write elements of ArtQ.G/
as .W; �/, whereW is the underlying space of � 2 ArtQ.G/, and we put dim� WD dimW .
We denote by .Q; 1/ or .Q; 1k/ the trivial representation of G, and given .W; �/ 2
ArtQ.G/, we write for short 1 6� � if Q 6� W as G-modules.
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The Q-valued representations of G are semi-simple and the regular representation
splits as

QŒG� D
M
�

e.�/ �QŒG� D
M
�

W ˚ dim�; (3.4)

where .W; �/ runs through the set of all the Q-valued irreducible representations of G and

e.�/ D
dim �

jGj
�

X
g2G

Tr
�
�.g�1/

�
g 2 QŒG� (3.5)

is the usual idempotent attached to �.
For any finite set of places S of k containing S1.k/, let OK Œ1=S�

� be the group of
S -units of K. Dirichlet’s unit theorem implies that we have a decomposition of QŒG�-
modules

Q˝Z OK Œ1=S�
�
D
�
Q˝Z Ok Œ1=S�

�
�M�M

1¤�

W ˚d
C
S .�/

�
; (3.6)

where .W; �/ runs through the set of all non-trivial irreducible representations of G and
dCS .�/ D

P
v2S dim H0.kv; W /. It will be convenient to introduce the following invari-

ants:
d.�/ WD Œk W Q� � dim �;

dC.�/ WD
X
vj1

dim H0.kv; W /;

f .�/ WD
X
pjp

dim H0.kp; W /;

(3.7)

so that dC.�/ D dC
S1.k/

.�/ and f .�/ D dC
S1.k/

S
Sp.k/

.�/ � dC
S1.k/

.�/.
We record in the next lemma a list of useful properties satisfied by the invariants

introduced in (3.7) and which we make use of in Sections 4 and 5. Recall that a rule
� 7! a.�/ 2 Z, where � runs among all the representations of Galois groups of finite
extensions of number fields, is said to be compatible with Artin formalism if, for all finite
Galois extensions N=M=L:

(a) a.z�/ D a.�/ if z� 2 Art xQp
.Gal.N=L// is the inflation of � 2 Art xQp

.Gal.M=L//,

(b) a.�1 ˚ �2/ D a.�1/C a.�2/ for all �1; �2 2 Art xQp
.Gal.M=L//, and

(c) a.�0/ D a.�/ if �0 is the induction of � from Gal.N=M/ to Gal.N=L/.

The inflation maps identify Art xQp
.GL/ of the introduction with

S
LArt xQp

.Gal.M=L//,
where M runs over all finite Galois extensions of L inside xQ. Therefore, any rule a satis-
fying the condition (a) above gives rise to a well-defined map aWArt xQp

.GL/! Z.

Lemma 3.6. The following claims hold.

(1) The assignments � 7! d.�/, � 7! dC.�/ and � 7! f .�/ given by (3.7) are com-
patible with Artin formalism, and therefore they define maps Art xQp

.GL/! Z for
every number field L.
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(2) For all number fields L, we have d.1L/ D ŒL W Q�, dC.1L/ D jS1.L/j and
f .1L/ D jSp.L/j.

(3) LetM=L be a Galois extension of number fields. For all .W;�/2Art xQp
.Gal.M=L//

with 1L 6� �, we have

dim HomGal.M=L/
�
W;O

�;^
M

�
D dC.�/;

dim HomGal.M=L/
�
W;OM

�
1
p

��;^�
D dC.�/C f .�/:

Proof. The proof of (1) and (2) follows from the definitions and Shapiro’s lemma. The
last claim is a consequence of (3.6) for S D S1.k/ and S D S1.k/ [ Sp.k/.

Lemma 3.7. Let M=L=E be Galois extensions of number fields, let .W; �/ 2Art xQp
.GL/

and let aWArt xQp
.GL/! Z, a 2 ¹d; dC; f º be one of the maps defined by Lemma 3.6 (1).

(1) We have a.�/ � .dim �/ � a.1L/.

(2) Suppose that M is the field extension xQker� cut out by �. Then dC.�/ D d.�/ if
and only if M is totally real. If dC.�/ D 0, then L is totally real and M is a CM
field.

(3) Suppose again that M D xQker�. If M has at least one real place, then dC.�/ �
dim � and any subrepresentation � of IndEL � satisfies dC.�/ � 1. If L has r com-
plex places, then dC.�/ � r � dim �.

(4) Let � 2 Art xQp
.Gal.M=L// be irreducible and let � be a multiplicative character

of GL. Then we have

.dim �/ � a.� ˝ �/ � a.�jGM / � a.1M /;

.dim �/ � a.� ˝ �/ � a.�jGM / � a.�/ � a.1M / � a.�/
if � ¤ 1L:

Proof. For any place v of L, note that dim H0.Lv;W /� dimW , so (1) follows from (3.7)
and Lemma 3.6 (2).

We now assumeM D xQker� and we prove (2) and (3). Denote by �v 2 Gal.M=L/ the
complex conjugation attached to an infinite place v 2 S1.L/. Then �.�v/ 2 GL.W / is
diagonalizable of order 1 or 2 and dim H0.kv; W / is the number of eigenvalues of �.�v/
that are equal to 1. Hence, in view of (3.7), it is clear that 0 � dC.�/ � d.�/, and we have
dC.�/ D d.�/ (resp. dC.�/ D 0) if and only if all places v 2 S1.L/ are real and �.�v/
is a scalar matrix with eigenvalue 1 (resp. �1). Since � induces a faithful representation
Gal.M=L/ ,!GL.W /, dC.�/D d.�/ is thus equivalent to �v D 1 for all v 2 S1.L/, and
dC.�/D 0 implies that all complex conjugations are equal and nontrivial. This proves (2).

Suppose that M has at least one real place w and let v (resp. v0) be the place of L
(resp. of E) lying below w. For notational simplicity, write H0.�; �/ for H0.�;W /. Then
we clearly have dC.�/� dim H0.Lv; �/D dim�. Moreover, if � � IndEL �, then Frobenius
reciprocity implies that there exists a subrepresentation �0� � such that �0� �jGL , yielding

dC.�/ � dim H0.Ev0 ; �/ D dim H0.Lv; �/ � dim H0.Lv; �0/ D dim �0 � 1;
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as claimed. Suppose finally that L has r complex places v1; : : : ; vr . Then

dC.�/ �

rX
iD1

dim H0.Lvi ; �/ D r � dim �;

so this ends the proof of (3).
We now prove (4). The upper bounds on a.�jGM / follow from (1), so we only prove

the lower bounds. Since � is irreducible, the representation .� ˝ �/˚ dim � (and even
.�˝�/˚ dim �˚� if �¤1L) occurs as a subrepresentation of .IndLM1M /˝�D IndLM�jGM .
Artin formalism then yields the lower bounds of claim (5), as a.IndLM�jGM / D a.�jGM /
and a takes non-negative values.

We now describe the isotypic components of the map LK1=K . For g 2 G, P 2 Sp.K/

and � a place of K1 above P, the map KP ! Kg.P/ (resp. K1;� ! K1; Qg.�/) induced
by g (resp. by a lift Qg 2 Gal.K1=k/ of g) is a field isomorphism which yields a left G-
action x 7! g.x/ (resp.  7! Qg Qg�1) on

L
Pjp K

�
P and on

L
Pjp �P, respectively. This

action also restricts to HK1=K , and G acts trivially on the quotient .
L

Pjp �P/=HK1=K .
Moreover, the map LK1=K is G-equivariant for the natural G-action on OK Œ

1
p
�� and the

action on HK1=K described above.
Fix any .W; �/ 2 Art xQp

.G/ and let HomG.X; Y / be the xQp-vector space of all G-
equivariant linear maps between two xQpŒG�-modules X and Y . By definition, the �-
isotypic component of a G-equivariant xQp-linear map f W X ! Y is the linear map

HomG.W;X/! HomG.W; Y /

obtained defined by post-composition with f . Write Lk1=k.�/ for the �-isotypic compo-
nent of LKcyc=K and define

ıG
k1=k

.�/ WD dim coker
�
Lk1=k.�/

�
:

If k1 D kcyc, we abbreviate Lk1=k.�/ and ıG
k1=k

.�/ as Lk.�/ and ıG
k
.�/, respectively.

For all p 2 Sp.k/, fix a place P0 ofK above p, let Gp be the decomposition subgroup
of G at P0 and let W 0

p D W Gp . Note that HomGp.W
0

p ; K
�;^
P0
/ D Hom.W 0

p ; k
�;^
p / as

H0.Gp; K
�;^
P0
/ D k

�;^
p .

Proposition 3.8. The map Lk1=k.1/ can be naturally identified with Lk1=k . If 1 6� �,
then the map Lk1=k.�/ can be naturally identified with the composite map

HomG.W;U /
˚locp.�/
�����!

M
p

HomGp.W;K
�;^
P0
/

˚resp

���!

M
p

Hom.W 0
p ; k

�;^
p /

˚ rec0�p

�����!

M
p

Hom.W 0
p ; �

^
p /: (3.8)
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Here, U D OK Œ
1
p
��;^, p runs through Sp.k/ in each direct sum, �p is the decomposi-

tion subgroup of � at p, respWHomGp.W; K
�;^
P0
/ ! Hom.W 0

p ; k
�;^
p / is the restriction

of morphisms from W to W 0
p and rec0�p

WHom.W 0
p ; k

�;^
p /! Hom.W 0

p ; �
^
p / is the post-

composition with recp.

Proof. Let j WHK1=K ,!
L

Pjp �P be the inclusion map and let j.�/ be its �-isotypic
component.

Given a prime p 2 Sp.k/ and a fixed prime P0jp of K as before, we haveM
Pjp

K�P D IndGGp
K�P0

;
M
Pjp

�P D IndGGp
�P0

as G-modules. Frobenius reciprocity then shows that

HomG

�
W;
M
Pjp

K
�;^
P

�
' HomGp.W;K

�;^
P0
/;

HomG

�
W;
M
Pjp

�
�;^
P

�
' HomGp.W; �

�;^
P0

/;

the isomorphisms being the natural projection maps. Therefore, j.�/ ıLk1=k.�/ can be
identified with the map

L
pjp locp.�/ post-composed with the composite mapM

pjp

HomGp.W;K
�;^
P0
/
˚ recP0

.�/

�������!

M
pjp

HomGp.W; �
^
P0
/
'
�!

M
pjp

Hom.W 0
p ; �

^
P0
/; (3.9)

where the last identification is given by restriction to W 0
p . In fact, the map in (3.9) is part

of a commutative diagramL
pjp HomGp.W;K

�;^
P0
/

L
pjp HomGp.W

0
p ; K

�;^
P0
/

L
pjp HomGp.W; �

^
P0
/

L
pjp Hom.W 0

p ; �
^
P0
/;

˚ recP0
.�/

'

where the horizontal maps are given by restriction toW 0
p and the vertical maps are induced

by rec�P0
. Furthermore, the functoriality of Artin’s reciprocity law shows that the diagram

K
�;^
P0

�^P0

k
�;^
p �^p

recP0

recp

Œnp�

is commutative, where the left vertical map is induced by the inclusion and Œnp� is the
multiplication by np D ŒKP0

W kp�. Hence, if 1 6� �, then the map j.�/ ıLk1=k.�/ coin-
cides with the map of (3.8) under the identification Œn�1p � W �^P0

' �^p . Since j.�/ is an
isomorphism in this case, we obtain the desired description of Lk1=k.�/.
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In the case where � D 1, the map LK1=K.1/ is the map Ok Œ
1
p
��;^ ! .H^

K1=K
/G

obtained by restricting LK1=K to the G-invariants. Under the identifications�M
Pjp

�^P
�G
D
�M

pjp

IndGGp
�^P0

�G
D

M
pjp

�^P0
'

M
pjp

�^p

induced by Frobenius reciprocity and by
L

pŒn
�1
p �, it is clear that .H^

K1=K
/G is mapped

onto H^
k1=k

, and that LKcyc=K.1/ can be naturally identified with Lk1=k .

Remark 3.9. The map Lk1=k.�/ admits a more intrinsic description in terms of canoni-
cal Selmer groups attached to the arithmetic dualzW WD Hom.W; xQp.1// of W . Namely,
let H1f;p.k;zW / � H1.k;zW / be the Selmer group ofzW defined by imposing the Bloch–
Kato condition at all places not dividing p and no condition at the p-adic places (see
[30, Definition 3.2.1]). Using Kummer maps as e.g. in [29, Lemma 3.6.2], one has a com-
mutative diagram

H1f;p.k;zW / H1.kp;zW /

HomG

�
W;OK

�
1
p

��;^� HomGp

�
W;K

�;^
P0

�
;

locp.�/

where the upper horizontal map is the localization map on cocycles. Moreover, it can be
checked that the kernel of rec0p ırespWH1.kp;zW / � Hom.W 0

p ; �
^
p / coincides with the

orthogonal complement, say,Zp, of H1.�p;W
0

p /� H1.kp;W / under Tate’s local pairing.
Proposition 3.8 thus identifies Lk1=k.�/ with the localization map

H1f;p.k;zW /!
M
pjp

H1.kp;zW /=Zp

under these identifications.

Corollary 3.10. The following claims hold.

(1) If � D 1 then we have ıG
k1=k

.1/ D ıG
k1=k

.

(2) Assume k D Q, k1 D Qcyc and 1 6� �. Fix an embedding �pW xQ ,! xQp and let
W 0
p D W

GQp . Then,

ıG
Q.�/ D dim coker

�
HomG

�
W;OK

�
1
p

��;^�
! Hom.W 0

p ;
xQp/

�
;

the map being the restriction-to-W 0
p map followed by the post-composition by

logp ı�p .

Proof. The first claim directly follows from Propositions 3.5 and 3.8. The second claim
follows from Proposition 3.8 and from the fact that, if �p D Gal.Qp;cyc=Qp/, then the
composite map logp ı�cyc ı rec�p WQ

�;^
p ! �^p '

xQp ˝Zp .1C pZp/ ' xQp coincides
with � logp (see e.g. [32, Chapter V, Theorem 2.4]).
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Corollary 3.11. The assignment � 7! ıG
k1=k

.�/ is compatible with Artin formalism. More
precisely,

(a) ıG
k1=k

.�/ does not depend on the choice of the field K such that � 2 Art xQp
.Gk/

factors through Gal.K=k/.

(b) ıG
k1=k

.�1 ˚ �2/ D ı
G
k1=k

.�1/C ı
G
k1=k

.�2/ for any �1; �2 2 Art xQp
.Gk/.

(c) If k1D kk01 for some subfield k0� k and Zp-extension k01=k
0 and if �0D Indk

0

k �

is induced from � 2 Art xQp
.Gk/, then ıG

k01=k
0.�
0/ D ıG

k1=k
.�/.

Proof. Part (b) is obvious from the definition of Lk1=k.�/. Part (a) is true if � is trivial
by Corollary 3.10 (1). LetK 0=K=k be Galois extensions, take 1 6� � 2 Art xQp

.Gal.K=k//
and denote by z� its inflation to Gal.K 0=k/. Then the maps of (3.8) attached to � and z�
coincide on HomGal.K=k/.W;OK Œ

1
p
��;^/D HomGal.K0=k/.W;OK0 Œ

1
p
��;^/, so ıG

k1=k
.�/D

ıG
k1=k

.z�/. Hence, (a) holds for every � 2 Art xQp
.Gk/.

As for (c), take any extensionK=xQker� which is Galois over k0 and putGDGal.K=k/,
G0 D Gal.K=k0/. Then Frobenius reciprocity identifies the �0-isotypic component of
LK1=K (seen as a G0-equivariant map) with the �-isotypic component of LK1=K (seen
as a G-equivariant map). Hence, the last property follows from Proposition 3.8.

We next define an analogous invariant for Leopoldt’s conjecture. For any Galois exten-
sion K=k with Galois group G, the localization map

�K WO
�;^
K !

M
P2Sp.K/

O
�;^
KP

is clearly G-equivariant. For any .W; �/ 2 Art xQp
.G/ we let ıL

k
.�/ be the dimension of the

kernel of the �-isotypic component

�k.�/WHomG.W;O
�;^
K /!

M
p2Sp.k/

HomG.W;
M
Pjp

O
�;^
KP

/

'

M
p2Sp.k/

HomGp.W;O
�;^
KP0

/ (3.10)

of �K . Here (and as in the definition of Lk1=k.�/), P0 is a fixed place of K above p for
every place p of k. The last isomorphism is given by Frobenius reciprocity and is induced
by the natural projection map. As in Corollary 3.11, it is easy to see that the rule � 7! ıL

k
.�/

is compatible with Artin formalism.

Remark 3.12. In terms of Bloch–Kato Selmer groups for zW D Hom.W; xQp.1//, the
injectivity of �k.�/ is equivalent to that of the localization map

H1f .k;zW /!
Y
pjp

H1f .kp;zW /:

This last statement is Jannsen’s conjecture forzW [15, Question 2].
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The following lemma on local Galois representations with finite image will help us
describe ıL

k
.�/ in another way if k D Q.

Lemma 3.13. Let .W; �/ 2 Art xQp
.GQp / be a local representation factoring through the

Galois group of a finite extension E � xQp of Qp . Then the internal multiplication map
xQp ˝Qp E !

xQp induces an isomorphism

mWHomGQp
.W; xQp ˝Qp E/ ' Hom xQp

.W; xQp/:

Here, we let GQp act on xQp ˝Qp E via g.a˝ x/ D a˝ g.x/.

Proof. Notice first that E ' QpŒGal.E=Qp/� as Galois modules by the normal basis the-
orem, allowing us to write

HomGal.E=Qp/.W;
xQp ˝Qp E/ ' HomGal.E=Qp/

�
W; xQp

�
Gal.E=Qp/

��
' Hom xQp

.W; xQp/;

the last isomorphism coming from Frobenius reciprocity. (Note that the resulting compos-
ite map differs from m.) Therefore, it is enough to show that m is injective.

As � has finite image, one may choose a finite Galois extension L=Qp which con-
tains E and over which � is realizable, i.e., there exist a LŒGQp �-module WL and an
isomorphism WL ˝L xQp ' W (see, for instance, Brauer’s theorem [35, Section 12.3,
Théorème 24]). By the base change properties of Hom’s, we then have to show that the
map HomLŒGQp �

.WL;L˝Qp E/! HomL.WL;L/ is injective. Since any L-linear homo-
morphism is Qp-linear, it suffices to show that

HomQp ŒGQp �
.WL; L˝Qp E/! HomQp .WL; L/

is injective, i.e., the map�
HomQp .WL;Qp/˝Qp E

�GQp ˝Qp L

D HomQp ŒGQp �
.WL; L˝Qp E/! HomQp .WL;Qp/˝Qp L

(sending h˝ e ˝ ` to h˝ .e`/) is injective, where we let GQp act on both terms of the
first tensor product. To this end, put V D HomQp .WL;Qp/ and apply the exact functor
�˝L

xQp to the preceding map. Observing that Gal.xQp=E/ acts trivially on V , we obtain
the map

.V ˝Qp
xQp/

GQp ˝Qp
xQp ! V ˝Qp

xQp

given by .v ˝ a/˝ b 7! v ˝ .ab/. This map turns out to be injective by Fontaine’s the-
ory of admissible B-representations, the ring B being, in our case, xQp equipped with its
standardGQp -action (see e.g. in [10, Theorem 2.13 (1)]). Hence,m is an isomorphism.

Proposition 3.14. Let .W;�/2Art xQp
.GQ/ factoring through Gal.K=Q/ for someK � xQ

and let P0 be the p-adic place of K defined by a fixed embedding �pW xQ ,! xQp . We have

ıL
Q.�/ D dim ker

�
L W HomGQ.W;O

�;^
K /! Hom.W; xQp/

�
;
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the map L being the post-composition by logp ı�pWO
�;^
K ! xQp ˝Qp KP0

followed by the
internal multiplication xQp ˝Qp KP0

! xQp .

Proof. First note that the p-adic logarithm logpWO
�
E ! E over a finite extension E of

Qp induces an isomorphism O
�;^
E ' xQp ˝Qp E. Applying Lemma 3.13 to E D KP0

we
obtain isomorphisms

HomGQp
.W;O

�;^
KP0

/ ' HomGQp
.W; xQp ˝Qp KP0

/ ' Hom.W; xQp/:

The map L is simply the map �Q.�/ composed with these isomorphisms, so the claim
follows.

4. Bounds on Leopoldt’s and Gross’s defects

Throughout this section we fix an embedding �pW xQ ,! xQp .

4.1. Bounds on Leopoldt’s defect

Theorem 4.1. Let � 2 Art xQp
.GQ/ be irreducible and let d D d.�/, dC D dC.�/. We

have ıL
Q.�/ �

.dC/2

dCdC
.

Proof. Since ıL
Q.1/ D ı

L
Q D 0, we may assume that �¤1. LetK=Q be any Galois exten-

sion containing xQker� and let G D Gal.K=Q/. Recall from Lemma 3.6 (3) the equality
dim HomG.W;O

�;^
K /D dC. By Proposition 3.14 it is enough to show that the rank of the

map
HomG.W;O

�;^
K /! Hom.W; xQp/

induced by a˝ x 7! a logp.�p.x// on O
�;^
K is at least d �dC

dCdC
.

Consider a xQ-structure on W , that is, a xQ-linear representation W xQ of G such that
W xQ ˝ xQ

xQp ' W . Let also w1; : : : ; wd be a xQ-basis of W xQ. As � is irreducible, we can
consider its idempotent e.�/ defined in (3.5), and by (3.6) there exists an isomorphism

e.�/ �
�
xQ˝O�K

�
' W ˚d

C

xQ
;

which we fix. Using this isomorphism, we may define for all 1 � j � dC a xQŒG�-linear
map

‰j WW xQ W ˚d
C

xQ
xQ˝O�K ;

inclj
(4.1)

where inclj maps W xQ maps onto the j -th component of the direct sum. The homomor-
phisms ‰1; : : : ; ‰dC form a basis of the space HomG.W xQ;

xQ ˝ O�K/ over xQ and of
HomG.W;O

�;^
K / over xQp . Moreover, the elements ‰j .wi / 2 xQ ˝ O�K for 1 � i � d ,

1 � j � dC are xQ-linearly independent by construction, as well as their p-adic loga-
rithms by Proposition 2.2. Hence, the matrix M D .logp.�p.‰j .wi ////i;j of size d � dC

satisfies �.M/ D dC

d
and Theorem 2.3 implies rkM � d �dC

dCdC
as claimed.
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Corollary 4.2. The following claims hold.

(1) Let � 2 Art xQp
.Gk/ and let dC D dC.�/. We have ıL

k
.�/ � dC=2.

(2) For all finite extensions K=k of number fields, we have

ıL
K � ı

L
k C .rk O�K � rk O�k /=2:

Proof. Since dC � d , the first inequality obviously follows from Theorem 4.1 for irre-
ducible � 2Art xQp

.GQ/, hence it follows for general � from Artin formalism for � 7! d.�/

and � 7! dC.�/. By Lemma 3.6 (1)–(2), the unique representation �0 of Gk such that
IndkK1 D 1 ˚ �0 satisfies dC.�0/ D rk O�K � rk O�

k
, so the second inequality follows

from the first one applied to �0.

4.2. Bounds on Gross’s defect

Theorem 4.3. Let � 2 Art xQp
.GQ/ be irreducible and let f D f .�/, dC D dC.�/. If

dC D f D 0, then ıG
Q.�/ D 0. Otherwise, we have ıG

Q.�/ �
f 2

dCC2f
.

Proof. Recall that dim HomG.W;OK Œ
1
p
��;^/DdCCf by Lemma 3.6 (3) and that dimW 0

p

D f . If � D 1 or f D 0, then the codomain of LQ.�/ is ¹0º, yielding ıG
Q.�/ D 0. We

assume henceforth that � ¤ 1 and f > 0. Let K=Q be any Galois extension containing
xQker� and let G D Gal.K=Q/. By Corollary 3.10 (2) it is enough to show that the rank of
the map HomG.W;OK Œ

1
p
��;^/! Hom.W 0

p ;
xQp/ induced by a˝ x 7! a logp.�p.x// on

OK Œ
1
p
��;^ is at least .d

CCf /�f

dCC2f
.

As in the proof of Theorem 4.1, fix a xQ-structureW xQ ofW . Fix also a basisw1; : : : ;wf
of the subspace W 0

xQ;p
of GQp -invariants of W xQ and an isomorphism

e.�/ �
�
xQ˝OK Œ

1
p
��
�
' W

˚.dCCf /
xQ

:

Then a similar definition as that in (4.1) yields a basis ‰1; : : : ; ‰dCCf of the space
HomG.W;OK Œ

1
p
��;^/ such that the elements ‰j .wi / 2 xQ˝O�K for 1 � i � f , 1 � j �

dCC f are xQ-linearly independent. Since e.�/ kills p xQ, we deduce from Proposition 2.2
that the entries of the matrix

M 0 D
�

logp
�
�p
�
‰j .wi /

���
i;j

of size f � .dC C f / are xQ-linearly independent as well. Therefore, �.M 0/ D dCCf
f

and Theorem 2.3 implies rkM 0 � .dCCf /�f

dCC2f
.

Corollary 4.4. The following claims hold.

(1) Let � 2 Art xQp
.Gk/, let K be the field cut out by � and let f D f .�/. Denote by

SR.K/ the set of real places of K. Then the following inequalities hold true:

ıG
k .�/

8̂̂<̂
:̂
� f=2

< f=2 if f ¤ 0 and SR.K/ ¤ ;;

� f=3 if K is totally real:
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(2) Let K=k be a finite extension of number fields. Then the following inequalities
hold true:

ıG
K

8̂̂<̂
:̂
� ıG

k
C
�ˇ̌
Sp.K/

ˇ̌
�
ˇ̌
Sp.k/

ˇ̌�
=2

< ıG
k
C
�ˇ̌
Sp.K/

ˇ̌
�
ˇ̌
Sp.k/

ˇ̌�
=2 if

ˇ̌
Sp.K/

ˇ̌
¤
ˇ̌
Sp.k/

ˇ̌
and SR.K/ ¤ ;;

� ıG
k
C
�ˇ̌
Sp.K/

ˇ̌
�
ˇ̌
Sp.k/

ˇ̌�
=3 if K is totally real:

Proof. We know that � 7! ıG
k
.�/ and � 7! f .�/ are compatible with Artin formalism

by Corollary 3.11 and Lemma 3.6 (1). We now explain how to prove (1). By Artin for-
malism, it suffices to prove (1) with � replaced by any irreducible subrepresentation
� 2 Art xQp

.GQ/ of IndQ
k
�. For such a � , Lemma 3.7 (2)–(3) implies that dC.�/ � 1 if

SR.K/ ¤ ;, and dC.�/ D d.�/ if K is totally real. Therefore, the inequalities in (1) for
� directly follow from Theorem 4.3. Finally, one proves (2) by applying (1) to

� D IndkK1K � 1k

and using that f .IndkK1K/ D jSp.K/j and f .1k/ D jSp.k/j by Lemma 3.6 (2).

Remark 4.5. The matrices M and M 0 appearing in the course of the proof of Theo-
rems 4.1 and 4.3 have full rank under the p-adic Schanuel conjecture. Artin formal-
ism thus shows that the p-adic Schanuel conjecture implies Leopoldt’s conjecture (resp.
Gross–Kuz’min’s conjecture) in great generality, as already shown in [16] (resp. in [25]).

4.3. Applications

Theorem 4.6. Let k be a totally real number field and let .V; �/ 2 Art xQp
.Gk/ be such

that dC.�/ D 0. Then Gross’s p-adic regulator matrix Rp.V / [12, (2.10)] is of size f .�/
and of rank at least f .�/=2.

Proof. Let K be the CM field cut out by � and let .Hom xQp
.V; xQp/; �

�/ be the contragre-
dient representation of �. Gross’s regulator map �p defined in [12, (1.18)] can be identified
with the “minus part” of LK , which is, by definition, the restriction of LK to the subspace
where the complex conjugation acts by �1. This means that �p and LK share the same � -
isotypic component for every representation � 2 Art xQp

.Gal.K=k// such that dC.�/D 0.
Since taking .V ˝ �/Gk amounts to taking ��-isotypic components, we conclude that
rkRp.V / D rk Lk.�

�/ D f .��/ � ıG
k
.��/, so rkRp.V / � f .��/=2 D f .�/=2 by Theo-

rem 4.3.

In the next theorem, we write kC for the maximal totally real subfield of a number
field k, and Qab for the maximal abelian extension of Q.

Theorem 4.7. Let K=k be an abelian extension of number fields. The Gross–Kuz’min
conjecture holds for K in each of the following cases.

(a) Either jSp.K/j � 2, or jSp.K/j � 3 andK has at least one real place, or jSp.K/j
� 4 and K=Q is Galois, or jSp.K/j � 6 and K=Q is a real Galois extension.

(b) jSp.k/j D 1, or jSp.k/j � 2 and K has at least one real place.
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(c) K�k �Qab, k=Q is Galois, and either jSp.k/j�3, or jSp.k/j�5 and K is real.

(d) k is an imaginary quadratic field, or k is a real quadratic field andK has at least
one real place.

(e) k=Q is Galois, jSp.k/j � 2, jSp.kC/j D 1 and ŒK W k� and Œk W Q� are coprime.

Proof. Recall that ıG.�/ is compatible with Artin formalism by Corollary 3.11. We shall
often appeal to Lemmas 3.6 and 3.7 and to the following consequence of Theorem 4.3
without further notice. For any irreducible representation

� 2 Art xQp
.GQ/;

we have ıG
Q.�/ D 0 if f .�/ � 1, or if f .�/ D 2 and dC.�/ � 1. In particular, ıG

Q.�/ D 0

if � is a multiplicative character of GQ, so ıG
M D 0 for any abelian extension M=Q by

Artin formalism.
Since ıG

Q D 0, it follows from Corollary 4.4 that ıG
K D 0 for K satisfying one of the

two first assumptions in case (a). Consider the two last assumptions in (a) and assume that
K=Q is Galois. We claim that ıG

Q.�/ D 0 for all irreducible � 2 Art xQp
.Gal.K=Q//. We

may assume that dim � � 2, so f .�/ � .f .1K/ � f .1Q//=.dim �/ � .jSp.K/j � 1/=2.
The two last assumptions in (a) ensure that we either have f .�/ � 1, or f .�/ � 2 and
dC.�/ D d.�/ � 1, so we indeed have ıG

Q.�/ D 0. Therefore, ıG
K D 0 in case (a).

Let G D Gal.K=k/ and let yG D Hom.G; xQ�p / be the group of linear characters of G.
We place ourselves in cases (b), (c) and (d), we fix � 2 yG and we show that ıG

k
.�/ D 0.

Since f .�/ � jSp.k/j, Corollary 4.4 (1) implies ıG
k
.�/ D 0 in case (b). Suppose now we

are in case (c). Then � descends to a character �Q of GQ. Moreover, as k=Q is Galois,
any irreducible subrepresentation � of IndQ

k
� ' .IndQ

k
1k/˝ �Q occurs .dim�/ times, so

it satisfies f .�/� jSp.k/j=.dim�/. Moreover, ifK is totally real, then any such � satisfies
dC.�/ D d.�/ � 1, so we can conclude ıG

Q.�/ D 0. Therefore, ıG
k
.�/ D 0 in case (c). We

now assume to be in case (d). Then IndQ
k
� has dimension 2, so it is either irreducible or

it is the sum of two characters of GQ, say �1 and �2. In the latter case, we already know
that ıG

Q.�i /D 0 for i D 1; 2, so ıG
k
.�/D ıG

Q.IndQ
k
�/D 0. If IndQ

k
� is irreducible, then the

assumptions on K and k imply that f .�/ � 2 and dC.�/ � 1 by Lemma 3.7 (3), yielding
ıG
k
.�/ D 0. Therefore, ıG

K D 0 in the cases (b), (c), and (d).
We now make the assumptions in (e) and we assume without loss of generality that K

is Galois over Q with Galois group G . By the Schur–Zassenhaus theorem, G is the semi-
direct product ofH WDGal.k=Q/ acting onG. Let � 2 Art xQp

.G / be irreducible and let us
prove that ıG

Q.�/ D 0. By [35, Chapitre II, Section 8.2], � can be written as IndQ
k0
.� ˝ �/,

where k0=Q is a subextension of k=Q, � an irreducible representation of Gal.k=k0/ and
� a character of Gal.K=k0/. Note that f .�/ � jSp.k/j=.dim �/ � 2=.dim �/, so we may
assume without loss of generality that dim � D 1. If k0 is totally real, then

f .�/ �
ˇ̌
Sp.k

0/
ˇ̌
�
ˇ̌
Sp.k

C/
ˇ̌
D 1;

and otherwise we have dC.�/ � 1. In any case, ıG
Q.�/ D 0 so we may infer ıG

K D 0 in
case (e) as well.
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Remark 4.8. We compare in this remark our results with earlier works mentioned in the
introduction.

(i) Theorem 4.7 (c) and (a) imply the Gross–Kuz’min conjecture in the cases of
abelian extensions of Q (as already shown in [11]) and for number fields with
at most 2 p-adic places (which is proven in [22]).

(ii) Jaulent [18] proves that if K=k is such that k satisfies the Gross–Kuz’min
conjecture and jSp.K/j D jSp.k/j, then K also satisfies the Gross–Kuz’min
conjecture. In fact, given a Zp-extension k1=k and � 2 Art xQp

.Gk/, one has

ıG
k1=k

.�/ �
X
pjp

dim Hom.W 0
p ; �

^
p / �

X
pjp

dimW 0
p D f .�/

by Proposition 3.8. Applying this to � D IndkK1K � 1k , we obtain

ıG
Kk1=K

� ıG
k1=k

� jSp.K/j � jSp.k/j

by Artin formalism (Corollary 3.11). Jaulent’s claim then follows from this
inequality with k1 D kcyc and Proposition 3.5.

(iii) Jaulent [17] proves the Gross–Kuz’min conjecture for real Galois extensions
K=Q in which p splits completely, under the additional assumption that the
group algebra QpŒGal.K=Q/� does not contain a matrix algebra Mn.D/ over
a skew-field D with n > 2. If we slightly strengthen this last assumption by
supposing that Gal.K=Q/ only has one- or two-dimensional irreducible repre-
sentations over xQp but we do not make any splitting assumption on p in K,
then K still satisfies the Gross–Kuz’min conjecture. Indeed, any irreducible
� 2 Art xQp

.Gal.K=Q// satisfies f .�/ � d.�/ � 2, while dC.�/ D d.�/ � 1,
so ıG

Q.�/ D 0 by Theorem 4.3. Therefore, ıG
K D 0 for such a K.

(iv) Kuz’min [25] proved that any S4-extensionK of Q satisfies the Gross–Kuz’min
conjecture under the assumptions that the unique quadratic subfield E is imagi-
nary and that the decomposition subgroupDp of p inK is the 3-Sylow V3 of S4.
In fact, the first assumption can be relaxed and it is enough thatDp contains V3.
The same conclusion holds if we instead assume thatK is real, and that p splits
in E but not completely in K. The proof of these facts is similar to that in
Example 4.9.

Example 4.9. Any totally real S5-extension K=Q satisfies the Gross–Kuz’min conjec-
ture, provided that the decomposition subgroup of p (say Dp) in K contains the 5-Sylow
of S5. Indeed, assume first that jDpj D 5, so that jSp.K/j D 24. The irreducible rep-
resentations of S5 are 1, sgn (the sign character), Std (the standard representation, 4-
dimensional), Std˝ sgn, and �1; �2; �3 (of respective dimensions 5; 5; 6). As sgn is of
prime-to-5 order, sgnjGQp

is trivial, so f .sgn/ D 1 and f .Std/ D f .Std˝ sgn/. In light
of (3.4), we obtain

24 D f .1K/ D f .IndQ
K1K/ D 1C 1C 8 � f .Std/C 5 � f .�1/C 5 � f .�2/C 6 � f .�3/:
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It is then clear that all the f ’s involved are at most 2. Moreover, K=Q being totally real,
Lemma 3.7 (2) shows that dC.�/ � 1 for all � 2 Art xQp

.Gal.K=Q//, so ıG
Q.�/ D 0 by

Theorem 4.3. Hence, ıG
K D 0. The case where jDpj > 5 is treated similarly, noticing that

jSp.K/j � 12.

5. Vanishing locus of Gross’s defect

5.1. Preliminaries

This section is devoted to the proof of the following theorem which, in turn, implies The-
orem 1.8 stated in the introduction.

Theorem 5.1. Let k be a number field and let 'WGk ! xQ�p be a finite-order character.
Assume also that p completely splits in the number field cut out by '.

(1) Assume that r2 C ıL
k
� 1, where r2 is the number of complex places of k. If there

exists at least one Zp-extension k1 of k such that ıG
k1=k

.'/ D 0, then there are
at most Œk W Q� (and at most Œk W Q� � 1 if ' D 1) Zp-extensions k1=k such that
ıG
k1=k

.'/ ¤ 0.

(2) Assume that k is an imaginary quadratic field. There is at most one Zp-extension
k1=k for which ıG

k1=k
.'/ ¤ 0, and the slope of k1=k defined in Example 5.5

is finite and transcendental. Moreover, if ' cuts out an abelian extension of Q
or if the polynomial XYZ2 � .AX � BY /.CX �DY / does not vanish on any
7-tuple .a; b; c; d; x; y; z/ 2 ƒ7 which form a xQ-linearly independent set, then
ıG
k1=k

.'/ D 0 for any Zp-extension k1 of k.

Proof of Theorem 1.8, assuming Theorem 5.1. LetK be an abelian extension of an imag-
inary quadratic field k and let Kab � K be its maximal absolutely abelian subfield. By
Artin formalism (Corollary 3.11) and by Theorem 5.1, we have

ıG
Kk1=K

> 0

for a given Zp-extension k1=k if and only if there exists a character ' of Gal.K=k/ such
that ıG

k1=k
.'/ > 0. Such a character cannot be a character of Gal.Kab=k/, and moreover,

k1 is uniquely determined by '. Therefore, we have

ıG
Kk1=K

> 0

for at most ŒK W k� � ŒKab W k� distinct Zp-extensions of k.

In the rest of Section 5, we fix once and for all an abelian extension K=k with Galois
group G such that p totally splits in K. We let n be the degree of k and .r1; r2/ its
signature, and we put r D r1 C r2 � 1� ıL

k
so that the maximal multiple Zp-extension of

k has rank n � r . Write p1; : : : ; pn for the p-adic primes of k. Finally, denote by Z .k/

the set of all Zp-extensions of k.
Instead of working with the map Lk1=k.'/, it will be more convenient to consider the

following alternative description of ıG
k1=k

.'/.
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Lemma 5.2. Let k1=k be a Zp-extension with Galois group � . The quantity ıG
k1=k

.'/

is the dimension of the kernel of the '-isotypic component of the map LocK1=K of Propo-
sition 3.3.

Proof. This follows from Poitou–Tate duality as in the proof of Proposition 3.5 where one
replaces the GK-module Qp by the module xQp.'/ on which Gk acts by '.

Since ' is a multiplicative character, the '-isotypic component of a xQpŒG�-module X
is canonically isomorphic to the linear subspace XŒ'� of X consisting of elements x 2 X
such that g � x D '.g/x for all g 2 G. Hence Lemma 5.2 asserts that, if ' ¤ 1k , then
ıG
k1=k

.'/ is equal to the dimension of the kernel of the localization map

Hom.GK ; xQp/Œ'�!

nM
iD1

�M
Pjpi

H1.KP; xQp/=Hom.�P; xQp/
�
Œ'�: (5.1)

5.2. Matrices in logarithms of algebraic numbers

For any P 2 Sp.K/, the local Artin reciprocity map identifies the maximal pro-p quotient
of the abelianization of GKP

with the p-adic completion of K�P, so under this identifica-
tion we have

H1.KP; xQp/ D Hom.K�P; xQp/ D Hom.Q�p ; xQp/;

where Hom refers to continuous group homomorphisms. We also see logp and the p-adic
valuation map ordp as characters K�P ' Q�p ! xQp . In order to describe elements in the
domain of the map (5.1) we make use of the short exact sequence of xQpŒG�-modules

0! Hom.GK ; xQp/
A
�!

nM
iD1

Hom
� Y

Pjpi

K�P;
xQp

�
! Hom

�
OK

�
1
p

��
; xQp

�
; (5.2)

where A is induced by the Artin map. The exactness of (5.2) follows from that of the
second row in [33, Lemma 10.3.13] by taking xQp-linear duals, after noticing that

Hom.GK ; xQp/ D Hom.GSp.K/; xQp/;

where GSp.K/ is the Galois group of the maximal extension of K unramified outside p.
Let 1 � i � n and fix a prime Pi of K above pi . We define a basis ¹�i;' ; z�i;'º of

the '-component of Hom.
Q

Pjpi
K�P;Qp/ as follows. First define characters �i and z�i

of
Q

Pjpi
K�P by imposing that they are supported on K�Pi

and that �i jK�
Pi
D � logp and

z�i jK�
Pi
D ordp .

Noting that ¹�i ; z�iº is a basis of Hom.K�Pi
; xQp/, we see from

Q
Pjpi

K�P ' IndG
¹1ºK

�
Pi

that the translates ¹�i ı ��1; z�i ı ��1º�2G form a basis of Hom.
Q

Pjpi
K�P;Qp/. The '-

component of this latter space is therefore generated by the characters �i;' and z�i;' given
by

�i;' D
X
�2G

'.�/ � �i ı �; z�i;' D
X
�2G

'.�/ � z�i ı �:
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We next define two matrices L' and M' which, roughly speaking, consist of p-adic
logarithms of linearly independent '-units. As in the proof of Theorems 4.1 and 4.3, it
will be essential in order to apply results of Section 2 to consider a “xQ-structure” for ',
which simply means here that we see 'WGk ! xQ�p as taking values in xQ�. This is of
course possible using �pW xQ ,! xQp , as the values of ' are roots of unity.

Let ui be any Pi -unit of K which is not a unit (take for example a generator of Ph
i ,

where h is the class number ofK). The Pi -adic valuation map OK Œ1=Pi �
�!Z has kernel

O�K , so the choice of ui with a given Pi -valuation is unique, up to multiplication by a unit
of K. Consider

ui;' D
Y
�2G

'.�/˝ ��1.ui / 2 xQ˝K
�:

It is clear that ui;' is a unit away from the primes above pi , and u1;' ; : : : ;un;' form a basis
of .xQ˝ OK Œ1=pi �

�/Œ'� modulo .xQ˝ O�K/Œ'�. We also fix a basis ¹"1;' ; : : : ; "r.'/;'º of
.xQ˝O�K/Œ'� modulo the kernel of Leopoldt’s map �k.'/ of (3.10), where

r.'/ D dC.'/ � ıL
k .'/:

For all j D 1; : : : ;n, one can see via �Pj WK ,!KPj DQp the elements ui;' and "i;' inside
xQ˝Q�p . We then define two matrices L' D .Li;j;'/ and M' D .Mi;j;'/ of respective
sizes n � n and r.'/ � n by letting

Li;j;' D
logp

�
�Pj .ui;'/

�
ordp

�
�Pi
.ui /

� ; Mi;j;' D logp
�
�Pj ."i;'/

�
; (5.3)

where we extended logp to xQ ˝Q�p by linearity. Notice that M' has full rank by con-
struction.

Let �0 be an element in the '-component of
Ln
iD1 Hom.

Q
Pjpi

K�P;
xQp/, which we

write as
P
ti�i;' C Qti z�i;' in the basis ¹�i;' ; z�i;' W 1 � i � nº. Denote by T and zT the

column matrices of respective coordinates .t1; : : : ; tn/ and .Qt1; : : : ; Qtn/.

Lemma 5.3. �0 belongs to the image of the map A of (5.2) if and only if zT D L'T and
M'T D 0.

Proof. By the exactness of (5.2) such an �0 is characterized by its vanishing at all the
ui ’s and the "i;'’s. Going back to the definitions yields, for all 1 � i; j � n, the identities
�j;'.�Pj .ui //D� logp.�Pj .ui;'//, z�j;'.�Pj .ui //D ordp.�Pj .ui //, ordp.�Pj .ui //D 0 (for
i ¤ j ). Hence, we find

�0.ui / D 0, �
X
1�j�n

tj � logp
�
�Pj .ui /

�
C

X
1�j�n

Qtj � ordp
�
�Pj .ui /

�
D 0

, Qti D
X
1�j�n

tj � Li;j;' D ŒL'T �i ;

and likewise, �0."i / D 0, ŒM'T �i D 0. These two conditions hold for all 1 � i � n if
and only if zT D L'T and M'T D 0, as wanted.
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In what follows we repeatedly use the following elementary fact. For all compact
topological groups G , any non-trivial continuous group homomorphism �WG !Qp factors
through a quotient Z� isomorphic to Zp , and two such homomorphisms � and �0 are
proportional (i.e., � D � � �0 for some � 2 Qp) if and only if Z� D Z�0 . Conversely, any
topological groupZ isomorphic to Zp which arises as a quotient of G defines a continuous
homomorphism �WG ! Qp , which is unique up to scaling.

Fix k1 2 Z .k/ and put � D Gal.k1=k/. The above argument attaches to � a non-
zero element � 2 Hom.Gk ;Qp/, unique up to scaling. Since the restriction map induces
an isomorphism

Hom.GK ;Qp/Œ1� ' Hom.Gk ;Qp/;

one can write A.�/ as
P
i .si�i;1 C Qsi z�i;1/. We shall refer to the column matrices S D

.s1; : : : ; sn/
t 2 Pn�1.Qp/ and zS D .Qs1; : : : ; Qsn/t 2 Pn�1.Qp/ as the coordinates of k1.

Proposition 5.4. The following claims hold.

(1) The map sending a Zp-extension k1=k to its coordinates S defines a bijection
between Z .k/ and ¹S 2 Pn�1.Qp/ W M1S D 0º.

(2) Let k1 2 Z .k/ with coordinates S 2 ker.M1/ and consider the matrix of size
.nC r.'// � n given in block notation by:

N'.S/ D

�
Diag.S/L' � Diag.L1S/

M'

�
; (5.4)

where Diag.U / denotes the diagonal matrix associated with a column matrix U .
Then

ıG
k1=k

.'/ � dim kerN'.S/ � ;

where  D 1 if ' D 1 and  D 0 otherwise. If, moreover, none of the primes
p1; : : : ;pn splits completely in k1, then ıG

k1=k
.'/ D dim kerN'.S/ �  .

Proof. The inverse of the map in (1) takes S D .s1; : : : ; sn/
t 2 Pn�1.Qp/ to the Zp-

extension k1=k constructed as follows. Lemma 5.3 applied to ' D 1 tells us that there
exists � 2 Hom.GK ;Qp/Œ1�D Hom.Gk ;Qp/ such that A.�/ has coordinates S and zS WD
L1S . As A is injective, � is unique up to scaling. Then k1 is defined as the kernel field
of �.

Let us prove the second claim. Fix k1 2Z .k/ and denote by �2Hom.GK ;Qp/Œ1� the
corresponding continuous homomorphism. By Lemma 5.2 and by (5.1), ıG

k1=k
.'/C  is

the dimension of the space consisting of all elements �0 2
Ln
iD1.Hom.

Q
Pjpi

K�P;
xQp//Œ'�

satisfying the conditions of Lemma 5.3 and such that

�0
jK�

Pi

2 Hom.�Pi
; xQp/ (5.5)

for all 1 � i � n. For a given homomorphism �0 of coordinates T and zT and a fixed
index i , we reinterpret (5.5) as follows. First recall that Hom.�Pi

; xQp/ is spanned by
A.�/jK�

Pi
, which has coordinates .si ; Qsi / in the basis ¹�i jK�

Pi
; z�i jK�

Pi
º D ¹� logp; ordpº
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of Hom.K�Pi
; xQp/, whereas �0

jK�
Pi

has coordinates .ti ; Qti / in this basis. Hence, (5.5) is
equivalent to

ti D � � si and Qti D � � Qsi for some �i 2 xQp

and therefore implies
si � Qti D Qsi � ti ;

an equality which can be rephrased as ŒDiag.S/L'T �i D ŒDiag.L1S/T �i since zT D L'T
and zS D L1S . Moreover, the converse implication holds unless .si ; Qsi / D .0; 0/, that is,
�pi D �Pi

D ¹1º. Therefore, ıG
k1=k

.'/C  is at most the dimension of the space of all
T 2 xQn

p that lie in the kernel of both Diag.S/L' � Diag.L1S/ and M' , with equality if
none of the primes p1; : : : ;pn splits completely in k1.

Example 5.5. If k is an imaginary quadratic field, then M1 is of size 0 and Proposi-
tion 5.4 (1) provides a bijection between Z .k/ and P1.Qp/. Explicitly, take k1 2 Z .k/

and let �WGk ! Qp be a non-trivial continuous group homomorphism factoring through
Gal.k1=k/. Then applying the mapA of (5.2) to � and restricting to units yields a nonzero
element of

Hom.O�kp1
�O�kp2

;Qp/ D Hom.Z�p ;Qp/˚ Hom.Z�p ;Qp/:

We write this element as s1�1 C s2�2, where �i is logp on the i -th summand of the pre-
ceding direct sum, and the coordinates of k1 are S D .s1; s2/.

As � is unique up to a scalar, the ratio s1=s2 2 Qp [ ¹1º is well defined. We refer to
s1=s2 as the slope of k1. For instance, the cyclotomic extension of k has slope 1, whereas
its anticyclotomic extension has slope �1. Moreover, slope 0 (resp. slope1) corresponds
to the unique Zp-extension of k that is unramified at p1 (resp. at p2).

If the roles of p1 and p2 are exchanged, then the slope is changed to its reciprocal, and
in particular, it makes sense to say that the slope is transcendental.

5.3. Proof of Theorem 5.1

We keep the notations of the preceding sections and, in particular, (5.3) and (5.4). We
abbreviate L1; M1 and N1.S/ as L;M and N.S/, respectively. By Proposition 5.4 (1),
the set Z .k/ can be identified with a closed linear subvariety of Pn�1.Qp/ of dimension
n � r � 1 D r2 C ı

L
k

.

Proposition 5.6. Assume that n � r � 2 and let

C .k/ D
®
k1 2 Z .k/ W ıG

k1=k
¤ 0

¯
;

C'.k/ D
®
k1 2 Z .k/ W ıG

k1=k
.'/ ¤ 0

¯
:

(1) If k is an imaginary quadratic field, then C .k/ D ;.

(2) If there exists k1 2 Z .k/ n C .k/ in which no prime above p totally splits, then
C .k/ is finite with jC .k/j � n � 1.

(3) If there exists k1 2 Z .k/ n C'.k/ in which no prime above p totally splits, then
C'.k/ is finite with jC'.k/j � n.
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Proof. Let us prove (1) and (2). Notice first that Diag.S/LS D Diag.LS/S , so by (5.4),
MS D 0 impliesN.S/S D 0. By Proposition 5.4 (2) with 'D 1 andK D k, C .k/ embeds
into the set of all S 2 Pn�1.Qp/ such that MS D 0 and rkN.S/ < n � 1.

Assume first that k is quadratic, so nD 2 and r D 0. Given any S D .s1; s2/ 2 P1.Qp/,
the matrix N.S/ D Diag.S/L � Diag.LS/ has the form�

�s2L1;2 s1L1;2
s2L2;1 �s1L2;1

�
:

As logp is injective on Z�p , logp.�p1.u2// and logp.�p2.u1// both are non-zero, so at least
one of the two non-diagonal entries of N.S/ is non-zero. Therefore, this matrix has rank
one for any S 2 P1.Qp/, and C .k/ D ;.

We no longer assume that k is imaginary quadratic, but we still assume that n� r � 2.
The case where n� r D 1 is trivial, because it forces Z .k/D ¹kcycº. We may then assume
that n � r D 2. Since M has full rank r , there exist invertible matrices P;Q such that
PMQ D .Ir j 0/, where Ir is the identity matrix of size r . The change of variables S 0 D
Q�1S induces a linear bijection between kerM � Pn�1.xQp/ and the projective line ¹0º �
P1.xQp/ � Pn�1.xQp/. Now consider the list P1.S 0/; : : : ; Pt .S 0/ of all .n� 1/ � .n� 1/-
minors of the matrix

N.S/ D N.QS 0/ D

�
Diag.QS 0/L � Diag.LQS 0/

M

�
:

All the Pk’s are two-variable homogeneous polynomials of degree � n � 1. The assump-
tion of (2) implies, by Proposition 5.4 (2), that there exists S with rkN.S/ D n � 1.
Therefore, at least one of the Pk’s is not the zero polynomial, and hence, it has at most
n � 1 zeros in ¹0º � P1.xQp/. Again by Proposition 5.4 (2), we thus may conclude that
jC .k/j � n � 1.

The proof of point (2) is very similar to the previous one. Indeed, by (2) of Proposi-
tion 5.4, C'.k/ embeds into the set of all S 2 Pn�1.Qp/ such thatMS D 0 and rkN'.S/
< n. The same argument with the .n� 1/� .n� 1/minors ofN.S/ replaced by the n� n
minors of N'.S/ shows that, under the assumption of (3), one has jC .k/j � n.

We end the proof of Theorem 5.1 with the case where k is imaginary quadratic. We let
� be the complex conjugation of k. Recall that � acts on ' via '� .g/ D '.�g�/ and that
'� D ' if and only if ' cuts out an extension of k which is abelian over Q.

Proposition 5.7. Assume that k is an imaginary quadratic field, ' ¤ 1 and that p splits
completely in the field cut out by '.

(1) If '� D ', then C'.k/ D ;.

(2) If '� ¤ ', then any k1 2 C'.k/ has transcendental slope.

(3) If '� ¤ ', then jC'.k/j � 1. Moreover, if XYZ2 � .AX � BY /.CX � DY /
does not vanish on any 7-tuple in ƒ7 which form a xQ-linearly independent set,
then C'.k/ D ;.
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Proof. Let k1 2 Z .k/ of coordinates S D .s1; s2/. Take K to be the Galois closure over
Q of the field cut out by '. Note that K ¤ k and that p totally splits in K. By Proposi-
tion 5.4, k1 belongs to C'.k/ if and only if the matrix

N'.S/ D

0@s1.L1;1;' � L1;1/ � s2L1;2 s1L1;2;'
s2L2;1;' s2.L2;2;' � L2;2/ � s1L2;1
M1;1;' M1;2;'

1A
has rank 1. The definition of L' (and also L'� ) involves the choice, for i D 1; 2, of a
prime Pi of K above pi and a Pi -unit ui of non-zero valuation. Since �.p1/ D p2, one
may take �.P1/ D P2 and �.u1/ D u2, so that

L1;1 D L2;2; L1;2 D L2;1; L1;1;� D L2;2;�� ; and L1;2;� D L2;1;�� ;

for � 2 ¹';'�º. We may also take �."1;'/ to be "1;'� , so thatM1;2;' DM1;1;'� . Moreover,
the elements u1;' ; u1;1; u2;' ; u2;1; "1;' and, under the additional condition ' ¤ '� , the
elements u1;' ; u1;'� ; u1;1; u2;' ; u2;'� ; u2;1; "1;' ; "1;'� form two sets of xQ-linearly inde-
pendent p-units. To see this, consider their valuations at P1 and P2, and use the fact that
units belonging to distinct isotypic components are linearly independent.

Now, consider first the case where ' D '� . Then N'.S/ has rank 1 if and only if
its two columns are equal. This last condition easily implies that s1 D ˙s2 and that
u1;'=u1;1, u2;1 and u2;' have xQ-linearly dependent P1-adic logarithms. But all of these
units have trivial P1-valuation, so they must be linearly dependent by Proposition 2.2. We
have already justified that this is not the case, so N'.S/ has rank 2 and C'.k/ D ;. This
proves (1).

Assume now that ' ¤ '� and that k1 has an algebraic slope, i.e., s1=s2 2 P1.xQ/. We
may assume that both s1 and s2 are algebraic numbers, hence N'.S/ has coefficients in the
xQ-linear subspaceƒ of xQp introduced in Section 2. Moreover,N'.S/ has xQ-linearly inde-
pendent rows and columns. Indeed, the sets ¹"1;' ; "1;'� º and ¹u1;'=u1;1; u2;1; u2;' ; "1;'º
are two sets of independent units with trivial P1-valuation. Therefore, their images under
logp ı�P1

are again linearly independent by Proposition 2.2. We thus may apply Corol-
lary 2.4 and conclude that rkN'.S/ D 2. This proves (2).

Finally, assume that ' ¤ '� and that k1 2 C'.k/, i.e., N'.S/ has rank 1. We already
know that s1=s2 2 P1.Qp/�P1.xQ/ and in particular, both s1 and s2 are non-zero. Letting
� D s1=s2, the vanishing of the minors of N'.S/ yields the relations

M1;1;'� � .L1;1;' � L1;1 � L2;1 � �
�1/ D L2;1;'� �M1;1;' ;

M1;1;' � .L1;1;'� � L1;1 � L2;1 � �/ D L2;1;' �M1;1;'� :

SinceL2;1 �M1;1;'¤0, the second equality uniquely determines the slope�, so jC'.k/j�1.
Furthermore, eliminating � in the above equations then yields the polynomial equation

M1;1;' �M1;1;'� � L
2
2;1 D

�
.L1;1;'� � L1;1/ �M1;1;' � L2;1;' �M1;1;'�

�
�
�
L2;1;'� �M1;1;' � .L1;1;' � L1;1/ �M1;1;'�

�
:
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The elements of the set ¹u1;'=u1;1; u1;'� =u1;1; u2;' ; u2;'� ; u2;1; "1;' ; "1;'� º are linearly
independent, and they all have a trivial P1-adic valuation, so their images under logp ı�P1

are also xQ-linearly independent. Therefore, the above polynomial identity contradicts our
assumption. This ends the proof of (3).
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