Corrigendum to "The variety of polar simplices"

Kristian Ranestad and Frank-Olaf Schreyer

Abstract. We point out an important error in [Doc. Math. 18 (2013), 469–505] and provide the necessary corrections.

In [\[3\]](#page-2-0), we tried to describe the compactification of the variety of polar simplices to a quadric. Unfortunately, we wrongly asserted in [\[3,](#page-2-0) Corollary 2.2] that being apolar to a quadric is a closed condition in the Hilbert scheme.

Joachim Jelisiejew gave an example of a scheme of length 4 on a line that is not apolar to a quadric Q in \mathbf{P}^3 , but is a limit of polar simplices for Q, see [\[2,](#page-2-1) Example 1]. Consequently the locus of apolar schemes of length *n* to a nonsingular quadric Q in \mathbf{P}^{n-1} is not closed for any $n \geq 4$. This means that several of the statements of the global properties of VPS (O, n) in [\[3\]](#page-2-0) are wrong. An account of alternative compactifications in the multigraded Hilbert scheme and in the Grassmannian of spaces of quadrics of ideals of polar simplices is given in [\[2\]](#page-2-1). Here we explain the errors in [\[3\]](#page-2-0) and the corrected statements whose proofs can be found in [\[2\]](#page-2-1).

Let $S = k[x_1,...,x_n]$ be a polynomial ring which we view as a homogeneous coordinate ring of the $\mathbf{P}^{n-1} = \mathbf{P}(S_1^*)$. Let $q \in S_2^*$ be a quadric of rank n, then $Q = \{q = 0\} \subset \check{\mathbf{P}}^{n-1}$. A finite subscheme $\Gamma \subseteq \mathbf{P}^{n-1}$ of length *n* is *apolar* to Q if $I_{\Gamma} \subseteq q^{\perp}$, the ideal of forms in S that annihilates q by differentiation. When $\Gamma = \{[\ell_1], \ldots, [\ell_n]\}$ is smooth, it is a polar simplex, i.e. $q = \lambda_1 \ell_1^2 + \cdots + \lambda_n \ell_n^2$ for suitable nonzero scalars λ_i . This condition may be formulated for ideals in general; an ideal $I \subset S$ is *apolar* to Q if $I \subseteq q^{\perp}$.

While the condition $I_{\Gamma} \subset q^{\perp}$ is *not closed* in the usual Hilbert scheme, the apolarity condition is a *closed* condition in the multigraded Hilbert scheme Hilb^H of ideals I with a fixed Hilbert function H for S/I . Hence, it is more natural to work in the multigraded Hilbert scheme. If $I \subset S$ is a limit of ideals I_{Γ} of apolar schemes $\Gamma \in Hilb^{n}$, then $I \subset I_{\Gamma_{0}}$, for some $\Gamma_0 \in \text{Hilb}^n$. If Γ_0 is not apolar to q, then the limit ideal $I \neq I_{\Gamma_0}$ and is an unsaturated apolar ideal to q.

We consider the Hilbert function $H := (1, n, n, ...)$ and a quadric Q of rank n. The locus of saturated ideals in $Hilb^H$ is open by [\[1,](#page-2-2) Theorem 2.6], so we consider $VPS^{sb}(O, H) \subset Hilb^H$, the closure of the locus of saturated ideals apolar to Q.

²⁰²⁰ Mathematics Subject Classification. Primary 14M27; Secondary 14J45.

Keywords. Apolar ideal, Fano n-folds, quadric, polar simplex, syzygies.

Associating to each ideal $I \in VPS^{sbl}(Q, H)$ the space I_2 of quadrics in the ideal defines a forgetful map

$$
\pi_G: \mathrm{VPS}^{\mathrm{sh}}(Q, H) \to \mathbb{G}\left(\binom{n}{2}, q^{\perp}_2\right),
$$

into the Grassmannian of $\binom{n}{2}$ a_2)-dimensional subspaces in q_2^{\perp} . Let

$$
\mathrm{VPS}^{\mathrm{sbl}}(Q, H)_G := \pi_G\big(\mathrm{VPS}^{\mathrm{sbl}}(Q, H)\big).
$$

Of course, there is also a natural map $\pi_{\text{Hilb}}: \text{Hilb}^H \to \text{Hilb}^n; I \mapsto V(I)$, since all ideals with Hilbert function $H = (1, n, n, \ldots)$ defines a scheme of length n. For comparison with the schemes $VPS(O, n)$ and $VAPS(O, n)$ in [\[3\]](#page-2-0);

$$
VAPS(Q, n) = \pi_{\text{Hilb}}(VPS^{\text{sbl}}(Q, H)),
$$

while VPS (Q, n) is the component of VAPS (Q, n) that contains the polar simplices.

When $n > 4$, the map πG has positive dimensional fibers, while its restriction to the saturated part of VPS^{sbl} (O, H) is bijective, even an isomorphism when $n = 4, 5$ (see [\[2,](#page-2-1) Remark 4.9]). In particular, the Hilbert scheme compactification and the Grassmannian compactification do not coincide, so [\[3,](#page-2-0) Corollary 2.2] is wrong.

The first part of Theorem 1.1 claims that for $2 \le n \le 5$ the variety VPS (O, n) is smooth of Picard rank 1 and is Fano of index 2. For $n = 2, 3$ we have π_G is an isomorphism, in particular VPS^{sbl} (Q, H) and VPS^{sbl} $(Q, H)_G$ are both isomorphic to VPS (Q, n) and the argument of [\[3\]](#page-2-0) is correct. For $n = 4, 5$, by [\[2,](#page-2-1) Theorem 1.3], VPS^{sbl} (O, H) is smooth and admits a nontrivial contraction onto the smooth VPS^{sbl} $(O, H)_G$, hence the Picard rank of VPS^{sbl} (O, H) is at least two. For VPS (O, n) we do not know whether it is smooth, but if it were its Picard rank would also be at least two. When replacing $VPS^{sh}(Q, H)$ by the Grassmannian model VPS^{sbl} $(Q, H)_G$, however, we salvage the first part of [\[3,](#page-2-0) Theorem 1.1].

Salvaged Theorem 1.1 ([\[2,](#page-2-1) Corollary 4.10]). *For* $2 \le n \le 5$ *the variety* VPS^{sb1}(*Q, H*)_{*G*} is a smooth rational $\binom{n}{2}$ 2 *-dimensional Fano variety of index* 2 *and Picard number* 1*.*

The second part of [\[3,](#page-2-0) Theorem 1.1] remains correct, it is not effected by the compactification.

Theorem 1.2 in [\[3\]](#page-2-0) concerns VPS^{sbl} $(Q, H)_G$, the Grassmannian model. It is correct for $n = 4$ after correcting the degree, using a more nuanced machinery of excess intersections. The case $n = 5$ remains open.

Salvaged Theorem 1.2 ([\[2,](#page-2-1) Proposition 4.15]). *The variety* $VPS^{sb}(Q, H)$ _G *contains the image* TO^{-1} *of the Gauss map. When* $n = 4$ *, the restriction of the Plücker line bundle generates the Picard group of* $VPS^{sh}(Q, H)_G$ *and the degree is* 362*.*

Theorem 1.3 in [\[3\]](#page-2-0) concerns the linear span of the Grassmannian model VPS^{sbl} (O, H) _G, and is wrong. The image of the unsaturated ideals in $VPS^{sb}(Q, H)$ does not lie in the

span of TQ^{-1} . Whether VPS $^{\rm{sbl}}(Q,H)_G$ is a linear section of the Grassmannian therefore remains an open problem. It is true for $n = 3$, and a computational proof for $n = 4$ is given in [\[2\]](#page-2-1).

The remaining results of [\[3,](#page-2-0) Sections 1, 2, 3, 4, and 5] are correct. Remark 2.5 in [\[3\]](#page-2-0) is valid for saturated ideals.

The degree computation [\[3,](#page-2-0) Theorem 6.3] is effected by mistakes concerning the compactifications. The degree formula of [\[3,](#page-2-0) Theorem 6.3] gives a contribution to the degree of VPS^{sbl} (O, H) _G. The remaining contribution can be computed in case $n = 4$ using excess intersection, see [\[2,](#page-2-1) Proposition 4.15 and Remark 4.16].

References

- [1] J. Jelisiejew and T. Mańdziuk, Limits of saturated ideals. 2022, arXiv:[2210.13579](https://arxiv.org/abs/2210.13579)
- [2] J. Jelisiejew, K. Ranestad, and F.-O. Schreyer, The variety of polar simplices II. 2023, arXiv[:2304.00533](https://arxiv.org/abs/2304.00533)
- [3] K. Ranestad and F.-O. Schreyer, [The variety of polar simplices.](https://doi.org/10.4171/DM/406) *Doc. Math.* 18 (2013), 469–505 Zbl [1281.14035](https://zbmath.org/?q=an:1281.14035) MR [3084557](https://mathscinet.ams.org/mathscinet-getitem?mr=3084557)

Communicated by Gavril Farkas

Received 9 October 2023.

Kristian Ranestad

Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway; ranestad@math.uio.no

Frank-Olaf Schreyer

Fakultät für Mathematik und Informatik, Universität des Saarlandes, Campus E2 4, 66123 Saarbrücken, Germany; schreyer@math.uni-sb.de