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Cycles in graphs with geometric property (T)
Jeroen Winkel

Abstract. We show that a sequence of graphs with uniformly bounded vertex degrees, number of
vertices going to infinity, and with geometric property (T) has many small cycles. We also show
that when a small part of such a sequence of graphs with geometric property (T) is changed, it still
has geometric property (T), provided that it is still an expander. We use this to give an example of
a sequence of graphs with geometric property (T) that has large cycle-free balls.

1. Introduction

In this paper, we are interested in sequences (X} ) of finite connected graphs. All graphs
we consider are simple and undirected. The vertex sets will be denoted by V(X,) and
the edge sets by E(X,). We will always assume that lim,_« |V (X5)| = oo and that the
sequence has uniformly bounded degree, i.e., there is a constant d such that for all n, all
vertices of X, have degree at most d.

Let X be a finite graph. For vertices x, y, we write x ~ y if (x, y) is an edge, and we
write deg(x) for the degree of x. The Laplacian of X is the matrix Ay, whose rows and
columns are indexed by the vertices of X, defined by

deg(x) ifx =y,
(Ax)xy =1 —1 if x ~y,

0 else.

It is a symmetric positive semi-definite matrix, and it has O as an eigenvalue. This is
a simple eigenvalue if and only if X is connected.

Consider a sequence X = (X,,) of finite connected graphs with uniformly bounded
degree and number of vertices going to infinity. The sequence is an expander sequence if
there is a constant 4 > 0 such that for all n, all positive eigenvalues of Ay, are at least /.
Equivalently, we can directly look at the operator

Ax = P Ax, € B(?X).
n
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Here and in the following, {2X denotes the Hilbert space generated by the vertices of
X1, X2, ... as basis vectors. Then the sequence is an expander sequence if and only if
there is & > 0 such that 6 (Ayx) € {0} U [h, 00).

There is an equivalent combinatorial characterisation of expanders. For a subset of the
vertices A C V(X},), let A denote the set of edges with exactly one vertex in A. Then the
sequence (Xj) is an expander if and only if it has uniformly bounded degree and there is
¢ > 0 such that for all A C V(X,) with |A| < %|V(X)| we have |§4| > c|A|. We refer
to, e.g., [7] for more details on expanders.

In [11], Willett and Yu introduced geometric property (T). It was studied in more
depth by the same authors in [12]. It is a stronger property than being an expander, based
on spectral gap of Ay in a larger algebra.

Let (X,) be a sequence of graphs, and let 7' be a bounded operator in [ ], B(£?X,)
B({%X). For x,y € V(X,), we denote by d(x, y) the shortest-path distance from x to y.
We can view T as a matrix whose rows and columns are indexed by the vertices of X, and
Tyy =0if x € X, y € X;n, m # n. The propagation of T is sup{d(x,y) | Txy # 0},
which may be infinite. The sum and product of operators with finite propagation have
finite propagation again. The algebraic uniform Roe algebra, as introduced by Roe in [9],
is defined as

Cy[X] = {T € 1_[ B({*X,) ‘ T has finite propagation}.
n

The algebraic uniform Roe algebra is a complex unital x-algebra. A representation
of Cy[X]is given by a Hilbert space J¢ and a unital x-homomorphism 77: C,[X] — B(H#).

The completion of C,[X] in the norm inherited by B({?X) is the reduced uniform Roe
algebra Cz,(X). In this paper, we are more interested in the completion with respect to
a larger norm, namely the maximal norm |-||max given by

[ Tmax |l = sup [l (T)],
(. 3)

where the supremum is taken over all representations (7, #). If X has uniformly bounded
degree, then the maximal norm is necessarily finite (see, for example, [3, Section 3]). It is
then easy to check that it is indeed a norm. Its completion is a C *-algebra, the maximal
uniform Roe algebra C, (X) (see, for example, [10]).

For T € C,[X], we denote by o(T) the spectrum in C%;(X), while 0yax (7') denotes
the, possibly larger, spectrum in C.% (X). Recall that X is an expander sequence if and

only if there is 4 > 0 such that o(Ayx) C {0} U [A, 00).

Definition 1.1 ([11]). Let X = (X,) be a sequence of finite connected graphs with uni-
formly bounded degree and number of vertices going to infinity. Then X has geometric
property (T) if there is y > 0 such that oy, (Ax) € {0} U [y, 00).

A sequence of finite graphs (X},) has large girth if for every R > 0, there is a positive
integer N such that for n > N, the graphs X, do not have any cycles of length shorter
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than R. It was shown in [11, Corollary 7.5] that a sequence of graphs with property (T)
can never have large girth, using properties of K-theory. We give a quantitative version of
this result: there is some R such that all of the X}, have “many” R-cycles.

Let us make this more precise. As in [1], we define the cycle spaces of a graph.

Definition 1.2. Let X be a graph with edge set E. Let C[E] be the free R-vector space
generated by E. We use the convention that (x, y) = —(y, x). Let Z(X) be the subspace
of C[E] generated by the cycles, where a cycle (x1, X2, .. ., X, ) corresponds to the element
(x1,x2) + (x2,x3) + -+ + (Xp—1, Xn) + (X, x1). For any integer R, let Zg(X) be the
subspace generated by the cycles of length at most R.

We can now state the first theorem of this paper.

Theorem A. Suppose X = (X)) is a sequence of finite connected graphs with uniformly
bounded degree and with number of vertices going to infinity. Suppose that X has geo-
metric property (T). Then there are constants R > 0 and ¢ > 0 such that for all large
enough n, we have dim Zg(X,) > ¢|V(Xy)|.

The cost of generating an equivalence relation is introduced by Levitt in [6]. Taking
the supremum of all equivalence relations generated by probability measure preserving
actions of a group gives the cost of this group, as introduced by Gaboriau in [2]. Com-
binatorial cost is a variant on this concept for sequences of graphs, which was defined by
Elek in [1]. It measures the number of edges necessary to induce the coarse structure of
a sequence of graphs.

Definition 1.3. Let (X,) and (Y¥,) be sequences of finite connected graphs such that X,
and Y, have the same vertex set. For x, y € V(X}), denote by dx (x, y) the path distance
in X, and by dy (x, y) the path distance in Y,,. We say that (X) and (Y,) induce the same
coarse structure if there is a constant L such that dx (x, y) < Ldy(x,y) and dy(x,y) <
Ldx(x,y) foralln and x, y € V(X,,).

Definition 1.4 ([1]). The combinatorial cost of a sequence X = (X,) of graphs is de-

fined as
|E(Yn)|

V(X))
where the infimum is taken over all sequences of graphs (Y},) on the same vertex sets
as X, which induce the same coarse structure as (Xj,).

c(X) = infliminf
Y n

In [4], it was shown that any group with property (T) has cost 1. This raises the ques-
tion if a similar theorem can be proved in the combinatorial context. From Theorem A,
it already follows that the infimum in Definition 1.4 is not attained for sequences of graphs
with geometric property (T) (see Proposition 2.7). The question, whether sequences of
graphs with geometric property (T) necessarily have cost 1, remains open.

Theorem A also raises the following question: is it true that for every sequence (X})
with geometric property (T), there is an R such that all vertices have a cycle in their
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R-neighbourhood? We show that if two graph sequences (X},) and (Y,) “mostly” agree,
and one of them has geometric property (T) and the other one is an expander, then the
other one has geometric property (T) too. This can be used to answer the above question
negatively (see Corollary 3.2).

Definition 1.5. Let X = (X,) and Y = (¥,,) be sequences of finite connected graphs
with increasing number of vertices and uniformly bounded degree. We say that X and Y
are approximately isomorphic if there are subgraphs X, € X, and Y, C Y}, such that X},
and Y,, are isomorphic for all n, and

Vo)l o IE&)L L V)L L [EX)
1m = lm = lm = lm =
n=oo [V(Xp)| oo |[E(Xp)| nooe [V(Yy)| nooo [E(Yy)]

It is easy to see that we may take X, and Y, to be induced subgraphs (that is, subgraphs
that contain all edges between their vertices that are present in the ambient graph).

If X and Y are approximately isomorphic and X has geometric property (T), then ¥
need not have geometric property (T); indeed, it does not even need to be an expander
(it is only an asymptotic expander, as defined in [5]). For example, if (X},) is a sequence
of graphs with geometric property (T) with | X,,| > n2, and we attach a path of length 1 to
each X,,, then it will not be an expander anymore. However, this is the only thing that can
g0 wrong.

Theorem B. Let X = (X,) and Y = (Y,,) be approximately isomorphic sequences of
finite connected graphs with uniformly bounded degree and number of vertices going to
infinity. Suppose X has geometric property (T) and Y is an expander. Then Y has geomet-
ric property (T).

2. Short-cycle spaces in graphs with geometric property (T)

Let (X,) be a sequence of graphs. The algebraic Roe algebra C,[X], as recalled in Sec-
tion 1, has a standard representation on £2X . Other representations are harder to describe
explicitly. We will see how to construct a representation of C,[X], starting from a repres-
entation of only part of the matrix algebra B({2X,,), for each n.

Definition 2.1. Let X be a graph, and let Br(£2X) be the set of bounded operators
on £2X of propagation at most R. An R-representation is a Hilbert space J together with
alinear map 7: BR({2X) — B(H) satisfying n(T*) = n(T)* and n(TS) = n(T)7(S)
if T, S and T'S have propagation at most R.

Suppose X = (X,) is a sequence of graphs, and suppose we have a sequence of r;,-
representations 7, of X, on J#,. If r, — 0o, we can make a representation of C,[X] as
follows: let U be a free ultrafilter on N, and define the ultraproduct # = [], #»/U.
Define n(T) = limy 7, (T |;2x,) € B(#). Then n: C [X] — B(H) is a representation.
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We can use these representations to prove that a sequence of graphs with property (T)
does not have large girth (which was also already proved in [11] using K-theory). Below,
we first give the proof for d-regular graphs with an even integer d, to avoid technicalities.
It is true in greater generality; this will follow later from Theorem A.

Proposition 2.2. Let X = (X,) be a sequence of d-regular finite connected graphs and
an increasing number of vertices. Suppose that X has geometric property (T) and that d
is even. Then X does not have large girth.

Proof. Suppose that X has large girth and let r € R. Let r,, denote the girth of X,,. There
is an Eulerian cycle on X,. This defines a direction on each edge of X,,. So we can define
a function p: E,, — {—1, 1}, where E, denotes the edge set of X, such that for each
x € X, we have Zy~x p(x,y) = 0. For all pairs (x, y) € X2, choose a shortest path
Y(x,y) = (X = X0,X1,...,X4(x,y) = ¥) from x to y. Choose it in such a way that y(, x) is
the inverse of y(y,y). Define p: X7 — Z by

p(x,y) = p(x0, X1) + -+ + p(Xa(x,y)=1> Xd(x,y))-

Then p(x, y) = —p(y, x), and if d(x, y) + d(y,z) + d(x,z) < r,, we have p(x, y) +
p(y.z) = p(x, z). Now define m,: B({*X,) — B({*>X,) by

7 (TYE(x) = D Tay explitp(x, y))E().
¥

Then 7, (T*) = m,(T)*, and if the propagations of S and T and T'S are at most %rn, then
0 (TS) = 1, (T) 7, (S). So my, defines a %rn -representation.

Consider the constant unit vector &, € {2X, with &,(x) = . This satisfies

1
VIV (Xn)I
n(Ax)En = d(1 — cost)E,.

Let 7: Cy[X] — B(H) denote the limit of the 7,,. It is a representation. Let £ = (&,) € H.
Then 7(Ax )& = d(1 —cost)&, so d(1 —cost) € oma(Ax). Since ¢ can be any real num-
ber, we conclude that [0,2d] € 0max(Ax). Then X does not have geometric property (T),
and we have arrived at a contradiction. ]

If the graph is not d-regular for an even d, we do not necessarily have an Eulerian
cycle. In this case, we can still prove the result. We need Lemmas 2.3 and 2.4 below to
construct a cycle v € Z(X) that will play a similar role as the Eulerian cycle above. We
will use it to prove something even stronger, namely that there are “many” small cycles
in X (Theorem A).

Note that, if X is a finite connected, then dim(C[E]) = |E| and dim(Z(X)) = |E| —
|X| + 1 (this is clear for a tree, and any time an edge is added to a graph, both sides
increase by 1). We will also use the standard inner product on C[E], such that edges
have norm 1 and are perpendicular to each other. An edge in a connected graph is called
a bridge if the removal of this edge would render the graph disconnected.
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Lemma 2.3. Let X be a finite connected graph with edge set E. There is v € Z(X)
satisfying the following conditions:

(i) Foralle € E, we have v(e) € {—1,0,1}.
(i) Of all edges e € E that are not bridges, at most half satisfy v(e) = 0.

Proof. Let Z,,...,Zk becycles in X such that each edge that is not a bridge is contained
in one of the cycles Z;. Choose €1, ..., &g € {0, 1} uniformly and independently at ran-
dom. Letw = ZZK=1 €; Z;.Foreach e € E thatis not a bridge, we have P{w(e) is odd] = %
So E[#{e € E | w(e) is odd}] is equal to half the number of edges that are not bridges. So
there is some w € Z(X) such that w(e) is odd for at least half the number of edges that
are not bridges. Now let E’ C E be the subset of E consisting of the edges for which w(e)
is odd. Then each vertex of X has an even number of adjacent edges in E’. So each com-
ponent of (V(X), E’) has an Eulerian cycle. Let v be the sum of these Eulerian cycles.
Then v satisfies the conditions. ]

Lemma 2.4. Let X be a finite connected graph with edge set E and maximal degree d.
Suppose there is a constant h > 0 such that for all subsets A with

1 1
=|V(X)| < 4] £ =|V(X)],
VOOL = 14] = 5V

we have |6A| > h|A|. Then there is a constant ¢ > 0, only depending on d and h, such that
if [V(X)| is large enough, the number of edges that are not bridges in X is at least c|E|.

Proof. For a bridge b, define Kj and Gy to be the two components of the graph (V(X),
E \ {b}), with |Kj| < |Gp|. Since §K, = {b}, and h - %|V(X)| > 1 for |V(X)]| large
enough, we must have | Kj| < %|V(X)|. Now let G = (), Gp and K = V(X) \ G, where
the intersection ranges over all bridges b. If x, y € G, then all the vertices of any minimal
path from x to y are also in G. In particular, G is connected.

We show that G is non-empty. Let b be a bridge such that K} is maximal. Let x be the
endpoint of b in Gp. Then x € G: for if there is another bridge b’ with x € K}, we have
either K U {x} C Ky, or G C K}, and then K} is too large.

Note that all bridges of X must have at least one vertex in K. Therefore, the number
of edges that are not bridges is at least |G| — 1. So if we find a constant ¢’ > 0 such that
|G| > ¢'|V(X)]|, we are done.

Let G = {b1,...,bn}. These are all bridges. For each 1 <i < N, we have |Kp,| <
%|V(X)|. The Kp, are pairwise disjoint: if K, and Kj, were not disjoint for i # j,
then we would find a cycle with b; and bj. Then we can choose some 1 < M < N
such that min(|K|, 2|V(X)|) < ZjM=1 |Kp, | < $IV(X).If K < 1|V(X)], we have |G| >
% |V(X)|, and we are done. Suppose that K > %| V(X)|. Then we can apply the assumption
of the lemma to A = Ujle Kp, . We have

|64] = M = N = [§G| = d|G|,
therefore [A| < %|G|. So |G| > %|V(X)|. This finishes the proof. |
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Corollary 2.5. Let X be a finite connected graph with edge set E and maximal degree d.
Suppose there is a constant h > 0 such that for all subsets A C V(X)) with %|V(X)| <
|A] < %|V(X)|, we have |8A| > h|A|. Then, provided that |V (X)| is large enough, there
are a constant ¢ > 0, only depending on d and h, and v € Z(X) satisfying the following
conditions:

(i) Foralle € E, we have v(e) € {—1,0,1}.
(i) We have #{e € E | v(e) # 0} > c|E|.

Proof. This follows directly from Lemmas 2.3 and 2.4. |

Theorem A. Suppose X = (X,) is a sequence of finite connected graphs with uniformly
bounded degree and with number of vertices going to infinity. Suppose that X has geo-
metric property (T). Then there are constants R > 0 and ¢ > 0 such that for all large
enough n, we have dim Zg(Xy,) > e|V(X,)|.

Proof. Let y > 0 be such that oax(Ax) S {0} U [y, 00). Let d be the maximal degree
of all vertices of X. Since X has geometric property (T), it is, in particular, an expander
sequence by Cheeger’s inequality: for each subset A € X,, with |A| < %|V(X »)|, we have
|84] > £]AJ. Only finitely many of the X,, can be trees (this follows from Lemma 2.4, for
example). We can then assume without loss of generality that none of the X, is a tree.

Define & = %. Let ¢, be the constant from Corollary 2.5, using the constants d and .
Let ¢5 > 0 be such that

o= == 50 ed) Sy 0

Let t > 0 be small enough such that

dt*> <y 2

and also :
exp(it) — 1 —it + §z2 < cot?. (3)

Let € > 0 be such that the following conditions are satisfied:
1

8ed? < 56‘31‘4, 4)
2 < 5)

&= =,

—2d

4e < h. (6)

Suppose for a contradiction that for each R, there is an n such that dim Zg(X,) <
e|V(Xy)|. Let E, be the set of edges of X,. Note that Z(X,) € C[E,] consists of
the functions p: E,, — C satisfying Zy~x p(x,y) =0 for all x € V(X,). The subset
Zr(Xn)* C C[E,] consists of all functions p: E,, — C satisfying p(x1,x2) 4+ p(x2,x3) +
-+ 4 p(xq4,x1) = 0 for all g-cycles (x1,x2,...,x4) withg < R.
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Let p € Zr(X,)*. We will construct a %R-representation 7, of X,,. First, we extend p
to a function on V(X,,)? as follows: for each pair (x, y) € V(X,)?, choose a shortest path
(X = X0,X1,...,Xd(x,y) = y) from x to y and define

p(x,y) = p(xo, x1) + p(x1,X2) + -+ + p(Xa(x,y)—1> Xd(x,y))-

Since p € Zgr(X,) , this satisfies the following: if x, y € V(X,) satisfy d(x, y) < R,
then p(x, y) = —p(y,x), and if x, y,z € V(X,,) satisfy d(x,y) + d(y,z) + d(z,x) < R,
then p(x, y) + p(y.z) + p(z,x) = 0.

Now we define 7,: B((2X,) — B({*>X,) by

mo(T)E(x) = ) Ty explip(x, y)E().
y

This is a %R—representation.

For a subset B € E,, denote by X, \ B the graph (X,, E, \ B). Choose edges
b1, ..., bdaim(zg(x,)) recursively in such a way that b; is an edge in a cycle in Zg(X,) N
Z(Xp \{b1,....bj_1}). Then Zr(Xn) N Z(X, \ {b1,...,bj—1,b;}) has one dimension
fewer than Zr(X,) N Z(X, \ {b1,...,bj—1}). Thus, with B = {b1, ..., baim(zz(x,))}
we have Zg(X,) N Z(X, \ B) = 0. Then we also have Zg(X,,) N C[E, \ B] =0, and
counting dimensions, Zg(X,) & C[E, \ B] = C[E,]. Since C[B] L C(E, \ B) and
Zr(Xn)t L Zg(X,), it follows that C[B] N Zg(X,)* = 0. Counting dimensions again,
we get ZR(Xn)J_ ® C[B] = C[Eq].

Since each b; is an edge in a cycle in Z(X, \ {b1,...,b;_1}), it follows by induction
that X, \ B is still a connected graph. Let A C V(X,), with i|V(X,,)| <|4| < %|V(Xn)|.
Denote by dx,\pA the set of edges in X, \ B with exactly one vertex in A. Then we
have |8x,\pA| > |8x,A| — |B] = F|A| — e[V(Xy)| = (§ — 4e)|A] = 2h — 4e)|A] >
h|A| by inequality (6). So X, \ B satisfies the conditions of Corollary 2.5. We can also
assume V(X},) is large enough to apply the corollary by taking R large enough.

Now let v € C(X,, \ B) be as in Corollary 2.5. Recall that Zg (X,,)* @ C[B] = C[E,].
Hence there is a unique function p € Zg(X,)" such that p(e) = v(e) forall e ¢ B.

Now we consider the %R—representation Trp. Let Ay = mp(Ax) € B({?X,). Let
£, € £2X,, be the constant function with £,(x) = 1 for all x € X,,. Then we have

Aska(x) =) (1 —exp(itp(x, y)))
y~x

forall x € X,,.

We define a partition V(X,) = A7 U A, U A3. We can think of the vertices in A1 as
the ‘good’ vertices, the vertices in A, as the ‘neutral’ vertices, and the vertices in A3 as
the ‘bad’ vertices. Luckily, A3 will be small. The sets are defined as follows:

Az ={x € X, | (x,y) € B forsome y ~ x},
Ay ={x € X, \ 43 | v(x, y) # 0 for some y ~ x},
Az = Xu \ (41 U 43).
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Since |B| < &|V(Xy)|, we have |A3| < 2¢|V (X, )|, and since at least c; | E,, | edges e satisfy
v(e) # 0, we have |A1| > G |E,| — 43| > (5§ —20)|V(X,)| = 55|V (X,)| by inequal-
ity (5).

We will estimate |A,&,(x) — %d t2|, finding increasingly good estimates in the cases
x € Az, As, Ay, respectively. For all x € X, we have |A,&,(x) — %dt2| <2d.Forx ¢ As,
we have p(x, y) = v(x, y) forall y ~ x. Since Zy~x v(x,y) = 0, we have

Arkn(x) = Y (1 +itv(x, y) —exp(itv(x, y))).

y~x

Then, using inequality (3), we have

1 ) d .
M) = 5d?] < Y14 itvey) = 5 — el . )|
y~x
. d
< (Z ‘1 +itv(x,y) — 2deg(x)t
y~x

— (1 +itv(x,y)— %tzv(x, y)Z)D + cpdt?

IA

1 2 2 1 2.2
Sd1* + eadt —EZv(x,y) 2.

y~x

For x € A,, this is at most (%d + ¢2d)t?. For x € Ay, there is y ~ x with v(x, y) # 0,
and we find that | A&, (x) — 2d1?| < (3d + c2d — )12
Using inequalities (1) and (4), we now have

1
HA,g,, — 5d%g,

g ZX Ak — 3ar2]

X€E
¥ (b2t 3 (e
=((1- 2";)( d +ch) + 2d( d +c2d——) )Vl
+ 8ed?|V(X,)|

_ (%dz — c3) V() |e* + 8ed2| V(X))
(i =2

For each R, we have found an ng, a 1 R-representation 7, z: B({? Xy ) — B({? Xy),
and a vector &,, € B({?X,,) satisfying

|

1
TTng (AX)SnR - EdtzgnR
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Let U be a free ultrafilter on N, and define the ultraproduct ¥ = [], B({?>X,,)/U. Let
w = limy 7, , and £ = limy ”?L—R”. Then r is a representation of C,[X], and we have
nR

| 2es\z |1, ,
— < - —
s - 3are] = (1-22) e
It follows that
1., 2e3\2\ 1, 203\ 1
S0 Omax (Ax) contains a positive element that is at most d¢2. This is a contradiction with
inequality (2). ]

Remark 2.6. Note that in the above proof, ¢ only depends on d and y.

We have shown that each sequence of graphs with geometric property (T) has many
small cycles. It follows that we can remove a large number of cycles of the graph, while
still keeping the same coarse structure. In particular, the infimum in the definition of cost
is not attained (see Definition 1.4).

Proposition 2.7. Let X = (X,,) be a sequence of graphs with degree at most d. Suppose
there are R, e > 0 such that dim Zg(Xy,) > ¢|V(X,)| for all n. Then

B
X) <l f - .
= v~ 7

In particular, if X has geometric property (T), the infimum c(X) = infy liminf, fggﬁﬂ

over all sequences (Y,) inducing the same coarse structure as X, is not attained.

Proof. Consider the set of all subgraphs of X,,, on the same vertex set, without R-cycles.
Let Y, be a maximal element of this set. If two vertices x, y are connected in X, then
either they are connected in Y, or adding the edge (x, y) to Y,, would create an R-cycle
inY,.Sody(x,y) < R—-1.

It follows that dy (x,y) < (R— 1)dx (x, y) for any two vertices x,y € V(X}). Since Y,
is a subgraph of X, we also have dy (x, y) > dx(x, y). This shows that X and Y induce
the same coarse structure.

Since dim Zg(X,) > ¢|V(X,)|, there are, in particular, at least |V (X,)| cycles of
length at most R in X,,. Of all these cycles, at least one of its edges is not in Y,,. One edge
can be contained in at most d =1 cycles of length at most R. So |E(Yy,)| < |E(X,)| —
—7=1|V(Xn)|. This gives

|E(Yn)|<]. .flE(Xn)| &

lim inf imin — .
no V(X)) T V(X)) dR!
So c(X) < liminf, G — &

The last statement of the lemma follows from Theorem A and the fact that if X
and Y induce the same coarse structure, also Y has geometric property (T) (see [12, The-
orem 4.1]). ]
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3. Behaviour of geometric property (T) under small changes

A natural question in light of Theorem A is the following: if a sequence of graphs (X},) has
geometric property (T), is it necessary that there is an R such that every vertex has a cycle
in its R-neighbourhood? In this section, we will see that the answer is no. We will do this
by proving that if we change a sequence of graphs a small amount (see Definition 1.5)
while keeping expansion, we also keep geometric property (T).

Theorem B. Let X = (X,) and Y = (Y,) be approximately isomorphic sequences of
finite connected graphs with uniformly bounded degree and number of vertices going to
infinity. Suppose X has geometric property (T) and Y is an expander. Then Y has geomet-
ric property (T).

For the proof, we need the following proposition.

Proposition 3.1. Let X = (X,,) be an expander sequence with maximum degree d, and
let h > 0 such that 6(Ax) C {0} U [k, 00). Let w: Cy[X] — B(H) be a representation,
and suppose that v € J is a unit vector with Axv = nv for some n > 0.

(1) Let F, C V(Xy) be such that lim,_, \VI %5 = 0. and let PF € (C [X] denote
the projection on the vertices of the F,. Then || Pry| < 2idzh~? 774

(ii) Let G = (Gy) be a sequence of subgraphs of X,, such that lim,,_ ngg:)I =

Then (Av.v) < 23dh™"n? and | Agv]| < 23d3h—3n.

Proof. (i) We can assume that n < h. Let § > 0 and let N be a large enough integer such
that [F,|/|V(X,)| < 6 forn > N. Let Px_, € Cy[X] be the projection on the vertices
of X1 up to Xn. Then we have Ay Px_,v = nPx_,v. Since 7 is not an eigenvalue of
Ax Px_y, we have Px_yv = 0.S0 Prv = Pfg_yv, where Pp,, is the projection on the
union Fsy = J,-n Fn.

We can colour the edges of X in 2d colours such that no two intersecting edges have
the same colour. For each colour i, define the involution 7; of X that sends each vertex in
an edge with colour i to the other vertex of this edge, while fixing the other vertices. This
defines an element in C,[X] that we also denote by 7;. As r =1,wehave0 < 1—17 <2.
This inequality holds in C* (X). We have Ay = Zl_l(l 7;): we can check this by

max
computing the matrix coefficients. For any x € X, we have

2d
Z(l — 7j)xx = #{i | x has an edge with colour i} = deg(x),
i=1

and for different x, y € X, we have

2d
Z(l —Ti)xy = —#{i | (x,y) is an edge with colour i},
i=1

which is —1 if (x, y) is an edge and O otherwise.
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For f € {*X, denote the corresponding multiplication operator in B({2X) by M.
Define the positive unital linear map ¢: £*°X — C by ¢(f) = (Myv, v). For each i,
we have ((1 — 7;)v,v) < 1,50 ||(1 = 1)v|? = ((2 = 27;)v,v) < 27. Then for f € {>*X,
we have

(I—w)e(f) =e(f - fon)
= (Mfv,v) — (Myor,v,v)
= (Myv,v) — (Mytv, 7;v)
= (Mrv,v —5v) + (My (v —1;0), 7 v).

We get [(1 = )@ (/)] = 2l flloollv = mivll < 24201 f lloc. s0 [I(1 = )l < 24/2n.

So ¢ is almost invariant for the involutions ;. Note that ¢ is a unit vector in the Banach
space (£>°X)*. By the Goldstine theorem, ¢ is in the weak closure of the set P (X) C £! X
of probability measures on X. We will use some functional analysis to show that we can
approximate ¢ by a probability measure ¥ € £ (X), in such a way that it will still be
almost invariant for the involutions t;.

Let B be the real Banach space @izil £Y(X,R) with norm ||(;)| = max; ||v¥;]|1-
Define the convex set B C B by

B={(1-w)y) ¢y ePX). [YWEy) —¢lry)l <8}

There is a net ¥, € #(X) converging weakly to ¢. For large A, we have | (1f_ ) —
o(1F. )| < 8. Now (1 — 7;)yx converges weakly to (1 — 7;)¢ € (£*°X)* for all i. So
(1 = 1j)p) € B** is in the weak closure of B.

Let A be the open ball {a € B | |lal| < 2+/217 + 8}. Suppose A and B are disjoint.
By the Hahn—Banach separation theorem, there are f € B* and a positive real number s
with f(a) <s < f(b) fora € Aand b € B.Now ((1 — 7;)¢) € B** is in the weak closure
of B,so f(((1 —t;)p)) > s. On the other hand, ||((1 — 5;)p)| < 2«/3—_% so (1 —1;)@) is
in the weak closure of 2?/27?18 A, showing that £(((1 — 1;)@)) < 2?/7518s’ giving a con-
tradiction.

Therefore, A N B # @, so there is ¥ € £ (X) with [y (1f_ ) —¢(lF.)| <8 and
(1 —t)¥| <227+ §foralli.Let § = w% € ¢2X. Then for all i, we have

(1—1)8.8) = D (EX) —ETmx)EX)

xeX

= Y —Em)?

xeX

A

S )~ E @]

xeX

1 1
S0 =yl < V2 + 8.
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Summing over all i gives (Ax§, &) < 2d /2n + dé§. Denote by & the projection of &
on the locally constant functions in £2X. We get (Ax (£ — &), & — &) = (AxE, &) <

2d /27 + d, but also (Ax ( — £). & — &) = hllE — E|l2. So
I~ &1 < 72d Y20 + ).

Since Vl(F)? 5 < dforn > N, wehave [|&F y| < V8. We get

Y(Ey) = Y £x)°

xeF-n
= Y E-E)0+2 ) EME-EM+ Y &K
xeF-y xEF>N XEF>N

IA

1€ — Ecll5 + 206cimy 2+ 15 = Ecll2 + €ty I3
< %(2d\/2_n+d8)+2\/§+5.
Finally, we have
1Pl = [ Pr=nv|? = (M1, v.0) = 9(LF.y) < ¥ (LFy) + 6
< Z(zd\/ﬁ—l—d(ﬁ) + 28 + 26.

Letting § — O gives the desired conclusion.
(ii) We recursively define Fo = |, V(G,) and

Fr41 ={x € V(X)\ F<x | x is adjacent to a vertex in Fy}

for k > 1. Here we write F<; for Fo U---U Fi. Let § > 0. Since there are infinitely
many Fj and they are all disjoint, there is k > 1 with ||Ppk WUF, V|| < 8. Since the
graphs have umformly bounded degree, we have lim,_ W?; ;I = 0. By part (i), we

have || Pr_,_,v| < 2idihz n4 Denote by Ap_, the Laplacian operator of the induced

subgraph with vertex set F<x. Then we have
Pr_Ax = Pr_AF, = AFr — PR AF,, = AF, — PR, AF_ PF,_ UF,-
It follows that
(Agv,v) < (Ap_v,v) = (Pry_, Axv,v) + (PR AF_, PF,_,UF V. V)
< Pry_,v,0) + |1 PR AF LI PR ur vl V]l

22dh™'n2 + 2dS6.

A

IA

Similarly, we have
[Agvll < [[F<xvll < |Pry_, Ax vl + | PR AF_ PE_uF V|l
<28dz2h77yf +2d8.

Since these inequalities hold for all § > 0, the conclusion follows. [
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Proof of Theorem B. Since X and Y are approximately isomorphic, we can identify the
isomorphic subgraphs and assume there are induced subgraphs Z, € X, N Y, with
WV(Z)l . V(Zn)]
im = lim =
n=oo |V(Xp)|  nooo [V(Yy)
Let d be the maximum degree in X U Y, let y > 0 with o,x(Ax) € {0} U [y, 00),
and let &7 > 0 with o(Ay) € {0} U [A, 00). Suppose that ¥ does not have geometric
property (T). Then the maximal spectrum of Ay contains arbitrarily small positive num-
bers. Let 0 < n < h be in the maximal spectrum of Ay. Then there are a representation
p: Cy[Y] — B(#) and a unit vector v € # with Ayv = no.

We will first apply Proposition 3.1 to bound v on some small subsets of Y. Then we
will construct a representation of C,[X] containing a vector 1 ® v that we will show is
almost constant. Since X has geometric property (T), it follows that 1 ® v is close to some
constant vector. This will give a contradiction because v is perpendicular to all constant
vectors.

We have

D=

(Ay\zv,v) < 2%dh_1n% and [|[Ay\zv| < 2id h_%n%
by Proposition 3.1 (ii).

Let F = {z € Z | z adjacent to some x € X \ Z}. Since the degree of the vertices
of Y is uniformly bounded, we have lim,,_, o ‘I]Q};”I = 0. By Proposition 3.1 (i), we have
|Proll < 23d2h—iyi, ”

Now we construct a representation of C,[X]. Consider the map E: C,[X] — C,[Z]
given by E(T) = PzTPz. This is a conditional expectation, meaning that for 7 € C,[X]
and S € C,[Z], we have E(T'S) = E(T)S and E(ST) = SE(T). We can construct the
tensor product K’ = C,[X] ®c,[z] . as in [8, Theorem 1.8]. We repeat the construc-
tion here. First we consider the algebraic tensor product C,[X] © #. We equip this with

a conjugate symmetric form given on simple tensors by

(T © 1, T2 ©vz) = (E(T5 T1)vy, v2).

It can be shown that this is positive semi-definite (see [8, Lemma 1.7] and its proof).

Define the semi-norm ||w| = (w, w)% forw € Cy[X] © H. Let H' = Cy[X] ®c,[z] #

be the Hilbert space we get by taking the quotient with respect to the kernel of |-||, and

then taking the completion. Let T} ® v; denote the image of 773 © vy in K’. It is easy to

see that for S € Cy[Z], we have T1 S ® v; = T1 ® Sv;. We now have a representation

7:Cy[X] — B(H'), given on simple tensors by 7(T1)(T> @ v1) = T1T> ® vy.
Consider the unit vector 1 ® v € J'. We have

(Ax(1®v), 1 ®v) = (Azv,v) + (E(Ax\z)v,v)
= (Azv,v) + (E(Ax\z) PFv, PFv)
< (Ayv.v) + |[E(Ax\2) |- PFol?
<n+2d-22dh 2 <842 \p2,
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provided 7 is small enough. Let w € /. be the projection of 1 ® v on the space of constant
vectors #, = ker(p(Ax)). Then we have

(Ax(1®v),l1®v)=(Ax(1®@v—w),l v —w)
>yl ®v—w|

Combining these inequalities, we get
I1®@v—w|? <84y~ \ps.
Finally, we have

= (Ayv,v)

= (Azv,v) + (Ay\zv,v)

=(Az(1®v),w) +{Az(1®v),1®v—w)+ (Ay\zv,v)
=(Az(1®v), 1 ®v—w) + (Ay\zv,v)
=n1®v),10v—-—w)—(1® Ay zv,1®v—w)+ (Ay\zv,v)
<l ®@v—wl? + [Ay\zv] - 11 ® v —w|| + 23 dh~1y3

< 842 Vy N 12343 h7 Yy 23 dh 3.

This gives a contradiction if 1 is small enough. Therefore, Y must have geometric prop-
erty (T). [

Using the theorem, we can construct a sequence of graphs with geometric property (T)
such that the graphs locally have arbitrarily large girth.

Corollary 3.2. There is a sequence of graphs (X,) with uniformly bounded degree and
number of vertices converging to infinity, satisfying geometric property (T), with a desig-
nated vertex p, € V(Xy), such that the n-ball around p, does not contain any cycles.

Proof. We start with a sequence of finite connected graphs (Y,) with geometric prop-
erty (T) and maximal degree d. We will construct the graphs X, by attaching new trees to
each Y.

Let (R,) be an unbounded sequence of integers with lim,—, o WZ(I;" 5 = 0.Let (T, pn)
be a rooted tree of depth R, such that each vertex except for the leaves has degree 3.
Connect each leaf of the tree to a different vertex in Y,. We call the new graph X, and
we show that (X},) is still an expander sequence. Note that the maximal degree of X,
equals d + 1. For a subset A € V(X,), denote by S, A the outer vertex boundary, that
is, the set {x € V(X,) | x &€ A, x adjacent to a vertex in A}. Since (Y}) is an expander
sequence, there is 7 > 0 such that for all n and all B C V(Y,) with |B| < %|Yn|, we
have [6ouB| > h|B|. Now let C € V(X,) with |C| < %|V(Xn)|. Write A = C N V(T,)
and B = C N V(Y,). Note that |B| < 2|V (Y;)| (provided # is large enough). We have
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|GoutA| > %|A| and all vertices in oy A are also in 6o, C unless they are in B, s0 |6y C | >
1

>|A| — | B|. We also have

2 |

180w C| = [SouB N V(Yn)| = h|B].

Taking a convex combination, we conclude that

|80uC| > (1 + %)_1(%|A| —|B| + %hlBl) -

h
2h +3

IC].

Hence, (X},) is an expander sequence.

By the condition on R,, we see that (X,) approximates (Y;). By Theorem B, the
sequence (X)) has geometric property (T). The R,-neighbourhood of p, is the tree T,
so it does not contain any cycles. After taking a subsequence and renumbering the graphs,
we get the sequence of graphs we wanted. ]

Acknowledgements. I would like to thank my advisor Tim de Laat for his support and
suggestions. I would also like to thank Federico Vigolo for helpful discussions, and the
referee for helpful suggestions.

Funding. The author is supported by the Deutsche Forschungsgemeinschaft under Ger-
many’s Excellence Strategy — EXC 2044-390685587, Mathematics Miinster: Dynamics —
Geometry — Structure.

References

[1] G. Elek, The combinatorial cost. Enseign. Math. (2) 53 (2007), no. 3—4, 225-235
Zbl 1146.05307 MR 2455943

[2] D. Gaboriau, Colt des relations d’équivalence et des groupes. Invent. Math. 139 (2000), no. 1,
41-98 Zbl 0939.28012 MR 1728876

[3] G.Gong, Q. Wang, and G. Yu, Geometrization of the strong Novikov conjecture for residually
finite groups. J. Reine Angew. Math. 621 (2008), 159-189 Zbl 1154.46042 MR 2431253

[4] T. Hutchcroft and G. Pete, Kazhdan groups have cost 1. Invent. Math. 221 (2020), no. 3, 873—
891 Zbl 07233320 MR 4132958

[5] A. Khukhro, K. Li, F. Vigolo, and J. Zhang, On the structure of asymptotic expanders. Adv.
Math. 393 (2021), article no. 108073 Zbl 1487.46051 MR 4340225

[6] G. Levitt, On the cost of generating an equivalence relation. Ergodic Theory Dynam. Systems
15 (1995), no. 6, 1173-1181 Zbl 0843.28010 MR 1366313

[7]1 A. Lubotzky, Discrete groups, expanding graphs and invariant measures. Mod. Birkhduser
Class., Birkhiuser, Basel, 2010 Zbl 1183.22001 MR 2569682

[8] M. A. Rieffel, Induced representations of C *-algebras. Adv. Math. 13 (1974), 176-257
Zbl 0284.46040 MR 353003

[9] J.Roe, Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer.
Math. Soc. 104 (1993), no. 497, x+90 pp. Zbl 0780.58043 MR 1147350


https://zbmath.org/?q=an:1146.05307
https://mathscinet.ams.org/mathscinet-getitem?mr=2455943
https://doi.org/10.1007/s002229900019
https://zbmath.org/?q=an:0939.28012
https://mathscinet.ams.org/mathscinet-getitem?mr=1728876
https://doi.org/10.1515/CRELLE.2008.061
https://doi.org/10.1515/CRELLE.2008.061
https://zbmath.org/?q=an:1154.46042
https://mathscinet.ams.org/mathscinet-getitem?mr=2431253
https://doi.org/10.1007/s00222-020-00967-6
https://zbmath.org/?q=an:07233320
https://mathscinet.ams.org/mathscinet-getitem?mr=4132958
https://doi.org/10.1016/j.aim.2021.108073
https://zbmath.org/?q=an:1487.46051
https://mathscinet.ams.org/mathscinet-getitem?mr=4340225
https://doi.org/10.1017/S0143385700009846
https://zbmath.org/?q=an:0843.28010
https://mathscinet.ams.org/mathscinet-getitem?mr=1366313
https://doi.org/10.1007/978-3-0346-0332-4
https://zbmath.org/?q=an:1183.22001
https://mathscinet.ams.org/mathscinet-getitem?mr=2569682
https://doi.org/10.1016/0001-8708(74)90068-1
https://zbmath.org/?q=an:0284.46040
https://mathscinet.ams.org/mathscinet-getitem?mr=353003
https://doi.org/10.1090/memo/0497
https://zbmath.org/?q=an:0780.58043
https://mathscinet.ams.org/mathscinet-getitem?mr=1147350

Cycles in graphs with geometric property (T) 17

[10] R.Willett and G. Yu, Higher index theory for certain expanders and Gromov monster groups, L.
Adv. Math. 229 (2012), no. 3, 1380-1416 Zbl 1243.46060 MR 2871145

[11] R. Willett and G. Yu, Higher index theory for certain expanders and Gromov monster
groups, II. Adv. Math. 229 (2012), no. 3, 1762-1803 Zbl 1243.46061 MR 2871156

[12] R. Willett and G. Yu, Geometric property (T). Chin. Ann. Math. Ser. B 35 (2014), no. 5, 761—
800 Zbl 1362.46073 MR 3246936

Received 11 March 2022.

Jeroen Winkel
Fachbereich Mathematik und Informatik, Westfdlische Wilhelms-Universitiat Miinster,
Einsteinstrasse 62, 48149 Miinster, Germany; jwinkel @uni-muenster.de


https://doi.org/10.1016/j.aim.2011.10.024
https://zbmath.org/?q=an:1243.46060
https://mathscinet.ams.org/mathscinet-getitem?mr=2871145
https://doi.org/10.1016/j.aim.2011.12.016
https://doi.org/10.1016/j.aim.2011.12.016
https://zbmath.org/?q=an:1243.46061
https://mathscinet.ams.org/mathscinet-getitem?mr=2871156
https://doi.org/10.1007/s11401-014-0852-x
https://zbmath.org/?q=an:1362.46073
https://mathscinet.ams.org/mathscinet-getitem?mr=3246936
mailto:jwinkel@uni-muenster.de

	1. Introduction
	2. Short-cycle spaces in graphs with geometric property (T)
	3. Behaviour of geometric property (T) under small changes
	References

