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Abstract. In this article, we study the log-log blowup dynamics for the mass critical nonlinear
Schrödinger equation on R2 under rough but structured random perturbations at L2.R2/ regularity.
In particular, by employing probabilistic methods, we provide a construction of a family of L2.R2/
regularity solutions which do not lie in H s.R2/ for any s > 0, and which blowup according to the
log-log dynamics.
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1. Introduction

1.1. Main results and background

We consider the focusing cubic nonlinear Schrödinger equation (NLS) on R2´
iut C�u D �juj

2u; .t; x/ 2 R �R2;

u.0; x/ D u0:
(1.1)

The goal of this article is to construct log-log blowup solutions at L2x.R
2/ regularity via

random data methods.
The NLS (1.1) has three conservation laws:

� Mass: M.u/ D
R
juj2,

� Momentum: P.u/ D =
R
ur Nu,

� Energy: E.u/ D 1
2

R
jruj2 � 1

4

R
juj4,
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and enjoys the scaling, translation and phase symmetries. In particular, if u solves (1.1)
with initial data u0, then

1

�0
u

�
t

�20
;
x � x0

�0

�
ei0 ; x0 2 R2; �0 > 0; 0 2 R;

solves (1.1) with initial data

u0;�0 D
1

�0
u0

�
x � x0

�0

�
ei0 :

One may verify that the mass M.u/ is invariant under the same scaling symmetry, and
hence equation (1.1) is referred to as the mass critical NLS. We note that solutions of
(1.1) also enjoy the so-called Galilean and pseudoconformal symmetries. We will not
explicitly use these symmetries in the present work, even though we will rely on many
previous results on log-log blowup solutions for which these symmetries play a central
role.

It is classical that L2x.R
2/ initial data gives rise to unique local-in-time solutions of

(1.1); see [17]. The focusing nature of (1.1) implies, in particular, the existence of a ground
state solution, Q.x/, which is the unique L2.R2/ radial positive solution of

��QCQ D Q3: (1.2)

The ground state plays an essential role in the blowup behavior of (1.1), and in particular it
provides a threshold for blowup dynamics in the following sense: for allL2x.R

2/ solutions
with mass strictly below kQkL2x , the associated flow is global and scatters asymptotically;
see the work of Weinstein [51] and Dodson [22]. Moreover, there exists an explicit blowup
solution with mass equal to kQk2

L2x
, given by

S.t; x/ D
1

t
Q
�x
t

�
e�i=tCi

jxj2

4t ; (1.3)

which, in some sense, is the unique minimal mass blowup solution; see [35].
Classical virial identity arguments due to Glassey [25] establish the existence of a

large family of negative energy blowup solutions, but the argument does not directly
characterize the blowup mechanism for such solutions. It is an active area of research to
understand blowup for (1.1) from a constructive perspective, so that one may better under-
stand possible blowup mechanisms in general. For blowup solutions with mass slightly
above the ground state,

kQk2 < ku0k2 < kQk2 C ˛
�; (1.4)

where ˛� is a small universal number, one of the best understood blowup dynamics
is the so-called log-log blowup. Log-log blowup solutions have been studied numeri-
cally in [31], and the first mathematical construction of such solutions was provided by
Perelman [44]. These solutions were subsequently systematically studied by Merle and
Raphaël [36–38, 40]. In particular, Merle and Raphaël prove that for all H 1

x .R
2/ solu-
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tions to (1.1) which have nonpositive energy1 and with mass slightly above ground state,
i.e. in the range (1.4), such solutions will blow up in finite time2 T < 1, with precise
asymptotics as t approaches the blowup time T given by the following:

Definition 1.1 (Log-log blowup dynamics).

u.t; x/ D
1

�.t/
.QC �/

�
x � x.t/

�.t/

�
e�i.t/;

1

�.t/
�

r
log jlog.T � t /j

T � t
(1.5)

and where
�.t/

t!T
���! 0 in PH 1.R2/ \ L2loc.R

2/:

Such blowup was shown to be stable in H 1
x .R

2/ in [47], and was later proved to be
stable underH s

x.R
2/ perturbations, for all s > 0, by Colliander and Raphaël [20], though

one needs to reformulate the notion of log-log blowup (in a natural way) for infinite
energy solutions. It is unclear whether such blowup is stable under L2x.R

2/ perturbations,
although one may guess that the answer is negative given the result of [39].

In light of the speculation that stability of log-log blowup may be false for arbitrary
data in L2x.R

2/, and the fact that this long-standing question remains open, in the cur-
rent work we investigate the stability of log-log blowup solutions under random L2x.R

2/

perturbations. Beginning with the seminal work of Bourgain [5], the behavior of nonlin-
ear dispersive equations with random initial data has been an active field of research; see
further discussion in Section 1.2 below. Indeed, in spite of the absence of known determin-
istic well-posedness theory, or even the existence of ill-posedness results, randomization
often lets one establish that a given dispersive equation is well-posed almost surely in a
particular low-regularity function space.

In the current article we employ randomization for a different and novel purpose. Our
aim is to establish the existence of blowup solutions at L2x.R

2/ regularity via a proba-
bilistic construction. We state our main theorem non-technically for the time being:

Theorem 1.2. The log-log blowup dynamics of Definition 1.1 is stable, with high proba-
bility, under .certain structured/ random L2x.R

2/ perturbations.

We will begin with well-prepared H 1
x .R

2/ data which are known to lead to log-log
blowup, and we perturb this initial data with random initial data, constructed as follows:
Let ¹gkºk2Z2 be a sequence of iid complex Gaussian mean-zero random variables. Let
¹Pkºk2Z2 be unit-scale projections to frequency k 2 Z2, defined as the Fourier multiplier
with respect to translations of a fixed Schwartz function

 k.�/ WD  .� � k/; (1.6)

1The result of Merle and Raphaël is more general and this nonpositive energy assumption can be
relaxed. However, general positive energy solutions are less understood compared to those blowing
up according to the log-log law.

2It is already highly nontrivial that such a solution will blow up in finite time.



C. Fan, D. Mendelson 4

that is,

Pkf D F �1. k.�/ yf .�//: (1.7)

We crucially exploit the fact that these Fourier projections satisfy a unit-scale Bernstein
inequality, namely for all 1 � r1 � r2 � 1 we have

kPkf kLr2x .R2/
� C.r1; r2/kPkf kLr1x .R2/

(1.8)

with a constant which is independent of k 2 Z4.
Let f 2 L2x.R

2/, and define its randomization

f ! D
X
k2Z2

gk.!/Pkf D
X
k2Z2

gk.!/. k yf /
_: (1.9)

Similar randomizations have previously been used in Euclidean space, first in [52], and
subsequently in [2,33]. One can show that if f 2 L2x.R

2/ nH s
x.R

2/ for some s > 0, then
f ! 2 L2x.R

2/ nH s
x.R

2/ almost surely, and throughout, we will restrict to the subset of
full measure of � so that this is indeed the case without further comment.

In the present application, we will take f to be piecewise constant in Fourier space,
i.e. fk WD Pkf constant, and we further require that fk satisfy3

jfkj � C=jkj; k � 1: (1.10)

Additionally, we normalize X
k

jfkj
2
D 1: (1.11)

Note that in particular there are many L2x.R
2/ functions f with this property which do

not belong to H s.R2/ for any s > 0, and hence f ! does not belong to H s
x.R

2/ for any
s > 0: consider for instance the function f which satisfies

jfkj �
1

jkj log2 jkj
; k 2 Z2:

We note that our result works almost line by line if one assumes fk is a function rather
than a number. Then one needs to replace jfkj in (1.10) and (1.11) by kfkkL1x .

We will provide more details about the precise form of the H 1
x .R

2/ blowup data in
Section 3, and we will state a more detailed version of Theorem 1.2 in Theorem 3.1 below.

Remark 1.3. While our techniques are probabilistic, in light of the previous discussion
on the randomized initial data, our main theorem provides a construction of L2x.R

2/ log-
log blowup solutions for the mass critical nonlinear Schrödinger equation which do not
lie in H s

x.R
2/ for any s > 0. To the best our knowledge, such examples were not previ-

ously known in the literature. Consequently, one can view our result as an example of the
probabilistic method, whose use in combinatorics was pioneered by Erdős [24].

3This is to mimic the randomization in [5].
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Remark 1.4. We emphasize that unlike many random data results, (1.1) is locally well-
posed at L2x.R

2/, which is the regularity at which we aim to construct our solutions.
Consequently, we do not use the randomness to overcome ill-posedness for low regularity
data, but rather we use randomization to construct a rough but highly structured perturba-
tion of the original log-log dynamics.

Remark 1.5. We also want to mention the recent interesting work [43], which implies
that blowup solutions to the one-dimensional mass critical NLS cannot be seen by the
Gibbs measure when incorporating a mass truncation less than or equal to the mass of
the ground state. There are several differences4 between our work and [43], but the most
important conceptual difference is that the blowup solutions studied in the current article
all have mass strictly above the mass of the ground state.

1.2. Comparison with previous results

1.2.1. Log-log blowup in H 1. We start with a quick review of the works of Merle and
Raphaël [36–38, 40]. Let us focus on H 1.R2/ solutions u to (1.1) with negative energy,
zero momentum,5 and with mass slightly above that of the ground stateQ; see (1.4). Via a
variational argument and modulation theory, one can establish a geometric decomposition
for the solution, given by

u.t; x/ D
1

�.t/
. zQb C �/

�
x � x.t/

�.t/

�
ei.t/; (1.12)

where zQb is a certain elliptic object which is a modification of Q (see (2.18)) such that
certain orthogonality conditions given in (3.21)–(3.24) below hold, and b and � are a
priori small.

One may then reduce the study of (1.1) to that of the evolution6 of �.t; x/ and the
parameters b.t/;�.t/;.t/;x.t/. It turns out that one should study this system in a rescaled
time variable s rather than the original time variable, where

dt

ds
D �2: (1.13)

We note that � dictates the blowup rate, and the parameter b dictates the evolution7 of �
in the sense that b � ��s=�.

4For example, their random data is centered, in some sense, at 0, whereas our random initial
data is a random perturbation centered at the ground state up to some symmetry. Also, our solution
is at L2x regularity, whereas their solutions are relatively regular, in H1=2�.

5One can always perform a Galilean transformation to set the momentum to zero, which does
not change the mass and does not increase the energy.

6Heuristically we now have five unknowns, �; b.t/; �.t/; x.t/; .t/, and five equations, (1.1),
(3.21)–(3.24). Thus, one may expect the system is well determined.

7Or more precisely, zQb is constructed in a such a way that b � ��s=�.
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A key estimate in the analysis of Merle and Raphaël is a local virial estimate8,

bs � H.�/ � 2�
2E � �

1�C�

b
C o.1/

�Z
jr�j2 C �2e�jyj

�
; (1.14)

where �b is a certain quantity which we define in (2.20) below, that satisfies

e�.1CC�/
�
b � �b � e

��
b
.1�C�/: (1.15)

for C�� 1. One hopes to deduce from (1.14) that

bs � ��
1�C�

b
: (1.16)

Note that formula (1.16) is closely related to the sharp upper bound of the log-log blowup.
The main point isH in (1.14) is some quadratic form, which will be coercive, dominatingZ

jr�j2 C �2e�jyj

up to six “bad” directions. Four bad directions will be handled via orthogonality of the
modulation parameters,9 the other two are handled by energy and momentum conserva-
tion. We also remark here that when E is negative, the term �2�2E in (1.14) will not
pose any problems for the analysis. In other words, heuristically, one only needs control
of the positive part of E.

Remark 1.6. The estimate (1.16) already implies the sharp upper bound on the blowup
rate for the log-log dynamics, which coincides with the direct scaling lower bound up to
a double logarithm. To derive the sharp lower bound, one needs to introduce a truncated
object z�b , defined in (2.22) to further sharpen the analysis, see Sections 2.4 and 6.

We note that (1.16) is enough to drive the dynamics into a regime where

�� e�e
��c
b
: (1.17)

In this regime, the crucial observation in [20] is that when � is small compared to b, one
does not need the negative energy assumption anymore since �2jEj can be treated as a
small perturbation. A similar mechanism can also be applied to momentum, i.e. one does
not require the strict zero momentum condition.

1.3. H s stability of log-log blowup

The study of the log-log dynamics in H s
x.R

2/ can be split into two stages. The first stage
establishes rigidity of the dynamics in the sense that the solution will be driven towards
some special, well-prepared initial data with an almost explicit form. The second stage

8Note that this estimate only involves local L2 information.
9In practice, some extra is cancellation is needed, since one of the orthogonality conditions for

the modulation parameters does not directly compensate for one of the bad directions associated
with H .
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establishes that for such well-prepared data, its evolution can be understood via a boot-
strap argument; see [45]. Though both stages will rely on the same crucial ingredients
from the analysis of Merle and Raphaël, the dynamics in the second stage is better under-
stood since one can argue explicitly by bootstrap.

The Cauchy problem (1.1) is locally well-posed in H s
x.R

2/ for any s > 0. Thus, to
proveH s

x.R
2/ stability of log-log blowup dynamics is equivalent to proving that for those

well-prepared initial data whose evolution can be characterized by the bootstrap estimates,
the evolution is stable under H s

x.R
2/ perturbations. This fact is established in the work

of Colliander and Raphaël [20]. One crucial observation and heuristic is that since the
solution u is of the form

u D
1

�.t/
h

�
x

�.t/

�
; kh.t/kH1 � 1;

in the H 1
x .R

2/ case, one may expect that in the H s
x.R

2/ case the solution has a similar
structure, with “quantitative energy bounds”10

E.u/ �
1

�2�2s
:

Recall that in (1.14), the term E.u/ has been multiplied by �2 in the analysis, and will
be formally of size �2s . When � satisfies (1.17), this term can be treated perturbatively
provided s > 0. This also explains why sD 0 is conceptually different from the case s > 0.

Unsurprisingly, a main challenge in the analysis of [20] is that since u is not in
H 1.R2/ anymore, the energy E.u/ is not well-defined (indeed, otherwise, it would be
bounded by a constant). To overcome this difficulty, one employs the I-method, introduced
by Colliander, Keel, Staffilani, Takaoka and Tao [18], a ubiquitous method in the study of
dispersive PDEs which exploits energy conservation for low regularity data, and which is
philosophically similar (although practically not completely equivalent) to the high-low
method of Bourgain [6]. We note that it may be surprising that one can apply the I-method
for all s > 0, whereas typically, such computations only work for certain s > s0. Broadly
speaking, this is because one has a good a priori understanding of the log-log asymptotics.

To briefly sketch the strategy of [20], one still considers the ansatz

u.t; x/ D
1

�.t/
. zQb C �/

�
x � x.t/

�.t/

�
e�i.t/: (1.18)

One applies the time-dependent operator IN.t/ which truncates the high frequency part of
the solution above N.t/ D �.t/�.1C/. One then aims to study the evolution of IN.t/u.t/,
and to prove that the positive part of energy E.IN.t/u.t// is controlled by ��2C2s (for-
mally speaking) via the I-method. In particular, one must establish that this energy cannot
be too large and positive, although it can be very negative.11 A key observation in [20] is
that the I-method is compatible with log-log bootstrap scheme; see also [45].

10We record this to give some intuition, but in practice, one needs to perform a frequency trun-
cation to discuss the energy of u.

11It is also emphasized in [20] that the negative part of the energy always drives the solution to
blowup.
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1.4. Random L2 perturbations

The approach in [20] breaks down for general L2x perturbations. In this article, we will
use randomized L2x.R

2/ data f ! , defined in (1.9), to perturb essentially the same well-
prepared data as in [20]. For the solutions u.t; x/ to (1.1), we use the ansatz

u.t; x/ D a.t; x/C F.t; x/; (1.19)

where

a D
1

�.t/
. zQb C �/

�
x � x.t/

�.t/

�
e�i.t/ and F D eit�f ! :

Our a will behave as the full solution u of [20].
The study of dispersive PDEs via a probabilistic approach was initiated by Bour-

gain [4, 5] for the periodic nonlinear Schrödinger equation in one and two space dimen-
sions, building upon the constructions of invariant measures by Glimm and Jaffe [26]
and Lebowitz, Rose and Speer [32]. Such questions were further explored by Burq and
Tzvetkov [13, 14] in the context of the cubic nonlinear wave equation on a three-dimen-
sional compact Riemannian manifold. There has since been a vast body of research where
probabilistic tools are used to study many nonlinear dispersive or hyperbolic equations at
supercritical regularities: see for instance the works [1, 8, 11, 19, 21, 41] as well as refer-
ences and discussion therein.

Certain global-in-time random data results in the compact setting which rely on invari-
ant measures work equivalently in the focusing and defocusing cases [4].12 However, in
the absence of an invariant measure, the vast majority of existing large data probabilis-
tic results treat only the defocusing nonlinear Schrödinger and wave equations: see for
instance [9, 15, 23, 30, 33, 34, 42, 46] and references therein. We note that analogously
to the deterministic theory, one may occasionally obtain “small data” type probabilistic
results in the focusing setting (see for instance [33]), although these are consequences of
the local theory and do not relate to the large data probabilistic techniques.

There are two recent works in particular which treat the focusing problem with ran-
dom initial data, outside the small data or local-in-time regimes. The first is work of
Kenig and Mendelson [29] which studies the probabilistic stability of the soliton for
the energy critical nonlinear wave equation on R3. In that work, the authors produce
with high probability a family of radial perturbations of the soliton which give rise to
global forward-in-time solutions of the focusing nonlinear wave equation that scatter after
subtracting a dynamically modulated soliton. The proof relies on a new randomization
procedure using distorted Fourier projections associated to the linearized operator around
a fixed soliton. Another work, also in the context of nonlinear wave equations, is recent
work of Bringmann [10] on the probabilistic stability of the ODE blowup for the quin-
tic nonlinear wave equation on R3. The proof in the latter paper relies on probabilistic

12Even so, this only holds in dimension d D 1, since in dimension d � 2, the construction of the
measure fails for focusing nonlinearities: see e.g. [12].
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Strichartz estimates in similarity coordinates, and in particular does not require a ran-
domization adapted to the blowup solution. We note that in the current work, our ansatz
(1.19) separates the free evolution as opposed to a linearized evolution as in [29]. The
reason for this is that the current work handles the finite time blowup problem whereas
[29] concerned the infinite time dynamics centered at a modulated, but nonconcentrat-
ing, soliton. It is the analysis of the asymptotic dynamics which requires one to adapt the
randomization to the linearized operator.

As in [29] and [10], in the current work we are in the large data yet perturbative
regime. We note, however, that the geometric blowup we treat is quite distinct from the
ODE blowup handled in [10]. We leverage random data techniques to establish a bootstrap
result, stated in Lemma 3.6 below. In the present work, compared to previous random
data works, we do not need to use probabilistic improvements to overcome issues with
deterministic well-posedness. Indeed, as mentioned previously, (1.1) is deterministically
locally well-posed in L2x.R

2/ via Strichartz estimates. However, we leverage the random
data in two novel ways: first, we use it to obtain precise quantitative control on the well-
posedness estimates for the bootstrap scheme, and second, we use the randomness to
achieve the endpoint estimates13 for the I-method computation mentioned above. The
former estimates are achieved in the spirit of the work of Bourgain [7], adapted to R2. One
difference between our work and Bourgain’s is that since our initial data lies at L2x.R

2/

regularity, there is no need to “Wick-order” the nonlinearity14.
In the I-method computation, we exploit improved probabilistic estimates for the free

evolution of the random initial data in a novel manner; mainly we use the fact that they can
be made uniformly small in time to close the I-method estimates at the endpoint. Heuristi-
cally, one can view the free evolution of the random data as being not only equidistributed
in space for a fixed time, but also roughly equidistributed in time. Hence, from the point of
view of the time scales associated to log-log blowup, the free evolution of the random data
can be thought of as a source term which makes increasingly small contributions to the
dynamics, and thus preserves the blowup mechanism. Finally, we remark that although a
priori a and F are both O.1/ in L2x.R

2/, since the randomized initial data is nonconcen-
trated, the L2-pairing of the singular part, a, with the free evolution of the random data,
F , will give a power of �, and hence all such terms will be of perturbative nature in the
modulation argument since � is so small. We will carry out a more thorough discussion
of the proof in Section 1.5.

13More precisely, though the I-method computation evolves terms with endpoint regularity, we
apply the probalistic techiniques to prove they will behave like non-endpoint elements, thus the
problem is still subcritical rather than critical. It should be noted that both I-method and random
data analysis are of subcritical nature, though in those problems, the original critical regularity may
not be critical in the usual sense.

14The precise form of such an ordering is not as obvious in the Euclidean setting, but a continuous
version of Wick ordering is indeed possible.
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1.5. An overview for the proof of the bootstrap lemma

We conclude the introduction by presenting an overview for the proof of the main boot-
strap result, stated in Lemma 3.6. Two ingredients are required to close the bootstrap:

� Under the bootstrap assumption, the dynamics can be viewed as a perturbation of the
log-log blowup dynamics.

� Log-log blowup dynamics can upgrade the bootstrap assumptions to bootstrap esti-
mates.

We will focus on the first ingredient, since the second part essentially follows from
earlier works, in particular [20], building on the earlier works [40, 45]. There are three
main factors which ensure the dynamics can be viewed as a perturbation of the log-log
dynamics:

� According to the bootstrap assumptions, we have �� b, and essentially all terms of
the form �� for � > 0 may be treated as a perturbation. In particular, if one pairs the
linear evolution of the randomized data F with terms of the form 1

�
h.x=�/ such that h

is somehow localized, one obtains a perturbative term.

� The bootstrap assumption tkC1 � tk . k�.tk/
2 gives good control on how many local

well-posedness (LWP) intervals we have throughout the analysis, and in particular, in
every LWP interval Œa; b� such that �.t/ � 2�k and jb � aj � �2.tk/, we can establish
probabilistic well-posedness, based on the bootstrap assumption (3.32).

� Finally, based on the probabilistic well-posedness in every LWP interval, one can per-
form an I-method type energy estimate combined with random data estimates to obtain
good control on E.IN.t/u/ (or more precisely, the positive part of this quantity), which
will ensure the log-log dynamics persists. One also needs to control P.INu/, but this
is relatively easier.

The key ingredients in the current article are the development of suitable probabilistic
well-posedness in every LWP interval, and the derivation of good energy estimates for
E.INu/. One may compare these ingredients to those in [20], in which the usualH s

x.R
2/

well-posedness is used in every LWP interval, and a more classical version of the I-method
is applied. As noted earlier, although there are certainly crucial differences between the
current work and [20], we fundamentally rely on the observation from that work that the
I-method is compatible with the log-log bootstrap regime.15

1.6. Organization of paper

In Section 2, we introduce some probabilistic and deterministic preliminaries. In Section 3
we describe the initial data and introduce the bootstrap assumptions. We will elaborate on
the probabilistic estimates and I-method type computation in Section 4. In Section 5, we

15In some sense, all I-method arguments rely on good control of the number of LWP intervals,
and a good understanding of well-posedness estimates within every LWP interval.
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will provide a relatively detailed sketch of how such an energy estimate plus the log-log
dynamics close the bootstrap scheme in Section 6.

1.7. Notation

We use ƒ WD 1C y � r to denote the generator of the L2x.R
2/ scaling. When we write

f D f1 C if2, we implicitly mean f1 WD <f and f2 WD =f . We denote by C > 0 an
absolute constant which only depends on fixed parameters and whose value may change
from line to line. We write X . Y to indicate that X � CY , and X � Y if X . Y . X .
Moreover, we write X .� Y to indicate that the implicit constant depends on a parameter
� and we write X � Y if the implicit constant should be regarded as small. We will write
cC to denote c C " for an arbitrary " > 0, and similarly for c�. We also use the notation
hxi WD .1C x2/1=2.

2. Preliminaries

2.1. I -operator

Following [18,20], let 0 < s < 1 and let m W RC ! RC be a smooth, monotone function
which satisfies m.j�j/ D 1 for 0 � j�j � 1, and m.j�j/ D j�js�1 for j�j � 2. Let N � 1

and define
mN .�/ D m.j�j=N/;

and note that

mN .j�j/ D

´
1; j�j < N;

.N=j�j/1�s; j�j > 2N:
(2.1)

The operator IN is the Fourier multiplier associated to mN :

bINf .�/ D mN .�/ yf .�/
and we note that

kf kH s . kIN hDif kL2 . N 1�s
kf kH s :

Remark 2.1. The operator IN is also strong-type .p; p/ for all 1 � p � 1, uniformly
in N .

2.2. Strichartz estimates

We recall the classical Strichartz estimates, which play an important role in the local
theory of NLS.

Definition 2.2 (Admissible pairs). For d � 1 we say a pair of exponents .q; r/ is Schrö-
dinger admissible if

2

q
C
d

r
D
d

2
; 2 � q; r � 1; and .d; q; r/ ¤ .2; 2;1/: (2.2)
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For a fixed spacetime slab I �Rd , we define the Strichartz norm

kukS.I/ WD sup
.q;r/ admissible

kukLqt L
r
x.I�Rd /: (2.3)

We let S.I / denote the closure of all test functions under this norm, and let N.I / denote
its dual.

Remark 2.3. In dimension d D 2, the supremum must actually be restricted to a closed
subset to avoid the inadmissible endpoint.

Proposition 2.4 (Strichartz estimates [16,28,48]). Let 0 � s � 1, let I be a compact time
interval, and let u W I �Rd ! C be a solution to the forced Schrödinger equation

iut C�u D F:

Then for any t0 2 I , we havejrjsu
S.I/

. ku.t0/k PH sx C
jrjsF 

N.I/
:

Proposition 2.5 (Bilinear Strichartz estimates, cf. [6]). Let f1; f2 be L2x.R
2/ functions,

and let N �M . Then

keit�PNf1e
it�PMf2kL2t;x

. .M=N/1=2kf1kL2xkf2kL2x : (2.4)

We now turn to the definition of X s;b spaces, [3]:

Definition 2.6. The space X s;b.R �Rd / is the closure of test functions under the norm

kukXs;b.R�Rd / WD kh�i
s
h� � j�j2iyu.�; �/kL2

�;�
:

Recall that X s;b embeds into C 0t H
s
x for b > 1=2. The restricted version of the space

on Œ�ı; ı� �Rd is defined by

kukXs;b;ı WD inf ¹kzukXs;b.R�Rd / W zu
ˇ̌
Œ�ı;ı�

D uº:

We recall that free solutions lie in X s;b locally in time but not globally. An important
property of X s;b spaces is the following:

Lemma 2.7. Let Y be a Banach space of functions on R �Rd with the property that

keit�0eit�f kY . kf kH sx

for all f 2 H s and �0 2 R. Then

kukY .b kukXs;b.R�Rd /:

We will also need a multilinear transfer principle for X s;b spaces:
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Proposition 2.8 (Transfer principle, cf. [27]). Let b > 1=2, Y D LqtL
r
x for 1 � p; q �1

and T a k-linear operator such that

kT .eit�f1; : : : ; e
it�fk/kY .

kY
jD1

kfj kH s
j
:

Then

kT .u1; : : : ; uk/kY .
kY

jD1

kuj kXsj ;b :

We will use the transfer principle repeatedly throughout our estimates in order to
combine Strichartz estimates with X s;b spaces.

2.3. Random data preliminaries

Here we collect some of the random data results which we will use. Recall F D eit�f ! ,
where f ! has been defined in (1.9). We begin with the following `1 Gaussian bound:

Lemma 2.9. For every " > 0, there exist C; c > 0 such that

P
� [
n2Z2

¹hni�"jgn.!/j > Kº
�
� Ce�cK

2

: (2.5)

Next we record a standard probabilistic estimate.

Lemma 2.10 ([13, Lemma 3.1]). Let ¹gnº1nD1 be a sequence of complex-valued indepen-
dent identically distributed (iid) mean-zero Gaussian random variables on a probability
space .�;A;P /. Then there exists C > 0 such that for every p � 2 and every ¹cnº1nD1 2
`2.NIC/, we have  1X

nD1

cngn.!/

L
�
!

� C
p
�
� 1X
nD1

jcnj
2
�1=2

:

We will also use the following variant of [50, Lemma 4.5] to bound the probability of
certain subsets of the probability space.

Lemma 2.11. Let F be a real-valued measurable function on a probability space
.�;A; P /. Suppose that there exist ˛ > 0, N > 0, k 2 N n ¹0º and C > 0 such that
for every � � �0,

kF kL�! � CN
�˛�k=2: (2.6)

Then, there exist C1, and ı depending on C and �0, such that for K > 0,

P .! 2 � W jF.!/j > K/ � C1e
�ıN2˛=kK2=k : (2.7)
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Lemma 2.12. Let 1 � p; q <1. Then for all � � max.p; q/ we have

kF kL�!L
q
t L
p
x .Œ0;1��R2/ .� kf kL2x : (2.8)

In particular, there exist C; c > 0 such that

P .kF kLqt L
p
x .Œ0;1��R2/ > K/ � Ce

�cK2=kf k2
L2x : (2.9)

Proof. We use Minkowski’s inequality and Lemma 2.10 to estimate

kF kL�!L
q
t L
p
x .Œ0;1��R2/ � kF kLqt L

p
x .Œ0;1��R2/L�!

.
�X
k

keit�Pkf k
2
L
q
t L
p
x .Œ0;1��R2/

�1=2
: (2.10)

The result then follows from Hölder’s inequality and the unit-scale Bernstein inequality,
while the estimate on the probability follows from Lemma 2.11.

Remark 2.13. Essentially repeating the proof of the previous lemma, one may apply the
Minkowski inequality and the `2 summability (1.11) to improve (2.8) to�X

N

kPNF k
2
L
p
t;x.Œ0;1��R2/

�1=2
L
�
!

.� 1: (2.11)

whereN � 1 ranges over all dyadic integers. Via interpolation with the L1t L
2
x bound and

Hölder’s inequality in time, up to an exceptional set of exponentially small probability,
one has, for 2 � q � p <1,

kF kLpt L
q
x.Œ0;1��R2/ . 1; (2.12)X

N

kPNF k
2
L
p
t L

q
x.Œ0;1��R2/

. 1: (2.13)

Finally, we will need a multilinear Gaussian estimate. We state a slightly simplified
version of this estimate compared to the reference since it will suffice for our purposes.

Lemma 2.14 (Cf. [49, Proposition 2.4]). Let ¹gnº be iid mean-zero Gaussian random
variables, and let

� D ¹n1; n2; n3 2 Z2 W n2 ¤ n1; n3º:

Consider

G.!/ D
X
�

c.n1; n2; n3/gn1.!/xgn2.!/gn3.!/ (2.14)

where c.n1; n2; n3/ are complex numbers. Then there exist C; c > 0 such that

P¹jGj > KkGkL2! º � Ce
�cK2 : (2.15)
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2.4. Elliptic objects

We recall, as detailed in the introduction, that analysis of Merle and Raphaël [38] for
log-log blowup solutions begins with a geometric decomposition of the solution u, given
by

u.t; x/ D
1

�.t/
. zQb C �/

�
x � x.t/

�.t/

�
ei.t/; (2.16)

where zQb is a certain elliptic object which is a modification of Q and where � is a priori
small in H 1

x .R
2/. Schematically, this implies that a scaled and translated version of the

ground stateQ is a good approximation for u, up to modulation. However, in practice, one
considers a modification of Q to capture the sharp log-log blowup dynamics [36, 37, 40].
This modification of Q relies on certain elliptic objects, Qb; zQb; �b and z�b , which we
describe in this subsection. We will not list all the properties of these objects, which are
indeed crucial to log-log analysis but will not explicitly be used in this article, since we
rely on previous results which establish the existence of such solutions in the energy
space. Instead, we focus only on the properties which are most relevant to the current
work and refer to [36, 37, 40] for more details. One may refer to [40, Proposition 1 and
Lemma 2] for further details.

Throughout this subsection, b and � will be used to denote small positive numbers,
C will denote a universal constant, and one should have in mind that C�� 1. We let

Rb WD
2

jbj

p
1 � �:

Let Qb be a modification of Q which solves8̂̂<̂
:̂
�Qb �Qb C ibƒQb C jQbj

2Qb D 0;

Qbe
ibjyj2=4 > 0 in BRb ;

Qb.Rb/ D 0:

(2.17)

Now, let R�
b
WD
p
1 � �Rb � b

�1 be a constant slightly smaller than Rb , and let �b.x/
be a smooth cut-off function with �b.x/ � 1 on jxj � R�

b
and �b.x/ � 0 for jxj � Rb .

We define zQb to be the cut-off version of Qb , namely zQb D �bQb , and we let

� zQb � zQb C ibƒ zQb C j zQbj
2 zQb DW �‰b : (2.18)

Note that zQb.x/ decays exponentially as jxj ! 1, thus asymptotically the nonlinearity
of (2.18) vanishes.

Following the work of Merle and Raphaël [40], one introduces the tail �b , which is
the unique radial solution to ´

��b � �b C ibƒ�b D ‰b;

�b 2 PH
1
x .R

2/:
(2.19)
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It turns out that �b just misses L2x.R
2/, or more precisely, if we define

�b WD lim
jyj!1

y2j�bj
2; (2.20)

then this limit exists and we have

e�.1CC�/
�
b � �b � e

��
b
.1�C�/: (2.21)

The quantity �b appears frequently in the log-log blowup analysis, and this scale plays a
crucial role. A useful heuristic to keep in mind is that all terms of size �1C

b
are acceptable.

For example, if one modifies �b into �0
b

so that kz�b � z�0bkH1 . �1C
b

, then, heuristically,
there is no difference between those two terms in the log-log analysis.

To overcome the failure of L2x.R
2/ integrability of �b , we introduce a cut-off version

of this object, denoted by �b , as follows. Let  be a bump function localized at jxj . 1

and let a be a small number. Let

A D Ab WD e
a�=b;  A.x/ WD  .x=A/;

and let
z�b D  A�b : (2.22)

Note that ��a=2
b

� Ab � �
�3a=2

b
andZ
jz�bj

2
� �

1�C�

b
: (2.23)

One also records
�z�b � z�b C ibƒz�b DW ‰b C Fb : (2.24)

The crucial fact about the tails, used essentially in [40, (4.20)], is that

�<.z�b; ƒFb/ � c�b : (2.25)

We conclude this section by listing some useful estimates for zQb . Most of the time,
however, it will be enough to think of it as a function which decays exponentially, uni-
formly in b.

(1) One has
jE. zQb/j . �

1�C�

b
; P. zQb/ D 0: (2.26)

(2) zQb is uniformly close to Q, and

ke.1��/�.jbj jyj/=jbj. zQb �Q/kC3
b!0
���! 0; (2.27)

where

�.r/ D 1¹0�r�2º
Z r

0

p
1 � z2=4 dz C 1¹r>2º

�.2/

2
r; (2.28)

and �.2/ D �=2.
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(3) One has the following non-degeneracy with parameter b:e.1��/�.jbj jyj/=jbj� @@b zQb C i jyj24 Q

� b!0
���! 0: (2.29)

(4) zQb has strictly supercritical mass and

k zQbk
2
� kQk22 � b

2: (2.30)

3. Preparation of initial data and setting up the bootstrap

In this section, we describe the necessary steps in order to set up the main bootstrap lemma
and prove the main theorem.

3.1. Description of initial data and statement of main results

Recall that we consider a randomized L2x.R
2/ function f ! , given by

f !.x/ D
X
k

Z
fkgk.!/ k.�/e

ix� d� (3.1)

where ¹gkºk2Z2 are iid mean-zero complex Gaussian random variables, and where  k
and fk are defined in (1.6) and (1.7). We recall that we assume that the fk satisfy the
decay condition

jfkj � 1=jkj; k ¤ 0; (3.2)

and normalization X
k

jfkj
2
D 1: (3.3)

We will use F to denote the linear evolution of the random data f ! , that is,

F.t; x/ D F !.t; x/ D eit�f ! : (3.4)

We let a0 be the well-prepared initial data, given by

a0 D
1

�0
. zQb0 C �0/

�
x � x0

�0

�
; (3.5)

and one may, without loss of generality, take x0 D 0. We make the following assumptions
which will ensure that we fall in the bootstrap regime of the log-log dynamics:

� smallness of b0:
0 < b0 � 1; (3.6)

� smallness of �0:
0 < �0 � e

�e4�=.5b0/ ; (3.7)
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� smallness of extra mass:
k�0kL2x � 1; (3.8)

� H 1 smallness of �0: Z
jr�0j

2
C j�0j

2e�jyj � �
4=5

b0
; (3.9)

� control of energy and momentum:

�
1=2
0 jE.a0/j � 1; (3.10)

�
1=2
0 jP.a0/j � 1; (3.11)

and the following four orthogonality conditions:

.�1;0; jyj
2†b0/C .�2;0; jyj

2‚b0/ D 0; (3.12)

.�1;0; y†b0/C .�2;0; y‚b0/ D 0; (3.13)

�.�1;0; ƒ‚b0/C .�2;0; ƒ†b0/ D 0; (3.14)

�.�1;0; ƒ
2‚b0/C .�2;0; ƒ

2†b0/ D 0; (3.15)

where
�0 D �1;0 C i�2;0; zQb0 D †b0 C i‚b0 (3.16)

and .f; g/ denotes the real L2x inner product. We remark that such initial data a0 are easy
to construct by the work of Merle and Raphaël [40]. Indeed, one simply finds H 1

x .R
2/

initial data, with non-positive energy and mass slightly above that of the ground state, and
evolves it under the flow of (1.1) until it is close enough to the blowup time.

Here and below, we assume that f and a0 satisfy the above conditions. We are now
prepared to state our main result.

Theorem 3.1. Fix f satisfying the above conditions. There exists a universal constant
��0 > 0 such that for all 0 < �0 < ��0 , there exists a subset† �� and constants C; c > 0
such that

P .†/ � 1 � Ce�1=�
c
0 ;

and for all ! 2 †, there exists a solution u.t; x/ to (1.1) with initial data u0 D a0 C f !

which will blow up in finite time 0 < T D T! � 1 according to the log-log law in the
following sense: there are two small, fixed positive numbers s; ı such that

u.t; x/ D a.t; x/C F.t; x/; a.t; x/ D
1

�.t/
. zQb C �/

�
x � x.t/

�.t/

�
; F D eit�f !

(3.17)
and

�.t/�1 �

p
log jlog jT � t jj
p
T � t

; k zQb C �kH s � 1; (3.18)

and for some N.t/ D �.t/�1�ı ,Z
jrIN.t/�.t/�j

2
C j�j2e�jyj

t!T
���! 0: (3.19)
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One may refer to Section 2.1 for the definition and properties of the I -operator.
Before proceeding, we make a remark about the “large probability” in the statement

of Theorem 3.1.

Remark 3.2. The large probability in the statement of the theorem can be understood in
two ways. If one fixes a0, and studies the evolution of a0 C f̨ ! , then with probability
� 1� e�1=˛

c
the conclusion of Theorem 3.1 holds provided ˛ is sufficiently small. Alter-

natively, one may fix f , but consider �0 and b0 sufficiently small, since the definition
of a0 is essentially given by �0 and b0. Then the conclusion of Theorem 3.1 holds with
probability � 1 � e�1=�

c
0 . Note that the exceptional set that one needs to drop so that

the conclusion of Theorem 3.1 holds, essentially depends on �0, given that �0 is already
chosen sufficiently small16 depending on b0.

Theorem 3.1, as stated, can be interpreted as providing a construction of L2x log-
log blowup solutions. In [20], the extension from this construction with its additional
quantitative information to general stability of log-log blowup solutions is achieved via
the H s

x local theory. In our case, however, we must rely on our improved probabilistic
well-posedness instead of the classical L2x local theory. We elaborate on this in the fol-
lowing remark.

Remark 3.3. Theorem 3.1, or more precisely, the proof of Theorem 3.1 implies stability
of log-log blowup under certain randomL2x perturbations. More precisely, consider initial
data v0 2 H 1 with mass slightly above the ground state mass which leads to a log-log
blowup. Note that v0 may be far away from the form a0 given by (3.5). We claim that if
one perturbs v0 with f̨ ! , for ˛ sufficiently small, the corresponding solution will still
blow up (with high probability) according to the log-log law as in Theorem 3.1.

To see this, first note that if v is the solution to (1.1) with initial data v0, then at
time T1, the solution v.T1/ will enjoy the same properties and general form as a0 (see
(3.5)). Note that no matter how v evolves after time T1, v is still well-behaved within
Œ0; T1�, specifically v has finite Strichartz norm within that time interval and one can thus
apply perturbation theory purely via the local theory. If one considers the evolution of
v0C f̨ ! , if one simply applies the classicalL2x local theory, it is not enough to conclude.
However, if one now applies our improved probabilistic well-posedness, established in
Section 4, and lets Qv be the solution to (1.1) with initial data v0 C f̨ ! , one will find that

Qv.T1/ D v.T1/C ˛e
iT1�f ! C h! ;

where, off an exceptional set of small probablity, h! is small17 inH s . One can then carry
out the proof of Theorem 3.1 line by line to establish that such data will blow up in the
manner described in Theorem 3.1, in particular according to the log-log law.

16In some sense, there are only two effective parameters in a, which are � and b, and all the
constraints for � depend on b. Such a b must be chosen small enough. Then, � needs to be chosen
small enough according to b, i.e. � � ��.b/.

17Depending on the smallness of ˛.



C. Fan, D. Mendelson 20

We also have the following two remarks.

Remark 3.4. At first glance, the statement of the main theorem may seem surprising,
since one could choose a0 so concentrated that one does not even need the L2x.R

2/ small-
ness of f ! , or alternatively smallness of ˛. One should still view the free evolution of the
random data as a (small) perturbation (around a complicated object) since the requirement
that a0 be concentrated, together with the fact that randomized functions are equidis-
tributed in space, still decouples these terms from one another, and thus the resulting
interaction is still expected to be small.

Remark 3.5. Just as the H 1
x .R

2/ case and the H s
x.R

2/ case for s > 0, one can study
the convergence of the concentration point x.t/ to establish that the blowup point is well-
defined, and one can prove (non)concentration properties of the radiation � at the blowup
point. We refer the interested readers to [20] since these arguments apply in an identical
manner in our setting.

The dynamics described in the main theorem will be characterized by the bootstrap
lemma in the next subsection.

3.2. Bootstrap setup

Let u be the solution to (1.1) with initial data u0. We will use the ansatz

u.t; x/ D a.t; x/C F.t; x/;

a.t; x/ D
1

�.t/
. zQb C �/

�
x � x.t/

�.t/

�
e�i.t/:

(3.20)

Via continuity of the flow in L2x and our initial orthogonality conditions (3.12)–(3.15),
we can ensure that, at least locally in t 2 Œ0; T0�, T0 small, one has the orthogonality
conditions

.�1; jyj
2†b/C .�2; jyj

2‚b/ D 0; (3.21)

.�1; y†b/C .�2; y‚b/ D 0; (3.22)

�.�1; ƒ‚b/C .�2; ƒ†b/ D 0; (3.23)

�.�1; ƒ
2‚b/C .�2; ƒ

2†b/ D 0: (3.24)

and furthermore
x.0/ D x0; �.0/ D �0; .0/ D 0: (3.25)

where we set � D �1 C i�2 and zQb D †b C i‚b .
We will focus on the evolution of a, which satisfies

i@taC�a D �jaC F j
2.aC F / D �jaj2a � .jaC F j2.aC F / � jaj2a/: (3.26)

In the rest of the article we will need two parameters s, ı. We always assume

0 < ı � s � 1; (3.27)
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and in particular for any small constant c involved in our analysis, one has

.1 � cs/.1C ı/ < 1: (3.28)

Now we are ready to state the main bootstrap lemma. Let u solve (1.1) in Œ0; T � with
initial data u0 described as in §3.1, with ansatz (3.20) so that (3.21)–(3.24) hold. Since
�.t/ is essentially decreasing, or more precisely by the bootstrap assumption (3.30), we
can divide Œ0;T � into

Sk1D1

kDk0
Œtk ; tkC1� so that �.0/� 2�k0 and �.T /� 2�k1 , k0 � k � k1,

and �.t/ � 2�k for all t 2 Œtk ; tkC1�.

Lemma 3.6 (Bootstrap lemma). Suppose that u.t; x/ solves (1.1) on Œ0; T � and satisfies
the following bootstrap assumptions for t 2 Œ0; T �:

0 < b.t/; k�kL2 C b.t/ < ˛; (3.29)

8t � t 0 2 Œ0; T �; �.t 0/ � 3
2
�.t/; (3.30)

�.t/ � e��
�2=3

b ; (3.31)Z
jrIN.t/�.t/�j

2
C j�j2e�jyj � �

2=3

b
; (3.32)

tkC1 � tk . k�.tk/
2
� k2�2k : (3.33)

Then

0 < b.t/; k�kL2 C b.t/ < ˛=2; (3.34)

8t � t 0 2 Œ0; T �; �.t 0/ � 5
4
�.t/; (3.35)

�.t/ � e��
�3=4

b ; (3.36)Z
jrIN.t/�.t/�j

2
C j�j2e�jyj � �

3=4

b
; (3.37)

tkC1 � tk .
p
k �.tk/

2
�
p
k 2�2k ; (3.38)

Remark 3.7. Formally, the asymptotic dynamics gives

bs � ��b;

Z
jIN.t/�.t/�j

2
C j�j2 . �b;

� � e��
�1
b ; tkC1 � tk � log log k;

and the mass conservation law gives

k�k2 C b
2 . ka.0/kL2x � kQ0kL2x :

Also the condition bs � ��b essentially ensures that b stays positive for all time.

Remark 3.8. Note that if f� D 1
�
f .x=�/, then INf� D .IN�f /�. We will use this

repeatedly when computing quantities from the bootstrap lemma.



C. Fan, D. Mendelson 22

4. Probabilistic local well-posedness

We note that while the cubic nonlinear Schrödinger equation (1.1) is deterministically
well-posed in L2x.R

2/, we are seeking nonlinear smoothing and quantitative estimates
which are not true for general deterministic data. Hence, we exploit several properties of
the free evolution of random data, as well as multilinear estimates involving such random
functions.

The analysis in this section has many similarities to the random data analysis of Bour-
gain [5]. Indeed, our choice of function to randomize is intended to mimic the random
data appearing in [5]. However, several new ingredients are needed to carry out these esti-
mates, and in particular, we need some new arguments in order to adapt Bourgain’s result
to the noncompact setting.

For technical reasons, we fix "0 > 0 and b D 1=2C �0. We will also fix

�0 � �1 � �2 � ı � s � 1; (4.1)

and any � involved in the analysis should satisfy � � �0.

Remark 4.1. One may assume, for example, �0� �
s=10
2 . The purpose of these parameters

is to overcome a technical issue arising from the scaling ofX s;b spaces, specifically letting
h� WD

1
�
h.t=�2; x=�/, and b D 1=2C �0, one has

kh�kXs;b . khkXs;b��s�2�0 :

We note that in general, the scaling properties of X s;b do not pose problems since our
local well-posedness and energy estimates will be subcritical in nature, and we do not
need to derive endpoint type estimates where � losses would be forbidden.

The aim of the current section is to establish improved18 probabilistic local well-
posedness. Specifically, we will establish a result analogous to [20, Lemma 3.3] with
randomized data.

In [20], every LWP interval Œtk ; tkC1� is split into
S
j Œ�

j

k
; �
jC1

k
� so that

j�
j

k
� �

jC1

k
j � �.�

j

k
/�2 � �.tk/

�2
� 2�2k :

Due to the aforementioned technical issues relating to the scaling of X s;b spaces, we will
instead split Œtk ; tkC1� into

SJk
jD1Œ�

j

k
; �
jC1

k
� so that

j�
j

k
� �

jC1

k
j � �.tk/

2��2 (4.2)

and note there are at most k�.tk/��2 such LWP intervals within Œtk ; tkC1�, thanks to the
bootstrap assumption (3.33).

18It is standard that the problem we treat in this article is deterministically locally well-posed
with intervals of length � �.tk/�2C�2 if one only cares about L2 level well-posedness.
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Thus, let 0 < T � 1 and let I D Œ�j
k
; �
jC1

k
�� Œtk ; tkC1�� Œ0;T �with jI j � �.tk/2��2 .

Recall u solves ´
iut C�u D �juj

2u; .x; t/ 2 R2 � I;

u.�
j

k
/ D a.�

j

k
/C F.�

j

k
/;

(4.3)

where a is of the form (3.20) and satisfies the bootstrap assumption (3.32). We note that
(3.32) implies

ka.�
j

k
/kH s �

1

�.�
j

k
/s
�

1

�.tk/s
: (4.4)

We now turn to probabilistic local estimates.

Lemma 4.2. Let f ! be the randomization defined in (3.1). Fix p D1� and q D 4, and
let †1 � � be a subset such that (2.5), (2.12) and (2.13) hold. Then there exists a set
†2 � � satisfying

P .†c2/ . e�j�
j

k
��
jC1

k
j�c

such that for every ! 2 †1 \†2, if u solves (1.1) with initial data a0 C f ! , then

kakXs;b ŒI � D ku � F kXs;b ŒI � .
1

�.�k/sC�1
; (4.5)

and
kI
N.�

j

k
/
akX1;b ŒI � D kIN.�j

k
/
.u � F /kX1;b ŒI � �

1

�.tk/1C�1
: (4.6)

Note that in particular (4.6) implies

kIN.T /akX1;b ŒI � .
�
N.T /

N.tk/

�1�s�
1

�.tk/

�1C�1
(4.7)

(see [20, (3.14) and (3.20)]).

Remark 4.3. We may establish an identical result and additionally

P .†c1/ . e�1=�
c
0

for some c > 0. Indeed, fix p D1�, and let†1 �� be such that (2.5), (2.12) and (2.13)
hold with constant� ��c10 for some c1 > 0 small. Then up to redefining "1, this additional
loss can be absorbed into estimates (4.5) and (4.6). We additionally note that such a subset
is independent of k and I D Œ�j

k
; �
jC1

k
�. Hence, to simplify our arguments, we will instead

assume that (2.5), (2.12) and (2.13) hold with a fixed (�0-independent) constant.

Remark 4.4. On the whole interval Œ0; T �, the set that one needs to drop arising from the
subset †2 in Lemma 4.2 contributes total probability19 bounded by

kCX
kDk0

ke�2
ck

�

kCX
kDk0

ke�2
ck . Ce�2

c=2k0 : (4.8)

19The c may change from line to line and may not be the same as in Lemma 4.2.
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Thus, by making k0 large enough (i.e. �0 small enough), one can ensure that up to a set
of small probability, for every I D Œ�

j

k
; �
jC1

k
� � Œtk ; tkC1� � Œ0; T �, the conclusion of

Lemma 4.2 holds.

Remark 4.5. As we will see, the proof reduces to controlling the nonlinear expression
jaC F j2.aC F /, and in particular the term jF j2F is the most difficult to control.

While the term jaj2a essentially follows from standard deterministic theory, we need
to introduce parameters �0; �1; �2 in (4.1) for the following reasons: we will need to
rescale a to �a.�2t; �x/ so that it is normalized in X s;b , apply the standard determin-
istic local theory, and then scale back. This generates an extra error �.tk/�C�0 due to the
fact that X s;b is not scale invariant, resulting in an extra loss of �.tk/��1 .

The term jaj2F also essentially follows from deterministic local theory since we
are able to distribute derivatives using bilinear Strichartz estimates, and have sufficiently
smooth functions to do so. However, we need the smallness of the interval to close this
estimate, and hence we shrink the interval by an extra �.tk/�2 factor. We will not focus
too strongly on these parameters since we wish to emphasize the treatment of the terms
jF j2F and jF j2a (up to complex conjugates); however, we point out that any loss of
the form of �.tk/��2 is acceptable in the estimates because of the smallness of the time
interval.

We note in particular that the gain due to the smallness of the interval does not follow
from extra room in the b parameter of X s;b spaces.

Proof of Lemma 4.2. Recall that we use the ansatz (3.20), and that a solves the difference
equation ´

iat C�a D jaC F j
2.aC F /; t 2 Œ�

j

k
; �
jC1

k
�;

ka.�k ; x/kH s � �.�k/
�s :

(4.9)

Without loss of generality and by a time translation, we may take �j
k
D 0. Let �.t/ be a

smooth cut-off, with �.t/� 1 when jt j � 1, and �.t/� 0 for jt j � 2. Let �ˇ .t/D �.t=ˇ/.
We denote by za the extension of a over the real line. By Duhamel’s formulation, we need
to estimate

a.t; x/ D ei.t��k/a.�k ; x/ � i

Z t

�k

e�i.t�s/
�
jaC F j2.aC F /

�
ds:

The linear part of a.t; x/ can be handled with the standard X s;b estimate, using the
form of a.�j

k
/. For the inhomogeneous nonlinear estimate we need to controlZ t

�k

e�i.t�s/
�
jaC F j2.aC F /

�
ds


Xs;b.I /

.
�jI j Z t

�k

e�i.t�s/
�
jzaC F j2.zaC F /

�
ds


Xs;b

.
�I .t/jzaC F j2.zaC F /jXs;b�1

.
�I .t/�jzaC F j2.zaC F / � jF j2F �Xs;b�1 C �I .t/jF j2F Xs;b�1 (4.10)
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Our main goal is to prove that given za which satisfies

kzakXs;b .
�

1

�.�
j

k
/

�s
;

(4.10) is bounded by
1

2

�
1

�.�
j

k
/

�s
: (4.11)

The extra 1=2 factor implies, in the usual manner, that the solution map is a contraction.
Indeed, this follows from the fact that the X s;b and random data analysis involved is
subcritical in nature, and that we are working on a small interval. We note that in order to
establish (4.11), it will suffice to prove that (4.10) is bounded by�

1

�.�
j

k
/

�sC�1
(4.12)

since we are working on intervals of (extra) small length, and the extra smallness of the
time interval, �.tk/�2 , will be able to beat the �1 loss, as remarked in Remark 4.5. Below,
we will not distinguish between a and za, since they will be treated and estimated in the
same way. We finally remark that there is a simple way to gain smallness of X s;b by
localizing time, i.e. to use part of b derivatives to estimate X s;b

0

for some 1=2 < b0 < b.
This will never be involved in our analysis, however, because the maximum allowable
difference between b and b0 is bounded by �0, which is too small to overcome the extra
loss in (4.12).

Thus, we focus on establishing (4.12), and we begin with the term �I .t/jF j
2F . In

light of our discussion in Remark 4.3, we will prove that�jI j.t/jF j2F Xs;b�1 . 1: (4.13)

Moreover, for the majority of the proof, we will in fact prove that�.t/jF j2F 
Xs;b�1

. 1; (4.14)

and we note that we can replace the term �jI j.t/ with �.t/ since X s;b spaces are well-
behaved under time localization. Additionally, we will occasionally abuse notation, and
use �3 ' �, which will enable us to replace F with �.t/F as needed. Time localization is
only needed when we argue that the extra subset we drop has probability . e�j���jC1j

�c
.

We will revisit this later.
Let

� D ¹n1; n2; n3 2 Z2; n2 ¤ n1; n3º

and set
hk D e

it� L k :
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Then jF j2F can be written asX
�

•
gn1 xgn2gn3fn1

xfn2fn3 n1.�1/
x n2.�2/ n3.�3/e

i.�1��2C�3/x�.j�1j
2�j�2j

2Cj�3j
2/t

„ ƒ‚ …
Term 1

�

X
n

•
jgnj

2gnjfnj
2fn n.�1/ x n.�2/ n.�3/e

i.�1��2C�3/x�.j�1j
2�j�2j

2Cj�3j
2/t

„ ƒ‚ …
Term 2

C 2
X
n1;n3

jfn1 j
2
jgn1 j

2
jhn1 j

2fn3gn3hn3„ ƒ‚ …
Term 3

:

We estimate these terms separately, beginning with the easiest.

Term 2. As in [5] we will directly estimate theL1t H
s
x norm of this term. A simple triangle

inequality givesh�isX
n

jgnj
2gnjfnj

2fn

•
ı.� � �1 C �2 � �3/ k.�1/ k.�2/ k.�3/


L2
�

.
X
n

hnishni3"jnj�3 . 1 (4.15)

where we have used the `1 Gaussian bound (2.5). This is summable in dimension d D 2
provided s < 1.

Term 1. This is the term which typically appears in random data analysis, and can usually
be used to illustrate what improvements one obtains for random data; see [5] for more
details. Here, since we are not working with the NLS on a (rational) torus, one cannot
directly reduce the problem to the same counting estimates as in [5]. On the other hand,
since we are on Euclidean space, we can take advantage of the bilinear Strichartz estimates
in Lemma 2.5.

Below we assume j�i j D jki j CO.1/ � Ni for i D 1; 2; 3 and without loss of gener-
ality, set N1 � N2 � N3, where Ni are dyadic integers. We write Fi WD FNi WD PNiF ,
i D 1; 2; 3. We first perform several reductions. We note that we may assume that

N3 � N
99=100
1 ; (4.16)

since otherwise by bilinear Strichartz estimates, we obtain (recall p is always large)

k�.t/F1F2F3kXs;b�1 . sup
khk

Xs;1�b
D1

Z
F1F2F3 Nh

. N s
1kF1F3kL2tL

2
x
kF2kLpt;x

� N s
1

�
N3

N1

�1=2
kF2kLpt;x

; (4.17)
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and using (2.12), we may sum (N1 � N2 � N3) provided

N
s� 12C

2
p

1 N
1
2

3 � N
s� 12C

198
100p

1 N
99
200

1 . 1;

which can be done by choosing s > 0 sufficiently small so that

s �
1

200
C

198

100p
< 0:

Proceeding, we will estimate this expression by reducing the problem to counting
problems. Following Bourgain [5], we start with a standard reduction. Here, we need to
replace F by �.t/F . By definition of the X s;b space, we need to control

kh� � j�j2ib�1h�isF�;�.�.t/Term 1/kL2�L2� ; (4.18)

We let � D � � j�j2 and we first claim we only need to control the region

�� N 10s
1 : (4.19)

Indeed, one may use dual estimates to estimate (4.18). For the deterministic theory, one
needs to pair a function h such that khkX0;1�b D 1, and all 1� b D 1=2C �0 (X s;b type)
derivatives are needed, since one needs to control khkL4t;x . Here, the random data allows
us to beat the usual Strichartz estimates, and we are able to place each copy of F in L1�t;x ,
and hence one only needs control of khk

L
3C
t;x

, which by interpolation only requires 1=3C �

(X s;b type) derivatives. Thus, if one is in the case k�k � N 10s
1 , the gain in the X s;b

smoothing will compensate the N s
1 loss in the space derivative; see [5, (30) and (35)].

Moreover, we may focus on the case � D O.1/ and sum different parts via the triangle
inequality, suffering an extra NCs

1 loss; note C will be large but we still have Cs � 1.
Going back to (4.18), we first expand F .�.t/Term 1/:“
e�ix��e�i� t�.t/

•
 n1.�1/ n2.�2/ n3.�3/e

i.�1��2C�3/x�.j�1j
2�j�2j

2Cj�3j
2/t

D

•
O�.� � j�1j

2
� j�2j

2
C j�3j

2/ı.� � �1 C �2 � �3/ n1.�1/ n2.�2/ n3.�3/:

(4.20)

We substitute this expression into (4.18), and we recall that

j�1 � �2 C �3j
2
� j�1j

2
C j�2j

2
� j�3j

2
D 2h�2 � �1; �2 � �3i:

Now, we need to argue separately for N1 � N1;0 and N1 < N1;0 for some N1;0 which
we will determine below. When N1 � N1;0, this is where we drop the extra set of small
probability,†c2, mentioned in the statement of the lemma. This extra argument is (more or
less) standard, but we provide a sketch here. We fix such anN1, and we use the multilinear
Gaussian estimate of Lemma 2.14 with constant K D NCs

1 to replace Term 1 by its L2!
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norm by dropping an extra set of probability � e�N
c.�/
1 , where c.�/ > 0 is a small �-

dependent constant. Ultimately we need to control20

N 2Cs
1

�X
�

1

jn1j2
1

jn2j2
1

jn3j2

�1=2
(4.21)

where

� D ¹n1; n2; n3; n2 ¤ n1; n3; hn2 � n3; n2 � n1i D O.N1/; jni j � Niº:

Recall that by restricting to the case � D O.1/ we lose an extra NCs
1 , and we a priori

have jfni j � 1=jni j. As in (4.16), we only consider the case N3 � N
99=100
1 .

When jN2 � N3j < N
1=10
3 , for fixed n1; n2 there will be at most N 1=5

3 many n3, and
we may use N3 � N

99=100
1 to sumX

N1;N2;N3; jN2�N3j<N
1=10
3

N 2Cs
1

1

jn1j2
1

jn2j2
1

jn3j2
. N 2Cs

1 N
�.2� 15 /�

99
100

1 ;

which is acceptable for s sufficiently small.
When jN2 �N3j �N

1=10
3 , we mimic the counting in [5, Lemma 1]. Fixing n2 and n3,

we note there could be at most N 2
1 =N

1=10
3 many n1. Indeed, let

n1 � n3 D .c1; c2/; n2 � n3 D .b1; b2/;

and assuming, for example, that b2 �N
1=10
3 , and fixing c1, there can be at mostN1=N

1=10
3

many c2, and at most N1 many a1. Hence, we may bound (4.21) by N�1=103 or N�1=201 ,
since N3 � N

99=100
1 , and we obtain a bound which is summable for s sufficiently small.

Since we must drop an extra subset for every fixed N1 � N1;0, after summation we see
that the probability of the subset we drop is � e�.N1;0/

c
.

For N1 � N1;0, we use (2.5), and then we argue in a purely deterministic manner,
using the fact the interval is (extra) short, of length � �.tk/�2C�2 to close. Here, we need
to use the cut-off �jI j.t/. To close these estimates, we fix N1;0 � �.tk/�Qc.�/, where again
Qc.�/ > 0 is another small, �-dependent constant. This yields the stated bound on P .†c2/,
recalling how we defined the length of the time intervals. See also the discussion in [5,
below (46)].

Term 3. This term is the most distinct from the analysis in [5]. Indeed, in [5], a Wick
ordering is applied and this term does not appear at all. We remark that one can still apply
a phase transform to cancel this term, but such a phase, unlike one in [5], will be a function

20Here the situation is different from the tori case in [5]. In the periodic case, the constraint
�DO.1/, or h�2 � �1; �2 � �3i DO.1/, is reduced to exact hn2 � n3; n2 � n1i DO.1/. However,
here, we only have j�i � ni j � 1, thus we only get hn2 � n3; n2 � n1i D O.N1/ and extra effort
will be needed to control the summation.
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rather than a number, and will not leave the NLS invariant. The key difference between
our setting and Bourgain’s is that our initial data lies at L2x.R

2/ regularity, and hence we
do not have to control the same divergences which appear for data in the support of the
invariant Gibbs measure considered by Bourgain.

We recall that we are considering the termX
n1;n3

jfn1 j
2
jgn1 j

2
jhn1 j

2fn3gn3hn3 I

we let
z�.t; x; !/ D 2

X
n1

jfn1 j
2
jgn1 j

2
jhn1 j

2;

and note that this term is equal to z�.t; x; !/F . Moreover, we observe that

E
�X
n1

jfn1 j
2
jgn1 j

2
�
<1;

and hence almost surely ¹fn1gn1ºn12Z2 2 `
2 and up to an exceptional set from (2.5), we

have

jfn1gn1 j .
jn1j

"

jn1j
:

Now, observing that
jhkj

2
D eit� L k eit� L k ;

and using the fact that the free evolution does not affect the Fourier support, for each k
the term jhkj2 is supported in a ball of radius 2 around the origin by convolution of the
supports. And indeed jhkj2 D jh0.t; x � kt/j2 and h0 is smooth. Thus, �.x; t/ is also
smooth since

P
jfkj

2 . 1.
We need to estimate kz�.t; x; !/F kL2tH sx , and in light of the observations above, it

suffices to estimate the expressionz�.t; x; !/jrjsF 
L2tL

2
x
:

First observe that since jhkj2 are all frequency localized around 1, we apply L2-orthogo-
nality to derive z�.t; x; !/jrjsF 

L2tL
2
x

.
X
k2Z2

z�.t; x/jrjsPkf 2L2tL2x : (4.22)

Now, noting that h` enjoys unit-scale Bernstein estimates (and hence lies in L1t;x) we
obtainX
k2Z2

kz�.t; x/eit�Pkf k
2

L2tL
2
x

.
X
k

�X
`

jf`g`j
2
kh`kL1t;x

eit� L ` eit�.gk k/.!/jkjsfkL2tL2x�2: (4.23)
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Now, we apply the bilinear Strichartz estimate of Proposition 2.5, and conjugating with
Galilean symmetry for

eit� L ` e
it�.gk k/.!/;

and plugging in the `1 Gaussian bound (2.5), we can estimate this expression byX
k

jfkj
2

�X
`

jf`j
2
jkjsC"

1

hk � `i1=2

�2
: (4.24)

Note that jfkj2 is summable in k.
Now, fix k. If jk � `j > k=2, then provided s C " < 1=2, this expression is bounded.

Alternatively, if jk � `j � k=2, then we use the fact that kj`jf`k`1 � C and ` � k to
obtain X

`; j`�kj�k=2

jf`j
2
jkjsC"

1

hk � `i1=2

.
X

`; j`�kj�k=2

k�2jkjsC"
1

hk � `i1=2
' k�2jkjsC"jkj3=2; (4.25)

which is bounded provided, again, s C " < 1=2.
We now turn to the terms involving za. For notational convenience, we will still use a

to denote za. Again, we write ai WD aNi WD PNia, andNi is a dyadic integer, and similarly
for Fj ; j D 1; 2; 3. We will have to deal with multiple cases, depending on the frequency
at which the random function is appearing. Before proceeding, we note that since we
are working on an interval of length . �.tk/

2, and by assumptions on the subset of the
probability space, we can use Hölder’s inequality in time to break the scaling and derive,
for example,

kF kL4t;x ŒI �
. jI j

1
4� . j�.tk/j

1
2�: (4.26)

This will be frequently used in the analysis below.

Case 1: kFN1FN2aN3k. By duality, we estimate the expressionX
N1�N2�N3

N s
1

Z
F1F2a3h

for h 2 X0;1�b . When N1 � N2, we estimate this expression using bilinear Strichartz
estimates and Cauchy–Schwarz in the highest frequency:

X
N1�N2�N3

�
N3

N1

�1=2�s
kF1kL1t L

2
x
kF2kL4Ct;x

N s
3ka3kX0;bkhkL4�t;x

.
X

N1�N2�N3

�
N3

N1

�1=2�s
kF1kL1t L

2
x
�.tk/

1
2�kF2kL1�t L

4C
x
N s
3ka3kX0;bkhkL4�t;x

; (4.27)

which is summable.
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When N1 � N2, we use duality with h 2 X0;1�b , and we decompose h into dyadic
blocks hN4 , now having N4 � N1, and once again by bilinear Strichartz estimates,X
N1�N2�N3

N s
1

Z
F1F2a3h

.
X

N4�N1�N2�N3

�
N3

N1

�1=2�s
kF1kL1t L

2
x
kh4kX0;1�bkF2kL4Ct;x

N s
3ka3kX0;b

.
X

N4�N1�N2�N3

�
N3

N1

�1=2�s
kF1kL1t L

2
x
kh4kX0;1�b�.tk/

1
2�kF2kL1�t L

4C
x
N s
3ka3kX0;b :

(4.28)

This is again summable.

Case 2: kaN1FN2FN3k. This can be estimated precisely as in the previous estimate, but
we do not need to transfer regularity through bilinear Strichartz.

Case 3: kFN1aN2FN3k. When N1 � N2, We estimate using duality and bilinear
Strichartz:X
N1�N2�N3

N s
1

Z
F1a2F3h

.
X

N1�N2�N3

N s
1kF1hkL2t;x

ka2F3kL2t;x

.
X

N1�N2�N3

N s
1N
�s
2 kF1kL4Ct;x

ka2kXs;bkF3kL1t L
2
x

�
N3

N2

�1=2
'

X
N1�N2�N3

N s
1N
�s
2 kF1kL4Ct;x

ka2kXs;bkF3kL1t L
2
x

�
N3

N1

�1=2
.

X
N1�N2�N3

N s
1N
�s
2 �.tk/

1
2�kF1kL1�t L

4C
x
ka2kXs;bkF3kL1t L

2
x

�
N3

N1

�1=2
; (4.29)

and we can sum this expression.
When N1 � N2, we use duality with h 2 X0;1�b , and we decompose h into dyadic

blocks hN4 , now having N4 � N1. We estimateX
N4�N1�N2�N3

N s
1

Z
F1a2F3h4: (4.30)

We pair a2 with either F1 or F3 depending on the value of

min
��

N2

N1

�
;

�
N3

N2

��
;

using the other F factor to estimate with h as above.
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For example, supposing we perform the bilinear Strichartz with a2F3, (in the case
N3=N2 � N2=N1) we then obtainX
N4�N1�N2�N3

N s
1N
�s
2

�
N3

N2

�1=2
kF3kL1t L

2
x
ka2kXs;bkh4kX0;1�bkF1kL4Ct;x

D

X
N4�N1�N2�N3

N s
1N
�s
2

�
N3

N1

�1=4
kF3kL1t L

2
x
ka2kXs;bkh4kX0;1�bkF1kL4Ct;x

.
X

N4�N1�N2�N3

N s
1N
�s
2

�
N3

N1

�1=4
kF3kL1t L

2
x
ka2kXs;bkh4kX0;1�b�.tk/

1
2�kF1kL1�t L

4C
x

(4.31)

where we have used min.a; b/ �
p
ab. Once again this is summable for s < 1=4 using

Cauchy–Schwarz in N1 � N4.

Case 4: kFN1aN2aN3k. Once again, we estimate by duality. If N1 � N2, we haveX
N1�N2�N3

N s
1

Z
F1a2a3h

and we estimate using bilinear Strichartz with a2a3:X
N1�N2�N3

N s
1N
�s
2 N�s3

�
N3

N2

�1=2
kF1kL4Ct;x

ka2kXs;bka3kXs;bkhkX0;1�b

.
X

N1�N2�N3

N s
1N
�s
2 N�s3

�
N3

N2

�1=2
�.tk/

1
2�kF1kL1�t L

4C
x
ka2kXs;bka3kXs;bkhkX0;1�b ;

(4.32)

which is summable using Cauchy–Schwarz in N2 � N1.
When N2 � N1, we dyadically decompose h into hN4 and note we must have

N1 � N4. We use bilinear Strichartz between F1 and a3, and we put a2 2 L4Ct;x to obtainX
N4�N1�N2�N3

N s
1

�
N3

N1

�1=2
N�s3 ka3kXs;bka2kX�;bkh4kX0;1�bkF1kL1t L

2
x
;

which is again summable. Note that we do lose an extra ��� in the term ka2kX�;b .

Case 5: kaN1FN2aN3k. We estimate as in the previous case, but do not need to transfer
regularity from the function at the lowest frequency to the highest.

Case 6: kaN1aN2FN3k. We estimate as in the previous case, but do not need to transfer
regularity from the function at the lowest frequency to the highest.

Case 7: kaN1aN2aN3k. As in standard deterministic local theory.
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4.1. Estimate of (4.6)

The estimate in (4.6) essentially follows directly from (4.5), but we sketch the argument.
We will again write down the Duhamel formula of (4.9), and apply the I -operator I

N.�
j

k
/

on both sides, and estimate IN jF C aj2.F C a/Xs:b�1 : (4.33)

We distinguish four different scenarios:

(i) Three random pieces jF j2F .

(ii) Two random pieces terms, for example F xFa.

(iii) Terms with at least two copies of a, and the highest frequency is on a, for example,
the term a1 xF2a3.

(iv) Terms where F is at the highest frequency F1xa2a3.

For situations (i) and (ii), observe that IN will send X s;b into X1;b by losing

N.tk/
1�s
� �.tk/

1�s�.tk/
.1�s/ı :

Using this estimate directly will miss the desired result by �.tk/.1�s/ı , and we now detail
how to recover this loss.

In case (i), we see from the previous arguments for Terms 1–3 that one beats the
desired estimates by �.tk/�s , hence choosing 0 < ı � 1 small suffices.

In case (ii), estimates of the form (4.26) are applied and one gains a positive power
of �.t/, for example �.tk/1=100. Such gains are already enough to compensate the
�.tk/

.1�s/ı loss since 0 < ı � 1.
In case (iii), the estimate follows from standard deterministic arguments, and since

the highest frequency is on a, thus IN .a1b2b3/ (where b D a or F ) can be estimated
(effectively) as .INa1/b2b3, and a standard persistence of regularity argument can close
the estimates.

In case (iv), we are only concerned with the situation N2 � N1, and further one only
needs to consider N1 � N D N.�

j

k
/. One can distinguish two subcases:

� N2 � N1�.tk/
Q� (it will be clear soon how we should choose this Q�),

� N2 � N1�.tk/
Q� .

In the first subcase, we again use persistence of regularity and transfer hDiIN to a2 by
losing .N1=N2/s , and one will be able to close (recalling that an error of �.tk/��1 is
allowed) if

Q�s . 1
10
�1: (4.34)

Note that the existence Q� satisfying (4.35) and (4.34) requires �1 � ıs2, which is
acceptable. In the second subcase, one follows the same computations as with the term
FN1aN2aN3 in Case 4, and the bilinear Strichartz estimate gives us an extra .N2=N1/1=4

. �.tk/
�Q� . We will again use the fact IN will send X s;b into X1;b by losing

N.tk/
1�s
� �.tk/

1�s�.tk/
.1�s/ı ;
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and we are able to close the estimates provided

Q� � 10ıs: (4.35)

This concludes the proof.

5. Energy estimates

In this section, we combine the improved probabilistic local well-posedness of Section 4
with the log-log bootstrap scheme, in particular (3.33), to prove the analogue of [20,
Proposition 3.1]. We still follow an I-method scheme, but our implementation has two
main differences compared to [20]:

� Our LWP theory is different from the standard H s.R2/ LWP in [20].

� The function a will play the role of full solution u in [20], and in particular a does
not solve the standard NLS, but rather a forced equation with random forcing terms,
for which we need to incorporate extra random data type techniques into the I-method
computation.

We note that we also take this opportunity to simplify certain aspects of the I-method
arguments from [20] in the current setting. Due to the fact that we ultimately combine
the energy estimates with the log-log bootstrap, it seems unnecessary to exploit the full
cancellation of the I -operator.

Recall that we use the ansatz (3.20). Let JN.t/ denote the Fourier multiplier such that

JN.t/ C IN.t/ D Id: (5.1)

Following [20], let

„.t/ D
�2

2

Z
jrJN.t/a.0/j

2 dx; (5.2)

In the rest of the article, we will take p D 1�, and we always assume a small prob-
ability set has already been dropped so that (2.5) , (2.12) and (2.13) hold, and for every
LWP interval Œ�j

k
; �
jC1

k
�, Lemma 4.2 holds. Since we discussed these issues thoroughly in

the previous section, we do not revisit them again. We will establish the following result.

Proposition 5.1. Restricting the subset so that (2.5), (2.12), (2.13) and Lemma 4.2 hold,
we have the following: there exists some ˛1 > 0 such that for all t 2 Œ0; T �, one hasˇ̌̌̌

E.IN.t/a/C
1

�.t/2
„.t/

ˇ̌̌̌
.
�

1

�.t/

�2�˛1
; (5.3)

jP.IN.t/a.t//j .
�

1

�.t/

�1�˛1
: (5.4)

Remark 5.2. The exact value of ˛1 is somewhat different in our setting compared to [20].
Indeed, recall that the authors of [20] establish a result for every s > 0, and thus they have
a choice of ˛1 for each such s. In contrast, we choose some 0 < s � 1, and only need to
find one such ˛1 for this particular s.
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Proof of Proposition 5.1. We will focus on estimate (5.3) and, as we will remark, (5.4)
follows in a similar (if not simpler) manner. We will only handle the case t D T in Propo-
sition 5.1, and we will denote N D N.T /. The proof of (5.3) has two parts:

� an initial estimate ˇ̌̌̌
E.IN .a.0///C

1

�.T /2
„.T /

ˇ̌̌̌
.
�

1

�.T /

�2�˛1
(5.5)

for some ˛1 > 0, and

� a growth estimate

jE.INa.T // �E.INa.0//j .
�

1

�.T /

�2�˛1
(5.6)

for some ˛1 > 0.

The initial estimate (5.5) follows from the bootstrap assumptions (3.32) and the fact that
the potential energy is subcritical compared to the kinetic energy, and one can argue
exactly as in the proof of [20, (3.24)]. Thus, the rest of this section is mainly devoted
to the proof of (5.6). Recalling (3.26), we compute

@tE.INa/ D =

Z
IN�aC jINaj2INa

�
IN
�
jaC F j2.aC F /

�
� jINaj

2INa
�

D AI C AII C BI C BII (5.7)

where

AI WD =

Z
IN�a

�
IN .jaC F j

2.aC F // � jIN .aC F /j
2IN .aC F /

�
;

AII WD =

Z
IN�a

�
jIN .aC F /j

2IN .aC F // � jINaj
2INa

�
;

BI WD =

Z
jINaj2INa

�
IN .jaC F j

2.aC F // � jIN .aC F /j
2IN .aC F /

�
;

BII WD =

Z
jINaj2INa

�
jIN .aC F /j

2IN .aC F // � jINaj
2INa

�
:

We will estimate each term separately, up to an observation on cancellation between
terms that will be useful in what follows. Indeed, we note that the term �jINF j2INF
in AI will cancel the same term in AII , and the same cancellation also holds between
BI and BII . It is not immediately clear whether such cancellation is crucial, but it sim-
plifies the analysis considerably because subtle probabilistic arguments (as illustrated in
the previous section) have to be applied to analyze jF j2F , resulting in extra subsets of
small probability needing to be dropped. In order to redo the same estimates for all N ,
the analysis is not only more technical, but one needs to be careful about summability of
the probabilities of these subsets, and the aforementioned cancellation frees us from this
issue.

We will now estimate the terms AI ; AII ; BI ; BII .
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Estimates of AI . To estimate

AI WD =

Z
IN�a

�
IN .jaC F j

2.aC F // � jIN .aC F /j
2IN .aC F /

�
; (5.8)

we will estimate the integral of AI within each LWP interval Œ�j
k
; �
jC1

k
� for k0 � k � k1,

1� j � Jk and then sum the resulting estimates. Due to the fact that our method is of sub-
critical nature, we need to beat the trivial estimate by at least �.tk/�ı within Œ�j

k
; �
jC1

k
�.

With this in mind, we recall the parameters (4.1), and the fact that any loss of �.tk/�C�2

or �.tk/�Cıs will be acceptable and can be neglected; we do not repeat this point later in
the analysis.

We will see from the proof that if one fixes k, the estimate can be performed iden-
tically for different j . This follows since there are at most k�.tk/��2 . �.tk/

�2�2 LWP
intervals. Hence, we can estimate a single LWP interval within Œtk ; tkC1� and absorb the
loss stemming from counting the number of intervals.

Finally, one will observe that the estimate of jAI j is monotone in k; it is indeed enough
to compute its integral in the last LWP interval Œ�Jk�1

k1
; �
Jk
k1
� since k1 � log 1

�.tk/
, and a

loss of k1 is also allowed by the previous analysis. At the heuristic level, one may compare
it to summing up a geometric series, where the value of the sum is determined by the last
term (up to an allowable error).

We apply a Littewood–Paley decomposition to the quadrilinear term (5.8), with fre-
quencies �i � Ni . We assume that N2 � N3 � N4, and we write

ai D aNi WD PNia;

and similarly for Fi . We will explicitly estimate two types of terms which are the most
difficult ones. Other terms can be estimated via essentially the same (if not easier) anal-
ysis. As mentioned above, we will also exploit cancellation which enables us to handle
some of the terms with three random pieces. We finally point out that when there are no
random terms, one can just follow [20].

One random piece. The most difficult case is when the random term is at the highest
allowable frequency, N2. We consider one local well-posedness interval I D Œ�j

k
; �
jC1

k
�,

recall jI j . �.tk/
2, and estimate

X
N1;N2;N3;N4

Z �
jC1

k

�
j

k

Z
IN�a1

�
IN .F2a3a4/ � INF2INa3INa4

�
dx dt: (5.9)

In order for the integral to be nonzero, we necessarily haveN2 &N . We handle two cases:

� N1 � N2,

� N1 � N2.
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Without loss of generality, assume that Ni � 1 for all i . When N1 � N2, we will estimate
the integral by estimating the term21ˇ̌̌̌ X

N1�N2�N3�N4

“
N 2
1

�
N 1�s

N 1�s
1

a1

��
N 1�s

N 1�s
2

F2

�
a3a4

ˇ̌̌̌
: (5.10)

We note that the complex conjugate will not be relevant and the quotients come from the
definition of the IN operator. We use Hölder’s inequality to get the bound

N 2�2s
X

N2�N1�N3�N4

N 2s
1 ka1a3kL2x;t

kF2a4kL2t;x
: (5.11)

First we sum over a4 via the triangle inequality, noting that ka4kL1t L2
C
x

.
N�sC4 �.tk/

�2s . As previously mentioned, we neglect any loss of the form �.tk/
��1 . Not-

ing that in the current case N1 � N2, and recalling that F2 2 L
p
t;x D L

1�
t;x by (2.13), we

find the bound

. N 2�2s
X

N1�N3�N4

N 2s
1 ka1a3kL2t;x

kF2kL1�t;x jI j
1=2�

� N 2�2s�.tk/
1�2s�

X
N1�N3

N 2s
1 ka1a3kL2t;x

kF2kLpt;x
: (5.12)

Finally, we use the bilinear Strichartz esimates to obtain the estimate

. N 2�2s�.tk/
1�

X
N1�N3

N s
1ka1kX0;bkF2kLpt;x

N s
3ka3kX0;b

�
N3

N1

�1=2�s
: (5.13)

Since bothN s
1ka1kX0;b (by definition) and kF2kLpt;x (by (2.13)) are `2 summable, we may

apply the Cauchy–Schwarz inequality between these terms, and the triangle inequality to
sum over N3 � N1. We can ultimately estimate the contribution of this term to (5.13) by

N 2�2s�.tk/
1�2s�:

Summing over all LWP intervals and applying (3.33), (4.2) (recall also (4.1)), one hasˇ̌̌̌Z T

0

AI

ˇ̌̌̌
.

k1X
k0

kN 2�2s�.tk/
1�2s��.t/��2 . N 2�2s . �.T /�2.1Cı/.1�s/ . �.T /�2Cs;

(5.14)
which is the desired estimate.

We also record the following simple observation from the computation above as a
remark to reference later in the proof. We will not repeat the same argument later.

21Strictly speaking, (5.9) is not bounded by (5.10), but by (5.11). What we mean here is that one
can think about the estimate of (5.9) as the estimate of (5.10), thus naturally leading to the estimate
of (5.11).
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Remark 5.3. Provided we can estimateZ �
jC1

k

�
j

k

AI . N 1�c0s

for some c0 > 0, for example c0 D 1
100

, we are able to sum the estimates up along all the
LWP intervals.

Next we turn to the case when N1 � N2; we first observe that necessarily N3 � N2.
For notational convenience, we will use

S WD X0;b

in the rest of the section. We discuss two subcases:

� N1 � N ,

� N1 � N .

First if N1 � N , we may reduce to estimatingˇ̌̌̌ X
N3�N2�N1;N4

“
N 2
1

�
N 1�s

N 1�s
1

a1

��
N 1�s

N 1�s
1

F2

�
a3a4

ˇ̌̌̌
. N 2�2s

ˇ̌̌̌ X
N3�N2�N1;N4

“
N 2s
1 a1F2a3a4

ˇ̌̌̌
. N 2�2s

X
N3�N2�N1;N4

�.tk/
1�"N 2s

1 ka1kSka3kSN
"
2kF2kL1�t;x N

�s
4 ka4kS

. N 2�2s�.tk/
1�"

X
N3�N2�N1

N 2s
1 ka1kSN

"
2ka3kS : (5.15)

Note that in the first line of (5.15), we either estimate IN .F2a3a4/ whose output fre-
quency lies in j�j � N1, or we estimate INF2INa3INa4, which has an I -operator
smoothing at frequency � N2 � N1. Ultimately we again obtain the bound

N 2�2s�.tk/
1�"�2s;

which is enough from Remark 5.3.
Finally, when N1 � N , then we may reduce to estimatingˇ̌̌̌ X

N3�N2�N1;N4;N�N1

“
N 2
1 a1F2N

1�sN�1Cs2 a3a4

ˇ̌̌̌
; (5.16)

and in this case, one ends up with �.tk/1�2s�N 2�s , which is sufficient by Remark 5.3.

Two random pieces. We estimate the term with a1; F2; F3; a4. Recall again that unless
N2 & N the expression we are estimating is zero. Once again, we handle two cases:

� N1 � N2,

� N1 � N2.
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When N1 � N2, we estimate the integral via

X
N2�N1�N3�N4

Z
N 2
1

�
N 1�s

N 1�s
1

a1

��
N 1�s

N 1�s
2

F2

�
F3a4

D N 2�2s
X

N2�N1�N3�N4

Z
N 2s
1 a1F2F3a4

. N 2�2s
X

N2�N1�N3�N4

N 2s
1 ka1a4kL2t;x

kF2F3kL2x;t
: (5.17)

We apply bilinear Strichartz and use the L1�t:x control from FN1 (using randomness) to
have the above controlled by

. N 2�2s
X

N1�N2�N3�N4

N s
1ka1kSkF2kL1�t L4x

kF3kL1�t L4x
jI j1=2�N s

4

�
N4

N1

�1=2�s
ka4kS

. N 2�2s�.tk/
1�

X
N1�N2�N3�N4

N s
1ka1kSkF2kL1�t L4x

kF3kL1�t L4x

�
N4

N3

�1=2�s
N s
4ka4kS :

(5.18)
Applying Cauchy–Schwarz in N4, one derives the estimate

. N 2�2s�.tk/
1�

X
N1�N2�N3

N s
1ka1kSkF2kL1�t L4x

kF3kL1�t L4x
ka3kS

�
N3

N1

�1=2�s
. N 2�2s�.tk/

1�
X

N1�N2�N3

N s
1ka1kSkF2kL1�t L4x

kF3kL1�t L4x

�
N3

N1

�1=2�s
:

(5.19)

To conclude, we sum overN3, and then apply Cauchy–Schwarz inN1 �N2, which yields
the bound

N 2�2s�.tk/
1�:

Next, to estimate the expression when N1 � N2, we again note that necessarily
N2 � N3. As above, we split into subcases:

� N1 � N ,

� N1 � N .

In the first subcase, one estimates

N 2�2s
X

N3�N2�N1;N4

Z
N 2s
1 a1F2F3a4

.N 2�2s
X

N3�N2�N1;N4

kF2F3kL2x;t
N s
1ka1kSN

s
4ka4kS min

��
N1

N4

�s
;

�
N4

N1

�1=2�s�
:

(5.20)
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As in the first case of AI , we handle the double sum over N1;N4, which we may estimate
by

N 2�2s
X

N3�N2

kF2F3kL2t;x
. N 2�2s

X
N2

jI j1=2�kF2kL1�t L4x
kF3kL1�t L4x

. N 2�2s�.tk/
1�: (5.21)

Finally, the caseN1 �N proceeds analogously with an extraN s loss, which is allowable.

Three random pieces. As mentioned in our discussion of the cancellation of three random
terms above, we only need to controlZ

I

Z
�INaIN .jF j

2F /: (5.22)

Here, we recall (4.13) and bound the above by

kINakX1;b ŒI �kIN .jF j
2F /kX1;1�b ŒI � . kINakX1;b ŒI �N 1�s : (5.23)

Note we use the fact that IN can gain 1� s derivatives by losing N 1�s . Now, plugging in
(4.7), we bound the above by

N.T /1�s
�
N.T /

N.tk/

�1�s�
1

�.tk/

�1C�1
(5.24)

Summing over all LWP intervals yields the bound

N.T /1�s
1

�.t/1CC�2
;

which is acceptable provided 0 < ı � s, and 0 < �2 � 1.

Estimates of AII . We recall the expression for AII :

AII WD =

Z
IN�a

�
jIN .aC F /j

2IN .aC F // � jINaj
2INa

�
:

Also recalling again our discussion on the cancellation of the three random terms, we note
there will be no need to consider the case of three random pieces here. In light of Remark
5.3, we will work on I D Œ�j

k
; �
jC1

k
�, and prove an estimate on this interval.

One or two random pieces. We may now combine the estimates for one or two random
pieces. As above, we let N2 � N3 � N4. Once again, we treat the case where the random
piece is at the highest allowable frequency. We consider the cases:

(1) N1 � N2 � N3 � N4 and

� N1 � N ,

� N1 � N .

(2) N1 � N2 (in this case one must have N2 � N3) and

� N1 � N (in this case one must have N2 � N ),

� N1 � N .
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Recall that

krIakS .
�

N

N.tk/

�1�s
1

�.tk/
(5.25)

and
kakXs;b � kr

sakS �
1

�.tk/s
: (5.26)

We start with the subcase N1 � N2 � N3 � N4, N1 � N . In this case, we estimateX
N2�N1�N3�N4

Z
N 2
1 Ia1

N 1�s

N 1�s
1

F2Ia3Ia4

. N 1�s
X

N1�N2�N3�N4

N1N
s
1kIa1Ia4kL2x;t

kF2Ia3kL2t;x
: (5.27)

Using bilinear Strichartz estimates for the a1; a4 term, and the random data control for F2,
we derive

. N 1�s
X

N1�N2�N3�N4

N1N
s
1 .N4=N1/

1=2
kIa1kSka4kSkF2kL4t;x

ka3kS

D N 1�s�.tk/
1
2�

X
N1�N2�N3�N4

N1kIa1kSkF2kL1�t L4x
ka3kS .N4=N1/

1=2�sN s
4kaN4kS

. N 1�s�.tk/
1
2�

X
N1�N3

N1kIa1kSkF2kL1�t L4x
ka3kSka3kXs;b .N3=N1/

1=2�s

. N 1�s�.tk/
1
2�

1

�.tk/s

X
N1�N3

N1kIa1kSkF2kL1�t L4x
ka3kS .N3=N1/

1=2�s

. N 1�s�.tk/
1
2�

1

�.tk/s
krIakS0

. N 1�s�.tk/
1
2�

1

�.tk/s
N 1�s

N.tk/1�s
1

�.tk/
: (5.28)

This is desirable. It should be remarked that we do not use any regularity of aN3 , so the
above arguments also work when aN3 is replaced by FN3 .

Now, we turn to the subcase N1 � N2 � N3 � N4, N1 � N ; then the I -operator is
just the identity map. We estimateX
N�N1�N2�N3�N4

Z
N 2
1 a1F2a3a4

. �.tk/
1
2�

X
N1�N2�N3�N4

N 2
1 ka1kSkF2kL�1t L4x

ka3kSka4kS .N4=N1/
1=2

. N 2�s�.tk/
1

�.tk/s
: (5.29)

We note that while we need s derivatives of a1, no regularity of a3 is used and thus this
argument applies equally to the case with two random pieces.



C. Fan, D. Mendelson 42

Now, let us turn to the subcase N1 � N2; then one must have N2 � N3. We first
consider the subcase N1 � N then necessarily N2 � N . We observe that

kINF2kL1t;x . N s�1
2 N 1�s

kF2kL1t;x : (5.30)

One may estimate

X
N2�N3�N�N1;N4

N 2�2sN
2�2s
1

N 2�2s
2

Z
N 2s
1 a1F2a3a4

. �.tk/kF2kL1t;xka3kS .N1=N2/
2�2sN 2s

1 ka1a4kL2t;x
; (5.31)

and we further estimate

N 2s
1 ka1a4kL2t;x

. N s
1N

s
4ka1kSka4kS min

�
.N4=N1/

1=2�s; .N1=N4/
s
�
: (5.32)

Plugging this back to (5.31), one finishes with the bound �.tk/1�2sN 2�2s .
Finally, we are left with the case N1� N2, N3 � N2, N1 � N ; one simply estimates

this expression as X
N1;N2�N3;N4

N 2
1 a1F2a3a4 . N 2�s�.tk/

1�s; (5.33)

which is sufficient.
The estimate with two random terms follows as for AI .

Estimates for BI and BII . These estimations proceed similarly to the previous ones, but
are somewhat simpler since we do not lose derivatives, and indeed it is easy to see that
when there are at least three random pieces in the estimate, the proof becomes more or less
trivial. This is in sharp contrast to the case of AI and AII . Also, the purely deterministic
case follows from the estimates in [20].

We recall

BI WD =

Z
IN .jaj2a/

�
IN .jaC F j

2.aC F // � jIN .aC F /j
2IN .aC F /

�
;

BII WD =

Z
IN .jaj2a/

�
jIN .aC F /j

2IN .aC F // � jINaj
2INa

�
:

One random piece. We will record the estimates involving one random piece. Once again
we let N1�N2�N3 and N4 � N5 � N6. We will see that BI and BII are handled in a
similar manner to AI and AII and hence we will sketch the estimates for BI , and leave
BII to the interested reader. We ignore complex conjugates as they will not feature in our
argument.

We consider Z
INa1INa2INa3 ŒIN .F4a5a6/ � INF4INa5INa6� ; (5.34)
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and without loss of generality, assume that Ni � 1 for all i . As previously, we note that
in order for this expression to be nonzero, we will need N4 & N . We let N123 be the
resulting frequency from the convolution of the first three terms. In this setting, we need
to consider two cases:

� N1 & N4,

� N1 � N4.

In the first case, we use Bernstein’s and Hölder’s inequalities to estimateˇ̌̌̌ X
N4�N1�N2;N3;N5;N6

“ �
N 1�s

N 1�s
1

a1

�
a2a3

�
N 1�s

N 1�s
4

F4

�
a5a6

ˇ̌̌̌
' N 2�2s

X
N4�N1�N2;N3;N5;N6

N s�1
1 N s�1

4 ka1a2a3a5kL2t;x
kF4a6kL2t;x

' N 2�2s
X

N4�N1�N2;N3;N5;N6

N
2s�2C1=2
1 ka1a2a3a5kL2tL

1
x
kF4a6kL2t;x

' N 2�2s
X

N4�N1�N2;N3;N5;N6

N
2s�2C3=2
1 ka2kL1t L

2
x
ka3kL1t L

2
x
ka1a5kL2t;x

kF4a6kL2t;x
:

(5.35)

Since 2s � 1=2 < 2s, we can estimate this as in the kinetic term.
In the second case, ifN1� N4, then since the convolution of the first three terms and

the convolution of the last three terms are paired, we must have N4 � N5, and we can
further estimate based on whether

� N1 � N ,

� N1 � N ,

as before.

Two random pieces. There are two subcases to consider:

� N1 & N4,

� N1 � N4.

We again estimate mimicking the kinetic term estimates, to obtainˇ̌̌̌ X
N4�N1�N2;N3;N5;N6

“ �
N 1�s

N 1�s
1

a1

�
a2a3

�
N 1�s

N 1�s
4

F4

�
F5a6

ˇ̌̌̌
' N 2�2s

X
N4�N1�N2;N3;N5;N6

N s�1
1 N s�1

4 ka1a2a3a6kL2t;x
kF4F5kL2t;x

' N 2�2s
X

N4�N1�N2;N3;N5;N6

N
2s�2C1=2
1 ka1a2a3a6kL2tL

1
x
kF4F5kL2t;x

(5.36)

and again we can use Bernstein on a2; a3.
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In the second case, ifN1� N4, then since the convolution of the first three terms and
the convolution of the last three terms are paired, we must have N4 � N5, and we can
further estimate based on whether

� N1 � N ,

� N1 � N ,

and again we can argue as for the kinetic terms.

Estimate for momentum. These estimates proceed via direct computation, and we refer
as well to the explanation in [20]; the proof of (5.4) is similar to the proof for the kinetic
part of (5.4).

6. Proof of the bootstrap lemma and the main theorem

In this section we establish the main bootstrap result, Lemma 3.6, as well as the main
Theorem 3.1. First, we recall our ansatz (3.20):

u.t; x/ D a.t; x/C F.t; x/; (6.1)

a.t; x/ D
1

�.t/
.Qb C �/

�
x � x.t/

�.t/

�
e�i.t/; (6.2)

where a plays the role of the full solution u in [20], and satisfies the forced NLS (3.26),
and where the parameters �.t/; x.t/; b.t/; .t/ are chosen so that the orthogonality con-
ditions (3.21)–(3.24) hold. Once we establish the desired energy estimates for E.INa/
and P.INa/ under the bootstrap assumptions of Lemma 3.6, the proof of Lemma 3.6
essentially follows as in [20, Section 4], with some changes in our current setting which
we highlight below. In particular, we will verify that given our estimates on E.INa/ and
P.INa/, the key computations in [36–38, 40] still hold following the bootstrap scheme
in [45].

It should be noted that unlike the full solution u, the nonlinear component of the solu-
tion a does not satisfy an exact mass conservation law, which adds additional technical
difficulties in the last step of Section 6.1 below.

6.1. Energy estimates imply persistence of log-log regime

Overview. There are five main steps in this subsection. In Step 1, one works with the
rescaled time variable to obtain the modulation equations for �. In Step 2, one obtains
some control of � by modulation analysis and analysis of the almost conserved quantities
P.INa/ and E.INa/. Steps 1 and 2 form the basis of log-log analysis. We subsequently
analyze the modulation equations for � and corresponding estimates obtained in Step 2. In
the crucial Step 3, one recovers the key local virial estimate of Merle and Raphaël, which
will be responsible for the upper bound of the log-log blowup rate. In Steps 4 and 5, one
controls the L2 dispersion at infinity and explores the fact that a almost enjoys a mass
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conservation law. Finally, one recovers the Lyapunov type control of Merle and Raphaël,
which is responsible for the lower bound of the log-log blowup rate.

Step 1. We use the rescaled time variable s, where ds D ��2dt , and we set t .s0/D 0 and
t .sC/ D T . We use the forced NLS (3.26) to derive

@s†b C @s�1 �M�.�/C bƒ�1 D

�
�s

�
C b

�
ƒ†bC Qs‚bC

xs

�
r†bC

�
�s

�
C b

�
ƒ�1

C Qs�2 C
xs

�
r�1 C=‰b �R2.�/ �G2; (6.3)

@s‚b C @s�2 CMC C bƒ�2 D

�
�s

�
C b

�
ƒ‚b � Qs†b C

xs

�
r‚b

C

�
�s

�
C b

�
ƒ�2 � Qs�1 C

xs

�
r�2 �<‰b CR1.�/

CG1; (6.4)

where Q D �s �  , and MC;M�, and R1; R2 are defined via

j zQb C �j
2. zQb C �/ � j zQbj

2Qb DMC.�/C iM�.�/CR1.�/C iR2.�/; (6.5)

i.e.M˙ picks up the first order term (with respect to �), andR1C iR2 picks up the second
and higher order term (in �).

And G D G1 C iG2 is defined via

G.t; x/ D �
�
j zQb C � C QF j

2. zQb C � C QF / � j zQb C �j
2. zQb C �/

�
; (6.6)

where QF .t; x/ D �.t/F.t; �.t/x C x.t//ei.t/.
Note that (6.3) and (6.4) are exactly equations (4.2) and (4.3) in [20] except that we

have two extra terms,G1 andG2. We will see that these terms can be treated perturbatively
due to the fact that F is the linear evolution of randomized initial data.

Step 2. We now derive some preliminary estimates using (almost) conservation laws, and
modulation estimates. In particular, using our control of E.INa/ and P.INa/ obtained
in the previous section, we derive the following result.

Lemma 6.1. For all s 2 Œs0; sC�,ˇ̌̌̌
2.�1; †b C bƒ‚b �<‰b/C 2.�2; ‚b � bƒ†b � =‰b/

� 2

�
2„C

Z
jIN�r�j

2
� 3Q2IN��

2
1 �

Z
Q2I 2N��2

�ˇ̌̌̌
� ı0

�Z
jrIN��j

2
C

Z
�2e�jyj

�
C �

1�C�

b
; (6.7)

j.�2;rQ/j � ı0

�Z
jrIN��j

2

�1=2
C �10b : (6.8)
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Here ı0 > 0 is some small constant. This step is exactly the same as the derivation of
(4.5) and (4.6) in [20]. In this step, we rely on the bootstrap assumption (3.31), and the
almost conservation law of Proposition 5.1.

By substituting (3.21)–(3.24) into (6.3) and (6.4), we derive the following standard
modulation estimate.

Lemma 6.2. For s 2 Œs0; sC�,ˇ̌̌̌
�s

�
C b

ˇ̌̌̌
C jbsj C jxsj . „.s/C

Z
jrIN��j

2
C

Z
�2e�jyj C �

1�C�

b
C F .s/; (6.9)ˇ̌̌̌

Qs �
.�1; LCƒ

2Q/

kƒQk2
L2x

ˇ̌̌̌
. �

1�C�

b
C F .s/ (6.10)

where F .s/ � 0 satisfiesZ sC

s

F .s/ ds . �.s/˛2 ; 8s 2 Œs0; sC�; (6.11)

with some ˛2 > 0.

Remark 6.3. The extra term F is completely perturbative, though it is only estimated in
the time average sense; but as this term appears when estimating the time derivative of the
modulation parameters, this is sufficient. Heuristically, pointwise,

F .s/ � �@s�.s/
˛2 � �

�s

�
�˛2 � b�˛2 � �100b :

Lemma 6.2 should be compared with [20, (4.7) and (4.8)] (in the H s setting). Com-
pared with the standard modulation estimates in the H 1 setting, the term F .s/ is intro-
duced to account for the cut-off IN� in the estimate.

In our setting, we need to verify that the extra term in (6.3) and (6.4) is also perturba-
tive. To see this, we briefly recall how the modulation estimate is done. To derive (6.9) and
(6.10), one substitutes the four orthogonality conditions (3.21)–(3.24) into (6.3) and (6.4)
to cancel the @s�1; @s�2 terms. For example, to substitute (3.21) into (6.3) and (6.4), one
needs to take the L2x inner product of (6.3) and y2 zQb , and the L2x inner product of (6.4)
and y2�b , respectively, and sum up. Compared with [20], we obtain extra terms resulting
from G1; G2, which satisfy

.jyj2j zQbj; jGj/ .
Z
jyj2j zQbj.j zQb C �j

2
j QF j C j zQb C �j j QF j

2/: (6.12)

We then claim that for any s1 2 Œs0; sC/, we haveZ sC

s1

Z
jyj2j zQbj.j zQbC �j

2
j QF jC j zQbC �j j QF j

2/.�.s1/˛2 for some ˛2>0; (6.13)

and thus these extra terms may be absorbed into F which satisfies (6.11). To establish this
bound, we proceed as follows. Let t .s1/ 2 Œtk1 ; tk1C1� and TC D sC, and �.TC/ � 2�kC .



Construction of L2 log-log blowup solutions for the mass critical NLS 47

We can split Œtk1 ; TC/ into disjoint intervals ¹Ikº
kC
kDk1

, and we may split every Ik into

disjoint LWP intervals I j
k
D Œ�

j

k
; �
jC1

k
� such that jI j

k
j � �.tk/

�2. Recall that for any k,
there exist at most k such intervals, via the bootstrap assumption (3.33). Now, we may
estimate the LHS of (6.13), in the original nonrescaled variable, asZ sC

s1

Z
jyj2j zQbj.j zQb C �j

2 QF C j zQb C �j j QF j
2/

.
Z TC

tk1

1

�.t/1=2
.kak2

L4x
kF kL4x C kakL4xkF k

2

L4x
C kF k3

L4t;x
/ dt

.
kC1X
kDk1

X
j

�
kak2

L4t;x ŒI
j

k
�
kF k

L4t;xI
j

k

C kak
L4t;x ŒI

j

k
�
kF k2

L4t;x ŒI
j

k
�
C kF k3

L4t;x ŒI
j

k
�

�
: (6.14)

Note that up to an exceptional set of small probability (depending on p), one has

kF.t; x/kLpt;x
. 1; (6.15)

which, combined with the estimate kF.t; x/kL1t L2x . 1, gives

kF.t; x/k
L4tL

4
x ŒI

j

k
�

. jI j
k
j
˛p ; where lim

p!1
p̨ D 1=4; (6.16)

By the standard local theory,22

kak
L4t;x ŒI

j

k
�

. 1; (6.17)

hence we can choose p large enough, and estimate (6.14) by

kCX
kDk1

k2�2k˛p . �.s1/
.�2˛p/C; (6.18)

which establishes (6.13), and consequently Lemma 6.2. We will repeatedly rely on the
above argument to handle the extra terms caused by G1; G2; we do not repeat the details.

Step 3. This step mainly concerns the derivation of the (local) virial estimate, as well
as its sharpening via the tail term z�b . This is the core part of the Merle–Raphaël log-
log analysis [36–38, 40]. The key point here, similar to [20], is to make sure the original
Merle–Raphaël computation remains valid by showing all extra terms introduced are per-
turbative.

One has the following virial estimates.23

22Here we can simply apply the usual deterministic L2x local theory rather than the modified
probabilistic version of the current article.

23Estimate (1.14) was called the local virial estimate in [36], and the global virial estimate in
[20].
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Lemma 6.4. There exists c0 > 0 such that for all s 2 Œs0; sC/,

bs � c0

�
„.s/C

Z
jrIN��j

2
C

Z
�2e�jyj

�
� �

1�C�

b
� F .s/; (6.19)

where F satisfies (6.11).

Lemma 6.5. Let

f1 WD
b

4
ky zQbk

2
2 C

1

2
=

Z
yrz�bz�b C .�2; ƒ<z�b/ � .�1; ƒ=z�b/: (6.20)

Then for a universal constant c1 and all s 2 Œs0; sC/,

@sf1.s/ � c1

�
„.s/C

Z
jrIN��j

2
C

Z
�2e�jyj C �b

�
�
1

ı1

Z
A�jxj�2A

j�j2 � F .s/;

(6.21)
where F satisfies (6.11).

Remark 6.6. In the previous lemma, one should think of f1 as a modified version of b,
in particular satisfying f1 � 1

4
kyQk22b.

Lemmas 6.4 and 6.5 should be compared with Lemmas 4.3 and 4.4, respectively,
in [20]. We can again use the argument from Lemma 6.2 above to argue that the extra
terms created by G1 and G2 in (6.3) and (6.4) can also be absorbed into the error F . For
example, to derive Lemma 6.4, one computes the L2x inner product of �ƒ‚b and (6.3),
and the L2x inner product of ƒ†b and (6.4), and sums them together, substituting into
(3.23). Ultimately, the extra terms caused by G1; G2 are controlled by

.ƒ zQbj; jGj/ .
Z
jƒ zQbj.j zQb C �j

2
j QF j C j zQb C �j j QF j

2/; (6.22)

which can be handled similarly to (6.12) above. We omit the details.

Step 4. In this step, we need to control the L2x.R
2/ dispersion at infinity. Recall that

A D Ab D e
a�=b;

and ‰ is a radial cut-off function, with ‰ D 0 for jxj � 1=2 and ‰ D 1 for jxj � 3. Let
‰A.x/ D ‰.x=A/.

Lemma 6.7. For some universal constants C; c3 > 0 and all s 2 Œs0; sC/,

@s

Z
‰Aj�j

2
� c3b

Z
A�jxj�2A

j�j2 � �
a=2

b

Z
jrIN��j

2
� �1CCa

b
� F .s/ � @sH .s/;

(6.23)
where F satisfies (6.11), and H satisfies the estimate

jH .s/j . �.s/˛3 for some ˛3 > 0: (6.24)
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Lemma 6.7 corresponds to [20, Lemma 4.5], up to certain technical modifications. We
quickly go over its proof, focusing only on the differences from the proof in [20]. While
the F term could actually be absorbed into @sH , we choose to proceed in a manner that
more closely follows the original presentation of [20].

Remark 6.8. We recall the tail z�b introduced in the previous section, and set Q� D � � z�b .
Note that kr� �r Q�kL2x D kr

z�bkL2x . �
1�C�

b
, which implies, by choosing a� C�, that

krIN�� � rIN� Q�k2 . �1CCa
b

I (6.25)

thus Lemma 6.7 implies in particular that

@s

Z
‰Aj�j

2
� c3b

Z
A�jxj�2A

j�j2 � �1CCa
b

� �
a=2

b

Z
jrIN� Q�j

2
� F .s/ � @sH .s/:

(6.26)

Proof of Lemma 6.7. Recall that since zQb is supported in jxj . 1=b, one has

‰Aj zQbj
2
� 0: (6.27)

Thus
‰A.jIN��j

2
� jIN�� C zQbj

2/ D 0: (6.28)

Now note
‰Aj�j

2
D ‰A.j�j

2
� jIN��j

2/

C‰A.jIN��j
2
� jIN�� C zQbj

2/

C‰A.�jIN�.� C zQb/j
2
C jIN�� C zQbj

2/

C‰A.jIN�� C zQbj
2/: (6.29)

Observe that the second line of (6.29) is zero thanks to (6.27). Let

H D ‰A.j�j
2
� jIN��j

2/C‰A.�jIN�.� C zQb/j
2
C jIN�� C zQbj

2/: (6.30)

Then H satisfies (6.24) since � is bounded in H s due to the bootstrap assumption (3.32),
zQb is a nice function (uniformly in b), and IN� � Id removes all frequencies above
N.t/�.t/ � �.t/�ı for some ı > 0.

Moreover, we have

d

ds

Z
‰

�
x � x.t/

A�.t/

�
j�j2 D

d

ds

x � x.t/

A.t/�.t/
jIN�aj

2
� @sH ; (6.31)

where we recall the ansatz for a given by

a D
1

�.t/
. zQb C �/

�
x � x.t/

�.t/

�
ei.t/

and that the scaling in � is L2x invariant.
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As mentioned above, the role a plays for us is the same as the role played by u in the
proof of [20, Lemma 4.5]. One may follow the computations leading to [20, (4.27)] and
the formula above (4.27) in [20] to derive24

d

ds

Z
‰

�
x � x.t/

A�.t/

�
jIN�aj

2
� c3b

Z
A�jxj�2A

j�2j � �1CCa
b

� �
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Z
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2
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x � x.t/

A�.t/

�
INa ŒIN .ajaj

2/ � INajINaj
2�

� �2
ˇ̌̌̌
‰

�
x � x.t/

A�.t/

�
QINa INa

ˇ̌̌̌
C 2�2=

Z
‰

�
x � x.t/

A�.t/

�
INa

�
IN
�
jaC F j2.aC F /

�
� IN .jaj

2a/
�

(6.32)

where F1 satisfies (6.11) and consequently may be absorbed into F . It has been explained
in detail in [20] why the second line and third line of (6.32) can also be absorbed into F .
Note that in the final line of (6.32), we have used the fact that a satisfies a forced NLS
(3.26).

We claim that for all s1 2 Œs0; sC�, one hasZ sC

s1

ˇ̌̌̌
2�2=

Z
‰

�
x � x.t/
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�
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�
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. �.s1/
˛2

(6.33)
for some ˛2 > 0. This is again similar to (6.13), since if one lets t .s1/ 2 Œtk1 ; tk1C1/ and
TC D t .sC/, then using �2ds D dt , one can bound the LHS viaZ TC

tk1

.jaj3
L4x
C jF j3

L4x
/kF kL4x ; (6.34)

and proceed similarly to the proof of (6.13). We leave the details to the readers.

Step 5. In this step, we use the mass “conservation” law to combine Lemmas 6.5 and 6.7,
and derive Lyapunov type control. For this part, we mostly directly refer to [20, 40]. It
should be noted, however, that unlike the H 1 case from [40], or the H s; s > 0, case
from [20], here we will need to handle an almost conservation law rather than the exact
conservation law. Indeed, if a solved the NLS, one would have

d

ds
k zQb C �k

2
2 D

d

ds
kakL2x � 0:

In our case, a only solves a forced NLS (3.26) and thus does not enjoy precise mass
conservation. We instead claim the following.

24In the original [20, (4.27)], there should be a 2�2 before the =.� � � / term. Additionally, on the
LHS of [20, (4.27)], ‰A should read ‰A�.x � x.t//.
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Lemma 6.9. For all s 2 Œs0; sC/, one has

d

ds
k zQb C �k

2

L2x
D @sG ; (6.35)

where jG .s/j . �.s/˛2 for some ˛2 > 0.

Proof. We compute
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ds
k zQb C �k

2
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dt
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; (6.36)

which is bounded by
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We need only verify thatZ sC
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for some ˛2 > 0. This is again similar to (6.13) and we omit further details.

Thus, by expanding (6.35) and observing that Q does not depend on s, one has
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Now, we are ready to follow the computation in the proof of [40, Proposition 4]. We
combine (6.23) and (6.21) with the help of (6.35), and, as in [40], we obtain
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We substitute
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and let J be defined as
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(6.41)
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where
Qf1.b/ D

b

4
ky zQbk

2
2 C

1

2
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Z
yrz�bz�b :

We then obtain

@sJ ��Cb

�
�b C„C

Z
jrIN� Q�j

2
C

Z
j�.s/j2e�jyjC

Z
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�
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which corresponds to [20, (4.28)], though the definition of J now involves the correc-
tions H and G .

The main simple observation is that J is of size b2, and the two extra correction terms
are of size� �100

b
and can be neglected. Hence, J with the extra corrections H and G

can still serve as a Lyapunov function as in [20].
Estimates (6.21) and (6.42) ensure the dynamics remains in the log-log blowup

regime, and are enough to close the bootstrap lemma 3.6. Indeed, the rest of the proof
of the bootstrap lemma goes almost line for line as in [20], following the original scheme
in [45]. We go over its proof quickly:

� One applies mass (almost) conservation law, Lemma 6.9, to upgrade (3.29) to (3.34).
(In [20], one can just apply the exact mass conservation law.)

� One uses the monotonicity of J to upgrade (3.32) to (3.37).

� Estimate (6.9) implies in average sense �s=���b, which is already enough to upgrade
(3.30) to (3.30).

� Now the dynamics of � is dictated by the dynamics of b, and bs is governed by (1.14)
and (6.42). This allows one to upgrade (3.31) to (3.36), and to upgrade (3.33) to (3.38).

This concludes the proof of the bootstrap lemma 3.6.
Finally, we may prove the main theorem:

Proof of Theorem 3.1. From the probabilistic local well-posedness of Lemma 4.2 and the
energy estimates of Proposition 5.1, as we have detailed above, one obtains an exception
set of small probability so that the bootstrap lemma 3.6 holds. As mentioned in the last
two steps above, the dynamics of � is dictated by that of b, whose dynamics is controlled
by (6.42) and (1.14). This is sufficient to prove �.t/ goes to zero at the desired rate; see
[20, 40] for more details. This concludes the proof of Theorem 3.1.
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