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Abstract. In this paper, over an arbitrary number field, we prove subconvexity bounds for self-
dual GL3 L-functions in the t -aspect and for self-dual GL3 � GL2 L-functions in the GL2
Archimedean aspect.
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1. Introduction

There is a great interest in upper bounds for the central values of L-functions. The sub-
convexity problem is concerned with improving over their convexity bound resulting from
the Phragmén–Lindelöf convexity principle.

The subconvexity problem for GL1 and GL2 over arbitrary number fields was com-
pletely solved in the seminal work of Michel and Venkatesh [39]. More recent work on
the subconvexity for GL2 over number fields may be found in [7, 35, 36, 46, 66, 67].

Xiaoqing Li [30] made the first progress on the subconvexity problem for GL3 in the
t -aspect and GL3 �GL2 in the GL2 spectral aspect. For a self-dual Hecke–Maass form �

for SL3.Z/ and the family B given by an orthonormal basis of even Hecke–Maass cusp
forms for SL2.Z/, she established the averaged Lindelöf hypothesis for the first moment:X
f 2B

e�.tf �T /
2=M2

L
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2
; �˝f

�
C

1

4�

Z
R
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2=M2 ˇ̌
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C i t; �

�ˇ̌2 dt Î�;ε MT 1Cε

(1.1)

for T 3=8Cε 6M 6 T 1=2, where 1
4
C t2

f
is the Laplace eigenvalue for f . As a consequence

of (1.1) and the non-negativity of L
�
1
2
; � ˝ f

�
due to the self-dual assumption, she

obtained the subconvexity bounds
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Î�;ε .1C jtf j/

11=8Cε : (1.2)

In a similar framework, Blomer [5] proved the subconvexity for twisted GL3 and GL3 �
GL2 L-functions in the q-aspect:

L
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2
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5=8Cε ; L
�
1
2
; � ˝ f ˝ �

�
Îf;�;ε q

5=4Cε ; (1.3)

where � is a quadratic Dirichlet character of prime modulus q. The work of Blomer clearly
stems from the remarkable paper of Conrey and Iwaniec [12] on the cubic moment of
twisted GL2 L-functions. A recent advance on the path of Conrey and Iwaniec is the
work of Young [68], in which he introduced new analytic techniques, which are quite
different from those of Xiaoqing Li, to prove the hybrid Weyl-type subconvexity bound

L
�
1
2
C i t; �

�
Îε .q.1C jt j//

1=6Cε ; L
�
1
2
; f ˝ �

�
Îε .q.1C jtf j//

1=3Cε : (1.4)

Later, in the spirit of Blomer and Young, Nunes [47] improved Xiaoqing Li’s exponent 11
16

in (1.2) to Blomer’s 5
8

in (1.3).
In this paper, we shall prove subconvexity results in the t -aspect for GL3 and the GL2

Archimedean aspect for GL3 �GL2 over arbitrary number fields. The Voronoï summation
formula for GL3 of Ichino and Templier [20] is used in its full generality, with the aid of
the asymptotic formulae of Bessel functions for GL3 in [57].
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As explained in §9, there are technical issues to generalize the analysis of Xiaoqing
Li to number fields other than Q, so, instead, our approach is inspired by the works of
Blomer, Young, and Nunes. As for the strategy, briefly speaking, Xiaoqing Li uses the
Voronoï summation twice, while we use the Voronoï summation once, followed by the
large sieve.

For other related works, see for example [18, 21, 38, 51–54, 56].
For subconvexity results for GL3 over Q without the self-dual assumption, we refer

the reader to the papers of Munshi, Holowinsky, Nelson, Yongxiao Lin et al. [2,16,31,32,
42–45, 58, 59, 63].

1.1. Statement of results

Let F be a fixed number field of degree N . Let S1 denote the set of Archimedean places
of F . As usual, write 3 j1 in place of 3 2 S1. For 3 j1, let N3 be the degree of F3=R.

Let � be a fixed self-dual spherical automorphic cuspidal representation of PGL3
over F . Let B be an orthonormal basis consisting of Hecke–Maass cusp forms for
the spherical cuspidal spectrum for PGL2 over F . For f 2 B, let νf 2 CjS1j be its
Archimedean parameter such that either νf; 3 is real or iνf; 3 2 .�12 ;

1
2
/ for every 3 j1; we

may readily assume that νf; 3 2 Œ0;1/ [ i Œ0; 12 /.
We are concerned with the GL3 � GL2 Rankin–Selberg L-functions L.s; � ˝ f /

for f in the family B and the GL3 L-function L.s; �/. The following is our main the-
orem.

Theorem 1.1. Let notation be as above. Let ε > 0. Let T;M 2 RjS1jC be such that 1 Î

T ε

3 6M3 6 T 1�ε

3 for every 3 j1. Set N.T /D
Q
3j1 T

N3
3 and N\.M/D

Q
3j1M3. Assume

that T3 > N.T /ε for every 3 j1. Define BT;M to be the collection of f 2 B satisfying
jνf; 3 � T3j 6 M3 for all 3 j 1, and define RT;M to be the intersection of the intervals
ŒT3 �M3; T3 CM3� for all 3 j1. ThenX
f 2BT;M

L
�
1
2
; � ˝ f

�
C

Z
RT;M

ˇ̌
L
�
1
2
C i t; �

�ˇ̌2
dt Îε;�;F N\.M/N.T /5=4Cε ; (1.5)

with the implied constant depending only on ε, � , and F .

Remark 1.2. The assumption T3 > N.T /ε (3 j1) is used to make the contribution from
exceptional forms negligible and to address some issues with the infinitude of units.

For f 2B, define its Archimedean conductor C1.f / D C.νf /2 by

C1.f / D N.1C jνf j/2 D
Y
3j1

.1C jνf; 3j/
2N3 :

Since � is self-dual, by the non-negativity theorem of Lapid [29], we have

L
�
1
2
; � ˝ f

�
> 0: (1.6)

As a consequence of (1.6), we derive from (1.5) the following subconvexity bounds by
taking M D T ε .
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Corollary 1.3. Let notation be as above. We have

L
�
1
2
C i t; �

�
Îε;�;F .1C jt j

N /5=8Cε ; (1.7)

and
L
�
1
2
; � ˝ f

�
Îε;�;F C1.f /5=8Cε (1.8)

if jνf; 3j > C1.f /ε for all 3 j1.

1.2. Subconvexity for GL2

With the Archimedean analysis of this paper, following Young, one should be able to
establish the Weyl-type bound (or even the hybrid Weyl-type bound)

L
�
1
2
; f
�

Îε;F C1.f /1=6Cε : (1.9)

For F D Q, this is a result of Ivić [21]. For arbitrary F , Han Wu [67] has a uniform
subconvexity bound with a weaker exponent.

Let � be a fixed spherical Hecke–Maass cusp form for PGL2 over F . By combining
(1.8) and (1.9), with � D Sym2 �, we obtain

L
�
1
2
; � ˝ � ˝ f

�
Îε;�;F C1.f /19=24Cε : (1.10)

For comparison, when F D Q, Bernstein and Reznikov [4] proved

L
�
1
2
; � ˝ �0 ˝ f

�
Îε;�;�0 jtf j

5=3Cε : (1.11)

1.3. Remarks on hybrid subconvexity

Let � be a quadratic Hecke character for F of prime conductor q. In light of the works of
Young [68] and Blomer [5] in the case F DQ, the following hybrid subconvexity bounds
should hold:

L
�
1
2
C i t; � ˝ �

�
Îε;�;F .N.q/.1C jt jN //5=8Cε ;

L
�
1
2
; � ˝ f ˝ �

�
Îε;�;F

�
N.q/2.1C C1.f //

�5=8Cε

;
(1.12)

at least when jt j; C1.f / > N.q/ε . This is believed by Nunes [47] for F D Q, and has
been confirmed by the author for F D Q or Q.i/ (unpublished). It seems that (1.12) can
be verified whenever the class number hF is 1, though the group of units might cause
some trouble. In general, one has to compute certain non-Archimedean local integrals
which should be transformed eventually into the character sums studied by Conrey and
Iwaniec. The transformation could be quite intricate in view of Blomer’s computations in
[5, §6]. Recently, Nelson [46] generalized Conrey–Iwaniec to general number fields, and
his work might provide some hint for this problem.

1.4. Features of analysis over complex numbers

The main difficulty in the analysis over C is the lack of suitable stationary phase res-
ults in two dimensions. Considerably more efforts are needed particularly for the Hankel



Subconvexity for L-functions on GL3 over number fields 5

transform and the Mellin transform. We would rather not discuss the technical details—it
is more worthwhile and interesting to present here the features of certain trigonometric-
hyperbolic functions arising in the phases.

To start with, the function trh.r; !/ D �.r; !/ei�.r;!/ that occurs in the GL2 Bessel
integral on C is given by

�.r; !/ D

r
cosh 2r C cos 2!

2
; tan �.r; !/ D tanh r tan!:

Since trh.r; 0/D cosh r and trh.r;�=2/D i sinh r , one expects that the r-integral behaves
like the Bessel integral on RC or R� when sin! or cos! is small, respectively.

After performing the GL3 Hankel transform, we obtain a new function trh\.r; !/ D
�\.r; !/ei�

\.r;!/ defined by

�\.r; !/ D
cosh 2r � cos 2!
cosh 2r C cos 2!

; tan.� \.r; !/=2/ D
sin 2!
sinh 2r

:

It is certainly a pleasure to see the square-root sign gone. More important is the symmetry
in trh\.r; !/ reflected by the identities

@2 log �\

@r2
D �

@2 log �\

@!2
D
@2� \

@r@!
;

@2� \

@r2
D �

@2� \

@!2
D �

@2 log �\

@r@!
;

which play a critical role in our analysis after applying the Mellin technique.
Finally, we remark that, at the stage of the Mellin technique, new phenomena emerge

in our analysis for cos 2! in the vicinity of 0 (for jsin!j and jcos!j nearly equal).

Notation

By writingX Î Y orX DO.Y / we mean that jX j6 cY for some constant c > 0, and by
X � Y we mean that X Î Y and Y Î X . We write X ÎP;Q;::: Y or X D OP;Q;:::.Y / if
the implied constant c depends on P , Q; : : : . Throughout this article N.T / Ï 1 and each
T3 > N.T /ε Ï 1 will be large, and we say that X is negligibly small if X D OA.N.T /�A/
(or OA.T �A3 /) for arbitrarily large but fixed A > 0.

We adopt the usual ε-convention of analytic number theory: the value of ε may differ
from one occurrence to another.

Part I. Number-theoretic preliminaries

2. Notation over number fields

Basic notions

Let F be a number field of degree N . Let O be its ring of integers and O� be the group
of units. Let D be the different ideal of F . Let N and Tr denote the norm and the trace
for F , respectively. Let dF be the discriminant of F . Denote by A the adele ring of F
and by A� the idele group of F .
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For any place 3 of F , we denote by F3 the corresponding local field. When 3 is non-
Archimedean, let p3 be the corresponding prime ideal of O and let ord3 or 3 itself denote
the additive valuation; occasionally, p3 also stands for the prime ideal in O3. Denote by D3
the local different ideal. Let N3 be the local degree of F3; in particular, N3 D 1 if F3 D R
and N3 D 2 if F3 D C. Let j j3 denote the normalized absolute value on F3. We have
j j3 D j j if F3 D R and j j3 D j j2 if F3 D C, where j j is the usual absolute value. Let r1
and r2 be the number of real and complex places of F , respectively.

Let S1 and Sf denote the sets of Archimedean and non-Archimedean places of F ,
respectively. Write 3 j1 and 3−1 as an abbreviation for 3 2 S1 and 3 2 Sf , respectively.
For a finite set S of places, denote by AS , respectively FS , the subring of adeles with
trivial component above S , respectively above the complement of S . The absolute values
on A�S andFS will be denoted by j jS and j jS respectively. For brevity, write Af DAS1

and F1 D FS1 .

Additive characters and Haar measures

Fix the (non-trivial) standard additive character  D ˝3  3 on A=F as in [28, §XIV.1]
such that 3.x/D e.�x/ if F3DR, 3.z/D e.�.zCxz// if F3DC, and 3 has conductor
D�13 for any non-Archimedean F3. For a finite set S of places, denote  S D

Q
3…S  3 and

 S D
Q
32S  3. We split  D  1 f so that  1.x/ D e.�TrF1.x// (x 2 F1).

We choose the Haar measure dx of F3 self-dual with respect to  3 as in [28, §XIV.1];
the Haar measure is the ordinary Lebesgue measure on the real line if F3 D R, twice
the ordinary Lebesgue measure on the complex plane if F3 D C, and the measure for
which O3 has measure N.D3/�1=2 if F3 is non-Archimedean. We slightly modify the
Haar measure d�x of F �3 defined in [28, §XIV.2]: d�x D dx=jxj3 if 3 j1, and d�x D
N.D3/1=2N.p3/=.N.p3/ � 1/ � dx=jxj3 if 3 −1, so that O�3 has mass 1 (it is N.D3/�1=2

in [28]).
We remark that the absolute value, measure and additive character on F1 D

Q
3j1 F3

are chosen differently in [9]. For example, they use j j for both real and complex 3, their
additive measure differs from ours by a factor of 1=� or 1=2� if 3 is real or complex,
respectively, and their additive character is e.TrF1.x// instead of e.�TrF1.x//.

Ideals

In general, we use Gothic letters a; b; c; : : : to denote non-zero fractional ideals of F ,
while we reserve m, n, d, f , q, and r for non-zero integral ideals of F . Let p always
stand for a prime ideal. Let N.a/ denote the norm of a. If ˛ 2 F �, we denote by .˛/ the
corresponding principal ideal. If a is a fractional ideal, we shall often write just ˛a for the
product .˛/a.

Given � 2 RjS1jC with
P
3j1N3�3 D 1, for each principal fractional ideal a we choose

once and for all a generator, which we denote Œa�, so that

jŒa�j3 � N.a/N3�3 ; 3 j1I (2.1)
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such a choice is guaranteed by Dirichlet’s units theorem (see [28, §V.1]). Later, we shall
set �3 D logT3=log N.T /.

For each non-zero fractional ideal a, we fix a corresponding �a 2A�
f

so that ord3.a/D
ord3.�a; 3/ for all 3 −1. Set ı D �D. For brevity, write a3 D aO3.

Let CF be the class group and hF be the class number of F . We shall write a � b

when a and b are in the same ideal class. We choose a set zCF of integral ideals that
represent the class group.

Characters and Mellin transforms

For 3 Archimedean, define the (unitary) character �iν;m.x/D jxjiν3 .x=jxj/
m (x 2 F �3 ) for

ν 2R andm 2 ¹0; 1º (D Z=2Z) if F is real, andm 2 Z if F is complex. Let ya3 denote the
unitary dual of F �3 . We shall identify ya3 with R� ¹0; 1º or R�Z according as 3 is real or
complex. Let d�.ν; m/ denote the usual Lebesgue measure on R � ¹0; 1º or R � Z. For
notational simplicity, we shall write summation on ¹0; 1º or Z as integration.

For f 2 L1.F �3 / \ L
2.F �3 /, define its (local) Mellin transform Mf .ν; m/ by

Mf .ν; m/ D

Z
F �3

f .x/�iν;m.x/ d�x: (2.2)

The Mellin inversion formula reads

f .x/ D
1

2�c3

Z Z
ya3

Mf .ν; m/�iν;m.x/ d�.ν; m/; (2.3)

where c3 D 2 if 3 is real and c3 D 2� if 3 is complex. Moreover, by Plancherel’s theorem,Z
F �3

jf .x/j2 d�x D
1

2�c3

Z Z
ya3

j Mf .ν; m/j2 d�.ν; m/: (2.4)

Let ya D
Q
3j1
ya3 be the unitary dual of F �1. For .ν; m/ 2 ya, define �iν;m to be the

product of �iν3;m3 . Let d�.ν; m/ be the Lebesgue measure on ya. In an obvious way, for-
mulae (2.2)–(2.4) extend to F �1 and ya.

3. Automorphic forms on GL2

In this section, we briefly recollect some notation and preliminaries, mostly for the state-
ment of the Kuznetsov formula of Bruggeman and Miatello for PGL2. For simplicity,
only spherical automorphic forms on PGL2.F /nPGL2.A/ are considered. The reader is
referred to [64] for further discussions.

Define

N D

²�
1 r

1

�³
; A D

²�
x

1

�³
; P D

²�
x r

y

�³
:

We denote by K D KfK1 the standard maximal compact subgroup of PGL2.A/.
For each non-Archimedean 3, letK3 D PGL2.O3/. Note that PGL2.F /\Kf D PGL2.O/
(the intersection is taken in GL2.Af /). Let K3 D O2.R/=¹˙12º if 3 is real, and K3 D
U2.C/=¹˙12º if 3 is complex.
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We identifyN.F1/ with F1 and A.F1/ with F �1, and define their measures accord-
ingly. For 3 j 1, we normalize the Haar measure on K3 so that K3=A.F3/ \ K3 has
measure 1. Thus the measure of K3 is 2 or 2� according as 3 is real or complex. The
Haar measure on PGL2.F1/ is defined via the Iwasawa decomposition PGL2.F1/ D
N.F1/A.F1/K1. Again, our measure on the hyperbolic space PGL2.F3/=K3 is differ-
ent from that in [9] or [64].

3.1. Archimedean representations

In this paper, we shall be concerned only with spherical representations of PGL2.F1/.
Let a be the vector space Rr1Cr2 . We usually identify R with its image under the

diagonal embedding R ,! a. Let aC be the complexification of a. Let Y � aC be the set
of νD .ν3/3j1 such that ν3 2R or iν3 2 .�12 ;

1
2
/. We associate to ν in Y a unique spherical

unitary irreducible representation �.iν/ of PGL2.F1/. Namely, ν determines a character
of the diagonal torus A.F1/ via�

x

1

�
7!

Y
3j1

jxjiν33 ; x 2 F �1;

and we let �.iν/ be the irreducible spherical constituent of the representation unitarily
induced from this character. The spherical �.iν/ is tempered if and only if ν 2 a. Let
dν be the usual Lebesgue measure on a. We equip a with the Plancherel measure d�.ν/
defined as the product of

d�.ν3/ D

´
ν3 tanh.�ν3/ dν3 if 3 is real;

ν23 dν3 if 3 is complex:
(3.1)

Moreover, we define the function Pl.ν/ to be the product of

Pl3.ν3/ D

´
cosh.�ν3/ if 3 is real;

sinh.2�ν3/=ν3 if 3 is complex:
(3.2)

Note that 2r2�r1 � Pl.ν/ d�.ν/ is the measure used in [9, 64].
We must fix, once and for all, a spherical Whittaker vector corresponding to each

�.iν/, with respect to the character  1 on N.F1/. We choose Wiν to be the product
of Wiν3 with

Wiν3

�
x3

1

�
D

´
jx3j

1=2
3 Kiν3.2�jx3j/ if 3 is real;

jx3j
1=2
3 K2iν3.4�jx3j/ if 3 is complex:

(3.3)

Finally, for V 2 aC D Rr1Cr2C , we define

N.V / D
Y
3j1

V N33 ; N\.V / D
Y
3j1

V3: (3.4)

We define the conductor of ν 2 Y to be C.ν/ D N.1C jνj/, that is,

C.ν/ D
Y
3j1

.1C jν3j/
N3 : (3.5)
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3.2. Automorphic forms

We shall be interested in the space of spherical automorphic forms, that is, functions in
L2.PGL2.F /nPGL2.A// that are (right) invariant under K.

We fix an orthonormal basis B for the cuspidal subspace that consists of eigenforms
for the Hecke algebra as well as the Laplacian operators (Hecke–Maass cusp forms). Each
f 2B transforms under a certain representation �.iνf / of PGL2.F1/, for some νf 2 Y .
We have the Kim–Sarnak bound [6] over the field F :

jIm.νf; 3/j 6 7
64
; 3 j1: (3.6)

The Fourier coefficients af .a; ˛/ are indexed by pairs consisting of an ideal class and an
element of F . To be precise, af .a; ˛/ are defined so that

f

��
�a

1

�
g1

�
D

X
˛2F �

af .a; ˛/p
N.˛aD/

Wiνf

��
˛

1

�
g1

�
; g1 2GL2.F1/; (3.7)

where �a 2 A�
f

is a representative of a. It should be kept in mind that af .a; ˛/ vanishes
unless ˛ 2 a�1D�1 and only depends on the ideal ˛a. We therefore set af .m/D af .a;˛/
if mD ˛aD. These af .m/may be interpreted in terms of the non-Archimedean spherical
Whittaker function with respect to the additive character  f on N.Af /. We denote by
œf .m/ the m-th Hecke eigenvalue of f . We normalize in such a way that the Ramanujan
conjecture corresponds to jœf .p/j 6 2. As usual, there is a constant Cf such that

af .m/ D Cf œf .m/ (3.8)

for any non-zero integral ideal m. See [64, §2.5] for more details.
For s 2 C, define via the Iwasawa decomposition the function

fs

��
x r

y

�
k

�
D jx=yjsC1=2; x; y 2 A�; r 2 A; k 2 K;

and define the Eisenstein series E.gI s/ by

E.gI s/ D
X

2P.F /nGL2.F /

fs.g/; g 2 GL2.A/;

for Re.s/ > 1
2

and by a process of meromorphic continuation in general. For our pur-
pose, we only need the knowledge of its Fourier coefficients aE.s/.m/ D aE.s/.a; ˛/

(m D ˛aD) for m non-zero. More precisely, we have

aE.s/.m/ D CE.s/�s.m/; (3.9)

where

�s.m/ D
X
bjm

N.mb�2/s; CE.s/ D
P.s/

�F .2s C 1/N.D/s
; (3.10)
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�F .s/ is the Dedekind � function for F , and P.s/ is the product of

P3.s/ D

´
2�sC1=2=�

�
s C 1

2

�
if 3 is real;

2.2�/2sC1=�.2s C 1/ if 3 is complex:
(3.11)

See for example [11, §§3.7, 4.6]. A subtle issue is that the results in [11, §4.6] are proven
for 3 of conductor O3, but this may be easily addressed by re-scaling the character 3.x3/
and the Haar measure dx3 (say,  3.x3/D  \3 .ı3x3/ and dx3 D

p
jı3j3 d\x3). Moreover, the

P3.s/ in (3.11) arises from a computation of Jacquet’s integral. Note that the definition
of P may be extended from C to aC D Cr1Cr2 and that

jP.iν/j2 D 22r1C3r2�r2 � Pl.ν/; ν 2 a: (3.12)

3.3. Kuznetsov–Bruggeman–Miatello formula

We first make a preliminary definition.

Definition 3.1. Let b, q be fractional ideals with b jq. We set .b=q/� to be those elements
x 2 b=q which generate b=q as an O-module. For x 2 .b=q/� define x�1 to be the unique
class y 2 .b�1=qb�2/� such that xy 2 1C qb�1.

We now define the Kloosterman sum. Here, we must include ideal classes as paramet-
ers.

Definition 3.2 (Kloosterman sum). Let a1; a2 be non-zero fractional ideals of F , and
c be any ideal such that c2 � a1a2. Let c 2 c�1, ˛1 2 a�11 D�1, and ˛2 2 a1c

�2D�1. We
define the Kloosterman sum

KS.˛1; a1I˛2; a2I c; c/ D
X

x2.a1c�1=a1.c//�

 1

�
˛1x C ˛2x

�1

c

�
; (3.13)

where .a1c�1=a1.c//� and x�1 2 .a�11 c=a�11 .c/c
2/� are defined as in Definition 3.1.

We should view the ideals ˛1a1 and ˛2a2 as the parameters of this Kloosterman sum,
and the ideal cc as the modulus. However, KS does depend on the choice of generator; it
is not invariant under the substitution ˛ ! �˛ if � 2 O� is a unit. To relate the definition
to the usual Kloosterman sum, we note if a1 D a2 D c D O, then for ˛1; ˛2 2 D�1 and
c 2 Owe have

KS.˛1; a1I˛2; a2I c; c/ D
X

x2.O=c/�

 1

�
˛1x C ˛2x

�1

c

�
:

We have the Weil bound for Kloosterman sums:

KS.˛1; a1I˛2; a2I c; c/ Î N..˛1a1D; ˛2a�11 cD; cc//1=2N.cc/1=2Cε ; (3.14)

where .� ; � ; �/ denotes greatest common divisor (of ideals).
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Definition 3.3 (Space of test functions). Let S > 1
2

.1 We set H .S/ to be the space of
functions h W a! C of the form h.ν/ D

Q
3j1 h3.ν3/; where each h3 W R! C extends to

an even holomorphic function on the strip ¹s W jIm.s/j 6 Sº such that, on the horizontal
line Im.s/ D � (j� j 6 S ), we have uniformly

h3.t C i�/ Î e��jt j.jt j C 1/�N for some N > 6.

Next, we define the Bessel kernel.

Definition 3.4 (Bessel kernel). Let ν 2 aC .

(1) When F3 D R, for x 2 RC we define

Bν3.x/ D
�

sin.�ν3/

�
J�2ν3.4�

p
x/ � J2ν3.4�

p
x/
�
;

Bν3.�x/ D
�

sin.�ν3/

�
I�2ν3.4�

p
x/ � I2ν3.4�

p
x/
�

D 4 cos.�ν3/K2ν3.4�
p
x/:

(2) When F3 D C, for z 2 C� we define

Bν3.z/ D
2�2

sin.2�ν3/

�
J�2ν3.4�

p
z/J�2ν3.4�

p
xz/ � J2ν3.4�

p
z/J2ν3.4�

p
xz/
�
:

For x 2 F �1, we define
Bν.x/ D

Y
3j1

Bν3.x3/:

Note that the I -Bessel functions in [9] or [64] should be changed to J -Bessel func-
tions in the complex case. Moreover, according to [57], we have normalized the Bessel
kernel by a factor of � or 2�2 for real or complex 3, respectively.

Proposition 3.5 (Kuznetsov formula). Let h be a test function on aC belonging to H .S/

(see Definition 3.3) and define

HD

Z
a

h.ν/ d�.ν/; H.x/ D

Z
a

h.ν/Biν.x/ d�.ν/; x 2 F �1; (3.15)

where Bν.x/ is the Bessel kernel defined in Definition 3.4 and d�.ν/ is the Plancherel
measure in (3.1). Let B be an orthonormal basis of the spherical cuspidal spectrum on
PGL2.F /nPGL2.A/=K, so that each f 2 B has Archimedean parameter νf 2 Y (f
transforms under the GL2.F1/-representation �.iνf /) and Hecke eigenvalues œf .m/.
Let a1; a2 be fractional ideals. Let ˛1 2 a�11 D�1, ˛2 2 a�12 D�1. Set m1 D ˛1a1D,
m2 D ˛2a2D, and

ˇ D ˇc;a1a2 D Œc
2.a1a2/

�1� (3.16)

1The condition S > 1
2 is borrowed from [9], while [64] requires S > 2 for some convergence

issues. Note that the space of test functions in [10, 27, 34] is much larger.
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for every c 2 zCF with c2 � a1a2 (here Œc2.a1a2/�1� is a chosen generator for this prin-
cipal ideal). We haveX
f 2B

!f h.νf /œf .m1/œf .m2/C
1

4�
c0

Z 1
�1

!.t/h.t/�it .m1/�it .m2/dt

D c1ım1;m2HC c2
X

c2 zCF
c2�a1a2

X
�2O�=O�2

X
c2c�1

KS.˛1; a1I �˛2=ˇ; a2I c; c/
N.cc/

H

�
�˛1˛2

ˇc2

�
;

(3.17)

where

!f D
jCf j

2

Pl.νf /
; !.t/ D

22r1C3r2�r2

j�F .1C 2it/j2
(3.18)

(see (3.2) and (3.8) for the definitions of Pl.νf / and Cf ), �s.m/ is defined in (3.10),
ım1;m2 is the Kronecker ı that detects m1 Dm2, KS is the Kloosterman sum as in Defin-
ition 3.2, and the constants c0, c1 and c2 are given by

c0 D
2r1.2�/r2RF

4F
p
jdF j

; c1 D
2r2
p
jdF j

2�2r1C2r2hF
; c2 D

2r2

4�2r1C2r2hF
; (3.19)

in which 4F , dF , RF and hF are the number of roots of unity in F , the discriminant, the
regulator and the class number of F , respectively.

Formula (3.17) is just a rewriting of (15) in [64] in the fashion of [12, (3.17)]. Some
remarks are in order. The test function in [64] has been modified here by Pl.ν/ (see (3.2)
and (3.12)). The 1=4� in the first line of (3.17) is adopted from [23, (7.15)], and in the
adelic setting it also arises from applying [15, (5.16)] to [15, (4.21), (4.25)] . The constant
c0 accounts for the translation of the spectral decomposition from the adelic to the clas-
sical setting. The constants c1 and c2 are adapted from [64, (16)], with extra factors due
to our normalization of measures, absolute values and Bessel kernels.

Lemma 3.6. Let f be a Hecke–Maass cusp form whose L2 norm is 1. Let !f and !.t/
be defined as in (3.18). Then

!f Ï C.νf /�ε ; !.t/ Ï .1C jt j/�ε ; (3.20)

where C.νf / is the conductor of νf as defined in (3.5), and the implied constants depend
only on ε and F .

By the Rankin–Selberg method, !f is a multiple of 1=L.1;Sym2 f /:

!f D
22r1C3r2�r2

2L.1;Sym2 f /
: (3.21)

Then (3.20) follows from [41, Theorem 1]. For F D Q, the lower bound for !f was first
proven by Iwaniec [22].
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4. Voronoï summation for GL3

The purpose of this section is to derive a Voronoï summation formula for GL3 in the
classical terms from the formula of Ichino and Templier [20] in the adelic setting (see
Appendix A).

Notation in the adelic setting

We first recollect some notation from [20]. Let � D˝3 �3 be an irreducible cuspidal auto-
morphic representation of GL3.A/. Let z� D ˝3 z�3 be the contragradient representation
of � . Let ! denote the central character of � .

Let S be a finite set of places of F including the ramified places of � and all the
Archimedean places. Denote by W S

o D
Q
3…S Wo3 the normalized unramified Whittaker

function of �S D ˝3…S �3 above the complement of S . Let zW S
o D

Q
3…S
zWo3 be the

unramified (spherical) Whittaker function of z�S D ˝3…S z�3.
For any place 3 of F , to a smooth compactly supported function w3 2 C1c .F

�
3 / is

associated a dual function zw3 of w3 such thatZ
F �3

zw3.x/�.x/�1jxjs�13 d�x D .1 � s; �3 ˝ �; 3/
Z
F �3

w3.x/�.x/jxj�s3 d�x (4.1)

for all s of real part sufficiently large and all unitary multiplicative characters � of F �3 .
The equality (4.1) is independent of the chosen Haar measure d�x on F �3 and defines zw3
uniquely in terms of �3, 3 and w3. For S as above, we put wS D

Q
32S w3, zwS D

Q
32S zw3.

Let 3 be an unramified place of � . It should be kept in mind that, since the additive
character  3 has conductor D�13 , Wo3.a.x1; x2// vanishes unless both x1; x2 are in D�13 ,
where

a.x1; x2/ D

0@x1x2 x1
1

1A :
Definition 4.1 (Kloosterman sum on a local field). Let 3 be non-Archimedean. For
˛; 1=� 2 O3 and ˇ 2 �2D�23 , define the local Kloosterman sum

Kl3.˛; ˇI �/ D
X

ı3x2�O
�
3 =O3

 3.˛x C ˇx
�1/: (4.2)

In the quotient �O�3 =O3 above, the group O3 acts additively on �O�3 if j�j3 > 1, and
�O�3 =O3 D ¹1º if j�j3 D 1 so that the Kloosterman sum is equal to 1.

Let R be a finite set of places where � is unramified. We define zWoR D
Q
32R
zWo3

and KlR.˛; ˇI �/ D
Q
32R Kl3.˛3; ˇ3I �3/ for ˛; ˇ; � 2 FR satisfying j˛j3 6 1 6 j�j3 and

jˇj3 6 j�=ıj23 for all 3 2 R.

4.1. Adelic Voronoï summation for GL3

Note that it is required in [20] that S contains the ramified places of  . In order to make
their Voronoï summation useful when the class number hF is not 1 (or when D is not prin-
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cipal), one has to relax this condition. For this, we shall outline a proof of the following
Voronoï summation for GL3 in Appendix A.

Proposition 4.2. Let notation be as above. Let � 2 AS and ˛ 2 A�S . Let R be the set of
places 3 such that j�=˛j3 > 1. Let w3 2 C1c .F

�
3 / for all 3 2 S . Then we have the identityX

2F �

 S .�/W S
o .a.1=ı; ˛//wS ./

D
!R.�=˛/j�jRj˛j

S[R

!S .ı/
p
jıjS

X
2F �

KR.; �; zWoR/ zW
S[R

o .a.1=ı; ı=˛//zwS ./; (4.3)

where KR.; �; zWoR/ is defined to be the sumX
�2F �

R
=O�R

zWoR
�
a.�˛=�ı; ı=�2�/

�
KlR.1;�=�I �/; (4.4)

with � subject to

1 6 j�j3 6 j�=˛j3; j=�j3 6 j�=ıj23 for all 3 2 R. (4.5)

Notation in the classical setting

Henceforth, we shall assume that � is unramified (spherical) at every non-Archimedean
place and that its central character ! is trivial. We may thus choose S D S1.

For non-zero integral ideals n1;n2, we define the Fourier coefficient

A.n1;n2/ D N.n1n2D�2/W S1
o

0@n1n2D
�2

n1D
�1

1

1A : (4.6)

Normalize the Fourier coefficients so thatA.1;1/D 1. We have the multiplicative relation

A.n1m1;n2m2/ D A.n1;n2/A.m1;m2/; .n1n2;m1m2/ D .1/; (4.7)

and the Hecke relation

A.n1;n2/ D
X

djn1;djn2

�.d/A.n1d
�1; 1/A.1;n2d

�1/; (4.8)

where � is the Möbius function for F . Moreover, it is known that zA.n1;n2/D A.n2;n1/
if zA.n1;n2/ are the Fourier coefficients for z� .

It is known from [57, §17] that for each 3 j1, zf3.y/ D jyj�13 zw3.�y/ is the Hankel
integral transform of f3.x/ D jxj�13 w3.x/ integrated against the Bessel kernel J�3.xy/
attached to �3 (see [57, (17.20)]):

zf3.y/ D

Z
F �3

f3.x/J�3.xy/ dx: (4.9)

The asymptotic expansion for J�3.x/ will be given in §4.4.
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Remark 4.3. When 3 is real, zw3.y/ D jyj3 zf3.�y/ is equal to the F.y/ in [40, Theorem
1.18] (if f3.x/ is their f .x/). The reason for our normalization of Hankel transforms is to
get the Fourier transform and the classical Hankel transform in the GL1 and GL2 settings,
respectively.

Definition 4.4 (Bessel kernel and Hankel transform). For x 2 F1, we define the Bessel
kernel

J.x/ D
Y
3j1

J�3.x3/:

Let C1c .F
�
1/ denote the space of compactly supported smooth functions f W F �1 ! C

that are of the product form f .x/D
Q
3j1 f3.x3/. For f 2 C1c .F

�
1/, we define its Hankel

transform zf by
zf .y/ D

Z
F �1

f .x/J.xy/ dx; y 2 F �1: (4.10)

Definition 4.5. For b � O, define the ring

Fb D ¹˛ 2 F W ˛ 2 O3 for all p3 jbº:

Define  b D
Q

p3jb
 3 and ab D .a;b

1/ D
Q

p3jb
pord3.a/
3 .

Definition 4.6 (Kloosterman sum). Let b � q � O. For ˛ 2 Fb and ˇ 2 .qDb/
�2Fb,

define the Kloosterman sum

Klb.˛; ˇIq/ D
X

x2..qDb/
�1=D�1

b
/�

 b.˛x C ˇx
�1/; (4.11)

where ..qDb/
�1=D�1b /� and x�1 2 .qDb=q

2Db/
� are defined as in Definition 3.1.

We have b D R and Klb.˛;ˇIq/DKlR.˛;ˇI�/ ifR is the set of primes dividing b

and q is the integral ideal generated by 1=�. Moreover, it will be convenient to write
Klb.˛; ˇIq/ as an integral on a certain compact homogeneous subspace of F �R .

Lemma 4.7. Let notation be as above. Define the Euler totient function '.q/ as usual by

'.q/ D N.q/
Y
pjq

.1 � N.p/�1/: (4.12)

Define yO�b D
Q

p3jb
O�3 . Let �.qD/�1 2 A�

f
be the chosen generator for .qD/�1. Then

Klb.˛; ˇIq/ D '.q/
Z
�.qD/�1

yO�b

 b.˛x C ˇx
�1/ d�x; (4.13)

Proof. With our choice of Haar measure, the space .qD/�1yO�b (D .qDb/
�1yO�b ) has total

mass 1. On the other hand, the x-sum in (4.11) ranges over a set of size '.q/. Then (4.13)
follows from the definitions.
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4.2. Classical Voronoï summation for GL3

In practice, we shall let � 2AS1 DAf be the diagonal embedding of a fraction a=c 2 F ,
and it is preferable to have a classical formulation of the Voronoï summation in terms of
Fourier coefficients, exponential factors, Kloosterman sums, and Hankel transforms.

Proposition 4.8. Let notation be as above. Let a 2 F , c 2 F �, and a � O. Let R D
¹3 −1 W ord3.a=c/ < ord3.aD�1/º, and set b D

Q
32R pord3..c=a/aD�1/

3 (it is understood
that b D O if R D Ø). For f 2 C1c .F

�
1/ let its Hankel transform zf be given by (4.10)

in Definition 4.4. ThenX
2a�1

 1

�
�
a

c

�
A.1; a/f ./

D
N.a/

N.D/3=2
X

b�q�O

1

N.bq/

�

X
2a.bq2D3/�1

A.a�1bq2D3;bq�1/Klb.1; c=aIq/ zf ./: (4.14)

Proof. Let � 2 AS1 D Af be the diagonal embedding of a=c 2 F . Let ˛ 2 A�
f

generate
the ideal aD�1. In the above settings, the left-hand side of (4.3) is translated into that of
(4.14) up to the constant N.a�1D2/. Note that  f .a=c/ D  1.�a=c/ as  is trivial
on F . For the right-hand side of (4.3), we set q to be the ideal generated by 1=�, then
the conditions in (4.5) amount to b � q � O and a�1bD � q�2D�2. The Kloosterman
sum is Klb.1; c=aIq/ as defined in Definition 4.6. After changing  to � , we arrive at
the right-hand side of (4.14).

Remark 4.9. When hF D 1, we may choose a 2 Oand c 2 OX ¹0º such that .a; c/D .1/
and let a D D, b D .c/, and q D .c=d/ with d j c. In this way, upon changing  to n
or d2n=c3 on the left or right, respectively, we obtain the classical Voronoï summation
formula as in [40].

4.3. Averages of Fourier coefficients

We recollect here some results from [55, §4]. First, as a consequence of the Rankin–
Selberg theory [25], it is well-known that for X > 1,XX

N.n2
1

n2/6X

jA.n1;n2/j
2
D O�.X/: (4.15)

As a consequence (see [55, (4.4)]), for 0 6 c < 1 we haveX
N.n2/6X

jA.n1;n2/j

N.n2/c
D Oc;�.N.n1/X1�c/: (4.16)

Moreover, we have the following lemma for the average over  2 a�1 X ¹0º.
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Lemma 4.10. For V 2 aC and S � S1, define jV jS D
Q
32S V

N3
3 and

F S1.V /D ¹x 2 F1 W jxj3 > V
N3
3 for all 3 2 S; jxj3 6 V N33 for all 3 2 S1 X Sº: (4.17)

Let 0 6 c < 1 < d . Then for any 0 < ε < d � 1 we haveX
2F �\F S1.V /

a�O

jA.n; a/j

jN jc j jd�cS

D Oε;c;d;�

�
N.n/N.a/1Cε N.V /1�cCε

jV jd�cS

�
: (4.18)

Proof. When N.a/N.V / > 1 is assumed, (4.18) follows from Lemma 4.2 or 4.3 in [55]
in the case S D Ø or S ¤ Ø, respectively. However, this assumption may be safely
and conveniently removed. For example, the sum in (4.18) has no terms if S D Ø and
N.a/N.V / < 1.

The next lemma is a generalization of [5, (10)].

Lemma 4.11. Let � 6 1
2

be an exponent such that

jA.n1;n2/j 6 N.n1n2/�Cε : (4.19)

Define F Ø
1.V / as in (4.17). For f � O, we haveX

2F �\F Ø
1.V /

a�f

jA.n; a/j2 Îε;� N.fn/�Cε N.af�1/1Cε N.V /: (4.20)

Proof. First of all, one can apply [55, Lemma 4.1] with (4.15) to proveX
2F �\F Ø

1.V /

a�O

jA.1; a/j2 Îε;� N.a/1Cε N.V /I (4.21)

the proof is similar to that of [55, Lemma 4.2]. The left-hand side of (4.20) is bounded byX
mj.fn/1

X
2F �\F Ø

1.V /
a�fm

.a.fm/�1;fmn/D.1/

jA.n; a/j2

6
X

mj.fn/1

jA.n; fm/j2
X

2F �\F Ø
1.V /

a.fm/�1�O

jA.1; a.fm/�1/j2;

and (4.20) then follows from (4.19) and (4.21).

4.4. Asymptotics for GL3-Bessel kernels

Assume further that �1 is a spherical representation of PGL3.F1/ so that its
Archimedean Langlands parameter is given by a triple � D .�1; �2; �3/ in a3C , with
�1 C �2 C �3 D 0. For each 3 j 1, the Bessel kernel J�3.x/ D J�3.x/ depends only
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on �3. A main result of [57] is the following asymptotic expansions for J�3.x/ when x is
large (see [57, Theorems 14.1, 16.6]).

Lemma 4.12. Let K be a non-negative integer.

(1) When 3 is real, for x ÏK;�3 1 we have the asymptotic expansion

J�3.˙x/ D
e.˙3x1=3/

x1=3

K�1X
kD0

B˙
k

xk=3
COK;�3

�
1

x.KC1/=3

�
; (4.22)

with the coefficients B˙
k

depending only on �3.

(2) When 3 is complex, for jzj ÏK;�3 1 we have the asymptotic expansion

J�3.z/ D
X
�3D1

e.3.�z1=3 C x�xz1=3//

jzj2=3

XX
kCl6K�1

BkBl

�k�lzk=3xzl=3
COK;�3

�
1

jzj.KC2/=3

�
;

(4.23)
with the coefficients Bk depending only on �3.

The self-dual assumption

Subsequently, we shall assume that � is a self-dual spherical automorphic cuspidal rep-
resentation of PGL3.A/. In particular, we haveA.n1;n2/DA.n2;n1/ (DA.n1;n2/) and
� D .�; 0;��/ with � 2 iY � aC (�3 2 iR or �3 2 .�12 ;

1
2
/ for every 3 j1; see §3.1

for the definitions).
It is known by [14] that � comes from the symmetric square lift of a Hecke–Maass

form for GL2. Thus the Kim–Sarnak bound [6] for GL2 implies that

jA.n1;n2/j 6 N.n1n2/7=32Cε ; (4.24)

and
jRe.�3/j 6 7

32
; 3 j1: (4.25)

5. Preliminaries on L-functions

Let f be a spherical Hecke–Maass cusp form on PGL2.F /nPGL2.A/ with Hecke eigen-
values œf .n/ and Archimedean parameter νf 2 Y . Let E.s/ be the spherical Eisenstein
series on PGL2.F /nPGL2.A/. Let � be a fixed self-dual spherical automorphic cuspidal
representation of PGL3.A/ with Fourier coefficients A.n1; n2/ and Archimedean para-
meter .�; 0;��/ (� 2 iY ).

5.1. L-functions L.s; �/, L.s; � ˝ f /, and L.s; � ˝E.it//

The L-function attached to � is defined by

L.s; �/ D
X
n�O

A.1;n/

N.n/s
: (5.1)
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The Rankin–Selberg L-function L.s; � ˝ f / is defined by

L.s; � ˝ f / D
XX
n1;n2�O

A.n1;n2/œf .n2/

N.n21n2/s
: (5.2)

The completed L-function for � isƒ.s; �/D N.D/3s=2.s; �/L.s; �/, where .s; �/D
.s/ is the product of

3.s/ D .N3�/
�3N3s=2�

�
N3.s � �3/

2

�
�

�
N3s

2

�
�

�
N3.s C �3/

2

�
: (5.3)

Recall thatN3 D 1 if 3 is real andN3 D 2 if 3 is complex. It is known thatƒ.s;�/ is entire
and has the functional equation

ƒ.s; �/ D ƒ.1 � s; �/:

We define .s; ν/ to be the product of

3.s; ν3/ D 3.s � iν3/3.s C iν3/: (5.4)

Let .s; � ˝ f / D .s; νf /. Then ƒ.s; � ˝ f / D N.D/3s.s; � ˝ f /L.s; � ˝ f / is
also entire and satisfies the functional equation

ƒ.s; � ˝ f / D ƒ.1 � s; � ˝ f /:

Similar to (5.2), we define

L.s; � ˝E.it// D
XX
n1;n2�O

A.n1;n2/�it .n2/

N.n21n2/s
; (5.5)

where �s.n/ is defined as in (3.10). We have

L.s; � ˝E.it// D L.s C i t; �/L.s � i t; �/; (5.6)

and hence
L
�
1
2
; � ˝E.it/

�
D
ˇ̌
L
�
1
2
C i t; �

�ˇ̌2
: (5.7)

5.2. Approximate functional equations for L.s; � ˝ f / and L.s; �/

Following Blomer [5], for a large even integerA0 >0, we introduce the polynomial p.s;ν/
as the product of p3.s; ν3/ (3 j1) defined by

N3A
0=2�1Y
kD0

�
.s C 2k=N3 � �3/

2
C ν23

��
.s C 2k=N3/

2
C ν23

��
.s C 2k=N3 C �3/

2
C ν23

�
(5.8)

so that p3.s; ν3/ annihilates the rightmost N3A0=2 poles of each of the gamma factors in
3.s; ν3/ defined by (5.3)–(5.4). This polynomial will eventually be used to overcome the
obstacle posed by the presence of an infinite group of units.
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We have the following approximate functional equation for L.s; � ˝ f / (see [24,
Theorem 5.3]):

L
�
1
2
; � ˝ f

�
D 2

XX
n1;n2�O

A.n1;n2/œf .n2/

N.n21n2/1=2
V.N.n21n2D

�3/I νf / (5.9)

with

V.yI ν/ D
1

2�i

Z
.3/

G.u; ν/y�u
du
u
; y > 0; (5.10)

in which G.u; ν/ is the product of

G3.u; ν3/ D
3
�
1
2
C u; ν3

�
3
�
1
2
; ν3
� �

p3
�
1
2
C u; ν3

�
p3
�
1
2
� u; ν3

�
eN3u

2=N

p3
�
1
2
; ν3
�2 : (5.11)

Note that the second quotient in (5.11) is even in u and is equal to 1when uD 0. Similarly,
the approximate functional equation for L.s; � ˝E.it//, along with (5.7), yieldsˇ̌

L
�
1
2
C i t; �

�ˇ̌2
D 2

XX
n1;n2�O

A.n1;n2/�it .n2/

N.n21n2/1=2
V.N.n21n2D

�3/I t /: (5.12)

Properties of V.yI ν/ andG.u; ν/ are given in the following lemma (see [5, Lemma 1]
and [56, Lemma 3.7]).

Lemma 5.1. Let U > 1, A > 0, and ε > 0. Suppose that ν 2 Y satisfies the Kim–Sarnak
bounds (3.6). Let C.ν/ be defined as in (3.5).

(1) We have

V.yI ν/ ÎA;A0

�
1C

y

C.ν/3

��A
(5.13)

and

V.yI ν/ D
1

2�i

Z
εCiU

ε�iU

G.u; ν/y�u
du
u
COε;A0

�
C.ν/3ε

yεeU
2=2

�
: (5.14)

(2) When Re.u/ > 0, the function H3.u; ν3/ D G3.u; ν3/p3.
1
2
; ν3/

2 is even and holo-
morphic on the region jIm.ν3/j6 A0C 9

32
D A0C 1

2
�

7
32

(see (4.25)), and it satisfies
in this region the uniform bound

H3.u; ν3/ ÎA0;Re.u/ .1C jν3j/
3N3.Re.u/C2A0/; (5.15)

and, more generally,

@j

@ν
j
3

H3.u; ν3/ Îj;A0;Re.u/ .1C jν3j/
3N3.Re.u/C2A0/�j .1C Im.u//j : (5.16)

Proof. The estimate in (5.13) may be found in [24, Proposition 5.4]. The expression
of V.yI ν/ in (5.14) is essentially due to Blomer [5, Lemma 1]. The bounds in (5.15)
and (5.16) follow readily from Stirling’s formulae for log � and its derivatives (see for
example [37, §§1.1, 1.2]).
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6. Choice of the test function

Definition 6.1. Let T;M 2 aC be such that 1 Î T ε

3 6 M3 6 T 1�ε

3 for each 3 j1. Define
the function k.ν/ D kT;M .ν/ to be the product of

k3.ν3/ D e
�.ν3�T3/

2=M2
3 C e�.ν3CT3/

2=M2
3 : (6.1)

We modify k.ν/ slightly, and let k\.ν/ D k\T;M .ν/ be the product of

k\3 .ν3/ D k3.ν3/p3
�
1
2
; ν3
�2
=T 6N3A

0

3 ; (6.2)

with p3
�
1
2
; ν3
�

defined as in (5.8). For ν 2 a, we have k\.ν/ > 0, and k\.ν/ Ï 1 if jν3 � T3j
6 M3 for all 3 j1. Note also that k\3 .ν3/ D o.e

�T 23 =M
2
3 / if iν3 2 .�12 ;

1
2
/.

For Re.u/ D ε, the function

h.ν/ D hT;M .ν/ D G.u; ν/k
\
T;M .ν/ (6.3)

lies in the space H .S/ of Definition 3.3 with S D A0 C 9
32

. It is clear that h.ν/ is the
product of

h3.ν3/ D k3.ν3/H3.u; ν3/=T
6N3A

0

3 ; (6.4)

and it follows from Lemma 5.1 (2) that

h3.ν3/ ÎA0;ε .1C jν3j/
εk3.ν3/; ν3 2 R: (6.5)

Henceforth, in view of (5.14), we shall assume that Re.u/D ε and jIm.u/j6 logN.T /.

Appendix A. Proof of the adelic Voronoï summation for GL3

The purpose of this appendix is to prove the adelic Voronoï summation for GL3 in Pro-
position 4.2 without the condition in [20] that S contains the ramified places of  . By
directly modifying [20, Theorem 1], such a Voronoï summation for GL2 and GL3 was
formulated in [55, §3.1], but it is not entirely correct in the GL3 case. A particular issue
with the direct modification is that the identity (2.4) in their proof,Z

F n�23

zWo3

0@�
1n�1

�0@1x 1

1

1A1A dx D zWo3

�


1n�1

�
; (A.1)

is no longer valid if n D 3 and D3 ¤ O3 (though this is always true if n D 2 as the
integration would disappear). To rectify this, one must replace the

W S
o

�


12

�
D W S

o .a.1; //

in the left-hand side of [20, (1.2)] (for n D 3) by

W S
o

0@=ı 1=ı

1

1A D W S
o .a.1=ı; //
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and thus resort to [20, Theorem 3] rather than [20, Theorem 1]. Nevertheless, the main
results in [55] are not invalidated, for only several changes involving D or ı are needed.

Proof of Proposition 4.2

We retain the adelic notation of §4. Let

4
0
D

0@1 1

1

1A ; 42 D

0@ 1

1

1

1A ;
n.x/ D

0@1 x

1

1

1A ; n�.x/ D

0@1x 1

1

1A :
By abuse of notation, we shall denote by  , �, ı, ˛ their local components 3, �3, ı3, ˛3
respectively. According to the proof of [20, Theorem 3], the local integral at a place 3 … S
that we need to consider is

I ]3 ./ D

Z
F3

zWo3.a.1; /n
�.x/40n�.��/a.1=ı; ˛/�1/ dx;

while at the places in S we have the transform defined by (4.1),

I ]3 ./ D zw3./I (A.2)

see [20, §§2.7, 5.3]. Our goal is to prove that the sum over  2 F � of the product of I ]3 ./
is equal to the right-hand side of (4.3).

For 3 … S [R, we have j�=˛j3 6 1. It follows that

a.1=ı; ˛/40 � 40n�.��/a.1=ı; ˛/�1 D n�.��=˛/ 2 GL3.O3/:

Thus

I ]3 ./ D

Z
F3

zWo3

0@�
12

�0@1x 1

1

1A0@ı=˛ 1

ı

1A1A dx

D !3.ı/j˛=ıj3

Z
F3

zWo3

0@0@=˛ 1=ı

1

1A0@1x 1

1

1A1A dx:

For jxj3 > 1, we have the Iwasawa decomposition0@1x 1

1

1A D 0@1 1=x

1

1

1A0@1=x x

1

1A0@ �1

1 1=x

1

1A :
Therefore the integrand above is equal to

 .ı=˛x/ zWo3

0@=˛x x=ı

1

1A ;
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and it vanishes as jx=ıj3 > 1=jıj3. Then we infer that the integrand is non-zero only if
x 2 O3. Consequently,

I ]3 ./ D
!3.ı/j˛j3p
jıj3

� zWo3

0@=˛ 1=ı

1

1A : (A.3)

Note that (A.3) is reduced to (A.1) if ı D ˛ D 1.
Now let 3 2 R with j�=˛j3 > 1. It is the second case in the proof of [20, Theorem 3].

We adapt their computations for the GL3 case as follows.
We start by rewriting

I ]3 ./ D j j3

Z
F3

zWo3
�
n�.x/40a.1; /n�.��/a.1=ı; ˛/�1

�
dx:

The Iwasawa decomposition of n�.��=˛/ yields

I ]3 ./ D j j3

Z
F3

zWo3
�
n�.x/40a.ı; =˛/n.�˛=�/a.�=˛; ˛2=�2/

�
dx

D j j3

Z
F3

zWo3
�
n�.x/40n.�=�/a.�ı=˛; ˛=�2/

�
dx:

From

n�.x/40n.�=�/40 D

0@1 �=�

1 �x=�

1

1An�.x/;
we have

I ]3 ./ D j j3

Z
F3

 3.�x=�/ zWo3
�
n�.x/40a.�ı=˛; ˛=�2/

�
dx:

Since

n�.x/40a.�ı=˛; ˛=�2/ D 42n.x/424
0a.�ı=˛; ˛=�2/

D 42

0@1 ı=�

�ı=˛

1An.xı=�/4240
and 4240 2 GL3.O/, we have

I ]3 ./ D j�=ıj3

Z
F3

 3.x=ı/ zWo3

0@42
0@1 ı=�

�ı=˛

1An.x/1A dx: (A.4)

To compute the Kloosterman integral in (A.4), we invoke the following result adopted
from [20, §6] in the GL3 setting (see in particular (6.3) and Corollary 6.7 there).
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Lemma A.1. Let  3 be unramified and  03 be trivial on O3. Let zW3 be a  3-Whittaker
function invariant under GL3.O3/. Let dx be the Haar measure self-dual with respect to
 3 (the measure of O3 is 1). Let ˇ; � 2 F �3 . Then

Z
F3

 03.x/
zW3

0@42
0@1 ˇ

�

1An.x/1A dx D
X

�2F �3 =O
�
3

16j�j36j� j3
jˇ j36j�j

2
3

zW3

0@ˇ=� �

�

1AKl.ˇI �I 3;  03/;

(A.5)
with

Kl.ˇI �I 3;  03/ D
X

x2�O�3 =O3

 03.x/ 3.�ˇ=x/:

It is required that  3 is unramified in Lemma A.1. To remove this condition, we have
to re-scale  3, zWo3 and dx so that  3.x/ D  \3 .ıx/, zWo3.g/ D zW

\
o3.a.ı; ı/g/ and dx Dp

jıj3 d\x. Applying Lemma A.1, we may transform (A.4) into

I ]3 ./ D
j�j3!3.ı/p
jıj3

X
�2F �3 =O

�
3

16j�j36j�=˛1˛2j3
j=�˛1j36j�=ıj

2
3

zWo3

0@=�� �=ı

�=˛

1AKl3.1;�=�; �/; (A.6)

where Kl3.˛; ˇI �/ is the local Kloosterman sum defined in Definition 4.1.
Finally, our proof is completed by combining (A.2), (A.3) and (A.6).

Part II. Analysis over Archimedean fields

In the following sections, we shall do analysis over a local Archimedean field F3
(3 j 1). For simplicity, we shall suppress 3 from our notation. Accordingly, F will be
an Archimedean local field, and N D ŒF W R�. Henceforth, x, y will always stand for real
variables, while z, u for complex variables; in the complex setting, we shall usually use
the polar coordinates z D xei� and u D yei� .

7. Stationary phase lemmas

For later use, we collect here some useful stationary phase lemmas in one dimension or
two dimensions.

7.1. The one-dimensional case

Consider one-dimensional oscillatory integrals of the formZ b

a

e.f .x//w.x/ dx:
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In practice, the phase function f .x/D f .xIœ; : : : / usually contains some (real) paramet-
ers. It is convenient to transform the phase into the form œf .x/ by change of variables,
but clearly this cannot always be done. For instance, one may consider a phase of the form
œ1=3x2 � x3 or x � œ log x.

Firstly, we record [3, Lemma A.1], which is an improved version of [8, Lemma 8.1].

Lemma 7.1. Let w.x/ be a smooth function with support in .a; b/ and f .x/ be a real
smooth function on Œa; b�. Suppose that there are parameters P;Q;R;S;Z > 0 such that

f .i/.x/ Î i Z=Q
i ; w.j /.x/ Î j S=P

j ;

for i > 2 and j > 0, and
jf 0.x/j Ï R:

Then for any A > 0 we haveZ b

a

e.f .x//w.x/ dx ÎA .b � a/S

�
Z

R2Q2
C

1

RQ
C

1

RP

�A
:

Secondly, the second derivative test as follows is usually sufficient for our purpose—it
is as strong as the stationary phase estimate in most of the cases. See [19, Lemma 5.1.3].

Lemma 7.2. Let f .x/ be a real smooth function on .a; b/ with f 00.x/ > œ > 0. Let w.x/
be a real smooth function on Œa; b�, and let V be its total variation plus its maximum
modulus. Then ˇ̌̌̌Z b

a

e.f .x//w.x/ dx
ˇ̌̌̌

6
4V
p
�œ
:

Finally, when the phase is of the form œf .x/, we record here a generalization of the
stationary phase estimate in [60, Theorem 1.1.1] (X D 1 in [60]). See [56, §2.4].

Lemma 7.3. Let S > 0 and
p
œ > X > 1. Let w.xI œ/ be a smooth function with sup-

port in .a; b/ for all œ, and f .x/ be a real smooth function on Œa; b�. Suppose that
œj @ix@

j

œ
w.xI œ/ Îi;j SX

iCj and that f .x0/ D f 0.x0/ D 0 at a point x0 2 .a; b/, with
f 00.x0/ ¤ 0 and f 0.x/ ¤ 0 for all x 2 Œa; b� X ¹x0º. Then

dj

dœj

Z b

a

e.œf .x//w.xIœ/ dx Îj
SXj

œ1=2Cj
:

We have deliberately avoided here the use of [68, Lemma 6.3] (or the asymptotic
expansion in [8, Proposition 8.2]) with an arbitrary phase function, because it does not
currently have a generalization in two dimensions.

7.2. The two-dimensional case

Next, we turn to two-dimensional oscillatory integrals of the formZ Z
D

e.f .x; y//w.x; y/ dx dy:

Firstly, we have the two-dimensional generalization of Lemma 7.1 as follows.
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Lemma 7.4. Let D � R2 be a bounded domain. Let w.x; y/ be a smooth function with
support onD and f .x; y/ be a real smooth function on the closureD. Suppose that there
are parameters P;Q;�;˚;R; S;Z > 0 such that

.@=@x/i .@=@y/jf .x;y/Îi;j Z=Q
i˚j ; .@=@x/k.@=@y/lw.x;y/Îk;l S=P

k� l ; (7.1)

for i; j; k; l > 0 with i C j > 2, and

jf 0.x; y/j2 D .@f .x; y/=@x/2 C .@f .x; y/=@y/2 Ï R2: (7.2)

ThenZ Z
D

e.f .x; y//w.x; y/ dx dy

ÎA Area.D/S �
²
1

R

�
1

P
C
1

�
C
1

Q
C
1

˚

�
C
Z2

R3

�
1

Q3
C

1

˚3

�³A
(7.3)

for any A > 0.

Proof. We start with a useful simple lemma.

Lemma 7.5. Let f .x; y/ be a smooth function. Let i; j; n > 0. Then @ix@
j
y.f .x; y/

n/ is a
linear combination of products in the form

f .x; y/n�
P
k��

Y
�;�

.@�x@
�
y f .x; y//

k�� ;

k00 D 0;
X
�;�

�k�� D i;
X
�;�

�k�� D j;
X
�;�

k�� 6 n:

For brevity, we write g.x; y/ D jf 0.x; y/j2. By Lemma 7.5 along with (7.1) and the
trivial inequalities j@xf .x; y/j; j@yf .x; y/j 6

p
g.x; y/, we infer that

@ix@
j
yg.x; y/ Î

��
Z

Q
C
Z

˚

�p
g.x; y/C

�
Z2

Q2
C
Z2

˚2

��
1

Qi˚j
(7.4)

for i C j > 1. Our idea is to repeatedly apply Hörmander’s elaborate partial integration
(see [17, Theorem 7.7.1]) as follows. Define the differential operator

D D
@xf .x; y/

g.x; y/

@

@x
C
@yf .x; y/

g.x; y/

@

@y
;

so that D.e.f .x; y/// D 2�i � e.f .x; y//. Consequently,

D� D �
1

2�i

�
@

@x

@xf .x; y/

g.x; y/
C

@

@y

@yf .x; y/

g.x; y/

�
is the adjoint of .1=2�i/ � D andZ b

a

Z d

c

e.f .x; y//w.x; y/ dx dy D
Z b

a

Z d

c

e.f .x; y//D�nw.x; y/ dx dy
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for any integer n > 0. By a straightforward inductive argument, it may be shown that
D�nw.x; y/ is a linear combination of all the terms occurring in the product-rule expan-
sions of

@ix@
j
y

®
.@xf .x; y//

i .@yf .x; y//
jg.x; y/nw.x; y/

¯
=g.x; y/2n; i C j D n:

Now let i1; i2 6 i and j1; j2 6 j . It follows from Lemma 7.5 along with (7.1), (7.2), and
the trivial inequalities j@xf .x; y/j; j@yf .x; y/j 6

p
g.x; y/ that

@i1x @
j1
y ¹.@xf .x; y//

i .@yf .x; y//
j
º Î

²
1C

Z

R

�
1

Q
C
1

˚

�³i1Cj1 g.x; y/.iCj /=2
Qi1˚j1

:

Similarly, Lemma 7.5, (7.2), and (7.4) yield

@i2x @
j2
y .g.x; y/

n/ Î

²
1C

Z2

R2

�
1

Q2
C

1

˚2

�³i2Cj2 g.x; y/n
Qi2˚j2

:

Thus

D�nw.x; y/

Î
S

Rn

X
iCjDn

1

P i� j

X
i1Ci26i
j1Cj26j

P i1Ci2� j1Cj2

Qi1Ci2˚j1Cj2

²
1C

Z

R

�
1

Q
C
1

˚

�³i1Cj1C2i2C2j2

Î S

²
1

R

�
1

P
C
1

�
C
1

Q
C
1

˚

�
C
Z2

R3

�
1

Q3
C

1

˚3

�³n
;

as desired.

Secondly, we need a two-dimensional generalization of the second derivative test
in Lemma 7.2. A very useful version in the literature is [42, Lemma 4] (see also [62,
Lemma 5]), in which it is assumed that

j@2f=@x2j Ï œ > 0; j@2f=@y2j Ï � > 0;

jdetf 00j D j@2f=@x2 � @2f=@y2 � .@2f=@x@y/2j Ï œ�;
(7.5)

on the integration domainD D Œa; b�� Œc; d �. However, their bound 1=
p
œ� would not be

desirable if .@2f=@x@y/2 is very large compared to @2f=@x2 � @2f=@y2 so that the former
dominates in detf 00. This is because the choice of coordinates is not quite appropriate. In
general, it seems that some work is required to find the optimal coordinates. Fortunately,
in our application, we shall have @2f=@x2 D �@2f=@y2 (see (13.24)) and the change of
coordinates may be simply chosen to be

p
2 x D x0 C y0;

p
2 y D x0 � y0:

As in [42], we first suppose that w.x; y/ � 1. Let f .x; y/ be a real smooth function
on the rectangle Œa; b� � Œc; d � such that

@2f=@x2 D �@2f=@y2 (7.6)
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with
max ¹j@2f=@x2j; j@2f=@x@yjº Ï œ > 0: (7.7)

We would like to prove Z b

a

Z d

c

e.f .x; y// dx dy Î
1

œ
;

with an absolute implied constant. Note that jdetf 00jÏ œ2, so this is in essence the expec-
ted stationary phase estimate.

For j@2f=@x2j > j@2f=@x@yj, Lemma 4 in [61] (with D D Œa; b� � Œc; d �) gives us
the bound 1=œ as expected. Now assume that j@2f=@x2j < j@2f=@x@yj. Let x0; y0 be
as above. Then @2f=@x02 D �@2f=@y02 D @2f=@x@y and @2f=@x0@y0 D @2f=@x2. By
applying [61, Lemma 4] (with D the rotated rectangle) again to the integral after the
change of variables, we also obtain the bound 1=œ.

To extend the result to smooth w.x;y/with support in .a; b/� .c;d/, we apply partial
integration once in each variable.

Lemma 7.6. Suppose that f , w, and œ are as above satisfying (7.6) and (7.7). Let

V D

Z b

a

Z d

c

ˇ̌̌̌
@2w.x; y/
@x@y

ˇ̌̌̌
dx dy:

Then Z b

a

Z d

c

e.f .x; y//w.x; y/ dx dy Î
V

œ
;

with an absolute implied constant.

Finally, we remark that the generalization of Lemma 7.3 in two (or higher) dimensions
as in [60, Theorem 1.1.4] is not sufficient for our purpose because of the angular argument.
We refer the reader to [56, §§2.4, 6.1] for discussions in this regard.

8. Analysis of Bessel integrals

Let Bν.x/ and Bν.z/ be the Bessel kernels for F D R and F D C as in Definition 3.4,
respectively. For 1Î T ε 6M 6 T 1�ε , let h.ν/ be (a local component of) the test function
as defined in §6. Let H.x/ and H.z/ be the corresponding Bessel integrals,

H.x/ D

Z 1
�1

h.ν/Biν.x/ν tanh.�ν/ dν; H.z/ D

Z 1
�1

h.ν/Biν.z/ν
2 dνI (8.1)

see (3.15).

8.1. Analytic properties of Bessel integrals

We collect here estimates and integral representations for the Bessel integrals. Our attempt
is to have a unified presentation, so several results are not necessarily optimal. For the
details, we refer the reader to [33] (and also [30, 68] for the real case).
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Lemma 8.1. We have the following estimates for Bessel integrals of small argument:

(1) When F is real, for jxj 6 1 we have

H.x/ ÎA0;ε M jxj
1=2=T 2A

0�1: (8.2)

(2) When F is complex, for jzj 6 1 we have

H.z/ ÎA0;ε M jzj=T
4A0�2: (8.3)

Proof. These estimates may be derived from modifying the proofs of [33, Lemma 3.2,
A.4, and A.6] by shifting the integral contour far right to Im.ν/ D A0 C ε.2 In view of
Lemma 5.1 (2) and (6.4), the test function h.ν/ is holomorphic for jIm.ν/j 6 A0 C 9

32
,

and, along with the bound

jJν.z/j Î
jzνj

�
�
νC 1

2

� ; jzj 6 4�;

one may estimate the residues and the integral after the contour shift. To be explicit, one
has

H.x/ Î e�M
2=T 2
jxj1=2

A0�1X
kD0

jxjk CMT 1Cε.jxj1=2=T /2A
0C2ε Î M jxj1=2=T 2A

0�1;

H.z/ Î e�M
2=T 2
jzj

2A0�1X
kD0

jzjk CMT 2Cε.jzj=T 2/2A
0C2ε Î M jzj=T 4A

0�2:

Lemma 8.2. There exists a Schwartz function g.r/ satisfying g.j /.r/ Îj;A;A0;ε

.1C jr j/�A for any j; A > 0, and such that

(1) if F is real, then H.x/ DHC.x/CH�.x/CO.T
�A/ for jxj > 1, with

H˙.x
2/ DMT 1Cε

Z M ε=M

�M ε=M

g.Mr/e.T r=� � 2x cosh r/ dr; (8.4)

H˙.�x
2/ DMT 1Cε

Z M ε=M

�M ε=M

g.Mr/e.T r=� ˙ 2x sinh r/ dr; (8.5)

for x > 1;

(2) if F is complex, then H.z/ DHC.z/CH�.z/CO.T
�A/ for jzj > 1, with

H˙.x
2e2i�/ DMT 2Cε

Z �

0

Z M ε=M

�M ε=M

g.Mr/e.2T r=� � 4x trh.r; !I�// dr d!;

(8.6)
for x > 1, where trh.r; !I�/ is the “trigonometric-hyperbolic” function defined by

trh.r; !I�/ D cosh r cos! cos� � sinh r sin! sin�: (8.7)

Furthermore,

(3) for real x with 1 < jxj Î T 2, we have H.x/ D O.T �A/;

(4) for complex z with 1 < jzj Î T 2, we have H.z/ D O.T �A/.

2In the notation of [33], t D ν, HT;M .
p
z/ DH.z/, and H˙

T;M
.
p
x/ DH.˙x/.
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Proof. See [33, (3.2), (3.3), (A.16), and (A.21)]3 for the integral representations in (1)
and (2). The important point is that the Fourier transform of g.�r=N / is equal to e�ν

2

(for real ν) up to a harmless factor; although the factor involves T and M , one may
easily verify that it is bounded by ÎA0;ε .1 C jνj/

N.6A0C1/Cε with the implied constant
independent on T and M , and so are its derivatives (see (5.15) and (5.16)).

The statements in (3) and (4) follow from simple applications of (one-dimensional)
stationary phase to the integrals in (1) and (2); see [33, Lemmas 3.5, A.5, and A.8].

For the real case, we also refer to [30, §§4, 5] and [68, §7].

Remark 8.3. In the real case, it is easy to prove that H.x2/ or H.�x2/ is negligibly
small unless x Ï TM 1�ε or x � T , respectively. See [30].

Corollary 8.4. We have uniform estimates for Bessel integrals as follows:

(1) When F is real, we have

H.x/ ÎA0;ε

´
T 1Cε if jxj Ï T 2;

M jxj1=2=T 2A
0�1 if jxj Î T 2:

(8.8)

(2) When F is complex, we have

H.z/ ÎA0;ε

´
T 2Cε if jzj Ï T 2;

M jzj=T 4A
0�2 if jzj Î T 2:

(8.9)

8.2. Preliminary analysis of the trigonometric-hyperbolic function

Let trh.r; !I �/ be the trigonometric-hyperbolic function (8.7). Since trh.r; !I � C �/
D trh.r; ! C � I �/ D � trh.r; !I �/, we may restrict ourselves to �; ! 2 Œ0; �/. When
.r; !/ ¤ .0; �=2/, trh.r; !I�/ can be written in a unique way as

trh.r; !I�/ D �.r; !/ cos.� C �.r; !//; (8.10)

where �.r; !/ > 0 is defined by

�.r; !/ D
p

sinh2 r C cos2 ! D
p

cosh2 r � sin2 ! D

r
cosh 2r C cos 2!

2
; (8.11)

and �.r; !/ is determined by

cos �.r; !/ D
cosh r cos!
�.r; !/

; sin �.r; !/ D
sinh r sin!
�.r; !/

: (8.12)

By defining trh.r;!/D �.r;!/ei�.r;!/, the function x trh.r;!I�/ in (8.6) is Re.z trh.r;!//
for z D xei� .

3Strictly speaking, the test function in [33] is like the k.ν/ in (6.1), while our test function h.ν/
has extra factors (see (6.4)). However, these factors do not play an essential role.
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Remark 8.5. Since

trh.r; 0I 0/ D trh.r; 0/ D cosh r; trh.r; �=2I�=2/ D i trh.r; �=2/ D � sinh r;

the reader should observe the resemblance between the r-integral in (8.6) for � D ! D 0
or � D ! D �=2 and the integral in (8.4) or (8.5) respectively.

Lemma 8.6. Suppose that .r; !/ ¤ .0; �=2/ and jr j < 1.

(1) We have
@�.r; !/

@r
D

sin 2!
2�.r; !/2

;
@�.r; !/

@!
D

sinh 2r
2�.r; !/2

:

(2) We have
@iCj

@r i@!j

�
1

�.r; !/2

�
Îi;j

1

�.r; !/iCjC2
:

(3) Consequently, for i C j > 1, we have

@iCj �.r; !/

@r i@!j
Îi;j

1

�.r; !/iCj
:

Proof. By (8.12), we have tan �.r; !/ D tanh r tan!; so

@�.r; !/

@r
D

sin! cos!
cosh2 r cos2 ! C sinh2 r sin2 !

D
sin 2!

cosh 2r C cos 2!
;

and similarly

@�.r; !/

@!
D

sinh r cosh r
cosh2 r cos2 ! C sinh2 r sin2 !

D
sinh 2r

cosh 2r C cos 2!
:

The estimates for �.r; !/ in (2) readily follow from an inductive argument by using
the identity obtained from applying the i -th r-derivative and the j -th !-derivative to

cosh 2r C cos 2!
�.r; !/2

D 2;

along with the inequalities

sinh 2r; sin 2! Î �.r; !/; cosh 2r; cos 2! Î 1;

where the expression �.r; !/ D
p

sinh2 r C cos2 ! is used.
Finally, combining the foregoing results, it is straightforward to bound the derivatives

of �.r; !/ as in (3).

9. Remarks on Xiaoqing Li’s analysis

We briefly recall several aspects of Xiaoqing Li’s analysis in [30], and explain the issues
for its generalization to the complex setting or the case when the number field has multiple
infinite places.
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In the real setting of [30], T 3=8Cε 6 M 6 T 1=2 and TM 1�ε Î x 6 T 3=2Cε 6 M 4.
By expanding cosh r in a Taylor series, and disregarding the non-oscillatory factors from
the terms of order > 4, the integral H˙.x2/ in (8.4) essentially turns into

MT 1Cεe.�2x/

Z M ε=M

�M ε=M

g.Mr/e.T r=� � xr2/ dr:

Xiaoqing Li’s next step is to complete the square, getting

MT 1Cεe

�
�2x ˙

T 2

4�2x

�Z M ε=M

�M ε=M

g.Mr/e

�
�x

�
r ˙

T

2�x

�2�
dr I

by Parseval, the integral is seen to be a non-oscillatory function of x. The secondary
exponential factor e.˙T 2=4�2x/ plays an important role in her second application of
Voronoï summation.

In the complex setting, however, the corresponding conditions are T 3=4Cε 6 M 6 T

and T Î x 6 T 3=2Cε 6 M 2. After expanding cosh r and sinh r in Taylor series, only the
factors of order 0 and 1 are oscillatory, and the integral H˙.x2e2i�/ in (8.6) is essentially

MT 2Cε

Z �

0

Z M ε=M

�M ε=M

g.Mr/e
�
2T r=� � 4x.cos! cos� � r sin! sin�/

�
dr d!:

Hence, we are unable to produce a secondary exponential factor. Even if there were such
a factor, the analysis would be conceivably difficult, because cos! cos� would go down
to the denominator together with x.

Moreover, when the number field has more than one infinite place, a more serious
issue is that the condition x 6 T 3=2Cε is not necessarily valid for every infinite place.

At any rate, it is better not to expand cosh r or sinh r in Taylor series at this stage, and
to allow M be a small power of T .

10. Stationary phase for the Hankel transforms

In this section, we consider certain integrals that will arise from the Hankel transforms
over R and C. For the real case, it is simply a matter of applying the method of stationary
phase in one dimension. For the complex case, the double integral has already been invest-
igated in [56, §6.1], but there are certain difficulties in two dimensions—Lemma 7.4 is
not applicable for the particular phase function, and [60, Theorem 1.1.4] is not sufficient
as we also need to differentiate the angular argument.

10.1. The one-dimensional case

First, in the real setting, we need to consider the integral

I.œ/ D

Z 1
�1

e.œ.3x2 � 2x3//w.xIœ/ dx: (10.1)
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Fix � > 1. Let �; S > 0 and X > 1. Suppose that the function w.xI œ/ is supported in
¹x W jxj 2 Œ�;�1=6��º and its derivatives satisfy

xiœj @ix@
j

œ
w.xIœ/ Îi;j SX

iCj :

Define
I \.œ/ D e.�œ/I.œ/: (10.2)

Lemma 10.1. Let A and j be non-negative integers.

(1) For either � >
p
� or � 6 1=

p
�, we have

I \.œ/ ÎA S�

�
X

jœj�2.�C 1/

�A
:

(2) Assume that X 6
p
jœj. For 1=� 6 � 6 �, we have

œj
dj

dœj
I \.œ/ Îj

SXjp
jœj
:

Proof. Note that the phase function 3x2 � 2x3 has a unique non-zero stationary point at
x0 D 1. The estimates in (1) readily follow from Lemma 7.1; in the case � >

p
�, choose

P D �=X ,Q D �, Z D jœj�3, R D jœj�2, and in the case � 6 1=
p
�, choose P D �=X ,

Q D 1, Z D jœj, R D jœj�. The estimates in (2) essentially follow from Lemma 7.3.

10.2. The two-dimensional case

Second, consider the following double integral that will arise from the complex Hankel
transform

I.œ;  / D

Z 2�

0

Z 1
0

e.2œf .x; �I //w.x; �Iœ; / dx d�; (10.3)

with
f .x; �I / D 3x2 cos.2� C  / � 2x3 cos 3�: (10.4)

Fix � > 1. Let �; S > 0 and X > 1. Suppose that w.x; �I œ;  / is supported in ¹.x; �/ W
x 2 Œ�;�1=6��º and its derivatives satisfy

xiœk@ix@
j
�@
k
œ@
l
 w.x; �Iœ; / Îi;j;k;l SX

iCjCkCl :

Define
I \.œ;  / D e.�2œ cos 3 /I.œ;  /: (10.5)

Results from [56, Lemmas 6.1 and 6.3] are quoted in the following lemma with slightly
altered notation.

Lemma 10.2. Let A, k, l be non-negative integers.

(1) For either � >
p
� or � 6 1=

p
�, we have

I \.œ;  / ÎA S�

�
X

œ�2.�C 1/

�A
:
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(2) Assume that X 6
p
œ. For 1=� 6 � 6 �, we have

œk
@kCl

@œk@ l
I \.œ;  / Îk;l

SXkCl

œ
:

11. Analysis of the Hankel transforms, I

Let w.x/ be a smooth function supported on Œ1; �� satisfying w.i/.x/ Îi logi T for all
i > 0. For j�j Ï T 2, define

w.x;�/ D w.jxj/H.�x/ (11.1)

if F is real, and
w.z;�/ D w.jzj/H.�z/ (11.2)

if F is complex. Let zw.y;�/ and zw.u;�/ be their Hankel transforms (see Definition 4.4)
defined by

zw.y;�/ D
Z

w.x;�/J�.xy/ dx; zw.u;�/ D
Z Z

w.z;�/J�.zu/ dz; (11.3)

and modify zw.y;�/ and zw.u;�/ by exponential factors as follows:

zw\.y;�/ D e.�y=�/zw.y;�/; zw\.u;�/ D e.�2Re.u=�//zw.u;�/: (11.4)

Roughly speaking, our wish is to transform zw\.y;�/ and zw\.u;�/ into the shape

MT 1Cεp
jyj

ˆ¢.y=�/;
MT 2Cε

juj
ˆ¢.u=�/;

with ¢ D 0;�;C; [ in various circumstances. It turns out that the analytic properties of
ˆ¢.x/ or ˆ¢.z/ depend only mildly on� andM , so, for brevity, this dependence will be
suppressed from our notation.

11.1. The small-argument case

We first consider the case when the Hankel transforms have relatively small argument.
However, this case arises only when there are infinitely many units in the number field.

The following lemma is essentially due to [5, Lemma 7] and [56, Lemma 6.4] (as
indicated in Remark 4.3, Blomer has a slightly different normalization).

Lemma 11.1. For w 2 C1c .F
�/ define kwkL1 to be its sup-norm. If w is supported in a

fixed compact set K � F �, then its Hankel transform zw has the following estimates:

(1) when F is real,

yi .d= dy/i zw.y/ Îi;K kwkL1 � .jyj1=3 C 1/i=jyj1=3I
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(2) when F is complex,

ui xuj .@=@u/i .@=@xu/j zw.u/ Îi;j;K kwkL1 � .juj1=3 C 1/iCj =juj2=3:

As a consequence of Corollary 8.4 and Lemma 11.1, for jyj 6 T ε we have

yi
di zw.y;�/

dyi
Îi

T 1C.iC1/ε

jyj1=3
Î
MT 1C.iC1/εp

jyj
;

and in polar coordinates,

yi
@iCj zw.yei� ; �/

@yi@�j
Îi;j

T 2C.iCjC1/ε

y2=3
Î
MT 2C.iCjC1/ε

y
:

Corollary 11.2. Let j�j Ï T 2. Artificially define ˆ0.x/ and ˆ0.z/ by

zw\.y;�/ D
MT 1Cεp
jyj

ˆ0.y=�/; zw\.u;�/ D
MT 2Cε

juj
ˆ0.u=�/; (11.5)

with x D y=� and z D u=�.

(1) When F is real, for jxj 6 T ε=j�j we have

xi
diˆ0.x/

dxi
Îi T

iε : (11.6)

(2) When F is complex, for x 6 T ε=j�j we have

xi
@iCjˆ0.xei�/

@xi@�j
Î T .iCj /ε : (11.7)

11.2. Application of stationary phase

Our next goal is to deduce integral representations of zw\.y;�/ and zw\.u;�/ from those of
the GL2-Bessel integrals H.x/ and H.z/ in Lemma 8.2 (1, 2) along with the asymptotic
formulae for the GL3-Bessel kernels J�.x/ and J�.z/ in Lemma 4.12.

Proposition 11.3. Suppose that jyj > T ε and j�j Ï T 2. Define hyp˙.r/ to be the hyper-
bolic function

hypC.r/ D cosh r; hyp�.r/ D � sinh r: (11.8)

There are smooth functions V˙.r Iy;�/ with support in the region defined by

.1=�/ � jyj1=3=j�j1=2 6 jhyp˙.r/j 6 � � jyj1=3=j�j1=2; (11.9)

satisfying
.@=@r/iVC.r Iy;�/ Îi logi T;

r i .@=@r/iV�.r Iy;�/ Îi logi T;
(11.10)
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such that

zw\.y;�/ D
MT 1Cεp
jyj

.ˆC.y;�/Cˆ�.y;�//CO.T
�A/; (11.11)

with

ˆ˙.y;�/ D

Z M"=M

�M"=M

e.T r=�/g.Mr/e.�y hyp\
˙
.r/2=�/V˙.r Iy;�/ dr; (11.12)

in which g is a Schwartz function, and

hyp\C.r/ D tanh r; hyp\�.r/ D coth r: (11.13)

The reader may find the integral ˆ˙.y; �/ in [68, (8.16)] and [18, (4.20)]. Our ana-
lysis is slightly different, however, as our strategy is to first transform the x-integral into
I.œ/ as in (10.1) with phase œ.2x3 � 3x2/ and then use the stationary phase results in
Lemma 10.1, while Young and Binrong Huang directly apply general stationary phase
results [68, Lemma 6.3] with phase in an arbitrary form. A technical remark is that, in
view of (11.10), VC.r Iy;�/ is more than an “inert” function in the sense of Young [68].

Proof of Proposition 11.3. To start with, let us assume � > 0, for zw\.y; ��/ D
zw\.�y;�/.

By Lemma 4.12 (1), the contribution to zw.y;�/ from the leading term in (4.22) is the
following integral:

I.y1=3; �/ D

Z
e.3.xy/1=3/H.�x/w.jxj/

dx
jxyj1=3

I

the contributions from lower-order terms are similar and may be handled in the same
manner. Also, it follows from Corollary 8.4 (1) that the error term in (4.22) yields an
O.T 1C"=jyj.KC1/=3/DO.T �A/ for jyj>T ε if we chooseK large, sayK >3.AC 1/=ε.

Next, we change the variables x and y to˙x6 and y3 so that

I.y;�/ D
X
˙

1

jyj

Z 1
0

e.˙3x2y/H.˙�x6/a.x/ dx;

where a.x/ D 6x3w.x6/ is supported on Œ1; �1=6� and satisfies a.i/.x/ Îi logi T . By
formulae (8.4) and (8.5) in Lemma 8.2, we infer that I.y;�/ may be written as

I.y;�/ DMT 1Cε
X
˙

Z M ε=M

�M ε=M

e.T r=�/g.Mr/I˙.r Iy;�/ dr CO.T �A/;

where

I˙.r Iy;�/ D
1

jyj

Z 1
�1

e.˙3x2y � 2
p
�x3 hyp˙.r//a.jxj/ dx:

On changing x to xy=
p
� hyp˙.r/ (which needs r ¤ 0 to guarantee hyp�.r/ ¤ 0), the

inner integral I˙.r Iy;�/ turns into

1
p
� jhyp˙.r/j

Z 1
�1

e

�
˙

y3

� hyp˙.r/2
.3x2 � 2x3/

�
a

�
jxyj

p
� jhyp˙.r/j

�
dx;
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and it is exactly the integral I.œ/ defined as in (10.1) if one lets œ D ˙y3=� hyp˙.r/
2,

� D
p
� jhyp˙.r/j=jyj (D

p
jy=œj), and

w.xIœ/ D
p
jœ=y3j � a.jxj

p
jœ=yj/;

with
xiœj @ix@

j

œ
w.xIœ/ Îi;j

p
jœ=y3j � logiCj T:

Let I \.œ/ D e.�œ/I.œ/ be as in (10.2). We introduce a smooth function v.x/ such
that v.x/� 1 on Œ1=

p
�;
p
�� and v.x/� 0 on .0; 1=��[ Œ�;1/. According to Lemma

10.1 (1), if � D
p
jy=œj is not in the interval .1=

p
�;
p
�/, then

I \.œ/ Î
1

jyj

�
logTp
jy3=œj C jyj

�K
<

logK T
jyjKC1

;

and hence I \.œ/.1 � v.œ=y// only contributes to the error term. By Lemma 10.1 (2),

œj
dj

dœj
�
I \.œ/v.jœ=yj/

�
Îj

logj Tp
jyj3

:

Finally, let4

V˙.r Iy
3; �/ D

p
jyj3 I \.œ/v.jœ=yj/; (œ D ˙y3=.� hyp˙.r/

2/);

then, after changing y into y1=3, the expression of zw\.y; �/ (defined in (11.4)) given by
(11.11) and (11.12) readily follow from the arguments above, along with the identity

� hyp\
˙
.r/2 D �1˙

1

hyp˙.r/2
;

and, to deduce (11.10) one needs the estimates5

hyp˙.r/
dj

drj

�
1

hyp˙.r/

�
Îj

1

jhyp˙.r/jj

for jr j < 1.

Proposition 11.4. Suppose that juj > T ε and j�j Ï T 2. Recall the definition of �.r; !/
in (8.11). There is a smooth function V.r; !Iu;�/ with support in the region defined by

.1=�/ � juj1=3=j�j1=2 6 �.r; !/ 6 � � juj1=3=j�j1=2; (11.14)

satisfying
�.r; !/iCj .@=@r/i .@=@!/jV.r; !Iu;�/ Îi;j logiCj T; (11.15)

4This V˙ function is only from the leading term in (4.22), so, to be strict, one must also include
those V˙ functions constructed from the lower-order terms in (4.22).

5We also need Faà di Bruno’s formula for higher derivatives of composite functions (see [26]).
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such that

zw\.u;�/ D
MT 2Cε

juj
ˆ.u;�/CO.T �A/ (11.16)

with

ˆ.u;�/ D

Z �

0

Z M"=M

�M"=M

e.2T r=�/g.Mr/e.�2Re.u trh\.r; !/=�//V .r; !Iu;�/ dr d!;
(11.17)

in which g is a Schwartz function, and trh\.r; !/ D �\.r; !/ei�
\.r;!/ is defined by

�\.r; !/ D
cosh 2r � cos 2!
cosh 2r C cos 2!

; tan.� \.r; !/=2/ D
sin 2!
sinh 2r

: (11.18)

It is remarkable that the square-root signs in the formulae of �.r; !/ in (8.11) are no
longer in the formula of �\.r;!/ in (11.18). This makes our life easier in polar coordinates.

Proof of Proposition 11.4. The first stage of proof will be similar to that of Proposition
11.3.

Let us assume without loss of generality that � > 0 and consider the integral

I.u1=3; �/ D
X
�3D1

Z Z
e.6Re.�.zu/1=3//H.�z/w.jzj/

dz
jzuj2=3

;

which is the contribution from the three leading terms in (4.23) in Lemma 4.12 (2). Sub-
stituting the variables z and u by z6 and u3, we have

I.u;�/ D
1

juj2

Z Z
C�=¹˙1º

e.6Re.z2u//H.�z6/a.jzj/ dz=jzj;

where a.x/ D 36x7w.x6/ is supported on Œ1;�1=6� and satisfies a.i/.x/ Îi logi T .
Let z D xei� and uD yei� . By formula (8.6) in Lemma 8.2, we infer that I.yei� ;�/

may be written as

I.yei� ;�/DMT 2Cε

Z �

0

Z M"=M

�M"=M

e.2T r=�/g.Mr/I.r;!Iyei� ;�/dr d! CO.T �A/;

in which

I.r;!Iyei� ;�/D
2

y2

Z 2�

0

Z 1
0

e
�
6x2y cos.2�C �/� 4

p
�x3 trh.r;!I3�/

�
a.x/dx d�:

At this point, we assume .r; !/ ¤ .0; �=2/ and invoke the expression of trh.r; !I 3�/
as in (8.10). On changing the variables x and � to xy=

p
��.r; !/ and � � �.r; !/=3,

respectively, the integral I.r; !Iyei� ; �/ turns into

2
p
��.r; !/y

Z 2�

0

Z 1
0

e

�
2y3

��.r; !/2
f .x; �I � � 2�.r; !/=3/

�
a

�
xy

p
��.r; !/

�
dx d�:
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According to the notation in §10.2, the phase function f .x; �I / is defined by (10.4),
and the integral above is of the form I.œ;  / as in (10.3) if one lets œ D y3=��.r; !/2,
 D � � 2�.r; !/=3, and � D

p
��.r; !/=y (D

p
y=œ); the weight function

w.xIœ/ D 2
p
œ=y5 � a.x

p
œ=y/

has bounds
xiœk@ix@

k
œw.xIœ/ Îi;k

p
œ=y5 logiCk T:

Next, we apply Lemma 10.2 to I \.œ; /D e.�2œcos3 /I.œ; / as in (10.5). Let v.x/ be
a smooth function such that v.x/� 1 on Œ1=

p
�;
p
�� and v.x/� 0 on .0;1=��[ Œ�;1/.

Lemma 10.2 (1) implies that I \.œ;  /.1 � v.œ=y// only contributes an error term, while
Lemma 10.2 (2) yields the estimates

œk
@kCl

@œk@ l
.I \.œ;  /v.œ=y// Îk;l

logkCl T
y3

:

Keeping in mind that  D � � 2�.r; !/=3 and œ D y3=��.r; !/2, the estimates above
along with those for 1=�.r; !/2 and �.r; !/ in Lemma 8.6 imply that6

�.r; !/iCj!.@=@r/i .@=@!/jV.r; !Iy3e3i� ; �/ Îi;j 1;

with
V.r; !Iy3e3i� ; �/ D y3I \.œ;  /v.œ=y/;

supported in the region y=�
p
� 6 �.r; !/ 6 �y=

p
�.

In view of (10.5) and (11.4), we need to compute the exponential factor e.2œcos3 �
2y3 cos 3�=�/, in which

2œ cos 3 D
2y3 cos.3� � 2�.r; !//

��.r; !/2
:

After reverting y3e3i� to yei� , the proof is completed if we can prove (11.18) for �\.r;!/
and � \.r; !/ given by

cos � �
cos.� � 2�.r; !//

�.r; !/2
D �\.r; !/ cos.� C � \.r; !//:

6We need to use here the simple fact: For a composite function f .œ.r; !/; �.r; !// in general,
its derivative @ir@

j
!f .œ.r; !/; �.r; !// is a linear combination of

@kœ@
l
�f .œ.r; !/; �.r; !//

kY
�D1

@
i�
r @

j�
! œ.r; !/

lY
�D1

@
i 0�
r @

j 0�
! �.r; !/;

X
i� C

X
i 0� D i;

X
j� C

X
j 0� D j:

This is a two-dimensional Faà di Bruno’s formula in a less precise form.
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We have

�\.r; !/ D

s�
1 �

cos 2�.r; !/
�.r; !/2

�2
C

�
sin 2�.r; !/
�.r; !/2

�2
;

cos � \.r; !/ D
1

�\.r; !/
�

cos 2�.r; !/
�\.r; !/�.r; !/2

; sin � \.r; !/ D
sin 2�.r; !/

�\.r; !/�.r; !/2
:

By the definitions of �.r; !/ and �.r; !/ in (8.11) and (8.12), we have

1 �
cos 2�.r; !/
�.r; !/2

D 1 �
4.cosh2 r cos2 ! � sinh2 r sin2 !/

.cosh 2r C cos 2!/2

D 1 �
2.cosh 2r cos 2! C 1/
.cosh 2r C cos 2!/2

D
cosh2 2r C cos2 2! � 2
.cosh 2r C cos 2!/2

D
sinh2 2r � sin2 2!
.cosh 2r C cos 2!/2

;

and similarly
sin 2�.r; !/
�.r; !/2

D
2 sinh 2r � sin 2!

.cosh 2r C cos 2!/2
:

We conclude that

�\.r; !/ D
sinh2 2r C sin2 2!
.cosh 2r C cos 2!/2

D
cosh 2r � cos 2!
cosh 2r C cos 2!

;

cos � \.r; !/ D
sinh2 2r � sin2 2!
sinh2 2r C sin2 2!

; sin � \.r; !/ D
2 sinh 2r � sin 2!

sinh2 2r C sin2 2!
;

and hence
tan.� \.r; !/=2/ D

sin 2!
sinh 2r

:

Corollary 11.5. We have zw.y;�/, zw.u;�/DO.T �A/ for jyj, jujÏ j�j3=2, respectively.

Proof. This is clear from (11.9) and (11.14).

11.3. Analysis of the new trigonometric-hyperbolic function

For later use, we record here some results concerning the trigonometric-hyperbolic func-
tion trh\.r; !/ that arose in Proposition 11.4. By (11.18), we have

@�\.r; !/

@r
D

4 sinh 2r cos 2!
.cosh 2r C cos 2!/2

;
@�\.r; !/

@!
D

4 cosh 2r sin 2!
.cosh 2r C cos 2!/2

(11.19)

@� \.r; !/

@r
D �

4 cosh 2r sin 2!
cosh2 2r � cos2 2!

;
@� \.r; !/

@!
D

4 sinh 2r cos 2!
cosh2 2r � cos2 2!

: (11.20)

Note that sinh2 2r C sin2 2! D cosh2 2r � cos2 2!.
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Lemma 11.6. Define trh\.r; !I�/ D �\.r; !/ cos.� C � \.r; !//. For jr j < 1, we have

@iCj trh\.r; !I�/
@r i@!j

Îi;j

�\.r; !/

.cosh2 2r � cos2 2!/.iCj /=2
:

Proof. Set  D � C � \.r; !/. From (11.19) and (11.20) we deduce that

@ trh\.r; !I�/
@r

D
4 sinh 2r cos 2!

.cosh 2r C cos 2!/2
cos C

4 cosh 2r sin 2!
.cosh 2r C cos 2!/2

sin ;

@ trh\.r; !I�/
@!

D
4 cosh 2r sin 2!

.cosh 2r C cos 2!/2
cos �

4 sinh 2r cos 2!
.cosh 2r C cos 2!/2

sin :

For i C j > 1, we may prove by induction that @iCj trh\.r; !I�/=@r i@!j is a linear
combination of

sinhi1 2r coshi2 2r sinj1 2! cosj2 2!
.cosh 2r C cos 2!/k1ClC2.cosh 2r � cos 2!/k2Cl

�

²
cos 

sin 

³
;

with

k1 C k2 C l 6 i C j � 1; 2.k1 C k2 C l/ 6 i C j C i1 C j1 � 2;

i1 C i2 C j1 C j2 D k1 C k2 C 2l C 2; i2 6 i C 1; j2 6 j C 1:

Such a fraction is bounded by

.sinh2 2r C sin2 2!/.i1Cj1/=2

.cosh 2r C cos 2!/k1ClC2.cosh 2r � cos 2!/k2Cl

D
1

.cosh 2r C cos 2!/k1Cl�.i1Cj1/=2C2.cosh 2r � cos 2!/k2Cl�.i1Cj1/=2

Î
1

.cosh 2r C cos 2!/.iCj /=2�k2C1.cosh 2r � cos 2!/.iCj /=2�k1�1

Î
1

.cosh 2r C cos 2!/.iCj /=2C1.cosh 2r � cos 2!/.iCj /=2�1
;

as desired. Note that 2.k1 C k2 C l/ 6 i C j C i1 C j1 � 2 is used here for the first
inequality.

By (11.19) and (11.20), we have

@ log �\.r; !/
@r

D
@� \.r; !/

@!
D

4 sinh 2r cos 2!
sinh2 2r C sin2 2!

; (11.21)

@� \.r; !/

@r
D �

@ log �\.r; !/
@!

D �
4 cosh 2r sin 2!

sinh2 2r C sin2 2!
: (11.22)

Similar to Lemma 11.6, one can establish the following lemma.
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Lemma 11.7. For jr j < 1, we have

@iCj log �\.r; !/
@r i@!j

;
@iCj � \.r; !/

@r i@!j
Îi;j

1

.sinh2 2r C sin2 2!/.iCj /=2

for i C j > 1.

Furthermore, it follows from (11.21) and (11.22) that

@2 log �\

@r2
D
@2� \

@r@!
D �

@2 log �\

@!2
D �

8 cosh 2r cos 2! .sinh2 2r � sin2 2!/
.sinh2 2r C sin2 2!/2

; (11.23)

@2� \

@r2
D �

@2 log �\

@r@!
D �

@2� \

@!2
D
8 sinh 2r sin 2! .cosh2 2r C cos2 2!/

.sinh2 2r C sin2 2!/2
: (11.24)

Notation

For simplicity of exposition, we introduce some non-standard notation.

Notation 11.8. For � > 1 and X > 0, let x �� X stand for x 2 ŒX;�X�.

Notation 11.9. Let � > 1. We write X �� Y if 1=c� 6 X=Y 6 c� for some c� > 1
such that c�! 1 as �! 1. We write X Î� Y if jX j 6 ı�Y for some ı� > 0 such that
ı� ! 0 as �! 1.

11.4. Preliminary analysis of the ˆ-integrals

For convenience of the further analysis by the Mellin technique in §13, we introduce
certain partitions of ˆ-integrals.

For the real case, the partition for ˆC.y; �/ is hidden in the proof of [68, Lemma
8.2], but the case of ˆC0 .y=�/ seems to be missing there.

Corollary 11.10. Let�> 1 be fixed. Let A > 1. Let jyj �� Y . Suppose that Y Ï T ε and
j�j Ï T 2. Define ˆ˙.y;�/ by (11.12) and (11.13). We have

ˆC.y;�/ D ˆ
C.y=�/CO.T �A/ (11.25)

for Y 2=3 �� j�j, where ˆC.x/ is supported on jxj Ï M 1�εT and

ˆC.x/ D

´
ˆC1 .x/ if M 1�εT Î jxj Î T 2�ε ;

ˆC0 .x/ if jxj Ï T 2�ε ;
(11.26)

where ˆC1 .x/ is given by

ˆC1 .x/ D

Z
e.T r=� � x tanh2 r/V C.r/ dr (11.27)

with V C.r/ supported in r �� T=2�x and satisfying r i .d= dr/iV C.r/ Îi logi T , and
where ˆC0 .x/ satisfies

xi .d= dx/iˆC0 .x/ Îi T
.iC1/ε=

p
jxj; (11.28)
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while
ˆ�.y;�/ D ˆ

�.y=�/ (11.29)

for Y 2=3 Î j�j=M 2�ε , with

ˆ�.x/ D

Z
e.T r=� � x coth2 r/V �.r/ dr; (11.30)

where V �.r/ is supported in jr j �� Y 1=3=j�j1=2 with r i .d=dr/iV �.r/ Îi logi T .

Proof. The case of ˆ�.y;�/ is obvious, while ˆC.y;�/ requires some discussion. The
nature of the integral ˆC.y;�/ changes when x D y=� moves beyond T 2�ε . For jxj Î
T 2�ε or jxj Ï T 2�ε , respectively, the integral ˆC.y; �/ will be turned into ˆC1 .x/ or
ˆC0 .x/ by smoothly truncating the r-integration near T=2�x or at˙T ε=T .

Let x D y=�. The phase function T r=� � x tanh2 r has a unique stationary point
r0 �� T=2�x. For jr0j 6 M ε=M , it is necessary that jxj Ï M 1�εT , because otherwise
ˆC.y; �/ is negligible by Lemma 7.1 with Z D jxj, Q D 1, R D T , and P D 1=M .
When jxj Î T 2�ε , we have jxj=T 2 Î 1=T ε , and hence Lemma 7.1 (now P D T=jxj)
implies that only a negligibly small error is lost if we restrict the integration to the interval
r �� T=2�x via a smooth partition of unity, giving ˆC1 .x/.

Next assume jxj Ï T 2�ε so that jr0j < T ε=�T . On applying Lemma 7.1 again with
R D jxj=T 1�ε and P D T ε=T , we are left to consider the integral ˆC0 .x/ restricted
to jr j 6 T ε=T . The factor e.T r=�/ is no longer oscillatory and may be absorbed into
the weight function. To prove the estimates in (11.28) for the derivatives of ˆC0 .x/, we
differentiate the integral and then confine the integration to jr j 6 T ε=

p
jxj; Lemma 7.1 is

used for the last time with R D
p
jxj T ε and P D T ε=

p
jxj. Alternatively, one can also

use Lemma 7.2.
Note that the fact that VC.r I y; �/ has almost bounded derivatives (see (11.10)) is

used implicitly to determine the P ’s.

Corollary 11.11. Let�> 1 be fixed. Let A > 1. Let juj �� Y . Suppose that Y Ï T ε and
j�j Ï T 2. Define ˆ.u;�/ by (11.17) and (11.18). We have

ˆ.u;�/ D
X

T ε=T<�<1=
p
2�

���T=2�j�j
1=2

ˆC� .u=�/Cˆ
C
0 .u=�/

C

X
�<1=

p
2�

���Y
1=3=j�j1=2

ˆ�� .u=�/Cˆ
[.u=�/CO.T �A/; (11.31)

where � D ��k=2 for integers k, ˆ[.u=�/ exists only when j�j �� T 2=2�2 and Y ��
T 3=8�3, ˆC� .z/, ˆ

�
� .z/, and ˆ[.z/ are integrals of the formZ Z
e.2T r=� � 2Re.z trh\.r; !///g.Mr/V .r; !/ dr d! (11.32)



Z. Qi 44

with weight functions V D V C� , V �� , V [ supported in

cos2 ! �� Y 2=3=j�j;
p
r2 C sin2 ! �� �; (11.33)p

r2 C cos2 ! �� �; (11.34)

jcos 2!j 6 � � 1; (11.35)

respectively, satisfying

@iCjV ˙� .r; !/

@r i@!j
Îi;j

logiCj T
�iCj

;
@iCjV [.r; !/

@r i@!j
Îi;j logiCj T; (11.36)

and ˆC0 .z/ has bounds

xi
@iCjˆC0 .xe

i�/

@xi@�j
Îi;j

T .iCjC1/ε

max ¹T 2�ε ; xº
: (11.37)

Clearly, the integral ˆ[.z/ has no counterpart in the real case. A similar partition on
ˆ[.z/ will be needed, but it seems more appropriate to introduce it when we apply the
Mellin technique in §13.

Proof of Corollary 11.11. We start by dividing the !-integral via a smooth partition of
Œ0; �� into the union of three regions where the inequalities

sin! 6
1
p
2�

; jcos!j 6
1
p
2�

; jcos 2!j 6 � � 1;

are valid, respectively.
The second integral turns into the sum of ˆ�� .u=�/ after employing a �-adic par-

tition with respect to
p
r2 C cos2 !. Note that (11.14) amounts to the condition � ��

Y 1=3=j�j1=2 in (11.31), and (11.15) is required to deduce the estimates for V �� .r; !/ in
(11.36).

It remains to analyze the first and the third integrals. Keep in mind that because of
(11.14) we necessarily have cos2 ! �� Y 2=3=j�j in the first case and Y 2=3 �� j�j=2 in
the third case. Moreover, (11.15) shows that the weight functions have almost bounded
derivatives as �.r; !/ Ï 1 for both cases.

Let z D u=� and write z D xei� . The phase function in (11.17) or (11.32) is equal to

f .r; !I x; �/ D T r=� � x�\.r; !/ cos.� C � \.r; !//:

Set  D � C � \.r; !/ for brevity. In view of (11.19) and (11.20), we have

@f =@r D T=� C x.A cos C B sin /; @f =@! D x.B cos � A sin /;

where
A D

4 sinh 2r cos 2!
.cosh 2r C cos 2!/2

; B D
4 cosh 2r sin 2!

.cosh 2r C cos 2!/2
:
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It is clear that
.@f =@r/2 C .@f =@!/2 > .T=� � x

p
A2 C B2/2; (11.38)

in which

A2 C B2 D
16.cosh 2r � cos 2!/
.cosh 2r C cos 2!/3

D
4.sinh2 r C sin2 !/
.cosh2 r � sin2 !/3

: (11.39)

In the first case, (11.38) and (11.39) imply that

jf 0.r; !I x; �/j2 Ï T 2 C x2.r2 C sin2 !/;

except for r2 C sin2 ! �� T 2=4�2j�j (since cos2 ! �� Y 2=3=j�j and x �� Y=j�j).
By Lemma 11.6, we have

@iCjf .r; !I x; �/

@r i@!j
Îi;j

x

.r2 C sin2 !/.iCj /=2�1

for i C j > 2. We truncate smoothly the first integral at
p
r2 C sin2 ! D T ε=T and

apply a �-adic partition of unity with respect to the value of
p
r2 C sin2 ! over

.T ε=T; 1=
p
2�/. In this way, the integral splits into

P
� ˆ
C
� .z/C ˆ

C
0 .z/. On applying

Lemma 7.4 with Q D ˚ D � D �, P D min ¹�; 1=M º, Z D x�2, and R D T C x�,
we infer that the integral ˆC� .z/ is negligibly small unless � �� T=2�

p
j�j (�T > T ε

is required). When x 6 T 2�ε , the estimates for ˆC0 .xe
i�/ in (11.37) follow from trivial

estimation. When x > T 2�ε , we may further restrict the integration to
p
r2 C sin2 ! 6

T ε=
p
x. To see this, we absorb e.2T r=�/ into the weight function, and apply Lemma 7.4

with Q D ˚ D P D � D T ε=
p
x, Z D T ε , and R D

p
x T ε . Again, (11.37) follows

trivially.
For the third case, it remains to prove that the integral restricted to jcos2!j6�� 1 is

negligible unless x �� T=4� . To this end, observe that
p
A2 C B2 �� 4, and it follows

from (11.38) that
jf 0.r; !I x; �/j2 Ï T 2 C x2

unless x �� T=4� . By Lemma 11.6, we have

@iCjf .r; !I x; �/

@r i@!j
Îi;j x

for i C j > 2. The proof is completed by applying Lemma 7.4 with Q D ˚ D 1,
P D 1=M , � D 1, Z D x, and R D T C x.

12. Stationary phase for the Mellin transforms

In this section, we fix a smooth function v.x/ such that v.x/� 1 on Œ1=2; 2� and v.x/� 0
on .0; 1=3� [ Œ3;1/.
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12.1. The real case

As in §2, let ya D R � ¹0; 1º and define �iν;m.x/ D jxjiν.x=jxj/m for .ν; m/ 2 ya. The
Mellin transform of f 2 C1c .R

�/ is defined by

Mf .ν; m/ D

Z
R�
f .x/�iν;m.x/ d�x;

and the Mellin inversion reads

f .x/ D
1

4�

Z Z
ya

Mf .ν; m/�iν;m.x/ d�.ν; m/:

Lemma 12.1. Let R; S > 0 and X > 1. Suppose that w.x/ is smooth and xiw.i/.x/
Îi SX

i for jxj 2 ŒR=3; 3R�. We have

w.x/ D
Z Z
ya

Ÿ.ν; m/�iν;m.x/ d�.ν; m/

whenever jxj 2 ŒR=2; 2R�, with the function Ÿ.ν;m/ satisfying Ÿ.ν;m/Î S and Ÿ.ν;m/D
O.RST �A/ if jνj > T εX .

Proof. Let Ÿ.ν; m/ be the Mellin transform of 4�v.jxj=R/w.x/. The first estimate for
Ÿ.ν; m/ is trivial. The second is an easy consequence of Lemma 7.1 with phase function
ν.log jxj/=2� .

Lemma 12.2. Let R > 1. We have

e.x/ D

Z Z
ya

ŸR.ν; m/�iν;m.x/ d�.ν; m/

whenever jxj 2 ŒR=2; 2R�, where ŸR.ν; m/ D O..RC jνj/�A/ unless jνj � R, in which
case ŸR.ν; m/ Î 1=

p
R.

Proof. Let ŸR.ν; m/ be the Mellin transform of 4�v.jxj=R/e.x/. To derive the estimates
for ŸR.ν; m/, apply Lemmas 7.1 and 7.2 (the second derivative test) with phase function
x C .ν log jxj/=2� .

12.2. The complex case

As in §2, let ya D R �Z and define �iν;m.z/ D jzj2iν.z=jzj/m for .ν;m/ 2 ya. The Mellin
transform of f 2 C1c .C

�/ is defined by

Mf .ν; m/ D

Z
C�
f .z/�iν;m.z/ d�z;

and the Mellin inversion reads

f .z/ D
1

4�2

Z Z
ya

Mf .ν; m/�iν;m.z/ d�.ν; m/:
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In polar coordinates,

Mf .ν; m/ D 2

Z 1
0

Z 2�

0

f .xei�/x2iνeim�
d� dx
x

:

Lemma 12.3. Let R; S > 0 and X > 1. Let w.z/ be smooth with xi@ix@
j
�w.xei�/ Îi;j

SX iCj for x 2 ŒR=3; 3R�. We have

w.z/ D
Z Z
ya

Ÿ.2ν; m/�iν;m.z/ d�.ν; m/;

whenever jzj 2 ŒR=2; 2R�, with the function Ÿ.ν;m/ satisfying Ÿ.ν;m/Î S and Ÿ.ν;m/D
O.R2ST �A/ if

p
ν2 Cm2 > T εX .

Proof. Let Ÿ.2ν; m/ be the Mellin transform of 4�2v.jzj=R/w.z/. In polar coordinates,
apply Lemma 7.1 to the x- or �-integral with phase function .ν log x/=2� or m�=2� ,
respectively.

The complex analogue of Lemma 12.2 is as follows. However, its proof requires con-
siderably more work.

Lemma 12.4. Let R Ï 1. We have

e.2Re.z// D
Z Z
ya

ŸR.2ν; m/�iν;m.z/ d�.ν; m/

whenever jzj 2 ŒR=2; 2R�, where ŸR.ν; m/ D O..R C jνj C jmj/�A/ unless
p
ν2 Cm2

� R, in which case ŸR.ν; m/ Î .logR/=R.

Let ŸR.2ν; m/ D Ÿ.2ν; m/ be the Mellin transform of 4�2v.jzj=R/e.2Re.z//. Write

Ÿ.ν; m/ D 8�2Riν
Z 1
0

Z 2�

0

v.x/e.f .x; �I ν; m//
d� dx
x

with
f .x; �/ D f .x; �I ν; m/ D 2Rx cos� C .ν log x Cm�/=2�:

We have
f 0.x; �/ D .2R cos� C ν=2�x;�2Rx sin� Cm=2�/; (12.1)

and hence there is a unique stationary point .x0; �0/ given by

x0 D

p
ν2 Cm2

4�R
; cos�0 D �

ν
p
ν2 Cm2

; sin�0 D
m

p
ν2 Cm2

:

12.2.1. Applying Hörmander’s partial integration. First, we prove Ÿ.ν;m/DO..RC jνj
C jmj/�A/ for any A > 1 unless x0 2 Œ1=4; 4�, say. The arguments below are similar to
those in [56, §6.1]. Our idea is to modify Hörmander’s elaborate partial integration. To
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this end, we introduce

g.x; �/ D x.@xf .x; �//
2
C .1=x/.@xf .x; �//

2

D

�
2R
p
x �

p
ν2 Cm2

2�
p
x

�2
C
2R

�
.
p
ν2 Cm2 C ν cos� �m sin�/: (12.2)

It is clear that

g.x; �/ Ï

´
R2x if x > 4x0=3;

.ν2 Cm2/=x if x 6 3x0=4:
(12.3)

Define the differential operator

D D
x@xf .x; �/

g.x; �/

@

@x
C
@�f .x; �/

xg.x; �/

@

@�

so that D.e.f .x; �/// D 2�i � e.f .x; �//; its adjoint operator is given by

D� D �
1

2�i

�
@

@x

x@xf .x; �/

g.x; �/
C

@

@�

@�f .x; �/

xg.x; �/

�
;

and

Ÿ.ν; m/ D
8�2Riν

.2�i/n

Z 1
0

Z 2�

0

D�n.v.x/=x/e.f .x; �// d� dx:

For integer n > 0, D�n.v.x/=x/ is a linear combination of all the terms occurring in the
expansions of

@ix@
j
�

®
.x@xf .x; �//

i .@�f .x; �/=x/
jg.x; �/n.v.x/=x/

¯
=g.x; �/2n; i C j D n:

Moreover, we have

x@xf .x; �/ Î Rx C jνj; @
jC1
� .x@xf .x; �// Î Rx; @x@

j
�.x@xf .x; �// Î R;

@�f .x; �/=xÎRCjmj=x; @iC1x .@�f .x; �/=x/Î jmj=x
iC2; @

jC1
� .@�f .x; �/=x/ÎR;

x2@xg.x; �/ÎR
2x2Cν2Cm2; xiC3@iC2x g.x; �/Îν2Cm2; @

jC1
� g.x; �/Î

p
ν2Cm2;

@2x.x@xf .x; �// D 0; @x@�.@�f .x; �/=x/ D 0; @x@�g.x; �/ D 0;

for i; j > 0. Now assume that x 2 Œ1=3; 3� and x0 … Œ1=4; 4�. Then (12.3) yields

g.x; �/ Ï R2 C ν2 Cm2:

Let i1; i2 6 i and j1; j2 6 j . From the estimates above, it is straightforward to prove that

@i1x @
j1
�

®
.x@xf .x; �//

i .@�f .x; �/=x/
j
¯

Î .RC jνj/i .RC jmj/j ;

and
@
i2
x @

j2
� g.x; �/

n

g.x; �/2n
Î

X
k1C2k26i2

X
l6j2

.R2 C ν2 Cm2/k1.ν2 Cm2/k2Cl=2

g.x; �/nCk1Ck2Cl
:
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Combining these, we conclude that

Ÿ.ν; m/ Î
X

k1C2k2Cl6n

Z 3

1=3

Z 2�

0

.RC jνj C jmj/nC2.k1Ck2/Cl

g.x; �/nCk1Ck2Cl
d� dx

Î
X
l6n

1

.RC jνj C jmj/nCl

Î
1

.RC jνj C jmj/n
;

as desired.

12.2.2. Applying Olver’s uniform asymptotic formula. Next, we need to prove the bound
Ÿ.ν; m/ Î .logR/=R when x0 2 Œ1=4; 4�. This may be easily deduced from the same
bound for the unweighted integrals as follows.

Lemma 12.5. Suppose that x0 2 Œ1=4; 4�. For b > a > 0, define

I.a; b/ D

Z b

a

Z 2�

0

e.2Rx cos�/eim�xiν�1 d� dx:

Then for any b > a > 1=8, we have I.a; b/ Î .logR/=R, where the implied constant is
absolute.

Firstly, we write

I.a; b/ D

Z b

a

Z 2�

0

e.f .x; �//
d� dx
x

;

and apply Hörmander’s elaborate partial integration once, obtaining

1

2�i

Z 2�

0

�
@xf .b; �/

g.b; �/
e.f .b; �// �

@xf .a; �/

g.a; �/
e.f .a; �//

�
d�

�
1

2�i

Z b

a

Z 2�

0

�
@

@x

�
@xf .x; �/

g.x; �/

�
C

1

x2
@

@�

�
@�f .x; �/

g.x; �/

��
e.f .x; �// dx d�:

For a > 2x0 (> 1=2), one uses (12.1), (12.2), and the first lower bound in (12.3) to bound
this by 1=aR Î 1=R. The case when b 6 x0=2 is similar: we use the second lower bound
in (12.3).

The problem is thus reduced to the case when 2x0 > b > a > x0=2. Assume m > 0

for simplicity. We invoke Bessel’s integral representation for Jm.z/ (see [65, 2.2 (1)]):

Jm.z/ D
1

2�im

Z 2�

0

eiz cos�Cim� d�;

and hence

I.a; b/ D 2�im
Z b

a

Jm.4�Rx/x
iν�1 dx: (12.4)
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According to [50, §7.13.1],

Jm.x/ D

�
2

�x

�1=2
cos
�
x �

�m

2
�
�

4

�
CO

�
m2 C 1

x3=2

�
; x Ï m2 C 1:

It follows that if m 6 R1=4, then I.a; b/ D O.1=
p
Rjνj/ D O.1=R/ by Lemma 7.2.

For m > R1=4, we employ Olver’s uniform asymptotic formula, in particular,
Lemma B.1 in Appendix B.

Recall that x0 D
p
ν2 Cm2=4�R. For brevity, set c D 4�R=m, x00 D m=2�R, and

xC0 D .mCm
1=3/=4�R.

When R1=4 < m 6 �Rx0, so that 2 6 cx Î m3 for all x 2 Œx0=2; 2x0�, by
Lemma B.1 (4), the integral in (12.4) turns into

I.a; b/ D
X
˙

Z b

a

e.f˙.x/=2�/w˙.x/ dx CO.1=R/

with

f˙.x/ D ˙m.cx/C ν log x;

w˙.x/ D 2
p
2�im

W˙.m.cx//

m1=2..cx/2 � 1/1=4x
;

in which .x/ D
p
x2 � 1 � arc sec x. We have

 0.x/ D

p
x2 � 1

x
;  00.x/ D

1

x2
p
x2 � 1

:

Therefore

f 0˙.x/ D
1

x
.˙m

p
.cx/2 � 1C ν/; f 00˙.x/ D

1

x2

�
˙

mp
.cx/2 � 1

� ν

�
:

Moreover,

w˙.x/; w0˙.x/ Î
1
p
R
I

note that .x/D xCO.1/ for x > 2 (see (B.6)). If˙ν> 0, then jf 0
˙
.x/jÏmC jνjÏR,

and the integral is O.1=R3=2/ by partial integration (the first derivative test). If ˙ν < 0,
then jf 00

˙
.x/j Ï mC jνj Ï R, and the integral is O.1=R/ by the second derivative test in

Lemma 7.2.
Suppose now x0=2 < x00 so that necessarily m � R. When max ¹x0=2; xC0 º 6 a <

b6 x00, we apply Lemma B.1 (3) and then divide the integral in (12.4) by a dyadic partition
with respect to cx � 1; the error term is O.1=m/ D O.1=R/, and the resulting integrals
can be treated in a manner similar to the above. We just need to notice thatm=

p
.cx/2 � 1

would dominate ν in f 00
˙
.x/ when cx � 1 is small, in which case only Lemma 7.2 is

applied. However, by doing the dyadic partition, we might lose a logR.
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Finally, assume that x0=2 < xC0 , and consider the case when x0=2 6 a < b 6 xC0 . We
use Lemma B.1 (1, 2) to bound the integral I.a; b/ as in (12.4) by

Î
1

m1=3

Z x
C

0

1=c

dx C
1

m1=3

Z 1=c

1=2c

exp
�
�
1
3
m.2 � 2cx/3=2

�
dx

Î
1

m1=3

Z 1=m2=3

0

dy C
1

m1=3

Z 1

0

exp
�
�
1
3
my3=2

�
dy

Î
1

m
:

Remark 12.6. The logR in Lemma 12.4 or 12.5 could be removed on applying the sta-
tionary phase method ([19, Lemma 5.5.6] for example) instead of the second derivative
test, as revealed by the formula

jI.0;1/j D
2�

p
m2 C ν2

for m ¤ 0; this may be seen from

I.0;1/ D

Z 1
0

Z 2�

0

e.2Rx cos�/eim�xiν�1 d� dx D
�i jmj�

�
1
2
.jmj C iν/

�
.2�R/iν�

�
1
2
.jmj � iν/C 1

� ;
which is a consequence of Weber’s integral formula in [65, 13.24 (1)].

13. Analysis of the Hankel transforms, II

In this final analytic section, our primary object is to use the Mellin technique and the
stationary phase method to analyze the ˆ-integrals in §11.4. We remind the reader that
the expressions of these ˆ-integrals depend only mildly on M and �.

Definition 13.1. Let U Ï 1 and .�; n/ 2 ya. Define

ya.U / D ¹.ν; m/ 2 ya W
p
ν2 Cm2 Î U º;

(13.1)
ya
0
.U / D ¹.ν; m/ 2 ya W

p
ν2 Cm2 � U º;

ya�;n.U / D ¹.ν; m/ 2 ya W
p
.ν � �/2 C .m � n/2 Î U º: (13.2)

For convenience, we shall not distinguish ŸR.�; m/ and ŸU .�; m/ when R � U ; see
Lemmas 12.2 and 12.4.

13.1. The real case

Lemma 13.2. Fix a constant � > 1 with log� small. Let j�j Ï T 2. Let jxj �� X . Let
ˆ0.x/, ˆ�.x/ and ˆC.x/ be given as in Corollaries 11.2 and 11.10. For ¢ D 0;�;C,
we have

ˆ¢.x/ D
T ε

p
A¢

Z Z
ya.U ¢ /

œ¢.ν; m/�iν;m.x/ d�.ν; m/CO.T �A/ (13.3)
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for
X Î T ε=j�j if ¢ D 0;

T ε=j�j Î X Î
p
j�j=M 3�ε if ¢ D �;

X ��
p
j�j Ï M 1�εT if ¢ D C;

(13.4)

with

U ¢ D

8̂̂<̂
:̂
T ε ;

jX�j1=3;

max ¹T 2=X; T εº;

A¢ D

8̂̂<̂
:̂
1; if ¢ D 0;

j�j if ¢ D �;

max ¹T 2�ε ; Xº; if ¢ D C;

(13.5)

and œ¢.ν; m/ Î 1 for all ¢ .

Firstly, note that, according to Corollaries 11.2 and 11.10, ˆ¢.x/ vanishes unless X
satisfies (13.4) in various cases.

For ˆ0.x/ and ˆC.x/ D ˆC0 .x/, it is easy to establish (13.3) by Lemma 12.1, along
with (11.6) and (11.28). This settles the case ¢ D 0 and partially the case ¢ D C for
X Ï T 2�ε .

Next, we consider the integralˆC1 .x/ as defined in (11.27) forM 1�εT Î jxjÎ T 2�ε .
Since jx tanh2 r j �� T 2=4�2X for jr j �� T=2�X , up to a negligible error, we can
rewrite ˆC1 .x/ using Lemma 12.2 as follows:Z Z

ya
0
.T 2=X/

ŸT 2=X .ν; m/�iν;m.x/

Z
e.T r=�/�iν;m.tanh2 r/V C.r/ dr d�.ν; m/

with ŸT 2=X .ν; m/ D O.
p
X=T /. Write the inner integral as an exponential integral with

phase fC.r/ D .T r C ν log jtanh r j/=� . Note that f 00C.r/ D ν.tanh2 r � coth2 r//=�
is of size jνj=r2 � X . By the second derivative test (Lemma 7.2), the r-integral is
O..logT /=

p
X/, and ŸT 2=X .ν;m/=

p
X DO.1=T /, leading to

p
AC D T forX Î T 2�ε

as claimed.
Finally, let ˆ�.x/ be as defined in (11.30). Note that jr j �� Y 1=3=j�j1=2 there

amounts to jr j �� X1=3=j�j1=6 for X D Y=j�j, and hence jx coth2 r j �� jX�j1=3. By
Lemma 12.2, up to a negligible error, the integral ˆ�.x/ can be rewritten asZ Z

ya
0
.jX�j1=3/

ŸjX�j1=3.ν; m/�iν;m.x/

Z
e.T r=�/�iν;m.coth2 r/V �.r/ dr d�.ν; m/:

with ŸjX�j1=3.ν; m/ D O.1=jX�j1=6/. Now the phase function of the inner integral is
f�.r/D .T r C ν log jcothr j/=� . Since f 00� .r/ (D�f 00C.r/) is of size jνj=r2� j�2=X j1=3,
by the second derivative test the r-integral isO.X1=6.logT /=j�j1=3/, and ŸjX�j1=3.ν;m/ �
X1=6=j�j1=3 D O.1=

p
j�j/, as desired.

Remark 13.3. In the case ¢ D �, f�.r/ has a stationary point at jνj=T � jX�j1=3=T ,
while V �.r/ is supported on jr j � X1=3=j�j1=6, so a consistency check shows that
j�j � T 2. However, this would have been implied at an early stage when analyzing the
Bessel integral H.�x2/ (see Remark 8.3).
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13.2. The complex case

Lemma 13.4. Fix a constant � > 1 with log� small. Let j�j Ï T 2. Let jzj �� X . Let
ˆ0.z/, ˆ�� .z/, ˆ

C
� .z/, and ˆC0 .z/ be as in Corollaries 11.2 and 11.11. Set

ˆC.z/ D
X

T ε=T<�<1=
p
2�

���T=2�j�j
1=2

ˆC� .z/Cˆ
C
0 .z/; ˆ�.z/ D

X
�<1=

p
2�

���X1=3=j�j1=6

ˆ�� .z/:

For ¢ D 0;�;C, we have

ˆ¢.z/ D
T ε

A¢

Z Z
ya.U ¢ /

œ¢.ν; m/�iν;m.z/ d�.ν; m/CO.T �A/; (13.6)

for
X Î T ε=j�j if ¢ D 0;

T ε=j�j Î X Î
p
j�j if ¢ D �;

X �
p
j�j if ¢ D C;

(13.7)

with

U ¢ D

8̂̂<̂
:̂
T ε ;

jX�j1=3;

max ¹T 2=X; T εº;

A¢ D

8̂̂<̂
:̂
1; if ¢ D 0;

j�j; if ¢ D �;

max ¹T 2�ε ; Xº; if ¢ D C;

(13.8)

and œ¢.ν; m/ Î 1 for all ¢ .

Lemma 13.5. Fix a constant � > 1 with log� small. Let j�j �� T 2=2�2 and X ��
T=4� . For jzj �� X , let ˆ[.z/ be as in Corollary 11.11. We have

ˆ[.z/ D
X

T ε=K[<�<��1

ˆ[�.z/Cˆ
[
0.z/CO.T

�A/

with K[ D min ¹.T=M/1=2; T 1=4º,

ˆ[�.z/ D
T "

A[�

Z Z
ya0;bT c.U

[
�/[ya0;d�T e.U

[
�/

œ[�.ν; m/�iν;m.z/ d�.ν; m/; (13.9)

where � D ��k=2 or 0,
U [� D T�

2; A[� D T
2�; (13.10)

U [0 D

8̂̂<̂
:̂
T 1=2Cε ;

T 1=2Cε ;

MT ε ;

A[0 D

8̂̂<̂
:̂
T 5=3; if T ε 6 M 6 T 1=3;

M 1=2T 3=2; if T 1=3 < M 6 T 1=2;

M 1=2T 3=2; if T 1=2 < M 6 T 1�ε ;

(13.11)

and œ[�.ν; m/; œ
[
0.ν; m/ Î 1.
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Remark 13.6. It is important that r and ! play symmetric roles in the arguments below.
Note that the restriction jr j 6 M ε=M does not apply to the !-variable. Nevertheless, we
could letM D T ε so that not much symmetry is lost. This symmetry seems unique for the
first moment of GL3 �GL2 or the cubic moment of GL2—it does not occur, for example,
in the case of the second moment of GL2.

For ˆ0.z/ and ˆC0 .z/, it is easy to establish (13.6) by Lemma 12.3, along with (11.7)
and (11.37). This settles the case ¢ D 0 and partially the case ¢ D C for X Ï T 2�ε .

In view of (11.18),

�\.r; !/ D
sinh2 r C sin2 !
cosh2 r � sin2 !

D
cosh2 r � cos2 !
sinh2 r C cos2 !

D
cosh 2r � cos 2!
cosh 2r C cos 2!

:

From (11.33)–(11.35) and the conditions for the �-sums in (11.31), we deduce that

x�\.r; !/ ��

8̂̂<̂
:̂
jX�j1=3�2 � T 2=X if ¢ D C;

X.1 � �2/=�2 � jX�j1=3 if ¢ D �;

X �� T=4� if ¢ D [:

Applying Lemma 12.4 to the exponential factor e.�2 Re.z trh\.r; !/// in the integral
(11.32), we have

ˆ˙� .xe
i�/ D

Z Z
ya
0
.U˙/

ŸU˙.2ν; m/I
˙
� .2ν; m/�iν;m.xe

i�/ d�.ν; m/CO.T �A/;

(13.12)

ˆ[.xei�/ D

Z Z
ya
0
.T /

ŸT .2ν; m/I
[.2ν; m/�iν;m.xe

i�/ d�.ν; m/CO.T �A/; (13.13)

where ŸU˙.ν; m/ D O..logT /=U˙/, ŸT .ν; m/ D O..logT /=T /, and

I˙� .ν; m/ D

Z Z
e.f .r; !I ν; m/=2�/g.Mr/V ˙� .r; !/ dr d!; (13.14)

I [.ν; m/ D

Z Z
e.f .r; !I ν; m/=2�/g.Mr/V [.r; !/ dr d!; (13.15)

f .r; !I ν; m/ D 4T r C ν log �\.r; !/Cm� \.r; !/: (13.16)

Analysis of f .r; !I ν; m/. By (11.21) and (11.22), we have

@f =@r D 4.T C νA1 �mB1/; @f =@! D 4.mA1 C νB1/; (13.17)

with
A1 D

sinh 2r cos 2!
sinh2 2r C sin2 2!

; B1 D
cosh 2r sin 2!

sinh2 2r C sin2 2!
: (13.18)

Since
sinh2 2r cos2 2! C cosh2 2r sin2 2! D sinh2 2r C sin2 2!;
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the stationary point .r0; !0/ is given by the equations

sinh 2r0 cos 2!0 D ν=T; cosh 2r0 sin 2!0 D �m=T: (13.19)

Also note that
A21 C B

2
1 D

1

sinh2 2r C sin2 2!
: (13.20)

It follows from (13.17) that

.@f =@r/2 C .@f =@!/2 D 16
�
T �

q
.ν2 Cm2/.A21 C B

2
1 /
�2

C 32T
�q
.ν2 Cm2/.A21 C B

2
1 /C νA1 �mB1

�
:

From this, it is easy to prove the following lemma.

Lemma 13.7. We have

jf 0.r; !I ν; m/j2 Ï T 2 C
ν2 Cm2

sinh2 2r C sin2 2!
(13.21)

unless

jsinh 2r cos 2! � T � νj; jcosh 2r sin 2! � T Cmj Î�

p
ν2 Cm2: (13.22)

Note that the conditions in (13.22) imply

ν2 Cm2

sinh2 2r C sin2 2!
�� T

2; (13.23)

and they describe a small neighborhood of .r0; !0/.
By (11.23) and (11.24), we have

f 00 D �8

�
νA2 �mB2 mA2 C νB2
mA2 C νB2 �νA2 CmB2

�
(13.24)

with

A2D
cosh 2r cos 2! .sinh2 2r � sin2 2!/

.sinh2 2r C sin2 2!/2
; B2D

sinh 2r sin 2! .cosh2 2r C cos2 2!/
.sinh2 2r C sin2 2!/2

:

(13.25)
It is clear that for jr j < 1 we have

A2; B2 Î

p
sinh2 2r C cos2 2!

sinh2 2r C sin2 2!
: (13.26)

Some computations show that

f 00.r0; !0I ν; m/ D �
8T

sinh2 2r0 C sin2 2!0

�
sinh 2r0 cosh 2r0 sin 2!0 cos 2!0
sin 2!0 cos 2!0 � sinh 2r0 cosh 2r0

�
:

In light of this, we have the following lemma.
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Lemma 13.8. For any .r; !/ satisfying (13.22), we have

νA2 �mB2 �
T sinh 2r cosh 2r

sinh2 2r C sin2 2!
Î�

p
ν2 Cm2

p
sinh2 2r C cos2 2!

sinh2 2r C sin2 2!
; (13.27)

mA2 C νB2 �
T sin 2! cos 2!

sinh2 2r C sin2 2!
Î�

p
ν2 Cm2

p
sinh2 2r C cos2 2!

sinh2 2r C sin2 2!
: (13.28)

Proof. (13.27) is a consequence of (13.22) and (13.26), since its left hand side may be
written as

.ν � sinh 2r cos 2! � T /A2 � .mC cosh 2r sin 2! � T /B2;

and similarly for (13.28).

Moreover, by Lemma 11.7,

@iCjf .r; !I ν; m/

@r i@!j
Îi;j

p
ν2 Cm2

.sinh2 2r C sin2 2!/.iCj /=2
(13.29)

for i C j > 2.

The case ¢ D ˙. For Lemma 13.4 it remains to prove the bounds

IC� .ν; m/ Î .log2 T /=X; I�� .ν; m/ Î X1=3.log2 T /=j�j2=3:

Recall from (11.33) and (11.34) that V ¢� .r; !/ is supported onp
r2 C sin2 ! �� � or

p
r2 C cos2 ! �� � (13.30)

according as ¢ D C or �, and from (11.36) we have

@ir@
j
!V

¢
� .r; !/ Îi;j ..logT /=�/iCj : (13.31)

In view of Lemma 13.7, (13.23), and (13.30), together with the identity

sinh2 2r C sin2 2! D 4.sinh2 r C sin2 !/.sinh2 r C cos2 !/;

one would expect the integral I ¢� .ν; m/ to be negligibly small unless

.1 � �2/�2 ��
ν2 Cm2

4T 2
: (13.32)

To see this, we apply Lemma 7.4 with Q D ˚ D � D �, P D min ¹�; 1=M º, Z D
p
ν2 Cm2, and R D T C

p
ν2 Cm2=�, which are determined by (13.21), (13.29), and

(13.31). For ¢ D C, the condition � > T ε=T is required here. For ¢ D �, it is slightly
easier because R �

p
ν2 Cm2=� in view of

p
ν2 Cm2=� �

p
j�j Ï T .

Next, some remarks on (13.32) are in order. For ¢ D C, it is pleasant to check that
(13.32) is consistent with � �� T=2�j�j1=2,

p
ν2 Cm2 � T 2=X , and X �

p
j�j. For

¢ D �, since � �� X1=3=j�j1=6 and
p
ν2 Cm2 � jX�j1=3, (13.32) would imply that
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j�j � T 2. We remark that the condition j�j � T 2 for ¢ D � also arose in the real case
(see Remark 13.3).

Consider rectangular regions of the form

j˙2r.1 � 2�2/ � T � νj; jsin 2! � T Cmj Î�

p
ν2 Cm2: (13.33)

Given (13.30) (and jr j 6M ε=M ), the regions defined by (13.22) and (13.33) contain one
another if we choose the implied constants suitably. By Lemma 7.4, we infer that only a
negligibly small error is lost if the integral is restricted to the region (13.33). Next, Lemma
13.8, along with (13.30) and (13.32), implies that, when log�>0 is a small constant (now
we use Notation 11.9), jνA2 �mB2j Ï T=� if jr j Ï jsin 2!j and jmA2 C νB2j Ï T=� if
jsin 2!j Ï jr j. Now we exploit the second derivative test as in Lemma 7.6 to deduce

I˙� .ν; m/ Î �.log2 T /=T:

Finally, since

�=T Î

´
1=j�j1=2 Î 1=X if ¢ D C;

X1=3=T j�j1=6 Î X1=3=j�j2=3 if ¢ D �;

we arrive at the desired estimates. Recall here that X �
p
j�j if ¢ D C and T �

p
j�j

if ¢ D �.

The case ¢ D [. SetK D min ¹.T=M/1=2; T 1=3º. We introduce a smooth partition to the
integral I [.ν; m/ in (13.15) according to the value of

p
r2 C cos2 2!,

I [.ν; m/ D
X

T ε=K<�<��1

I [�.ν; m/C I
[
0.ν; m/

with
I [�.ν; m/ D

Z Z
e.f .r; !I ν; m/=2�/g.Mr/V [� .r; !/ dr d!;

where � D ��k=2 or 0, V [� .r; !/ or V [0 .r; !/ is supported onp
r2 C cos2 2! �� �;

p
r2 C cos2 2! Î T ε=K;

respectively, and

@ir@
j
!V

[
� .r; !/ Îi;j ..logT /=�/iCj ; @ir@

j
!V

[
0 .r; !/ Îi;j .K=T

ε/iCj :

Consequently, we have a partition of ˆ[.xei�/ (see (13.13)) in the same fashion:

ˆ[.ν; m/ D
X

T "=K<�<��1

ˆ[�.ν; m/Cˆ
[
0.ν; m/; (13.34)

with

ˆ[�.xe
i�/ D

Z Z
ya
0
.T /

ŸT .2ν; m/I
[
�.2ν; m/�iν;m.xe

i�/ d�.ν; m/: (13.35)
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An obvious distinction between the cases ¢ D ˙ and [ is the scale of sinh2 2r C
sin2 2! which arose ubiquitously in the denominators of the derivatives of f .r; !I ν; m/.
Its scale grows from �2 to 1when ¢ changes from˙ to [. As a consequence, we lose 1=�2

in the stationary-phase bound for I [�.ν; m/ (it could be even worse than the trivial bound
if � were very close to 0). Fortunately, however, we shall be able to recover the loss by
shrinking the integral domain ya0.T / to the union of ya0;bT c.U [� / and ya0;d�T e.U [� /.

Now we return to the analysis of the integral I [�.ν; m/.
Similar to the case ¢ D ˙, we deduce from the second derivative test (Lemma 7.6)

that
I [�.ν; m/ Î .log2 T /=T�:

On the other hand, we have the trivial bound

I [0.ν; m/ Î T ε=max¹.MT /1=2; T 2=3º:

Recall that
p
ν2 Cm2 � T . Note that sinh 2r; cos 2! Î

p
r2 C cos2 2! Î � and

sinh2 2r C sin2 2! D 1CO.�2/. It follows from (13.18) and (13.20) that A1; B1 ˙ 1 D
O.�2/. Consequently, in view of (13.17) and (13.18),

@f =@r D 4.T �m/CO.T�2/; @f =@! D ˙4νCO.T�2/:

Moreover, (13.29) now reads

@iCjf =@r i@!j Îi;j T

for i C j > 2. Set U D max ¹T�2; T 1=2Cεº D max ¹T�2; T 1=2Cε ; MT εº. Then
j@f =@!j Ï U for jνj Ï U , and j@f =@r j Ï U for jT �mj Ï U . On applying Lemma 7.1
to the !- or r-integral, with P D � or min ¹�; 1=M º, Q D 1, Z D T , and R D U ,
we find that I [�.ν; m/ is negligibly small for such ν or m (it is important here that
T=U 2; M=U 6 1=T ε ). Similarly, if we put U0 D max ¹T 1=2Cε ; MT εº, then I [0.ν; m/
is negligibly small unless ν D O.U0/ and m D ˙T CO.U0/.

Lemma 13.5 follows if we truncate the �-sum in (13.34) at � D T ε=T 1=4 in the case
M < T 1=2 and absorb the sum of ˆ[�.ν; m/ over smaller �’s into ˆ[0.ν; m/.

Appendix B. Olver’s uniform asymptotic formula for Bessel functions

In this appendix, we recollect Olver’s uniform asymptotic formula for Bessel functions of
large order and prove some of its implications that will be useful in §12.2.2 for our study
of certain Mellin integrals over C. For our purpose, we only consider here Jm.mx/ with
large integer order m and positive real variable x.

According to the works of Olver [48, 49], we have

Jm.mx/ D

�
4�

1 � x2

�1=4²Ai.m2=3�/
m1=3

kX
sD0

As.�/

m2s
C

Ai0.m2=3�/
m5=3

k�1X
sD0

Bs.�/

m2s

CO

� ˇ̌
exp

�
�
2
3
m�3=2

�ˇ̌
m2kC1.1Cm1=6j�j1=4/

�³
; (B.1)
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where Ai.y/ is the Airy function,

2

3
�3=2 D log

1C
p
1 � x2

x
�

p

1 � x2; 0 < x 6 1;

2

3
.��/3=2 D

p

x2 � 1 � arcsec x; x > 1;

(B.2)

and

As.�/ D

2sX
jD0

bj �
�3j=2U2s�j .3/; �1=2Bs.�/ D �

2sC1X
jD0

aj �
�3j=2U2s�jC1.3/; (B.3)

in which a0 D b0 D 1,

as D
1

32s.2s/Š

�
�
3s C 1

2

�
�
�
1
2

� ; bs D �
6s C 1

6s � 1
as;

and Us.3/ are polynomials in 3 D 1=
p
1 � x2, with the first three found to be

U0 D 1; U1 D .33 � 53
3/=24; U2 D .813

2
� 46234 C 38536/=1152I (B.4)

see [48, §4] and [49, Theorem B] for the expansion and the error term as in (B.1), and
[48, §6] for the coefficients As.�/ and Bs.�/ as in (B.3). By [48, (4.13), (4.14)],

x D 1 �
�

21=3
C

3�2

10 � 22=3
CO.�3/; j�j Î 1; (B.5)

x D 2
3
.��/3=2 CO.1/; �� Ï 1: (B.6)

As for the Airy function, if we set  D 2
3
y3=2 for y > 0, then it is well-known (see

[1, (10.4.14)–(10.4.17)]) that

Ai.y/ D
p
y

p
3�
K1=3./; Ai.�y/ D

p
y

3

�
J1=3./C J�1=3./

�
;

Ai0.y/ D �
y
p
3�
K2=3./; Ai0.�y/ D

y

3

�
J2=3./ � J�2=3./

�
:

For jyj Î 1, we have Ai.y/ D O.1/ (see [1, (10.4.2)]). For y Ï 1, it follows from [65,
7.21 (1, 3), 7.23 (1), §7.3] that

Ai.y/ D O
�

exp.�/
y1=4

�
; Ai0.y/ DO.y1=4exp.�//; (B.7)

Ai.�y/ D
X
˙

exp.˙i/
y1=4

W˙./; Ai0.�y/ D O.y1=4/; (B.8)

with  iW .i/
˙
./ Îi 1.

Lemma B.1. Let m Ï 1 and x > 0. For x > 1, define .x/ D
p
x2 � 1 � arcsec x.

(1) For jx � 1j 6 1=m2=3, we have Jm.mx/ D O.1=m1=3/.

(2) For 1
2

6 x 6 1 � 1=m2=3, we have

Jm.mx/ D O

�
exp

�
�
1
3
m.2 � 2x/3=2

�
m1=2.1 � x/1=4

�
: (B.9)
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(3) For 1C 1=m2=3 6 x 6 2, we have

Jm.mx/ D
p
2
X
˙

exp.˙im.x//
m1=2.x2 � 1/1=4

W˙.m.x//CO

�
1

m7=6.x � 1/1=4

�
; (B.10)

in which  iW .i/
˙
./ Îi 1 for  Ï 1.

(4) For 26 xÎm13=3, the asymptotic formula (B.10) holds with an error termO.1=mx/.

Proof. First let k D 0 in (B.1). The estimate in (1) is clear. For 0 < x 6 1, it is easy to
prove (compare with (B.5))

log
1C
p
1 � x2

x
�

p

1 � x2 > 1
3
.2 � 2x/3=2:

Then (B.9) is a direct consequence of (B.1), (B.5), and (B.7).7 The asymptotic formula
(B.10) in (3) is obvious in view of (B.1), (B.5), and (B.8). As for (4), we let k D 1

in (B.1). For x > 2, it follows from (B.3), (B.4), and (B.6) that B0.�/ D O.1=�2/ and
A1.�/ D O.1=�3/. By (B.6) and (B.8), the two lower-order main terms and the error
term in (B.1) are O.1=.mx/3=2/, O.1=.mx/5=2/, and O.1=m19=6x1=2/, respectively; all
of these are O.1=mx/ provided x Î m13=3.

Part III. Proof of Theorem 1.1

14. Setup

We start by introducing the spectral mean of L-valuesX
f 2B

!f k
\.νf /L

�
1
2
; � ˝ f

�
C
c0

4�

Z 1
�1

!.t/k\.t/
ˇ̌
L
�
1
2
C i t; �

�ˇ̌2 dt;

in which k\.ν/ is the test function defined in §6. Recall that k\.ν/ > 0 for ν 2 a, and that
k\.ν/ Ï 1 if jν3 � T3j 6 M3 for all 3 j1. When f 2 B is exceptional in the sense that
νf; 3 is not real for some 3 j1, the weight k\.νf / would be negligibly small (although not
necessarily positive), for at this place 3 we have k\.νf; 3/ D o.e�T

2
3 =M

2
3 / and T3 > N.T /ε

by assumption. Thus, in view of (3.20) in Lemma 3.6, along with the non-negativity of the
L-values, Theorem 1.1 follows if we are able to prove that the spectral mean is bounded
by N\.M/N.T /5=4Cε .

Applying the approximate functional equations (5.9) and (5.12), the above spectral
mean may be written as

2
XX
n1;n2�O

A.n1;n2/

N.n21n2/1=2

²X
f 2B

!f k
\.νf /œf .n2/V

�
N.n21n2D

�3/I νf
�

C
c0

4�

Z 1
�1

!.t/k\.t/�it .n2/V
�
N.n21n2D

�3/I t
�

dt
³
:

7Note that (B.9) would also follow from Nicholson’s asymptotic formula in [37, §3.14.3].
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By (5.13) in Lemma 5.1 (1), we may truncate the sum over n1;n2 at N.n21n2/6 N.T /3Cε .
We then apply (5.14) in Lemma 5.1 (1), in which we chooseU D logN.T /. The error term
is again negligible, and we need to proveXX
N.n2

1
n2/6N.T /3Cε

A.n1;n2/

N.n21n2/1=2Cu

²X
f 2B

!f h.νf /œf .n2/

C
c0

4�

Z 1
�1

!.t/h.t/�it .n2/ dt
³

Î N\.M/N.T /5=4Cε :

uniformly in u 2 Œε � i log N.T /; ε C i log N.T /�. By the Hecke relation (4.8), the left-
hand side is equal toXXX

N.d3n2
1

n2/6N.T /3Cε

�.d/A.n1; 1/A.1;n2/

N.d3n21n2/1=2Cu

²X
f 2B

!f h.νf /œf .dn2/

C
c0

4�

Z 1
�1

!.t/h.t/�it .dn2/ dt
³
:

We now apply the Kuznetsov trace formula (3.17) of Proposition 3.5, with m1 D dn2
and m2 D O, obtaining a diagonal sum

c1H
X

N.n/6N.T /3=2Cε

A.n; 1/

N.n/1C2u
; (14.1)

and an off-diagonal sum

c2
XX

N.d3n2/6N.T /3Cε

X
c2 zCF

X
�2O�=O�2

X
2a�1=O�

N./6N.T /3Cε=N.ad3n2/

�.d/A.n; 1/A.1; a/

N.ad3n2/1=2Cu

�

X
c2c�1

KS.�; adD�1I 1=ˇd;D
�1I c; c/

N.cc/
H

�
�

ˇdc2

�
; (14.2)

in which a 2 zCF is determined by a � .cD/2d�1, and ˇd D ˇc;adD�1�D�1 D

Œ.cD/2.ad/�1�.

Lemma 14.1. For the test function h.ν/ defined as in (6.1)–(6.4) (see also (5.8/, .5.11)),
we have the following estimate for H (defined by (3.1/, .3.15)):

H Î N\.M/N.T /1Cε : (14.3)

Proof. In view of (3.1) and (3.15), the integral H splits into the product ofZ 1
�1

h3.ν/ tanh.�ν/ν dν

if 3 is real, and Z 1
�1

h3.ν/ν
2 dν
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if 3 is complex, which, in view of (6.5), are bounded byZ 1
0

e�.ν�T3/
2=M2

3 ν1Cε dνC T �A3 Î M3T
1Cε

3 ;

and Z 1
0

e�.ν�T3/
2=M2

3 ν2Cε dνC T �A3 Î M3T
2Cε

3 ;

respectively. Then (14.3) follows immediately.

It follows from Cauchy–Schwarz, (4.15), and (14.3) that the diagonal sum in (14.1) is
bounded by N\.M/N.T /1Cε , as expected.

For the off-diagonal sum, our aim is to execute Voronoï summation in the  -variable,
so we must unfold the � -sum from a sum over a�1=O�2 to a sum over a�1. For this, we
set q D cc and fold the c-sum into a q-sum over ideals. Thus (14.2) is rewritten as

2c2
XX

N.d3n2/6N.T /3Cε

X
c2 zCF

�.d/A.n; 1/

N.ad3n2/1=2Cu

�

X
q�c

1

N.q/

X
2a�1

N./6N.T /3Cε=N.ad3n2/

A.1; a/

N./1=2Cu
KS.; adD�1I 1=ˇd;D

�1
I cq; c/H

�


ˇdc2q

�
;

(14.4)

where cq D Œc
�1q�, and a, ˇd are defined after (14.2). In view of (2.1), it will be conveni-

ent to introduce V.b/ 2 aC for every non-zero ideal b with

V.b/3 D N.b/�3 ; �3 D logT3=log N.T /; (14.5)

so that
1=jˇdj3 � V.d/

N3
3 ; jcqj3 � V.q/

N3
3 ; (14.6)

for each 3 j1. The main actors are q and  , so we shall be concerned with the last two
summations in the second line of (14.4).

15. First reductions

Next, we need to do a smooth �-adic partition of unity in j j3 for each 3 j 1, where
� > 1 is a fixed constant with log� small. However, when F is neither rational nor
imaginary quadratic, an issue with the infinitude of units is that one has j j3 ! 0 when
 ranges in a�1 X ¹0º. This may be addressed by proving that if j j3V.d/N33 =V.q/

2N3
3

6 T 2N33 (so that j=ˇdc
2
qj3 Î T 2N33 by (14.6)) for any given 3 j1, then the contribution is

negligibly small; critical are the second estimates for Bessel integrals in Corollary 8.4 and
the assumption that T3 is large (T3 > N.T /ε ) for every 3 j1. To this end, we use Weil’s
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bound for Kloosterman sums (3.14) and the estimates for Bessel integrals in Corollary 8.4
to bound the contribution by

X
S¨S1

N\.M/N.T /1Cε

jT j2A
0

S1XS

XX
N.d3n2/6N.T /3Cε

X
c2 zCF

jA.n; 1/j

N.d3n2/1=2Cε

�

X
q�c

1

N.q/1=2�ε jV.d�1q2/j
1=2
S1XS

X
2F S1.T

2V.d�1q2//

N./ÎN.T /3Cε=N.d3n2/

jA.1; a/j

jN./jε j j1=2S
;

where F S1.V / � F1 is defined in (4.17). Because of the occurrence of jT j2A
0

S1XS
, this

sum is negligibly small on choosing A0 to be large. Note that if (4.18) in Lemma 4.10 is
applied to bound the  -sum by

N.T /9=4Cε

N.d3n2/3=4
X

2F S1.T
2V.d�1q2//

jA.1; a/j

jN./j3=4Cε j j
1=2
S

Î
N.T /11=4Cε N.q/1=2�ε

jT jSN.d/5=2N.n/3=2jV.d�1q2/j1=2S
;

then jV.d�1q2/j1=2S1XS and jV.d�1q2/j1=2S are combined into N.d�1q2/1=2, and the q-
sum is convergent.

We may therefore impose the condition j j3V.d/N33 =V.q/
2N3
3 > T 2N33 for all 3 j 1.

Note that necessarily j j3 > T .1�ε/N3
3 for all 3 j1, since N.d/ 6 N.T /1Cε . By a smooth

partition of unity on the  -sum, the problem can be reduced to proving the following
proposition.

Proposition 15.1. Let d be a square-free integral ideal with N.d/ 6 N.T /1Cε . Let
a; c 2 zCF satisfy ad � .cD/2. Set ˇd D Œ.cD/2.ad/�1�. Let R 2 aC be such that

N.R/ 6 N.T /3Cε=N.d/3: (15.1)

Fix � > 1 with log� sufficiently small. For each 3 j1, let f3.r/ be a smooth function
supported on ŒR3; �R3� satisfying f .i/3 .r/ Îi .log N.T /=R3/i for all i > 0. Suppose that
H.x/ is the Bessel transform of h.ν/ given in (3.15), with h.ν/ defined as in (6.1)–(6.3).
Define

Sd.T;R/ D
X
q�c

1

N.q/

X
2a�1

A.1; a/KS.; adD�1I 1=ˇd;D
�1
I cq; c/f

�
;

1

ˇdc2q

�
;

(15.2)

where cq D Œc
�1q�, the q-sum is finite, subject to the conditions

V.d�1q2/3 Î R3=T
2
3 ; 3 j1; (15.3)
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with V.d�1q2/ 2 aC defined as in (14.5), and f .x; 1=ˇdc
2
q/ is the product of

f3

�
x3;

1

ˇdc2q

�
D f3.jx3j/H3

�
x3

ˇdc2q

�
; 3 j1: (15.4)

Then

Sd.T;R/ Îε;�;F N\.M/N.T /1=2Cε.N.R/N.d//3=4 C
N\.M/N.R/N.d/

N.T /1=3�ε
: (15.5)

To deduce Theorem 1.1 from Proposition 15.1, we use (15.5) to bound the sum in
(14.4) by the sum of

N\.M/N.T /1=2Cε
XX

N.d3n2/6N.T /3Cε

jA.n; 1/j

N.d/3=4N.n/

�
N.T /3Cε

N.d3n2/

�1=4
Î N\.M/N.T /5=4Cε

and

N\.M/N.T /ε

N.T /1=3
XX

N.d3n2/6N.T /3Cε

jA.n; 1/j

N.d/1=2N.n/

�
N.T /3Cε

N.d3n2/

�1=2
Î N\.M/N.T /7=6Cε :

16. Application of the Voronoï summation

By Definition 3.2, we open the Kloosterman sum as follows:

KS.; adD�1I 1=ˇd;D
�1
I cq; c/ D

X
x2.ad.cD/�1=ad.cD/�1q/�

 1

�
x

cq
C
x�1

ˇdcq

�
;

where x�1 2 ..ad/�1cD=.ad/�1cDq/� is as defined in Definition 3.1. On applying the
Voronoï summation formula in Proposition 4.8, up to the constant N.a/=N.D/3=2, the
 -sum in Sd.T;R/ is transformed intoX

b�q1�O

1

N.bq1/

X
2a.bq2

1
D3/�1X¹0º

A.a�1bq21D
3;bq�11 /Td. Iq;q1/ zf

�
;

1

ˇdc2q

�
;

(16.1)

where bD .d;q/�1q, the function zf .y;1=ˇdc
2
q/ is the Hankel transform of f .x;1=ˇdc

2
q/

(x; y 2 F �1) as in Definition 4.4, with

zf3.y3; 1=ˇdc
2
q/ D

Z
F �3

f3.x3; 1=ˇdc
2
q/J�3.x3y3/ dx3; (16.2)

and the exponential sum

Td. Iq;q1/ D
X

x2.ad.cD/�1=ad.cD/�1q/�

 1

�
x�1

ˇdcq

�
Klb.1;�cq=xIq1/: (16.3)
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To see b D .d; q/�1q, use x=cq 2 .aD�1dq�1=aD�1d/� to deduce R D ¹3 W

ord3.dq�1/ < 0º D ¹3 W p3j.d; q/�1qº and ord3..cq=x/aD�1/ D ord3.d�1q/ D
ord3..d;q/�1q/ for every 3 2 R.

We conclude that, up to a constant,

Sd.T;R/

D

XXX
q1jb;bjq;q�c

.b;dbq�1/D.1/

1

N.bq1q/

X
2a.bq2

1
D3/�1

A.a�1bq21D
3;bq�11 /Td. Iq;q1/ zf

�
;

1

ˇdc2q

�
;

(16.4)

where the q-sum is subject to the conditions in (15.3), and so are the q1- and b-sums.

17. Transformation of exponential sums

Next, we need to compute the exponential sum Td. Iq;q1/ as in (16.3).

17.1. The special case F D Q

For purely expository purposes, we first compute the exponential sum in the case when
F D Q. For this, Nunes [47] quoted a result of Blomer [5] for the corresponding char-
acter sum and then set the character � D 1. However, when � D 1, some of Blomer’s
manipulations become unnecessary, so it is easier to just compute in a direct manner.

More precisely, in the notation of [5,47], let aD cD c1DDD .1/, dD .ı/, ˇdD 1=ı,
q D .c/, b D .c1/ (D .c=.c; ı//), q1 D .c1=n1/ (n1 j c1), cq D c, cq1 D c1=n1, and
 D n21n2=c

3
1 . After suitable changes, the exponential sum in (16.3) turns intoX?

d .mod c/

e

�
d

c

�
S.d; ı1n2I c1=n1/; (17.1)

where ı1D ı=.c;ı/, and c or n2 could have signs. For simplicity, set f1D c1=n1. Opening
the Kloosterman sum, we obtainX?

d .mod c/

e

�
d

c

� X?

a .modf1/

e

�
ad

f1
C
ı1an2

f1

�
D

X?

a .modf1/

e

�
ı1an2

f1

� X?

d .mod c/

e

�
d.ac=f1 C 1/

c

�
:

The d -sum is a Ramanujan sum, and it may be evaluated with the aid of Möbius inversion.
We then arrive at X

c2jc

c2�.c=c2/
X?

a .modf1/
ac=f1��1 .mod c2/

e

�
ı1an2

f1

�
:

We necessarily have .c2; c=f1/ D 1, and hence c2 j f1. Moreover, we may assume that
c=c2 is square-free. By introducing the new variable b D .a C c=f1/=c2, the sum above
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is transformed into

e

�
�
ı1.c=f1/n2

f1

� X
c2jf1

.c2; c=f1/D1

c2�.c=c2/
X

b .modf1=c2/
.bc2�c=f1; f1/D1

e

�
ı1bn2

f1=c2

�
:

Finally, Möbius inversion turns the innermost sum intoX
f2jf1

�.f2/
X

b .modf1=c2/
bc2�c=f1 .modf2/

e

�
ı1bn2

f1=c2

�
:

As bc2 � c=f1.mod f2/, it is easy to see that if p j f2, then p − c2 and p k c (recall that
.c2; c=f1/ D 1 and c=c2 is square-free). Let Mf1 denote the square-free part of f1. Then
f2 j Mf1 and .f2; c2/ D 1; in particular, f2 divides f1=c2. Consequently, the sum above is
equal to X

f2j Mf1
.f2; c2/D1

.f1=c2f2/jn2

f1

c2f2
�.f2/e

�
ı1c2.c=f1/n2

f1=c2

�
;

in which c2c2 � 1 .modf2/. We conclude that the exponential sum in (17.1) is equal to

e

�
�
ı1.c=f1/n2

f1

� XX
c2jf1; f2j Mf1

.c2; c=f1/D.c2; f2/D1

c2f2n2Df1n
0
2

f1

f2
�.c=c2/�.f2/e

�
ı1c2.c=f1/n

0
2

f2

�
: (17.2)

17.2. The general case

By Lemma 4.7, the Kloosterman sum in (16.3) is

Klb.1;�cq=xIq1/ D '.q1/

Z
�.q1D/�1

yO�b

 b

�
y �

cq

xy

�
d�y:

Let yO� D
Q
3−1 O�3 . We may also transform the x-sum in (16.3) into an integral over

�ad.cD/�1
yO�. More precisely,

Td. Iq;q1/ D '.q/'.q1/Id. Iq;q1/; (17.3)

where

Id. Iq;q1/ D

Z
�ad.cD/�1

yO�

Z
�.q1D/�1

yO�b

 f

�
�

1

ˇdcqx

�
 b

�
y �

cq

xy

�
d�y d�x:

On changing y into �1=ˇdxy and then x into �1=ˇdx, we obtain

Id. Iq;q1/ D

Z
�c�1q1

yO�b

 b.ˇdcqy/

Z
�.cD/�1

yO�
 f

�
x

cq

�
 b

�
x

y

�
d�x d�y:
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It is clear that Id. Iq;q1/ may be factored into a product of local integrals I3. Iq3;q13/
(the d is suppressed from the subscript for brevity). For non-Archimedean 3, define d3 D
ord3.D/, r3 D ord3.c/, s3 D ord3.q/, and s13 D ord3.q1/. For p3 − b, the local integral is

I3. Iq3;O3/ D

Z
3.x/D�r3�d3

 3

�
x

cq

�
d�x: (17.4)

For p3 jb, the local integral is

I3. Iq3;q13/ D

Z
3.y/Ds13�r3

 3.ˇdcqy/

Z
3.x/D�r3�d3

 3

�
x

�
1

y
C

1

cq

��
d�x d�y:

(17.5)
The following lemma is standard.

Lemma 17.1. We have

.N.p3/ � 1/
Z
3.x/D�r�d3

 3.ax/ d�x D

8̂̂<̂
:̂

N.p3/ � 1 if 3.a/ > r;

�1 if 3.a/ D r � 1;

0 if otherwise.

For p3 − b, Lemma 17.1 implies that the integral in (17.4) is just �.q3/='.q3/.
For p3 jb, we first observe that

3.ˇdcq/ > r3 � 2s13 � d3;

for .ˇd/D .cD/2.ad/�1, .cq/D c�1q,  2 a.bq21D
3/�1, and bD .d;q/�1q. Hence the

integral in (17.5) is reduced to that in (17.4) if s13 D 0, and one may henceforth assume
s13 > 1.

Keep in mind that 3.cq/ D s3 � r3 and 3.y/ D s13 � r3. On applying Lemma 17.1 to
the x-integral in (17.5), we obtain

I3. Iq3;q13/ D
X
�D0;1

.�1/�N.p3/1��

N.p3/ � 1
I �3 . Iq3;q13/ (17.6)

with

I �3 . Iq3;q13/ D

Z
3.y/Ds13�r3
3.yCcq/>s3Cs13�r3��

 3.ˇdcqy/ d�y (� D 0; 1): (17.7)

First, consider the case when s3 > �. For s13 < s3, we have 3.y C cq/D 3.y/D s13 � r3 <

s3 C s13 � r3 � �, and hence I �3 . Iq3;q13/ D 0 as the integration is on an empty set. For
s13 D s3, we introduce the new variable w D y C cq so that the resulting w-integral is on
p2s3�r3��3 (since 3.w/ > 3.y/ by the condition s3 > �):

I �3 . Iq3;q3/ D
N.D3/1=2N.p3/s3�r3C1

N.p3/ � 1
�  3.�ˇdc

2
q/

Z
p
2s3�r3��
3

 3.ˇdcqw/ dw:
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Recall that  3 has conductor D�13 and p2s3�r3��3 has measure N.D3/�1=2N.p3/r3C��2s3 .
It follows that I �3 . Iq3;q3/ D 0 unless 3.ˇdcq/ > r3 � 2s3 � d3 C �, in which case

I �3 . Iq3;q3/ D  3.�ˇdc
2
q/

N.p3/�

'.q3/
:

Next, we consider the remaining case when s3 D s13 D � D 1. Then the second condition
in the integration domain in (17.7) reads 3.yC cq/> 1� r3, and it can be dropped because
it is implied by the first condition 3.y/ D 1 � r3, along with 3.cq/ D 1 � r3. Thus

I 13 . Ip3;p3/ D

Z
3.y/D1�r3

 3.ˇdcqy/ d�y:

By Lemma 17.1,

I 13 . Ip3;p3/ D
X
�D0;1

3.ˇdcq/>r3�1�d3��

.�1/�N.p3/1��

N.p3/ � 1
:

Lemma 17.2. We have the following formulae for I3. Iq3;q13/:

(1) I3. Iq3;O3/ D �.q3/='.q3/.

(2) For ord3.q/ > 1, we have I3. Iq3;q13/ D 0 if ord3.q/ > ord3.q1/, and

I3. Iq3;q3/ D  3.�ˇdc
2
q/

N.p3/
N.p3/ � 1

1

'.q3/

X
�D0;1

3.ˇdc
2
qD/>��3.q/

.�1/� :

(3) We have

I3. Ip3;p3/ D  3.�ˇdc
2
q/

N.p3/
.N.p3/ � 1/2

XX
06�6�61

3.ˇdc
2
qD/>����1

.�1/�C�

N.p3/�
 3.ˇdc

2
q/

�:

As a consequence of (17.3) and Lemma 17.2, it is straightforward to deduce the fol-
lowing formula for Td. Iq;q1/. The reader may compare (17.8) with (17.2).

Corollary 17.3. Let Mq1 denote the square-free part of q1. We have Td. I q; q1/ D 0

unless .q1;qq�11 / D .1/, in which case

Td. Iq;q1/

D  b.�ˇdc
2
q/�.qq�11 /N.q1/

XX
q2jq1; fj Mq1

.q2;qq�1
1
/D.q2;f/D.1/

2a.bq1q2fD3/�1

�.q1q
�1
2 /�.f/

N.f/
 f.ˇdc

2
q/;

(17.8)

where  b and  f are defined in Definition 4.5.
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18. Further reductions

Set r D .d; q/�1d. Note that 3.ˇdc
2
qD/ > 0 and hence  3.ˇdc

2
q/ D 1 if p3 − rb. It

follows that the  b.�ˇdc
2
q/ in (17.8) can be written as

 b.�ˇdc
2
q/ D  1.ˇdc

2
q/ r.ˇdc

2
q/; (18.1)

where we have used the fact that  is trivial on F .
Next, in view of (15.4), (16.2), and (11.1)–(11.3), we have

f3

�
x3;

1

ˇdc2q

�
D w3

�
x3

R3
;
R3

ˇdc2q

�
; zf3

�
y3;

1

ˇdc2q

�
D R3 zw3

�
R3y3;

R3

ˇdc2q

�
:

We combine the  1.ˇdc
2
qy/ that occurred in (18.1) with zf .y; 1=ˇdc

2
q/ to form

zf \
�
y;

1

ˇdc2q

�
D

1

N.R/
 1.ˇdc

2
q/
zf

�
y;

1

ˇdc2q

�
; (18.2)

so that, according to (11.4),

zf \3

�
y3;

1

ˇdc2q

�
D zw\3

�
R3y3;

R3

ˇdc2q

�
: (18.3)

In light of our analysis in §11, it is very natural to introduce ˆ.x/ such that

ˆ.ˇdc
2
qy/ D

p
N.y/N.R/

N\.M/N.T /1Cε

zf \
�
y;

1

ˇdc2q

�
: (18.4)

Set d0 D .d;q/, b D b1q1, and q1 D f1q2. By (17.8), (18.1), (18.2), and (18.4), we
can now reorganize the sum Sd.T;R/ in (16.4) as follows:

N\.M/N.T /1Cε
p

N.R/
X

dDd0r

1

N.d0/

XX
.b1;f1/D.1/

.b1f1;d/D.1/

�.d0b1/�.f1/

N.b1f1/2
X
fjf1

�.f/

N.f/
S

d;r
b1;f1;f

.T;R/

(18.5)
with

S
d;r
b1;f1;f

.T;R/

D

X
.q2;db1f/D.1/

qDd0b1f1q2�c

X
2a.b1ff2

1
q3
2

D3/�1

A.a�1b1.f1q2D/
3;b1/

N.q2/2
p

N./
 rf.ˇdc

2
q/ˆ.ˇdc

2
q/;

(18.6)

where the sums over b1, f1, and q2 must be subject to the conditions (see (15.3))

V.b1f1q2/3 Î
p
R3V.d/3=T3V.d0/3; 3 j1: (18.7)
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Let c2 2 zCF be such that d0b1f1 � c2 � c. Set cq2 D Œc
�1
2 q2� and b2 D .d0b1/

�1rf1c2D.
By (2.1) and (14.5), we have

jcq2 j3 � V.q2/
N3
3 ; 3 j1: (18.8)

Substituting  by =ˇdc
2
qcq2 , up to a harmless factor, we have

S
d;r
b1;f1;f

.T;R/ D
N.d0b1f1/p

N.d/

X
q2�c2

.q2;db1f/D.1/

X
b2�f1f�1

A.b2;b1/p
N.q2/

 rf.=cq2/ˆ.=cq2/:

(18.9)

By Corollary 11.5, (14.6), and (18.8), for each 3 j1 we have ˆ3.=cq2/ D O.T
�A
3 /

when j j1=N33 >
p
R3V.d/3=V.qq�12 /3. Arguing as in §15, we can impose the condition

 2 F Ø
1.
p
RV.d/=V .qq�12 // (see (4.17)) with a negligible error. Since we also have

N./Ï N.d0b1/=N.rf/Ï 1=N.dq/Ï 1=N.T /1=2Cε , due to (15.1) and (15.3), j j3ÏT �A3
for each  , so there is no issue with a �-adic partition in the  -sum as we had in §15.
Again, the assumption that T3 > N.T /ε for all 3 j1 is required here.

Definition 18.1. For V 2 aC and � > 1, define

F�1.V / D ¹x 2 F1 W jx3j 2 ŒV3;
p
�V3/ for all 3 2 S1º: (18.10)

Let ¢ 2 ¹0;�;C; [ºjS1j (¢3 D [ only if 3 is complex). As we have seen in §§11 and 13,
each local ˆ3 equals (the sum of) ˆ¢3 for ¢3 D 0;�;C; [ in various circumstances; with
abuse of notation,ˆ[Dˆ[� orˆ[0. The product of suchˆ¢3.x3/will be denoted byˆ¢.x/.

Lemma 18.2. Let notation be as above. Fix � > 1 as in §13. Let C; � 2 aC satisfy

1 Î N.C / Î

p
N.R/N.d/

N.T /N.d0b1f1/
;

N.d0b1/
N.rf/

Î N.� / Î

p
N.R/N.d/

N.d0b1f1/
; (18.11)

1 Î C3 Î

p
R3V.d/3

T3V.d0b1f1/3
;

1

T A3
Î �3 Î

p
R3V.d/3

V.d0b1f1/3
: (18.12)

Define

S¢.T;RI�;C / D
X

q2�c2
.q2;db1f/D.1/

cq2
2F�1.C/

X
b2�f1f�1

2F�1.� /

A.b2;b1/p
N.q2/

 rf.=cq2/ˆ
¢.=cq2/: (18.13)

Then

S¢.T;RI�;C / Î
N.d/5=4N.f/57=64

N.d0/2N.b1/57=64N.f1/25=64
N.T /ε N.R/1=4

N.T /1=2

C
N.d/3=2N.f/57=64

N.d0/5=2N.b1/89=64N.f1/57=64
N.T /ε N.R/1=2

N.T /4=3
: (18.14)
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Granted that Lemma 18.2 holds, we can now finish the proof of Proposition 15.1. By
the discussions above Lemma 18.2, the bound in (18.14) applies to the double sum in
(18.9), and hence

S
d;r
b1;f1;f

.T;R/ Î
N.d/3=4N.b1/7=64N.f1/39=64N.f/57=64

N.d0/
N.T /ε N.R/1=4

N.T /1=2

C
N.d/N.f1/7=64N.f/57=64

N.d0/3=2N.b1/25=64
N.T /ε N.R/1=2

N.T /4=3
:

Applying this to (18.5) leads to the estimate in (15.5).

19. Completion: Proof of Lemma 18.2

For each ¢3 2 ¹0; �;C; [º, we first apply Lemmas 13.2, 13.4, and 13.5 to the local
ˆ¢3.=cq2/, so that the sum S¢.T; RI �; C / is expressed in a form which is ready for
the hybrid large sieve in Corollary C.5. Then, after applying Corollary C.5, we infer that

S¢.T;RI�;C / Î
p
T.T;R/

q
T¢.T;RI�;C / (19.1)

with

T.T;R/ D N.T /ε
N.rf/

N.� /

X
b2�f1f�1

2F�1.� /

jA.b2;b1/j
2; (19.2)

T¢.T;RI�;C / D
1

N.A¢/

�
N.U ¢/C

N.C /
N.rf/

��
N.U ¢/C

N.� /
N.d0b1/

�
: (19.3)

Recall that � or 0 is suppressed from subscripts when ¢ D [. By Lemma 4.11, with the
Kim–Sarnak exponent � D 7

32
as in (4.24),

T.T;R/ Î N.T /ε
N.r/2N.f1/7=32N.f/57=32

N.d0/N.b1/25=32
: (19.4)

Set
p
�X D �=C . We have

T¢.T;RI�;C / Î
N.U ¢/2

N.A¢/
C

N.CU ¢/
N.A¢/

.1C N.X//C
N.C 2X/
N.A¢/

: (19.5)

For the three summands in (19.5), we claim that

N.U ¢/2

N.A¢/
Î N.T /ε ; (19.6)

N.CU ¢/
N.A¢/

.1C N.X// Î
N.T /ε

p
N.R/N.d/

N.T /N.d0b1f1/
; (19.7)

N.C 2X/
N.A¢/

Î
N.R/N.d/

N.T /8=3N.d0b1f1/2
: (19.8)
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Lemma 18.2 readily follows from (19.1), (19.4)–(19.8), with the observation that (19.6)
can be absorbed into (19.7).

Clearly, (19.6)–(19.8) follow from the local inequalities

U ¢3
p
A¢3

Î T ε

3 ;
U ¢3

A¢3
.1CX3/ Î T ε

3 ;
C 23 X3

A¢3
Î
R3Z

2
3

T
8=3
3

; (19.9)

in which Z3 D
p
V.d/3=V.d0b1f1/3 so that the range of C3 in (18.12) reads

1 Î C3 Î
p
R3Z3=T3: (19.10)

Note that the third inequality in (19.9) can be deduced from

X3

A¢3
Î

1

T
2=3
3

: (19.11)

Moreover, if we define �3 D R3=ˇdc
2
q (see (18.3)), then

j�3j � R3Z
2
3 =C

2
3 : (19.12)

It remains to verify (19.9) for various cases (alternatively, (19.11) for all the cases other
than ¢ D C).

19.1. The case ¢ D 0

In this case, we have U 0 D T ε

3 , A0 D 1, and X3 6 T ε

3 =j�3j Î T ε

3 =T
2
3 . Thus (19.9) and

(19.11) are obvious.

19.2. The case ¢ D �

In this case, we have U� D jX3�3j1=3, A� D j�3j, and X3 Î
p
j�3j. Therefore

U�
p
A�
D

X1=33

j�3j1=6
Î 1;

U�

A�
.1CX3/ Î

X1=33

j�3j1=6
Î 1;

X3

A�
Î

1p
j�3j

Î
1

T3
;

as desired.

19.3. The case ¢ D C

In this case, we always have X3 �
p
j�3j, and, by (19.12),

C3X3 �
p
R3Z3: (19.13)

For T3 Î X3 Î T 2�ε

3 , we have UC D T 23 =X3, A
C D T 2�ε

3 . Consequently,

UC
p
AC
D
T 1Cε

3

X3
Î T ε

3 ;
UC

AC
.1CX3/ Î T ε

3 ;
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and it follows from (19.13) that

C 23 X3

AC
D
T ε

3 C
2
3 X3

T 23
�
T ε

3 R3Z
2
3

T 23 X3
Î
T ε

3 R3Z
2
3

T 33
:

For X3 Ï T 2�ε

3 , we have UC D T ε

3 , AC D X3. Consequently,

UC
p
AC
D

T ε

3
p
X3

Î
T ε

3

T3
;

UC

AC
.1CX3/ Î T ε

3 ;

and it follows from (19.13) that

C 23 X3

AC
D C 23 �

R3Z
2
3

X23
Î
T ε

3 R3Z
2
3

T 43
:

19.4. The case ¢ D [

In this case, we always have j�3j � T 23 and X3 � T3.
Firstly, for T ε

3 =min ¹.T3=M3/1=2; T 1=43 º < � Î 1, we have A[� D T
2
3 � and U [� D T3�

2.
Therefore

U [�q
A[�

D �3=2 Î 1;
U [�

A[�
.1CX3/ Î � Î 1;

X3

A[�
Î

1

T3�
<

1

T
3=4Cε

3

:

Secondly, it follows from (13.11) that

U [0q
A[0

D
T ε

3

T
1=3
3

;
U [0

A[0
.1CX3/ Î

T ε

3

T
1=6
3

;
X3

A[0
Î

1

T
2=3
3

if T ε

3 6 M 6 T 1=33 ;

U [0q
A[0

D
T ε

3

.M3T3/1=4
;

U [0

A[0
.1CX3/ Î

T ε

3

M
1=2
3

;
X3

A[0
Î

1

.M3T3/1=2
<

1

T
2=3
3

if T 1=33 < M3 6 T 1=23 ; and

U [0q
A[0

D
M 3=4
3 T ε

3

T
3=4
3

;
U [0

A[0
.1CX3/ Î

M 1=2
3 T ε

3

T
1=2
3

;
X3

A[0
Î

1

.M3T3/1=2
<

1

T
3=4
3

if T 1=23 < M3 6 T 1�ε

3 , all of which are satisfactory.

Appendix C. Gallagher’s hybrid large sieve over number fields

In this appendix, we establish Gallagher’s hybrid large sieve [13, §1] over number fields.
Let notation be as in §2. Recall that ya D

Q
3j1
ya3 is the unitary dual of F �1: here

ya3 D R � ¹0; 1º if 3 is real and ya3 D R � Z if 3 is complex.
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Let a D RjS1j and aC D RjS1jC . For U 2 aC, define

ya.U / D ¹.ν; m/ 2 ya W jν3j; jm3j 6 U3 for all 3 j1º: (C.1)

For y 2 F �1 and ı 2 aC, with ı3 < � for each 3 j1, define

F �1.yI ı/ D
®
x 2 F �1 W N3

ˇ̌
log jxj3 � log jyj3

ˇ̌
; jarg.x3/ � arg.y3/j 6 ı3 for all 3 j1

¯
;

(C.2)
where arg.x3/ lies on the circle R=2�Z (arg.x3/ D 0 or � if 3 is real).

Let a be a fractional ideal of F . Consider an absolutely convergent series

Sa.ν; m/ D
X

2aX¹0º

a�iν;m./; a 2 C: (C.3)

Proposition C.1. Let U 2 aC be such that U3 > 1 for all 3 j1. We haveZ Z
ya.U /

jSa.ν; m/j
2 d�.ν; m/ ÎF N.U /2

Z
F �1

ˇ̌̌ X
2F �1.yI1=U/\a

a

ˇ̌̌2
d�y: (C.4)

Proof. Set ı D 1=U . The right-hand side of (C.4) may be written asZ
F �1

jC ıa .y/j
2 d�y; C ıa .y/ D

1

N.ı/

X
2F �1.yIı/\a

a :

Put Fı.x/ D 1=N.ı/ or 0 according as x 2 F �1.1I ı/ or not. Then

C ıa .y/ D
X

2aX¹0º

aFı.y=/:

Taking the Mellin transform (see (2.2)), we get MC ıa D Sa � MFı . Since the series (C.3)
converges absolutely, C ıa is a bounded integrable function, and hence is square-integrable.
By Plancherel’s theorem (see (2.4)),Z

F �1

jC ıa .y/j
2 d�y D

1

c

Z Z
ya

jSa.ν; m/ MFı.ν; m/j
2 d�.ν; m/;

for a certain constant c (explicitly, c D 22r1C2r2�r1C2r2 ). Since MFı.ν; m/ is the product
of 8̂̂<̂

:̂
2 sin.ı3ν3/
ı3ν3

if 3 is real,

2 sin.ı3ν3/
ı3ν3

2 sin.ı3m3/
ı3m3

if 3 is complex,

we have MFı.ν; m/ Ï 1 for .ν; m/ 2 ya.1=ı/, and the result follows.

We shall apply (C.4) to sums of the form

Sa.�I ν; m/ D
X

2aX¹0º

a�./�iν;m./: (C.5)

where � 22.a=an/� is induced from a character � W .O=n/� ! C� via a (fixed) isomor-
phism .a=an/�! .O=n/� (see Definition 3.1), and �./D �. C an/ or 0 according as
 C an 2 .a=an/� or not.
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Lemma C.2. We haveX
�21.a=an/�

ˇ̌̌ X
2F �1.yIı/\a

a�./
ˇ̌̌2

ÎF

�
N.n/C

N.y/E.ı/
N.a/

� X
2F �1.yIı/\a

ja j
2; (C.6)

where
E.ı/ D

Y
3j1

.eı3 � e�ı3/.2ı3/
N3�1

so that N.y/E.ı/ is the area of F �1.yI ı/.

Proof. By the orthogonality relations, the left-hand side of (C.6) is equal to

'.n/
X

x2.a=an/�

ˇ̌̌ X
2F �1.yIı/\.xCan/

a

ˇ̌̌2
;

and, by the Cauchy–Schwarz inequality, this is bounded by

'.n/
X

x2.a=an/�

�
N.y/E.ı/

N.an/
C 1

� X
2F �1.yIı/\.xCan/

ja j
2:

Proposition C.3. Let U 2 aC be such that U3 > 1 for all 3 j1. We haveX
�21.a=an/�

Z Z
ya.U /

jSa.�I ν; m/j
2 d�.ν; m/ ÎF

X
2aX¹0º

.N.U /N.n/C N.a�1//ja j
2:

(C.7)

Proof. Using (C.4) and (C.6), the left-hand side of (C.7) is bounded by

N.U /2
Z
F �1

X
�21.a=an/�

ˇ̌̌ X
2F �1.yI1=U/\a

a�./
ˇ̌̌2

d�y

Î N.U /2
Z
F �1

�
N.n/C

N.y/E.1=U /
N.a/

� X
2F �1.yI1=U/\a

ja j
2 d�y:

The coefficient of ja j2 here is

N.U /2N.n/
Z Z

F �1. I1=U/

d�y C
N.U /2E.1=U /

N.a/

Z Z
F �1. I1=U/

dy

D N.2U /N.n/C
N.U /2E.1=U /2N./

N.a/
Î N.U /N.n/C N.a�1/:

C.1. A corollary of Gallagher’s large sieve

Definition C.4. Let U 2 aC and .�; n/ 2 ya. Define

ya�;n.U / D ¹.ν; m/ 2 ya W
p
.ν3 � �3/2 C .m3 � n3/2 Î U3 for all 3 j1º: (C.8)
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Note that ya0;0.U / D ya.U / if we slightly modify the definition of ya.U / in (C.1). See
also Definition 13.1.

Corollary C.5. Let c 2 zCF . For q � c, define cq D Œc
�1q�. Let a and n be ideals with

n � O and .acD/n D n�1 (see Definition 4.5). Let C; � 2 aC and F�1.C /; F
�
1.� /

be defined as in Definition 18.1. Let a and bq be sequences of complex numbers for
 2 F�1.� / and q � c with cq 2 F

�
1.C /. Define

Sn.C; � I ν; mI a; b/ D
X
q�c

.q;n/D.1/

cq2F
�
1.C/

X
2a

2F�1.� /

abq n.=cq/�iν;m.=cq/: (C.9)

Let U 2 aC be such that U3 Ï 1 for all 3 j1. For �; n 2 a, define ya�;n.U / as in (C.8).
ThenZ Z
ya�;n.U /

jSn.C; � I ν; mI a; b/j d�.ν; m/

Î N.n/1=2Cε.N.U /C N.C /=N.n//1=2.N.U /C N.� /=N.an//1=2kak2kbk2; (C.10)

where kak22 D
P
 ja j

2 and kbk22 D
P

q jbqj
2.

Proof. By changing a and bq to a�i�;n./ and bq�i�;n.cq/ if necessary, we may
assume with no loss of generality that ya�;n.U / D ya.U /. Moreover, we set a D bq D 0

if  … F�1.� / or cq … F
�
1.C /. It will be convenient to view the q-sum as a sum over

¹cq W q � cº � c�1.
Next, we reformulate Sn.C; � I ν; mI a; b/ in (C.9) asX

mjn

X
q�c

.q;n/D.1/

X
2anm�1

.cD/mDm�1

abq m.=cq/�iν;m.=cq/:

For � 2b..mDm/
�1=D�1m /�, define the Gauss sum

�.�/ D
X

x2..mDm/�1=D
�1
m /�

�.x/ m.x/:

It is well-known that j�.�/j 6
p

N.m/. By the orthogonality relation,

 m.=cq/ D
1

'.m/

X
�27..mDm/

�1=D�1m /�

�.=cq/�.�/;

for .q;m/ D .1/ and .cD/m D m�1. From these, we deduce that the left-hand side of
(C.10) is bounded byX

mjn

p
N.m/
'.m/

X
�27..mDm/

�1=D�1m /�

Z Z
ya.U /

ˇ̌
Sanm�1.�I ν; m/Sc�1.�I ν; m/

ˇ̌
d�.ν; m/;
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where

Sanm�1.�I ν; m/ D
X

2anm�1

.cD/mDm�1

a�./�iν;m./;

Sc�1.�I ν; m/ D
X
q�c

.q;n/D.1/

bq�.cq/�iν;m.cq/:

Finally, the bound in (C.10) readily follows from Cauchy–Schwarz and Proposition C.3.
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