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Abstract. We prove an .`2; L6/ decoupling inequality for the parabola with constant .logR/c . In
the appendix, we present an application to the sixth-order correlation of the integer solutions to
x2 C y2 D m.
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1. Introduction and main results

Let f W Rn ! C be in the Schwartz class � with Fourier support contained in
NR�1.P

n�1/, the R�1-neighborhood of Pn�1 WD ¹.�; j�j2/ W j�j � 1; � 2 Rn�1º. Let
¹�º be a tiling of NR�1.P

n�1/ by approximatelyR�1=2 � � � � �R�1=2 �R�1 rectangular
boxes � and define f� D . yf �� /_.

Let Dn;p.R/ denote the smallest constant such that

kf kLp.Rn/ � Dn;p.R/
�X
�

kf�k
2
Lp.Rn/

�1=2
; (1.1)

for any f 2 � with supp yf � NR�1.P
n�1/.

A trivial estimate using Cauchy–Schwarz and the triangle inequality yields Dn;p.R/
� R.n�1/=2. And we have Dn;p.R/ � 1 by taking f D f� . Bourgain and Demeter [3]
proved that for 2 � p � 2.nC1/

n�1
, Dn;p.R/ � C�R� for any small � > 0. Such estimates

are possible due to the curvature of Pn�1 and are sharp up to R�-loss. The estimates have
many applications in harmonic analysis, PDE and number theory. It was conjectured that
Dn;p � Cp for 1 � p < 2.nC1/

n�1
.
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In this paper, we focus on the case n D 2 and write Dp.R/ D Dn;p.R/. At the end
point p D 6, Bourgain [2] proved that D6.R/ & .logR/1=6. Based on the Bourgain–
Demeter decoupling, Zane Li [7] proved thatD6.R/ . exp.O. logR log log logR

log logR //. Then, by

adapting ideas from efficient congruencing, he proved [9] thatD6.R/. exp.O. logR
log logR //.

This was the best previous bound for D6.R/. In this paper, we prove

Theorem 1.1. D6.R/ . .logR/c
0

for an absolute constant c0.

Theorem 1.1 is a corollary of our main theorem, which estimates the L6-norm of f
on a subset of R2.

Theorem 1.2. There exists c > 0 such that the following holds. If f 2 � has Fourier
support contained in NR�1.P

1/ and QR � R2 is any cube of sidelength R, then

kf k6
L6.QR/

� .logR/c
�X
�

kf�k
2
L1.R2/

�2X
�

kf�k
2
L2.R2/ 8R � 2:

The proof of Theorem 1.2 is related to an incidence estimate between points and
rectangles used in [4, 5]. These arguments are based on the following idea. We consider
the square function g D

P
� jf� j

2, and we divide it into a high frequency part and a
low frequency part. For the high frequency part, the different terms jf� j2 are essentially
orthogonal, and this gives a powerful tool when the high frequency part of g dominates.
When the low frequency part of g dominates, we try to reduce the whole problem to a
similar problem at a coarser scale.

We use these tools to give a different proof of decoupling for the parabola. Compared
to the previous two proofs (by Bourgain–Demeter [3] and Li [9]), our proof leans less
heavily on induction on scales, and we think this is the main reason it gives a stronger
estimate. In order to obtain the .logR/c

0

bound, we also need to deal carefully with a
number of technical difficulties. These include a wave packet decomposition using Gaus-
sian partitioning of unity, carefully modifying the function at each scale and reducing to a
well-spaced frequency case. We give an intuitive explanation of the argument in Section 1.

The bound .logR/c
0

is useful compared toR� in some diophantine equation problems.
LetƒmD¹.x;y/2Z2 W x2C y2Dmº. In [1], Bombieri and Bourgain studied the number
of solutions of the system �1 C �2 C �3 D �4 C �5 C �6 with �j 2 ƒm. In [8], Li and
Bourgain applied decoupling to this problem. They were able to prove a very strong bound
for the number of solutions provided that ƒm is very large. Using our stronger estimate
forD6.R/, we can extend their bound to a wider range ofƒm. We present this application
in the appendix.

Another corollary of Theorem 1.1 concerns the discrete Fourier restriction on
¹.n; n2/ W n 2 Zº.

Corollary 1.3. Let Kp.N / denote the smallest constant such that for any ¹anºjnj�N , X
jnj�N

ane
2�i.nxCn2t/


Lp.T2/

. Kp.N /
� X
jnj�N

janj
2
�1=2

:

Then K6.N / . .logN/c
0

.
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Bourgain showed in [2, (2.51), Proposition 2.36] that

c.logN/1=6 � K6.N / � exp
�
c

logN
log logN

�
:

He also asked whether Kp.N / is bounded independent of N for each p < 6.

2. Intuitive explanation of the argument

In this section, we outline the main ideas of the proof. For simplicity, we suppress some
minor technical details, but at the end we will discuss the most important technical issues
that come up.

Let Dec.R/ be the optimal constant in the decoupling inequality

kf kL6.QR/ � Dec.R/
�X
�

kf�k
2
L6.!R/

�1=2
:

Here the � denote�R�1=2 �R�1 approximate rectangles which partition theR�1-neigh-
borhood of P1 and yf� D yf �� where f is a Schwartz function. The original arguments
of Bourgain and Demeter to prove that Dec.R/ � C"R" involve analysis of f� where �
is a rectangle in a neighborhood of P1 and � is at various scales between 1 and the final
scale R. This is also true for the proof of Theorem 1.2, which involves analysis of f at
� logR many scales. We use the notations A . B and A / B to mean A � CB and
A � .logR/CB , respectively, for some absolute constant C .

By a standard pigeonholing argument (see §5), the decoupling inequality above fol-
lows from the estimate

˛6j¹x 2 QR W jf j � ˛ºj /
�X
�

kf�k
2
L1.QR/

�2X
�

kf�k
2
L2.QR/

(2.1)

where we may assume that for each � ,

kf�kL1.QR/ � 1 or f� D 0 (2.2)

and that kf�kLp.QR/ are comparable for all non-zero f� and all 2 � p � 6. Note that
inequality (2.1) is also (roughly) the statement of Theorem 1.2. In this section, we are
suppressing the weight functions localized to QR which are present in the L2 norms on
the right-hand side above.

Recall the reverse square function estimate for L4, which says that

˛4j¹x 2 QR W jf j � ˛ºj .
Z
QR

�X
�

jf� j
2
�2
: (2.3)

The heart of our argument involves analyzing special cases where we can upgrade (2.3) to
something that implies L6 decoupling. We will describe the simplest special case of the
argument in the following subsection.
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2.1. Special case: High frequency dominance

Consider the square function that appears on the right-hand side of (2.3),
P
� jf� j

2. Each
summand jf� j2 D f� xf� has Fourier support in � � � , which looks like a copy of the
R�1=2 �R�1-rectangle � that is dilated by a factor of 2 and translated to the origin. Let �
be a smooth approximation of the characteristic function of the ball of radiusR�1=2=logR
centered at the origin. Define the low frequency part as�X

�

jf� j
2
�
`
WD

X
�

jf� j
2
� �

V

and the high frequency part by�X
�

jf� j
2
�
h
WD

X
�

jf� j
2
�

�X
�

jf� j
2
�
`
:

In this special case, we assume thatZ
QR

�X
�

jf� j
2
�2

/
Z
QR

ˇ̌̌�X
�

jf� j
2
�
h

ˇ̌̌2
:

The Fourier transform of .
P
� jf� j

2/h is supported on
S
� .� � �/ intersected with the

complement of the ball centered at the origin of radius R�1=2=logR. The � � � are
� R�1=2 � R�1-rectangles centered at the origin and oriented at � R�1=2-separated
angles. They all intersect in the R�1-ball centered at the origin, but overlap less and less
as we move away from the origin. The overlap of the � � � outside of B.R�1=2=logR/
is � logR. Thus, by Cauchy–Schwarz,Z

QR

ˇ̌̌�X
�

jf� j
2
�
h

ˇ̌̌2
. .logR/

Z
QR

X
�

jf� j
4 (2.4)

where we used another Cauchy–Schwarz to absorb the auxiliary function �Vinto the
implicit constant.

To summarize, we have proved so far that

˛4j¹x 2 QR W jf j � ˛ºj /
Z
QR

�X
�

jf� j
2
�2

/
Z
QR

X
�

jf� j
4:

Note that for some x 2 QR,

˛ � jf .x/j �
X
�

kf�kL1.QR/ �
X
�

kf�k
2
L1.QR/

and kf�kL1.QR/ � 1 for at least one � . Thus,

˛4j¹x 2 QR W jf j � ˛ºj / ˛�2
�X
�

kf�k
2
L1.QR/

�2X
�

Z
QR

jf� j
2

which is the L6-decoupling result we were aiming for and which concludes the special
case.
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Suppose that we are not in the high frequency dominating case above, but that we
have a high frequency dominance at a different scale QR:Z

QR

�X
�

jf� j
2
�2

/
Z
QR

ˇ̌̌�X
�

jf� j
2
�
h

ˇ̌̌2
:

where the � are QR�1=2 � QR�1-rectangles covering the QR�1-neighborhood of P1 and the
high part is with respect to this new scale. If we repeat the above argument, we obtain the
.`4; L4/ result

˛4j¹x 2 QR W jf j � ˛ºj /
Z
QR

X
�

jf� j
4:

If we try to relate the right-hand side to a sum of L2 norms, then

˛4j¹x 2 QR W jf j � ˛ºj /
�

max
�
kf�k

2
L1.QR/

�X
�

Z
QR

jf� j
2:

By L2-orthogonality, this is equivalent to

˛4j¹x 2 QR W jf j � ˛ºj /
�

max
�
kf�k

2
L1.QR/

�X
�

Z
QR

jf� j
2:

The issue now is that in the special case above, we had good control over kf�kL1.QR/
given in (2.2), but we do not have any corresponding estimate for kf�kL1.QR/. A key
part of the proof is a pruning process for the wave packets of f� which will allow us to
control kf�kL1.QR/.

2.2. Many frequency scales

Our argument will involve many scales, and so we introduce a sequence of intermediate
scales and high-low decompositions for each scale. Denote the intermediate scales by

1 < R1 < � � � < Rk < RkC1 < � � � < RN D R:

We will use scales which have the property that

RkC1=Rk � .logR/c : (2.5)

Let ¹�kº denote R�1=2
k
� R�1

k
-rectangles which partition the R�1

k
-neighborhood of P1.

Note that for each k D 1; : : : ; N ,

f D
X
�k

f�k : (2.6)

We analyze the square functions

gk D
X
�k

jf�k j
2:

Intuitively, since the first scale is R1 � 1, by Cauchy–Schwarz we have

jf j / g
1=2
1 ;
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and we should think of g1 as being close to jf j2. On the other hand, gN is our original
square function

P
� jf� j

2.
We define a high-low decomposition for gk , building on [4, 5]. As in the special case

above, observe that the Fourier transform of gk is

ygk D
X
�k

1
jf�k j

2
D

X
�k

yf�k �
yxf�k :

By definition, yf�k has support on �k and yxf�k has support on ��k . Thus

supp 1
jf�k j

2
� �k � �k

and �k � �k is the same as �k translated to the origin and dilated by a factor of 2. Since the
¹�kº formed a partition of the neighborhood of the parabola, the Fourier support of gk is a
union of � R�1=2

k
�R�1

k
-rectangles centered at the origin oriented at � R�1=2

k
-separated

angles. Analogous to the discussion preceding (2.4), the intersection of all of these tubes
is theR�1

k
-ball centered at the origin, and outside of some neighborhood of the origin, the

tubes look more disjoint (or at least finitely overlapping). This is the setting for a high-low
frequency decomposition.

We separate out a low frequency part of gk and a high frequency part of gk .

Definition 2.1. Let �k.�/ be a bump function associated to the ball of radius �k centered
at the origin, where �k D .logR/�c=2R�1=2

k
with c in (2.5). We have �k.�/ D 1 on B�k

and �k.�/ D 0 outside of 2B�k .

Define the low frequency part of gk by

ygk;` D �k ygk :

Let the high frequency part of gk be equal to

gk;h D gk � gk;`:

The following lemmas describe the good features of the low frequency part and the
high frequency part of gk .

Lemma 2.2 (“High lemma”). For any ball BRk ,Z
BRk

jgk;hj
2 . ��1k R

�1=2

k

X
�k

Z
jf�k j

4!RkC1

where 1BRkC1 � !RkC1 and y!RkC1 is supported in the ball of radius 2R�1
kC1

centered at
the origin.

Remark. Since �k D .logR/�cR�1=2
k

, the factor ��1
k
R
�1=2

k
is bounded by .logR/c . We

omit the proof sketch of Lemma 2.2, which is similar to the discussion preceding (2.4).
The function gkC1 is roughly locally constant on balls of radius� R1=2

kC1
. An applica-

tion of local L2 orthogonality and this locally constant property leads to
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Lemma 2.3 (White lie! “Low lemma”).

gk;`.x/ � Clow gkC1.x/:

See Lemma 2.4 for more details. In order to rigorously justify this lemma, it is impor-
tant to replace gk by an averaged version of it.

The “low lemma” tells us that

gk D gk;` C gk;h � ClowgkC1 C jgk;hj:

Therefore, either gk.x/�Ajgk;hj or gk.x/� A
A�1

ClowgkC1.x/. HereA is a parameter
of size � logR. This leads to a partition of the domain into the following sets:

QR D L t�1 t � � � t�N�1:

Define
�N�1 D ¹x 2 QR W gN�1.x/ � AjgN�1;h.x/jº:

For k D 1; : : : ; N � 2, define

�k D ¹x 2 QR n .�kC1 [ � � � [�N�1/ W gk.x/ � Ajgk;h.x/jº

�

²
x 2 QR W gk.x/ � Ajgk;h.x/j; g` �

A

A � 1
Clowg`C1 for k C 1 � ` � N � 1

³
;

and set

L DQR n .�1 t � � � t�N�1/ �

²
x 2QR W g` �

A

A � 1
Clowg`C1 for 1 � ` � N � 1

³
:

Since we have partitioned QR into � logR many sets, it suffices to consider the cases

kf kL6.QR/ . .logR/kf kL6.L/ (2.7)

or for some k,
kf kL6.QR/ . .logR/kf kL6.�k/: (2.8)

The case where L dominates, which means (2.7) holds, is simple because for x 2 L,
jf .x/j2 . g1.x/ . gN .x/ D

P
� jf� .x/j

2, and soZ
L

jf j6 .
Z
L

�X
�

jf� j
2
�3
�

�X
�

kf�k
2
L1.QR/

�2X
�

kf�k
2
L2.QR/

;

which implies the conclusion of Theorem 1.2.
More quantitatively, for x 2 L, we have the bound

jf .x/j2 . g1 �

�
A

A � 1
Clow

�N X
�

jf� .x/j
2:

This ultimately gives us a bound for Dec.R/ of the form . A
A�1

Clow/
N . Recall that N �

logR=log logR and A � logR. But if Clow is a constant bigger than 1, then CNlow will be
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much larger than .logR/C (although still smaller than C"R"). We will have to work more
carefully in the low lemma to make Clow very close to 1. We will return to this below.

But first we discuss the case where one of the �k dominates. In this case we begin by
applying a broad/narrow analysis. The narrow case is handled by an induction on scales
argument. For the broad case, we consider the set

U WD
°
x 2 QR W jf .x/j � ˛; jf .x/j / max

�1;�
0
1

non-adjacent
jf�1f� 01

j
1=2.x/

±
where �1 and � 01 are R�11 �R

�1=2
1 rectangles.

The L1 norm of gN plays an important role in our argument, so we give it a name:

r D kgN kL1.QR/:

Since r D k
P
� jf� j

2kL1.QR/ �
P
� kf�k

2
L1.QR/

, the main estimate (2.1) follows from
the bound

˛6jU \�kj / r2
X
�

kf�k
2
L2.QR/

: (2.9)

Focusing on the broad case allows us to use bilinear restriction, which leads to the
following bound:

˛4jU \�kj /
Z
�k

g2k :

From now on, we use the fact that gk / jgk;hj on �k and proceed as in the special case
above, using the “high lemma”, Lemma 2.2, to obtain

˛4jU \�kj / max
�k
kf�kk

2
L1.QR/

X
�

kf�k
2
L2.QR/

:

2.3. Pruning the wave packets

Recall that we must modify the function f to get a good bound for the kf�kkL1.QR/.
Here is the idea for modifying f . If x 2 U , then we know that jf .x/j � ˛. By the defini-
tion of �k , we know that for x 2 �k ,X

�k

jf�k .x/j
2
� Kr; (2.10)

where K / 1 if Clow is sufficiently close to 1. This property is immediate from the more
technical definition of�k (Definition 3.27) in the proof. Inequality (2.10) implies that for
x 2 U \�k , the f�k with jf�k .x/j > 100Kr=˛ make a small contribution to f .x/. More
precisely, if x 2 U \�k , thenX

�k W jf�k .x/j>100Kr=˛

jf�k .x/j �
˛

100Kr

X
�k

jf�k .x/j
2
�

˛

100
�
1

10
jf .x/j: (2.11)

We define
� D 100Kr=˛: (2.12)
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Roughly speaking, the parts of f� with norm bigger than � do not make a significant
contribution to f on the set U \ �k . To take advantage of this observation, we divide
each f�k into wave packets, and then prune the wave packets with amplitude bigger than �.
Note that in the actual proof, we will start with pruning and define the gk with respect to
a k-pruned version of f .

The pruning process goes roughly as follows (but this account is a little oversimpli-
fied). First we expand f�k into wave packets,

f�k D
X
T

 T f�k : (2.13)

Here T denotes a translate of the dual convex ��
k

(see Definition 3.12), and the sum is over
a collection of translates that tile the plane. The function  T is a smooth approximation
of the characteristic function of T , and the  T form a partition of unity. Each  T f�k is
called a wave packet, and it has Fourier support essentially contained in �k . We define Qf�k
to be the result of pruning the high amplitude wave packets from f�k :

Qf�k D
X

T W k T f�k kL1.QR/
��

 T f�k :

The Fourier support of Qf�k is still essentially contained in �k . Suppose for a moment
that  T was just �T , the characteristic function of T . Then because of our pruning,
k Qf�kk1 � �. Next we define Qf D

P
�k
Qf�k .

To analyze jU \ �kj, we use the argument above with Qf in place of f and Qf�k in
place of f�k . Here are the key features of fk that makes this possible:

� The function fk is close to f on U \�k . If  T was just �T , then the analysis in (2.11)
would show that for x 2U \�k , jf .x/� fk.x/j � 1

100
˛. We will ultimately define fk

in a slightly more complicated way, and we will prove this bound for jf .x/ � fk.x/j.

� We now have the bound k Qf�kkL1.QR/ � � � r=˛.

� The function Qf has Fourier support properties similar to those of f so that we can run
the argument above. For instance, the Fourier support of Qf�k is essentially contained
in �k .

When we run the argument above with Qf in place of f , and then plug in the bound
k Qf�kkL1.QR/ / r=˛, we get the estimate

˛4jU \�kj / .r=˛/2
Z
QR

X
�

jf� j
2: (2.14)

This is our desired estimate (2.9).

2.4. Delicate estimates

There are two main sources of technical difficulties that come up in implementing the
sketch above. One is to prove the low lemma with very sharp control. The other has to do
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with pruning wave packets, which we have to do at many different scales. To make the
argument work rigorously, gk and fk both have to be defined in a more complex way than
above.

The argument giving the bound Dec.R/� .logR/c is more sensitive to some constants
than others. A constant that is iterated N � logR=log logR times must be very close to 1
whereas steps which are iterated O.1/ times can lose a power of logR.

A good example is the low lemma. If we are not very careful with how we formulate
the “low lemma”, we will get a bound for Dec.R/ which is much larger than .logR/c .
As we discussed above, if we prove the low lemma in the form jgk;`.x/j � ClowgkC1.x/,
then we will get a bound for Dec.R/ which is at least as big as CNlow. To get our desired
bound for Dec.R/, we need Clow to be almost 1.

Above we gave a non-rigorous sketch of the low lemma. To get some perspective, let
us now rigorously prove a version of the low lemma to get a perspective on Clow.

Lemma 2.4 (Baby low lemma). Let �k.�/ be a bump function defined as in Definition 2.1.
Then

jgk;`j D
ˇ̌̌X
�k

jf�k j
2
� �

V

k

ˇ̌̌
� 2

X
�kC1

jf�kC1 j
2
� j�

V

kj:

Proof. We write
P
�k
jf�k j

2 � �

V

k.x/ using Fourier inversion:X
�k

jf�k j
2
� �

V

k.x/ D
X
�k

Z
yf�k �

yxf�ke
2�i��x�k.�/ d�:

Now f�k D
P
�kC1��k

f�kC1 , so we can expand out the last expression to getX
�k

X
�kC1;�

0
kC1
��k

Z
yf�kC1 �

yxf� 0
kC1

e2�i��x�k.�/d�:

The point is that most of the integrals in the sum above vanish. The convolution
yf�kC1 �

yxf� 0
kC1

is supported in �kC1 � � 0kC1, and �k is supported in the ball of radius 2�k �

R
�1=2

kC1
centered at the origin. Now each rectangle �kC1 has dimensions R�1

kC1
� R

�1=2

kC1
.

So �kC1 � � 0kC1 intersects the support of �k only if � 0
kC1

is equal to or adjacent to �kC1.
We keep only these terms in the sum to getX

�k

jf�k j
2
� �

V

k D

X
�kC1;�

0
kC1

equal or adjacent

.f�kC1
xf� 0
kC1

/ � �

V

k :

For the cross terms, we note that

j.f�kC1
xf� 0
kC1

/ � �

V

kj � .jf�kC1 j jf� 0kC1
j/ � j�

V

kj �
�
1
2
jf�kC1 j

2
C

1
2
jf� 0

kC1
j
2
�
� j�

V

kj:

Finally, grouping all the terms gives the desired bound:ˇ̌̌X
�k

jf�k j
2
� �

V

k

ˇ̌̌
� 2

X
�kC1

jf�kC1 j
2
� j�

V

kj:
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There are a couple of issues with this bound. One is that we have an unwanted factor
of 2 on the right-hand side. A second issue is that we have a convolution on the right-hand
side. If we take gk D

P
�k
jf�k j

2, then we have jgk;`j � 2gkC1 � j�

V

kj.
To deal with the factor of 2, we consider a special case when the Fourier support of f

has a helpful spacing condition. Let‚D ¹�º be a collection of�R�1=2 �R�1-rectangles
contained in the R�1-neighborhood of P1. The collection ‚ has the spacing property at
scaleRk if there exists a collection of�R�1=2

k
�R�1

k
-rectangles �k which cover

S
�2‚ �

and such that
dist.�k ; � 0k/ � .logR/�1R�1=2

k

whenever �k and � 0
k

are distinct. If ‚ has the spacing property at scales R1; : : : ; RN�1,
then say ‚ is well-spaced. A well-spaced collection of rectangles � can include most of
the rectangles needed to cover the parabola, and we will be able to reduce our theorem for
a general f to the case that the Fourier support of f is well-spaced. The spacing condition
helps us because whenever �kC1, � 0

kC1
are distinct, �kC1 � � 0kC1 is supported outside the

ball of radius .logR/�1R�1=2
kC1

. Now we choose �k � .logR/�1R�1=2
kC1

, and we see that
all the cross terms in Lemma 2.4 vanish. This gets rid of the factor of 2. Assuming that f
obeys the spacing condition, we conclude thatˇ̌̌X

�k

jf�k j
2
� �

V

k

ˇ̌̌
�

X
�kC1

jf�kC1 j
2
� j�

V

kj:

Next we discuss the � j�Vkj on the right-hand side. In order to deal with this factor, we
define gk in a more complicated way:

gk WD
X
�k

jfkC1;�k j
2
� ' QT�k

: (2.15)

Here fkC1;�k is given by pruning high amplitude wave packets from f�k , and we will
discuss it below. The function ' QT�k

is roughly 1
j��
k
j
���
k

. It is a bit bigger than this, so a
more accurate model is

' QT�k
�
.logR/c

j��
k
j
�.logR/c��

k
:

Let us see why this extra convolution helps us. In the well-spaced case, the argument
above shows that

jgk � �

V

kj �

X
�kC1

jfkC1;�kC1 j
2
� ' QT�k

� j�

V

kj: (2.16)

On the right-hand side, �k denotes the parent of �kC1. We choose the functions ' QT�k
so

that for any �kC1 � �k ,
' QT�k

� j�

V

kj � ' QT�kC1
: (2.17)

With this choice, the right-hand side of (2.16) is bounded by
P
�kC1
jf�kC1 j

2 � ' QT�kC1
�

gkC1. So with this definition, we get jgk;`j � gkC1. (We will prove this in Lemma 3.25.)
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Redefining gk in this way makes the statement of the low lemma very clean. It does
have a cost though. We have to make sure that the contribution of ' QT�k

is not too big.
To control their size, we have to choose �k carefully, and the key bound is k�VkkL1.R2/ �
1C C=logR, which is proved in Lemma 3.10.

Finally, let us briefly discuss pruning wave packets. Our argument involves many dif-
ferent scales and we have to prune wave packets at all scales. We can define fN to be our
initial function f . We decompose fN into wave packets by combining (2.6) and (2.13),

fN D
X
�

X
T

 T fN;� :

Then we remove the wave packets with amplitude bigger than �D 100Kr=˛. The result-
ing function is called fN�1:

fN�1 D
X

�;T W k T fN;�kL1.R2/��

 T fN;� :

Next, we decompose fN�1 into wave packets at the next scale:

fN�1 D
X
�N�1

X
T�N�1

 T�N�1fN�1;�N�1 :

Here �N�1 is a rectangle of dimensions R�1=2N�1 � R
�1
N�1, and T�N�1 is roughly a tube

which is roughly a translate of ��N�1. We remove the wave packets with amplitude bigger
than � and call the resulting function fN�2. This iterative pruning is necessary to make
our argument work, but it also makes it fairly complex. In particular, since the pruning has
N steps, we have to be very careful with all the estimates related to the pruning process.
For example, we have to define the smooth cutoff functions  T carefully.

3. Proof of Theorem 1.2: the broad, well-spaced case

The argument outlined in the above intuition section leads to the .logR/c upper bound
in Theorem 1.2 for functions which satisfy two extra properties. The function f being
broad allows us to bound an L4 norm of f by an L2 norm of a square function gk . The
property that f is well-spaced allows us to replace Lemma 2.4 with

jgk;`j �
X
�kC1

jf�kC1 j
2
� j�

V

kj

(so we have no accumulated constant after iterating the inequality . logR times). The-
orem 1.2 in the special case of broad, well-spaced functions f is called Proposition 3.5,
which we prove in this section. In §4, we remove the assumptions on f .

3.1. Statement of Proposition 3.5

Let f 2 � have Fourier support in NR�1.P
1/; � is always an approximate R�1=2 �R�1-

rectangle in a neighborhood of P1. The property that f is broad means that kf kL6.QR/
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is dominated by the L6 norm of a bilinearized version of f . We state the results in terms
of a parameter ˛ > 0 which measures this bilinearized version of f . Precisely, we make

Definition 3.1.

U˛ WD
°
x 2 R2 W max

�;� 0

nonadj.

jf� f� 0 j
1=2.x/ � ˛;

�X
�

jf� .x/j
6
�1=6
� .logR/9˛

±
where the maximum is taken over non-adjacent � .logR/�6 � .logR/�12-rectangles �
and � 0. By � here, we mean within a factor of 2.

Our argument involves a sequence of scales Rk defined as follows:

Definition 3.2. For k 2 N, let Rk D .logR/12k . We analyze scales R1; : : : ; RN where
RN � R < RNC1. This means that N D

� logR
12 log logR

˘
.

We will not make a distinction betweenRN andR since we may use Cauchy–Schwarz
to trivially decouple � R�1=2N -arcs of P1 into � R�1=2-arcs.

Definition 3.3. For each k, the notation ‚.Rk/ refers to a collection of � R�1=2
k
�R�1

k
-

rectangles �k covering the R�1
k

-neighborhood of P1. We use ‚ to denote a collection of
� R�1=2 �R�1-rectangles partitioning the R�1-neighborhood of P1.

Definition 3.4 (Spacing property). The collection‚ has the spacing property at scale Rk
if there exists a collection ‚.Rk/ whose union covers

S
�2‚ � and such that

dist.�k ; � 0k/ �
1
2
R
�1=2

kC1

whenever �k ; � 0k 2 ‚.Rk/ are distinct. If ‚ has the spacing property at scales R1; : : : ;
RN�1, then say ‚ is well-spaced. A function f 2 � is well-spaced if Of is supported inS
�2‚ � for some well-spaced ‚.

See Section 4.2 for the reduction to the well-spaced case. For the rest of Section 3,
�k will be assumed to be part of a fixed ‚.Rk/ from the well-spaced definition above.
Note that ‚.Rk/ depends on ‚, which depends on f .

Proposition 3.5. There exists c 2 .0;1/ such that for all well-spaced f 2 � and all
˛ > 0,

˛6jU˛ \QRj � .logR/c
�X
�

kf�k
2
L1.R2/

�2X
�

kf�k
2
L2.R2/:

Lemma 3.6. For any p � 1, kf�kL1.R2/ . j� j1=pkf�kLp.R2/:

Proof. Since the Fourier transform of f� is supported on 2� , we can choose a smooth
cutoff function �� such that �� D 1 on 2� and �� D 0 outside of 3� . Then

kf�kL1.R2/ D kf� � '�kL1.R2/ � kf�kLp.R2/k �kLp0 .R2/ . j� j1=pkf�kLp.R2/;

where we have used Hölder’s inequality with 1=p C 1=p0 D 1.
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Note 3.7. For the remainder of §3, assume that we have replaced f by a constant multiple
cf so that max� kf�kL1.R2/ D 1. Note that this means that ˛ is replaced by c˛ and
r is replaced by c2r , where r is defined later in Definition 3.17. The purpose of this
assumption is to simplify the error terms which are often written as negative powers of R.
Note for example that by Lemma 3.6,

R�50 �
1

˛2

�
max
�
kf�k

2
L1.R2/

�3
.

1

˛2

�X
�

kf�k
2
L1.R2/

�2X
�

kf�k
2
L2.R2/;

because ˛ � max�;� 0 jf�f� 0 j1=2 and jf� j . R1=2 max� kf�k1 for each � . The displayed
inequality is useful because we will encounter inequalities of the form

˛4jU˛ \QRj � .main term/CR�50

on our way to proving Proposition 3.5.

3.2. Auxiliary functions

There are two places described in §2 that involve auxiliary bump functions, Definition 2.1
and (2.15), which we analyze carefully in this section. To formally carry out the pruning
process from f to a pruned version of f , we define ' QT�k

, and to define the high/low

decomposition of gk , define �Vk . We control the L1 norms of these functions in Lemmas
3.10 and 3.14. This is important for achieving the .logR/c upper bound in Proposition 3.5.

Notation 3.8. Let ı D 1
logR .

Definition 3.9. Let � 2 R and G0.�/ D e�.logR/1=2�2 . Define the Gaussian-like function

G.�/ D G0.�/�Œ�1;1�nŒ�ı;ı�.�/CG0.ı/�Œ�ı;ı�.�/ �G0.1/�Œ�1;1�.�/:

Define � W R2 ! R by
�.�1; �2/ D G.0/

�2G.�1/G.�2/:

For each k, define
�k.�/ D �.4R

1=2

kC2
�/: (3.1)

Note that �k.�/ D 1 for all j�i j � 1
4 logRR

�1=2

kC2
and �k is supported in j�i j � 1

4
R
�1=2

kC2
.

Lemma 3.10. Let R > 0 be larger than a certain absolute constant. Then for each k,

k�

V

kk1 � 1C
c

logR
:

Proof. It suffices to show the claim for � since �k is equal to � composed with an affine
transformation. Since G.0/�1 D .eı

3=2
� e�ı

�1=2
/�1 � 1C 1

logR and Fourier transforms
of products factor, it suffices to show that

kG

V

k1 � 1C
c

logR
:
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Define the functions

G1.�/ D .G0.�/ �G0.ı//�Œ�ı;ı�.�/;

G2.�/ D G0.�/�Œ�1;1�c .�/CG0.1/�Œ�1;1�.�/

and note that
G.�/ D G0.�/ �G1.�/ �G2.�/:

Since G

V

0 � 0, kG

V

0k1 D kG0k1 D 1, which means it suffices to show that

kG

V

1k1 .
1

logR
and kG

V

2k1 .
1

logR
:

Observe that G1 and G2 are continuous, L1 functions (though not differentiable at a few
points). G1 is Riemann-integrable, so for each x 6D 0, we can use integration by parts to
compute xG

V

1.x/ as the inverse Fourier transform of a function. For G2, the same is true
after a limiting argument to approximate G2 by Riemann-integrable functions.

First, we have

kG

V

1k1 D k.1C x
2/�1=2.1C x2/1=2G

V

1k1

. k.1C x2/1=2G

V

1k2

. kG1k2 C kxG

V

1k2

. .ıj1 �G0.ı/j
2/1=2 C .logR/1=2

�Z
Œ�ı;ı�

j�e�.logR/1=2�2
j
2 d�

�1=2
. ı1=2.logR/1=2ı2 C .logR/1=2ı3=2 �

1

logR
:

Similarly,

kG

V

2k1 . kG2k2 C kxG

V

2k2

. G0.1/C .logR/1=2
�Z

Œ�1;1�c
j�e�.logR/1=2�2

j
2 d�

�1=2
. e�.logR/1=2

C .logR/1=8
�Z

Œ�ı�1=4;ı�1=4�c
e��

2=2 d�

�1=2
�

1

logR
:

Definition 3.11. Let � W R2! R be given by �.�/ D �.ı�/ where � is defined in Defini-
tion 3.9 and ı D 1

logR . For each scale Rk and each � R�1=2
k
�R�1

k
-rectangle �k , let

��k D � ı `�k

where `�k is an affine transformation mapping the smallest ellipse containing 2�k to B.

Definition 3.12. If � is a symmetric convex set with center C.�/, then the dual of � is
defined as

�� D ¹x W jx � .y � C.�//j � 1; 8y 2 �º:
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Definition 3.13. For each R�1=21 �R�11 -rectangle �1, let

' QT�1
.x/ D sup

y2xC.logR/11��
1

j�

V

�1
.y/j:

For each 2 � k � N and each R�1=2
k
�R�1

k
-rectangle �k , define ' QT�k

inductively by

' QT�k
.x/ D max

�
sup

y2xC.logR/11��
k

j�

V

�k
.y/j; ' QT�k�1

� j�

V

k�1j.x/
�
;

where �k�1 is the R�1=2
k�1
�R�1

k�1
-rectangle containing �k .

Lemma 3.14. For each k and �k ,

k' QT�k
kL1.R2/ . .logR/Qc :

The implicit constant is uniform in k and �k . The letter Qc means a uniform constant and
varies from place to place in later lemmas.

Proof. If k D 1, then k' QT�1
kL1.R2/ . .logR/Qc is clear from the definition. Recall the

definition of ' QT�k
for k � 2 to be

' QT�k
.x/ D max

�
sup

y2xC.logR/11��
k

j�

V

�k
.y/j; ' QT�k�1

� j�

V

k�1j.x/
�
;

where �k�1 is the R�1=2
k�1
�R�1

k�1
-rectangle containing �k . Let Ak be the set on which

sup
y2xC.logR/11��

k

j�

V

�k
.y/j � ' QT�k�1

� j�

V

k�1j.x/

and let Bk be the complement of Ak . Note that

k' QT�k
kL1.R2/ D

 sup
y2�C.logR/11��

k

j�

V

�k
.y/j


L1.Ak/

C
' QT�k�1 � j�Vk�1jL1.Bk/

If  sup
y2�C.logR/11��

k

j�

V

�k
.y/j


L1.Ak/

� ı
' QT�k�1 � j�Vk�1jL1.Bk/;

then

k' QT�k
kL1.R2/ � 2ı

�1
 sup
y2�C.logR/11��

k

j�

V

�k
.y/j


L1.R2/

D 2ı�1
 sup
y2�CB.0;.logR/11/

j�

V

.y/j

L1.R2/

. .logR/c

since j�Vj is bounded by .logR/c and is rapidly decaying outside the ball of radius .logR/c

centered at the origin.
If not, then

k' QT�k
kL1.R2/ � .1C ı/

' QT�k�1 � j�Vk�1jL1.Bk/:
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By Young’s convolution inequality and Lemma 3.10,

k' QT�k
kL1.R2/ � .1C ı/

2
k' QT�k�1

kL1.R2/:

If we iterate this argument for � N . logR
log logR times, then we also obtain the desired

conclusion.

Definition 3.15 (Gaussian partition of unity). First define

 0.x/ D c

Z
Q

g.x � y/ dy

where Q is the unit cube Œ�1=2; 1=2�2, g.x/ D e�jxj
2
, and c D .

R
g/�1. Note that for

every x, X
n2Z2

 0.x � n/ D
X
n2Z2

Z
nCQ

g.x � y/ dy D 1:

Let T be any rectangle in R2. Let A W R2 ! R2 be an affine transformation mapping
T to Q. Define the Gaussian bump function adapted to T  T by

 T .x/ D cjT j
�1

Z
T

g.A.x � y// dy:

(There are several different affine transformations A taking T to Q, but they all give the
same function  T because the Gaussian g and the area form are invariant under the affine
automorphisms of Q.)

If T is a set of congruent rectangles T tiling the plane, thenX
T2T

 T .x/ D 1;

and so the Gaussians ¹ T ºT2T form a partition of unity.
The Fourier transform of  T is

y T .�/ D cjT j
�1

Z
T

jAj�1bg..A�1/t�/e�2�i��ydy
and satisfies

j y T .�/j � jT je
�j.A�1/t �j2 :

If x 62 100
p

logRT , then

j T .x/j � ce
� infy2T jx�yj2 � R�1000:

If � 62 100
p

logRT �, then
j y T .�/j � cjT jR

�104 :

In the rest of the paper, a function being essentially supported in S means that j � j �
R�1000 off of S and the function rapidly decays away from S . A weight function wS
being localized to S means that wS � 1 on S and jwS j � R�1000 off of .logR/S .
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3.3. Pruning wave packets

We define pruned versions of the function f and the intermediate square functionsP
�k
jf�k j

2. The pruning process depends on the parameter ˛ > 0 which measures the
bilinearized version of f , and a new parameter r > 0 (defined below) related to the final
square function

P
� jf� j

2.

Definition 3.16. Define
gN D

X
�

jf� j
2
� ' QT�

where ' QT� is defined in Definition 3.13 for � D �N .

Definition 3.17. Define
r D kgN kL1.R2/: (3.2)

Note that
r . .logR/Qc

X
�

kf�k
2
L1.R2/ (3.3)

for the constant Qc in Lemma 3.14.

Notation 3.18. The parameter � measures the ratio between r and ˛:

� D .logR/m
r

˛
(3.4)

where the exponent m is sufficiently large as required by the proof of Lemma 3.23 and
Lemma 3.28 and Proposition 3.5.

Definition 3.19. For each rectangle �k , we write T�k for a translate of .logR/9��
k

. We let
T�k be a tiling of the plane by rectangles T�k . In Definition 3.15, we defined a Gaussian
partition of unity associated to such a tiling:X

T�k2T�k

 T�k .x/ D 1:

Definition 3.20 (Defining fk;�k with respect to �). Let

T�N�1;� D ¹T�N�1 2 T�N�1 W k T�N�1f�N�1kL1.R2/ � �º:

Define
fN�1;�N�1 D

X
T�N�12T�N�1;�

 T�N�1f�N�1

and note that
ess sup yfN�1;�N�1 � .1C .logR/�8/�N�1:

Also define
fN�1;�N�2 D

X
�N�1��N�2

fN�1;�N�1 :
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Now we define fk;�k and fk;�k�1 , starting with k D N � 2 and going down to k D 1.
Let T�k ;� D ¹T�k 2 T�k W k T�k fkC1;�kkL1.R2/ � �º and define

fk;�k D
X

T�k2T�k;�

 T�k fkC1;�k ; (3.5)

fk;�k�1 D
X

�k��k�1

fk;�k : (3.6)

Lemma 3.21 (Properties of fk;�k ). (1) jfk;�k .x/j � jfkC1;�k .x/j:

(2) kfk;�kkL1.R2/ � C.logR/2�CR�1000.

(3) ess supp yfk;�k � .1C .logR/�8/�k :

(4) ess supp yfk;�k�1 � .1C .logR/�10/�k�1:

Proof. The first property follows straight from the definition.
The second property follows because

P
T�k2T�k

 T�k is a partition of unity, and

fk;�k D
X

T�k2T�k;��T�k

 T�k fkC1;�k :

Now consider the L1 bound in the third property. We write

fk;�k .x/ D
X

T�k2T�k;�; x2.logR/T�k

 T�k fkC1;�k C
X

T�k2T�k;�; x….logR/T�k

 T�k fkC1;�k :

The first sum has at most C.logR/2 terms, and each term has norm bounded by � by the
definition of T�k ;�. By the normalization in Note 3.7, it follows easily that

jfkC1;�k .x/j � R
100: (3.7)

But if x … .logR/T�k , then  T�k .x/ � e
�.logR/2 � R�2000. Moreover, as T�k gets fur-

ther away from x,  T�k .x/ is rapidly decaying. Therefore, the second sum has norm at
most R�1000.

The fourth and fifth properties depend on the essential Fourier support of  T�k (and
on similar trivial bounds as (3.7)). Recall from Definition 3.19 that T�k is a translate
of .logR/9��

k
. Because of this factor .logR/9, the essential Fourier support of  T�k is

contained in 100
p

logR.logR/�9�k (see Definition 3.15).
Initiate a 2-step induction with base case k D N : fN;� has essential Fourier support

in .1C .logR/�8/� because of the above definition. Then

fN;�N�1 D
X

���N�1

fN;�

has essential Fourier support in
S
���N�1

.1 C .log R/�8/� , which is contained
in .1 C .log R/�10/�N�1. Since each  T�N�1 has essential Fourier support in
100
p

logR .logR/�9�N�1,

fN�1;�N�1 D
X

T�N�12T�N�1;�

 �N�1fN;�N�1
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has essential Fourier support in�
100

p
logR .logR/�9 C 1C .logR/�10

�
�N�1 � .1C .logR/�8/�N�1:

Iterating this reasoning until k D 1 gives (3) and (4).

Definition 3.22 (Definition of gk). For k D 1; : : : ; N � 1, define

gk WD
X
�k

jfkC1;�k j
2
� ' QT�k

where ' QT�k
is specified in Definition 3.13. For k D N � 1, the notation fN;�N�1

means f�N�1 .

The following lemma shows that the difference between the kth and .kC 1/st versions
of f� is controlled by ��1gk . We eventually apply this lemma for x 2 �k , defined in
Definition 3.27, where we know that gk � r . We will see that on this set, the differences
between the different versions of f� are negligible.

Lemma 3.23. Suppose � is a ��1=2 � ��1-rectangle in the ��1-neighborhood of P1, at
any scale 1 � � � R. For k D 1; : : : ; N � 1, if Rk � �,ˇ̌̌X

�k��

fkC1;�k .x/ �
X
�k��

fk;�k .x/
ˇ̌̌

. .logR/Qc��1gk.x/CR�1000:

Proof. In the following proof, k � k1 means k � kL1.R2/. By (3.5),X
�k��

fkC1;�k .x/ �
X
�k��

fk;�k .x/ D
X
�k��

X
T2T�k

k T fkC1;�k k1>�

 T .x/fkC1;�k .x/:

Recall that  T has Gaussian decay off of T . It follows from (3.7) thatˇ̌̌X
�k��

X
T2T�k

k T fkC1;�k k1>�

x 62.logR/T

 T .x/fkC1;�k .x/
ˇ̌̌
� R�1000:

Then we haveˇ̌̌X
�k��

X
T2T�k

k T fkC1;�k k1>�

x2.logR/T

 T .x/fkC1;�k .x/
ˇ̌̌
� ��1

X
�k��

X
T2T�k

k T fkC1;�k k1>�

x2.logR/T

k T fkC1;�kk
2
1:

The number of terms in the inner sum is . .logR/2. Let T�k .x/ be the unique rec-
tangle in the tiling T�k that includes x. If x 2 .logR/T , then  T is essentially supported
in 10.logR/T�k .x/, and so we haveX
�k��

X
T2T�k

k T fkC1;�k k1>�

x2.logR/T

k T fkC1;�kk
2
1 . .logR/2

X
�k��

kfkC1;�kk
2
L1.10.logR/T�k .x//

CR�1000:
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Recall by Lemma 3.21 that the Fourier transform of fkC1;�k is essentially supported
in .1C .logR/�10/�k , so for ��k from Definition 3.11,

jfkC1;�k .y/j � jfkC1;�k � �

V

�k
.y/j CR�1000:

Now we defined ' QT�k
.z/ to be at least supzC.logR/11��

k
j�

V

�k
j, so

kfkC1;�kkL1.10.logR/T�k .x//
� jfkC1;�k j � ' QT�k

.x/CR�1000: (3.8)

Therefore,ˇ̌̌X
�k��

X
T2T�k

k T fkC1;�k k1>�

x2.logR/T

 T .x/fkC1;�k .x/
ˇ̌̌

. .logR/2��1
X
�k��

�
jfkC1;�k j � ' QT�k

.x/CR�1000
�2
CR�1000:

Since ��1 D ˛
r
.logR/�m . R1=2 (see the last line of Note 3.7),ˇ̌̌X

�k��

X
T2T�k

k T fkC1;�k k1>�

x2.logR/T

 T .x/fkC1;�k .x/
ˇ̌̌

. .logR/2��1
X
�k��

�
jfkC1;�k j � ' QT�k

.x/
�2
CR�1000:

Applying Cauchy–Schwarz to the integral in the convolution shows that the above is

� .logR/2��1
X
�k��

jfkC1;�k j
2
� ' QT�k

.x/k' QT�k
kL1 CR

�1000:

Finally, note that k' QT�k
kL1 � .logR/Qc by Lemma 3.14 and thatX

�k��

jfkC1;�k j
2
� ' QT�k

.x/ � gk.x/ (3.9)

by Definition 3.22.

3.4. High/low lemmas for gk

Definition 3.24 (Definition of g`
k

and gh
k

). For kD 1; : : : ;N � 1 and �k from (3.1), define

g`k WD gk � �

V

k and ghk WD gk � g
`
k :

Lemma 3.25 (Low lemma).

jg`kj � gkC1 CR
�1000:
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Proof. Write
jg`k.x/j D

ˇ̌̌X
�k

jfkC1;�k j
2
� ' QT�k

� �

V

k.x/
ˇ̌̌

where �k is defined in Definition 3.9. For each �k we have

jfkC1;�k j
2
� �

V

k.x/ D

Z
yfkC1;�k �

yxfkC1;�k .�/e
2�ix���k.�/ d�

D

X
�kC1;�

0
kC1
��k

Z
yfkC1;�kC1 �

yxfkC1;� 0
kC1

.�/e2�ix���k.�/ d�:

Now, yfkC1;�kC1 �
yxfkC1;� 0

kC1
is essentially supported in .1C .logR/�8/.�kC1 � � 0kC1/.

By the well-spaced property, we know that this set does not intersect the ball of radius
1
2
R
�1=2

kC2
(the support of �k) unless �k D � 0k . Therefore, up to errors of size R�1000, we

have

jfkC1;�k j
2
� �

V

k.x/ D
X

�kC1��k

Z
yfkC1;�kC1 �

yxfkC1;�kC1.�/e
2�ix���k.�/ d�

D

X
�kC1��k

jfkC1;�kC1 j
2
� �

V

k.x/:

By Lemma 3.21, jfkC1;�kC1 j � jfkC2;�kC1 j, and soˇ̌
jfkC1;�k j

2
� �

V
k.x/

ˇ̌
�

X
�kC1��k

jfkC2;�kC1 j
2
� j�

V
kj.x/:

Plug this back into the definition of g`
k

to get

jg`k.x/j �
X
�k

ˇ̌
jfkC1;�k j

2
� �

V

k

ˇ̌
� ' QT�k

�

X
�kC1

jfkC2;�kC1 j
2
� j�

V

kj � ' QT�k
:

Now, ' QT�kC1
was defined in Definition 3.13 so that when �kC1 � �k ,

j�

V

kj � ' QT�k
� ' QT�kC1

:

Plugging that in again, we get

jg`kj �
X
�kC1

jfkC2;�kC1 j
2
� ' QT�kC1

D gkC1 CR
�1000:

Lemma 3.26 (High lemma).Z
jghk j

2 . .logR/Qc
Z X

�k

jfkC1;�k j
4
CR�1000:

Proof. By Definitions 3.22 and 3.24,Z
jghk j

2
D

X
�k

X
� 0
k

Z
.jfkC1;�k j

2/^ b' QT�k .1 � �k/.jfkC1;� 0k j2/^ b' QT�0
k

.1 � �k/:
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The Fourier transform of jfkC1;�k j
2 is essentially supported in 2.�k � �k/. Recall also

from Definition 3.9 that 1� �k is supported where j�j � 1
4 logRR

�1=2

kC2
. The set 2.�k � �k/ n

B. 1
4 logRR

�1=2

kC2
/ overlaps at most � .logR/R1=2

kC2
=R

1=2

k
D .logR/13 many of the sets

2.� 0
k
� � 0

k
/ n B. 1

4 logRR
�1=2

kC2
/. Thus applying Cauchy–Schwarz to the integral in the con-

volution, we getZ ˇ̌
ghk
ˇ̌2 . .logR/Qc

0

Z X
�k

ˇ̌
jfkC1;�k j

2
� ' QT�k

ˇ̌2
CR�1000

. .logR/Qc
0

Z X
�k

k' QT�k
k
2
L1.R2/

jfkC1;�k j
4
CR�1000

. .logR/Qc
00

Z X
�k

jfkC1;�k j
4
CR�1000:

where we use k' QT�k
kL1.R2/ . .logR/Qc (by Lemma 3.14).

3.5. The sets �k

In this subsection, we will decompose the starting setQR into .QR \L/[ .QR \�1/[
� � � [ .QR \�N�1/. On the set �k , the bilinearized version of f is basically the same
as for the kth pruned version of f (see Lemma 3.28) and gk is high-dominated (see
Lemma 3.29).

Definition 3.27 (Definition of �k). Recall the parameter r > 0 defined in (3.2). Let
�N�1 be the union of pairwise disjoint R1=2N�1-cubes QN�1 with non-empty intersection
with QR and satisfying

.1C ı/r CR�500 < kgN�1kL1..logR/9QN�1/:

We define�k for k DN � 2, then k DN � 3, down to k D 1. To define�k , partition
QR n .�N�1 t � � � t�kC1/ into R1=2

k
-cubesQk . Define�k to be the union ofQk in the

partition which satisfy

.1C ı/N�kr C .N � k/R�500 < kgkkL1..logR/9Qk/:

Also define
L WD QR n .�1 t � � � t�N�1/:

Recall that ı D 1
logR .

Lemma 3.28. Suppose � is a ��1=2 � ��1-rectangle in the ��1-neighborhood of P1, at
any scale 1 � � � R. For k D 1; : : : ; N � 1, if Rk � �,ˇ̌̌

f� .x/ �
X
�k��

fkC1;�k .x/
ˇ̌̌
� .logR/�10˛ CR�500 8x 2 U˛ \QR \�k :

Recall that f� D . yf �� /_.
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Proof. First note that for each l 2 ¹1; : : : ; N � 1º, by (3.6),X
�l��

fl;�l D
X

�l�1��

X
�l��l�1

fl;�l D
X

�l�1��

fl;�l�1 :

Then we may decompose the difference asˇ̌̌
f� �

X
�k��

fkC1;�k

ˇ̌̌
D

ˇ̌̌
f� �

X
���

fN;�

ˇ̌̌
C

ˇ̌̌ X
�N�1��

fN;�N�1 �
X

�N�1��

fN�1;�N�1

ˇ̌̌
C � � � C

ˇ̌̌ X
�kC1��

fkC2;�kC1 �
X

�kC1��

fkC1;�kC1

ˇ̌̌
:

By Lemma 3.23, this is bounded by

.logR/Qc��1.gN .x/C gN�1.x/C � � � C gkC1.x//C .N � k/R�1000:

Finally, use the definition of �k for k � N � 1 to find thatˇ̌̌
f� .x/�

X
�k��

fkC1;�k

ˇ̌̌
. .logR/Qc.N � k/.1C ı/N�k��1r C .N � k/2R�500: (3.10)

Recall that N � logR, .1C ı/N � 1, and recall that � was defined in Notation 3.18 by

� D .logR/mr˛�1:

By choosing m sufficiently large, we can guarantee that the main term on the right-hand
side of (3.10) is bounded by .logR/�10˛.

Lemma 3.29 (gk is high-dominated on �k). Let k D 1; : : : ; N � 1. For each R1=2
k

-cube
Qk � �k ,

kgkkL1..logR/9Qk/ � 2.logR/kghkkL1..logR/9Qk/:

Proof. Let k 2 ¹1; : : : ; N � 1º. By definition of �k ,

.1C ı/N�kr C .N � k/R�500 < kgkkL1..logR/9Qk/: (3.11)

Note that

kgkkL1..logR/9Qk/ � kg
`
kkL1..logR/9Qk/ C kg

h
kkL1..logR/9Qk/

and suppose that
kghkkL1..logR/9Qk/ � ıkg

`
kkL1..logR/9Qk/: (3.12)

Then by Lemma 3.25,

kgkkL1..logR/9Qk/ � .1C ı/kg
`
kkL1..logR/9Qk/

� .1C ı/kgkC1kL1..logR/9Qk/ C .1C ı/R
�1000: (3.13)
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By the definition of �k and of r ,

kgkC1kL1..logR/9Qk/ � .1C ı/
N�k�1r C .N � k � 1/R�500:

This combined with (3.13) gives

kgkkL1..logR/9Qk/ � .1C ı/
N�kr C .N � k/R�500;

where we have used .1C ı/.N � k � 1/R�500 C .1C ı/R�1000 � .N � k/R�500 since
N . logR=log logR. This contradicts (3.11) and means that (3.12) must be false, so the
conclusion follows.

3.6. Proof of Proposition 3.5

Recall from Note 3.7 that we have replaced f by a constant multiple cf so that
max� kf�kL1.R2/ D 1.

The first step of the proof of Proposition 3.5 involves an application of a local bilinear
restriction theorem. We will use the following version.

Theorem 3.30 (Local bilinear restriction). Let �k and � 0
k

be non-adjacent�R�1=2
k
�R�1

k
-

rectangles in theR�1
k

-neighborhood of P1. Suppose j � k and f 2 � has Fourier support
in NR�1

j
.P1/. Suppose T is in the range Rj � T > 10.logR/R1=2j =dist.�k ; � 0k/, and that

QT is a cube of sidelength T . ThenZ
QT

jf�kf� 0k
j
2 .

.logR/4T �2

dist.�k ; � 0k/

Z X
�j��k

jf�j j
2!QT �

Z X
� 0
j
�� 0
k

jf�j j
2!QT CR

�1000

for a Gaussian weight function !QT localized to .logR/QT and with Fourier transform
essentially supported in the ball of radius 2.logR/T �1 centered at the origin.

Proof. Let �QT be a Gaussian bump function adapted to QT as in Definition 3.15, so the
Fourier transformb�QT is essentially supported in a ball of radius 2.logR/T �1. ThenZ

QT

jf�kf� 0k
j
2 .

Z ˇ̌̌ X
�j��k ; �

0
j
�� 0
k

f�j f� 0j

ˇ̌̌2
�QT

.
Z X

�j��k ; �
0
j
�� 0
k

jf�j f� 0j
j
2�QT CR

�1000:

The reason for the last inequality is that for a fixed pair .�j ; � 0j /, the number of pairs
.� 00j ; �

000
j / such that

.�j C �
0
j C B2.logR/T�1/ \ .�

00
j C �

000
j C B2.logR/T�1/ ¤ ; (3.14)

is at most O.1/. Here we use the fact that T � 10.logR/R1=2j =dist.�k ; � 0k/. For more
details of checking (3.14), see the appendix.
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It suffices to show thatZ
jf�j f� 0j

j
2�QT .

.logR/4T �2

dist.�k ; � 0k/

Z
jf�j j

2!QT

Z
jf�j j

2!QT :

For a translate T�j of ��j and a translate T� 0
j

of � 0�j , let cT�j D maxx2T�j jf�j .x/j
2 and

cT
�0
j

D maxx2T
�0
j

jf� 0
j
j2.x/. We consider only those T�j and T� 0

j
intersecting .logR/QT .

Since T�j and T� 0
j

have angle � dist.�k ; � 0k/, we have

jT�j \ T� 0j
\ .logR/QT j � Rj =dist.�k ; � 0k/;

while jT�j \ .logR/QT j & R
1=2
j T . Consequently,Z

jf�j f� 0j
j
2�QT �

Z
.logR/QT

jf�j f� 0j
j
2
CR�1000

�

Z
.logR/QT

X
T�j

X
T
�0
j

cT�j �T�j � cT�0
j

�T
�0
j

CR�1000

.
T �2

dist.�k ; � 0k/

Z
.logR/QT

X
T�j

cT�j �T�j �

Z
.logR/QT

X
T
�0
j

cT
�0
j

�T
�0
j

CR�1000:

The next step is to show thatZ
.logR/QT

X
T�j

cT�j �T�j . .logR/2
Z
jf�j j

2wQT CR
�1000: (3.15)

The Fourier transform of jf�j j
2 is supported on Q�j;0D �j C .��j /, which is approximately

an R�1=2j � R�1j -rectangle. Let
P
Q�j
�Q�j be a Gaussian partition of unity for ¹Q�j ºQ�j kQ�j;0 .

Let ��j D
P
Q�j�.logR/Q�j;0

�Q�j . Then j��j � �Q�j;0 j.�/ � R
�1000 for � 2 Q�j;0 and jf�j j

2 D

jf�j j
2 �b��j CO.R�1000/.

Let  �j .x/ D maxy2xCT�j �T�j j
b��j j. ThenX

T�j

cT�j �T�j � jf�j j
2
�  �j :

We finish the proof since  �j � �.logR/QT . .logR/2wQT C R
�1000 for a Gaussian

bump function wQT localized at .logR/QT .

Proof of Proposition 3.5. It suffices to bound jU˛ \ �kj for k D 1; : : : ; N � 1 and
jU˛ \ Lj since there are . logR of these sets and jU˛ \QRj �

PN�1
kD1 jU˛ \ �kj C

jU˛ \ Lj.
For k D 1; : : : ; N � 1, by Lemma 3.28, if x 2 U˛ \�k , then

max
�;� 0 non-adj

jf� .x/f� 0.x/j � max
�;� 0 non-adj

jfkC1;� .x/f� 0.x/j C .logR/�10˛jf� 0.x/j CR�500;



Improved decoupling for the parabola 27

where fkC1;� D
P
�k��

fkC1;�k . By the definition of U˛ (Definition 3.1), jf� 0.x/j �
.logR/9˛, and so

max
�;� 0 non-adj

jf� .x/f� 0.x/j � max
�;� 0 non-adj

jfkC1;� .x/f� 0.x/j C .logR/�1˛2 CR�500

� max
�;� 0 non-adj

jfkC1;� .x/fkC1;� 0.x/j C .logR/�1˛2

C .logR/�10˛jfkC1;� .x/j C 2R�500:

Using the definition of U˛ as above as well as Lemma 3.28, it follows that jfkC1;� .x/j �
2.logR/9˛, and so altogether

max
�;� 0 non-adj

jf� .x/f� 0.x/j � max
�;� 0 non-adj

jfkC1;� .x/fkC1;� 0.x/j C 3.logR/�1˛2 C 2R�500:

The R�500 error term is negligible given our normalization, as explained in Note 3.7.
As x 2 U˛ , max�;� 0 non-adj jf� .x/f� 0.x/j � ˛

2, and so max�;� 0 non-adj jfkC1;� .x/fkC1;� 0.x/j

� ˛2 as well. Therefore

˛4jU˛ \�kj .
 max
�;� 0 non-adj

jfkC1;�fkC1;� 0 j
1=2
4
L4.U˛\�k/

(3.16)

where � and � 0 are non-adjacent � .logR/�6 � .logR/�12-rectangles. We wish to apply
the bilinear restriction theorem above, but the functions fkC1;�k are only essentially sup-
ported in � �k . This just means that we have an error term of R�1000 which is negligible
given our normalization, as explained in Note 3.7.

For each Qk � �k ,max
�;� 0
jfkC1;�fkC1;� 0 j

1=2
4
L4.Qk/

�

X
�;� 0

non-adj

Z
Qk

jfkC1;�fkC1;� 0 j
2

(Theorem 3.30) . jQkj�1
�Z X

�k

jfkC1;�k j
2! QQk

�2
CR�1000

. jQkj�1
�Z

gk! QQk

�2
CR�1000jQkj CR

�1000

where w QQk is a weight function localized to .logR/8Qk and the final inequality follows
from (3.8) and (3.9) in the proof of Lemma 3.23.

By Lemma 3.29 and the decay properties of ! QQk ,Z
gk! QQk

. .logR/18kgkkL1..logR/9Qk/jQkj CR
�500

. .logR/19kghkkL1..logR/9Qk/jQkj CR
�500

. .logR/20kghkkL1.WQk / CR
�500

. .logR/30kghkkL2.WQk /jQkj
1=2
CR�500
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where WQk is a Gaussian weight function localized to � .logR/9Qk coming from the
locally constant property (see (3.15)). Use this in the previous displayed math and add up
the contributions from each Qk to obtainmax

�;� 0
jfk;�fk;� 0 j

1=2
4
L4.�k/

. .logR/60
Z
jghk j

2!�k (3.17)

where !�k D
P
Qk
WQk . Note that !�k . 1 and by the high lemma (Lemma 3.26),Z
jghk j

2!�k . .logR/Qc
00

Z X
�k

jfkC1;�k j
4
CR�1000:

Then fkC1;�k D
P
�kC1��k

fkC1;�kC1 , soZ X
�k

jfkC1;�k j
4
�
R
3=2

kC1

R
3=2

k

Z X
�kC1

jfkC1;�kC1 j
4:

By Lemma 3.21, we have kfkC1;�kC1kL1 � C.logR/2�C R�1000. The R�1000 error
term is negligible as explained in Note 3.7, and so we essentially haveZ X

�k

jfkC1;�k j
4
� .logR/4�2

Z X
�kC1

jfkC1;�kC1 j
2:

Finally, we have to carefully unwind the definition of fk;�k and fk;�k�1 to relate this
last quantity to the original f� :Z X

�kC1

jfkC1;�kC1 j
2
�

X
�

Z
jf� j

2
CR�500: (3.18)

First we recall by Lemma 3.21 that jfkC1;�kC1.x/j � jfkC2;�kC1.x/j, and soX
�kC1

Z
jfkC1;�kC1 j

2
�

X
�kC1

Z
jfkC2;�kC1 j

2 (3.19)

Next, by Definition 3.20, fkC2;�kC1 D
P
�kC2��kC1

fkC2;�kC2 , and soX
�kC1

Z
jfkC1;�kC1 j

2
�

X
�kC1

Z ˇ̌̌ X
�kC2��kC1

fkC2;�kC2

ˇ̌̌2
: (3.20)

By Lemma 3.21, the Fourier transform of fkC2;�kC2 is essentially supported in the set

.1C .logR/�8/�kC2. Since distinct �kC2 and � 0
kC2

are � 1
2
R
�1=2

kC3
-separated, these sets

are disjoint. By orthogonality, we getX
�kC1

Z ˇ̌̌ X
�kC2��kC1

fkC2;�kC2

ˇ̌̌2
�

X
�kC2

Z
jfkC2;�kC2 j

2
CR�500: (3.21)

Now we repeat the reasoning in inequalities (3.19)–(3.21) at many scales to conclude
that



Improved decoupling for the parabola 29

X
�kC1

Z ˇ̌̌ X
�kC2��kC1

fkC2;�kC2

ˇ̌̌2
�

X
�kC2

Z
jfkC2;�kC2 j

2

�

X
�kC2

Z
jfkC3;�kC2 j

2

�

X
�kC3

Z
jfkC3;�kC3 j

2

� � �

�

X
�

Z
jfN;� j

2
�

X
�

Z
jf� j

2:

In the above sequence of inequalities, we neglected to include an R�500 added error term
in each step due to the difference between “essential support” and “actual support.” These
error terms are all negligible according to Note 3.7.

The conclusion of this argument is that for k D 1; : : : ; N � 1,

˛4jU˛ \�kj . .logR/Qc
0 r2

˛2

X
�

kf�k
2
L2.R2/:

Finally, we check that this indeed gives the conclusion of Proposition 3.5. Recall that
gN .x/ D

P
� jf� j

2 � ' QT�
. By Lemma 3.14, k' QT� kL1 � .logR/c . Thus for each � and

x 2 .logR/2QN (where QN \�N ¤ ;),

jf� j
2
� ' QT�

.x/ . .logR/Qckf�k2L1.R2/ CR
�1000:

It follows that r . .logR/Qc
P
� kf�k

2
L1.R2/

C R�1000. Plugging this in gives the con-
clusion of Proposition 3.5.

Finally, it remains to bound jU˛ \ Lj. The first step is going from f to f1 using
Lemma 3.28 (the argument for �1 in (3.16) holds for L as well):

˛6jU˛ \ Lj .
Z
U˛\L

max
�;� 0
jf1;�f1;� 0 j

3
CR�1000

. .logR/c
Z
U˛\L

�X
�1

jf1;�1 j
2
�3
CR�1000

(Lemma 3.21) . .logR/c
Z
U˛\L

�X
�1

jf2;�1 j
2
�3
CR�1000

� .logR/c
Z
U˛\L

g21

�X
�1

jf2;�1 j
2
�
CR�1000

where the last inequality is due to (3.8). Then by the definition of L,

kg1kL1.U˛\L/ . Cr CNR�500:

Finally, by (3.18), Z X
�1

jf2;�1 j
2
�

Z X
�

jf� j
2
CR�500:



L. Guth, D. Maldague, H. Wang 30

4. Proof of Theorem 1.2: the general case

In the last section, we proved Proposition 3.5, which establishes our main theorem in
the broad, well-spaced case. In this section, we prove Theorem 1.2 in full generality. We
use Proposition 3.5 as a black box, and then we remove the broad hypothesis by using a
broad/narrow analysis, and we remove the well-spaced hypothesis by a random sampling
argument.

4.1. Removing the broad hypothesis

The following proposition uses a broad/narrow analysis to prove an upper bound for
kf kL6.QR/ using Proposition 3.5.

Proposition 4.1. There exist c; C 2 .0;1/ such that for all well-spaced collections ‚
and f 2 � with Fourier support in

S
��‚ � ,

kf k6
L6.QR/

� C.logR/c
�X
�

kf�k
2
L1.R2/

�2X
�

kf�k
2
L2.R2/:

First we prove a few technical lemmas.

Lemma 4.2 (Narrow lemma). Suppose that Q�k is an arc of length R�1=2
k

� `. Q�k/ �

3R
�1=2

k
. Let ¹�kC1º be a partition of Q�k into R�1=2

kC1
-arcs. If x satisfies

jfQ�k .x/j >
.logR/2R1=2

kC1

R
1=2

k

max
�kC1;�

0
kC1

non-adj

jf�kC1.x/f� 0kC1
.x/j1=2; (4.1)

then there exists an arc Q�kC1 such that `. Q�kC1/ D 3R
�1=2

kC1
and

jfQ�k .x/j �

�
1C

1

logR

�
jfQ�kC1.x/j:

Proof. Write fQ�k D
P
�kC1

f�kC1 and let ��
kC1

index a summand satisfying

max
�kC1�Q�k

jf�kC1.x/j D jf��kC1
.x/j:

For each �kC1 that is non-adjacent to ��
kC1

,

jf�kC1.x/j � jf�kC1.x/f��kC1
.x/j1=2 <

R
1=2

k

.logR/2R1=2
kC1

jfQ�k .x/j

using the hypothesis (4.1) about x. Thenˇ̌̌
fQ�k .x/ �

X
�kC1 non-adj

to ��
kC1

f�kC1.x/
ˇ̌̌
>

�
1 � #�kC1

R
1=2

k

.logR/2R1=2
kC1

�
jfQ�k .x/j:
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The number of �kC1 is bounded by 3R1=2
kC1

=R
1=2

k
. Define Q�kC1 to be .��

kC1
/L [ �

�
kC1
[

.��
kC1

/R where .��
kC1

/L is the left neighbor of ��
kC1

and .��
kC1

/R is the right neighbor
of ��

kC1
.

Lemma 4.3 (Case 2 in the proof of Proposition 4.1). Suppose ��
k

is an �R�1=2
k
�R�1

k
-

rectangle in the R�1
k

-neighborhood of P1. ThenZ
H
��
k

jf��
k
j
6 . .logR/c

�X
����

k

kf�k
2
L1.R2/

�2 X
����

k

kf�k
2
L2.R2/

where

H��
k
D

°
x 2 QR W jf��

k
.x/j � .logR/8 max

�kC1;�
0
kC1

non-adj

jf�kC1.x/f� 0kC1
.x/j1=2;

.logR/�9
� X
�kC1��

�
k

jf�kC1.x/j
6
�1=6
� max
�kC1;�

0
kC1
���
k

non-adj

jf�kC1.x/f� 0kC1
.x/j1=2

±
:

Here �kC1 are R�1=2
kC1
�R�1

kC1
-rectangles.

Proof. Let .c; c2/ be the center of ��
k
\ P1. Define the affine map

`.�1; �2/ D
�
R
1=2

k
.�1 � c/; Rk.�2 � 2�1c C c

2/
�
: (4.2)

Then `.��
k
/ is contained in the .R=Rk/�1-neighborhood of P1. The images ¹`.�/º����

k

have the spacing property at scales RkC1=Rk ; : : : ; R=Rk . Define the function h as

yh D yf ı `�1

and note that for each R�1=2
l
�R�1

l
-rectangle �l � ��k ,

R
�3=2

k
h`.�l /..x//e

2�ix�.c;c2/
D f�l .x/

where `.�l / is approximately an .Rl=Rk/�1=2 � .Rl=Rk/�1-rectangle and

.x/ D

�
x1 C 2cx2

R
1=2

k

;
x2

Rk

�
:

In particular, Z
H
��
k

jf��
k
j
6
D R

�9C3=2

k

Z
.H

��
k
/

jh`.��
k
/.x/j

6: (4.3)

By dyadic pigeonholing, there exists ˛��
k
> 0 such that

kh`.��
k
/k
6
L6..H

��
k
//

/ ˛6
��
k

ˇ̌̌°
x 2 .H��

k
/ W max

�kC1;�
0
kC1
���
k

non-adj

jh`.�kC1/.x/h`.� 0kC1/
.x/j1=2 � ˛��

k

±ˇ̌̌
:
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Repeat the proof of Proposition 3.5 to obtain

kh`.��
k
/k
6
L6..H

��
k
//

. .logR/c
�X
����

k

kh`.�/k
2
L1.R2/

�2 X
����

k

kh`.�/k
2
L2.R2/: (4.4)

First observe that X
����

k

kh`.�/k
2
L2.R2/ . R

3�3=2

k

X
����

k

kf�k
2
L2.R2/:

Next, note that for each � � �k ,

kh`.�/k
2
L1.R2/ � R

3
kkf�k

2
L1.R2/:

These observations combined with (4.3) and (4.4) give the desired conclusion.

Proof of Proposition 4.1. Define an iteration using a broad/narrow argument.

Initial step: Define

S1 WD
°
x 2 X W jf .x/j � .logR/8 max

�;� 0 non-adj
jf� .x/f� 0.x/j

1=2;�X
�

jf� .x/j
6
�1=6
� .logR/9 max

�;� 0 non-adj
jf� .x/f� 0.x/j

1=2
±
: (4.5)

Define B1 D X n S1. Split the integral intoZ
X

jf j6 D

Z
S1

jf j6 C

Z
B1

jf j6: (4.6)

By the narrow lemma, if x 2B1 satisfies jf .x/j>.logR/8max�;� 0 non-adj jf� .x/f� 0.x/j
1=2,

then for a collection ¹���º of pairwise disjoint unions of three consecutive � ,

jf .x/j �

�
1C

1

logR

��X
���

jf���.x/j
6
�1=6

:

Alternatively, x 2 B1 satisfies

jf .x/j � .logR/8 max
�;� 0 non-adj

jf� .x/f� 0.x/j
1=2

but

.logR/�9
�X
�

jf� .x/j
6
�1=6

> max
�;� 0 non-adj

jf� .x/f� 0.x/j
1=2:

Putting this together means thatZ
B1

jf j6 �

�
1C

1

logR

�6 Z
B1

X
���

jf��� j
6
C

1

.logR/6

Z
B1

X
�

jf� j
6:
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Let ¹��º denote the collection ¹�º ifZ
B1

X
�

jf� j
6
�

Z
B1

X
���

jf��� j
6

and let it equal ¹���º otherwise. ThenZ
B1

jf� j
6
�

�
1C

2

logR

�6 Z
B1

X
��

jf�� j
6

(this just means we only have one finer scale to keep track of rather than two almost
equivalent scales). Summarizing all of the inequalities, we conclude that

kf kL6.X/ �

Z
S1

jf j6 C

�
1C

2

logR

�6X
��

Z
B1

jf�� j
6:

For each ��, further decompose B1 into

S�� D
°
x 2 B1 W jf��.x/j � .logR/8 max

�2;�
0
2
��� non-adj

jf�2.x/f� 02
.x/j1=2;� X

�2���

jf�2.x/j
6
�1=6
� .logR/9 max

�2;�
0
2
��� non-adj

jf�2.x/f� 02
.x/j1=2

±
where `.�2/D R

�1=2
2 . By analogous reasoning, we conclude this case with the inequality

kf k6
L6.X/

�

Z
S1

jf j6 C

�
1C

2

logR

�6X
��

Z
S��

jf�� j
6

C

�
1C

2

logR

�12X
��

Z
B��

X
��
2
��

jf�2 j
6

where B�� D B1 n S�� .

Step k (k � 2). The conclusion of the previous step is

kf k6
L6.X/

�

Z
S1

jf j6 C

�
1C

2

logR

�6X
��

Z
S��

jf�� j
6
C � � �

C

�
1C

2

logR

�6.k�1/ X
��
k�1

Z
S
��
k�1

jf��
k�1
j
6

C

�
1C

2

logR

�6k X
��
k�1

Z
B
��
k�1

X
��
k
���
k�1

jf��
k
j
6 (4.7)

where for each ��
k�1

, if ��
k�1
� ��

k�2
� � � � � ��2 � � then

B��
k�1
D B1 n .S1 [ S�� [ S��

2
[ � � � [ S��

k�1
/:
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For each ��
k
� ��

k�1
, define S��

k
to be the set°

x 2 B��
k�1
W jf��

k
.x/j � .logR/8 max

�kC1;�
0
kC1
���
k

non-adj

jf�kC1.x/f� 0kC1
.x/j1=2;

� X
�kC1��

�
k

jf�kC1.x/j
6
�1=6
� .logR/9 max

�kC1;�
0
kC1
���
k

non-adj

jf�kC1.x/f� 0kC1
.x/j1=2

±
where `.�kC1/ D R

�1=2

kC1
. Define B��

k
D B��

k�1
n S��

k
. By analogous arguments, we con-

clude that (4.7) holds with k replaced by k C 1.
Iterate this procedure until Step N � 1 where N � logR

log logR to obtain inequality (4.7)
for k D N . Since there are � logR=log logR terms in the right-hand side, it suffices
to consider cases where kf k6

L6.QR/
is bounded by logR times one of the terms on the

right-hand side. Note that the factors .1C 2
logR /

6k are . 1 for all k � N .

Case 1:
kf k6

L6.QR/
. .logR/

Z
S1

jf j6:

By the definition of S1 in (4.5),Z
S1

jf j6 � .logR/48
Z
S1

max
�;� 0
jf�f� 0 j

3:

Let Us D ¹x 2 S1 W max�;� 0 jf� .x/f� 0.x/j1=2 � R�10 max� kf�kL1º. Note thatZ
Us

max
�;� 0
jf�f� 0 j

3
� R�55 max

�
kf�k

6
L1.R2/

(Lemma 3.6) � R�55
�X
�

kf�k
2
L1.R2/

�2 Z X
�

jf� j
2;

which is the right-hand side in Proposition 4.1.
Then S1 nUs can be partitioned into . logR sets U˛ on which max�;� 0 jf�f� 0 j1=2 � ˛

with R�10 � ˛=max� kf�kL1.R2/ � R. By pigeonholing,Z
S1nUs

max
�;� 0
jf�f� 0 j

3 . .logR/
Z
S1\U˛

max
�;� 0
jf�f� 0 j

3
� .logR/˛6jS1 \ U˛j:

Then Proposition 3.5 applies to bound ˛6jS1 \ U˛j.

Case 2:
kf k6

L6.QR/
. .logR/

X
��
k

Z
S��k

jf��
k
j
6:

The sets S��
k

are contained in H��
k

from Lemma 4.3. Using Lemma 4.3, we getX
��
k

Z
S��k

jf��
k
j
6 .

X
��
k

.logR/c
�X
����

k

kf�k
2
L1.R2/

�2 X
����

k

kf�k
2
L2.R2/

� .logR/c
�X
�

kf�k
2
L1.R2/

�2X
�

kf�k
2
L2.R2/;

so we have the desired conclusion.
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Case 3:
kf k6

L6.QR/
. .logR/

X
��
N�1

Z
B
��
N�1

X
��
N
���
N�1

jf��
N
j
6:

The size of ��N is approximately the size of � (up to a factor of 3), so we may assume
��N D � . Then since the `6 norm is bounded by the `2 norm, the above inequality implies
that

˛6jU˛ \QRj . .logR/
Z
U˛\X

�X
�

jf� j
2
�3

. .logR/
�X
�

kf�k
2
L1.R2/

�2X
�

kf�k
2
L2.R2/:

4.2. Removing the well-spaced hypothesis

This section has been simplified following the suggestions of a helpful reviewer. We will
use the following lemmas to prove Theorem 1.2 in the following section.

Lemma 4.4. For each f 2 � with Fourier transform supported in NR�1.P
1/, there exists

a collection ‚ that is well-spaced at scale RN�1 such that�
1 �

1

logR

�
kf kL6.QR/ �

X
�2‚

f�


L6.QR/

:

Proof. Partition NR�1.P
1/ into a collection of� R�1=2 �R�1-rectangles ¹�º. Label the

R�1=2-arcs from left to right by �1; : : : ; �n, so n�R1=2. For each iD0; : : : ;b.logR/6c�1,
define H i by X

m�i mod b.logR/6c

f�m :

Then f D
P
iH

i where there are�R1=2=R1=2N�1D .logR/6 terms in the sum. Therefore,

f D
1

#i � 1

X
i

X
Qi 6Di

H
Qi

and so
kf kL6.QR/ �

#i
#i � 1

max
i

X
Qi 6Di

H
Qi

L6.QR/

:

Let ‚ be the collection of �m with m 6� i mod b.logR/6c for i achieving the maximum.

Lemma 4.5. For each f 2 � with Fourier transform supported in NR�1.P
1/, there exists

a well-spaced collection Q‚ such that

kf kL6.QR/ .
X
�2 Q‚

f�


L6.QR/

:
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Proof. Define an iterative procedure. Let FN D f . Apply Lemma 4.4 to FN to obtain
FN�1, which is well-spaced at scale RN�1.

Obtaining FN�k�1 (where k � 1) from FN�k: We have FN�k from the previous step;
it has the spacing property at scales RN�1; : : : ; RN�k . Furthermore,�

1 �
1

logR

�k
kf kL6.QR/ � kFN�kkL6.QR/: (4.8)

The � R�1=2
N�k

-arcs made up of unions of the � are defined by the previous steps. Label
them from left to right by �1; : : : ; �nk . For i D 0; : : : ; b.logR/6c � 1, define H i

N�k�1
byX

m�i mod b.logR/6c

.FN�k/�m :

Note that FN�k D
P
i H

i
N�k�1

, where there are � .logR/6 terms in the sum, and for
each � , .FN�k/� equals .H i

N�k�1
/� for exactly one i . Then

FN�k D
1

#i � 1

X
i

X
Qi 6Di

H
Qi
N�k�1

and
kFN�kkL6.QR/ �

#i
#i � 1

max
i

X
Qi 6Di

H
Qi
N�k�1


L6.QR/

:

Define FN�k�1 D
P
Qi 6Di H

Qi
N�k�1

where i achieves the maximum.
Iterate this procedure forN � 1 steps, until we obtain F1, which is well-spaced, along

with inequality (4.8) for k DN � 1. SinceN � logR
log logR ,

�
1� 1

logR

��N
� e

C
log logR . 1.

4.3. Proof of Theorem 1.2

We prove Theorem 1.2 using Proposition 4.1 and Lemma 4.5.

Proof of Theorem 1.2. By Lemma 4.5,

kf k6
L6.QR/P

� kf�k
2
L2.R2/

.
k Qf k6

L6.QR/P
� k.
Qf /�k

2
L2.R2/

where Qf D
P
�2 Q‚ f� for a well-spaced Q‚. Then by Proposition 4.1,

k Qf k6
L6.QR/P

� k.
Qf /�k

2
L2.R2/

. .logR/c
�X
�2 Q‚

kf�k
2
L1.R2/

�2
:

Since Q‚ � ‚, we are done.
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5. Showing Dec6.R/ . .log R/c from Theorem 1.2

5.1. Wave packet decomposition and pigeonholing

We will consider the following form of the decoupling inequality:

kf kL6.QR/ � Dec6.R/
�X
�

kf�k
2
L6.R2/

�1=2
: (5.1)

The constant Dec6.R/ associated to this inequality is comparable to the constant where
the L6 norms are both taken over R2 and to the constant obtained from the L6 norm in
the upper bound being some weight function !QR .

Our goal is to begin with f 2 � with Fourier transform supported in NR�1.P
1/ and

show it suffices to prove the decoupling inequality for a version of f which has rela-
tively constant amplitudes and number of wave packets in each direction. In the following
definitions, � means within a factor of 2.

Write

f D
X
�

X
T2T�

 T f� (5.2)

where for each � , ¹ T ºT2T� is a Gaussian partition of unity (meaning adds up to 1)
adapted to .logR/9.R �R1=2/-tubes T . Note that this implies that j y T j . R�1000 off of
.logR/�3.� � c� /, where c� is the center of � .

Proposition 5.1 (Wave packet decomposition). There exist subsets Q‚ � ‚ and QT� � T�
as well as a constant C 2 ŒR�10

3
; 1� with the following properties:X

�

f�


L6.QR/

. .logR/2
X
�2 Q‚

X
T2 QT�

 T f�


L6.QR/

CR�9:5
�X
�

kf�k
2
L6.R2/

�1=2
;

(5.3)

# QT� � # QT� 0 for all �; � 0 2 Q‚; (5.4)

k T f�kL1.R2/ � CM with M defined in (5.7) and for all � 2 Q‚ and T 2 QT� : (5.5)

Proof. Split the sum (5.2) into

f D
X
�

X
T2Tc

�

 T f� C
X
�

X
T2Tf

�

 T f� (5.6)

where the close set is

T c
� WD ¹T 2 T� W T \R

10QR 6D ;º

and the far set is
Tf

�
WD ¹T 2 T� W T \R

10QR D ;º:
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By Cauchy–Schwarz,X
�

X
T2Tf

�

 T f�


L6.QR/

� R1=2
�X

�

ˇ̌̌ X
T2Tf

�

 T f�

ˇ̌̌2�1=2
L6.QR/

� R1=2
�X
�

 X
T2Tf

�

 T f�

2
L6.QR/

�1=2
� R1=2 max

�

 X
T2Tf

�

 T


L1.QR/

�X
�

kf�k
2
L6.R2/

�1=2
�

1

R9:5

�X
�

kf�k
2
L6.R2/

�1=2
where we have used the fact that one can bound the L1 norm by CNR�10N for any
N 2N. This takes care of the far portion of f (i.e. the second term on the right-hand side
of (5.6)).

The close set has cardinality jT c
�
j � R22. Let

M D max
�

max
T2Tc

�

k T f�kL1.R2/: (5.7)

By Lemma 3.6,

M � max
�
kf�kL1 .

�X
�

kf�k
2
L6.R2/

�1=2
: (5.8)

Split the remaining term asX
�

X
T2Tc

�

 T f� D
X
�

X
R�10

3
���1

X
T2Tc

�;�

 T f� C
X
�

X
T2Tc

�;s

 T f� (5.9)

where � is a dyadic number in the range ŒR�10
3
; 1�, and

T c
�;� WD ¹T 2 T c

� W k T f�kL1.R2/ � �M º;

T c
�;s WD

®
T 2 T c

� W k T f�kL1.R2/ �
1
2
R�10

3

M
¯
:

Handle the small term from (5.9) byX
�

X
T2Tc

�;s

 T f�


L6.QR/

� R1=2
�X
�

 X
T2Tc

�;s

 T f�

2
L6.QR/

�1=2
� R�10M � R�10

�X
�

kf�k
2
L6.R2/

�1=2
:

Next decompose the remaining term from (5.9) asX
R�10

3
���1

X
�

X
T2Tc

�;�

 T f� D
X

R�10
3
���1

X
1�j�R22

X
�2‚j .�/

X
T2Tc

�;�

 T f� (5.10)

where j is a dyadic number in the range Œ1; R22� and ‚j .�/ D ¹� W jT c
�;�
j � j º.
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Because j and � are dyadic numbers, there is a choice of .�; j / such that X
R�10

3
���1

X
1�j�R22

X
�2‚j .�/

X
T2Tc

�;�

 T f�


L6.QR/

. .logR/2
 X
�2‚j .�/

X
T2Tc

�;�

 T f�


L6.QR/

:

Take Q‚ D ‚j .�/ and for each � 2 Q‚, take QT� D T c
�;�

.

5.2. Proof of Theorem 1.1

By Proposition 5.1, we haveX
�

f�


L6.QR/

. .logR/3
X
�2 Q‚

X
T2 QT�

 T f�


L6.QR/

CR�3
�X
�

kf�k
2
L6.R2/

�1=2
where # QT� � # QT� 0 for all �; � 0 2 Q‚ and

k T f�kL1.R2/ � A WD max
� 02 Q‚

max
T 02 QT�

k T 0f� 0kL1.R2/: (5.11)

Since the Fourier transform of
P
T2 QT�

 T f� is essentially supported in
.1 C .log R/�3/� , there exists a function f 0

�
with Fourier transform supported in

.1C .logR/�3/� such thatX
T2 QT�

 T f� .x/ D f
0
� .x/CO.R

�998/A:

Thus X
�2 Q‚

X
T2 QT�

 T f�


L6.QR/

�

X
�2 Q‚

f 0�


L6.QR/

CR�997A: (5.12)

The functions f 0
�

have Fourier support in .1 C .logR/�3/� . We may split Q‚ into � 1
sets Q‚i where for distinct �; � 0 2 Q‚i ,

.2�/ \ .2� 0/ D ;:

Then for some i , X
�2 Q‚

f 0�

6
L6.QR/

.
X
�2 Q‚i

f 0�

6
L6.QR/

;

and it follows from Theorem 1.2 thatX
�2 Q‚

f 0�

6
L6.QR/

. .logR/c
�X
�2 Q‚i

kf 0�k
2
L1.R2/

�2 X
�2 Q‚i

kf 0�k
2
L2.R2/: (5.13)
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Note that�X
�2 Q‚i

kf 0�k
2
L1.R2/

�1=2
�

�X
�2 Q‚

 X
T2 QT�

 T f�

2
L1.R2/

�1=2
CR�500A;

�X
�2 Q‚i

kf 0�k
2
L2.R2/

�1=2
.
�X
�2 Q‚

 X
T2 QT�

 T f�

2
L2.R2/

�1=2
CR�500A:

Combining these observations with (5.13) givesX
�2 Q‚

f 0�

6
L6.QR/

. .logR/c
�X
�2 Q‚

 X
T2 QT�

 T f�

2
L1.R2/

�2X
�2 Q‚

 X
T2 QT�

 T f�

2
L2.R2/

CR�2000A6: (5.14)

The second term is bounded by

R�2000A6 � R�2000
�X
�

kf�k
2
L6.R2/

�3
(5.15)

using Lemma 3.6 and the fact that 0 �  T � 1. It remains to analyze the first term in the
upper bound in (5.14). For each � 2 Q‚, we haveˇ̌̌ X

T2 QT�

 T f� .x/
ˇ̌̌

.
ˇ̌̌ X

T2 QT�
x2.logR/T

 T f� .x/
ˇ̌̌
CR�1000A � .logR/2ACR�1000A:

This leads to the following upper bound for the first term on the right-hand side of (5.14):�X
�2 Q‚

 X
T2 QT�

 T f�

2
L1.R2/

�2
� .logR/8.# Q‚A2/2 CR�1000A4: (5.16)

For each � 2 Q‚, we also haveZ ˇ̌̌ X
T2 QT�

 T f�

ˇ̌̌2
dx . .logR/2

X
T2 QT�

Z
.logR/T

j T f� j
2 dx CR�1998A2

. .logR/4# QT�A2jT j CR�1998A2:

Combining this with (5.16) leads to the upper boundX
�2 Q‚

f 0�

6
L6.QR/

. .logR/cC12# Q‚3# QT�A6jT j CR�1000A6: (5.17)

Finally, note that for each � 2 Q‚,

# QT� jT jA6 . .logR/2
X
T2 QT�

Z
j T f� j

6!T CR
�2000A6
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where we use the locally constant property. Finally, since the `6 norm is bounded by the `1

norm and 0 �  T � 1,X
T2 QT�

Z
j T f� j

6
�

Z � X
T2 QT�

j T f� j
�6
� kf�k

6
L6.R2/:

In summary, we finish the proof by combining (5.17) with (5.11) and

# Q‚3# QT� jT jA6 . .logR/2
�X
�2 Q‚

kf�k
2
L6.R2/

�3
:

Appendix

In the appendix, we show that a slight modification of the proof gives Theorem 1.2 and
Theorem 1.1 for a set of curves

K WD ¹.�1; h.�1// W j�1j � 1º;

where h are C 2 functions satisfying h.0/D h0.0/D 0, and 1=2 � h00.�1/ � 2 for j�j � 1.
In particular, one can cut the unit circle intoO.1/ arcs, such that each arc is part of a curve
in K after translation and rotation. The truncated parabola P1 is also in K .

To prove Theorems 1.2 and 1.1 for the curves in K , replace the affine map (4.2) in
Lemma 4.3 by

`.�1; �2/ D
�
�.�1 � c/; �

2.�2 � h.c/ � h
0.c/.�1 � c//

�
(5.18)

with � D R
1=2

k
. Since the curve ¹.�.�1 � c/; �2.h.�1/ � h.c/ � h0.c/.�1 � c/// W

j�1 � cj � �
�1º is also in K , the proof of Lemma 4.3 remains unchanged provided that

Proposition 3.5 holds for all the curves in K for a smaller R.
Then it suffices to check (3.14) for the curves in K . Let .�; h.�// be the center of �j .

Assume that
�; � 00 2 �k ; � 0; � 000 2 � 0k ;

and
� � � 00 D � 000 � � 0 CO.R

�1=2
j /:

Then h.�/� h.� 00/D h0.�1/.� � � 00/ for some �1 between � and � 00, and h.� 000/� h.� 0/D
h0.�2/.�

000 � � 0/ for some �2 between � 000 and � 0. We have h0.�1/C .�2 � �1/=2 � h0.�2/
since 1=2 � h00.�/ � 1. Since �2 � �1 � dist.�k ; � 0k/, we obtain

h.�/ � h.� 00/ � .h.� 000/ � h.� 0// & dist.�k ; � 0k/R
�1=2
j

if �j ; � 0j ; �
00
j ; �

000
j have pairwise distances & R

�1=2
j . So (3.14) is verified.

Decoupling for the circle with explicit decoupling constant .logR/c has an application
to a problem about sums of two squares. The problem arises in the study of Laplace
eigenfunctions for the standard two-dimensional torus.
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Letƒm be the set of Gaussian integers �D xC
p
�1y, x;y 2Z, with norm ��Dm.

Problem. Give a non-trivial upper bound for the number of solutions of

�1 C �2 C �3 D �4 C �5 C �6; �j 2 ƒm:

Corollary 5.2. For any ƒ � ƒm, if N D jƒj > .logm/.cC6/=� for some � > 0 and the
constant c as in Theorem 1.2, then

Nm.ƒ/ WD #¹�1 C �2 C �3 D �4 C �5 C �6 W �j 2 ƒº . N 3C�:

Proof. Consider the function

g.z/ D
X
�2ƒ

e
2�i �p

m
�z

for z 2 R2. LetQ0 D Œ0;m.logm/�2 and ¹Qº be a tiling of R2 with translates ofQ0. Let
¹'Qº be the Gaussian partition of unity defined as in Definition 3.15. Define the weight
function

 D
X

QW dist.Q;Q0/�m.logm/2

'Q:

Then j � 1j � m�1000 on Q0 and j j � m�1000 outside of .logm/2Q0 and rapidly
decays away from it. Moreover, the Fourier transform b is essentially supported on
B.0;m�1/

We apply Theorem 1.1 (for the circle) to the function f .z/ D g.z/ with R D m

and QR D Œ0;m�2. Then f� D e2�i��z=
p
m for the (unique) �=

p
m 2 � . Note that g.z/ is

periodic: g.z C
p
mv/D g.z/ for any v 2 Z2. Since jf � gj � m�1000 onQR, we have

Nm.ƒ/ . .logm/cC6jƒj3

where the .log m/6 comes from a weight function  essentially supported in
Œ0; .logm/3m�2.

This problem was studied by Bombieri and Bourgain [1] using various methods. In
particular, they obtained the bound O.jƒmj3C�/ assuming the Riemann hypothesis and
the Birch and Swinnerton-Dyer conjecture for the L-functions of elliptic curves over Q
and for a random m with jƒmj � 2!.m/, !.m/ �

logm
A log logm for some constant A. Based

on the Bourgain–Demeter decoupling, Zane Li [8] obtained the result of Bombieri and
Bourgain unconditionally for allm with jƒmj > exp..logm/1�o.1//. Corollary 5.2 proves
the result for a larger range of jƒj: jƒj > .logm/c=o.1/.

In [3], it was conjectured that for any ƒ � ƒm, and any � > 0, there exists C� inde-
pendent of m such that

#¹�1 C �2 C �3 D �4 C �5 C �6 W �j 2 ƒº � C�jƒj3C�:

Corollary 5.2 confirms this for jƒj > .logm/.cC6/=� .
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