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Abstract. We prove an ({2, L%) decoupling inequality for the parabola with constant (log R)€. In

the appendix, we present an application to the sixth-order correlation of the integer solutions to
2 2

x“+yc=m.

Keywords. Decoupling

1. Introduction and main results

Let f : R®” — C be in the Schwartz class § with Fourier support contained in
Ng—1 (P"1), the R™!-neighborhood of P"~! := {(£, |£]?) : |§] < 1, £ € R*71}. Let
{0} be a tiling of Ng—1 (P"~!) by approximately R~"/2 x --- x R™Y/2 x R~ rectangular
boxes 6 and define f5 = (f yo)".

Let Dy, ,(R) denote the smallest constant such that

1/2
1 £ llLr@ny = DapRY (X 1ol ran) - (1.1)
0

for any f € § with suppfc Ng—1 (P 1),

A trivial estimate using Cauchy—Schwarz and the triangle inequality yields D, ,(R)
< R™=1D/2 And we have D, ,(R) > 1 by taking f = fy. Bourgain and Demeter [3]
proved that for 2 < p < %, Dy, p(R) < CcR€ for any small € > 0. Such estimates
are possible due to the curvature of P”~! and are sharp up to R€-loss. The estimates have
many applications in harmonic analysis, PDE and number theory. It was conjectured that
Dyp=<Cyforl <p< %
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In this paper, we focus on the case n = 2 and write D,(R) = D, ,(R). At the end
point p = 6, Bourgain [2] proved that Dg(R) > (log R)'/°. Based on the Bourgain—

Demeter decoupling, Zane Li [7] proved that Dg(R) < exp(O(%)). Then, by

adapting ideas from efficient congruencing, he proved [9] that Dg(R) < exp(O( lolgof’; g %))
This was the best previous bound for Dg(R). In this paper, we prove

Theorem 1.1. Dg(R) < (log R)’ for an absolute constant ¢’.

Theorem 1.1 is a corollary of our main theorem, which estimates the L%-norm of f
on a subset of R2.

Theorem 1.2. There exists ¢ > 0 such that the following holds. If f € S has Fourier
support contained in Ng—1 (P') and Qg C R? is any cube of sidelength R, then

2
||f||]646(QR) = (IOg R)c (Z ||f9||ioo(]R2)) Z ”f9||1242(]R2) VR > 2.
0 0

The proof of Theorem 1.2 is related to an incidence estimate between points and
rectangles used in [4, 5]. These arguments are based on the following idea. We consider
the square function g = Y, | fo|?, and we divide it into a high frequency part and a
low frequency part. For the high frequency part, the different terms | fy|? are essentially
orthogonal, and this gives a powerful tool when the high frequency part of g dominates.
When the low frequency part of g dominates, we try to reduce the whole problem to a
similar problem at a coarser scale.

We use these tools to give a different proof of decoupling for the parabola. Compared
to the previous two proofs (by Bourgain—-Demeter [3] and Li [9]), our proof leans less
heavily on induction on scales, and we think this is the main reason it gives a stronger
estimate. In order to obtain the (log R)¢ bound, we also need to deal carefully with a
number of technical difficulties. These include a wave packet decomposition using Gaus-
sian partitioning of unity, carefully modifying the function at each scale and reducing to a
well-spaced frequency case. We give an intuitive explanation of the argument in Section 1.

The bound (log R)¢” is useful compared to R€ in some diophantine equation problems.
Let A, ={(x,y) € Z? : x> + y?> = m). In [1], Bombieri and Bourgain studied the number
of solutions of the system A1 + A, + A3 = A4 + As + A¢ with A; € A,,. In [8], Li and
Bourgain applied decoupling to this problem. They were able to prove a very strong bound
for the number of solutions provided that A,, is very large. Using our stronger estimate
for Dg(R), we can extend their bound to a wider range of A,,. We present this application
in the appendix.

Another corollary of Theorem 1.1 concerns the discrete Fourier restriction on
{(n,n? :neZ).

Corollary 1.3. Let K,(N) denote the smallest constant such that for any {an }|n|<nN,

2i(nx+n3t) 2 1/2
H 2 ane LP(T2) e KP(N)( 2 lanl ) '

In|<N In|<N

Then K¢(N) < (log N)©<'.
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Bourgain showed in [2, (2.51), Proposition 2.36] that

log N
C(lOg]V)l/6 < K6(N) < exp(c@).

He also asked whether K, (N ) is bounded independent of N for each p < 6.

2. Intuitive explanation of the argument

In this section, we outline the main ideas of the proof. For simplicity, we suppress some
minor technical details, but at the end we will discuss the most important technical issues
that come up.

Let Dec(R) be the optimal constant in the decoupling inequality

1/2
1/ Mooy = DeeCRY (X ey
0

Here the 6 denote ~ R™1/2 x R™! approximate rectangles which partition the R~ -neigh-
borhood of P! and j% = f xo where f is a Schwartz function. The original arguments
of Bourgain and Demeter to prove that Dec(R) < C.R? involve analysis of f; where ©
is a rectangle in a neighborhood of P! and  is at various scales between 1 and the final
scale R. This is also true for the proof of Theorem 1.2, which involves analysis of f at
~ log R many scales. We use the notations A < B and A $ B to mean A < CB and
A < (log R)C B, respectively, for some absolute constant C'.

By a standard pigeonholing argument (see §5), the decoupling inequality above fol-
lows from the estimate

2
oOl(x € Or: If I~ 5 (X I olimion) 2o Mfol2ooe @D
6 6

where we may assume that for each 6,

Il follLec(og) ~1 or fo =0 (2.2)

and that || fg||L» (o) are comparable for all non-zero fp and all 2 < p < 6. Note that
inequality (2.1) is also (roughly) the statement of Theorem 1.2. In this section, we are
suppressing the weight functions localized to Q g which are present in the L2 norms on
the right-hand side above.

Recall the reverse square function estimate for L*, which says that

atltve Qi If1~al 5 [ (S1AP)" 23)
Or 9

The heart of our argument involves analyzing special cases where we can upgrade (2.3) to
something that implies L® decoupling. We will describe the simplest special case of the
argument in the following subsection.
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2.1. Special case: High frequency dominance

Consider the square function that appears on the right-hand side of (2.3), >, | fg|. Each
summand | fg|2 = fy fp has Fourier support in 6 — 6, which looks like a copy of the
R~Y/2 x R™!-rectangle @ that is dilated by a factor of 2 and translated to the origin. Let 7
be a smooth approximation of the characteristic function of the ball of radius R~1/2 /log R
centered at the origin. Define the low frequency part as

(X 1fel), =D 1ol
6 6
and the high frequency part by

(X152), = 21562 = (X 156P),

In this special case, we assume that

[QR(;veF)Zé/QR\(;w)h

The Fourier transform of (3" | fg|?) is supported on | J,(6 — 6) intersected with the
complement of the ball centered at the origin of radius R~'/2/log R. The 6 — 6 are
~ R™1/2 x R l-rectangles centered at the origin and oriented at ~ R~'/2-separated
angles. They all intersect in the R~!-ball centered at the origin, but overlap less and less
as we move away from the origin. The overlap of the 6 — 6 outside of B(R™'/2/log R)
is ~ log R. Thus, by Cauchy—Schwarz,

/QRKXG: |f9|2)h‘2 < (log R) [QR 29: | fol* 2.4)

where we used another Cauchy—Schwarz to absorb the auxiliary function % into the
implicit constant.
To summarize, we have proved so far that

2
atve Qi lfl~all 5 [ (S1P) £ [ Slsl
QR 9 QR 2]
Note that for some x € QRg,

o~ fI =D N folleeoory ~ Y I folloo(on
0 0

‘ 2

and || fg|lzoo(0 ) ~ 1 for at least one 6. Thus,

a*ltv € Qi 1S~ all S« (L lfollmio) 2 [ 1ol
9 9 QR

which is the L®-decoupling result we were aiming for and which concludes the special
case. |
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Suppose that we are not in the high frequency dominating case above, but that we
have a high frequency dominance at a different scale R:

L, (Zue) s [ (),

where the 7 are R~/ x ﬁ_l-rectangles covering the ﬁ_l-neighborhood of P! and the
high part is with respect to this new scale. If we repeat the above argument, we obtain the
(£*, L*) result

:

atlve Ouslfl~a s [ TIAL
OrR ¢
If we try to relate the right-hand side to a sum of L? norms, then
a*ltv € Qu: |1~ o}l £ (max il wio ) o [ 1P
T T YOR
By L2-orthogonality, this is equivalent to

o*lix € Or: 1f |~ )l 5 (max | fe o) Z[Q ol2.
2] R

The issue now is that in the special case above, we had good control over || fg|Loo(0 )
given in (2.2), but we do not have any corresponding estimate for || fz||Loo(0 ). A key
part of the proof is a pruning process for the wave packets of f; which will allow us to

control || fz | oo (0 z)-

2.2. Many frequency scales

Our argument will involve many scales, and so we introduce a sequence of intermediate
scales and high-low decompositions for each scale. Denote the intermediate scales by

l<Ry <+ <R <Rpy1<--+<Ry=R.
We will use scales which have the property that
Ri+1/Ry ~ (log R)C. (2.5)

Let {7z} denote R;l/ 2 x R;l-rectangles which partition the R;l-neighborhood of P!,
Note that foreachk =1,..., N,

f=2fa (2.6)
Tk
We analyze the square functions
g =) | ful*
%

Intuitively, since the first scale is Ry &~ 1, by Cauchy—Schwarz we have

/158



L. Guth, D. Maldague, H. Wang 6

and we should think of g; as being close to | f|2. On the other hand, gy is our original
square function Y_, | f|?.

We define a high-low decomposition for g, building on [4,5]. As in the special case
above, observe that the Fourier transform of gy is

8= fulP =) fu* fu
Tk Tk

By definition, ﬁk has support on 7 and ﬁk has support on —tz. Thus

———

supp | fo, > C e —

and 7, — 1 is the same as i translated to the origin and dilated by a factor of 2. Since the
{1} formed a partition of the neighborhood of the parabola, the Fourier support of g is a
union of ~ R;l/ 2 x R;l—rectangles centered at the origin oriented at ~ R;l/ 2—separated
angles. Analogous to the discussion preceding (2.4), the intersection of all of these tubes
is the R;l—ball centered at the origin, and outside of some neighborhood of the origin, the
tubes look more disjoint (or at least finitely overlapping). This is the setting for a high-low
frequency decomposition.

We separate out a low frequency part of g and a high frequency part of gy.

Definition 2.1. Let (&) be a bump function associated to the ball of radius p; centered
at the origin, where pr = (log R)fc/zR',:l/2 with ¢ in (2.5). We have nx(§) = 1 on By,
and 7 (§) = 0 outside of 2B, .

Define the low frequency part of gx by
8kt = Nk &k-
Let the high frequency part of g; be equal to
8k,h = 8k — 8k.L-

The following lemmas describe the good features of the low frequency part and the
high frequency part of gi.

Lemma 2.2 (“High lemma”). For any ball Bg,,,

2 —1p—1/2 4
|t <t 82 Y [ 1o,
BRk Tk

where lBRk+l < Ry, and cT)Rk+1 is supported in the ball of radius 2R
the origin.

-1

K41 centered at

Remark. Since pr = (log R)™° R,:l/z, the factor p,:l R;l/z is bounded by (log R)¢. We
omit the proof sketch of Lemma 2.2, which is similar to the discussion preceding (2.4).

The function g is roughly locally constant on balls of radius ~ R ,1/+2 |- An applica-
tion of local L? orthogonality and this locally constant property leads to
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Lemma 2.3 (White lie! “Low lemma”).

8i 0 (%) < Ciow k+1(x).

See Lemma 2.4 for more details. In order to rigorously justify this lemma, it is impor-
tant to replace gx by an averaged version of it.
The “low lemma” tells us that

8k = 8kt + 8k.h < Ciow8k+1 + |8k 1l

Therefore, either g (x) < A|gg n| or gx(x) < ﬁClowng (x). Here A is a parameter
of size ~ log R. This leads to a partition of the domain into the following sets:

Or=LUQ1U---UQN_1.

Define
Qn-1={x € Or:gn-1(x) < Algn-1,n(X)[}.
Fork =1,...,N — 2, define

Qr ={x € Qr\ Q41 U---UQn_1): gr(x) < Alg.n(x)]}

A
- {x € Or:gk(x) < Algrn(x)], g¢ < A—Clowge+1 fork +1<{<N — 1}

and set

L=QR\(§21U~~-UQN—1)§{3€€QR gz<A

Clowgg+1 forl <{ <N — 1}.

Since we have partitioned Q r into ~ log R many sets, it suffices to consider the cases

I/ L6y < (og R fliLecr) 2.7

or for some k,
[ fllLscor) < (og R)If Nl L6(g,)- (2.8)

The case where L dominates, which means (2.7) holds, is simple because for x € L,
| fO)I? S g1(x) S gn(x) =Yg fo(x)]? and so

[1715 [(Z14P) = (S filiren) 1l
L L™y 9 9

which implies the conclusion of Theorem 1.2.
More quantitatively, for x € L, we have the bound

P S e < (TC) S 1atoP

This ultimately gives us a bound for Dec(R) of the form (ﬁ Ciow)" . Recall that N ~
log R/loglog R and A ~ log R. But if Ci,, is a constant bigger than 1, then C;N. will be

low
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much larger than (log R)€ (although still smaller than C, R®). We will have to work more
carefully in the low lemma to make Cjoy, very close to 1. We will return to this below.

But first we discuss the case where one of the 2 dominates. In this case we begin by
applying a broad/narrow analysis. The narrow case is handled by an induction on scales
argument. For the broad case, we consider the set

Ui={xeQr:lf@l~a lf0I 5 max | fy fyl*()]

71,7} non-adjacent

1/2

where 71 and 7] are Ry x R}/ rectangles.

The L norm of gy plays an important role in our argument, S0 we give it a name:

r=|lgnllLeoog)-

Since r = | >p | fol?lLoocor) < X0 | fo ”i"O(QR)’ the main estimate (2.1) follows from
the bound

ClUNQl Z72 ) 1ol 00, (2.9)
0

Focusing on the broad case allows us to use bilinear restriction, which leads to the
following bound:
4 2
a*|U N Q| §/ 8k
Qk
From now on, we use the fact that gx < |gk.»| on €% and proceed as in the special case
above, using the “high lemma”, Lemma 2.2, to obtain

U 0 Q| 5 max | fe I 0 0 Z /6113200 -

2.3. Pruning the wave packets

Recall that we must modify the function f to get a good bound for the || fz, |Loo(0p)-
Here is the idea for modifying f. If x € U, then we know that | f(x)| ~ «. By the defini-
tion of 4, we know that for x € Qp,

Dl fa P < Kr, (2.10)

Tk

where K 5 1 if Cioy, is sufficiently close to 1. This property is immediate from the more
technical definition of €23 (Definition 3.27) in the proof. Inequality (2.10) implies that for
x € U N Qy, the fr, with | fr, (x)| > 100K 7/ make a small contribution to f(x). More
precisely, if x € U N Q, then

D TN S f@L @

Tt | fr (¥)|>100K7 /a0

We define
A =100Kr/a. (2.12)
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Roughly speaking, the parts of f; with norm bigger than A do not make a significant
contribution to f on the set U N Q. To take advantage of this observation, we divide
each f7, into wave packets, and then prune the wave packets with amplitude bigger than A.
Note that in the actual proof, we will start with pruning and define the g with respect to
a k-pruned version of f.

The pruning process goes roughly as follows (but this account is a little oversimpli-
fied). First we expand f, into wave packets,

foo =D VT fu- (2.13)
T

Here T denotes a translate of the dual convex r;: (see Definition 3.12), and the sum is over
a collection of translates that tile the plane. The function 7 is a smooth approximation
of the characteristic function of 7', and the /7 form a partition of unity. Each ¥7 fz, is
called a wave packet, and it has Fourier support essentially contained in 7. We define f;k
to be the result of pruning the high amplitude wave packets from fz, :

frk = Z wafk'

T: T fop lLoo(o gy <A

The Fourier support of f,k is still essentially contained in tx. Suppose for a moment
that Y7 was just yr, the characteristic function of 7. Then because of our pruning,
| frelloo < A. Next we define f =3 fr.

To analyze |U N Q|, we use the argument above with f in place of f and f,k in
place of f;, . Here are the key features of fi that makes this possible:

e The function f; is closeto f on U N Q. If Y7 was just 7, then the analysis in (2.11)
would show that for x € U N Qp, | f(x) — fr(x)| < T%oa' We will ultimately define f%
in a slightly more complicated way, and we will prove this bound for | f(x) — fr(x)].

e We now have the bound ||f,k lLeoop) <A & r/a.

e The function f has Fourier support properties similar to those of f so that we can run
the argument above. For instance, the Fourier support of f;, is essentially contained
in .

When we run the argument above with f in place of f, and then plug in the bound
| fz lLoo(0 r) < r/c, we get the estimate

U Nl 5 0l [ V1A (2.14)
QR 2]

This is our desired estimate (2.9).

2.4. Delicate estimates

There are two main sources of technical difficulties that come up in implementing the
sketch above. One is to prove the low lemma with very sharp control. The other has to do
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with pruning wave packets, which we have to do at many different scales. To make the
argument work rigorously, g and f; both have to be defined in a more complex way than
above.

The argument giving the bound Dec(R) < (log R)¢ is more sensitive to some constants
than others. A constant that is iterated N ~ log R /loglog R times must be very close to 1
whereas steps which are iterated O(1) times can lose a power of log R.

A good example is the low lemma. If we are not very careful with how we formulate
the “low lemma”, we will get a bound for Dec(R) which is much larger than (log R)€.
As we discussed above, if we prove the low lemma in the form |gg ¢(X)| < Ciow8k+1(X),
then we will get a bound for Dec(R) which is at least as big as leXN. To get our desired
bound for Dec(R), we need Cjqy, to be almost 1.

Above we gave a non-rigorous sketch of the low lemma. To get some perspective, let
us now rigorously prove a version of the low lemma to get a perspective on Cigy,.

Lemma 2.4 (Baby low lemma). Let ng (§) be a bump function defined as in Definition 2.1.
Then

gl = |20 el k] =2 3 1 fepn P i
Tk

Tk+1

Proof. We write Y | fz, |* * ;. (x) using Fourier inversion:

Tk |
Sl i) = 3 [ o x Fue? i) de.
Tk Tk
Now f, = ka+l cn Jti41» 50 we can expand out the last expression to get
SED DI AR LN

Tk Tp41 ,‘L’]/L,+1 Crtg

The point is that most of the integrals in the sum above vanish. The convolution
ﬁk+l * f_r]/(Jrl is supported in tx 41 — r,’H_l , and 1 is supported in the ball of radius 2p; <

-1/2 . . . -1 -1/2
R || centered at the origin. Now each rectangle 754 has dimensions R, , x R, /"

SO Tpq1 — 1, 1 Intersects the support of 7 only if 74 41 1s equal to or adjacent to Tg41.
We keep only these terms in the sum to get

D 1 fe P i = > fresr Jop o) * ke
Tk

Th+1 ,1:]/(_’_ L equal or adjacent
For the cross terms, we note that
r 2 2
|(frk+1ftl’(+]) *\ﬁk| = (|frk+1| |f1:]’{_'_1 |) * |\ﬁk| = (%|ffk+1| + %|f1’;{+1| ) * |\ﬁk|

Finally, grouping all the terms gives the desired bound:

D P ] =2 37 o Fi .
Tk

Tk+1
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There are a couple of issues with this bound. One is that we have an unwanted factor
of 2 on the right-hand side. A second issue is that we have a convolution on the right-hand
side. If we take g = Zrk | fz, |, then we have |gx¢| < 2gk+1 * ||

To deal with the factor of 2, we consider a special case when the Fourier support of f
has a helpful spacing condition. Let © = {#} be a collection of ~ R~/2 x R~!-rectangles
contained in the R™!-neighborhood of P!. The collection ® has the spacing property at
scale Ry, if there exists a collection of ~ R,:l/ 2% R,:l-rectangles 1% which cover | Jyeg 0
and such that

dist(tg, 1) > (log R) ™" R,:l/z

whenever 7 and 7, are distinct. If © has the spacing property at scales Ry, ..., Ry—1,
then say © is well-spaced. A well-spaced collection of rectangles 6 can include most of
the rectangles needed to cover the parabola, and we will be able to reduce our theorem for
a general f to the case that the Fourier support of f is well-spaced. The spacing condition
helps us because whenever 741, 7, 41 are distinct, T 49 — 174 41 is supported outside the
ball of radius (log R)_IR,:Jlr/lz. Now we choose pr < (log R)_lR,;l_/lz, and we see that
all the cross terms in Lemma 2.4 vanish. This gets rid of the factor of 2. Assuming that f

obeys the spacing condition, we conclude that

‘Z|fm|2 *\ﬁk‘ = Z |frk+1|2 * |ﬁk|
Tk

Tk+1

Next we discuss the * |7, | on the right-hand side. In order to deal with this factor, we
define g4 in a more complicated way:

. 2
ge =) | ferrg P * oz, (2.15)
Tk

Here fiy1,7 is given by pruning high amplitude wave packets from f;, , and we will
discuss it below. The function ¢y X is roughly ﬁ X It is a bit bigger than this, so a
T k

more accurate model is
(log R)°
(prk ~ |_[—]:<|X(logR)"tlf'

Let us see why this extra convolution helps us. In the well-spaced case, the argument
above shows that

4 2 4
I8k *7kl < ) | fierrgen P 07, * ikl (2.16)
Tk+1
On the right-hand side, 73 denotes the parent of tx 4. We choose the functions o7, SO
that for any 7441 C %,
. Yl < o~
o7, * el =07, - (2.17)

With this choice, the right-hand side of (2.16) is bounded by ka+1 | fo 12 % (pffk-H <
8k+1. So with this definition, we get |gx ¢| < gk+1. (We will prove this in Lemma 3.25.)



L. Guth, D. Maldague, H. Wang 12

Redefining g in this way makes the statement of the low lemma very clean. It does
have a cost though. We have to make sure that the contribution of <pfrk is not too big.
To control their size, we have to choose 7y carefully, and the key bound is |7 || 1.1 ®2) <
1 4+ C/log R, which is proved in Lemma 3.10.

Finally, let us briefly discuss pruning wave packets. Our argument involves many dif-
ferent scales and we have to prune wave packets at all scales. We can define fx to be our
initial function f. We decompose fy into wave packets by combining (2.6) and (2.13),

fn=)_ Vrine.
o T

Then we remove the wave packets with amplitude bigger than A = 100K r/«. The result-
ing function is called fy_i:

fn-1= > VT N6

0.T:¥7 SN0l oo r2)<A

Next, we decompose fn—; into wave packets at the next scale:

=Y ) Ty SNty

TN—1 TTN—l

Here tiy—; is a rectangle of dimensions R;l_/lz X R;l_l, and T;,_, is roughly a tube
which is roughly a translate of z,_,. We remove the wave packets with amplitude bigger
than A and call the resulting function fy_5. This iterative pruning is necessary to make
our argument work, but it also makes it fairly complex. In particular, since the pruning has
N steps, we have to be very careful with all the estimates related to the pruning process.

For example, we have to define the smooth cutoff functions ¥ carefully.

3. Proof of Theorem 1.2: the broad, well-spaced case

The argument outlined in the above intuition section leads to the (log R)¢ upper bound
in Theorem 1.2 for functions which satisfy two extra properties. The function f being
broad allows us to bound an L* norm of f by an L2 norm of a square function g. The
property that f is well-spaced allows us to replace Lemma 2.4 with

2 ~
lgkel < D | fega PP % k]
Tk+1

(so we have no accumulated constant after iterating the inequality < log R times). The-
orem 1.2 in the special case of broad, well-spaced functions f is called Proposition 3.5,
which we prove in this section. In §4, we remove the assumptions on f.

3.1. Statement of Proposition 3.5

Let f € § have Fourier support in Ng—1 (IP'); @ is always an approximate R~/ x R™!-
rectangle in a neighborhood of P1. The property that f is broad means that || £ || L6(QR)
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is dominated by the L® norm of a bilinearized version of f. We state the results in terms
of a parameter & > 0 which measures this bilinearized version of f. Precisely, we make

Definition 3.1.

Uy = {x €R?: max | f; fo]2(0) ~ @, (Z |f,(x)|6)1/6 < (log R)9a}

nonadj.

where the maximum is taken over non-adjacent ~ (log R)~° x (log R)~!?-rectangles t
and 7’. By ~ here, we mean within a factor of 2.

Our argument involves a sequence of scales Ry defined as follows:

Definition 3.2. For k € N, let Ry = (log R)'2K. We analyze scales Ry, ..., Ry where

Ry < R < Ry 1. This means that N = L%J.

We will not make a distinction between Ry and R since we may use Cauchy—Schwarz
to trivially decouple ~ R;,l/ 2_arcs of P! into ~ R™1/2-arcs.

Definition 3.3. For each k, the notation ® (R} ) refers to a collection of ~ R;l/ 2 x R,:l-

rectangles tx covering the R,:l -neighborhood of P!. We use ® to denote a collection of
~ R™Y2 x R~!-rectangles partitioning the R~!-neighborhood of P!

Definition 3.4 (Spacing property). The collection ® has the spacing property at scale Ry
if there exists a collection ©(Ry) whose union covers | Jgcg @ and such that

—-1/2

dist(tg, 7,) > %Rk-&-l

whenever 7, 7; € ©(Ry) are distinct. If © has the spacing property at scales Ry, ...,
Ry _1, then say ® is well-spaced. A function f € § is well-spaced if f is supported in
Ugeo 0 for some well-spaced ©.

See Section 4.2 for the reduction to the well-spaced case. For the rest of Section 3,
7% will be assumed to be part of a fixed ®(Ry) from the well-spaced definition above.
Note that ®(Ry) depends on ®, which depends on f.

Proposition 3.5. There exists ¢ € (0, 00) such that for all well-spaced f € § and all
a >0,

2
0%Uq 1 Ol = (log R (D1 fologay) DI fola ey
%] 6

Lemma 3.6. Forany p > 1, || fg|lLoo®2) S |9|1/p||f.9||Lp(Rz).

Proof. Since the Fourier transform of fy is supported on 26, we can choose a smooth
cutoff function ¢y such that ¢g = 1 on 26 and ¢pg = 0 outside of 30. Then

[ follLoo®2y = [l fo * @ollLo®2) = Il follLr@®2yll¥ollLr w2y < 1012 fall Lo 2

where we have used Holder’s inequality with 1/p + 1/p’ = 1. L]
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Note 3.7. For the remainder of §3, assume that we have replaced f by a constant multiple
cf so that maxg || f9|| Loor2) = 1. Note that this means that « is replaced by ca and
r is replaced by c2r, where r is defined later in Definition 3.17. The purpose of this
assumption is to simplify the error terms which are often written as negative powers of R.
Note for example that by Lemma 3.6,

1 1 2
R < (max o)) % (2 1 oloey)” 2 ol
0 0

because @ ~ maxq | f¢ fer|'/? and | fy] < R'? maxg | fp]loo for each t. The displayed
inequality is useful because we will encounter inequalities of the form

a*|Uy N QR| < (main term) + R™>°

on our way to proving Proposition 3.5.

3.2. Auxiliary functions

There are two places described in §2 that involve auxiliary bump functions, Definition 2.1
and (2.15), which we analyze carefully in this section. To formally carry out the pruning
process from f to a pruned version of f, we define 2 and to define the high/low

decomposition of g, define 7. We control the L' norms of these functions in Lemmas
3.10 and 3.14. This is important for achieving the (log R)¢ upper bound in Proposition 3.5.

Notation 3.8. Let§ = bg =R

Definition 3.9. Let & € R and Go(§) = oz B'?€ Define the Gaussian-like function

G(§) = Go(&) x—1,10\[-5,81(5) + Go(8) x[=5,81(5) — Go(1) x[—1,11(§).

Define n : R? — R by
n(€1.&) = G(0)2G(£1)G(&).
For each k, define
i (§) = n(4R,1/jzs). 3.1)

1/2

Note that ng (§) = 1 forall |§;| < k+2 -

R Y2 and Nk is supported in |&;| < 1R

410gR k+2

Lemma 3.10. Let R > 0 be larger than a certain absolute constant. Then for each k,
il < 14 —
Mellt = logR’

Proof. 1t suffices to show the claim for 1 since 7y is equal to n composed with an affine
transformation. Since G(0)™! = (e 83/ 8_571/2)_1 <1+ @ and Fourier transforms
of products factor, it suffices to show that

N C
Glh =14+ —.
Gl = 14 o
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Define the functions

G1(§) = (Go(§) — Go(8) x(-s.51(6).
G2(8) = Go(®) x1-1,13¢ (§) + Go(D) x1-1,11(5)

and note that

G(§) = Go(§) — G1(§) — G2(8).

Since Go > 0, ||50||1 = ||Go|loo = 1, which means it suffices to show that

IGils 5 g and [Galh 5
Observe that G, and G, are continuous, L! functions (though not differentiable at a few
points). G; is Riemann-integrable, so for each x # 0, we can use integration by parts to
compute xél (x) as the inverse Fourier transform of a function. For G, the same is true
after a limiting argument to approximate G, by Riemann-integrable functions.
First, we have

1G1ll = (1 +x2)7Y2(1 + x2)V26,4 |,
<1+ x2)Y2G ||
< Gillz + 1xGill2

1/2
S I =Go@) 2+ Gog RV [ g2 g )
[—8,8]
1
< 8Y2(log R)"/28? + (log R)"/28%? ~ ——.
log R

Similarly,

1G2ll1 S 1G22 + 1xGal2

1/2
< Go(1) + (log R)/2 ( / |se—“°g’*)‘“$2|2ds)
[ 1€

—1,1
1
logR’

[

5 1/2
e E/2 ds) <
—§—1/4 §—1/4]c

Definition 3.11. Let p : R? — R be given by p(€) = n(8€) where 7 is defined in Defini-

tion 3.9 and § = ﬁ. For each scale Ry and each ~ R,:l 2 x R;l-rectangle T, let

Py = PO Erk
where {, is an affine transformation mapping the smallest ellipse containing 27 to B.

Definition 3.12. If 7 is a symmetric convex set with center C(7), then the dual of 7 is
defined as
*={x:|lx-(y=-C{)| <1, Vyerh.
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Definition 3.13. For each Rl_l/ % x Ry '-rectangle 7y, let

o7, (X) = sup 1Pz, (I
yex+(log Ryt

Foreach 2 < k < N and each R,:]/ 2 x R; !-rectangle i, define Z inductively by
o, 0 =max( sup (B Mlep o+ i),
yex+(log R)! k=1

1/2

. — _1 . .
where 71 is the R, _|” X R, _,-rectangle containing 7.

Lemma 3.14. For each k and v,
lez,, 212 < (log R)°.

The implicit constant is uniform in k and ty. The letter ¢ means a uniform constant and
varies from place to place in later lemmas.

Proof. If k = 1, then ||<,0ftl lL1r2) < (log R)® is clear from the definition. Recall the
definition of @7 for k > 2 to be
Tk

o, 0 =max( sup (B Mlep  * i l).
yex+(log Rt k=1

1/2

where t_1 is the R,:_l X R;il-rectangle containing 7. Let Ax be the set on which

sup 1pe D = 07 * [y |(x)
yex+(log R) k=1

and let By be the complement of Ay . Note that

7 = su p + oz i
lor, Doy =| e B O] 1y + D7y, * Dl cay
If
su 0 > Sllox % [, )
J’e~+(logII)3)ler o (y)|HL1(Ak) - ”‘prk—l e 1|“L1(Bk)
then
lor, Il <257 sw 1B, O]
Toc 1A ye+(log R ¢ * L1(R?)
= 257" b ‘ < (log R)®
sup PO, gay S (og R)

y€+B(0,(log R)1)

since |p| is bounded by (log R)¢ and is rapidly decaying outside the ball of radius (log R)¢
centered at the origin.
If not, then

||<Pftk 12 = (1+9) Hﬂﬂfrk_l * |ﬁk—1|”L1(Bk)~
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By Young’s convolution inequality and Lemma 3.10,

oz, g < (1 +82lez,  oige).

If we iterate this argument for < N < lolgoﬁ) § R times, then we also obtain the desired

conclusion. [

Definition 3.15 (Gaussian partition of unity). First define
o =c [ sty

where O is the unit cube [—1/2,1/2]2, g(x) = e ¥, and ¢ = (f g)~". Note that for

every x,
§ —n) = § —y)dy = 1.
Vo(x —n) /n+Qg(x y)dy =1

neZz? nez?

Let T be any rectangle in R%. Let A : R2 — R? be an affine transformation mapping
T to Q. Define the Gaussian bump function adapted to 7' Y1 by

V() = e T /Tg<A(x — ) dy.

(There are several different affine transformations A taking T to Q, but they all give the
same function 7 because the Gaussian g and the area form are invariant under the affine
automorphisms of Q.)

If T is a set of congruent rectangles 7 tiling the plane, then

Y vrn) =1,

TeT

and so the Gaussians {{7 }reT form a partition of unity.
The Fourier transform of 7 is

Vr ) =c|T|™! /T |78 (AT §)e 2 8V dy
and satisfies
[r ()] < [Tl A7 ER,
If x £ 1004/log R T, then

— _ 2 _
Y7 (x)] < ce infyer [x=y|* < p=1000

If £ ¢ 100/log R T*, then .
YT @] < cTIRT'.

In the rest of the paper, a function being essentially supported in S means that | - | <
R™1000 off of S and the function rapidly decays away from S. A weight function wg
being localized to S means that ws ~ 1 on S and |ws| < R™1990 off of (log R)S.
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3.3. Pruning wave packets

We define pruned versions of the function f and the intermediate square functions
Zrk | for |2. The pruning process depends on the parameter & > 0 which measures the
bilinearized version of f', and a new parameter » > 0 (defined below) related to the final
square function ", | f|?.

Definition 3.16. Define
gn =) 1ol * o5,
6

where o7, is defined in Definition 3.13 for 6 = .
Definition 3.17. Define
r = |lgnllroom2)- (3.2)

Note that )
r < (log R)* Y 11 /oll7 o gy (3.3)
0

for the constant ¢ in Lemma 3.14.

Notation 3.18. The parameter A measures the ratio between r and «:
A = (log )™ (3.4)
o

where the exponent m is sufficiently large as required by the proof of Lemma 3.23 and
Lemma 3.28 and Proposition 3.5.

Definition 3.19. For each rectangle ti, we write Ty, for a translate of (log R)9r,:‘ . We let
T, be a tiling of the plane by rectangles 77, . In Definition 3.15, we defined a Gaussian
partition of unity associated to such a tiling:

> vr, () =1

TTk e'ﬂ‘,k

Definition 3.20 (Defining fj ., with respect to A). Let

TrN_l,)L = {TTN_1 € Tt}v—] : ”WTqu fTN—l ||L°°(R2) = )L}

Define
IN-1yy = Z WTTN_lerfl
Tey_1€Tey 12
and note that
ess sup fN_lafN—l C (1+ (logR) ®)n_;.
Also define

fN—l,rN_z = Z fN—l,rN_1~

IN-1CTN—2
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Now we define fi ., and f ., |, starting withk = N — 2 and going down to k = 1.
Let Ty a = {T% € Ty : Y1y, fit+1,5 lLoom2) < A} and define

fem = Y. YTy fertno (3.5)
TrkET‘rk.A

feer = D i (3.6)
T CTi—1

Lemma 3.21 (Properties of f ;). (1) | fk,z (O] = | fes1,5 (X)].
@) |l fe, lLoo@2) < Clog R)*A + R™100°,

(3) esssupp fk,,k C (14 (log R)™®)zx.

(4) esssupp frr_, C (14 (log R)™10)7;_;.

Proof. The first property follows straight from the definition.
The second property follows because ZTrk €Ty, Yr,, is apartition of unity, and

Jeo = > T St 1,7

Tey €Tz, 2 CTry

Now consider the L bound in the third property. We write

e (%) = > Uty fesrm + > Uy, fettm-

T'L'k ETfk_)L,xE(logR)Trk Trk ETrk,Asx¢(10gR)Trk

The first sum has at most C(log R)? terms, and each term has norm bounded by A by the
definition of T, . By the normalization in Note 3.7, it follows easily that

| fie+1,50 (X)] < RO, (3.7)

But if x ¢ (log R)Ty, , then Y, (x) < e~ Ry < R=2000 Moreover, as Ty, gets fur-
ther away from x, Y1, (x) is rapidly decaying. Therefore, the second sum has norm at
most R~1000,

The fourth and fifth properties depend on the essential Fourier support of Y7, (and
on similar trivial bounds as (3.7)). Recall from Definition 3.19 that T, is a translate
of (log R)gl';; . Because of this factor (log R)®, the essential Fourier support of Vr,, is
contained in 100./Tog R(log R)° 1} (see Definition 3.15).

Initiate a 2-step induction with base case k = N: fi g has essential Fourier support
in (1 4+ (log R)~®)# because of the above definition. Then

Ny = Y. fne
0CTN—1
has essential Fourier support in UOCrN_ (1 + (log R)7%)6, which is contained
in (1 4+ (log R)™'%zy_;. Since each YTy,
100/Tog R (log R) Ty _1,
fN—l,‘L’Nfl = Z Werl fN,‘L’Nfl

TTN_leT

, has essential Fourier support in

TN—1-A
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has essential Fourier support in

(100y/log R (log R)™° + 1 + (log R) ™ "*)ty_1 € (1 + (log R)"®)zw_1.
Iterating this reasoning until k = 1 gives (3) and (4). ]
Definition 3.22 (Definition of g). Fork = 1,..., N — 1, define

g =Y | ferrol * Z
Tk

where ¢z is specified in Definition 3.13. For k = N — 1, the notation fyy_,
Tk

means fr_,.

The following lemma shows that the difference between the kth and (k + 1)st versions
of f, is controlled by A™!g;. We eventually apply this lemma for x € Qy, defined in
Definition 3.27, where we know that g ~ r. We will see that on this set, the differences
between the different versions of f; are negligible.

Lemma 3.23. Suppose t is a p~'/? x p~'-rectangle in the p~'-neighborhood of P!, at

anyscalel < p <R Fork=1,...,N—1,if R > p,
> S = D fim )

7w Crt T CT

< (log R)* A~ gr (xx) + R™1000,

Proof. In the following proof, | - [[cc means || - || oo (r2)- By (3.5),

D firtm )= Y fem () = > Y7 (%) fiea 1,2 (%)

% Ct % Ct % Ct TeT,
17 fe41.7p loo>A

Recall that ¥ has Gaussian decay off of T'. It follows from (3.7) that
> Y @ g o) = R

% Ct TeT,

1T frt1.7 loo>A
x¢(log R)T

Then we have

> Y e =AY Y W el

7% CT TeTy, T CT TeT,
17 fe41.7p loo>A 17 frt1.7 loo>A
xe(logR)T xe(logR)T

The number of terms in the inner sum is < (log R)?. Let Ty, (x) be the unique rec-
tangle in the tiling T, that includes x. If x € (log R)T, then 7 is essentially supported
in 10(log R)T7, (x), and so we have

> > 197 ferr,allze < A0g R)? D Il fiek a1 E oo rogog &) 72, (60
% Ct TeT, T CT

17 fit1.p loo>A
x€(logR)T + R_IOOO.
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Recall by Lemma 3.21 that the Fourier transform of fi; , is essentially supported
in (1 4+ (log R)~'%) 1, so for pr;. from Definition 3.11,

| ferto D] = | ferr,m * Py 0]+ R—1000

Now we defined Z (2) to be at least sup, 4 (o0 Rt Pz, |, s0

| fre+1,7 ||L°°(10(10gR)TTk @) = | fet1,5 ] * T, (x) + R0, (3.8)
Therefore,
> Y @ kW)
% Ct TeT,
1T fit1.7) loo>A
xe(logR)T
< (log R)ZA—I Z (|fk+1,rk| * (pf,rk (x) + R—1000)2 4 R—1000
% Ct

Since A7! = %(log R)™™ < R'Y/2 (see the last line of Note 3.7),

‘Z Z WT(x)fkﬂ,rk(x)‘

% Ct TeT,
17 frt1.7 loo>A 5
x€(log R)T < (log R)*A7! Z (I fet 1,z | * Z (x)) 4+ R1000
7% Ct

Applying Cauchy—Schwarz to the integral in the convolution shows that the above is

< (og 227" D | fiwrn * * 07, (lloz, o+ R71O.

% Ct

Finally, note that ||<pfrk .1 < (log R)¢ by Lemma 3.14 and that

D irrn P * 07, () < gr() (3.9)

% Ct

by Definition 3.22. n

3.4. High/low lemmas for g

Definition 3.24 (Definition of g,l; and gZ). Fork =1,...,N — 1 and n; from (3.1), define
g =gk i and gf =g — g

Lemma 3.25 (Low lemma).

lgb] < gryr + R0
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Proof. Write
L ~
£ GOl = |30 e P 07, # i)
Tk

where 1 is defined in Definition 3.9. For each t; we have

|fk+1,rk|2 * ﬁk(x)

/ et * forro ()T En () d

S0 Fertnn * S, TR (E) dE.
k+1

Thk+1 ,‘Cl/(Jrl Crti

Now, fk+1,rk+1 * kaJ/’cﬂ is essentially supported in (1 + (log R) ™) (zxy1 — r,’cH).
By the well-spaced property, we know that this set does not intersect the ball of radius

%R;Jlr/; (the support of i) unless ;. = 7. Therefore, up to errors of size R71%%°, we
have
|fk+1,fk |2 * \ﬁk(x) = Z / fk+1,‘rk+1 * ﬁC+1,‘rk+1 (S)eZTU'X‘ET]k(S) dg
Tk+1CTk
= Y et P * ().
Tk +1CTk
By Lemma 3.21, |fk+1,‘rk+1 | = |fk+2,rk+1 |7 and so
o e < D0 iz P # il (0.
Tk+1CTk
Plug this back into the definition of gfc to get
L v v
g =D e > * k| x 07 < > | fegzip > * il x 07
Tk Tk
Tk Tk+1
Now, ¢ was defined in Definition 3.13 so that when 71 C %,
Th+1
4 . < .
el * o7, =07, -
Plugging that in again, we get
¢ 2 —1000
|gk] = Z | fret2,zq0 17 * Ty, = Sk+1 +R . u
Tk+1
Lemma 3.26 (High lemma).

/ |gi|* < (log R)E/Z | firrg |t + RO
%
Proof. By Definitions 3.22 and 3.24,

[ 18P = 2% [P B, (=0 P 97, (=m0,
4
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The Fourier transform of | fi41,5, | is essentially supported in 2(tx — 7% ). Recall also

from Deﬁn1t10n 3.9 that 1 — ny, is supported where |£| > 410g Tos R R;i/zz. The set 2(tx — ) \
B(4logR k+2 %) overlaps at most ~ (log R)R,,]€/+22/Rl/2 = (log R)'® many of the sets

2(t, — ) \ B(gpaer 4]0g 7 ki/zz) Thus applying Cauchy—Schwarz to the integral in the con-
volution, we get

2 ~ 5 B
/ 8] < g B)° / D M ficrrm I * o7, | TR 1000
%
< (log R)E / Z ”(pfrk ”il(Rz)lfk-H,rk |4 + R™1000
T
< (log B [ I g |t + R,
Tk
where we use ||¢Ttk 1> < (log R)¢ (by Lemma 3.14). .

3.5. The sets Qy,

In this subsection, we will decompose the starting set Qg into (Qr N L) U (Qr N Q1) U

--U(Qgr N Qy—1). On the set Q, the bilinearized version of f is basically the same
as for the kth pruned version of f (see Lemma 3.28) and gy is high-dominated (see
Lemma 3.29).

Definition 3.27 (Definition of 2;). Recall the parameter r > 0 defined in (3.2). Let
Q2 y—1 be the union of pairwise disjoint Rllv/zl—cubes 0 ny—1 with non-empty intersection
with O g and satisfying

(1+8)r + R < [lgn-1llzoo(og R)® Q1)+

We define Q fork = N —2,thenk = N — 3, down to k = 1. To define Q, partition
OrR\(QN—1 U+ U Qgy) into Ri/z-cubes Q. Define Q2 to be the union of Qy in the
partition which satisfy

A+ ONFr + (N =R < |lgkll Lo (og B)° 05)-
Also define
L:=Qr\(QU---UQN_1).

Recall that § = log =R

Lemma 3.28. Suppose t is a ,0_1/2 x p~L-rectangle in the p~'-neighborhood of P!, at
anyscalel <p <R Fork=1,....,N —1,if Ry > p,

fr(x) — Z Je+1, (x)‘ < (logR) %« + R VvxeU,NQrNQ.

7w Ct

Recall that f; = (er)v-
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Proof. First note that foreach / € {1,..., N — 1}, by (3.6),

Zﬁ,f[: Z Z fl,rl: Z fl,‘L’]_]'

7 Ct 7 —1Ct1Cr 7—1Ct

Then we may decompose the difference as

fl’ - Z fk+1,tk = f‘L’ _ZfN,Q‘ + ‘ Z fN,‘CN_l - Z fN—l,rN_l
7% Ct 0Ct tiNn—1CT iNn—1CT
+--- 4 ‘ Z fk+2,‘tk+1 - Z fk+l,tk+1 .
Tk+1CT Tk+1CT

By Lemma 3.23, this is bounded by
(log R)A ™ (gn (x) + gn—1(x) + -+ + gk41(x)) + (N —k)R™1000,

Finally, use the definition of 2 for k < N — 1 to find that

< (ogR)*(N —k)(1 + 8N *171r + (N —k)2R73%°.  (3.10)

fr(x) - Z fk+1,rk

% Ct

Recall that N < log R, (1 + 8)N ~ 1, and recall that A was defined in Notation 3.18 by
A = (log R)"ra™ L.

By choosing m sufficiently large, we can guarantee that the main term on the right-hand
side of (3.10) is bounded by (log R)!%a. n

Lemma 3.29 (g is high-dominated on Q). Letk = 1,..., N — 1. For each R,i/z-cube
Ok C Q, \
8% 1200 (og RY® ) = 2(10g R)II& Il oo (qrog RY® 01 )-

Proof. Letk € {1,..., N — 1}. By definition of Q,
(1 + N r + (N = k)R < llgkll Lo og R)° 01 3.11)

Note that

¢ h
8% 1200 (og RY® 0x) = 1€k oo (0 RY® 01) T 118K loo(q10g RY® 01)
and suppose that
h ¢
8% Iz.oo (tog RY® 0) = 8118k | oo (qroe RY? 01 )- (3.12)
Then by Lemma 3.25,

¢
8kl zoo (g RY® 05) = (1 + )&kl Loo((10g RY® 01)
< (1 + )l gk+1ll Lo (tog R 05) + (1 + E R, (3.13)
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By the definition of Q2 and of r,
lgk+1llLoo(og B2 00 < (1 + N F7r 4 (N —k — HR™.
This combined with (3.13) gives
I8kl Loo (og &Y 0,) < (1 4+ 8N *r + (N — k)R,

where we have used (1 4+ 8)(N —k — 1)R™3%0 4 (1 + §)R~1900 < (N — k) R0 since
N < log R/loglog R. This contradicts (3.11) and means that (3.12) must be false, so the
conclusion follows. u

3.6. Proof of Proposition 3.5

Recall from Note 3.7 that we have replaced f by a constant multiple ¢f so that

maxg || follpoom2) = 1.
The first step of the proof of Proposition 3.5 involves an application of a local bilinear
restriction theorem. We will use the following version.

Theorem 3.30 (Local bilinear restriction). Let 1, and r]’c be non-adjacent ~ R,:l/ 2% R;l -
rectangles in the R_l-neighborhood of P. Suppose j >k and f € S has Fourier support

in Ng 1(IP’ ). Suppose T is in the range R; > T > 10(log R)Rl/z/dist(rk, 7;.), and that
or lS a cube of sidelength T'. Then

I Loy 5 SRVRY I SETR M
or K dlSt(Tvak) =7 e i Cry vheer ™

for a Gaussian weight function wg, localized to (log R) Ot and with Fourier transform
essentially supported in the ball of radius 2(log R)T ™! centered at the origin.

Proof. Let ngTbe a Gaussian bump function adapted to Qr as in Definition 3.15, so the
Fourier transform qﬁQT is essentially supported in a ball of radius 2(log R)7~!. Then

/kafrk </ > Sl

T Ctg, 1: Crk

¢QT
< / S Uy SuPhos + RO
rjcrk,rj/-crl’C

The reason for the last inequality is that for a fixed pair (z;, ‘L'j/»), the number of pairs
(t/, 7/") such that

(tj + 77 + Bygogryr—1) N (] + 7" + Baiog gyr—1) # 9 (3.14)

is at most O(1). Here we use the fact that 7 > 10(log R)R}/Z/dist(rk, 7). For more
details of checking (3.14), see the appendix.
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It suffices to show that

[ 155 75 Po0, < SED— RIT™ [ Sy Poo, [ 11 Poo,.

dlSt(‘L’k )

For a translate Ty; of r* and a translate T s of r’* let CT,, = MaXyer,, | f2; (x)|? and
CTrf. = maxyer,, | f, |2 (x) We consider only those T;; and T / intersecting (log R) Q.

Slnce T and T have angle ~ dist(zx, 7;), we have
|th N Tr;- N (log R)Or| < R, /dist(x, ‘L’]/c),

while |72, N (log R)Qr| 2 R}/>T. Consequently,
[V tiPoor = [ i gy Rt
(log R)Q 7
/ ZZCT, XTe; " CTy ATy + RT1000
(

logR)OT T T/

T -2
S c : c ’ ’ + R1000,
dist(tx. 7;) Z Tej ATz, /( Z To AT,

(logR)OT T logR)O 7 T
.l

The next step is to show that

/( ZCTt xr., < (log R)2/ | fe; Pwo, + R71%. (3.15)

logR)O1 T

The Fourier transform of | f; |2 is supported on 7,9 = 7; + (—t;), which is approximately
an R; -2 Rj—l-rectangle. Let ij ¢z, be a Gaussian partition of unity for {Z; }z, 1z, ,-
Let ¢Tf‘ =2 % clog Ry 0 Pz - Then [, — x4 1(6) < R™10% for £ € 7j0 and | f, > =
| fo; 1> % ¢ + O(RT10%).

Let ¥, (x) = MaXyex+T;, T, | |. Then

2
ZCTUXTU = |f1’j| *%,w

Te,

We finish the proof since ¥z, * xogr)07 < (log R)Zer + R™1900 for 4 Gaussian
bump function wg, localized at (log R) Q. L]

Proof of Proposition 3.5. Tt suffices to bound |Uy, N Q| for k =1,..., N — 1 and
|Uy N L| since there are < log R of these sets and |Uy N Qg| < 27:_11 |Uy N Q| +
|Uy N L.

Fork =1,...,N — 1, by Lemma 3.28, if x € U, N Q, then

max S0 fo 0l < max | ferne(0) o)+ Qg R)™al foo)] + R

7,7/ non-adj



Improved decoupling for the parabola 27

where fry1,r = Zrkcr Jk+1,7, - By the definition of Uy (Definition 3.1), | fz/(x)| <
(log R)°a, and so

max | fr(x) fr(x)| = max g | fe+1,e(¥) for ()| + (log R)~'a® + R73%

7,7/ non-a 7,7/ non-a

IA

max p | fie+1,0(X) freg1,0(x)] + (log R) ™'

7,7/ non-a

+ (log R) 7% fe 1,0 ()] + 2R,

Using the definition of U, as above as well as Lemma 3.28, it follows that | fx41,.(x)| <
2(log R)°a, and so altogether
max | fo(x) fo ()] < max | fip1,0(x) i, (X)] + 3(og R)T'a® + 2R
7,7/ non-adj 7,7/ non-adj
The R™590 error term is negligible given our normalization, as explained in Note 3.7.
Asx € Uy, MaXz, ¢/ non-adj | f(x) fer (x)] ~ az’ and so maXz, ¢/ non-adj |fk+1,r (-x)fk+l,r’ (x)]
~ a? as well. Therefore

4
a4|Ua N Qk| S

max |fk+1,sz+1,r/|l/2‘ (3.16)

7,7/ non-adj LA(UxNQg)

where 7 and 7’ are non-adjacent ~ (log R)™® x (log R)™!2-rectangles. We wish to apply
the bilinear restriction theorem above, but the functions f; 1,7, are only essentially sup-
ported in ~ 7. This just means that we have an error term of R~1°00 which is negligible
given our normalization, as explained in Note 3.7.

For each Qy C Q,

max | fesr,e fern,ol 2

4
2
= k+1,cJk+1,0
o ;/kammm

non-adj

2
(Theorem 3.30) 5|Qk|‘1( f Zlfkﬂ,rkl%gk) + R
Tk

2
< |Qk|_1(/ gkak) + R0 | + RT1

where w Ox is a weight function localized to (log R)® Oy and the final inequality follows
from (3.8) and (3.9) in the proof of Lemma 3.23.
By Lemma 3.29 and the decay properties of g,

/gkwék < (log R)18||gk||L°°((logR)9 Qk)|Qk| + R™500

< (log R)llgg | ov (gog Ry 04| Q| + R
< (log R)ZOHg]};”Ll(WQk) + R

< (log R)3°||gZ||L2(WQk)|Qk|1/2 4RS00
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where Wy, is a Gaussian weight function localized to ~ (log R)° Q) coming from the
locally constant property (see (3.15)). Use this in the previous displayed math and add up
the contributions from each Qy to obtain

Jmax e fio 2]

60 h2
iy S (02 R [ Ighion, G.17)

where wg, =Y o « Wo, - Note that wg, < 1 and by the high lemma (Lemma 3.26),
/|82|2a)9k < (log R)E”/Z|fk+1,rk|4 4+ R~1000,
Tk

Then fk+1,fk = ka+1ka fk+1,rk+1 » SO

3/2
4 k+1
[ X i < i | 3 il
Tk Tk+1

By Lemma 3.21, we have || fg+1,7. 4, llLee < C(log R)?) 4 R71000 The R~1000 error
term is negligible as explained in Note 3.7, and so we essentially have

/ D vl = Qo R [ s
Th+1

Finally, we have to carefully unwind the definition of f; ;, and f; ;, _, to relate this
last quantity to the original fy:

[Z | fettg |* < Z/IMZ + R, (3.18)
Tk+1
First we recall by Lemma 3.21 that | fx 41,54, (X)| < | fk+2,54, (X)], and so
Z / |fk+l Tk+l| Z / |fk+2 ‘L'k+1| (319)
Th+1 Tk+1
Next, by Definition 3.20, fgi2,,, = Zrk+zCrk+1 Sk+2,54,> and so
) AVSTNCED B [N DERY/ RPN SR CF 0
Tk+1 Tk+1 Tk +2CTk+1

By Lemma 3.21, the Fourier transform of f 12 ¢, , is essentially supported in the set

(1 + (log R)"®)t4,. Since distinct 741, and ‘L’k+2 are > 1 Rkj_é -separated, these sets
are disjoint. By orthogonality, we get
> / Y ferrmas| <D / | fit2,meqal” + R (3.2

Tk+1 Tk +2CTk 41 Tk42

Now we repeat the reasoning in inequalities (3.19)—(3.21) at many scales to conclude
that
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Z /) Z fk+251’k+2 ’ = Z/|fk+2,rk+2|2

Th+1 Tk +2CTh 41 Tk 42

2
< Z/|fk+3sfk+2|

Tk+2

2
=< Z/|fk+3,rk+3|

Tk+3

5;/wws;/w?

In the above sequence of inequalities, we neglected to include an R~>° added error term
in each step due to the difference between “essential support” and “actual support.” These
error terms are all negligible according to Note 3.7.

The conclusion of this argument is that fork = 1,..., N — 1,

2
= T
Uy 0 Q] 5 (og R — 3 " foll 72 r2)-
%]

Finally, we check that this indeed gives the conclusion of Proposition 3.5. Recall that
gn(x) =g | fol? * ¢7,- By Lemma 3.14, ||(pT9 1 < (log R)¢ . Thus for each 6 and

x € (log R)>Qn (where Qn N Qn # 0),

| fol? % 7, (¥) < (10g R foI? o gz + R
It follows that r < (log R) > |l foll
clusion of Proposition 3.5.

Finally, it remains to bound |U, N L|. The first step is going from f to f; using
Lemma 3.28 (the argument for €21 in (3.16) holds for L as well):

iW(RZ) + R™1000 Plygging this in gives the con-

QU LIS [ max|ficfiol + RO
LT

Mal

3
SogRf [ (S lfial) R0
UL N

3
(Lemma 3.21) §(logR)c/ (Z|f2,,1|2) 4 R1000
UaNL N

< (log R)° / (3 1 fom P) + R1000
s ST 2l)

where the last inequality is due to (3.8). Then by the definition of L,
lgillLeow,nry < Cr + NR™%.
Finally, by (3.18),

/Zl.fz,mz < /sz + R, .
T1 0
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4. Proof of Theorem 1.2: the general case

In the last section, we proved Proposition 3.5, which establishes our main theorem in
the broad, well-spaced case. In this section, we prove Theorem 1.2 in full generality. We
use Proposition 3.5 as a black box, and then we remove the broad hypothesis by using a
broad/narrow analysis, and we remove the well-spaced hypothesis by a random sampling
argument.

4.1. Removing the broad hypothesis

The following proposition uses a broad/narrow analysis to prove an upper bound for
Il £l L6 (0 ) using Proposition 3.5.

Proposition 4.1. There exist ¢, C € (0, 00) such that for all well-spaced collections ©®
and f € § with Fourier support in | Jgcg 0,

2
”f”ZG(QR) < C(log R)C (Z ”f@ ”]ZJX’(]Rz)) Z ||f9 ”22(]1{2)'
6 0

First we prove a few technical lemmas.

Lemma 4.2 (Narrow lemma). Suppose that Ty is an arc of length R, "'~ < £(7x) <
3R, V2 Let {tr 41} be a partition of Ty, into Rk+/1 -arcs. If x satisfies
/2
(log R)* R,
|fao ()] > —— 5 max | fo, (0 fy (0], 4.1)
* R/i/2 Tk 15Th g | i Tt
non-adj
then there exists an arc Ty such that £(Tx+1) = 3R,:j_/12 and

1
0l = (14 o ) o O
Proof. Write fz, = Z'fk+l Suy, andlet 777 | index a summand satisfying

max_ | foe, 0] = frz,, ().

Thk+1 1ST%

For each 7j 4 that is non-adjacent to 77 ,,

Rl/z
1/2
| Frn ] = gy @) Sz, (V2 < ka(xn
k+1
using the hypothesis (4.1) about x. Then
1/2
A Y frk+1<x)) > (1 —#rkﬂﬂ)um )].
Tk +1 non-adj (10 R) Rk+]

*
to Tk+1
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The number of t; 1 is bounded by 3R,1/+21/R,i/2. Define 71 to be (77, )L Uty U

(t )R where (7, )L is the left neighbor of 7/, , and (77, )R is the right neighbor
of 77, . L]

Lemma 4.3 (Case 2 in the proof of Proposition 4.1). Suppose t;} is an ~ R;l/szgl-
rectangle in the R,:l-neighborhood of P1. Then

2
[ 155105 g R (X M alliny)” X Mol
HTZ oCty 0Cty

where

Hee ={x € Or: [fe (0] < (0g R® max | fuy () f, (02,
rk+1’rk+1
non-adj

-9 6 1/6 1/2
Mg RP( D 1far ) = max [ fuy, (0 f,, (V2]
Tk+1=7k+1c'[k

*
Th+1CT non-adj

Here 1y 41 are Rkj_/lz X Ry}, -rectangles.
Proof. Let (c, c?) be the center of 77 N P!. Define the affine map

UEr, &) = (R * (81— ©), R (€2 — 281¢ + ¢2). 4.2)

Then £(z;’) is contained in the (R/Ry) ™" -neighborhood of P'. The images {¢(6)}gc
have the spacing property at scales Rg41/Ry, ..., R/Ry. Define the function 4 as

h= fo ¢!
and note that for each Rl_l/ 2 x Rl’l-rectangle 7 C 13,

_ i 2
R ey (y(x)e2m €™ = £, (x)

where £(z;) is approximately an (R;/Ry)~"/? x (R;/Ri)~"-rectangle and

) X1+ 2¢cx2 X
x)=—=,— ).
y R/* Rk

In particular,

[l =r2P [ ol (43)
Moy vy

By dyadic pigeonholing, there exists g > 0 such that

6
||hl(r]i'f) ”LG(V(Hr;:))

. 1/2
{xery): T s ) (e (6) P~ g
non-adj

< 6
~ O«
~ ‘['k
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Repeat the proof of Proposition 3.5 to obtain

2
e zoq i, < (o8 RE(Y e 2oegy) D Mhelagay (G4

* *
0CT; 0Ct;

First observe that

3-3/2
Y e 22gay S Ry 2D 1 fal22ge)

oCty ocCty
Next, note that for each 6 C 7,
Ihe@) 12 ooy < RENSol1 o,
These observations combined with (4.3) and (4.4) give the desired conclusion. [

Proof of Proposition 4.1. Define an iteration using a broad/narrow argument.

Initial step: Define

Sii={r e X @1 < (og R max o) o],

T’ n

/
(Z1A00) " < tog R max 1/ fe2) @)

T’ non

Define B; = X \ S;. Split the integral into

[ 1= /S |f|6+[Bl I (4.6)

By the narrow lemma, if x € By satisfies | £(x)| > (Iog R)® maXe, ¢ non-adgj | f (X) fo (x)]1/2,

then for a collection {t**} of pairwise disjoint unions of three consecutive t,

1 1/6
1= (14 o) (S0
Alternatively, x € Bj satisfies
/()] < (log RB)® max | fo(x) fer(x)|'/?
7,7/ non-adj

but

/
(o R (L IAMI) > max [0 feo] 2

Putting this together means that

1 \° 1
Jubre= (s im) f, 20 e,

TR
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Let {t*} denote the collection {7} if

/Blz'f"G = [ Yipel

1 TH*

and let it equal {t**} otherwise. Then

2 6
[ = (1+ 5z fy X

(this just means we only have one finer scale to keep track of rather than two almost
equivalent scales). Summarizing all of the inequalities, we conclude that

2 6
1 s 5/ |f|6+(1+—) / [ fur 6.
Lo S IOgR ; B ’

For each t*, further decompose B; into

Sev = {x € Bi il fer (0] < (0g B®  max | fry(x) fy(0)|!/2,

2, 2Cr non-adj

(2 @) <0gR®  max £ fy 02}

75,75, CT* non-ad
nCt* 2 j

where £(13) = / . By analogous reasoning, we conclude this case with the inequality

2 6
6 < 6 |4+ = 16
||f||L6(X)_[S1 714 (1+ oo7) ;fs,* o]

+(1+10:R)122*/BI 3 1ol

* %
'Ech

where By+ = By \ S¢*.

Step k (k > 2). The conclusion of the previous step is

) 6
6 < 6 14 2 / .16
s = [, 17+ (14 jogr) T [, et
o) 6(k—1)
1 o ]°
(e I,

Tk—1 k=1

+( lo:R) Z[ Yoo sl @.7)

rkl‘CC‘L’kl

* : * * *
where for each 7;°_,,if 77 | C 77, C--- C 1, Ctthen

B_« _Bl\(S1US,*USr§kU~-'USrZ

Tk—1

).

-1
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For each 7:,:‘ - t]:‘_l, define S, to be the set
k

{¥eBy 1fer@I=ogR®  max | fy () fy, (02

Tk+1> TkJrlC
non-adj
1/6
6 9 1/2
(X an®I) " =0ogR’  max | fou, @) fy, 0172
% +1CT; et rkﬂc
non-adj

where £(tx11) = R}, +/12 Define B, » = Br; ] \ S,;:. By analogous arguments, we con-

clude that (4.7) holds with k replaced by k + 1.
Iterate this procedure until Step N — 1 where N ~ 10;1%) g 7 to obtain inequality (4.7)
for k = N. Since there are ~ log R/loglog R terms in the right-hand side, it suffices

to consider cases where || f ||26 (©r) is bounded by log R times one of the terms on the

right-hand side. Note that the factors (1 + ﬁ)“‘ are < 1forallk < N.
Case 1:
11500, = oz ) [ A
By the definition of S in (4.5),
/Sl /16 < (log RY*® /S max | fefol.
Let Uy = {x € 1 : maxq, | fz(x) for(x)|'/? < R™'% maxg || fy || Lo }. Note that

3 —55 6
/U max ool = RO max ol o

(Lemma 3.6) < R_SS(Z ”f@”ioo(Rz))z / Z |f9|2,
0 0

which is the right-hand side in Proposition 4.1.
Then S \ Us can be partitioned into < log R sets Uy on which max. ./ | fz fr/|1/ R
with R71% < o/maxg || fy || Lo (r2) < R. By pigeonholing,

[ maxIffel S GogR) [ maxfofol ~ (og RyaIS 1 Ul
SI\U; &7 S1NUy ©°F

Then Proposition 3.5 applies to bound a®|S; N Uy|.

Case 2:
1 IS0 < (e RIS [ 1A
Ty Tk

The sets S - are contained in H, * from Lemma 4.3. Using Lemma 4.3, we get

Z / | for |6<Z(logR) (> ||fe||Loo(R2)) > 112

oCty 0Cty

< 10 B (L o)) 2 1ol
[% 0

so we have the desired conclusion.
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Case 3:
1 o0 S0 X [ 30 IAg
T

Not TNl TN CTN
The size of Ty, is approximately the size of 6 (up to a factor of 3), so we may assume

Ty = 0. Then since the £ norm is bounded by the £? norm, the above inequality implies
that

a®|Uy N Og| < (logR)/U mX(X:|f9|2)3
o 9

2
< Qg (Y1 folZemry) 2 1ol a2y .
0 0

4.2. Removing the well-spaced hypothesis

This section has been simplified following the suggestions of a helpful reviewer. We will
use the following lemmas to prove Theorem 1.2 in the following section.

Lemmad4.4. Foreach f € S with Fourier transform supported in Ng—1(PY), there exists
a collection © that is well-spaced at scale Ry_1 such that

1
- =[5
(1- 507 )1/ Testonm < >

Proof. Partition Ng—1(P!) into a collection of ~ R V2x R! -rectangles {6}. Label the
R~'/2-arcs from left to right by 6. .., 6,, so n~ R'/2. For each i = ., (logR)®|—1,

define H' by
> Jo
m=i mod | (log R)® |

LS(QRr)

Then f =", H' where there are ~ R'/2/ lev/fl = (log R)® terms in the sum. Therefore,

ifi

and so

6 Ee—— max H .
1 oo < Z room

Let ® be the collection of 6, with m % i mod |_(10g R)®| for i achieving the maximum.
[

Lemma 4.5. Foreach f € S with Fourier transform supported in Ng—1 (P1), there exists
a well-spaced collection ® such that

I fllLscor) < HZ f"‘
0e®

LS(QR)
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Proof. Define an iterative procedure. Let Fy = f. Apply Lemma 4.4 to Fy to obtain
Fx_y, which is well-spaced at scale Ry—1.

Obtaining Fy_;_; (where k > 1) from Fy_;: We have Fy_j from the previous step;

it has the spacing property at scales Ry—_1, . .., Ry—k. Furthermore,
1 k
(1= 1507 ) 1 stom = 1Ew—tliecor @8)

The ~ R;,l_/i -arcs made up of unions of the 8 are defined by the previous steps. Label
them from left to right by 71, ..., 7, . Fori = 0,..., [(log R)®| — 1, define Hj’;,_k_l by

Z (FN—k)‘Em-

m=i mod | (log R)® |

Note that Fy_x = Y, Hliv—k—l’ where there are ~ (log R)® terms in the sum, and for
each 6, (Fy—_g)g equals (Hliv—k—l)e for exactly one i. Then

1
Fy_ k—#l_IZZHN k-1
i ii
and
Fi- i |
I FN—kllLoco ) < - max g N—k—1 LSOR)
1LF1

Define Fy_j—1 = Z; £i Hz7k71 where i achieves the maximum.
Iterate this procedure for N — 1 steps, until we obtain Fy, which is well-spaced, along

L . . log R —-N _C
with inequality (4.8) fork = N — 1. Since N ~ foglog R* (1 — logR) <elbgeR <1, m

4.3. Proof of Theorem 1.2

We prove Theorem 1.2 using Proposition 4.1 and Lemma 4.5.

Proof of Theorem 1.2. By Lemma 4.5,

6 £116
”f”LG(QR) < ”f”}G(QR)
Ze “ft‘)”zz(Rz) Zo ||(f)9||iz(R2)

where f = ) e fo for a well-spaced ©. Then by Proposition 4.1,

11166 >
G — < (0g R (Y I follogery) -
29 ||(f)0||L2(R2) 0cd

Since ® C O, we are done. [
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5. Showing Decg(R) < (log R)¢ from Theorem 1.2

5.1. Wave packet decomposition and pigeonholing

We will consider the following form of the decoupling inequality:
) 1/2
1 £ oo = Decs(R) (D I folZege) - 5.
0

The constant Decg(R) associated to this inequality is comparable to the constant where
the L® norms are both taken over R? and to the constant obtained from the L® norm in
the upper bound being some weight function wg .

Our goal is to begin with f € § with Fourier transform supported in Nz—1(P') and
show it suffices to prove the decoupling inequality for a version of f which has rela-
tively constant amplitudes and number of wave packets in each direction. In the following
definitions, ~ means within a factor of 2.

Write

=X vrfo (5.2)

6 TeTy

where for each 6, {{7}TeT, is a Gaussian partition of unity (meaning adds up to 1)
adapted to (log R)?(R x R'/?)-tubes T'. Note that this implies that || < R™1000 off of
(log R)™3(8 — cp), where cq is the center of 6.

Proposition 5.1 (Wave packet decomposition). There exist subsets O C ©and T@ C Ty
as well as a constant C € [R_1°3, 1] with the following properties:

|5 00 = 00 02|25 vl g, K (S lsolen)

0e® T €Ty
(5.3)

#’]T@ ~ #']Tg/ forall 0,0 ¢ @, (5.4)
1T foll o2y ~ CM with M defined in (5.7) and forall € ® and T € Tg.  (5.5)

Proof. Split the sum (5.2) into

=YY vrfa+>. Y vrfa (5.6)

6 TGTg 6 TET‘gf
where the close set is
T :={T €Ty:T NROQOg # 0}

and the far set is
T ={T €Ty :TNRQg = 0}.
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By Cauchy-Schwarz,

12 2)1/2‘
HZ(;TEZT:/ VT fo L50n) <R H (;‘TGXT:/ WTfO) 1500
% %
RS vrhfg)
= - LT e

TeT,

IA

TeT,

1 1/2
=5 (X 1leee))
0

IA

1/2
max 23,. Z1 . §eﬁ||f9||L6(R2))

where we have used the fact that one can bound the L norm by Cy R~V for any
N e N. This takes care of the far portion of f (i.e. the second term on the right-hand side

of (5.6)).
The close set has cardinality |Tg| < R?2. Let

M = max max %) .
a eag 1V follLoor2)
By Lemma 36,

1/2
M < max folle < (3 1 olFeme) -
0

Split the remaining term as

DD urfe=>. > Dvrfo+ Y. D Vrfs

6 TeTg 8 R-103—j<1 TS, 6 TeT§,
where A is a dyadic number in the range [R=1°%, 1], and
Tgs =T € Tg : Y1 foll Lo w2y ~ AM},
T, = {T € T¢ : |¥r follom2) < AR71O M),

Handle the small term from (5.9) by

HZ Z vrfs LS(QR) SRI/Z(;HT; lMfg‘zf’(QR))l/2

0 TeTg
—10 —-10 2 1/2
= RM = R(Y 1 foleme))
0

Next decompose the remaining term from (5.9) as

2 X 2 vrh= ) X > D urh

R-103<p<1 0 TeTg, R-103<)<1 1<j<R?20€0,; (1) TeT ,

where j is a dyadic number in the range [1, R**] and ©; (1) = {0 : TS, | ~ j}.

(5.7)

(5.8)

(5.9)

(5.10)
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Because j and A are dyadic numbers, there is a choice of (A, j) such that

H > > ZWTfG‘

- LO@QR)
R-103<j<] 1</ <R22 €0, (A) T€T} ,
SlogR?| Y Y waa\Lé(Q -
0€®; (1) TeT
Take © = ©®;(A) and for each 6 € O, take Ty = Tg ,- [

5.2. Proof of Theorem 1.1

By Proposition 5.1, we have

HZfe\mQR) < (log )’ HZ > vr sl

0e® TeTy

1/2
R—3<§ Al fall7 )
L5(OR) - ||f9||L6(]R2)

where #Ty ~ #Tp forall 6,0’ € © and

Y1 follLoo 2y ~ A := max max [|¥77 for || Loo 2)- (5.11)
0€d T7eTy

Since the Fourier transform of ZTeTrg Yt fo 1is essentially supported in
(1 + (log R)™3)0, there exists a function fp with Fourier transform supported in
(1 + (log R)™3)8 such that

> U fo(x) = f(x) + O(R™®)A.
TE']TQ
Thus

R™7A4. (5.12)

DIDIRTA

96@ TG 0

LS(QRr) — H Z fe

L6(QR)

The functions f,; have Fourier support in (1 4 (log R)~3)#. We may split © into ~ 1
sets ®; where for distinct 6, §’ € O;,
(26) N (20") = 2.
Then for some i,
1> %
0e®d
and it follows from Theorem 1.2 that

HZfe roion S Mg R ( 2 iBgs) 2 1filgey 613

0e®; 0e®;

LS(QR)’

6 6
< /
LS(QR) ~ “ Z 7
9€®i
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Note that
1/2 2 1/2
. —500
(Z e = (ZH > waeHLoo(Rz)) + RS04,
0e0; 0e® TeTy
1/2 2 1/2
. —500
(X i) S (2] 2 vesfo]nge)  + R4
0e®; 0e® TeTy

Combining these observations with (5.13) gives

Hzfe LS(QR) ~ S (log R)* (Z” Z wae”LOO(W)) Z” Z 1/fo0

L2(R2)
96@ TET(; fe® TE 0
+ RT2000 46 (5.14)
The second term is bounded by
3
RT0048 < R20(3 | £y 25, ) (5.15)
0

using Lemma 3.6 and the fact that 0 < ¥ < 1. It remains to analyze the first term in the
upper bound in (5.14). For each 6 € ©, we have

) > WTfe(X)) < ‘ > WTfe(X)‘ + R71000 4 < (log R)24 + R™1000 4,

TeTy TeTy
xe(logR)T

This leads to the following upper bound for the first term on the right-hand side of (5.14):

(> vrse H;(Rz))z < (log R)}(#O42)? + R™100 44 (5.16)
0e® TeTy

Foreach 0 € (:), we also have

/‘ Z l/fof) dx < (log R)? Z / \Wr fol? dx + R-1998 42

TeTg (logR)T
< (log R)4#T9A2|T| + R71998 42,

Combining this with (5.16) leads to the upper bound
1> %
0e®d

Finally, note that for each 6 € 0,

6 ~ ~
< (log R)T124#03#To A®|T| + R100045, (5.17)
L(QR)

#Tg|T|A® < (log R)? Z /WTfeIGa)T 1 R™2000 46
TE']T‘@
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where we use the locally constant property. Finally, since the £° norm is bounded by the £!
norm and 0 < yr <1,

> [wrsitt = [( wrhil) = 1allfoey

Tei‘g Te’ﬁ‘@

In summary, we finish the proof by combining (5.17) with (5.11) and

~ ~ 3
#OHT,|T|4° 5 (log R (D I folZogoy) - .
0e®

Appendix

In the appendix, we show that a slight modification of the proof gives Theorem 1.2 and
Theorem 1.1 for a set of curves

K= A{E1.h(E) : [61] = 1},

where h are C? functions satisfying 4(0) = A’(0) = 0,and 1/2 < h”(§;) <2 for |§] < 1.
In particular, one can cut the unit circle into O(1) arcs, such that each arc is part of a curve
in X after translation and rotation. The truncated parabola P! is also in K.

To prove Theorems 1.2 and 1.1 for the curves in X, replace the affine map (4.2) in
Lemma 4.3 by

LELE) = (v(E — o) vP (B2 —h(e) — ' () (61 —©))) (5.18)

with v = R,i/z. Since the curve {(v(§1 — ¢), vZ(h(£1) — h(c) — W' (c)(&1 — ©))) :
|1 — ¢| < v~} is also in X, the proof of Lemma 4.3 remains unchanged provided that
Proposition 3.5 holds for all the curves in K for a smaller R.

Then it suffices to check (3.14) for the curves in K. Let (§, h(§)) be the center of t;.
Assume that

£ cu, E.8" e,
and
E-8 ="+ OR").
Then h(§) — h(€") = W' (&1)(§ — &") for some & between & and £”, and h(§") — h(§') =

N (£2)(8" — €') for some &, between £ and &’. We have W/ (£1) + (& — £1)/2 < I/ (&2)
since 1/2 < h"(§) < 1. Since &, — &; > dist(zx, 7;), we obtain

h(E) = h(E") = (h(E") = h(E) 2 dist(e, 7) Ry

if 7, rj/., rj//, r]/.” have pairwise distances > R;l/z. So (3.14) is verified.
Decoupling for the circle with explicit decoupling constant (log R)€ has an application
to a problem about sums of two squares. The problem arises in the study of Laplace

eigenfunctions for the standard two-dimensional torus.
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Let A,, be the set of Gaussian integers A = x + ~/—1y, x, y € Z, with norm AX =m.

Problem. Give a non-trivial upper bound for the number of solutions of
A+ Ay +Az3 = Ay + A5 + Ag, A]‘E/\m.

Corollary 5.2. For any A C Ay, if N = |A| > (logm)©T0/€ for some € > 0 and the
constant ¢ as in Theorem 1.2, then

Niu(A) :=#HA1 + A2+ A3 =21+ A5+ A6 Z/\j EA}SNH—G.

Proof. Consider the function

i A
g(z) _ Zeanmz

AEA

for z € R2. Let Q¢ = [0,m(logm)]? and {Q} be a tiling of R? with translates of Qy. Let
{¢o} be the Gaussian partition of unity defined as in Definition 3.15. Define the weight

function
Y = > vo.
Q:dist(Q,Q0)<m(logm)?

Then | — 1] < m~19%0 on Q¢ and || < m™1990 outside of (logm)? Qo and rapidly
decays away from it. Moreover, the Fourier transform @ is essentially supported on
B(0,m™)

We apply Theorem 1.1 (for the circle) to the function f(z) = g(z)¥ with R = m
and Qr = [0,m]?. Then fy = e2mihz/\m for the (unique) A/ +/m € 6. Note that g(z) is
periodic: g(z + /mv) = g(z) forany v € Z2. Since | f — g| < m~1%%0 on Q g, we have

Npm(A) S (logm)“TO|A?

where the (log m)® comes from a weight function v essentially supported in
[0, (log m)3m)?. n

This problem was studied by Bombieri and Bourgain [1] using various methods. In
particular, they obtained the bound O(|A,,|>*€) assuming the Riemann hypothesis and
the Birch and Swinnerton-Dyer conjecture for the L-functions of elliptic curves over Q
and for a random m with |A,,| ~ 220" w(m) ~ Algglg"g — for some constant A. Based
on the Bourgain—Demeter decoupling, Zane Li [8] obtained the result of Bombieri and
Bourgain unconditionally for all m with |A,,| > exp((logm)'=°(1). Corollary 5.2 proves
the result for a larger range of |[A|: |A| > (log m)c/°M.

In [3], it was conjectured that for any A C A,,, and any € > 0, there exists C, inde-
pendent of m such that

#A A2+ A3 =Aa +As + A6t A; € A} < Ce|APTe

Corollary 5.2 confirms this for |A| > (log m)€+0)/€.
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