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Abstract. We consider the problem of estimating the mean of a random vector based on N inde-
pendent, identically distributed observations. We prove the existence of an estimator that has a near-
optimal error in all directions in which the variance of the one-dimensional marginal of the random
vector is not too small: with probability 1 � ı, the procedure returns y�N which satisfies, for every
direction u 2 Sd�1,

hy�N � �; ui �
C
p
N

�
�.u/

p
log.1=ı/C .E kX � EXk2/1=2

�
;

where �2.u/D Var.hX;ui/ and C is a constant. To achieve this, we require only slightly more than
the existence of the covariance matrix, in the form of a certain moment-equivalence assumption.

The proof relies on novel bounds for the ratio of empirical and true probabilities that hold
uniformly over certain classes of random variables.

Keywords. Mean estimation, high-dimensional statistics, robust statistics

1. Introduction

The problem of estimating the mean of a high-dimensional random vector with a possi-
bly heavy-tailed distribution is a classical question that has been studied extensively over
the years. Recently it has received the attention of mathematical statisticians and theo-
retical computer scientists. We refer to Lugosi and Mendelson [22] for a recent survey
and to Bahmani [1], Dalalyan and Minasyan [6], Diakonikolas, Kane, and Pensia [10],
Mathieu and Minsker [25], Minsker and Ndaoud [32], Depersin and Lecué [8,9], Lee and
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Valiant [19], Cheng, Diakonikolas, and Ge [4], Lei, Luh, Venkat, and Zhang [20], and
Hopkins, Li, and Zhang [15] for a sample of even more recent references.

To formulate the problem, let X1; : : : ;XN be independent, identically distributed ran-
dom vectors taking values in Rd with mean EX D�2Rd (whereX is distributed asX1).
One is interested in constructing a measurable function y�N W .Rd /N ! Rd such that
y�N D y�N .X1; : : : ; XN / is close, in some sense, to the mean �. A possible meaningful
goal is to find an estimator such that, given a confidence parameter ı, has, with probability
at least 1 � ı, the Euclidean distance ky�N � �k as small as possible.

Constructing an optimal y�N is not that obvious even when d D 1. Without any further
assumptions on the distribution of the Xi it is impossible to give meaningful performance
guarantees even in that case, let alone for a random vector in Rd . However, under minimal
conditions, it is possible to construct estimators with remarkably strong properties. The
most common assumption is that theXi have finite second moment. When d D 1 one can
find y�N .ı/ such that, with probability at least 1 � ı,

jy�N .ı/ � �j � c�

r
log.1=ı/
N

; (1.1)

where �2 is the variance of X and c is a universal constant (see, e.g., [22]).
The meaning of (1.1) is that even if X is heavy-tailed, y�N performs as if X were

a Gaussian random variable and the estimator were the empirical mean N�1
PN
iD1 Xi .

Obviously, the empirical mean does not exhibit such a behavior unless X is actually
Gaussian (or sub-Gaussian), which indicates that y�N has to be rather carefully chosen
when X is an arbitrary random variable.

The problem for d > 1 is significantly more complex, though it does have a satisfying
answer. Let X 2 Rd and assume (as we do throughout this article) that the covariance
matrix of theXi , denoted by†DE .X ��/.X ��/T , exists. Quite remarkably, there are
mean estimators that, under this minimal condition, achieve “sub-Gaussian” performance.
In particular, for any ı 2 .0; 1/, there exists an estimator y�N D y�N .ı/ such that, with
probability at least 1 � ı,

ky�N � �k � C

�r
�1 log.1=ı/

N
C

sPd
iD1 �i

N

�
; (1.2)

where C is a universal constant and �1 � � � � � �d � 0 are the eigenvalues of the covari-
ance matrix†; see Lugosi and Mendelson [23,24], Hopkins [14], Cherapanamjeri, Flam-
marion, and Bartlett [5], Depersin and Lecué [9], Lei, Luh, Venkat, and Zhang [20], ands
Diakonikolas, Kane, and Pensia [10].

The reason for the term “sub-Gaussian” is, again, the comparison to what happens
in the Gaussian case and the estimator being the empirical mean. Indeed, when the Xi
have a multivariate normal distribution and z�N D .1=N /

PN
iD1Xi is the empirical mean,

then (1.2) holds with probability at least 1 � ı. This bound is of the correct order, since

the expected value E kz�N � �k is proportional to
p

Tr.†/=N D
q
.1=N /

Pd
iD1 �i , and

the term
p
.1=N /�1 log.1=ı/ bounds the fluctuations, using the Gaussian concentration
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inequality. We refer to the two terms on the right-hand side of (1.2) as the weak and strong
terms, respectively: the strong term is related to the L2 norm of kX �EXk and the weak
term corresponds to the largest variance of a one-dimensional marginal of X , that is, to
supu2Sd�1 �.u/ D

p
�1. Here Sd�1 D ¹x 2 Rd W kxk D 1º denotes the Euclidean unit

sphere and h�; �i is the standard inner product in Rd .

Remark. Strong-weak inequalities are an important notion in high-dimensional proba-
bility (see, e.g., Latała and Wojtaszczyk [17]). We explain the connection between our
results and these inequalities in Appendix B.

Clearly, an equivalent way of writing the inequality (1.2) is as follows:

8u 2 Sd�1 W hy�N � �; ui � C

�r
�1 log.1=ı/

N
C

sPd
iD1 �i

N

�
: (1.3)

It is reasonable to expect that (1.3) is the best “directional formulation” that one can
hope for. Firstly, the error must have a global component, which is the strong term: direc-
tional information corresponds only to one-dimensional marginals of X , while higher-
dimensional marginals impact the ability of approximating the mean. At the same time,
any standard way of controlling fluctuations is based on estimates on the worst direc-
tion, leading to the weak term which involves �1. With that in mind, a more fine-grained
version of (1.3) seems unlikely.

Perhaps contrary to intuition, our main result does precisely that: under a mild addi-
tional assumption on X we construct an estimator that, up to the optimal strong term,
preforms in every direction as if it were an optimal estimator of the one-dimensional
marginal:

Theorem 1. Let X1; : : : ; XN be i.i.d. random vectors, taking values in Rd , with mean �
and covariance matrix † whose eigenvalues are �1 � � � � � �d � 0. Suppose that there
exists q > 2 and a constant � such that, for all u 2 Sd�1,

.E hX � �; uiq/1=q � �.E hX � �; ui2/1=2: (1.4)

Then for every ı 2 .0;1/ there exists a mean estimator y�N and constants 0 < c;c0;C <1
.depending on � and q only/ such that if ı � e�c

0N , then, with probability at least 1 � ı,

8u 2 Sd�1 W hy�N � �; ui � C

�r
�2.u/ log.1=ı/

N
C

sPd
iDc log.1=ı/ �i

N

�
: (1.5)

It should be stressed that a proof of such a result, that is sensitive to directions, calls
for the development of a completely new machinery. In (1.3) one is allowed fluctuations

at scale
q
�1 log.1=ı/

N
in all directions, and that plays a crucial role in the proof of [23, 24].

In contrast, inequality (1.5) calls for (uniform) control over all nontrivial directions but

the allowed scales of fluctuations in each direction can be much smaller than
q
�1 log.1=ı/

N
.

That difference renders useless the methods used in the proof of (1.3).
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In order to prove Theorem 1, we construct a mean estimator y�N that satisfies the
announced property. The mean estimator uses the parameters � and q appearing in condi-
tion (1.4). The estimator is a variant of the multivariate trimmed-mean estimator that was
introduced in [24]. It was shown to satisfy (1.2). However, the estimator of [24] cannot
achieve the desired direction-dependent accuracy as it uses a “global” parameter in all
directions. The estimator is formally introduced in Section 5 but we sketch its definition
here.

In the first step of the construction of the estimator, we divide the sample X1; : : : ;XN
into N=m blocks of size m and compute, for each block,

Yj D
1
p
m

mX
iD1

Xm.j�1/Ci :

Herem is chosen to be a constant depending on q and �. The purpose of this “smoothing”
is to ensure that the Yj satisfy certain “small-ball” properties.

Next, for each direction u 2 Sd�1, we compute the trimmed-mean estimators

y�N .u/ D
1
p
m

1

N=m � 2�N=m

X
j2ŒN=m�n.JC.u/[J�.u//

hYj ; ui;

where the sets JC.u/ and J�.u/ correspond to the indices of the �N=m smallest and
�N=m largest values of hYj ; ui and � 2 .0; 1=2/ is another constant that depends on q
and � only.

Once we have the “directional” mean estimators y�N .u/ with the desired property, we
need to find a vector y�N such that hy�N ; ui is close to y�N .u/ for all u 2 Sd�1, at the
appropriate direction-dependent scale.

To this end, similarly to the case of the trimmed-mean estimator, we define “slabs”
in Rd and the wanted estimator is given by the intersection of those slabs. In order to
define slabs of the correct width, we need to estimate the directional variances �2.u/. For
our purposes, we only need to accurately estimate the variances �2.u/ in those directions
u 2 Sd�1 in which the variance is “not too small,” meaning that it is above a certain
critical level; below the critical level all we need is that the estimator detects that the
variance is small.

In order to define a variance estimator  N .u/, first we set

zXi D
Xi �X

0
i

2
; i 2 ŒN �;

(defined on a sample of size 2N that is independent of the one used to construct the
directional mean estimators y�N .u/) to obtain a sample of centered vectors with the same
covariance as X .

Next we divide this sample into N=m equal blocks, where m is an appropriately cho-
sen constant (depending on � and q and possibly different from the analogous quantity in
the definition of y�N .u/). For each block, we compute

Zj D
1
p
m

mX
iD1

zXm.j�1/Ci :
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Once again,  N .u/ is a trimmed-mean estimator. More precisely, for every u 2 Sd�1, if
we denote by JC.u/ the set of indices of the �N=m largest values of jhZj ; uij, we define

 N .u/ D
1

N=m

X
j2Œn=m�nJC.u/

hZj ; ui
2:

Once such a covariance estimator  N .u/ is constructed, for a parameter � > 0, we
may define the slabs

Eu;� D

²
v 2 Rd W jy�N .u/ � hv; uij � �C 2C

0

r
 N .u/ log.1=ı/

n

³
and let

S� D
\

u2Sd�1

Eu;�:

Since � > 0, the set S� is compact, and therefore

S D
\

�>0WS�¤;

S�

is not empty. We may now define the mean estimator as any element y�N 2 S .
The main technical novelty of this article is the machinery that leads to the neces-

sary directional control. It is presented in Section 3. This machinery consists of bounds
for ratios of empirical and true probabilities that hold uniformly in a class of functions.
Informally, we are able to control

sup
¹f 2F W kf kL2�rº

sup
¹t WP¹f .X/>tº��º

ˇ̌̌̌
N�1

PN
iD1 1f .Xi />t

P¹f .X/ > tº
� 1

ˇ̌̌̌
for appropriate values of r and �.

In other words, we show that, under minimal assumptions on the class F , the empir-
ical frequencies of level sets of every f 2 F are close, in a multiplicative sense, to their
true probabilities—as long as kf kL2 and P¹f .X/ > tº are large enough. Estimates of
this flavor have been derived before, but only in a limited scope. Examples include the
classical inequalities of Vapnik–Chervonenkis in VC theory, dealing with small classes
of binary-valued functions (see also Giné and Koltchinskii [11] for some results for
real-valued classes). Existing ratio estimates are often based on the highly restrictive
assumption that the collection of level sets, say of the form ¹¹x W f .x/ > tº W f 2 F ,
t � t0º, is small in the VC sense. Unfortunately, in the general context that is required
here, such an assumption need not hold.

The new method we develop here is based on a completely different argument that
builds on the so-called small-ball method. The relevant ratio estimate can be found in
Theorem 3.

While the main thrust in (1.5) is the directional dependence, it is worth noting that the
strong term is better than .E kX � EXk2/1=2. To put this in perspective, consider again



G. Lugosi, S. Mendelson 6

the example when the distribution of the data is Gaussian and the estimation procedure is
the empirical mean z�N D .1=N /

PN
iD1Xi . The next observation shows that even in this

well-behaved example, whenever the direction-dependent bound improves on (1.2), the
strong term needs to be at least of the orderrP

i>k �i

N

where k is proportional to log.1=ı/.

Proposition 1. Let z�N D .1=N /
PN
iD1Xi where the Xi are independent Gaussian vec-

tors with mean � and covariance matrix †. Suppose that there exists a constant C such
that, for all ı;N;�, and †, with probability at least 1 � ı,

8u 2 Sd�1 W hz�N � �; ui � C

r
�2.u/ log.1=ı/

N
C S: (1.6)

Then there exists a constant C 0, depending on C only, such that the “strong term” S is
such that either S � C

p
�1 log.1=ı/=N , or

S � C 0

sP
i>k0

�i

N

where k0 D 1C .2C C
p
2/2 log.1=ı/.

The proof is given in Section A.1 of the Appendix.

Remark. An easy modification of the proof of Proposition 1 reveals that the lower bound
is tight in the sense that, if theXi are independent Gaussians, then the empirical mean z�N
satisfies, with probability at least 1 � ı,

8u 2 Sd�1 W hz�N � �; ui � C

�r
�2.u/ log.1=ı/

N
C

sP
i>k1

�i

N

�
where k1 D c log.1=ı/, for some constants c and C .

The article is organized as follows. In the next two sections we develop the technical
machinery we require. First, in Section 2 we recall—and appropriately modify—the solu-
tion of Mendelson [28] of the following moment estimation problem: given a real random
variable Z, find an almost isometric, data dependent estimator of E jZjp . In other words,
find yZp such that .1 � "/E jZjp � yZp � .1C "/E jZjp with probability 1 � ı.

The analysis of the moment estimation problem reveals the importance of uniform
control of ratios of empirical and true probabilities, and that is the subject of Section 3
where the new general inequality is proven.

The next component in the proof of Theorem 1 is a covariance estimator (i.e., an
estimator of all the directional variances �2.u/), which we introduce and analyze in Sec-
tion 4. Covariance estimation has received quite a lot of attention lately; see, for example,
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Catoni [3], Giulini [13]. Koltchinskii and Lounici [16], Lounici [21], Mendelson [27],
Mendelson and Zhivotovskiy [30], Minsker [31], and Minsker and Wei [33].

The notion of estimation needed here is rather weak: we only require that the variances
are approximated within a multiplicative constant factor. Our construction is based on the
moment estimators developed in Sections 2 and 3: we construct an estimator  N .u/ of
the directional variances such that, with probability at least 1 � ı, simultaneously for all
u such that �2.u/ �

P
i>c log.1=ı/ �i , all the estimated variances  N .u/ satisfy

1

4
�
 N .u/

�2.u/
� 2:

Moreover, for all other u, we have  N .u/ � C
P
i>c log.1=ı/ �i .

Remark. It should be noted that covariance estimators, quite different in nature, but with
performance bounds of the same spirit, were defined by Catoni [3] and Giulini [13], under
certain fourth-moment assumptions.

Finally, in Section 5 we define the main multivariate mean estimation procedure and
prove Theorem 1. Some of the proofs are relegated to the Appendix.

Remark (Nonatomic distributions). To avoid unimportant but somewhat tedious techni-
calities, we assume throughout that the distribution of theXi is absolutely continuous with
respect to the Lebesgue measure. This implies that the distribution of hX;ui is nonatomic
for all u 2 Sd�1 and we do not need to worry about multiple points taking the same
value—which makes the definition of trimming and quantiles simpler. This assumption is
not restrictive because one may always add a tiny random perturbation to each data point,
converting the distribution absolutely continuous, and without changing the mean vector
too much.

Remark (The norm-equivalence condition). Mean estimators with sub-Gaussian perfor-
mance of the type (1.2) exist without assuming anything more than the existence of the
covariance matrix. However, to achieve the improved direction-dependent performance
announced in Theorem 1, we need to assume that moments of order q exist for some q > 2.
Moreover, we assume that the Lq norm of each one-dimensional marginal is related to
the L2 norm, in a uniform manner, as described by (1.4). We call this a norm-equivalence
condition. This condition is used repeatedly in a crucial way in our construction. It is
an intriguing question whether such a condition is necessary or if there exists a mean
estimator satisfying an inequality of the type (1.5) under the only assumption of finite
second moments. For the approach used in this article, such a condition is necessary as
the proposed estimator estimates directional variances and for the estimator to work, such
a moment assumption is necessary. Hence, if there exists an estimator with the direction-
sensitive accuracy similar to that of Theorem 1 but without the need of extra conditions,
a completely new approach would be necessary. There is a large class of distributions
that satisfy the norm-equivalence condition of Theorem 1. Elliptically symmetric distri-
butions with a finite moment of order q of their one-dimensional marginals are an obvious
example. On the other hand, log-concave distributions are known to satisfy  1-L2 norm
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equivalence, and that trivially implies Lq-L2 norm equivalence for any q > 2. For more
examples, see [26, Lemma 6.1]. Note, however, that the requirement that � does not
depend on the dimension is an important restriction.

Remark (The constants � and q). The parameters of the proposed mean estimator depend
not only on the desired confidence level ı but also on the constants � and q appearing in
(1.4). In other words, for any pair of values of .�;q/we construct an estimator that satisfies
the performance guarantee announced in Theorem 1 for all distributions satisfying con-
dition (1.4) with these particular values. Hence, for the estimator to be useful, one needs
to be able to guess an upper bound for the values of these parameters. (Note that the con-
stants in the upper bound depend on � and q.) It is an intriguing and nontrivial question
to make the estimator adaptive. In other words, one would like to construct an estimator
that is independent of � and q and satisfies (1.5) with constants possibly depending on the
distribution.

Remark (Hilbert spaces). For convenience, we present our results for random variables
taking values in Rd . However, the main results remain true without modification when
X takes values in any separable Hilbert space H . The only condition that needs to be
modified is absolute continuity. It suffices that hu;Xi has a continuous distribution for all
u 2 H n ¹0º.

Remark (Computation). Our definition of a mean estimator as a (measurable) function
of the data ignores important computational issues. An important branch of research
has focused on computational issues of robust statistical estimation. In particular, mean
estimators achieving sub-Gaussian performance of the type (1.2) that can be computed
in polynomial time have been proposed; see Hopkins [14], Cherapanamjeri, Flammar-
ion, and Bartlett [5], Depersin and Lecué [9], Lei, Luh, Venkat, and Zhang [20], and
Diakonikolas, Kane, and Pensia [10]. It is an interesting open problem whether there
exists an efficiently computable estimator achieving a performance like the one announced
in Theorem 1.

2. Empirical tail integration and moment estimation

In this section we consider the problem of estimating the raw moments of a real random
variable. The estimators studied here are trimmed estimators, that is, based on the empir-
ical mean after discarding the smallest and largest values of the sample. Such estimators
have been studied extensively (see Lugosi and Mendelson [22] for pointers to the litera-
ture). The properties presented in this section have been mostly developed by Mendelson
[28] and the exposition below is a slight modification of the arguments in [28]. For com-
pleteness, we present the proofs in Section A.2.

Note that the results in this section are for moments of any order p � 1, although we
only need the special cases p D 1 and p D 2.

Let p� 1 and letZ be a real-valued random variable with continuous distribution such
that E jZjp <1. Let ZN1 D .Z1; : : : ; ZN / be a sample of N independent copies of Z.
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For fixed 1=N < � � 1=2 let JC be the set of indices of the �N largest values of .Zi /NiD1
and denote by J� the set of indices of the �N smallest values. (SinceZ is assumed to have
a continuous distribution, JC and J� are uniquely defined, with probability 1.) Writing
ŒN � D ¹1; : : : ; N º, our goal is to show that with high probability,

‰p;� .Z
N
1 / D

1

N

X
i2ŒN �n.JC[J�/

jZi j
p

is a good estimator of E jZjp for an appropriately chosen value of � .
Denote the empirical measure of Z by PN , that is, for all measurable sets A � R, we

write

PN ¹Z 2 Aº D
1

N

NX
iD1

1Zi2A:

We show that, in order to ensure that ‰p;� is a good estimator, it suffices to control the
ratios PN ¹Z 2 I º=P¹Z 2 I º for intervals1 I . Moreover, we show that, under similar
assumptions,

ˆ� .Z
N
1 / D

1

N

X
i2ŒN �n.JC[J�/

Zi

is a good estimator of the mean EZ.
Our starting point is the following definition that describes some properties that ensure

that ‰p;� and ˆ� are well-behaved, in a sense made precise below.

Definition 1. Set 0 <�;� < 1=100. LetA be the event on which the following properties
.1/ and .2/ hold:

(1) for all nonnegative integers j and t � 0 such that 2�jP¹Z > tº � �, we haveˇ̌̌̌
PN ¹Z > tº

P¹Z > tº
� 1

ˇ̌̌̌
� 2�j=2�1

and if 2�jP¹Z < �tº � �, thenˇ̌̌̌
PN ¹Z < �tº

P¹Z < �tº
� 1

ˇ̌̌̌
� 2�j=2�1I

(2) for any interval I � R,

PN ¹Z 2 I º �
3
2
P¹Z 2 I º C 2�:

Moreover, we say that the random variable Z is �-balanced if

(3) P¹Z > 0º � � and P¹Z < 0º � � for � D 4� C 16�.

Note that property .1/ requires that the relative error of the empirical measure becomes
smaller for larger sets. The idea behind the conditions of Definition 1 is that one may write

E jZjp D

Z 1
0

ptp�1
�
P¹Z > tº C P¹�Z > tº

�
dt;

1By intervals we mean open, closed, or half-open intervals in R, including rays.



G. Lugosi, S. Mendelson 10

and with sufficient control of the ratios PN ¹Z>tº=P¹Z>tº and PN ¹�Z>tº=P¹�Z>tº,
the integral can be well approximated by an empirical functional like ‰p;� . That approx-
imation can be valid even when the distortion is relatively large for sets ¹Z > tº or
¹�Z > tº whose measure is small, but a small distortion is essential for sets of relatively
large measure, because such sets have a much higher impact on the integral.

The main technical fact we use is the following estimate on the positive and negative
parts ofZ, denoted throughout byZC andZ�, respectively. For any ˛ 2 .0; 1/, we denote
by Q˛ the ˛-quantile of the random variable Z, that is, Q˛ is the unique value such that
P¹Z �Q˛º D ˛. Recall that JC (and J�) denote the set of indices of the �N largest (and
smallest) values of .Zi /NiD1.

Theorem 2. Let p � 1 and let Z be a real random variable with continuous distribution
such that E jZjp < 1. Let 0 < �; � < 1=100 be such that �N is an integer, � � 7�,
� � 1=.4N /, and let A be the event defined in Definition 1. Set

�1 D 2� C 8� and �2 D .2� � 8�/=3:

Then, on the event A, and assuming that Z is �-balanced, we have

(a) Zi � 0 for every i 2 JC, and Zi � 0 for every i 2 J�. In particular, Zi D .Zi /C for
all i 2 JC, and Zi D �.Zi /� for all i 2 J�.

(b)
1

N

X
j2ŒN �nJC

.Zi /
p
C � EZpC C 2

p
�

Z Q1��2

0

ptp�1
p

P¹Z > tº dt;

and

1

N

X
i2ŒN �nJC

.Zi /
p
C �EZpC � 3EŒZ

p
1¹Z�Q1��1 º

�� 2
p
�

Z Q1��1

0

2t
p

P¹Z > tºdt:

(c) The claim analogous to (b) holds for Z�, the negative part of Z.

The proof of Theorem 2 is given in Section A.2 of the Appendix. We remark here that,
as shown in the proof, Q1��1 ;Q1��2 > 0 on the event A.

In order to estimate the p-th moment of a random variable Z, we simply write

1

N

X
i2ŒN �n.JC[J�/

jZi j
p
D

1

N

X
i2ŒN �n.JC[J�/

.Zi /
p
C C

1

N

X
i2ŒN �n.JC[J�/

.Zi /
p
�

D
1

N

X
i2ŒN �nJC

.Zi /
p
C C

1

N

X
i2ŒN �nJ�

.Zi /
p
�;

where the last equality holds on the eventA because of part (a) of Theorem 2. Now part (b)
may be used to show that the two terms on the right-hand side are close to their means
EZpC and EZp�.

We show in Section 3 that properties (1)–(2) in Definition 1 are satisfied with high
probability.
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Next we derive a corollary of Theorem 2 that is more convenient to use. To this end,
set

ET;p D 2
p
�

Z T

0

ptp�1
p

P¹jZj > tº dt:

The following lemma was established by Mendelson [28] for nonnegative-valued,
absolutely continuous random variables. The extension to the case below (allowing an
atom at zero) is straightforward; the proof is omitted.

Lemma 1. There is an absolute constant c for which the following holds. Let p � 1 and
� 2 .0; 1/. Let Z be nonnegative random variable whose distribution is a mixture of an
absolutely continuous component and an atom at 0, such that EZ2p <1. Then

EŒZp1¹Z>Q1��º� �
p
� .EZ2p/1=2;

and
EQ1�� ;p � c

p
�
p

log.1=�/ .EZ2p/1=2:

Moreover, if EZq <1 for some q > 2p, then

EQ1�� ;p � cq;p
p
�.EZq/p=q;

where cq;p D cp=.q � 2p/ for a numerical constant c > 0.

Combining Lemma 1 with Theorem 2 leads to the following corollary:

Corollary 1. There are absolute constants c1; : : : ; c4 for which the following holds.
Assume the conditions of Theorem 2. Set c1.logN/=N � � < 100, and � D c2� with
c2 > 7. Then ˇ̌̌̌

1

N

X
i2ŒN �nJC

.Zi /
p
C � EZpC

ˇ̌̌̌
� c3

p
� log.1=�/ .EZ2p/1=2;

and if Z 2 Lq for q > 2p thenˇ̌̌̌
1

N

X
i2ŒN �nJC

.Zi /
p
C � EZpC

ˇ̌̌̌
� cq;p

p
�.EZq/p=q

where cq;p D c4p=.q � 2p/.
The analogous inequalities hold for Z� with J� replacing JC.

3. Uniform relative deviations of empirical measures

In this section we present inequalities for uniform relative deviations of empirical mea-
sures. These are the main technical novelties of the article that allow us to construct
covariance and mean estimators with the desired properties. More precisely, we prove
that properties (1) and (2) of Definition 1 hold uniformly over a class of random variables
(with high probability) above a certain critical level depending on the class.
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To properly set up the main result of this section, we need a few definitions. Since the
result may be of independent interest, we present it in a greater generality than what is
needed for our purposes in this article.

Let X be a measurable set and let X; X1; : : : ; XN be independent, identically dis-
tributed random variables taking values in X.

Consider a class F of real-valued functions defined on X. We assume that, for all
f 2 F , the random variable f .X/ has mean zero. We denote by L2 the set of functions
f WX! R such that EŒf .X/2� <1. We write kf kL2 D .EŒf .X/

2�/1=2 for all f 2 L2
and denote the unit sphere and the unit ball in L2 by S.L2/ D ¹f 2 L2 W kf kL2 D 1º
and D D ¹f 2 L2 W kf kL2 � 1º, respectively.

Recall that for an indicator function h.x/ D 1x2A for some A � X, we abbreviate

P¹hº D P¹X 2 Aº and PN ¹hº D
1

N

NX
iD1

1Xi2A:

We assume that 0 2 F (i.e., F contains the function that equals zero everywhere) and
that F is star-shaped around 0, that is, if f 2 F then cf 2 F for all c 2 Œ0; 1�.

For " > 0, denote by M.F ; "/ the L2.X/-packing number of F , that is, the size of
the largest "-net in F (i.e., a subset whose elements have pairwise distance at least ").

Definition 2. For �; c; L > 0, let �N D �N .c; �; L/ denote the infimum of all those
values r > 0 such that

.1/ logM
�

F \ rS.L2/;
�3=2r

1000 � L

�
� cN�;

.2/ E sup
u2.F�F /\�3=2rD

ˇ̌̌̌
1

N

NX
iD1

"iu.Xi /

ˇ̌̌̌
�

�2r

40000 � L
;

where "1; : : : ; "N are independent symmetric Bernoulli random variables with P¹"i D 1º
D P¹"i D �1º D 1=2 and F � F D ¹f D g � h W g; h 2 F º. We call �N the critical
level of the class F .

Note that since F is star-shaped, inequalities .1/ and .2/ in Definition 2 are satisfied
for all r > �N . The constants 1=1000 and 1=40000 do not have any special role. Their
values have not been optimized and they are chosen by convenience.

The main result of this section is that there exists a positive numerical constant c such
that, above the critical level �N .c;�;L/, functions in F simultaneously satisfy properties
.1/ and .2/ of Definition 1, given a certain condition involving the constant L.

To formulate the theorem, for r > 0, define the classesUr and Vr of indicator functions
by

Ur D ¹1¹f 2I º W I is an interval, f 2 F ; kf kL2 � rº;

Vr D ¹1¹h>tº W t > 0; h 2 F [ .�F /; khkL2 � rº:

The main result of this section is the following:
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Theorem 3. Let F � L2 be a class of real-valued functions that is star-shaped about 0,
such that Ef .X/ D 0 for all f 2 F . There exist positive numerical constants c; c0; c1
such that the following holds. Let c0.logN/=N � � � 1=2 and assume that functions
in F satisfy the following small-ball condition with constants L > 0 and  D c1�: for
any interval I � R,

P¹f .X/ 2 I º � max
²
LjI j

kf kL2
; 

³
: (3.1)

Suppose that r > �N .c;�;L/. Then, with probability at least 1� 2 exp.�c2.L/�N/, for
all u 2 Ur and v 2 Vr ,

(a) for any integer j � 0, if 2�jP¹vº � �, thenˇ̌̌̌
PN ¹vº

P¹vº
� 1

ˇ̌̌̌
� 2�j=2�1I

(b) PN ¹uº �
3
2
P¹uº C 2�,

where c2.L/ is a positive constant depending on L only.

Theorem 3 resembles classical results in empirical processes theory. In fact, in certain
special situations, the classes Ur and Vr have a well-behaved VC dimension and then uni-
form ratio estimates are known (see, for example, [28] for a recent application). However,
in the general case we study here, the VC dimensions of Ur and Vr can be very large or
even infinite—even when the class F itself is relatively well-behaved. In fact, the case
relevant for this article is when the class of functions is F D

®
hu; �i W u 2 Bd2

¯
, whose VC

dimension is proportional to d , making bounds depending on the VC dimension too large
to be useful for our purposes. (In particular, the VC dimension is infinite when the class is
indexed by the unit ball in a Hilbert space.) As a result, the proof of Theorem 3 calls for
a different way of showing that Ur and Vr are “small”. The key feature of F used in the
proof of Theorem 3 is that functions in F satisfy the small-ball condition (3.1).

We begin by showing that any fixed function f satisfies properties (a) and (b) with
high probability. This observation, while interesting in its own right, is needed in the proof
of Theorem 3. As it happens, the required bounds for a single function do follow from VC

theory.

Definition 3. Let H be a class of ¹0; 1º-valued functions on X. A set ¹x1; : : : ; xnº is
shattered by H if for every I � Œn� there is some hI 2 H for which hI .xi / D 1 if i 2 I
and hI .xi / D 0 otherwise. The VC dimension of H , denoted by VC.H/, is the maximal
cardinality of a subset of X that is shattered by H .

We refer the reader to van der Vaart and Wellner [36] for basic facts on VC classes and
VC dimension.

The connection between VC dimension and properties (a) and (b) for a single function
is that for any function f , the class of indicator functions

Uf D ¹1¹f 2I º W I is an intervalº

satisfies VC.Uf / � 2.
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For classes of sets with finite VC dimension, the following analogue of Theorem 3 was
established by Mendelson [28]. Again, it should be stressed that in such cases, uniform
ratio estimates are far simpler than in the general scenario that is needed in what follows.

Theorem 4 ([28]). There are absolute constants c0 and c1 for which the following holds.
Let U be a class of functions on X taking values in ¹0; 1º such that VC.U / � d . Then for

c0
d

N
log
�
eN

d

�
� � �

1

2
;

with probability at least 1 � 2 exp.�c1�N/, for every u 2 U and nonnegative integer j ,

(a0) if P¹uº � 2j�, then ˇ̌̌̌
PN ¹uº

P¹uº
� 1

ˇ̌̌̌
� 2�j=2�2I

(b0) PN ¹uº �
3
2
P¹uº C�=5.

Note that the constant 1=5 in part (b0) above is different from the one announced
in [28]. However, an inspection of the proof reveals that changing the constant only affects
the numerical constants c0 and c1 of the theorem.

In particular, when applied to the class Uf whose VC dimension is at most 2, Theo-
rem 4 implies that any function f satisfies properties (a) and (b) of Theorem 3. Indeed,
VC.Uf / � 2, and therefore Theorem 4 may be applied when � � c0.logN/=N for a
numerical constant c0 > 0.

3.1. Proof of Theorem 3

Let us now turn to the proof of Theorem 3. It is important to note once again that there is
no reason to expect that the corresponding classes of indicator functions Ur and Vr have
a well-behaved VC dimension.

We begin with the following straightforward observation.

Lemma 2. For any f; h, any t 2 R and ı > 0,

j1¹f >tº � 1¹h>tCıºj � 1¹jf �hj>ıº C 1¹h2.t�ı;tCı�º: (3.2)

Proof. If 1¹f >tº.x/ � 1¹h>tCıº.x/ 6D 0 and jh � f j.x/ � ı then either f .x/ > t and
h.x/� t C ı, or f .x/� t and h.x/ > t C ı. The former implies that h.x/ 2 .t � ı; t C ı�,
while the latter is impossible.

Thanks to Lemma 2, it is possible to estimate

jP¹f > tº � P¹h > t C ıºj and jPN ¹f > tº � PN ¹h > t C ıºj

by a combination of a tail estimate for jf � hj and a small-ball estimate for jhj—first with
respect to the underlying measure P and then with respect to the empirical measure PN .

Fix � > c0.logN/=N for the numerical constant c0 mentioned in the paragraph fol-
lowing Theorem 4. Let c > 0 be a constant to be specified later and let r > �N .c; �;L/
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be above the critical level for F . Let j be a nonnegative integer. By property (1) in Def-
inition 2, a maximal �3=2r=.1000L/-net of the subset of F consisting of functions with
kf kL2 D r has cardinality at most exp.cN�/. Let Hr be such a net.

If c � c1=2 for the constant c1 appearing in Theorem 4, then by the ratio esti-
mate for a single function (Theorem 4) and the union bound, with probability at least
1 � 2 exp.�c0N�/,

sup
h2Hr

sup
t WP¹h>tº�2j�1�

ˇ̌̌̌
PN ¹h > tº

P¹h > tº
� 1

ˇ̌̌̌
�
2�.j�1/=2

4
; (3.3)

where we may take c0 D c1=2.
For f 2 F \ rS.L2/, let �f 2Hr be the best approximation to f in the netHr with

respect to the L2 norm. Then, for any t 2 R and ı > 0, on the same event where (3.3)
holds, we haveˇ̌̌̌

PN ¹f > tº

P¹f > tº
� 1

ˇ̌̌̌
�

ˇ̌̌̌
PN ¹f > tº

P¹f > tº
�

PN ¹�f > t C ıº

P¹�f > t C ıº

ˇ̌̌̌
C
2�.j�1/=2

4
(3.4)

provided that P¹�f > t C ıº � 2.j�1/�.
Note that in the inequality above, we may choose the value of ı at will, even depending

on f . For each f 2 F , define ıf D �kf kL2=.100 �L/. The next lemma shows that with
this choice of ıf , one indeed has P¹�f > t C ıº � 2.j�1/� whenever P¹f > tº � 2j�.

Lemma 3. Assume the small-ball condition (3.1) where  � �=50. Then, for every
f 2 F \ rS.L2/,

jP¹f > tº � P¹�f > t C ıf ºj �
3�

100
:

Proof. Fix f 2 F \ rS.L2/. By the small-ball condition, if 2Lıf =r �  then

P¹�f 2 Œt � ıf ; t C ıf �º �
2Lıf

k�f kL2
D
2Lıf

r
:

Therefore,

P¹jf � �f j � ıf º C P¹�f 2 Œt � ıf ; t C ıf �º �
kf � �f k2L2

ı2
f

C
2Lıf

k�f kL2

�

�
�3=2r
1000�L

�2�
�r
100�L

�2 C 2L�

100 � L
D
3�

100
:

The stated inequality now follows from Lemma 2.

Hence, under the small-ball condition, (3.4) indeed holds whenever P¹f > tº � 2j�.
Consider such a function f 2 F \ rS.L2/. Since by (3.3),ˇ̌̌̌

PN ¹�f > t C ıf º

P¹�f > t C ıf º
� 1

ˇ̌̌̌
�
2�.j�1/=2

4
<
1

2
;
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the first term on the right-hand side of (3.4) may be bounded asˇ̌̌̌
PN ¹f > tº

P¹f > tº
�

PN ¹�f > t C ıf º

P¹�f > t C ıf º

ˇ̌̌̌
�

ˇ̌̌̌
PN ¹f > tº�PN ¹�f > tCıf º

P¹f > tº

ˇ̌̌̌
C

PN ¹�f > tCıf º

P¹�f > tCıf º

ˇ̌̌̌
P¹f > tº�P¹�f > tCıf º

P¹f > tº

ˇ̌̌̌
�

ˇ̌̌̌
PN ¹f > tº�PN ¹�f > tCıf º

P¹f > tº

ˇ̌̌̌
C2

ˇ̌̌̌
P¹f > tº�P¹�f > tCıf º

P¹f > tº

ˇ̌̌̌
�

PN ¹jf ��f j � ıf º

P¹f > tº
C

PN ¹�f 2 Œt�ıf ; tCıf �º

P¹f > tº

C2
P¹jf ��f j � ıf º

P¹f > tº
C2

P¹�f 2 Œt�ıf ; tCıf �º

P¹f > tº

(using Lemma 2 twice)

DW .I /C.II/C.III/C.IV/: (3.5)

Hence, we need to bound the four terms on the right-hand side. The last two terms may
be bounded without further work, as we have already seen in the proof of Lemma 3 that

.III/C .IV/ �
3�=100

P¹f > tº
�
3 � 2�j

100
:

In the remaining part of the proof we bound the empirical counterpart, that is, the terms
.I / and .II/.

Since �f 2 Hr , for term .II/ we may simply invoke part (b0) of Theorem 4 that
implies that, with probability at least 1 � e�c�N , for all f 2 F \ rS.L2/, we have

.II/ �
3

4
.IV/C

�=10

P¹f > tº
� 2�j�3:

It remains to bound

sup
f 2F\rS.L2/

PN ¹jf � �f j > ıf º D sup
f 2F\rS.L2/

1

N

NX
iD1

1¹jf ��f j>ıf º.Xi /: (3.6)

This is done in the next lemma that implies that, with probability at least 1 � e�c�N , for
all f 2 F \ rS.L2/ with P¹f > tº � 2j�,

.I / �
2�j

10
:

Putting everything together, we find that there exists a universal constant c > 0 such
that, for every nonnegative integer j , if P¹f > tº � 2j�, then with probability at least
1 � e�c�N , we haveˇ̌̌̌

PN ¹f > tº

P¹f > tº
� 1

ˇ̌̌̌
� 2�j

�
3

100
C
1

8
C

1

10

�
C
2�.j�1/=2

4
� 2�.j=2�1/:
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Since there are at most log2 N relevant values of j , the union bound implies part (a) of
Theorem 3 for functions f 2 F \ rS.L2/. To deal with functions that satisfy kf kL2 � r ,
fix such a function and t 2 R for which P¹f > tº � 2j�. Put tr D rt=kf kL2 and fr D
rf=kf kL2 2 F \ rS.L2/, and note that

¹f > tº D

²
rf

kf kL2
�
kf kL2
r

> t

³
D ¹fr > trº:

Thus, P¹fr > trº � 2j�,

PN ¹fr > trº

P¹fr > trº
D

PN ¹f > tº

P¹f > tº
;

and the claim follows from the bound for F \ rS.L2/ and by the star-shaped property
of F .

Lemma 4. Let r > �N .c;�;L/. Then, for some constant c1 > 0, with probability at least
1 � ec1�N ,

sup
f 2F\rS.L2/

1

N

NX
iD1

1¹jf ��f j>ıf º.Xi / �
�

10
:

Proof. Define

Z WD sup
f 2F\rS.L2/

1

N

NX
iD1

1¹jf ��f j>ıf º.Xi /:

The proof is based on Talagrand’s concentration inequality for the supremum of empirical
processes [35] which implies that for x > 0, with probability at least 1 � exp.�x/,

Z �
3

2
EZ C 4�F

r
x

N
C
6x

N

(see, e.g., [2, Theorems 11.8 and 12.2]) where �F Dsupf 2F\rS.L2/
P1=2¹jf ��f j>ıf º.

Here, recalling that ıf D �kf kL2=.100L/ and the fact that ıf is the same for every
f 2 F \ rS.L2/, by Chebyshev’s inequality,

�F � sup
f 2F\rS.L2/

kf � �f kL2
ıf

�
�3=2r=.1000L/

�r=.100L/
D

p
�

10
:

Next, let

�ı.t/ D

8̂̂<̂
:̂
1 if t � ı;
2
ı
.t � ı=2/ if t 2 Œı=2; ı�;

0 otherwise.

Therefore, �ı.t/ � 1t>ı is a Lipschitz function with Lipschitz constant 2=ı that satisfies
�ı.0/ D 0. By the Giné–Zinn symmetrization theorem [12] followed by the contraction
inequality for Bernoulli processes [18],
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EZ � E sup
f 2F\rS.L2/

1

N

NX
iD1

�ı.jf � �f j.Xi //

� 2E sup
f 2F\rS.L2/

ˇ̌̌̌
1

N

NX
iD1

"i�ı.jf � �f j.Xi //

ˇ̌̌̌
C sup
f 2F\rS.L2/

E�ı.jf � �f j.Xi //

�
4

ı
E sup
f 2F\rS.L2/

ˇ̌̌̌
1

N

NX
iD1

"i .f � �f /.Xi /

ˇ̌̌̌
C
�

25
;

where the last inequality holds because

E�ı.jf � �f j.Xi // � P¹jf � �f j.X/ � ıf =2º �
4kf � �f k2L2

ı2
f

�
�

25
:

Recall that, by definition, r > �N .c;�;L/ implies that

E sup
f 2F\rS.L2/

ˇ̌̌̌
1

N

NX
iD1

"i .f � �f /.Xi /

ˇ̌̌̌
�

�2r

40000 � L
:

Therefore, we have

4

ıf
E sup
f 2F\rS.L2/

ˇ̌̌̌
1

N

NX
iD1

"i .f � �f /.Xi /

ˇ̌̌̌
�

�

100
;

and hence, with probability at least 1 � exp.�x/,

sup
f 2F\rS.L2/

PN ¹jf � �f j > ıf º �
3�

40
C

4

10
�1=2

r
x

N
C
6x

N
:

The claim follows by setting x D c0N� for a sufficiently small value of c0.

In order to complete the proof of Theorem 3, it only remains to prove part (b). The
proof is completely analogous to that of part (a). First we consider a net of F \ rS.L2/

and use part (b0) of Theorem 4. Then one may extend the inequality to all F \ rS.L2/ in
a similar fashion. In order to avoid repetition of the same ideas, we omit the details.

To put Theorem 3 in perspective, let us outline some of the differences between it and
the results of Giné and Koltchinskii [11], where ratio-type estimates have been studied.
First and foremost, the results in [11] (e.g., Theorem 2.1 and Corollary 2.2 there) yield
estimates on suph2H;�h2Œr;�/ jPNh � Phj=�.�h/, where � is an increasing function and
�.0/ D 0; thus, the normalization is somewhat different to ours. Moreover, the complex-
ity term in those ratio estimates depends on the complexity of the class H . Thus, when
considering the setup of Theorem 3, the class H consists of indicators of level sets of
functions in the given class F . However, in that case, the complexity term needed in [11]
is of the class of indicators H (e.g., by assuming that F is a vc-subgraph class) rather
than of the class F as in Theorem 3. Assuming that the class of level sets is well-behaved
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is far more restrictive and happens to be a significant limitation; indeed, being a finite vc-
subgraph class is a rather special feature (see, e.g., [36] for more details on vc-subgraph
classes).

The results in [11, Section 6] are the closest to Theorem 3, but still there are substantial
differences. In [11], the authors impose an alternative, but still highly restrictive assump-
tion, that the (empirical) L2.PN /-entropy of F is (uniformly) bounded by .c="/˛ for
some 0 < ˛ < 2. That strong control on the empirical entropy allows one to use Lipschitz
truncation functions (at multiple levels, similar to the functions �ı used in Theorem 3) and
to estimate sup jPN .�ı.f //=P .�ı.f // � 1j on “shells” in terms of the empirical metric
entropy via a contraction argument. As it happens, in addition to requiring a significantly
more restrictive assumption than in Theorem 3, the argument used in [11] does not accu-
rately “see” why PN ¹f > tº=P¹f > tº is close to PN ¹h > t C ıº=P¹h > tıº when
kf � hkL2 is small. As a result, the quantitative estimates obtained in [11, Theorem 6.1]
are weaker than Theorem 3.

4. Covariance estimation with trimmed means

In this section we present the first main component of the mean estimation procedure. As
explained in the introduction, in this first step we need to estimate the directional variances
�2.u/D Var.hX;ui/ in all directions where �2.u/ is “not too small.” This estimator does
not need to be very accurate. It is sufficient for our purposes that the estimator is correct
up to a constant multiplicative factor.

To that end, we require a bit more than the existence of the covariance matrix †. The
key assumption we use is “Lq-L2 norm equivalence” for some q > 2. More precisely, we
assume that there exist q > 2 and � > 0 such that, for all u 2 Sd�1,

.E hX � �; uiq/1=q � �.E hX � �; ui2/1=2:

In other words, writing X D X � EX , we assume that for all u 2 Sd�1,

khX; uikLq � �khX; uikL2 :

The proposed estimator is quite natural. For each direction u 2 Sd�1, we compute an
appropriately trimmed empirical variance. Unlike standard trimmed mean estimators,
where the truncation occurs at a pre-set level, here we trim by removing a fixed number of
the largest and smallest values of hXi ; ui corresponding to each direction u 2 Sd�1. To
show that this estimator satisfies the desired properties simultaneously for all directions,
we make use of the tools developed in Sections 2 and 3. The main ingredient of the anal-
ysis is Theorem 3. This theorem requires that the “small-ball” condition (3.1) is satisfied.
To guarantee this property, we form blocks of a fixed size of the given sample, and take
the empirical average within each block. In Section 4.1 we show that under Lq-L2 norm
equivalence, it suffices to form blocks of constant size (depending on � and q).

Let us describe the covariance estimation procedure. In order to estimate variances
without knowing the expected values, we use the standard trick that, if X 0 is an inde-
pendent copy of X , then Var.hX; ui/ D .1=2/E hX � X 0; ui2. It is easy to see that if X
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satisfiesLq-L2 norm equivalence with constant � then zX DX �X 0 satisfiesLq-L2 norm
equivalence with constant

p
2 �.

Thus, we split the data in two halves to form independent pairs of observations. For the
sake of simpler notation, assume that we are given 2N independent copies, X1; : : : ;X2N ,
and for i 2 ŒN �, define zXi D Xi �XNCi .

The proposed covariance estimator has two tuning parameters, ; � 2 .0; 1/. For a
positive integer m, define Z D 1p

m

Pm
iD1
zXi . By Lemma 5 below, there is a constant

c1.�; q/ such that if m D dc1.�; q/=2e, then for any u 2 Sd�1, and for all intervals
I � R,

P¹hu;Zi 2 I º � max
²
L
jI j

�.u/
; 

³
;

where L > 0 is a numerical constant. This implies that every function in the class F D

¹hu;Zi W u 2 Bd2 º satisfies the key “small-ball” assumption in Theorem 3.
Once the value of m is set, the sample zX1; : : : ; zXN is divided into n D N=m blocks,

each of cardinalitym. (We may assume, without loss of generality, thatm dividesN .) For
each block j 2 Œn�, we may compute

Zj D
1
p
m

mX
iD1

zXm.j�1/Ci :

For every u 2 Sd�1, denote by JC.u/ the set of indices of the �n largest values of hZj ; ui
and define

 N .u/ D
1

2n

X
j2Œn�nJC.u/

hZj ; ui
2:

The following theorem summarizes the main performance guarantees of the estimator
 N .u/. It is a crucial ingredient of the mean estimator introduced in the next section.

Proposition 2. Assume the condition of Theorem 1. There are constants ; � 2 .0; 1/ and
c0; c

0 > 0 depending on � and q for which the following holds. Set m � c1.�; q/=2 and

r2 D
1

c0n

X
i�c0n

�i :

Then, with probability at least 1 � 2 exp.�c0N/, the estimator  N satisfies:

(i) If u 2 Sd�1 is such that �.u/ � r , then

1
4
�2.u/ �  N .u/ � 2�

2.u/:

(ii) If �.u/ � r then  N .u/ � Cr2 for an absolute constant C .

Proof. Fix ; � 2 .0; 1/ and consider the resulting estimator  N . (Recall that in the def-
inition of  N , the block size m depends on  , as well as on the constants � and q of the
norm equivalence condition.) We show that  and � may be chosen so that the inequalities
of the theorem hold. In particular, let c; c1 be the constants appearing in Theorem 3. We
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show that it is sufficient if the parameters ;� 2 .0;1/ satisfy 2� C 8=c1 < .5�2/�q=.q�2/

and � > 7=c1.
The proof consists of three parts. First we show that (i) holds above the critical level

�n.c; �; L/. This is based on Theorems 2 and 3. Second, we show that the announced
value of r satisfies r > �n.c; �; L/ and therefore it is a valid choice. Finally, we prove
part (ii) of the theorem, based on the small-ball method. Before the proof, we establish
some consequences of the Lq-L2 norm equivalence condition (1.4).

4.1. Lq-L2 norm equivalence implies a small-ball property

Let Y be an absolutely continuous real-valued random variable that satisfies kY �EY kLq
� �kY � EY kL2 for some q > 2 and � > 0. Let Y1; : : : ; Ym be independent copies of Y .
To simplify notation, set Y D Y � EY .

Lemma 5. Define Wm D 1p
m

Pm
iD1 Y i .

� There exists a constant m0.q; �/ such that if m � m0.q; �/, then

P¹Wm � 0º � 1=4 and P¹Wm � 0º � 1=4: (4.1)

� Let 0 < � < 1=2. Then

EY 21
¹jY j�Q1�˛.jY j/º

� �EY 2; (4.2)

where ˛ D .�=�2/q=.q�2/.

� We have
kWmkLq � .4.q � 1//

1=2�kWmkL2 : (4.3)

� There exists a numerical constant L and a constant c1 D c1.�; q/ such that, for any
 2 .0; 1/, if m � c1=2, then for all intervals I � R,

P¹Wm 2 I º � max
²
L
jI j

kY kL2
; 

³
: (4.4)

Proof. (4.1) follows from a generalization of the Berry–Esseen theorem (see, e.g., [34]).
To prove (4.2), note that by Hölder’s inequality for ˇ D q=2 and the Lq-L2 norm

equivalence,

EŒY 21
¹jY j�Q1�˛.Y /º

� � kY k2LqP¹Y � Q1�˛.jY j/º
1�2=q

� �2EY 2 � ˛1�2=q :

For the proof of (4.3), observe that if "1; : : : ; "m are independent symmetric Bernoulli
random variables with P¹"i D 1º D P¹"i D �1º D 1=2, then by symmetrization and
Khinchin’s inequality (see, e.g., [7, p. 21]),

E jWmj
q
� 2qE

ˇ̌̌̌
1
p
m

mX
iD1

"iY i

ˇ̌̌̌q
� .4.q�1//q=2E

ˇ̌̌̌
1

m

mX
iD1

Y 2i

ˇ̌̌̌q=2
� .4.q�1/�2/q=2EY 2;
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where the last inequality follows from the norm-equivalence condition (1.4) because, by
the convexity of �.t/ D jt jq=2,ˇ̌̌̌

1

m

mX
iD1

Y
2

i

ˇ̌̌̌q=2
�
1

m

mX
iD1

jY i j
q :

It remains to prove the small-ball bound of (4.4). Setting � D 1=50, it follows from (4.2)
that EŒY 21

¹jY j�Q1�˛.jY j/º
� � .1=50/EY 2 where ˛ D .1=.50�2/q=.q�2/. Moreover, by

Chebyshev’s inequality, Q1�˛.jY j/ � kY kL2=
p
˛, and therefore

EŒY 21
¹jY j�kY kL2=

p
˛º� �

EŒY 2�

50
:

By the second part of Theorem 3.2 in Mendelson [29], there exists a constant c1 depending
on ˛ (and hence on � and q) such that, for any  2 .0; 1/, if m � c1=2, then

sup
x2R

P¹jWm � xj � c2kY kL2º � ;

where c2 is an absolute constant. Hence, for any interval I � R,

P¹Wm 2 I º � max
²
jI j

c2kY kL2
; 

³
:

Above the critical level. We start by proving part (i) of Proposition 2. The proof is based
on applying Theorem 3 for the class F D ¹hu; �i W u 2 Bd2 º.

Let � D =c1 and let �n.c; �; L/ be the critical level of the class F , as defined in
Definition 2. Let r > �n.c;�;L/ be arbitrary.

LetD D ¹u 2Rd W �.u/� 1º. Clearly,
p
2�.u/D khu;ZikL2 and for each u, hu;Zi

is a symmetric random variable.
The class F D ¹hu; �i W u 2 Bd2 º is star-shaped around 0 and therefore it satisfies the

conditions of Theorem 3. By Theorem 3, there is a numerical constant c2 > 0 and an
event A of probability at least 1 � 2 exp.�c2n/ on which the following holds: for every
u 2 Bd2 such that khu;XikL2 � r , the random variable hu;Zi satisfies properties .1/–.2/
of Definition 1. Moreover, property .3/ holds trivially for every hu;Zi by the symmetry
of these random variables.

Suppose that the event A occurs and let u 2 Bd2 be such that �.u/ � r .
Let .hu;Zj i]/njD1 be the nonincreasing rearrangement of hu;Z1i; : : : ; hu;Zni. Define

yQ.u/D hu;Z�ni
] and denote byQq.u/ the q-quantile of the random variable hu;Zi. By

Lemma 6 and the symmetry of the random variables, it follows that

Q1�.2�C8�/.u/ � yQ.u/ � Q1�.2��8�/=3.u/:

Setting
Q3 WD Q1�.2�C8�/.u/ and Q4 WD Q1�.2��8�/=3.u/;
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just as in the proof of Lemma 7, we have

2 N .u/ �

Z Q3

0

2tPn¹jhu;Zij > tº dt � � yQ
2.u/

and

2 N .u/ �

Z Q4

0

2tPn¹jhu;Zij > tº dt:

Since � > 7�, we have .2� � 8�/=3�� and therefore if 0� t �Q4 then P¹jhu;Zij> tº
� �. Thus, by Theorem 3, for t 2 Œ0;Q4�,

1
2
P¹jhu;Zij > tº � Pn¹jhu;Zij > tº �

3
2
P¹jhu;Zij > tº:

Also, it is straightforward to verify that

� yQ2
� 2EŒhu;Zi21¹jhu;Zij�Q3º�

(for an identical argument, see (A.4)).
Hence,

2 N .u/ �
1
2
E hu;Zi2 � 5

2
EŒhu;Zi21¹jhu;Zij�Q3º� �

1
4
E hu;Zi2

provided that 10E hu; Zi21¹jhu;Zij�Q3º � E hu; Zi2, which holds by (4.2) of Lemma 5
whenever 2� C 8� � .10�2/�q=.q�2/.

In the reverse direction,

2 N .u/ �

Z Q4

0

2tPn¹jhu;Zij > tº dt � 2

Z 1
0

2tP¹jhu;Zij > tº dt D 2E hZ; ui2;

and combining the two inequalities we find that for every v 2 Rd ,

1
4
�2.u/ �  N .u/ � 2�

2.u/2;

as claimed.

The critical level. Next we show that there exists a constant c0 such that, for the class of
functions F D ¹hu; �i W u 2 Bd2 º,

r D

vuut 1

c0n

X
i�c0n

�i � �n.c;�;L/

for the values of c; �; L introduced in the first part of the proof above. (Recall Defini-
tion 2 where �n.c; �; L/ was introduced; also note that c is an absolute constant while
� and L depend on the constants � and q of the norm-equivalence condition (1.4). Note
in particular that one may take r D 0 when n > d=c0 since in that case �n.c;�;L/ D 0.)

Without loss of generality, we may assume that the covariance matrix † is positive
definite. We may write the random vector Z D X � X 0 as Z D T W where the random
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vector W has identity covariance matrix and T W Rd ! Rd is a positive definite linear
transformation. Since Z=

p
2 has the same covariance matrix † as X , the eigenvalues

of T are
p
2 �1; : : : ;

p
2 �d .

It is straightforward to verify thatD D ¹u 2 Rd W �.u/ � 1º D T �1Bd2 and therefore
the packing numbers of Definition 2 satisfy

M
�
Bd2 \ rD;�

3=2r=.1000 � L/
�
DM

�
TBd2 \ rB

d
2 ; �

3=2r=.1000 � L/Bd2
�
;

where the right-hand side denotes the Euclidean packing number of TBd2 \ rB
d
2 at scale

�3=2r=.1000 �L/. Also, TBd2 \ rB
d
2 � E for an ellipsoid E whose principal axes are of

lengths proportional to the values min ¹
p
�i ; rº. By Sudakov’s inequality (see, e.g., [18]),

there is a constant c3 (depending on L only) such that

c3�
3=2r log1=2M

�
TBd2 \ rB

d
2 ; �

3=2r=.1000 � L/Bd2
�
� E sup

x2E

hG; xi;

where G is the standard Gaussian random vector in Rd . A straightforward computation
shows that

E sup
x2E

hG; xi � c4

� dX
iD1

min ¹�i ; r2º
�1=2

for a numerical constant c4 > 0 and, in particular, inequality (1) in Definition 2 holds if� dX
iD1

min ¹�i ; r2º
�1=2
� c5�

2
p
n r; (4.5)

where the constant c5 depends on L.
Turning to inequality (2) in Definition 2, observe that

E sup
u22Bd

2
\�3=2rD

ˇ̌̌ nX
iD1

"i hZi ; ui
ˇ̌̌
� 2E sup

u2T�1.TBd
2
\�3=2rBd

2
/

ˇ̌̌ nX
iD1

"i hWi ; T ui
ˇ̌̌

D 2E sup
v2TBd

2
\�3=2rBd

2

ˇ̌̌ nX
iD1

"i hWi ; vi
ˇ̌̌

� c6E sup
v2E 0

ˇ̌̌ nX
iD1

"i hWi ; vi
ˇ̌̌

for an ellipsoidE 0 that may be written asE 0 DQBd2 for a linear transformationQ whose
eigenvalues are proportional to min ¹

p
�i ; �

3=2rº. Thus,

E sup
v2E 0

ˇ̌̌ nX
iD1

"i hWi ; vi
ˇ̌̌
D E sup

v2Bd
2

ˇ̌̌ nX
iD1

"i hQWi ; vi
ˇ̌̌
�
p
n .E kQW k2/1=2:

Since W is isotropic,

E kQW k2 D Tr.QQ�/ � c7
dX
iD1

min ¹�i ; �3r2º:
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Therefore, inequality (2) in Definition 2 is verified once� dX
iD1

min ¹�i ; �3r2º
�1=2
� c8�

2
p
n r (4.6)

for a constant c8 (that depends on � and q). Recalling that � < 1, it is evident that both
(4.5) and (4.6) are satisfied when� dX

iD1

min ¹�i ; r2º
�1=2
� c9
p
n r (4.7)

for a constant c9 D c9.�; q/. Using min ¹�i ; r2º � r2 for i � 1
2
c29n, it suffices that

r2 �
1

c0n

X
i�c0n

�i

for a constant c0 D c29=2 depending on � and q only, as claimed.

Below the critical level. Finally, we prove part (ii) of Proposition 2. Let the parameters
�;  2 .0; 1/ be constant as specified in the proof of part (i) above.

Fix r0 > 0 that satisfies (4.7) and set Fr0 D ¹hu; �i W u 2 B
d
2 \ r0Dº. Our goal is to

show that, with high probability, for every u 2 Bd2 \ r0D,

.hu;Zi�n//
]
� c0

r0
p
�

for a constant c0, where .hu; Zij /
]/njD1 is the nonincreasing rearrangement of the

sequence hu;Z1i; : : : ; hu;Zni. On this event, for all u 2 Bd2 \ r0D, we have

 N .u/ �
c20
�
r20 ;

as required.
The proof uses a net argument. Let Ur0 be a maximal

p
� r0-separated subset of

Bd2 \ r0D. Fix u 2 Ur0 , recall that hu; Zi satisfies the Lq-L2 norm equivalence with
constant .4.q � 1//1=2� D Q�, and note that by Markov’s inequality,

P
®
jhu; zij � khu;ZikL2

p
n=k

¯
� Q�q.k=n/q=2:

Thus,

P
®
9I � Œn�; jI jD k 8i 2 I; jhu;Zi ij � khu;ZikL2

p
n=k

¯
� .en=k/k � . Q�/qk.k=n/qk=2:

It follows that for every u 2 Ur0 , with probability at least 1 � exp.�c1k log.n=.c2k///,

.hu;Zi/
]

k
� khu;ZikL2

p
n=k;
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where c1 D q=2 � 1 and c2 D .e Q�q/2=.q�2/. Hence, by setting k D �n=2 and if

jUr0 j � .c1=4/n� log.2c2=�/;

that is, if
logM.Bd2 \ r0D;

p
�r0/ � .c1=4/n� log.2c2=�/; (4.8)

it follows that, with probability at least 1 � exp.�.c1=4/n� log.2c2=�//, for every
u 2 Ur0 ,

.hu;Zi/
]

�n=2
� r0=

p
�=2:

Denote by �u the best approximation to u in Ur0 with respect to the L2.Z/ norm. In
particular, by the choice of Ur0 , ku � �ukL2 �

p
� r0. To complete the proof it suffices

to show that, with high probability,

� WD sup
u2Bd

2
\r0D

j¹j W jhu � �u;Zj ij � 8r0=
p
�ºj � �n=2:

This follows from what is, by now, a standard argument:
By the bounded differences inequality we know that, with probability at least 1 �

2 exp.��2n=8/, we have � � �n=2 provided that

E� � �n=4:

By symmetrization and contraction,

E� �

p
�

8r0
E sup
u2Bd

2
\r0D

nX
jD1

jhu � �u;Zi ij

�

p
�

8r0

�
E sup
u2Bd

2
\r0D

nX
jD1

.jhu � �u;Zi ij � E jhu � �u;Zi ij/C
p
� r0n

�
�

p
�

8r0

�
2E sup

u2Bd
2
\r0D

ˇ̌̌ nX
jD1

"j hu � �u;Zi i
ˇ̌̌
C
p
� r0n

�
�

p
�

8r0

�
4E sup

u2Bd
2
\
p
� r0D

ˇ̌̌ nX
jD1

"j hu;Zi i
ˇ̌̌
C
p
� r0n

�
:

Hence, E� � �n=4 provided that

E sup
u2Bd

2
\
p
�r0D

ˇ̌̌ nX
jD1

"j hu;Zi i
ˇ̌̌
� r0
p
� n=4:

This may be proved by the same argument used in the second part of the proof above. In
particular, the inequality holds once r0 �

q
.c0=n/

P
i�c0n

�i for an appropriate constant
(depending on � and q), as required.
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5. Multivariate mean estimator and its performance

Now we are prepared to define the mean estimator announced in Theorem 1 and prove
its performance bound. The estimator receives, as input, 3N independent, identically dis-
tributed random vectorsX1; : : : ;X3N , the parameters � > 0 and q > 2, and the confidence
parameter ı 2 .0; 1/. (The sample size is set to be 3N for convenience as the proposed
estimator splits the data into three equal parts.)

The data pointsXNC1; : : : ;X3N are used to estimate the variance �2.u/DVar.hX;ui/
for u 2 Sd�1. Using the estimator  N , we find that, on an event A of probability at least
1 � e�cN ,´

1
4
�2.u/ �  N .u/ � 2�

2.u/ for all u 2 Sd�1 such that �.u/ � r;

 N .u/ � Cr
2 otherwise:

(5.1)

Here c; C are constants depending on � and q only and

r D

vuut 1

c0N

X
i�c0N

�i

for another constant c0 > 0 depending on � and q. (Recall that the variance estimator  N
has two parameters � and  ; both may be determined by � and q.)

The data points X1; : : : ; XN are used to estimate the mean E hX; ui D h�; ui for
all u 2 Sd�1. One would like to construct an estimator that is approximately correct
simultaneously for all directions u 2 Sd�1. To this end, similarly to the covariance esti-
mation procedure of the previous section, we divide the sampleX1; : : : ;XN into nDN=m
blocks, each of size m, and compute, for j 2 Œn�,

Yj D
1
p
m

mX
iD1

Xm.j�1/Ci :

The recommended value of m is specified below. It is not necessarily the same as the
block size in the covariance estimation procedure defined in Section 4. However, the role
of this blocking procedure is the same as in the procedure of Section 4: by an appropriate
choice ofm, the random vectors Yj satisfy the small-ball condition that allows us to apply
Theorem 3. The estimator is a simple trimmed-mean estimator defined as

y�N .u/ D
1
p
m

1

n � 2�n

X
j2Œn�n.JC.u/[J�.u//

hYj ; ui;

where � 2 .0; 1=2/ is a parameter of the estimator and the sets JC.u/ and J�.u/ corre-
spond to the indices of the �n smallest and �n largest values of hYj ; ui. (We may assume
that �n is an integer and the value of � is specified below.) The key property of the
marginal mean estimator y�N .u/ is summarized in the next proposition.
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Proposition 3. Assume the condition of Theorem 1. There exist choices of the parameters
m and � of the estimator y�N .u/ that depend only on � and q and there exist constants
c; C 0 > 0 depending on �; q such that, with probability at least 1 � ı, for all u 2 Sd�1,

jy�N .u/ � h�; uij � C
0

�r
�2.u/ log.1=ı/

N
C

sPd
iDc log.1=ı/ �i

N

�
: (5.2)

The proposition follows from Theorems 2 and 3, similarly to the arguments presented
in the previous section for covariance estimation. In order to avoid repetitions, we defer
the details to Section A.3 in the Appendix.

Equipped with Proposition 3, it is now easy to define the mean estimator announced
in the introduction and prove Theorem 1.

Let  N .u/ and y�N .u/ be the variance and marginal mean estimators defined above.
For a parameter � > 0, and for each u 2 Sd�1, define the slabs

Eu;� D

²
v 2 Rd W jy�N .u/ � hv; uij � �C 2C

0

r
 N .u/ log.1=ı/

N

³
and let

S� D
\

u2Sd�1

Eu;�:

Note that for every � > 0, the set S� is compact, and it is nonempty for a sufficiently
large �. Therefore, the set

S D
\

�>0WS�¤;

S�

is not empty. We define the mean estimator as any element �N 2 S .
Theorem 1 now follows easily.

Proof of Theorem 1. By Propositions 2 and 3, with probability at least 1 � ı, both (5.1)
and (5.2) hold, where ı 2 .0; 1/ is such that c log.1=ı/ � c0N . Denote this event by A.
(Here c0 is the constant appearing in the definition of r and c is as in (5.2).)

On the eventA, if u2Sd�1 is such that �.u/� r , then �2.u/� 4 N .u/, and therefore
(5.2) implies that

jy�N .u/ � h�; uij � �C 2C
0

r
 N .u/ log.1=ı/

N

whenever ��C 0
q
.1=N /

Pd
iDc log.1=ı/ �i . On the other hand, if �.u/< r , then, by bound-

ing the right-hand side of (5.2) further, we get

jy�N .u/ � h�; uij � C
0

�r
r2 log.1=ı/

N
C

sPd
iDc log.1=ı/ �i

N

�
� C 0

r
c0

c
r C C 0

sPd
iDc log.1=ı/ �i

N
(since c log.1=ı/ � c0N )

� C 0
�
c0

r
1

c
C 1

�sPd
iDc log.1=ı/ �i

N
;

where at the last step we again use the choice of r .
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Hence, on the event A, we have � 2 S� when

� D C1

sPd
iDc log.1=ı/ �i

N
;

where C1 D C 0.c0
p
C=cC 1/. Thus, S� is nonempty and, by definition, y�N 2 S� for this

choice of �. This means that, for all u 2 S�,

jhy� � �; uij � C1

sPd
iDc log.1=ı/ �i

N
C 2C 0

r
 N .u/ log.1=ı/

N
:

The theorem is now proved by noticing that  N .u/� 2�2.u/ when �.u/� r , and  N .u/
� Cr2 otherwise.

Appendix A. Appendix: additional proofs

A.1. Proof of Proposition 1

We may assume, without loss of generality, that † is diagonal and the eigenvalues �1 �
� � � � �d have the canonical basis vectors e1; : : : ; ed as corresponding eigenvectors. Set
Y D

p
N .z�N � �/ and note that Y is a zero-mean Gaussian vector with covariance

matrix †. We may assume S < C
p
�1 log.1=ı/=N , otherwise the statement holds triv-

ially. Actually, we prove the lower bound

S � C 0
�sP

i>k0
�i

N
C

r
�k0C1 log.1=ı/

N

�
; (A.1)

which is seemingly stronger than the announced inequality. However, note that the second
term in the expression above satisfiesr

�k0C1 log.1=ı/
N

�

r
k0�k0C1

N
�

s
2
P
i>k0=2

�i

N
:

Hence, we do not lose much by ignoring it.
Suppose that (1.6) holds on an event�ı such that P¹�ıº � 1� ı. Let k be the unique

value such that S 2 .C
p
�kC1 log.1=ı/=N ;C

p
�k log.1=ı/=N �.

Denote by Uk � Rd the vector space spanned by e1; : : : ; ek . For all u 2 Uk \ Sd�1

we have �2.u/ � �k , and for all such vectors, S � C�.u/
p

log.1=ı/=N . Therefore, on
the event �ı ,

8u 2 Uk \ S
d�1
W hz�N � �; ui � 2C

r
�2.u/ log.1=ı/

N
:

Equivalently,

sup
u2Uk\S

d�1

hY; ui

�.u/
� 2C

p
log.1=ı/:
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If G D .G1; : : : ; Gd / is a standard normal vector in Rd , then we may write Y D †1=2G.
Since �.u/ D k†1=2uk, and † is a diagonal matrix,

sup
u2Uk\S

d�1

hY; ui

�.u/
D sup
v2Uk\S

d�1

hG; vi D kG.k/k;

where G.k/ D .G1; : : : ; Gk/ is a standard normal vector in Rk . By the Gaussian concen-
tration inequality, with probability at least 1 � ı, we have

kG.k/k � E kG.k/k �
p
2 log.1=ı/ �

p
k � 1 �

p
2 log.1=ı/:

Comparing the upper and lower bounds for kG.k/k, we conclude that

k � 1C .2C C
p
2/2 log.1=ı/ D k0;

implying that

S � C

r
�k0C1 log.1=ı/

N
: (A.2)

Next we consider the orthogonal complement U?
k

of Uk . Since �2.u/ � �kC1 for all
u 2 U?

k
\ Sd�1, on the event �ı we have

sup
u2U?

k
\Sd�1

hY; ui � 2S
p
N:

Writing Y D †1=2G as before, and noting that supu2U?
k
\Sd�1h†

1=2G; ui is a Lipschitz

function of G with constant
p
�kC1, the Gaussian concentration inequality implies that,

with probability at least 1 � ı,

sup
u2U?

k
\Sd�1

hY; ui � E sup
u2U?

k
\Sd�1

hY; ui �
p
2�kC1 log.1=ı/

D E k†1=2G.k/?k �
p
2�kC1 log.1=ı/;

where G.k/? D .GkC1; : : : ;Gd /. By the Gaussian Poincaré inequality (see, e.g., [2, The-
orem 3.20]),

E k†1=2G.k/?k �
q

E k†1=2G.k/?k2 �
p
�kC1 D

sX
i>k

�i �
p
�kC1;

and therefore

S �
1

2
p
N

�sX
i>k

�i �
p
�kC1

�
1C

p
2 log.1=ı/

��
:

If p
�kC1

�
1C

p
2 log.1=ı/

�
�
1

2

sX
i>k

�i ;
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then

S �
1

4
p
N

�sX
i>k

�i

�
;

which, together with (A.2) and the fact that k � k0, implies (A.1). On the other hand, ifp
�kC1

�
1C

p
2 log.1=ı/

�
>
1

2

sX
i>k

�i ;

then (A.2) already implies inequality (A.1).

A.2. Proof of Theorem 2

The proof, a minor modification of some arguments of Mendelson [28], requires a few
preliminary steps. First, observe that �2 � 2� and therefore

for all t � Q1��2 ; P¹Z > tº � 2�: (A.3)

(A.3) implies that all the level sets ¹Z > tº for 0 < t � Q1��2 satisfy property .1/ of
Definition 1 with j D 1, a fact used frequently in what follows.

Another useful observation is that by property .3/,

P¹Z > 0º � � D 4� C 16� D 2�1;

and therefore the .1 � �1/-quantile of ZC coincides with the .1 � �1/-quantile of Z.
Moreover, by property .1/ (with j D 0) and the choice of � we have

PN ¹Z > 0º � 1
2
P¹Z > 0º � �1=2 > �

and an identical argument shows that PN ¹Z < 0º > � . Now let .Z]i /
N
iD1 be the nonin-

creasing rearrangement of .Zi /NiD1. Set

yQC D Z
]

�N
and yQ� D Z

]

.1��/N
:

Clearly, yQC >0 andZi D .Zi /C for i 2 JC. Similarly, the .1� �1/-quantile ofZ� equals
�Q�1 and the analogous statement holds for yQ� and J�, proving part (a) of Theorem 2.

Lemma 6. On the event A defined in Definition 1,

Q1��1 <
yQC < Q1��2 and �Q�1 <

yQ� < �Q�2 :

Proof. We present a proof of the first claim. The proof of the second one is identical and
is omitted. By definition, PN ¹Z � yQCº D � . Applying property .2/ in Definition 1 for
I D Œ yQC;1/,

� � PN ¹Z � yQCº �
3
2
P¹Z � yQCº C 2�:

In particular,
P¹Z > yQCº D P¹Z � yQCº �

2
3
.� � 2�/ � �
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provided that � � 7�=2, as was assumed. Hence, we may use property .1/ of Definition 1
with j D 0 and t D yQC to get ˇ̌̌̌

PN ¹Z > yQCº

P¹Z > yQCº
� 1

ˇ̌̌̌
�
1

2
:

This implies
P¹Z > yQCº � 2PN ¹Z > yQCº � 2� < �1

and

P¹Z > yQCº �
2PN ¹Z > yQCº

3
D
2.� � 1=N/

3
� �2;

and therefore
Q1��1 <

yQC < Q1��2 ;

as claimed.

Lemma 7. Consider the conditions of Theorem 2. Then, on the event A,Z Q1��1

0

ptp�1PN ¹Z>tºdt�� yQ
p
C�

1

N

X
j2ŒN �nJC

.Zi /
p
C�

Z Q1��2

0

ptp�1PN ¹Z>tºdt:

A similar estimate holds for Z�.

Proof. Recall that yQC D Z
]

�N
, and therefore

1

N

NX
iD1

.Zi /
p
C1¹.Zi /C� yQCº

� � yQ
p
C �

1

N

X
i2ŒN �nJC

.Zi /
p
C �

1

N

NX
iD1

.Zi /
p
C1¹.Zi /C� yQCº

:

By tail integration,

1

N

NX
iD1

.Zi /
p
C1¹.Zi /C� yQCº

D

Z 1
0

ptp�1PN ¹.Z/
p
C1¹.Z/C� yQCº

> tpº dt

D

Z yQC

0

ptp�1PN ¹Z > tº dt:

Since by Lemma 6, on the event A, Q1��1 < yQC < Q1��2 , the claimed inequalities
follow.

With Lemma 7 in mind, next we may use a general estimate of Mendelson [28] forR T
0
ptp�1PN ¹Z > tº dt that holds as long as T is such that P¹Z > T º is large enough.

To formulate the claim, recall that

ET;p D 2
p
�

Z T

0

ptp�1
p

P¹jZj > tº dt:
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Lemma 8 (Mendelson [28]). Let T be such that P¹Z > T º � �. On the event A of
Definition 1, we have

EŒZpC1¹ZC�T º� �ET;p �

Z T

0

ptp�1PN ¹Z > tº dt � EZpC CET;p:

Now we are ready to prove the remaining claims of Theorem 2.

Proof of parts (b) and (c) of Theorem 2. Assume that the event A holds. Apply Lemma 8
with T D Q1��1 and T D Q1��2 . Both are valid choices, because

P¹Z > Q1��1º � P¹Z > Q1��2º � �:

Thus, Z Q1��2

0

ptp�1PN ¹Z > tº dt � EZpC CEQ1��2 ;p;

and Z Q1��1

0

ptp�1PN ¹Z > tº dt � EŒZpC1¹Z�Q1��1 º� �EQ1��1 ;p

D EZpC �
�
EŒZp1¹Z>Q1��1 º�CEQ1��1 ;p

�
:

It remains to show that

yQ
p
C� � 2EŒZ

p
1¹Z�Q1��1 º

�; (A.4)

which by Lemma 7 completes the proof. To that end, recall that P¹Z > Q1��2º � � and
that, by Lemma 6, Q1��1 < yQC < Q1��2 . Thus,

EŒZp1
¹Z� yQCº

jZ1; : : : ; ZN � � EŒZpC1¹Z�Q1��1 º�:

Also, since PN ¹Z � yQCº � � and

P¹Z � yQC jZ1; : : : ; ZN º � P¹Z � Q1��2º � �;

it follows from property .1/ in Definition 1 (taking j D 0) that

EŒZp1
¹Z� yQCº

jZ1; : : : ; ZN � � yQ
p
CP¹Z � yQC jZ1; : : : ; ZN º

� .2=3/ yQ
p
CPN ¹Z � yQCº D .2=3/ yQ

p
C�;

proving (A.4).
A similar estimate holds for Z�.

A.3. Proof of Proposition 3

For j 2 Œn�, we write Y j D Yj � EYj D Yj � �. Then for all u 2 Sd�1,

jy�.u/ � h�; uij D
1
p
m

�
1

n � 2n�

X
j2Œn�n.JC[J�/

hY j ; ui

�
;
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and it suffices to obtain an upper estimate onˇ̌̌̌
1

n � 2n�

X
j2Œn�n.JC.u/[J�.u//

hY j ; ui

ˇ̌̌̌
:

That is precisely the question addressed in Theorem 2 for p D 1 (and with the sample size
being n rather than N ). To apply Theorem 2 and the subsequent Corollary 1, one needs
to ensure that the random variables hY ; ui satisfy properties .1/–.3/ of Definition 1.

Observe that khY ; uikL2 D kukL2 D �.u/ because the L2 norm induced by Y coin-
cides with the one induced by X . (4.1) in Lemma 5 shows that property .3/ holds for
� D 1=4 if m � m0.q; �/ for a constant m0.q; �/.

Also, by (4.4), for any  2 .0; 1/, if m � c1=2 for some constant c1, then for any
interval I � R,

P¹Y 2 I º � max
²
L
jI j

�.u/
; 

³
;

and therefore, with such a choice of m, the class F D ¹hY ; ui W u 2 Bd2 º satisfies the
assumptions of Theorem 3.

Now set � D =c1 (with c1 as in the statement of Theorem 3) and choose � � 7�.
Let �1 � �n.c; �; L/ where �n.c; �; L/ is the critical level of the class F (with c as in
Theorem 3).

The theorem implies that there is an eventAwith probability at least 1�2exp.�c2�n/
such that for all kukL2 � �1, the random variable hv; Y i satisfies properties .1/ and .2/
of Definition 1. Therefore, Theorem 1 shows that on that event, if kukL2 � �1, thenˇ̌̌̌

1

n � 2n�

X
j2Œn�n.JC[J�/

hY j ; ui

ˇ̌̌̌
� c3

p
� log.1=�/ �.u/ � c4�.u/:

In particular, there is a constant c.�; q/ such that if

m D c.�; q/
N

log.1=ı/
;

then P¹Aº � 1 � ı=2 and on the event A, for any u 2 Sd�1 for which �.u/ � �1,

jy�N .u/ � h�; uij � c
0.�; q/�.u/

r
log.e=ı/
N

; (A.5)

implying (5.2).
It remains to check that the inequality also holds for those u 2 Sd�1 with �.u/ < �1.

Let �2 � �1, to be specified in what follows. Clearly, (A.5) holds when �.u/ � �2. When
�.u/ < �2, one may repeat the argument used in the last part of the proof of Theorem 2
(“below the critical level”). It is evident that if

�2 D c.�; q/

sP
i�c0.�;q/n �i

n
;
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for some constants c.�; q/; c0.�; q/, then, with probability 1 � 2 exp.�c1n/ � 1 � ı=2,

sup
u2Bd

2
\�2D

jhY j ; uij
]

�n
� c.�; q/�2:

Therefore, on this event,

sup
v2Bd

2
\�D

ˇ̌̌̌
1

n � 2n�

X
j2Œn�n.JC[J�/

hY j ; ui

ˇ̌̌̌
� c0.�; q/�2;

and
jy�N .u/ � h�; uij �

1
p
m
� c00.�; q/�2:

The announced bound now follows for all u, on an event of probability at least 1 � ı.

Appendix B. The connection with strong-weak norm inequalities

Strong-weak norm inequalities are a natural way of quantifying the tail behavior of ran-
dom vectors. Given a random vector X in Rd and a norm k � k, we say that X satisfies a
strong-weak inequality with constant C if for every p � 1,

.E kX � EXkp/1=p � C
�
E kX � EXk C sup

z�2B�
.E jz�.X � EX/jp/1=p

�
;

where B� is the unit ball of the dual space to .Rd ; k � k/. In other words, the way X
concentrates around its mean with respect to the norm k � k is governed by the L1 norm of
kX � EXk and the largest Lp norm of all the one-dimensional marginals of the centered
random vector X � EX .

The fact that the Lp norm of kX �EXk can be controlled by such a combination and
no information on the Lp norms of higher-dimensional marginals is needed is a rather
powerful feature. The best type of a strong-weak inequality one can hope for is a sub-
Gaussian one, that is, if the tails of one-dimensional marginals of X � EX decay at least
as fast as those of a Gaussian:

sup
z�2B�

.E jz�.X � EX/jp/1=p �
p
p sup
z�2B�

�.z�/;

where �.z�/ D .E.z�.X � EX//2/1=2 is the variance of the one-dimensional marginal
defined by z�. In such a case, an equivalent “in-probability” version of the strong-weak
inequality is that for any 0 < ı < 1=2,

P
�
kX � EXk � C

�
E kX � EXk C

p
log.1=ı/ sup

z�2B�
�.z�/

��
� ı: (B.1)

Clearly, if the one-dimensional marginals of X � EX do not exhibit sub-Gaussian tail
decay, there is no hope that (B.1) can be true, even when k � k is the Euclidean norm
in Rd , which is our main focus.
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When the random vector YN D N�1
PN
iD1 Xi satisfies a sub-Gaussian “in proba-

bility” version of the strong-weak inequality, the empirical mean is an optimal mean
estimation procedure. However, almost no random vectors satisfy that strong property. At
the same time, (1.2) shows that by replacing the empirical mean with y�N , every random
vector satisfies a version of a sub-Gaussian strong-weak inequality. Moreover, Theorem 1
shows that under a minimal norm-equivalence condition, the weak term can be replaced
by the optimal directional-dependent term.
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