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Abstract. Suppose E ! B is a non-isotrivial elliptic surface defined over a number field, for
smooth projective curve B . Let k denote the function field xQ.B/ and E the associated elliptic
curve over k. In this article, we construct adelically metrized R-divisors xDX on the base curve B
over a number field, for each X 2 E.k/ ˝ R. We prove non-degeneracy of the Arakelov–Zhang
intersection numbers xDX � xDY , as a biquadratic form on E.k/˝ R. As a consequence, we have
the following Bogomolov-type statement for the Néron–Tate height functions on the fibers Et .xQ/
of E over t 2 B.xQ/: given points P1; : : : ; Pm 2 E.k/ with m � 2, there exist an infinite sequence
¹tnº � B.xQ/ and small-height perturbations P 0i;tn 2 Etn.

xQ/ of specializations Pi;tn such that the
set ¹P 01;tn ; : : : ; P

0
m;tn
º satisfies at least two independent linear relations for all n, if and only if the

points P1; : : : ; Pm are linearly dependent in E.k/. This gives a new proof of results of Masser and
Zannier (2010, 2012) and of Barroero and Capuano (2016) and extends our earlier 2020 results. In
the Appendix, we prove an equidistribution theorem for adelically metrized R-divisors on projec-
tive varieties (over a number field) using results of Moriwaki (2016), extending the equidistribution
theorem of Yuan (2012).

Keywords. Arakelov–Zhang pairing, real metrized divisors, elliptic surfaces, Néron–Tate pairing,
Betti coordinates

1. Introduction

Suppose E ! B is an elliptic surface defined over a number field K. That is, E is a
projective surface, B is a smooth projective curve, and there exists a section O W B ! E ,
all defined over K, such that all but finitely many fibers Et , for t 2 B. xK/, are smooth
elliptic curves with zero Ot . We say that the elliptic surface E ! B is isotrivial if all the
smooth fibers Et are isomorphic over xK. Let k denote the function field xK.B/; we also
view the surface E as an elliptic curve E over the field k.

In this article, we study the geometry and arithmetic of the set E.k/ of rational points
over the function field k when E ! B is not isotrivial. To this end, we consider height
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functions associated to adelically metrized R-divisors on the base curve B over the num-
ber field K. We study the Arakelov–Zhang intersection of these metrized R-divisors and
prove that it induces a non-degenerate biquadratic form on E.k/ ˝ R. We relate this
theorem to existing results, and provide, for example, a new proof of results of Masser
and Zannier and of Barroero and Capuano on linear relations between specializations of
independent sections.

1.1. Heights and the Arakelov–Zhang intersection of points in E.k/

Assume that E ! B is not isotrivial. Let OhE denote the Néron–Tate canonical height
on E.xk/, associated to the choice of a divisor O on E; let OhEt denote the corresponding
canonical height on the smooth fibersEt . xK/ for (all but finitely many) t 2B. xK/. By non-
isotriviality, a point P 2 E.k/ satisfies OhE .P / D 0 if and only if it is torsion on E. We
denote the specializations of P by Pt in the fiber Et . Tate [36] showed that the canonical
height function

hP .t/ WD OhEt .Pt / (1.1)

is a Weil height on the base curveB. xK/, up to a bounded error. More precisely, there exists
a Q-divisorDP on B of degree OhE .P / such that hP .t/D hDP .t/CO.1/, where hDP is
a Weil height on B. xK/ associated toDP . In [14], we showed that we can also understand
the small values of the function (1.1) from the point of view of equidistribution. Assume
that OhE .P / > 0 (so that the function hP is non-trivial) and that, as a section, P WB! E is
defined over the number field K. Building on work of Silverman [30, 32, 33], we showed
that hP is the height induced by an ample line bundle on B (with divisor DP ) equipped
with a continuous, adelic metric of non-negative curvature defined overK, denoted by xDP
and satisfying

xDP � xDP D 0

for the Arakelov–Zhang intersection number introduced in [45]. In particular, we can
then apply the equidistribution theorems of [10, 37, 42] to deduce that the Gal. xK=K/-
orbits of points tn 2 B. xK/ with height hP .tn/! 0 are uniformly distributed on B.C/
with respect to the curvature distribution !P for xDP at an archimedean place of K. A
similar equidistribution occurs at each place v ofK with respect to a measure !P;v on the
Berkovich analytification Ban

v [14, Corollary 1.2].
As a consequence of our main result in [14], and combined with the results of Masser

and Zannier [21, 22], we have

xDP � xDQ � 0 for all P;Q 2 E.k/; (1.2)
xDP � xDQ D 0 ” either P or Q is torsion, or

9 ˛ > 0 such that hP .t/ D ˛hQ.t/ for all t 2 B. xK/

”9 .n;m/ 2 Z2 n ¹.0; 0/º such that nP D mQ:

In particular, as the Néron–Tate bilinear form

hP;QiE WD
1
2

�
OhE .P CQ/ � OhE .P / � OhE .Q/

�
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is positive definite on E.k/˝R, we have

xDP � xDQ D 0 ” OhE .P / OhE .Q/ D hP;Qi
2
E (1.3)

for all P;Q 2 E.k/.
The main result of this article is the proof of a stronger version of (1.3):

Theorem 1.1. Let E ! B be a non-isotrivial elliptic surface defined over a number
field K. Let E be the corresponding elliptic curve over the field k D xK.B/. There exists
a constant c > 0 such that

c
�
OhE .P / OhE .Q/ � hP;Qi

2
E

�
� xDP � xDQ � c

�1
�
OhE .P / OhE .Q/ � hP;Qi

2
E

�
for all P;Q 2 E.k/, where h�; �iE is the Néron–Tate bilinear form on E.k/.

The upper bound on xDP � xDQ in Theorem 1.1 is relatively straightforward. The dif-
ficulty lies in the lower bound; in Section 6, we observe that this is equivalent to proving
that xDX � xDY > 0 for all independent X; Y 2 E.k/˝R.

1.2. Motivation and context

Theorem 1.1 was inspired by the statements and proofs of the Bogomolov Conjecture [35,
38, 46], extending Raynaud’s theorem that settled the Manin–Mumford Conjecture [27],
and the “Mordell–Lang plus Bogomolov” results of Poonen [26] and Zhang [48], in the
spirit of the conjectures of Pink [25] and Zilber [49]. Moreover, as we will explain in Sec-
tion 6, we view Theorem 1.1 as an analog of Zhang’s Conjecture [47, §4]; the conjecture
was formulated for families of abelian varieties A! B of relative dimension > 1 and
does not hold as stated for elliptic surfaces [47, §4, Remark 3]. (See [44] for background
and additional references.)

Theorem 1.1 can be seen as a Bogomolov-type bound. The intersection number
xDP � xDQ is related to the small values of the heights OhEt .Pt / C OhEt .Qt / in the

fibers Et . xK/. Indeed, as a consequence of Zhang’s inequality [45, Theorem 1.10] applied
to the sum xDP C xDQ, and the fact that hP .t/ � 0 at all points t 2 B. xK/ for every
P 2 E.k/ [14, Proposition 4.3], we have

1

2
ess min.hP C hQ/ �

xDP � xDQ

OhE .P /C OhE .Q/
� ess min.hP C hQ/ (1.4)

for every pair of non-torsion P; Q 2 E.k/. Here the essential minimum is defined
by ess min.f / D supF infx2BnF f .x/ with supremum over all finite sets F in B. xK/.
Bogomolov-type bounds have found many applications in problems of unlikely intersec-
tions. In Section 6, we explain that Theorem 1.1 is equivalent to the following:

Theorem 1.2. Let E ! B be a non-isotrivial elliptic surface defined over a number
field, and let � W Em ! B be its m-th fibered power with m � 2. Let Em;¹2º denote the
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union of flat subgroup schemes of Em of codimension at least 2, and consider the tubular
neighborhood

T .Em;¹2º; �/

D ¹P 2 Em.xQ/ W 9P 0 2 Em;¹2º.xQ/ with �.P / D �.P 0/ and OhEm
�.P/

.P � P 0/ � �º:

Then, for any irreducible curve C in Em, defined over a number field and dominating B ,
there exists � > 0 such that C \ T .Em;¹2º; �/ is contained in a finite union of flat subgroup
schemes of positive codimension in Em.

See, e.g., [5, Lemma 2.2] for definitions and a classification of flat subgroup schemes.
Our main result in [14] treated the intersections of C with the smaller tube T .Em;¹mº; �/,
the torsion subgroups.

The conclusion of Theorem 1.2 with � D 0 is a result of Barroero and Capuano [5,
Theorem 2.1]: using techniques involving o-minimality and transcendence theory, similar
to those of [21, 22] (which treated the intersections of curves C with T .Em;¹mº; 0/), they
show that C \ T .Em;¹2º; 0/ is contained in a finite union of flat subgroup schemes of
positive codimension. Thus Theorem 1.2 may be seen as a Bogomolov-type extension of
[5, Theorem 2.1], while providing a new proof of results in [5, 21, 22]. The result in [5]
is extended in [3, 4] where Pink’s conjecture [25, Conjecture 6.1] is proved for curves
in Em. We may also view Theorem 1.2 as a Bogomolov-type extension of a special case
of Pink’s conjecture. However, Pink’s conjecture also considers algebraic subgroups of
codimension at least 2 within fibers having complex multiplication, which we do not treat
here, restricting our study to flat subgroup schemes.

If the elliptic surface E ! B is isotrivial, the conclusion of Theorem 1.2 with � D 0
was established by Viada [40] and Galateau [16]. Moreover, in this isotrivial setting, Viada
proved the analogue of Theorem 1.2 (for positive effective �) in [41, Theorem 1.4], [40,
Theorem 1.2], providing in particular new proofs of instances of earlier results by Poo-
nen [26] and Zhang [48] and extending the work in [28]. It is worth pointing out that the
aforementioned results invoked a different Bogomolov-type bound than the one in Theo-
rem 1.1, established by Galateau [16]. In the case �D 0, an analogous statement for curves
in constant abelian varieties is established in [18]. The authors use, amongst others, tech-
niques from o-minimality. In the setting of the multiplicative group Gn

m, Habegger [17]
established results of this flavor in arbitrary dimension, generalizing a result of Bombieri–
Masser–Zannier [9].

We remark that the analogues of Theorems 1.1 and 1.2 can be formulated for arbitrary
fiber products of elliptic surfaces over a given base curve B , as we did in [14, Theo-
rem 1.4]. For example, Theorem 1.1 would assert that xDE;P �

xDF ;Q is comparable with
OhE .P / OhF .Q/ if the two non-isotrivial elliptic surfaces E!B and F !B are not isoge-
nous. Theorem 1.2 would read exactly the same upon replacing Em in the statement with
the fibered product E1 �B � � � �B Em of anym� 2 non-isotrivial elliptic surfaces Ei !B .
Our methods here would yield these results, and in particular [6, Theorem 1.1] of Barroero
and Capuano. We omit them in this article to simplify our exposition.
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1.3. Metrized R-divisors on curves and proof strategy

For each t 2 B. xK/ with Et smooth, the canonical height OhEt induces a positive definite
quadratic form on Et . xK/ ˝ R; see, e.g., [34, Ch. VIII, Prop. 9.6]. The height func-
tions hP onB. xK/, defined by (1.1) forP 2E.k/, therefore make sense for elements of the
finite-dimensional vector space E.k/˝R. In Theorem 3.6, we prove that every non-zero
element X 2 E.k/˝ R gives rise to a continuous, adelic, semipositive metrization xDX
of an ample R-divisor on the base curve B , defined over a number field K, with height
function hX .t/ D OhEt .Xt / for t 2 B. xK/ when Et is smooth, satisfying xDX � xDX D 0.

Consequently, we are able to employ results of Moriwaki [24] in our proofs of Theo-
rems 1.1 and 1.2. Specifically, we use his arithmetic Hodge index theorem for adelically
metrized R-divisors on curves defined over a number field [24, Corollary 7.1.2] to deduce
that xDX � xDY D 0 for X; Y 2 E.k/ ˝ R implies that xDX ' xDY . As we will show in
Section 6, the proofs of Theorems 1.1 and 1.2 are then reduced to showing which points
X; Y give rise to isomorphic metrized R-divisors on B .

To complete the proofs of Theorems 1.1 and 1.2, we examine the curvature distri-
butions for xDX . Fix an embedding of the number field K into C. In [14], the curvature
measure !P for the metrized divisor xDP of P 2 E.k/, at the given archimedean place,
is computed as the pullback by P of a certain .1; 1/-form on E.C/, via a dynamical con-
struction. In [13], it is shown that !P D db1 ^ db2 in the Betti coordinates .b1; b2/ of P .
We explain in Section 7 that elements X 2 E.k/˝ R are also represented by holomor-
phic curves in the surface E , and the Betti coordinates of X are real linear combinations
of the Betti coordinates of points Pi 2 E.k/. We use this to prove that the measure !X ,
at a single archimedean place of the number field K, is enough to uniquely determine the
pair of points X and �X :

Theorem 1.3. Fix X and Y in E.k/ ˝ R and an archimedean place of the number
field K. Let !X and !Y denote the curvature distributions on B.C/ at this place for
the adelically metrized R-divisors xDX and xDY . Then

!X D !Y ” X D ˙Y:

We are grateful to Lars Kühne for helping us with the proof of Theorem 1.3; we
use the holomorphic-antiholomorphic trick of André, Corvaja, and Zannier [1, §5] and
a transcendence result of Bertrand [7, Théorème 5]. A special case of Theorem 1.3 was
proved by a different method in [15, Proposition 1.9].

1.4. Small points

In the Appendix, we show that heights associated to semipositive metrized R-divisors
satisfy an equidistribution law. As we shall see, Corollary A.2 applies to sequences in
the base curve B where the specializations of points in E.k/ satisfy non-trivial linear
relations. For example, generalizing [14, Corollary 1.2], we obtain
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Theorem 1.4. Let E ! B be a non-isotrivial elliptic surface defined over a number
field K, and let E be the corresponding elliptic curve over the field k D xK.B/. Suppose
that P1; : : : ;Pm is a collection ofm� 1 linearly independent points inE.k/, also defined
over K as sections of E ! B . Suppose that ¹tnº � B. xK/ is a non-repeating sequence
where

a1;nP1;tn C a2;nP2;tn C � � � C am;nPm;tn D Otn (1.5)

for ai;n 2 Z, with Œa1;n W � � � W am;n�! Œx1 W � � � W xm� in RPm�1 as n!1. Set

X D x1P1 C � � � C xnPn 2 E.k/˝R:

Then hX .tn/! 0 for the height function associated to the metrized R-divisor xDX . More-
over, for each place v ofK, the Gal. xK=K/-orbits of tn in B. xK/ are uniformly distributed
on Ban

v with respect to the probability measure

�X;v WD
1

OhE .X/
!X;v D

1

OhE .X/

�X
i

�
x2i �

X
j 6Di

xixj

�
!Pi ;v C

X
i<j

xixj!PiCPj ;v

�
:

A sequence ¹tnºn�0 is said to be non-repeating if tn 6D tm for all n 6D m.

Remark 1.5. For non-zero X 2 E.k/˝ R, the height hX will have only finitely many
zeros unless a positive real multiple cX is represented by an element of E.k/; see Propo-
sition 4.5. On the other hand, there is always an infinite sequence ¹tnº for which (1.5) is
satisfied, so that ess min.hX / D 0; see Proposition 4.1.

1.5. Example

Let Et be the Legendre elliptic curve defined by

y2 D x.x � 1/.x � t /

for t 2 xQ n ¹0; 1º. By filling in the family over t D 0; 1;1, we obtain an elliptic surface
E! B with B D P1 defined over Q. Here k D xQ.t/. It is easy to see that rankE.k/D 0.
However, by choosing any collection ofm distinct points x1; : : : ; xm 2 P1.xQ/ n ¹0;1;1º,
we can construct an elliptic surface E 0 ! B 0 with rankE 0.k0/ � m where k0 D xQ.B 0/.
Indeed, we let Pxi be a point with constant x-coordinate equal to xi . As the points xi are
distinct, the structure of the field extensions ki=k, determined by each Pxi , implies that
the points must be independent. We pass to a branched cover B 0 ! B such that each Pxi
defines a section over B 0 and set k0 D xQ.B 0/. These examples were considered in [21]
and the associated measures !Pxi on B 0.C/ (or rather their projections to B D P1) were
computed in [15].

1.6. Outline of the article

In Section 2, we fix some notation and introduce metrizations on R-divisors on curves
defined over a number field, and we examine their intersection numbers. In Section 3, we
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prove that each non-zero element X 2 E.k/˝R induces a continuous, adelic, semipos-
itive metrization xDX on an ample R-divisor on the base curve B . In Section 4, we study
the sequences of small points for the height function hX on B.xQ/ associated to xDX . In
Section 5 we lay out the basic properties of the intersection number .X; Y / 7! xDX � xDY
as a biquadratic form on the vector space E.k/ ˝ R. In Section 6, we analyze the sig-
nificance of xDX � xDY D 0 for non-zero X; Y 2 E.k/˝ R, and we explain how to relate
Theorems 1.1 and 1.2. We provide a list of equivalent formulations of these theorems in
Theorem 6.4, including one inspired by Zhang’s Conjecture in [47]. Section 7 contains a
proof of Theorem 1.3, and we complete the proofs of Theorems 1.1 and 1.2 in Section 8.
In the Appendix, we provide a proof of equidistribution results for heights associated to
R-divisors on projective varieties.

2. R-divisors on curves and arithmetic intersection

In this section, we introduce metrizations on R-divisors on curves, following Mori-
waki [24], and their intersection numbers.

2.1. Notation

Here, and throughout this article, K denotes a number field. We let MK denote its set of
places, with absolute values j � jv satisfying the product formulaY

v2MK

jxjŒKv WQv �v D 1 (2.1)

for all non-zero x in K. Here Kv denotes the completion of K with respect to j � jv . We
set

rv WD
ŒKv W Qv�

ŒK W Q�
: (2.2)

For each place v 2MK , we let Cv denote the completion of an algebraic closure of Kv .
We let B denote a smooth projective curve defined over a number field K. For each

v 2MK , we let Ban
v denote the Berkovich analytification of B over the field Cv .

We let DivZ.B/ denote the group of divisors on B .
Throughout, k denotes the function field xK.B/. Its places are in one-to-one correspon-

dence with the elements t 2 B. xK/, with absolute values given by jf jt D exp.� ordt .f //
for each non-zero f 2 xK.B/.

2.2. Metrizations of R-divisors on curves

Let B be a smooth projective curve defined over a number field K. Let D D
P
i aiDi be

an ample R-divisor on B , with ai 2 R and Di 2 DivZ.B/ with support in B. xK/, invari-
ant under the action of Gal. xK=K/. By rewriting the sum if necessary, we may assume
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that each Di is associated to an ample line bundle Li that extends over the Berkovich
analytification Ban

v for each place v of K.
A continuous, adelic metrization for D is a collection of continuous functions

gv W B
an
v n suppD ! R

for v 2MK such that

(1) for each v, the locally defined function  v WD gv C
P
i ai log jfi jv extends contin-

uously to the support of D, where fi is a local defining equation for Di defined
over K;

(2) there exists a model .B;D/ of .B;D/ over the ring of integers OK such that gv is
the associated model function for all but finitely many v, or equivalently,  v � 0 at
all but finitely many places v for the associated ¹fiº near each element of suppD.

See [24, §0.2] and [11, §1.3.2] for the definition of model functions. We denote this data
by xD D .D; ¹gvºv2MK /.

The metrization is semipositive if each gv is subharmonic on Ban
v n supp D. An

R-divisor D on B with a collection of continuous functions gv W Ban
v n suppD ! R, for

v 2 MK , is said to be integrable if D D D1 �D2 and gv D gv;1 � gv;2 for two adelic,
semipositive metrizations on ample R-divisors xDi D .Di ; ¹gi;vº/. We write xDD xD1� xD2.
An associated height function is given by h xD D h xD1 � h xD2 .

Moriwaki [24] calls a semipositive xD a relatively nef adelic arithmetic R-divisor onB .
This extends Zhang’s [45] notion of an adelic, semipositive metric on a line bundle to
R-divisors. Indeed, for D an ample divisor on B associated to a line bundle L, equipped
with an adelic metric ¹k � kvºv2MK , and s a meromorphic section of L with .s/ D D, we
put gv D � log kskv at each place v of the number field K.

For any integrable xD, we let ! xD;v denote its curvature distribution on Ban
v ; by defi-

nition, this is a (signed) measure of total mass degD, equal to the Laplacian of gv away
from suppD. See, for example, [2] for more information about the distribution-valued
Laplacian on Berkovich curves. For semipositive xD, the measure ! xDv is positive, and its
associated probability measure is denoted by

� xD;v WD
1

degD
! xD;v:

There is an associated height function on B. xK/ defined by

h xD.x/ WD
X
v2MK

rv

jGal. xK=K/ � xj

X
x02Gal. xK=K/�x

gv.x
0/; (2.3)

for x 62 suppD. Recall that rv was defined in (2.2). For any rational function � on B
defined over K, and for any real a 2 R, note that

h xD.x/ D
X
v2MK

rv

jGal. xK=K/ � xj

X
x02Gal. xK=K/�x

.gv � a log j�jv/.x0/
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away from .suppD/ [ .supp.�//, from the product formula (2.1). This allows definition
(2.3) to extend to the points x 2 suppD, by choosing any � such that x 2 supp.�/ and
a such that gv � a log j�jv extends continuously at x for every v. For an R-divisor D0 DP
i bi Œxi � with support in B. xK/, we will write

h xD.D
0/ WD

X
i

bih xD.xi /:

2.3. Intersection

For divisors D1; D2 2 DivZ.B/ associated to line bundles L1 and L2, respectively,
equipped with continuous, adelic metrics xD1 and xD2, the arithmetic intersection num-
ber is defined in [45] (see also [11]) as

xD1 � xD2 WD h xD1..s2//C
X
v2MK

rv

Z
Ban
v

.� log ks2k xD2;v/ d! xD1;v

D h xD1..s2//C h xD2..s1//C
X
v2MK

rv

Z
Ban
v

.� log ks2k xD2;v/.d! xD1;v � ı.s1//

D h xD1..s2//C h xD2..s1//C
X
v2MK

rv

Z
Ban
v

.� log ks2k xD2;v/�.� log ks1k xD1;v/

D xD2 � xD1; (2.4)

where si is a meromorphic section of Li defined over K, for i D 1; 2, with divisors .s1/
and .s2/ of disjoint support. For the continuous, adelic metrizations of R-divisors, we
extend by R-linearity, so that

xD1 � xD2 D h xD1.D2/C
X
v2MK

rv

Z
Ban
v

g xD2;v d! xD1;v D
xD2 � xD1: (2.5)

Remark 2.1. The intersection number (2.5) coincides with bdeg. xD1 xD2/ of [24]. Indeed,
[24, Theorem 4.1.3] states that each xD can be uniformly approximated by metrizations
associated to models, and it is known that the intersection numbers coincide for these
model metrics [23, Proposition 2.1.1].

Now suppose that D is an ample R-divisor on B . We say xD is normalized if its self-
intersection number satisfies

xD � xD D 0:

Note that any continuous, adelic metrization on the ampleD can be normalized by adding
a constant to gv at some place.

For each a 2R and xDD .D;¹gvº/, we write a xD for the pair .aD;¹agvº/. Normalized
metrized divisors xD1 and xD2 on B are isomorphic (written xD1 ' xD2) if xD1 � xD2 is
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principal, meaning that there are rational functions �1; : : : ; �m 2 K.B/ and real numbers
a1; : : : ; am such that

xD1 � xD2 D

mX
iD1

ai
�
.�i /; ¹� log j�i jvºv2MK

�
:

Note that by the product formula the height function h xD depends only on the isomorphism
class of xD.

We will make use of Moriwaki’s arithmetic Hodge-index theorem in the following
form:

Theorem 2.2 ([24, Corollary 7.1.2]). Suppose xD1 and xD2 are normalized continuous
semipositive adelic metrizations on ample R-divisors with degD1DdegD2. Then xD1 � xD2
� 0, and xD1 � xD2 D 0 if and only if xD1 and xD2 are isomorphic.

Proof. Set xD D xD1 � xD2, so that the underlying divisor D has degree 0, and

xD � xD D �2 xD1 � xD2:

From [24, Corollary 7.1.2], we know that xD � xD � 0 with equality if and only if xD is
principal, up to addition of a constant c 2 R to the metrization gv at some place v. But
then xD1 � xD1 D xD2 � xD2 C 2crv degD2 for this constant c, so the normalization of xD1
and xD2 implies that c D 0.

2.4. Essential minima

Following [45], the essential minimum of the height h xD is defined as

e1. xD/ WD sup
F

inf
x2B. xK/nF

h xD.x/; (2.6)

with supremum over all finite subsets F of B. xK/, and we put

e2. xD/ WD inf
x2B. xK/

h xD.x/:

Theorem 2.3 ([45, Theorem 1.10]). For any adelic, semipositive metrization xD of an
ample R-divisor D, we have

e1. xD/ �
xD � xD

2 degD
�
1

2
.e1. xD/C e2. xD//:

Proof. Zhang [45, Theorem 1.10] proved the result for ample line bundles equipped
with adelic, semipositive metrics. It also holds for metrizations of R-divisors because
the height function associated to an R-divisor is a uniform limit of heights associated to
Q-divisors, and the intersection number is a bilinear form on metrized divisors.

Using the upper bound on xD � xD in Theorem 2.3, we can extend Theorem 2.2 to
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Theorem 2.4. Suppose xD1 and xD2 are normalized semipositive adelic metrizations on
ample R-divisors of the same degree, and suppose the essential minimum of at least one
of the xDi is 0. Then the following are equivalent:

(1) xD1 � xD2 D 0;

(2) xD1 and xD2 are isomorphic;

(3) h xD1 D h xD2 on B. xK/;

(4) h xD1 D h xD2 at all but finitely many points of B. xK/;

(5) there exists an infinite non-repeating sequence tn in B. xK/ for which

lim
n!1

.h xD1.tn/C h xD2.tn// D 0:

Proof. We have .1/,.2/ from Theorem 2.2. The definition of the height function, in view
of the product formula, implies that .2/).3/, and we clearly have .3/).4/. The essential
minimum being 0 for xD1 or for xD2 gives .4/).5/. Finally, assume .5/. Theorem 2.3
implies that e1. xDi / � 0 for i D 1; 2, because xDi is normalized. Therefore, we also have
e1. xD1 C xD2/ � 0 for the essential minimum of the sum h xD1 C h xD2 . The existence of the
sequence ¹tnº thus implies that e1. xD1 C xD2/ D 0. As xD1 � xD2 � 0 from Theorem 2.2
and xDi � xDi D 0 for i D 1; 2 by assumption, we apply Zhang’s inequality (Theorem 2.3)
to xD1 C xD2 to obtain

0 D e1. xD1 C xD2/ �
2 xD1 � xD2

degD1 C degD2
� 0;

which allows us to deduce condition .1/.

We will use the equivalences of Theorem 2.4 repeatedly in our proofs of Theorems
1.1 and 1.2.

3. A metrized R-divisor for each element of E.k/ ˝ R

Throughout this section, we let E ! B be a non-isotrivial elliptic surface defined over a
number field K, and let E be the corresponding elliptic curve over the field k D xK.B/.
We denote the zero by O 2 E.k/. As E.k/ is finitely generated, we enlarge K if needed
so that all sections of E ! B are defined over K. Recall that points P1; : : : ; Pm 2 E.k/
are independent if the relation

a1P1 C � � � C amPm D O

in E.k/ with ai 2 Z implies that a1 D � � � D am D 0.
In this section, we show that each non-zero elementX 2E.k/˝R naturally gives rise

to an adelic, semipositive continuous metrization xDX associated to an ample R-divisor
DX on B; see Theorem 3.6. For P 2 E.k/, these metrizations on R-divisors coincide
with the adelically metrized line bundles on B that we studied in [14]. In §3.4, we observe
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that the assignment X 7! xDX is quadratic, in the sense that xDX ' xDhX;Xi for a bilinear
operator .X; Y / 7! xDhX;Y i WD

1
2
. xDXCY � xDX � xDY / on E.k/˝R.

We begin by recalling the basic properties of Néron–Tate heights and their local
decompositions.

3.1. Néron–Tate heights

Let F be a number field or a function field of transcendence degree 1 in characteristic 0.
We letMF denote its set of places. LetE=F be an elliptic curve with originO , expressed
in Weierstrass form as

E D ¹y2 C a1xy C a3y D x
3
C a2x

2
C a4x C a6º

with discriminant �. Denote by

OhE W E. xF /! Œ0;1/

a Néron–Tate canonical height function; it can be defined by

OhE .P / D
1

2
lim
n!1

h.x.nP //

n2

where h is the naive Weil height on P1 and x W E ! P1 is the degree 2 projection to the
x-coordinate.

For each v 2 MF , recall that Fv denotes the completion of F with respect to j � jv
and Cv denotes the completion of the algebraic closure of Fv . The canonical height has a
decomposition into local heights, as

OhE .P / D
1

jGal. xF =F / � P j

X
Q2Gal. xF =F /�P

X
v2MF

rv O�E;v.Q/

for all P 2 E. xF / n ¹Oº, with rv defined by (2.2) in the number field case, and rv D 1
for function fields. The local heights O�E;v are characterized by the three properties [31,
Chapter 6, Theorem 1.1]:

(1) O�E;v is continuous on E.Cv/ n ¹Oº and bounded on the complement of any v-adic
neighborhood of O;

(2) the limit of O�E;v.P / � 1
2

log jx.P /jv exists as P ! O in E.Cv/;

(3) for all P D .x; y/ 2 E.Cv/ with 2P 6D O ,

O�E;v.2P / D 4 O�E;v.P / � log j2y C a1x C a3jv C 1
4

log j�jv: (3.1)

Property .3/ may be replaced with the quasi-parallelogram law

O�E;v.P CQ/C O�E;v.P �Q/ D 2 O�E;v.P /C 2 O�E;v.Q/

� log jx.P / � x.Q/jv C 1
6

log j�jv (3.2)
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under the assumption that none of P ,Q, P CQ, or P �Q is equal toO . Note that O�E;v
is independent of the choice of Weierstrass equation for E over F . It is useful to recall
also the triplication formula: if 3P ¤ O , then

O�E;v.3P / D 9 O�E;v.P / � log j.3x4 C b2x3 C 3b4x2 C 3b6x C b8/.P /jv � 2
3

log j�jv;
(3.3)

where bi are the usual Weierstrass quantities; see, e.g., [31, p. 463].

3.2. Metrized divisors for elements of E.k/

Fix a non-torsion P 2 E.k/. Define

DP WD
X

2B. xK/

O�E;ord .P /Œ�:

We remark that O�E;ord .P / 2 Q [19, Chapter 11, Theorem 5.1], so DP is a Q-divisor
on B . As P is defined over K, the divisor is Gal. xK=K/-invariant.

In [14, Theorem 1.1] we established that DP can be equipped with an adelic, semi-
positive, continuous and normalized metrization

xDP WD .DP ; ¹�P;vºv2MK / (3.4)

over the number field K, where �P;v denotes the extension of t 7! O�Et ;v.Pt / to Ban
v . It

follows that the associated height functions satisfy

hP .t/ WD h xDP .t/ D
OhEt .Pt /

for all t 2 B. xK/ for which Et is smooth. Both minima e1. xDP / and e2. xDP / (defined in
§2.4) are equal to 0 [14, Proposition 4.3]; this allowed us to conclude that xDP � xDP D 0
from Theorem 2.3.

For O 2 E.k/, we set
xDO WD .0; 0/;

the trivial divisor with all functions gv equal to 0. For torsion points T 6D O 2 E.k/,
the metrized divisor xDT can also be defined by (3.4), with �T;v.t/ WD O�Et ;v.Tt / for all
t 2 B. xK/ with Et smooth. The following proposition is key for the passage from E.k/

to E.k/˝R.

Proposition 3.1. The metrized divisor xDP is well defined for P in E.k/=E.k/tors, up to
isomorphism. Moreover, for each m � 1 and any set of independent points P1; : : : ; Pm 2
E.k/ and integers a1; : : : ; am, the following metrized divisors are isomorphic:

xDa1P1C���CamPm '

mX
iD1

�
a2i � ai

X
j 6Di

aj

�
xDPi C

X
1�i<j�m

aiaj xDPiCPj : (3.5)
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Remark 3.2. The proposition implies, in particular, that the functions

t 7!

mX
iD1

�
a2i � ai

X
j 6Di

aj

�
�Pi ;v.t/C

X
1�i<j�m

aiaj�PiCPj ;v.t/

are subharmonic on Ban
v (away from the points t where �Pi ;v.t/ or �PiCPj ;v.t/ is equal

to1), for all choices of ai 2 Z, and at every place v of K.

We begin with a lemma (cf. [31, Exercise 6.4]):

Lemma 3.3. Fix a P 2 E.k/. For each non-zerom 2 Z with jmj � 2 such thatmP 6DO ,
there exist h 2 K.B/ and a constant c 2 Q such that

O�Et ;v.mPt / D m
2 O�Et ;v.Pt /C c log jh.t/jv

at every place v and for each t 2 B. xK/ such that Et is smooth. If P is torsion of order
m � 2, we have

O�Et ;v.Pt / D c log jh.t/jv

for some c 2 Q and h 2 K.B/.

Proof. Upon replacing P by �P , it suffices to prove the statement for m � 2. The dupli-
cation formula (3.1) provides the desired result formD 2, assuming that 2P 6DO . Now fix
anym� 3 and P 2E.k/, and assume thatmP 6DO , .m� 1/P ¤O and .m� 2/P ¤O .
Then the quasi-parallelogram law (3.2) implies

O�Et ;v.mPt / D 2
O�Et ;v..m � 1/Pt /C 2

O�Et ;v.Pt / �
O�Et ;v..m � 2/Pt /

� log jx..m � 1/Pt / � x.Pt /jv C
1
6

log j�t jv (3.6)

for each t 2 B.Cv/ such that Et is smooth and mPt 6D Ot , .m � 1/Pt ¤ Ot and
.m � 2/Pt ¤ Ot and therefore for all t 2 B.Cv/ by the continuity of the local height
t 7! O�Et ;v.Pt / 2 R [ ¹˙1º. The desired relation, for all non-torsion points and for all
m � 3, then follows from (3.6) by an easy induction.

Now suppose that 2P D O with P 6D O . Then 3P D P ¤ O , and the triplication
formula (3.3) implies that

O�Et ;v.3Pt / D 9
O�Et ;v.Pt / � c log jh.t/jv D O�Et ;v.Pt /

for a constant c 2Q and h 2K.B/ and for all but finitely many t . The equation then holds
for all t 2 B.Cv/ by the continuity of the local heights, and it implies that O�Et ;v.Pt / D
c
8

log jh.t/jv .
For a torsion point P of order 3, we have 2P D �P 6D O , so we may apply the

duplication formula (3.1) to see that

O�Et ;v.2Pt / D 4
O�Et ;v.Pt / � c log jh.t/jv D O�Et ;v.�Pt / D O�Et ;v.Pt /

for a constant c 2 Q and h 2 K.B/. It follows that O�Et ;v.Pt / D
c
3

log jh.t/jv .
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Finally, suppose that P is torsion of order n � 4, and note that .n� 1/P D �P ¤ O ,
.n � 2/P ¤ O and .n � 3/P ¤ O . We infer from (3.6) with 3 � m � n � 1 inductively
that

O�Et ;v..n � 1/Pt / D .n � 1/
2 O�Et ;v.Pt / � c log jh.t/jv D O�Et ;v.�Pt / D O�Et ;v.Pt /

for a rational function h 2 K.B/ and c 2 Q, so that O�Et ;v.Pt / D
c

n2�2n
log jh.t/jv:

Proof of Proposition 3.1. Lemma 3.3 implies that

xDP ' xDO

for every torsion point P 2 E.k/. Furthermore, for any non-torsion point P , Lemma 3.3
also implies that

xDaP ' a
2 xDP

for all a 2 Z, demonstrating (3.5) for m D 1. Therefore, if P is non-torsion and Q is
torsion of order n � 2, we have

xDPCQ '
1

n2
xDn.PCQ/ D

1

n2
xDnP ' xDP :

This proves that the metrized divisors depend only on the class in E.k/=E.k/tors, up to
isomorphism.

Now fix anym � 2, and any collection of independent points P1; : : : ; Pm 2 E.k/ and
integers a1; : : : ; am. Define a divisor on B by

D0 D

mX
iD1

�
a2i � ai

X
j 6D1

aj

�
DPi C

X
1�i<j�m

aiajDPiCPj ;

and consider the metrization on D0 defined by

gv.t/ D

mX
iD1

.a2i � ai
X
j 6D1

aj /�Pi ;v.t/C
X

1�i<j�m

aiaj�PiCPj ;v.t/:

To prove the proposition, we will use the quasi-parallelogram law (3.2) to show that there
exists a rational function f 2 K.B/ such that

gv.t/ � O�Et ;v.a1P1;t C � � � C amPm;t / D log jf .t/jv (3.7)

at all places v of K and for all but finitely many t 2 B.Cv/.

Lemma 3.4. Let P;Q;R 2 E.k/ be independent points defined over K. Then there is a
rational function fP;Q;R 2 K.B/ such that

O�Et ;v.Pt CQt CRt / D O�Et ;v.Pt CRt /C
O�Et ;v.Pt CQt /C O�Et ;v.Qt CRt /

� O�Et ;v.Pt / �
O�Et ;v.Qt / � O�Et ;v.Rt / � log jfP;Q;R.t/jv

for all t 2 B. xK/ such that Et is smooth and all v 2MK .
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Proof. The proof follows by applying the quasi-parallelogram law (3.2) for the pairs
¹P C R; Qº, ¹P; R � Qº, ¹P C Q; Rº and ¹R; Qº and taking an alternating sum as
in [34, Theorem 9.3].

Lemma 3.5. Fix independent P;Q 2 E.k/. For each .a; b/ 2 Z2 n ¹.0; 0/º, there is a
rational function ha;b 2 K.B/ such that

O�Et ;v.aPt C bQt / D .a
2
� ab/ O�Et ;v.Pt /C ab

O�Et ;v.Pt CQt /

C .b2 � ab/ O�Et ;v.Qt / � log jha;bjv

for all t 2 B. xK/ such that Et is smooth and all v 2MK .

Proof. The assertion follows from the quasi-parallelogram law by an easy induction.
Lemma 3.3 provides the desired result if a or b is 0. Next we will show that for each
n 2 Z there is a rational function g 2 K.B/ such that

O�Et ;v.nPt CQt / D .n
2
� n/ O�Et ;v.Pt /C n

O�Et ;v.Pt CQt /

C .1 � n/ O�Et ;v.Qt / � log jgjv: (3.8)

Replacing P by �P we may assume that n � 1. For n D 1 the statement is clear. For
n � 1, the quasi-parallelogram law (3.2) implies that

O�Et ;v..nC 1/Pt CQt / D O�Et ;v.nPt C .P CQ/t /

D 2 O�Et ;v.nPt /C 2
O�Et ;v.Pt CQt / � O�Et ;v..n � 1/Pt �Qt /

� log jx.nPt / � x.Pt CQt /jv C
1
6

log j�jv

and (3.8) follows inductively from Lemma 3.3. Using (3.8) we now have a rational func-
tion h 2 K.B/ such that

O�Et ;v.aPt C bQt / D .a
2
� a/ O�Et ;v.Pt /C a

O�Et ;v.Pt C bQt /

C .1 � a/ O�Et ;v.bQt / � log jhjv: (3.9)

The lemma then follows by another application of (3.3) and (3.8), exchanging the roles
of P and Q.

Finally, a simple induction using Lemmas 3.4 and 3.5 implies that for anym � 2, and
for any integers a1; : : : ; am, the equality (3.7) holds for some rational f . This completes
the proof of Proposition 3.1.

3.3. Metrized divisors for elements of E.k/˝R

Fix a non-zeroX 2E.k/˝R. Choose independent points P1; : : : ;Pm 2E.k/ that define
a basis for E.k/ ˝ R, and write X D x1P1 C � � � C xmPm with xi 2 R. With a slight
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abuse of notation, we identify the two isomorphic metrized divisors in Proposition 3.1
and define an adelically metrized R-divisor on B. xK/, over the number field K, by

xDX WD

mX
iD1

�
x2i � xi

X
j¤i

xj

�
xDPi C

X
1�i<j�m

xixj xDPiCPj (3.10)

for the xDP defined by (3.4) when P 2 E.k/. It defines a height function

hX .t/ D

mX
iD1

�
x2i � xi

X
j 6Di

xj

�
OhEt .Pi;t /C

X
1�i<j�m

xixj OhEt .Pi;t C Pj;t / (3.11)

at all points t 2 B. xK/ for which Et is smooth.

Theorem 3.6. Fix a non-zero X 2 E.k/˝R. The metrized divisor xDX of (3.10) is con-
tinuous, adelic, semipositive and normalized. The degree of the underlying R-divisor DX
is OhE .X/ > 0. Its associated height function satisfies

hX .t/ D OhEt .Xt / (3.12)

for all t 2 B. xK/ with smooth fiber Et . Further, up to isomorphism, xDX is independent of
the choice of basis for E.k/.

Proof. Fix x1; : : : ; xm 2 R and choose sequences of rational numbers an;i=an;0! xi for
i D 1; : : : ; m. From Proposition 3.1 we know that the functions

1

a2n;0

� mX
iD1

�
a2n;i � an;i

X
j¤i

an;j

�
�Pj ;v.t/C

X
1�i<j�m

an;ian;j�PiCPj ;v.t/
�

are continuous, subharmonic functions onBan
v (away from their logarithmic singularities),

because they define a metrized divisor isomorphic to a�2n;0 xDan;1P1C���Can;mPm . The limit
as n!1 clearly exists as a continuous, semipositive, adelic metrization on an R-divisor

DX D

mX
iD1

�
x2i � xi

X
j 6D1

xj

�
DPi C

X
1�i<j�m

xixjDPiCPj :

To see that xDX is normalized, recall that by [14, Theorem 1.1] we have

xDan;1P1C���Can;mPm �
xDan;1P1C���Can;mPm D 0

for all n 2 N. In view of Proposition 3.1 we then have

1

a4n;0

� mX
iD1

�
a2n;i � an;i

X
j¤i

an;j

�
xDPj C

X
1�i<j�m

an;ian;j xDPiCPj

�2
D 0

for all n 2 N. Letting n!1 we get xDX � xDX D 0.
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Equation (3.12) follows from the properties of OhEt as a quadratic form on each smooth
fiber Et . Specifically, we have

OhEt .Pt CQt / D OhEt .Pt /C 2hPt ;Qt iEt C
OhEt .Qt /

for the Néron–Tate bilinear form hPt ;Qt iEt and for any pair of points P;Q 2 E.k/ and
t 2 B. xK/ with Et smooth. It follows that

OhEt .yPt C zQt /

D y2 OhEt .Pt /C yz.
OhEt .Pt CQt / � OhEt .Pt / �

OhEt .Qt //C z
2 OhEt .Qt /

D .y2 � yz/ OhEt .Pt /C yz
OhEt .Pt CQt /C .z

2
� yz/ OhEt .Qt /

for all y; z 2 R. Therefore, by induction, we deduce that

OhEt .x1P1;t C � � � C xmPm;t /

D

mX
iD1

x2i
OhEt .Pi;t /C 2

X
i<j

xixj hPi;t ; Pj;t iEt

D

mX
iD1

�
x2i � xi

X
j 6D1

xj

�
OhEt .Pi;t /C

X
1�i<j�m

xixj OhEt .Pi;t C Pj;t /

for any collection P1; : : : ; Pm 2 E.k/ and real numbers x1; : : : ; xm, so that

hX .t/ D OhEt .Xt /

for all t 2 B. xK/ with Et smooth. That xDX does not depend on its presentation or the
choice of basis follows easily from Proposition 3.1.

3.4. Bilinearity

For X; Y 2 E.k/˝R, consider the metrized R-divisor

xDhX;Y i WD
1
2
. xDXCY � xDX � xDY / (3.13)

on the base curve B , of degree equal to the Néron–Tate inner product of X and Y ,

hX; Y iE D
1
2
. OhE .X C Y / � OhE .X/ � OhE .Y //:

Note that xDhX;Y i is symmetric in X; Y 2 E.k/˝R. It is also bilinear, in the sense that

xDhX;aYCbZi D
1
2
. xDXCaYCbZ � xDX � xDaYCbZ/

'
1
2

�
.1 � a � b/ xDX C .a

2
� a � ab/ xDY C .b

2
� b � ab/ xDZ

C a xDXCY C b xDXCZ C ab xDYCZ � xDX

� Œ.a2 � ab/ xDY C .b
2
� ab/ xDZ C ab xDYCZ �

�
D

1
2
.aŒ xDXCY � xDX � xDY �C bŒ xDXCZ � xDX � xDZ �/

D a xDhX;Y i C b xDhX;Zi; (3.14)

from (3.10) and Theorem 3.6. Moreover, we have xDX ' xDhX;Xi for all X 2 E.k/˝R.
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4. Small sequences

As before, we let E!B be a non-isotrivial elliptic surface defined over a number fieldK,
and let E be the corresponding elliptic curve over the field k D xK.B/. In §3.3, we con-
structed metrized R-divisors xDX and associated height functions hX for each element
X 2 E.k/˝ R. In this section, we look at the sets of “small” points for the height hX .
We conclude the section with a proof of Theorem 1.4.

4.1. Small sequences exist

For an adelic, continuous, semipositive, and normalized metrized R-divisor xD with ample
D on the curve B , an infinite sequence ¹tnº � B. xK/ is said to be small if

h xD.tn/! 0 as n!1.

Proposition 4.1. For every non-zero X 2 E.k/˝R, there exist small sequences for xDX ,
so that the essential minimum is e1. xDX / D 0. More precisely, write X D x1P1 C � � � C
xmPm for xi 2 R and independent Pi 2 E.k/, and choose integers ai;n for i D 1; : : : ;m
and n 2 N so that Œa1;n W � � � W am;n�! Œx1 W � � � W xm� as n!1 in the real projective
space RPm�1. Then there exists an infinite non-repeating sequence of points tn 2 B. xK/
at which

.a1;nP1 C � � � C am;nPm/tn

is torsion in the fiber Etn. xK/. Moreover, for any such sequence ¹tnº � B. xK/ we have

hX .tn/! 0 as n!1.

To prove Proposition 4.1, we begin with a well-known statement that follows from
Silverman’s specialization theorem [29].

Lemma 4.2. Fix any set of independent points P1; : : : ; Pm in E.k/, and let h be any Weil
height function on B associated to a divisor of degree 1. The set of all t for which there
exist integers a1; : : : ; am, not all zero, such that

a1P1;t C � � � C amPm;t D Ot

in Et has bounded h-height.

Proof. For each non-torsion point Q 2 E.k/ we have (see [29])

lim
h.t/!1

OhEt .Qt /

h.t/
D OhE .Q/ > 0;

so the set ¹t 2 B. xK/ W OhEt .Qt /D 0º has bounded h-height. Since det.hPi ; Pj iE /i;j > 0,
it follows that the set

R.P1; : : : ; Pm/ D ¹t 2 B. xK/ W det.hPi;t ; Pj;t it / D 0º

also has bounded height. This set R.P1; : : : ; Pm/ contains the set of t at which the points
become linearly dependent.
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Proof of Proposition 4.1. WriteX D x1P1C � � � C xmPm for independent P1; : : : ; Pm 2
E.k/ and x1; : : : ; xm 2 R. Fix a sequence of positive integers Mn !1 as n!1. For
i D 1; : : : ; m, choose any sequence of integers ai;n such that ai;n=Mn ! xi as n!1,
and set

Qn D a1;nP1 C � � � C am;nPm 2 E.k/;

so that 1
Mn
Qn ! X in E.k/˝R.

Consider the set

Tor.Qn/ D ¹t 2 B. xK/ W Qn;t is torsion in Etº:

For each n, the set Tor.Qn/ is infinite; in fact, it is dense in B.C/ [14, Proposition 6.2],
[44, §III.2 and Notes to Chapter III]. Moreover, from Lemma 4.2, this set has bounded
height in the base curve B with respect to any chosen Weil height h, and the height is
bounded independently of n. Therefore, from [29, Theorem A], we can find H > 0 such
that

hPi .t/ � H and hPiCPj .t/ � H

for all t 2
S
n Tor.Qn/ and for all i; j .

From the formula for the height hX given in (3.11) and the formula for the height
of Qn appearing in Proposition 3.1, we have the following. For any given " > 0, there
exists N > 0 such thatˇ̌̌̌
hX .t/ �

1

M 2
n

hQn.t/

ˇ̌̌̌
D

ˇ̌̌̌ mX
iD1

�
x2i � xi

X
j 6D1

xj �
a2i;n

M 2
n

C
ai;n

Mn

X
j 6Di

aj;n

Mn

�
hPi .t/

C

� X
1�i<j�m

xixj �
ai;naj;n

M 2
n

�
hPiCPj .t/

ˇ̌̌̌
< "

for all n >N and for all t where hPi .t/�H and hPiCPj .t/�H for all i; j . In particular,
the estimate holds for all t 2

S
n�1 Tor.Qn/.

For each n and every t 2 Tor.Qn/, we have hQn.t/ D 0. Choosing any sequence of
distinct points tn 2B. xK/ so thatQn;tn is torsion inEtn , we may conclude that hX .tn/! 0

as n!1.

4.2. Characterization of small sequences

Here, we observe that small sequences for real points X 2 E.k/˝R always arise from a
construction similar to that of Proposition 4.1, where relations between the generators are
“almost” satisfied. We will use this next proposition in the proof of Theorem 6.4.

Proposition 4.3. Let M be a torsion-free subgroup of E.k/ of rank m, generated by
S1; : : : ; Sm. Set hM .t/ D det.hSi;t ; Sj;t it /, for the Néron–Tate bilinear form h�; �it on the
fiber Et . xK/. For a non-repeating infinite sequence tn 2 B. xK/, the following are equiva-
lent:

(1) lim infn!1 hM .tn/ D 0;
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(2) there is a non-zero X 2M ˝R such that lim infn!1 hX .tn/ D 0;

(3) there are sequences of points si;n 2 Etn. xK/, for i D 1; : : : ; m, satisfying

lim inf
n!1

�
max
i

OhEtn .si;n/
�
D 0

and such that the points

S1;tn � s1;n; : : : ; Sm;tn � sm;n

satisfy a linear relation over Z in Etn. xK/.

This proposition relies heavily on Silverman’s specialization results [29, Theorems A
and B]. We point out that [29, Theorem B] holds for real points X 2 E.k/˝ R by the
bilinearity of the Néron–Tate pairing. We begin with a lemma.

Lemma 4.4. Assume we are in the setting of Proposition 4.3. Assume further that there
are sequences of points si;n 2 Etn. xK/, for i D 1; : : : ; m, satisfying

sup
n

�
max
i

OhEtn .si;n/
�
<1

for which the points
S1;tn � s1;n; : : : ; Sm;tn � sm;n

satisfy a linear relation over Z in Etn. xK/. Then the sequence ¹tnº will have bounded
height in B. xK/ with respect to any Weil height on B .

Proof. Fix any Weil height h on B. xK/ of degree 1. Consider the m �m matrix

An WD .hSi;tn � si;n; Sj;tn � sj;nitn/i;j

where h�; �itn is the Néron–Tate inner product on the fiberEtn. xK/. Our assumption implies
that

detAn D 0

for all n. Assume that h.tn/!1. Then by Silverman’s specialization theorem [29, The-
orem B] we have

hSi;tn ; Sj;tnitn
h.tn/

! hSi ; Sj iE ;

as n!1 for all i; j D 1; : : : ;m. On the other hand, the bounded height of the perturba-
tions si;n and the Cauchy–Schwarz inequality for h�; �itn imply thatˇ̌̌̌

hsi;n; sj;nitn
h.tn/

ˇ̌̌̌
�

q
OhEtn .si;n/

OhEtn .sj;n/

h.tn/
! 0:

Using Silverman’s specialization [29, Theorem A] we also haveˇ̌̌̌
hSi;tn ; sj;nitn

h.tn/

ˇ̌̌̌
�

q
OhEtn .Si;tn/

OhEtn .sj;n/

h.tn/
! 0:
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Combining these estimates, we obtain

0 D
detAn
.h.tn//m

! det.hSi ; Sj iE /i;j 6D 0;

which is a contradiction.

Proof of Proposition 4.3. Assume condition (2). Let X 2M ˝R be non-zero and ¹tnº a
sequence for which lim infn!1 hX .tn/ D 0: Write X D x1S1 C � � � C x`S` for xi 2 R
not all equal to 0. After reordering the points Si we may assume that x1 ¤ 0. Notice that

det

0BBBB@
OhEtn .Xtn/ hXtn ; S2;tni � � � hXtn ; S`;tni

hS2;tn ; Xtni
OhEtn .S2;tn/ � � � hS2;tn ; S`;tni

:::
:::

:::

hS`;tn ; Xtni hS`;tn ; S2;tni � � �
OhEtn .S`;tn/

1CCCCA D x21hM .tn/;
which easily follows by subtracting from the first column the sum of xi times the j -th
column over all j D 2; : : : ; ` and then subtracting from the first row the sum of xi times
the i -th row over all i D 2; : : : ; `. Expanding the determinant along the first column we
get

x21hM .tn/ D hX .tn/f1;n C
X̀
jD2

hSj;tn ; Xtnifj;n; (4.1)

where for all n 2 N the fj;n are polynomial functions of the quantities hSj;tn ; Xtni and
hSj;tn ; Sk;tni for j; kD2; : : : ; `. Passing to a subsequence of ¹tnº we see limn!1 hX .tkn/

D 0. In particular, since X is non-trivial, [29, Theorem B] implies that ¹h.tkn/ºn2N is
a bounded sequence. Using then [29, Theorem A], the functoriality of heights and the
Cauchy–Schwarz inequality we get

max ¹jf1;kn j; : : : ; jf`;kn jº � L (4.2)

for some L > 0. Moreover, for all j D 2; : : : ; ` and all n 2 N we have

jhSj;tkn ; Xtkn ij
2
� OhEtkn

.Sj;tkn /
OhEtkn

.Xtkn / � LhX .tkn/! 0: (4.3)

Our assumption on X together with (4.1)–(4.3) yields

lim inf
n!1

hM .tn/ D 0;

proving that condition (1) holds.
Now assume (1). Let At D .hSi;t ; Sj;t i/i;j , so that hM .t/ D detAt , and consider the

family of quadratic forms

qt .Ez/ WD OhEt .z1S1;t C � � � C zmSm;t /

D

mX
kD1

z2k
OhEt .Sk;t /C 2

X
i<j

zizj hSi;t ; Sj;t i D EzAt Ez
>
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for Ez D .z1; : : : ; zm/ 2 Rm, indexed by t 2 B. xK/ where Et is smooth. Since qt � 0 for
all t , we find that At has non-negative eigenvalues. Our assumption is that

lim inf
n!1

detAtn D 0;

so if �n is the smallest eigenvalue of Atn , then

lim inf
n!1

�n D 0:

Let Evn D .v1;n; : : : ; vm;n/ ¤ 0 be an eigenvector of Atn corresponding to �n. Then

EvnAtn Ev
>
n D �nkEvnk

2;

so that

lim inf
n!1

qtn

�
Evn

kEvnk

�
D lim inf

n!1
�n D 0: (4.4)

Passing to a subsequence of the ¹tnº, we have limn!1 hM .tn/ D 0, and passing to a
further subsequence, we may set

Ex WD lim
n!1

Evn

kEvnk
2 Rm n ¹E0º:

By [29, Theorem B], the height of ¹tnº is bounded with respect to any choice of Weil
height on B (because det.hSi ; Sj iE / 6D 0). In view of [29, Theorem A], the sequences
¹hSi;tn ; Sj;tniºn for i; j D 1; : : : ; ` are bounded. Thus (4.4) yields

lim
n!1

qtn.Ex/ D 0:

In other words, for X D x1S1 C � � � C xmSm we have limn!1 hX .tn/ D 0, providing
condition (2).

Assuming (2), we now prove (3). Reordering the points and rescaling X if necessary,
we may assume that x1 D 1. Passing to a subsequence, we have

OhEtn .S1;tn C x2S2;tn C � � � C xmSm;tn/! 0 (4.5)

as n!1. Let a2;n; : : : ; am;n be infinite sequences of integers satisfying ai;n=n! xi
for each i D 2; : : : ; m. As OhE .X/ 6D 0, by Silverman specialization [29, Theorem B]
the sequence ¹tnº has bounded height in B . Invoking [29, Theorem A] we find that all
sequences ¹hSi;tn ; Sj;tniEtn ºn2N are bounded. Using the fact that each OhEtn .�/ defines a
quadratic form on Etn. xK/, line (4.5) yields

OhEtn

�
S1;tn C

1

n
.a2;nS2;tn C � � � C a`;nS`;tn/

�
! 0: (4.6)

Since xK is algebraically closed we may find sn 2 Etn. xK/ such that

nsn D a2;nS2;tn C � � � C a`;nS`;tn : (4.7)
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Letting s1;n WD S1;tn C sn and si;n WD Otn for all i D 2; : : : ; m, equation (4.6) yields

OhEtn .si;n/! 0

for each i D 1; : : : ;m. Moreover by (4.7) the set ¹S1;tn � s1;n; S2;tn ; : : : ; S`;tnº is linearly
dependent in Etn for every n.

Last, we assume condition (3) and prove (2). We pass to a subsequence such that

lim
n!1

�
max
i

OhEtn .si;n/
�
D 0:

We choose sequences of integers ai;n for i D 1; : : : ; m, not all 0, such that

a1;n.S1;tn � s1;n/C � � � C am;n.Sm;tn � sm;n/ D Otn

for all n. Now, letting Mn D maxi ai;n, we can pass to a further subsequence such that

ai;n

Mn

! xi 2 R

as n!1 for each i , with at least one xi non-zero. This implies that

OhEtn

�
1

Mn

.a1;nS1;tn C � � � C am;nSm;tn/

�
D OhEtn

�
1

Mn

.a1;ns1;n C � � � C am;nsm;n/

�
! 0 (4.8)

as n!1. Finally, set
X D x1S1 C � � � C xmSm:

From Lemma 4.4, we know that the sequence ¹tnº has bounded height and by [29, The-
orem A] we know that the sequences ¹ OhEtn .Si;tn/ºn are bounded. Therefore, from the
definition of hX in (3.11), line (4.8) implies that hX .tn/! 0.

4.3. Height 0

As we shall see, it follows from Theorem 1.1 that, although small sequences exist as in
Proposition 4.1, we do not always have sequences with height 0:

Proposition 4.5. Fix non-zero X 2 E.k/˝ R. There exist infinitely many t 2 B. xK/ for
which hX .t/ D 0 if and only if there exists a real c > 0 such that cX is represented by an
element of E.k/.

Proof. Suppose first that cX is represented by an element P 2 E.k/ for some real c > 0.
Then hX .t/ D 1

c2
hP .t/ for all t , so that hX .t/ D 0 whenever Pt is torsion in Et . This

holds at infinitely many points t 2 B. xK/ (see, e.g., [14, Proposition 6.2]).
For the converse, writeX D x1P1C � � � C xmPm for independent P1; : : : ;Pm 2E.k/

and xi 2 R, and assume that hX .t/ D 0 for infinitely many t . We can rewrite X as

X D ˛1Q1 C � � � C ˛sQs
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for ˛1; : : : ; ˛s 2 R a basis for the span of ¹x1; : : : ; xmº over Q and Q1; : : : ;Qs 2 E.k/.
For s D 1, we see that are we back in the setting where a multiple of X is represented by
an element of E.k/, so we may assume s > 1. But, for each t where hX .t/ D 0, we must
have Xt D 0 in Et .xQ/˝R. By the choices of the ˛i , this means that each of the special-
izations Qi;t must be 0 in Et .xQ/˝R (cf. [24, Lemma 1.1.1]). In other words, the points
Q1; : : : ;Qs are simultaneously torsion at infinitely many t . From Theorem 1.1, combined
with (1.4), this implies that each pair Qi and Qj is linearly related. (Alternatively, here
one could use the main results of [21, 22].) Thus we infer that X D cQ for some c 2 R
and Q 2 E.k/.

4.4. Proof of Theorem 1.4

From Theorem 3.6, we know that xDX is a continuous, adelic, semipositive, and normal-
ized metrization on an ample R-divisor. Thus, Corollary A.2 applies to sequences with
small height for hX . From Proposition 4.1, we have hX .tn/! 0 along any sequence tn
for which

P
i ri;nPi;t D Ot with ri;n 2 Q satisfying ri;n ! xi . The formula for !X;v at

each place follows from the definition of xDX in (3.10). This completes the proof.

5. The intersection number as a biquadratic form on E.k/ ˝ R

Let E ! B be a non-isotrivial elliptic surface defined over a number field K, and let
E be the corresponding elliptic curve over the field k D xK.B/. Recall that, since E.k/
is finitely generated, we can pass to a finite extension of the number field K to ensure
that each section P W B ! E is defined over K. For each P 2 E.k/, a metrized divisor
xDP is defined on the base curve B by (3.4). We extended this definition to elements
X 2 E.k/˝R with the definition (3.10). In this section, we study the basic properties of
the Arakelov–Zhang intersection number

.X; Y / 7! xDX � xDY

defined by (2.5), as a biquadratic form on the finite-dimensional vector space E.k/˝R.
Recall that the metrized R-divisor xDhX;Y i WD 1

2
. xDXCY � xDX � xDY / was defined in

§3.4 for X; Y 2 E.k/˝R. Our goal in this section is to prove

Proposition 5.1. Fix X; Y 2 E.k/˝R. The following hold:

(1) xDX � xDY D xDY � xDX � 0,

(2) xDX � xDXCY D xDX � xDY .

Moreover, for each X 2 E.k/˝R the map Y 7! xDX � xDY defines a positive semidefinite
quadratic form on E.k/˝R, induced by the bilinear form .Y;Z/ 7! xDX � xDhY;Zi.

We begin with a lemma:

Lemma 5.2. We have xDX � xDY � 0 for all X; Y 2 E.k/˝R.
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Proof. From Theorem 3.6, both xDX and xDY are normalized, semipositive, continuous
adelic metrized divisors on B over K, so the lemma follows immediately from Theo-
rem 2.2. Or we can see it as a consequence of Theorem A.1 in the Appendix, because the
height functions satisfy hX ; hY � 0 at all points of B. xK/.

The following lemma is a version of the Cauchy–Schwarz inequality.

Lemma 5.3. For each X 2 E.k/˝R, the intersection

.Y;Z/ 7! xDX � xDhY;Zi

is bilinear in Y;Z 2 E.k/˝R. Moreover,

. xDX � xDhY;Zi/
2
� . xDX � xDY /. xDX � xDZ/ for all X; Y;Z 2 E.k/˝R.

Proof. The bilinearity is an immediate consequence of the bilinearity demonstrated in
(3.14) and the invariance of the intersection number under isomorphism.

Now fix X; Y;Z 2 E.k/˝R, and consider the function

f .x/ WD xDX � xDYCxZ :

By Lemma 5.2 we have f .x/ � 0 for all x 2 R. From definition (3.10), we have

xDYCxZ D .1 � x/ xDY C x xDYCZ C .x
2
� x/ xDZ :

Definition (3.13) then yields

f .x/ D xDX � xDY C 2x xDX � xDhY;Zi C x
2 xDX � xDZ � 0

for all x 2 R. Thus f is a quadratic polynomial with non-positive discriminant. The
inequality follows.

We are now ready to prove the proposition.

Proof of Proposition 5.1. Fix X; Y;Z 2 E.k/˝ R. The symmetry in .1/ follows imme-
diately from the symmetry of the intersection number, shown explicitly in (2.4) and
extending to (2.5) by linearity. The non-negativity is the content of Lemma 5.2.

For (2), we use Lemma 5.3 to compute that

. xDX � xDhX;Y i/
2
� . xDX � xDX /. xDX � xDY / D 0

because xDX is normalized. Therefore,

0 D xDX � xDhX;Y i

D
1
2
. xDX � xDXCY � xDX � xDX � xDX � xDY /

D
1
2
. xDX � xDXCY � xDX � xDY /;

so that
xDX � xDXCY D xDX � xDY :

Finally, since xDY ' xDhY;Y i from §3.4, Lemma 5.3 then implies that Y 7! xDX � xDY
defines a positive semidefinite quadratic form as claimed.
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6. Equivalent formulations of Theorem 1.1

Recall that E! B denotes a non-isotrivial elliptic surface defined over a number fieldK,
and let E be the corresponding elliptic curve over the field k D xK.B/. We extend K
so that all sections of E ! B are defined over K. In this section, we prove the equiva-
lence of Theorems 1.1 and 1.2. We also provide in Theorem 6.4 a list of five additional,
equivalent ways to express Theorem 1.1. One of these formulations, stated separately as
Theorem 6.1, is inspired by Zhang’s Conjecture in [47, §4].

6.1. Zhang’s Conjecture for families of abelian varieties

In [47], Zhang proposed the investigation of a function on the base curve B that detects
drops in rank of the specializations of a subgroup of E.k/: given a finitely generated sub-
groupƒ ofE.k/ of rankm� 1, if the quotientƒ=ƒtors is generated by S1; : : : ;Sm 2E.k/,
let

hƒ.t/ WD det.hSi ; Sj it /i;j � 0 (6.1)

on B. xK/, whenever defined, where h�; �it is the Néron–Tate bilinear form on the special-
ization ƒt in the fiber Et .

We propose the following result as the analog of [47, §4 Conjecture] for elliptic sur-
faces; Zhang’s Conjecture was formulated for geometrically simple families of abelian
varieties A ! B of relative dimension > 1, and it does not hold as stated for elliptic
surfaces [47, §4, Remark 3].

Theorem 6.1. Let E ! B be a non-isotrivial elliptic surface defined over a number
field K, and let E be the corresponding elliptic curve over the field k D xK.B/. Let
ƒ�E.k/ be a subgroup of rankm� 2, with the quotientƒ=ƒtors generated by S1; : : : ;Sm
2 E.k/. For each i D 1; : : : ; m, let ƒi � ƒ be generated by ¹S1; : : : ; Smº n ¹Siº. There
is a constant � D �.ƒ/ > 0 such that the set

¹t 2 B. xK/ W hƒ1.t/C � � � C hƒm.t/ � "º

is finite.

We prove below that Theorem 6.1 is equivalent to Theorems 1.1 and 1.2.

Remark 6.2. Note that, for rank 1 groupsƒ, the value hƒ.t/ is the canonical height of the
generating point St in Et . In general, recall that the Néron–Tate height OhEt on a smooth
fiber over t 2 B. xK/ defines a positive definite quadratic form in Et . xK/˝ R; see, e.g.,
[34, Ch. VIII, Prop. 9.6]. Thus, hƒ will vanish at t 2B. xK/ if and only if rankƒt < rankƒ.
The sum hƒ1.t/C � � � C hƒm.t/will be zero if and only if the points S1;t ; : : : ;Sm;t satisfy
(at least) two independent linear relations over Z in the fiber Et .

Remark 6.3. The independence of the points S1; : : : ;Sm 2ƒ in Theorem 6.1 is necessary
for the finiteness statement to hold. Indeed, suppose that Sm is a linear combination of
S1; : : : ; Sm�1, and suppose that ¹tnº � B. xK/ is any infinite non-repeating sequence for
which hSm.tn/! 0 (for example, we can take tn where Sm;tn is torsion; see, e.g., [14,
Proposition 6.2]). It follows from Proposition 4.3 that hƒ1.tn/C � � � C hƒm.tn/! 0.
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6.2. Equivalences

The remainder of this section is devoted to proving

Theorem 6.4. Let E ! B be a non-isotrivial elliptic surface defined over a number
field K, and let E be the corresponding elliptic curve over the field k D xK.B/. Let ƒ be
any subgroup of E.k/. The following are equivalent:

(1) the conclusion of Theorem 1.1 holds for all P;Q 2 ƒ;

(2) the conclusion of Theorem 1.2 holds for all sections C of E` defined by the graph
t 7! .Q1;t ; : : : ;Q`;t / for points Q1; : : : ;Q` 2 ƒ, for all ` � 2;

(3) the conclusion of Theorem 6.1 holds for this ƒ;

(4) the biquadratic form .X; Y / 7! xDX � xDY on ƒ˝R is non-degenerate, meaning that
xDX � xDY D 0 if and only if X and Y are linearly dependent over R;

(5) for any pair X; Y 2 ƒ˝ R, if the heights satisfy hX .t/ D hY .t/ for all t 2 B. xK/,
then X D ˙Y ;

(6) for any pair X;Y 2 ƒ˝R, if the Néron–Tate inner product satisfies hXt ; Yt iEt D 0
for all t 2 B. xK/ with Et smooth, then either X or Y is 0;

(7) for any pair X; Y 2 ƒ ˝ R, if there exists an infinite .non-repeating/ sequence of
points tn 2 B. xK/ for which

lim
n!1

.hX .tn/C hY .tn// D 0;

then X and Y are linearly dependent over R.

For the proof, we rely on the work carried out in Sections 2–5. Specifically, for
each X 2 E.k/ ˝ R, we can express X as a finite R-linear combination of elements
P1; : : : ;Pm 2E.k/. We appeal to Theorem 3.6 to find that xDX is a well-defined, semipos-
itive, normalized, continuous adelic metrization on B , defined over the number field K.
Further, .X;Y / 7! xDX � xDY is a well-defined semipositive biquadratic form onE.k/˝R
by Proposition 5.1.

6.3. Intersection number 0

Towards a proof of Theorem 6.4, we first examine the consequences of the existence of a
pair X; Y 2 E.k/˝R for which xDX � xDY D 0.

Recall that h�; �it denotes the Néron–Tate bilinear form on the fiber Et . xK/˝ R, and
h�; �iE denotes the corresponding form on E.k/˝R.

Proposition 6.5. Fix non-zero X; Y 2 E.k/˝ R, and assume that xDX � xDY D 0. Then
for all t 2 B. xK/ for which the fiber Et is smooth, we have

hX .t/ D
OhE .X/

OhE .Y /
hY .t/ and hXt ; Yt it D

hX; Y iE

OhE .Y /
hY .t/:

Moreover, xDX 0 � xDY 0 D 0 for all X 0; Y 0 2 SpanR.¹X; Y º/.
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Proof. Assume that xDX � xDY D 0. From Theorem 3.6, each of xDX and xDY is a continu-
ous, normalized, semipositive adelic metrization on an R-divisor on B . The degree ofDX
(respectively DY ) is OhE .X/ (respectively, OhE .Y /). The relation between the heights hX
and hY follows immediately from Theorem 2.4.

Using now Proposition 5.1 (2) we infer that our assumption xDX � xDY D 0 implies that
xDXCY � xDY D xDXCY � xDX D 0, and so

xDxXCyY � xDaXCbY D
�
.x2 � xy/ xDX C xy xDXCY C .y

2
� xy/ xDY

�
�
�
.a2 � ab/ xDX C ab xDXCY C .b

2
� ab/ xDY

�
D 0

for all x; y; a; b;2 R. In particular, we have

OhEt .Xt C Yt / D
OhE .X C Y /

OhE .Y /
OhEt .Yt /;

so that
OhEt .Xt C Yt / D

OhEt .Xt /C hXt ;Qt it C
OhEt .Yt /

implies

hXt ; Yt it D
hX; Y iE

OhE .Y /
hY .t/

for all t 2 B. xK/ for which Et is smooth.

The following proposition extends the observations of Proposition 4.3 to two indepen-
dent relations.

Proposition 6.6. Let ƒ be a subgroup of E.k/ generated by independent, non-torsion
elements P1; : : : ; Pm with m � 2. The following are equivalent:

(1) there exist an infinite, non-repeating sequence tn 2 B. xK/ and points pi;n 2 Etn. xK/
for i D 1; : : : ; m for which OhEtn .pi;n/! 0 as n!1, and the points

P1;tn � p1;n; : : : ; Pm;tn � pm;n

satisfy two independent linear relations on Etn ;

(2) there exist independent X; Y 2 ƒ˝R for which

xDX � xDY D 0:

Proof. Assume first that xDX � xDY D 0. WriteX D x1P1C � � � C xmPm and Y D y1P1C
� � � C ymPm for linearly independent coefficient vectors Ex; Ey 2Rm. From Proposition 6.5,
we can replace X and Y by linear combinations of X and Y (and relabel the points Pi
if needed) and so assume that x1 D 1 D ym and xm D y1 D 0. From Theorem 3.6, we
know that xDX and xDY are normalized, semipositive, continuous adelic metrizations. By
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Proposition 4.1, we know that e1. xDX / D e1. xDY / D 0. Theorem 2.4 then implies that
there is an infinite non-repeating sequence ¹tnº � B. xK/ such that

hX .tn/C hY .tn/! 0 as n!1. (6.2)

We now apply Proposition 4.3 to each of hX and hY to show that small perturbations
of the specializations Pi;tn must satisfy two independent relations in the fibers Etn. xK/.
More precisely, we choose integers ai;n; bi;n for each n � 1 and each i D 2; : : : ; m � 1
such that

ai;n

n
! xi and

bi;n

n
! yi as n!1.

As in the proof of Proposition 4.3 (2))(3), we choose pn 2 Etn. xK/ so that

npn D a2;nP2 C � � � C am�1;nPm�1:

Set p1;n D P1;tn C pn 2 Etn. xK/. Then

OhEtn .p1;n/ D
OhEtn

�
P1;tn C

1

n
.a2;nP2 C � � � C am�1;nPm�1/

�
! 0;

and ¹P1;tn � p1;tn ;P2;tn ; : : : ;Pm�1;tnº satisfy a linear relation. On the other hand, we can
repeat the same argument with Y and find a point qn 2 Etn. xK/ such that

nqn D b2;nP2 C � � � C bm�1;nPm�1

and set pm;n D Pm;tn C qn. Then

OhEtn .pm;n/ D
OhEtn

�
1

n
.b2;nP2 C � � � C bm�1;nPm�1/C Pm;tn

�
! 0;

and ¹P2;tn ; : : : ; Pm�1;tn ; Pm;tn � pm;tnº satisfy a linear relation. It follows that the points

¹P1;tn � p1;tn ; P2;tn ; : : : ; Pm�1;tn ; Pm;tn � pm;tnº

satisfy two independent linear relations in Etn. xK/ for all n.
For the converse direction, we assume there are an infinite, non-repeating sequence

tn 2 B. xK/ and points pi;n 2 Etn. xK/ for i D 1; : : : ; m with OhEtn .pi;n/! 0 as n!1
and such that

¹P1;tn � p1;n; : : : ; Pm;tn � pm;nº

satisfy two independent linear relations on Etn . From Lemma 4.4, we know that the
sequence ¹tnº must have bounded height. Choose integers ai;n; bi;n for n � 1 and i D
1; : : : ; m so that the independent relations are expressed as

a1;n.P1;tn � p1;n/C � � � C am;n.Pm;tn � pm;n/ D Otn

and
b1;n.P1;tn � p1;n/C � � � C bm;n.Pm;tn � pm;n/ D Otn
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Relabeling the points if necessary, we can rewrite the expressions as

.P1;tn � p1;n/C r2;n.P2;tn � p2;n/C � � � C rm;n.Pm;tn � pm;n/ D Otn

and

r 01;n.P1;tn � p1;n/C � � � C r
0
m�1;n.Pm�1;tn � pm�1;n/C .Pm;tn � pm;n/ D Otn

for bounded sequences of rational numbers r2;n; : : : ; rm;n and r 01;n; : : : ; r
0
m�1;n. Passing

to a subsequence we may assume that

ri;n ! xi 2 R and r 0i;n ! yi 2 R

for each i . Then, recalling that ¹tnº has bounded height and that the perturbations pi;n
have heights tending to 0, and using [29, Theorem A] to infer that ¹ OhEtn .Pi;tn/ºn are
bounded for each i , we conclude that

hX .tn/! 0 and hY .tn/! 0

along this subsequence, for X D P1 C x2P2 C � � � C xmPm and Y D y1P1 C � � � C

ym�1Pm�1 C Pm. From Theorem 2.4, we find that xDX � xDY D 0.

6.4. Proof of Theorem 6.4

Throughout this proof, we fix a finitely generated subgroup ƒ � E.k/. Assume it is of
rank m � 1 with ƒ=ƒtors generated by P1; : : : ; Pm 2 E.k/.

(1),(4) Recall that the Néron–Tate height OhE on ƒ extends to a positive definite
quadratic form onƒ˝R. It follows (by Cauchy–Schwarz) that the Néron–Tate regulator

RE .X; Y / WD OhE .X/ OhE .Y / � hX; Y i
2
E � 0

extends to a biquadratic form on ƒ˝R satisfying RE .X; Y / D 0 if and only if X and Y
are linearly dependent over R. As

F.X; Y / WD xDX � xDY

is also biquadratic on ƒ˝ R from Proposition 5.1, and it satisfies F.X; X/ D 0 for all
X 2 E.k/˝ R, the upper bound on xDX � xDY in Theorem 1.1 follows. Condition (1) is
then equivalent to the statement that F.X; Y / D 0 if and only if X and Y are linearly
dependent over R.

In detail, if we assume (1), and if X D
Pm
iD1 xiPi and Y D

Pm
iD1 yiPi with Pi 2 ƒ

satisfy xDX � xDY D 0, then we can approximate by rational combinationsPnD 1
n

P
ai;nPi

! X and Qn D 1
n

P
bi;nPi ! Y with integers ai;n; bi;n, and compute that

xDPn �
xDQn D

1

n4
xDP

ai;nPi �
xDP

bi;nPi �
c

n4
RE

�X
ai;nPi ;

X
bi;nPi

�
D cRE .Pn;Qn/:
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Letting n ! 1 shows that RE .X; Y / D 0, implying that X; Y are linearly dependent
over R.

Now assume (4), so that F.�; �/ is non-degenerate on the finite-dimensional V D
ƒ˝R. Using the inner product h�; �iE on V and associated norm k � kD OhE .�/1=2, we have
(by continuity and compactness) uniform positive upper and lower bounds on xDX � xDY
over all pairs X;Y 2 V satisfying hX;Y iE D 0 and kXk D kY k D 1. On the other hand,
RE .X; Y / D 1 for all such pairs, and so there is a positive constant c D c.V / such that

cRE .X; Y / � xDX � xDY � c
�1RE .X; Y / (6.3)

for all pairsX;Y 2 V satisfying hX;Y iE D 0 and kXk D kY k D 1. By scaling the points,
this extends to orthogonal pairs of any norm. For an arbitrary pair X; Y 2 V , we write
Y D Y 0 C xX with hY 0; XiE D 0 and x 2 R, and observe that xDX � xDY D xDX � xDY 0

from Proposition 5.1. We also have RE .X; Y 0 C xX/ D RE .X; Y 0/ and so (6.3) holds
for all X and Y in V .

(4),(7) Fix any pair X; Y 2 ƒ˝R, and express X and Y as R-linear combinations of
elements P1; : : : ; Pm 2 ƒ. Theorem 3.6 shows that xDX and xDY are normalized, continu-
ous, semipositive adelic metrizations on R-divisors, and Proposition 4.1 shows that each
has essential minimum equal to 0. Theorem 2.4 then implies that xDX � xDY D 0 if and only
if the heights hX and hY have a common small sequence in B. xK/.

(3),(7) Assume that (7) holds. We aim to prove the conclusion of Theorem 6.1
for this ƒ. Suppose that there is an infinite, non-repeating sequence tn 2 B. xK/ with
hƒi .tn/! 0 for all i D 1; : : : ; m. From Lemma 4.3, we may choose X1 2 ƒ1 so that
lim infn!1 hX1.tn/ D 0. We pass to a subsequence such that limn!1 hX1.tn/ D 0.
For each i D 2; : : : ; m, we successively apply Lemma 4.3 to find Xi 2 ƒi for
which lim infn!1 hXi .tn/ D 0 and then pass to a further subsequence such that
limn!1 hXi .tn/ D 0. In this way, we have an infinite, non-repeating sequence of points
tn 2 B. xK/ such that limn!1 hXi .tn/ D 0 for all i . However, as

Tm
iD1ƒi D ¹0º, at least

two of the Xi must be independent. This contradicts (7).
Assume now that (3) holds. Fix a pair of independent non-zero points X;Y 2 ƒ˝R,

and suppose that there is an infinite non-repeating sequence tn 2 B. xK/ such that

hX .tn/C hY .tn/! 0:

Then hX .tn/! 0 and hY .tn/! 0. We write

X D a1P1 C � � � C amPm; Y D b1P1 C � � � C bmPm;

with ai ; bj 2 R and independent Pi 2 ƒ. We want to show that

lim inf
n!1

hƒi .tn/ D 0 (6.4)

for all i D 1; : : : ; m, contradicting (3). Fix i 2 ¹1; : : : ; mº. If bi D 0, then Y 2 ƒi ˝ R
and (6.4) follows from Lemma 4.3. If on the other hand bi ¤ 0, then X � ai

bi
Y 2 ƒi ˝R
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and by the parallelogram law we also have

h
X�

ai
bi
Y
.tn/! 0:

As before, (6.4) follows by Lemma 4.3.

(7))(6) Assume that (7) holds. Fix X; Y 2 ƒ˝R, and suppose that hXt ; Yt it D 0 for
all t 2 B. xK/ for which the fiber Et is smooth. By Proposition 4.1 there is an infinite
sequence tn 2 B. xK/ with hX�Y .tn/! 0. Since hXtn ; Ytnitn D 0 we have

hX .tn/C hY .tn/ D hX .tn/ � 2hXtn ; Ytnitn C hY .tn/ D hX�Y .tn/! 0:

Thus by (7) we infer that either X or Y is 0 or there are non-zero a; b 2 R such that
aX D bY . In the latter case, our assumption that hXt ; Yt it D 0 for all t implies that both
X and Y are 0. The assertion follows.

(6))(5) Assume that (6) holds. Fix X; Y 2 ƒ˝ R, and suppose hX .t/ D hY .t/ for all
t 2 B. xK/. If X D 0 or Y D 0 then our assumption that hX .t/ D hY .t/ for all t implies
that X D Y D 0 in ƒ˝R. Thus we may assume that both X and Y are non-zero. Since
hX .t/D hY .t/ for all t , Silverman’s specialization theorem [29, Theorem B] implies that
OhE .X/ D OhE .Y /. From Theorem 2.4 we know that xDX � xDY D 0, and therefore, from
Proposition 6.5, we have

hXt ; Yt it D
hX; Y iE

OhE .Y /
OhEt .Yt /;

or equivalently �
Xt �

hX; Y iE

OhE .Y /
Yt ; Yt

�
t

D 0;

for all t . By our assumption (6) and since Y ¤ 0, we have

X D
hX; Y iE

OhE .Y /
Y:

Recalling that OhE .X/ D OhE .Y /, we get X D ˙Y in ƒ˝R, as claimed.

(5),(7) Suppose there exist non-zero X; Y 2 ƒ ˝ R and an infinite, non-repeating
sequence tn 2 B. xK/ for which hX .tn/ C hY .tn/ ! 0. By Theorem 3.6 we know that
both hX and hY are induced by normalized semipositive adelic metrizations on ample
divisors DX and DY on B , of degrees OhE .X/ and OhE .Y /, respectively. We may thus
apply Theorem 2.4 to get

hX .t/ D
OhE .X/

OhE .Y /
hY .t/ D hxY .t/

for all t inB. xK/, where xD
q
OhE .X/= OhE .Y /. Our assumption (5) then yieldsX D˙xY

as claimed.
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(2),(4) Fix any collection of pointsQ1; : : : ;Q` inƒ, and let C be the irreducible curve
in E` defined by a section .Q1; : : : ; Q`/ over B . To say that C is not contained in a flat
subgroup scheme of positive codimension means that the points Q1; : : : ; Q` are linearly
independent. To say that the curve C in E` defined by .Q1; : : : ; Q`/ intersects the tube
T .Em;¹2º; �/ infinitely often for every � > 0 means that there is an infinite non-repeating
sequence of points tn 2 B. xK/ and small points qi;n 2 Etn. xK/ for each n such that the
points ¹Q1;tn � q1;n; : : : ; Q`;tn � q`;nº satisfy two linear relations in Etn . Therefore the
equivalence of (2) and (4) is the statement of Proposition 6.6.

This completes the proof of the theorem.

7. Equality of measures

In this section we prove Theorem 1.3, which is needed for our proofs of Theorems 1.1
and 1.2. We begin by introducing a complex-geometric perspective on the elements X of
the real vector space E.k/˝R. These points do not necessarily exist as algebraic curves
in the elliptic surface E ! B but can be viewed as inducing foliations.

7.1. Real points as holomorphic curves

Given a non-isotrivial elliptic surface E ! B defined over the number field K, we fix an
embedding K ,! C, and let S � B be a finitely punctured Riemann surface such that all
fibers Et .C/ are smooth for t 2 S.C/. Write ES for the open subset of E over S . Recall
that each rational point P 2 E.k/ determines a holomorphic section of E ! B defined
by t 7! Pt 2 Et .C/ for t 2 S.C/.

The Betti coordinates of P 2 E.k/ are defined as follows. Passing to the universal
cover � W zS ! S , there is a holomorphic period function

� W zS ! H

taking values in the upper half-plane and such that the fibers of ES satisfy

E�.s/.C/ ' C=.Z˚ Z�.s//

for all s 2 zS . Passing to the universal cover of E�.s/.C/ for each fiber, we obtain a holo-
morphic line bundle over zS , trivialized by sending the generator 1 of the lattice to 1 2 C.
For each P 2 E.k/, the corresponding section of E ! B lifts to a holomorphic function

�P W zS ! C:

The Betti map of P is the real-analytic map ˇP W zS ! R2 given by

ˇP .s/ D .x.s/; y.s// such that �P .s/ D x.s/C y.s/�.s/:

The coordinates x and y themselves depend on the choices of � and �P , but as proved
in [13], we have

!P D dx ^ dy; (7.1)
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independent of the choices, for the curvature distribution of xDP at an archimedean place
of K.

Given P 2 E.k/ and a fixed choice of �P , and given a non-zero integer n, the holo-
morphic function

� WD
1

n
�P

will represent a point Q 2 E.xk/ satisfying nQ D P . It descends to a holomorphic curve
in ES that is not necessarily a section over S . Translating � by elements of 1

n
.Z˚ Z�/,

we find all curves corresponding to solutionsQ of nQ D P . More generally, we find that
every element of E.k/˝R can be represented by a family of holomorphic curves in ES ,
as follows:

Proposition 7.1. Fix a period function � W zS !H, and suppose that P1; : : : ; Pm 2 E.k/
provide a basis forE.k/˝R. Then there exist Betti coordinates for eachX D

P
i xiPi 2

E.k/˝R, given by

ˇX .s/ D .xX .s/; yX .s// D
X
i

xiˇPi .s/C .a; b/

for s 2 zS , for any choices of Betti coordinates ˇPi for the points Pi and any constant
.a; b/ 2 R2, such that the curvature distribution for xDX at an archimedean place of K
satisfies

!X D dxX ^ dyX on S .

Note that the archimedean curvature distribution!X for xDX , defined in (3.10), is given
by

!X D
X
i

�
x2i �

X
j 6Di

xixj

�
!Pi C

X
i<j

xixj!PiCPj

with Pi 2 E.k/.

Remark 7.2. GivenX 2E.k/˝R, the family of holomorphic functions �X .s/ WD xX .s/
C yX .s/�.s/ of Proposition 7.1 projects to a family of holomorphic curves in the complex
surface ES . For torsion points of E.k/ representing the 0 of E.k/˝R, the holomorphic
curves given by Proposition 7.1 are precisely the leaves of the Betti foliation, because we
allow for arbitrary translation of ˇX in R2. By definition, the leaves of the Betti foliation
have constant Betti coordinates; see, e.g., [1, 13, 39] for more information. For each non-
zero X 2 E.k/ ˝ R, there is a corresponding foliation of ES . When an element X is
represented by P 2 E.k/, the foliation is simply the corresponding Betti foliation for the
elliptic surface with P chosen as the zero section.

Proof of Proposition 7.1. Let An be a sequence in E.k/ such that Qn WD 1
n
An converges

to X in E.k/˝R as n!1. We can select the holomorphic lifts �An W zS ! C and �Qn
so that the sequence of holomorphic functions �Qn converges locally uniformly in zS . This
defines a limit holomorphic function �X . In terms of a basis P1; : : : ; Pm of E.k/, we can
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assume that
Qn D

1

n
.an;1P1 C � � � C an;mPm/

for integers an;i with an;i=n ! xi 2 R as n ! 1. We see that �X �
P
i xi�Pi must

be an element of R ˚ R� . Making other choices for �An and �Qn , we can obtain all
possible translates of �X by elements of R ˚ R� ; in other words, we can define Betti
coordinates for X , up to translation by elements of R2. Fix a choice of ˇX D .xX ; yX /
and consider the measure �X D dxX ^ dyX . This measure is clearly independent of the
choices. Furthermore, it is the weak limit of the measures !Qn on S , by formula (7.1) for
!Qn and local uniform convergence of �Qn to �X . We already know that !Qn ! !X for
the curvature distributions (at a fixed archimedean place), from the definitions given in
§3.3. It follows that �X D !X .

7.2. Proof of Theorem 1.3

Fix X1; X2 2 E.k/˝R, and let xD1 and xD2 be the associated metrized R-divisors on B ,
defined over the number field K. Fix an archimedean place of K, and let !1 and !2 be
the curvature measures on B.C/ at this place. We assume that !1 D !2. As in §7.1, we
fix a period function � W zS !H. From Proposition 7.1, there exist holomorphic functions
�i D xi C yi� , i D 1; 2, representing the points X1 and X2, such that

dx1 ^ dy1 D dx2 ^ dy2 on zS . (7.2)

We break the proof into two steps. In the first, we exploit the holomorphic-antiholo-
morphic trick of [1, §5], applied to a relation between holomorphic functions �1, �2, �
(and their derivatives) and the antiholomorphic functions N�1, N�2, and N� (and their deriva-
tives) coming from (7.2); the result is a relation on the holomorphic input alone. In the
second step, we apply the transcendence result of [7, Théorème 5] to this relation and
deduce that the points X1 and X2 must be linearly related in E.k/˝R.

Step 1: Holomorphic-antiholomorphic. We are grateful to Lars Kühne for teaching us
this step.

Note that
d�i D dxi C yi d� C � dyi

so that
.d�i � yid�/ ^ .d N�i � yid N�/ D . N� � �/ dxi ^ dyi :

Writing

yi D
�i � N�i

� � N�

we obtain from (7.2) a relation expressed as�
.� � N�/d�1 � .�1 � N�1/d�

�
^
�
.� � N�/d N�1 � .�1 � N�1/d N�

�
D
�
.� � N�/d�2 � .�2 � N�2/d�

�
^
�
.� � N�/d N�2 � .�2 � N�2/d N�

�
as forms on QS .
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Working in coordinates in the simply connected zS , this gives�
� 01�
0
1 � �

0
2�
0
2

�
.� � N�/2 �

�
.�1 � �1/�

0
1 � .�2 � �2/�

0
2

�
.� � N�/� 0

�
�
.�1 � �1/�

0
1 � .�2 � �2/�

0
2

�
.� � N�/� 0 C

�
.�1 � �1/

2
� .�2 � �2/

2
�
� 0� 0 D 0 (7.3)

as functions on QS . Equation (7.3) can be expressed as

NX
jD1

fj .z/gj .z/ � 0

for holomorphic functions fj 2 ZŒ�1; �2; � 01; �
0
2; �; �

0� and antiholomorphic functions gj 2
ZŒ�1; �2; � 01; �

0
2; � ; �

0� in z 2 zS .
For each j , define the holomorphic function Ogj .w/ WD gj . Nw/. Then

F.z;w/ WD

NX
jD1

fj .z/ Ogj .w/ (7.4)

is holomorphic on zS � zS and vanishes identically on the real-analytic subvariety ¹wD Nzº,
where it coincides with (7.3). It follows that F must vanish identically on zS � zS ; see
[1, Lemma 5.2]. In particular, if we fix any w0 2 zS , we have F.z;w0/ � 0 on zS , and we
obtain a polynomial relation between the holomorphic functions �1; �2; � 01; �

0
2; �; �

0 that
holds on all of zS .

Step 2: Algebraic independence. Suppose that P1; : : : ; Pm 2 E.k/ define a basis for
E.k/˝R, so that

Xi D

mX
jD1

ai;jPj

for ai;j 2 R, i D 1; 2. From Proposition 7.1, we know that we can choose �i to satisfy

�i D
X
j

ai;j �Pj

for choices of lifts �Pj of each point Pj . From Step 1, for each w0 2 zS , the function
(7.4) satisfies F.�; w0/ � 0 on zS , giving a polynomial relation between the holomorphic
functions

�P1 ; : : : ; �Pm ; �
0
P1
; : : : ; � 0Pm ; �; �

0

with real coefficients. But the functions �Pj come from the linearly independent algebraic
points Pj 2 E.k/ in the non-isotrivial E and so satisfy the hypothesis of [7, Théorème 5].
As a consequence of [7, Théorème 5], a non-trivial polynomial relation F.�; w0/ � 0

between the functions �Pj and their derivatives � 0Pj (with coefficients in the field C.�; � 0/)
implies that the points Pj must themselves satisfy a non-trivial linear relation. But this
would contradict our assumption that the Pi form a basis for E.k/˝ R, so we conclude
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that the polynomial relation must have been trivial. In other words, for any choice of w0,
the coefficients of F.z;w0/ – as polynomials in �P1 ; : : : ; �Pm ; �

0
P1
; : : : ; � 0Pm – must vanish.

Examining the relation (7.3), we can determine these coefficients explicitly. The “con-
stant” term, having no dependence on the �Pj or � 0Pj , gives

C1.w0/�
0
C C2.w0/��

0
D 0

as a function of z 2 zS , with coefficients C1; C2 that are antiholomorphic functions of w0
on zS . For fixed w0, if C1.w0/ or C2.w0/ is non-zero, this would imply that � is constant,
which is absurd because the elliptic surface E ! B is non-isotrivial. This implies that
C2.w0/ D 0 for all w0. But, again looking at (7.3), we have

C2.w0/ D �
0
1.w0/�1.w0/ � �

0
2.w0/�2.w0/ D 0

for all w0. Taking complex conjugates, we get

0 � � 01�1 � �
0
2�2 D

mX
j;`D1

.a1;ja1;` � a2;ja2;`/�
0
Pj
�P` :

In other words, we find another relation between the holomorphic functions � 0Pj and �P`
which must therefore be trivial [7, Théorème 5]. We conclude that either

a1;j D a2;j for all j ,

or
a1;j D �a2;j for all j .

In other words, X1 D ˙X2. This completes the proof of Theorem 1.3.

8. Proofs of the main theorems

In this section, we prove our main theorems.

8.1. Proof of Theorem 1.1

Recall that the Néron–Tate height OhE on E.k/ extends to a positive definite quadratic
form on E.k/˝R because E is non-isotrivial. It follows (by Cauchy–Schwarz) that the
Néron–Tate regulator

RE .X; Y / WD OhE .X/ OhE .Y / � hX; Y i
2
E � 0

extends to a biquadratic form on E.k/ ˝ R satisfying RE .X; Y / D 0 if and only if
X and Y are linearly dependent over R. As

F.X; Y / WD xDX � xDY

is also biquadratic on E.k/˝ R (see Proposition 5.1) and satisfies F.X;X/ D 0 for all
X 2 E.k/˝R, the upper bound on xDX � xDY in Theorem 1.1 follows.
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From Theorem 6.4, we know that Theorem 1.1 holds for E ! B if and only if
xDX � xDY 6D 0 for all pairs of linearly independent X; Y 2 E.k/ ˝ R. So assume we

have non-zero elements X;Y 2 E.k/˝R satisfying xDX � xDY D 0. By scaling X and Y ,
we may assume that OhE .X/ D OhE .Y / D 1. We proved in Theorem 3.6 that xDX and xDY
are normalized, semipositive, continuous adelic metrizations on R-divisors on B , each on
divisors of degree 1. Theorem 2.2 then implies that xDX and xDY are isomorphic, so the
curvature forms for xDX and for xDY on Ban

v must coincide at all places v of the number
field K. Fixing a single archimedean place, we deduce from Theorem 1.3 that X D ˙Y .
This completes the proof.

8.2. Proof of Theorem 1.2

Suppose that C is an algebraic curve in Em that dominates the base curve B . Passing to a
finite branched cover B 0 ! B , we may view C as a section C 0 of the m-th fibered power
of the pullback elliptic surface E 0 ! B 0. As Theorem 1.1 holds for E 0 ! B 0, we apply
Theorem 6.4 to conclude that the intersection of C 0 with the tube T ..E 0/m;¹2º; �/ is con-
tained in a finite union of flat subgroup schemes of positive dimension, for all sufficiently
small � > 0. Projecting back to Em ! B , we can make the same conclusion about the
intersection of C with T .Em;¹2º; �/. This completes the proof.

Appendix A. Arithmetic equidistribution for R-divisors

In this Appendix, we show that an equidistribution law holds on projective varieties
defined over a number field, for adelic semipositive metrizations xD associated to an ample
R-divisor. Formal definitions, extending those we provided for curves in Section 2, appear
in [24, Chapters 2 and 4]. (Note that our definition of D-Green function differs from the
one in [24] by a factor of 2.) Theorem A.1 and Corollary A.2 extend the equidistribu-
tion theorems of Chambert-Loir, Thuillier, and Yuan [10, 37, 42] for adelically metrized
line bundles to R-divisors. Our proofs follow a known strategy for equidistribution; we
mimic the presentation of Chambert-Loir and Thuillier [12], while they appeal to results
of Yuan [42] and Zhang [45], building on the ideas that originally appeared in [35]. See
also [43]. We provide the details for completeness. The key ingredient for passing from
Q-divisors to R-divisors is the continuity of the arithmetic volume function on the space
of metrized of R-divisors, proved by Moriwaki [24, Theorem 5.3.1].

Theorem A.1. LetX be a normal and geometrically integral projective variety of dimen-
sion d � 1 over a number field K. Fix an ample R-divisor D on X , equipped with
a continuous, relatively nef, adelic metrization xD over K, satisfying bdeg. xDdC1/ D 0.
Let xM be an integrable adelic metrization on an R-divisor M over K. For any generic
sequence xn 2 X. xK/ with h xD.xn/! 0, we have

h xM .xn/!
bdeg. xDd xM/

vol.D/
:
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A sequence ¹xnº � X. xK/ is generic if every subsequence is Zariski dense. The arith-
metic notions of relatively nef and integrable are defined in [24, §4.4], and the multilinear,
symmetric intersection form bdeg. xD1 � � � xDdC1/ is defined in [24, §4.5]. The intersection
coincides with the arithmetic intersection number denoted by c1.xL1/ � � � c1.xLdC1/ in [45]
when xDi is the metrized divisor associated to an adelically metrized line bundle xLi ; see
Remark 2.1.

For curves X , the hypothesis on xD in Theorem A.1 simplifies in the language of
Section 2 to being a continuous, semipositive, and normalized metrization. We have
bdeg. xDd xM/ D xD � xM as defined in (2.5).

Corollary A.2. LetX be a normal and geometrically integral projective variety of dimen-
sion d � 1 over a number field K. Fix an ample R-divisor D on X , equipped with a
continuous, relatively nef adelic metrization xD over K, satisfying bdeg. xDdC1/ D 0. For
each place v ofK and for any generic sequence xn 2X. xK/ with h xD.xn/! 0, the discrete
probability measures

�n D
1

jGal. xK=K/ � xnj

X
y2Gal. xK=K/�xn

ıy

converge weakly in X an
v to the probability measure

� xD;v D
1

vol.D/
c1. xD/

d
v :

Here, X an
v denotes the Berkovich analytification of the variety X over the complete

and algebraically closed field Cv . The measure c1. xD1/v � � � c1. xDd /v is defined in [10] for
integrable, adelically metrized line bundles onX , and the definition extends to R-divisors
by multilinearity. For curves X , we have d D 1 and c1. xD/v D ! xD;v as defined in §2.2.

A.1. Essential minima

Let X be a normal and geometrically integral projective variety of dimension d � 1 over
a number field K. For any R-divisor D on X defined over K, we set

H 0.X;D/ D ¹� 2 K.X/ W .�/CD � 0º [ ¹0º:

For ample D 2 DivZ.X/, the volume of D is

volD D lim
k!1

dŠ

kd
dimH 0.X; kD/:

For a Q-divisor D, the volume can be defined by taking the limit along sequences where
kD 2 DivZ.B/. The volume extends continuously to R-divisors; see, for example, [20,
Theorem 2.2.44].

As in §2.4 and following [45], the essential minimum of the height h xD is defined as

e1. xD/ WD sup
Y

inf
x2.XnY /. xK/

h xD.x/;
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with supremum over all Zariski closed proper subsets Y in X of codimension 1, and we
put

edC1. xD/ WD inf
x2X. xK/

h xD.x/:

Theorem A.3 ([45, Theorem 1.10]). For any adelic, semipositive metrization xD of an
ample R-divisor D on X , we have

e1. xD/ �
bdeg. xDdC1/

.d C 1/ volD
�

1

d C 1
.e1. xD/C dedC1. xD//:

Proof. Zhang proved the result for ample line bundles equipped with adelic, semipositive
metrics [45, Theorem 1.10]. It also holds for metrizations of R-divisors because the height
function associated to an R-divisor is a uniform limit of heights associated to Q-divisors,
and the intersection number is multilinear and the volume vol.D/ is continuous.

A.2. Arithmetic volume

Let X be a normal and geometrically integral projective variety of dimension d � 1 over
a number fieldK. The arithmetic volume of an adelically metrized R-divisor xD is defined
as follows. We first fix a family of norms on H 0.X;D/ by

k�ksup;v D sup
x2Xan

v nsuppD
j�.x/jve

�gv.x/

for each place v of K. Set

�. xD/ D � log
�..H 0.X;D/˝ AK/=H 0.X;D//

�.
Q
v Uv/

where AK is the ring of adeles, � is a Haar measure on H 0.X;D/˝ AK , and Uv is the
unit ball in H 0.X;D/˝Cv in the induced norm. Then

cvol�. xD/ WD lim sup
k!1

.d C 1/Š

kdC1
�.k xD/:

In [24, Theorem 5.2.1], Moriwaki proves that cvol� defines a continuous function on
a space of continuous, adelic metrizations on R-divisors. As a consequence, he shows
that for relatively nef metrizations, we have cvol�. xD/ Dbdeg. xDdC1/ [24, Theorem 5.3.2].
Therefore, Zhang’s inequality (Theorem A.3) implies that

e1. xD/ � cvol�. xD/=..d C 1/ volD/ (A.1)

for all continuous, semipositive, adelic metrizations of R-divisors on B .

Remark A.4. The volume function cvol� is defined differently than the one studied by
Moriwaki [24], but they coincide. See, for example, [8, Appendix C.2 and p. 615], for the
comparison of an adelic volume to a Euclidean volume.
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Proposition A.5. For all integrable adelic metrizations on an ample R-divisor D, we
have

e1. xD/ �
cvol�. xD/

.d C 1/ volD
:

Proof. From (A.1), the inequality holds for relatively nef xD. For integrable metrics, we
write xD D xD1 � xD2 for relatively nef xDi and approximate each xDi with relatively nef
adelic metrics on Q-divisors xDi;n as n!1. Because D is ample, we can assume that
D1;n �D2;n is ample for all n. In that setting, we apply [12, Lemme 5.1]. The result then
follows by uniform convergence of the resulting height functions, so that e1 is continuous,
and by continuity of the volume function cvol� [24, Theorem 5.2.1] and of the classical
volume.

A.3. Proof of equidistribution

Proof of Theorem A.1. Fix an ample R-divisor D, equipped with an adelic, relatively
nef metrization xD for which bdeg. xDdC1/D 0. Let xn 2 X. xK/ be a generic sequence with
h xD.xn/! 0.

Assume first that xM is an adelic, arithmetically nef metrization on an ample R-
divisor M , meaning that xM is relatively nef and the height h xM is non-negative at all
points of X. xK/; see [24, §4.4]. For each positive integer m, by Zhang’s inequality (The-
orem A.3) applied to .m xD/C xM , we have

lim inf
n!1

.mh xD.xn/C h xM .xn// �
bdeg..m xD C xM/dC1/

.d C 1/ vol.mD CM/

D
.d C 1/mdbdeg. xDd xM/CO.md�1/

.d C 1/ vol.mD CM/

from the multilinearity of the intersection number and because bdeg. xDdC1/ D 0. As the
sequence xn is small for xD, this gives

lim inf
n!1

h xM .xn/ �
.d C 1/mdbdeg. xDd xM/CO.md�1/

.d C 1/ vol.mD CM/

for all m. Letting m go to1, we obtain

lim inf
n!1

h xM .xn/ �
bdeg. xDd xM/

volD
: (A.2)

For the reverse inequality, we choose m large enough so that mD �M is ample. We
can therefore apply Proposition A.5 to obtain

lim inf
n!1

.mh xD.xn/ � h xM .xn// �
cvol�.m xD � xM/

.d C 1/ vol.mD �M/
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so that

� lim sup
n!1

h xM .xn/ �
cvol�.m xD � xM/

.d C 1/ vol.mD �M/
: (A.3)

Fix a place v0 of the number field K and c 2 R, and let xDc denote xD C .0; ¹gvº/ where
gv0.x/� c=rv and gv.x/� 0 for all v 6D v0; recall that rv was defined in (2.2). Choosing
c large enough, we can assume that xDc is arithmetically nef. It follows thatcvol�.m xDc � xM/ � mdC1bdeg. xDdC1

c / � .d C 1/mdbdeg. xDd
c
xM/;

combining [42, Theorem 2.2] with the continuity of cvol� [24, Theorem 5.2.1]; see also
[12, Lemme 5.2].

But note thatcvol�.m xDc � xM/ D cvol�.m xD � xM/C .d C 1/cm vol.mD �M/

from the definition of cvol�. Consequently,cvol�.m xD � xM/ � mdC1bdeg. xDdC1
c / � .d C 1/mdbdeg. xDd

c
xM/

� .d C 1/cm vol.mD �M/

D mdC1.bdeg. xDdC1/C c.d C 1/ vol.D//

� .d C 1/md .bdeg. xDd xM/C dcc1.D/
d�1c1.M//

� .d C 1/cm vol.mD �M/

D �.d C 1/mdbdeg. xDd xM/CO.md�1/

with the last equality because bdeg. xDdC1/ D 0. Compare [12, Proposition 5.3].
Therefore, (A.3) gives

lim sup
n!1

h xM .xn/ � �
cvol�.m xD � xM/

.d C 1/ vol.mD �M/
�
.d C 1/mdbdeg. xDd xM/CO.md�1/

.d C 1/ vol.mD �M/

for all sufficiently large m. Letting m!1, we obtain the desired upper bound:

lim sup
n!1

h xM .xn/ �
bdeg. xDd xM/

volD
: (A.4)

Putting the two inequalities (A.2) and (A.4) together, we have

lim
n!1

h xM .xn/ D
bdeg. xDd xM/

volD
:

Now suppose that xM is integrable. By definition, we can write xM D xM1 � xM2 for
relatively nef xMi on ample divisors Mi . By adding and subtracting the trivial divisor
with constant metric, we can assume that each xMi is arithmetically nef, and we apply the
result above to each xMi . We have h xM D h xM1 � h xM2 and bdeg. xDd xM/ Dbdeg. xDd xM1/ �

bdeg. xDd xM2/. The theorem is a consequence of this linearity.
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Proof of Corollary A.2. Fix a place v 2 MK , and let � be a smooth real-valued function
on X an

v . By density as in [24, Theorem 3.3.3] it is enough to consider these functions. We
denote by xO� the trivial divisor on X equipped with the metrization given by gv D � and
gw D 0 for all w 6D v in MK . This metrization is integrable.

Let �n denote the probability measure in X an
v supported uniformly on the Galois con-

jugates of xn. Note that

h xO� .xn/ D rv

Z
Xan
v

� d�n

by the definition of the height function, where rv D ŒKv W Qv�=ŒK W Q�. We have

bdeg. xDd xO�/ D rv

Z
Xan
v

�c1. xD/
d
v :

Applying Theorem A.1 to xM D xO� , we get

lim
n!1

h xO� .xn/ D
rv

volD

Z
Xan
v

�c1. xD/
d
v D rv

Z
Xan
v

� d� xD;v;

demonstrating weak convergence of �n to � xD;v in Ban
v .
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