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Abstract. We develop a theory of quasi post-critically finite degenerations of Blaschke products.
This gives us tools to study the boundaries of hyperbolic components of rational maps in higher-
dimensional moduli spaces. We use it to obtain a combinatorial classification of geometrically finite
polynomials on the boundary of the main hyperbolic component Hd , i.e., the hyperbolic component
in the space of monic and centered polynomials that contains zd . We also show that the closure Hd

is not a topological manifold with boundary for d � 4 by constructing self-bumps on its boundary.
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1. Introduction

Let f W yC ! yC be a rational map of degree d � 2. It is said to be hyperbolic if all the
critical points converge to attracting periodic cycles under iteration. The hyperbolic maps
form an open set in suitable moduli spaces, and a connected component U of this set is
called a hyperbolic component. The topology of hyperbolic components has been studied
extensively and is well understood in various settings [4,38,53]. However, the boundaries
of hyperbolic components and the interactions between hyperbolic components remain
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mysterious. In a series of two papers, we develop a theory of ‘geometrically finite’ degen-
erations to investigate these questions. In this paper:

� We study quasi post-critically finite degenerations of Blaschke products fn 2 Bd ,
where Bd is the space of normalized and marked Blaschke products of degree d
(see (1.1)). For such degenerations, we construct quasi-invariant trees modeled by a
limiting simplicial tree map f W .T ; p/! .T ; p/ with rescaling limits. These quasi-
invariant trees are the analogs of the Hubbard trees for post-critically finite polyno-
mials. We prove a realization theorem for quasi-invariant trees and thus classify quasi
post-critically finite degenerations in Bd .

� A rational map is said to be geometrically finite if the critical points in the Julia set have
finite orbits. Using the realization theorem, we obtain a classification of geometrically
finite polynomials on the boundary of the main hyperbolic component of polynomials,
Hd , containing zd .

� The study of quasi-invariant tree maps reveals many different accesses to a boundary
point from Hd and thus ‘self-bumps’ occur on @Hd , showing the closure Hd is not a
topological manifold with boundary for d � 4 (see Figure 1.3).

In the sequel [24], we study the convergence and divergence of quasi post-critically
finite degenerations for rational maps. We prove the boundedness of quasi post-critically
finite degenerations for hyperbolic rational maps with Sierpiński carpet Julia set. We also
prove a ‘double limit theorem’ for ‘quasi-Blaschke products’ by giving a criterion for the
convergence of simultaneous quasi post-critically finite degenerations on the two Fatou
components of zd . Together with the realization result proved in this paper, the conver-
gence results can be applied to show the existence of polynomial mating (cf. [13, 49]).

Our theory runs parallel with the developments in Kleinian groups, and the results fit
into Sullivan’s well-known dictionary between the two fields. We summarize the compar-
isons in the following table.

Complex dynamics Kleinian groups

Blaschke product Fuchsian group

Quasi-Blaschke product Quasi-Fuchsian group

Main hyperbolic component Bers slice

Geometrically finite rational map Geometrically finite Kleinian group

Sierpiński carpet rational map Acylindrical Kleinian group

Geometrically finite polynomial on @Hd Cusp on the Bers boundary

Self-bump on @Hd Self-bump on the Bers boundary

Double limit theorem for quasi-Blaschke
products

Double limit theorem for quasi-Fuchsian
groups

Boundedness for Sierpiński carpet rational
maps

Thurston’s compactness theorem for
acylindrical 3-manifolds
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We now turn to a detailed statement of results.

Main hyperbolic component

A polynomial P.z/ D adz
d C � � � C a0 is said to be monic if ad D 1 and centered if

ad�1 D 0. Let Pd be the space of all monic and centered polynomials. A degree d poly-
nomial P with connected Julia set has d � 1 invariant external rays. A marking of P is
a particular choice of an invariant external ray. A monic and centered polynomial P with
connected Julia set has a unique choice of the Böttcher map normalized so that the deriva-
tive at infinity is 1. The angle 0 external ray under this normalization thus gives a marking
of P . Therefore, P is regarded as a marked polynomial. If P has a Jordan curve Julia set,
then a marking is equivalent to a choice of a repelling fixed point on its Julia set J.P /.

Let Hd � Pd be the hyperbolic component that contains zd . We call Hd the main
hyperbolic component of degree d .

In the quadratic polynomial case, the Landing Theorem of Douady and Hubbard can
be used to gain a complete understanding of geometrically finite polynomials on the
boundary of a hyperbolic component and to determine which hyperbolic components
of the Mandelbrot set have intersecting closures [37]. In particular, geometrically finite
polynomials @H2 are in correspondence with rational rotation numbers Q=Z (see [37,
Theorem 6.5]).

To describe the dynamics of a geometrically finite polynomial yP 2 @Hd in higher
degrees, we introduce the notion of pointed Hubbard tree. A polynomial P is said to
be post-critically finite if its critical points have finite orbits. Given any geometrically
finite polynomial yP 2 Pd with connected Julia set, there exists a post-critically finite
polynomial P 2 Pd with topologically conjugate dynamics on the Julia sets compatible
with the markings [17]. The dynamics of P is described combinatorially by its (angled)
Hubbard tree H .

If yP 2 @Hd , there exists a special non-repelling fixed point yp D limpn of yP , where
pn is the attracting fixed point of Pn 2 Hd and Pn ! yP . This gives a fixed point p 2 H
of P , and we call .H; p/ the pointed Hubbard tree for yP .

The pointed Hubbard tree .H; p/ is said to be simplicial if there exists a finite sim-
plicial structure on H for which P is a simplicial map, i.e., P sends an edge of H to
an edge of H . We say .H 0; p0/ is a pointed simplicial tuning of .H; p/ if .H 0; p0/ is
constructed from .H; p/ by ‘replacing’ the center p of local degree ı.p/ by a simplicial
pointed Hubbard tree of degree ı.p/ and modifying the backward orbits of p accordingly
(see §5 for the precise definition). We say a degree d pointed Hubbard tree .H; p/ is
iterated-simplicial if it can be inductively constructed from the trivial degree d pointed
Hubbard tree .H D ¹pº; p/ by a sequence of pointed simplicial tunings. We first show

Theorem 1.1. If yP 2 @Hd is geometrically finite, then the associated pointed Hubbard
tree .H; p/ is iterated-simplicial. Conversely, if a degree d pointed Hubbard tree .H; p/
is iterated-simplicial, then there exists a corresponding geometrically finite polynomial yP
on the boundary @Hd .
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We remark that the classification naturally gives a level structure for geometrically
finite polynomials on @Hd . This level structure is a manifestation of the Schwarz lemma
and the incompatible escaping rates for the critical points for the dynamics in the corre-
sponding Fatou component (see Figure 6.4 and the discussion below Theorem 1.3).

Theorem 1.1 gives concrete combinatorial models for geometrically finite polyno-
mials on @Hd and classifies all models that arise. Let us denote by U yP the space of
all geometrically finite polynomials corresponding to the same pointed Hubbard tree as
yP 2 @Hd . We do not know a description of U yP \ @Hd , and it is expected this space can

be quite complicated in general [28] (see §6 for some partial answers). To discuss some
of the subtleties of describing this space, it is well-known that the closure of a hyper-
bolic component H may not be quasiconformally closed: if P 2 xH , a quasiconformal
deformation of P may not be in xH (see [20, 51]).

A hyperbolic component H ¤ Hd is said to be a satellite component of Hd if there
exists a parabolic polynomial yP 2 @H \ @Hd that has conjugate dynamics on the Julia
sets with any P 2 H . As any parabolic polynomial can be perturbed to a hyperbolic
polynomial with conjugate dynamics on the Julia sets [17], we immediately have the
following corollary:

Corollary 1.2. Let H ¤ Hd be a hyperbolic component with connected Julia set. Let
H be the Hubbard tree of the post-critically finite center P 2 H . Then H is a satellite
component of Hd if and only if there exists a fixed point p 2 H such that .H; p/ is
iterated-simplicial.

The direction that the pointed Hubbard tree for yP 2 @Hd is iterated-simplicial in
Theorem 1.1 follows from an analysis of cut points in the Julia set (see §5). The other
implication is proved by studying the degenerations of Blaschke products sketched in the
following.

Blaschke products

For d � 2, we let Bd denote the space of normalized and marked Blaschke products
f W D ! D of the form

f .z/ D z

d�1Y
iD1

z � ai

1 � aiz
; where jai j < 1: (1.1)

Note that f .0/ D 0, and any proper holomorphic map from D to D of degree d with a
fixed point in D is holomorphically conjugate to a map in Bd .

Any map f 2Bd can be extended to a rational map f W yC! yC. Viewed as a rational
map, the Julia set J.f / is the circle S1, and there is a unique homeomorphism �f W S

1 Š

R=Z! S1, called the marking, that varies continuously with f , conjugates zd to f , and
is such that �f is the identity map if f .z/ D zd .

The polynomials P 2 Hd are in correspondence with f 2 Bd by gluing f 2 Bd

with zd using their markings on S1 [27, §5]; the resulting polynomial is denoted by
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P D f t zd . Thus, the study of @Hd is naturally related to the study of degenerations
in Bd . We study ‘geometrically finite’ degenerations in Bd which give us uniform control
on the rescaling dynamics at the critical orbits.

A sequence fn 2 Bd is said to be .K-/quasi post-critically finite if we can label the
critical points of fn by ci;n 2 D, i D 1; : : : ; d � 1, in such a way that for each i , there
exist a quasi pre-period li and a quasi period qi with

dD.f
li
n .ci;n/; f

liCqi
n .ci;n// � K:

The uniform bounds allow us to construct a sequence of quasi-invariant trees Tn � D for
the hyperbolic metric dD on D, capturing all the interesting dynamics (see Theorem 2.2,
which is interesting in its own right). The dynamics on Tn is described by a simplicial
tree map f W .T ; p/! .T ; p/, with rescaling limits Fv W Dv ! Df .v/ between vertices
(cf. [22]). This simplicial tree map plays a similar role to the Hubbard tree for a post-
critically finite polynomial.

Let Pn D fn t z
d 2 Hd be the corresponding quasi post-critically finite sequence

of polynomials. We show that the limit P D limn!1 Pn is geometrically finite, and the
sequence of the quasi-invariant trees converges to a pointed Hubbard tree with ‘decora-
tions’ (see Figures 1.1 and 1.2). This allows us to describe the pointed Hubbard tree of
the limit using quasi-invariant trees, building a bridge between geometrically finite poly-
nomials on @Hd and quasi post-critically finite degenerations in Bd .

cn

pn

deg.cn/ D 2

pncn

deg.pn/ D deg.cn/ D 2

pn

deg.pn/ D deg.cn/ D 2

cn

Fig. 1.1. Illustrations of quasi-invariant trees for quasi post-critically finite degenerations of
.fn/n 2 Bd in the bounded Fatou component of the corresponding polynomials Pn D fn t zd .

In §3, we define an abstract angled tree map

.f W .T ; p/! .T ; p/; ı; ˛ D ¹˛vº/

with local degree function ı and angle functions ˛v satisfying certain compatibility condi-
tions. This data combinatorially classifies the simplicial tree map with the rescaling limits
(cf. angled Hubbard tree in [45]). Every simplicial pointed Hubbard tree P W .H; p/!
.H; p/ gives an angled tree map. In §4, we define admissible angled tree maps and prove
a realization theorem. In particular, we show
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pn
pn p

Fig. 1.2. Another example of quasi-invariant trees, where all vertices are quasi-fixed and have local
degree 2. The trees converge to a ‘decorated pointed Hubbard tree’. The corresponding pointed
Hubbard tree is a ‘cross’, and ‘splits’ at the Julia branch point to get approximating quasi-invariant
trees (see §6 for the definition of ‘splitting’).

Theorem 1.3. Every simplicial pointed Hubbard tree is realizable by fn 2 Bd after an
admissible splitting on its Julia branch points.

The precise statement of the realization theorem can be found in Theorem 4.1 and
Proposition 4.3. The definition of admissible splitting is given in §6 (see also Figure 1.2).
The non-uniqueness of splittings is the source for self-bumps on @Hd (see Figure 1.3
and §7).

Theorem 1.3 allows us to construct geometrically finite polynomials yP1 2 @Hd for
any simplicial pointed Hubbard tree .H1; p1/.

The limit map yP1 has at most one attracting Fatou component which is necessarily
fixed. If it has one, we show we can further degenerate its dynamics on this attract-
ing Fatou component (and its backward orbits under yP1) by a quasi post-critically finite
sequence, while staying on the boundary @Hd . The limit of this sequence gives a geomet-
rically finite polynomial yP2. The pointed Hubbard tree .H2;p2/ of yP2 is a pointed simpli-
cial tuning of .H1; p1/. By induction, we thus construct geometrically finite polynomials
on @Hd for any iterated-simplicial Hubbard tree and conclude the proof of Theorem 1.1.

Self-bumps on @Hd

It is expected that the boundary of Hd is quite complicated for d � 3 [39]. We construct
polynomials yP 2 @Hd with different accesses from the main hyperbolic component Hd

(see Figure 1.3). Thus, self-bumps occur on @Hd . More precisely, we prove

Theorem 1.4. For any degree d � 4, there exists a geometrically finite polynomial yP 2
@Hd such that for any sufficiently small neighborhood U of yP , the intersection U \Hd

is disconnected.

As an immediate corollary (cf. [30, Theorem A.1]), we have

Corollary 1.5. The closure Hd is not a topological manifold with boundary for d � 4.
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(a) A self-bump on @H4 presented in a 1-D parameter
slice.

(b) A self-bump yP 2 @H4 with a double parabolic fixed
point.

(c) The access of the self-bump from ‘top’. (d) The access of the self-bump from ‘bottom’.

Fig. 1.3. A self-bump on @H4 with two different accesses.

Proof. By the characterization of J -stable rational maps (see [29, Theorem 4.2]), we have
int Hd D Hd . If Hd were a topological manifold with boundary, then there would be a
small neighborhood U of yP meeting the manifold’s interior in a connected set, contrary
to Theorem 1.4. Thus Hd is not a topological manifold with boundary.

Comparisons with Kleinian groups

We now discuss some similarities and differences between the theory of rational maps
and Kleinian groups.

� Dimension 1 vs. higher dimensions: The Bers slice for a once punctured torus group
has complex dimension 1. It is known [40] that the boundary is a Jordan curve, and
hence is locally connected. When the deformation space has complex dimension � 2,
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it is known that its boundary spaces can be non-locally-connected [9]. For rational
maps, @H2 is a Jordan curve. Many other hyperbolic components in a one-dimensional
slice are also proved to be Jordan disks [48, 52]. For d � 3, it is conjectured that @Hd

is not locally connected [39].

� Geometric convergence: A geometrically finite group G on the Bers boundary can
be constructed by pinching a system of disjoint simple closed curves. The pinching
deformations Gn converge both algebraically and geometrically to G. In particular, the
limit sets converge in the Hausdorff topology to the limit set of G. This is in contrast
with rational maps. For most (in a suitable sense) iterated-simplicial pointed Hubbard
trees, the convergence to any corresponding polynomial yP 2 @Hd is never geometric:
the Julia sets do not converge in the Hausdorff topology to J. yP / for any Pn ! yP (see
Figure 1.2). See [11, 31, 32] for related discussions.

� Self-bump: Self-bumps on the Bers boundary were first constructed by McMullen
using projective structures [30]. This was generalized to other deformation spaces
in [10]. The self-bumps on @Hd are direct analogues in the setting of rational maps. We
use the sign of the imaginary part of the multipliers to distinguish different accesses (see
§7), which are the analogues of the traces of the holonomy representations for Kleinian
groups. Our method does not provide any self-bumps in degree 3.

Notes and references

A large portion of the boundary @H3 has been studied in [43] and a combinatorial model
of @H3 is studied in [5]. The problem of how hyperbolic components are positioned for
quadratic rational maps is studied in detail in [46, 47]. A related problem of self-bumps
on @H3 is studied in [6, 7].

Degenerations of Fatou components have been studied extensively in terms of elemen-
tary moves like pinching and spinning [11, 18, 26, 44, 50]. The quasi post-critically finite
degenerations in Bd generalize these operations, and thus provide a unified framework.

Other comparisons of Bd with Teichmüller theory can be found in [33–36]. The
quasi-invariant trees are closely related to the ribbon R-trees of [35] and the analogous
constructions of isometric group actions on R-trees for Kleinian groups [3, 41, 42] (see
discussions in §2).

Related bumping problems for deformation spaces of Kleinian groups are studied
in [1]. Rescaling limits of Blaschke products have also been studied in [21], and other
applications of rescaling limits in complex dynamics can be found in [2,12,15,22,23,25].

Outline of the paper

We define and prove some basic properties of quasi post-critical finite sequences of
Blaschke products in §2. The abstract angled tree map is introduced in §3 and the realiza-
tion theorem is proved in §4. One direction of Theorem 1.1 is proved in §5, and using the
realization theorem for degenerations in Bd , we finish the proof of Theorem 1.1 in §6.
Finally, Theorem 1.4 is proved in §7.
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Quasi post-critically finite degener-
ation .fn/n 2 Bd

Geometrically finite polynomial
yP1 2 @Hd of level 1

Geometrically finite polynomial
yPk 2 @Hd of level k

Quasi invariant tree with
rescaling limits ..T ; p/; ¹Fvº/

Simplicial pointed
Hubbard tree .H1; p1/

k-th iterated-simplicial
pointed Hubbard tree .Hk ; pk/

Admissible angled tree map
.f W .T ;p/! .T ;p/; ı;˛D ¹˛vº/

Self-bump
on @Hd

yP1 D limfn t z
d

Quasi post-critically finite degeneration on
the bounded attracting Fatou component
:::

RealizingCombinatorially
classifying

Admissible splitting

Pointed simplicial
tuning
:::

Different splittings

Fig. 1.4. The logical flow for different concepts in this paper.

2. Quasi post-critically finite sequences of Blaschke products

A proper holomorphic map f W D ! D of degree d � 2 can be written as a Blaschke
product

f .z/ D ei�
dY
iD0

z � ai

1 � aiz
;

where jai j<1. By Schwarz reflection, any such map extends to a rational map f W yC! yC.
Both perspectives are useful. In particular, throughout the paper we shall freely use the
fact that f is defined on xD.

By the Denjoy–Wolff theorem, there is a unique non-repelling fixed point of f on xD,
which puts a Blaschke product f into exactly three categories:

� f is interior-hyperbolic or simply hyperbolic if f has an attracting fixed point in D;

� f is parabolic if f has a parabolic fixed point on S1;

� f is boundary-hyperbolic if f has an attracting fixed point on S1.

The parabolic Blaschke products can be further divided into singly parabolic or doubly
parabolic depending on the multiplicities of the parabolic fixed points. The Julia set of a
hyperbolic or a doubly parabolic Blaschke product is the circle S1, while the Julia set of
a singly parabolic or a boundary-hyperbolic Blaschke product is a Cantor set on S1.
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In this paper, we shall mainly focus on hyperbolic Blaschke products, although the
parabolic and boundary-hyperbolic ones will appear as rescaling limits when we degen-
erate hyperbolic Blaschke products.

For d � 2, let

Bd WD

²
f .z/ D z

d�1Y
iD1

z � ai

1 � aiz
W jai j < 1

³
Š Dd�1

be the space of (normalized) marked hyperbolic Blaschke products. Each map in Bd

has an attracting fixed point at the origin. Any hyperbolic Blaschke product of degree d
is conformally conjugate to a map in Bd . We shall identify S1 WD R=Z. Under this
identification, we set md .t/ D d � t . Note that for each f 2 Bd , there exists a unique
quasisymmetric homeomorphism �f W S

1 Š R=Z! S1 such that

(1) �f ımd D f ı �f ,

(2) f 7! �f is continuous on Bd with �zd D id.

In particular, the conjugacy �f gives a way to label the periodic points of f on S1 by
periodic points of md on R=Z that varies continuously on Bd .

Note that the space Bd Š Dd�1 is not compact. We study a particular type of degen-
erations in Bd :

Definition 2.1. Let fn 2 Bd . We say that the sequence is K-quasi post-critically finite if
we can label the critical points of fn by ci;n 2 D, i D 1; : : : ; d � 1, in such a way that for
each i , there exist li and qi called quasi pre-periods and quasi periods respectively with

dD.f
li
n .ci;n/; f

liCqi
n .ci;n// � K:

We say fn is quasi post-critically finite if it is K-quasi post-critically finite for some K.

A ribbon structure on a finite tree is the choice of a planar embedding up to isotopy.
The ribbon structure can be specified by a cyclic ordering of the edges incident to each
vertex. A finite tree with a ribbon structure is called a finite ribbon tree. Recall that a map
f W T ! T is said to be simplicial if f sends an edge to an edge.

In this section, we first construct a sequence of quasi-invariant trees Tn � D for a
quasi post-critically finite sequence fn 2Bd capturing all interesting dynamical features.

Theorem 2.2. Let fn 2Bd be quasi post-critically finite. After passing to a subsequence,
there exists a constant K > 0, a simplicial map

f W .T ; p/! .T ; p/

on a pointed finite ribbon tree with vertex set V , a sequence of pointed finite ribbon trees
.Tn; pn/ with pn 2 Tn � D, and a sequence of isomorphisms

�n W .T ; p/! .Tn; pn/

such that
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� (Degenerating tree) If v1 ¤ v2 2 V , then

dD.�n.v1/; �n.v2//!1:

� (Geodesic edge) IfE D Œv1; v2�� T is an edge, then the corresponding edge �n.E/�
Tn is a hyperbolic geodesic segment connecting �n.v1/ and �n.v2/.

� (Critically approximating) Any critical point of fn is within hyperbolic distance K of
the vertex set Vn WD �n.V/ of Tn.

� (Quasi-invariance on vertices) If v 2 V , then

dD.fn.�n.v//; �n.f .v/// � K for all n:

� (Quasi-invariance on edges) If E � T is an edge and xn 2 �n.E/, then there exists
yn 2 �n.f .E// such that

dD.fn.xn/; yn/ � K for all n:

If E is a periodic edge of period q, then

dD.f
q
n .xn/; xn/ � K for all n:

To prepare ourselves for the construction, we will first review some results on degen-
erations of rational maps and geometric bounds for Blaschke products.

Degeneration of rational maps

Let Ratd denote the space of rational maps of degree d . By fixing a coordinate system of
yC Š P1.C/, a rational map can be expressed as a ratio of two homogeneous polynomi-
als, f .z W w/ D .P.z; w/ W Q.z; w//, where P and Q have degree d D deg.f / with no
common divisors. Thus, using the coefficients of P and Q as parameters, we have

Ratd D P2dC1 n V.Res/;

where Res is the resultant of the polynomials P and Q, and V.Res/ is the hypersurface
for which the resultant vanishes. This embedding gives a natural compactification Ratd D
P2dC1, which will be called the algebraic compactification. A map f 2 Ratd can be
written as

f D .P W Q/ D .Hp W Hq/;

where H D gcd.P;Q/. We set
'f WD .p W q/;

which is a rational map of degree at most d . The zeros of H in P1 are called the holes
of f , and the set of holes of f is denoted by H .f /.

If the coefficients of fn 2 Ratd converge to those of f 2 Ratd , we say that f is the
algebraic limit of the sequence fn. We also say fn converges algebraically to f . The
limit f is said to have degree k if 'f has degree k. Abusing notation, sometimes we shall
refer to 'f as the algebraic limit of fn. The following is useful in analyzing the limiting
dynamics.
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Lemma 2.3 ([12, Lemma 4.2]). If fn 2 Ratd converges to f algebraically, then fn con-
verges to 'f uniformly on compact subsets of yC �H .f /.

The following statement is also useful in many situations:

Lemma 2.4. Let fn 2 Ratd converge to f algebraically with deg.f / � 1. If x 2 H .f /,
then there exists a sequence of critical points cn for fn with cn ! x.

Proof. Suppose for contradiction that this is not true. Let x 2 U be a small open neigh-
borhood containing no critical points of fn for all large n and let C D @U . Modifying U
and changing the role of 0 and1 if necessary, we may assume that f is univalent on U ,
f .C / is a simple closed curve and the image U 0 does not contain 1. Since fn con-
verges uniformly to f on a neighborhood of C by Lemma 2.3, there exists a component
Cn � f

�1
n .f .C // that converges in the Hausdorff topology to C . Let Un be the compo-

nent of yC � Cn that contains x. So for large n, Un contains no critical points of fn. Note
that fn.@Un/ D fn.Cn/ D f .C / D @U 0, so fn W Un ! U 0 is univalent. This is a contra-
diction as there exists a sequence of poles of fn converging to the hole x, but1… U 0.

Geometric bounds for Blaschke products

The normalization f .0/ D 0 imposed on maps f 2 Bd gives the following compactness
result:

Proposition 2.5. Let K � 0, and let fn W D ! D be a sequence of proper holomorphic
maps of degree d with dD.0; fn.0// � K. Then after passing to a subsequence, fn con-
verges compactly on D to a proper holomorphic map f W D ! D .of potentially lower
degree/.

By Schwarz reflection, f; fn are rational maps. As rational maps, fn converges alge-
braically to the map f of degree � 1 with holes contained in S1.

Proof. If fn 2Bd , then the statement follows from [35, Proposition 10.2]. The statement
for general sequences can be derived from the above by post-composing with a bounded
sequence Mn 2 Isom.D/ such that Mn ı fn 2 Bd .

We remark that the rational map point of view in Proposition 2.5 gives more infor-
mation. By Lemma 2.3, we know where the convergence of fn ! f fails to be uniform
on S1.

By the Schwarz lemma, any holomorphic map f W D! D is distance non-increasing
with respect to the hyperbolic metric. We will frequently use the following which gives a
bound in the other direction:

Theorem 2.6 ([35, Theorem 10.11]). There is a constant R > 0 such that for any holo-
morphic map f W D ! D of degree d ,

(1) if dD.Œa; b�; C.f // > R, then dD.f .a/; f .b// D dD.a; b/CO.1/;

(2) if dD.Œa; b�; f .C.f /// > R, then dD.f
�1.a/; f �1.b// D dD.a; b/CO.1/.
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Here C.f / denotes the critical set of f , Œa; b� is the hyperbolic geodesic segment that
connects a and b, and f �1 is any branch of the inverse map that is continuous along
Œa; b�.

Quasi-invariant tree

Let fn 2 Bd be a quasi post-critically finite sequence. We now explain how a pointed
quasi-invariant tree can be constructed after possibly passing to a subsequence. This tree
plays a similar role to the Hubbard tree for post-critically finite polynomials.

The construction is in the same spirit as that of the ribbon R-tree in [35]; see also
[23, 25]. One of the key differences is that two sequences xn; yn 2 D are identified in the
ribbon R-tree if limdD.xn; yn/=Rn D 0, where Rn is a given rescaling factor; while they
are identified in the quasi-invariant tree if they are a uniformly bounded distance apart.
The more restrictive identification allows us to better control the dynamics and construct
rescaling limits. Another problem with using the ribbon R-tree is that it only sees the
dynamics on the scale of Rn. To deal with incompatible escaping rates of the critical
points, we therefore abandon the rescaling construction of [35].

In the following, we shall use .an/ to denote a sequence, and an its n-th term. If there
are multiple subindices, we shall use .�/n to emphasize that the index for the sequence
is n.

Let pn D 0 be the unique attracting fixed point of fn in D. Let

zP WD ¹.f jn .ci;n//n W i D 1; : : : ; d � 1; j D 0; : : : ; li C qi � 1º [ ¹.pn/º:

Note that an element of zP is a sequence of points in D indexed by n, and the cardinality
of zP is 1C

Pd�1
iD1 li C qi .

Let .vn/ 2 zP . After passing to a subsequence of .fn/, we assume that the local degree
degvn

fn of fn at vn is constant in n and the limit

lim
n!1

dD.vn; wn/

exists for any .vn/; .wn/ 2 zP (which can possibly be 1). This defines an equivalence
relation:

.vn/ � .wn/ if lim
n!1

dD.vn; wn/ <1:

An equivalence class C 2 zP =� will be called a cluster set. We define the degree of C by

deg.C/ D 1C
X
.vn/2C

.degvn
fn � 1/:

Let C 2 zP=� be an equivalence class. Note that C is a finite set of sequences of
points in D. It is convenient to choose a representative .vn.C// 2 C with the convention
that .vn.C// D .pn/ if C D Œ.pn/�. We denote

P WD ¹.vn.C// W C 2 zP =�º:
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Note that an element in P is a sequence of points in D indexed by n. Since zP is a finite
set, P is a finite set as well.

We also set
Pn D ¹vn.C/ W C 2 zP =�º;

i.e., Pn consists of the n-th terms of the elements of P . Note that Pn is a finite collection
of points of D. If .vn/ ¤ .wn/ 2 P , then dD.vn; wn/ ! 1. Thus, after passing to a
subsequence, we can assume that for any pair of distinct elements .vn/; .wn/2P , we have
vn ¤ wn for all n. Thus, each point vn 2 Pn uniquely determines an element .vn/ 2 P ,
which gives a canonical identification of Pn with P . We define the degree of a point
vn 2 Pn by

deg.vn/ D deg.C/

if .vn/ 2 P represents C 2 zP=�.

D

C

vn.C/

Fig. 2.1. A schematic illustration of cluster sets. We choose a representative (red) for each cluster.
As n ! 1, the distance is bounded between points in the same cluster, while goes to infinity
between points in different clusters.

Index the elements of P D ¹.b0;n/n; .b1;n/n; : : : ; .bm;n/nº with .b0;n/ D .pn/. The
sequence of quasi-invariant trees Tn is the ‘spine’ of the degenerating hyperbolic polygon
Cvx Hull.Pn/ and is constructed inductively as follows:

As the base case, we define T 0
n D ¹b0;nº with vertex set V0

n D ¹b0;nº.
Assume that T i

n is constructed with vertex set V i
n WD ¹v1;n; : : : ; vmi ;nº containing

¹b0;n; : : : ; bi;nº. Assume as induction hypotheses that

(1) limn!1 dD.vk;n; vk0;n/ D1 for all k ¤ k0 � mi ;

(2) minkDiC1;:::;m dD.bk;n;Cvx Hull.V i
n//!1 as n!1;

(3) each edge of T i
n is a hyperbolic geodesic segment.

After passing to a subsequence and changing indices, we assume that for all n,

dD.biC1;n;Cvx Hull.V i
n// D min

kDiC1;:::;m
dD.bk;n;Cvx Hull.V i

n//:
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Let aiC1;n be the projection of biC1;n to the convex hull Cvx Hull.V i
n/. After passing to a

subsequence, we assume limn!1 dD.aiC1;n; vk;n/ exists (which can possibly be1) for
all k (see Figure 2.2).

Since aiC1;n is on the boundary of Cvx Hull.V i
n/, there exist un; wn 2 V i

n such that
aiC1;n is on the hyperbolic geodesic segment Œun; wn�. Since T i

n is a tree and each edge
is a hyperbolic geodesic segment, there is a unique piecewise geodesic path in T i

n that
connects un and wn. We denote it by

Œvj1;n D un; vj2;n� [ Œvj2;n; vj3;n� [ � � � [ Œvjl�1;n; vjl ;n D wn�;

where Œvji ;n; vjiC1;n� is an edge of T i
n . After passing to a subsequence, we assume that

the subindices ji do not depend on n.

v2;n

v3;n v4;n

v1;n

biC1;n
Cvx Hull.V in/

aiC1;n

v2;n

v3;n v4;n

v1;n

biC1;n DW v5;n

v2;n

v3;n v4;n

v1;n

biC1;n DW v5;n

QaiC1;n DW v6;n

lim dD.aiC1;n; vk;n/ <1

Case 1: For some k, say k D 1,

lim dD.aiC1;n; vk;n/ D1

Case 2: For all k,

Fig. 2.2. An illustration of the inductive construction of T in .

We have two cases. If aiC1;n stay at a bounded distance from some vertex vk;n 2 V i
n,

then we define
T iC1
n WD T i

n [ Œvk;n; biC1;n�;

and set V iC1
n WD V i

n [ ¹biC1;nº (see Figure 2.2).
Otherwise, since the hyperbolic triangles are thin, subdividing the polygon

vj1;n; : : : ; vjk ;n into finitely many triangles, there exist

QaiC1;n 2 Œvj1;n; vj2;n� [ � � � [ Œvjl�1;n; vjl ;n� � T i
n

which stay at a bounded distance from aiC1;n. Note that the bound depends only on the
number of vertices. We define

T iC1
n WD T i

n [ Œ QaiC1;n; biC1;n�;

and set the vertex set V iC1
n WD V i

n [ ¹QaiC1;n; biC1;nº (see Figure 2.2).
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By our construction, it is easy to verify that the three induction hypotheses are sat-
isfied. Thus, by induction, let Tn D T m

n be the finite tree when all m points in Pn are
added.

By construction, Pn � Vn, and any point in Vn � Pn is a branch point for Tn. More-
over, limn!1 dD.vk;n; vk0;n/ D 1 for all k ¤ k0 and the edges are hyperbolic geodesic
segments.

After passing to a further subsequence, we may assume that Tn are all canonically
isomorphic with the same ribbon structure. Thus, we denote by T the underlying ribbon
finite tree, with the isomorphisms

�n W T ! Tn:

We denote the vertex set as V . By our construction, ��1n .Pn/�V is canonically identified
with P and the identification does not depend on n. In this way, we shall abuse notation
and regard P � V .

The local degree at a vertex is defined by ı.v/ WD deg.�n.v// if v 2 P , and ı.v/ WD 1
if v … P . There exists a unique vertex corresponding to the attracting fixed point for fn,
and we shall denote it by p 2 V . Note that by construction, ı.v/� 1 equals the number of
critical points of fn counted with multiplicity that stay at a bounded distance from �n.v/.

We first show that the vertex set is quasi forward invariant.

Lemma 2.7. There exists an induced map f W V ! V and a constantK such that for all
v 2 V and for all n,

dD.fn.�n.v//; �n.f .v/// � K:

Proof. First consider the case v 2 P . Note that there exists an induced map Qf W zP ! zP

defined as follows. Let .vn/ 2 zP .

� If .vn/ D .pn/, then Qf ..vn// D .vn/.

� If .vn/ D .f
j
n .ci;n// with j � li C qi � 2, then Qf ..vn// D .f

jC1
n .ci;n//.

� If .vn/ D .f
j
n .ci;n// with j D li C qi � 1, then Qf ..vn// D .f

li
n .ci;n//.

Note that in the first two cases, Qf ..vn// D .fn.vn//. In the third case, the sequence
Qf ..vn// D .f

li
n .ci;n// stays at a bounded distance from .fn.vn// D .f

liCqi
n .ci;n// as

fn is quasi post-critically finite.
If .vn/ � .wn/, then by the Schwarz lemma, fn.vn/ stay at a bounded distance from

fn.wn/, so Qf ..vn//� Qf ..wn//. Thus the map Qf W zP ! zP descends to a map f WP !P .
By our construction, there exists a constant K such that

dD.fn.�n.v//; �n.f .v/// � K:

Now suppose v 2 V �P . Then v is a branch point. Let b1; b2; b3 be the closest points
to v on P so that the convex hull of them in T forms a ‘tripod’ with v as the center.
Then the angles †�n.bi /�n.v/�n.bj / are uniformly bounded away from 0 for i ¤ j by
construction. Thus �n.v/ is at a uniformly bounded distance from the hyperbolic geodesic
segment Œ�n.bi /; �n.bj /� that connects �n.bi / and �n.bj /. By construction, the geodesic
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Œ�n.bi /; �n.bj /� is close to critical points (in the sense of the bound in Theorem 2.6)
only possibly near its end points. Thus by Theorem 2.6, dD.fn.�n.bi //; fn.�n.bj /// D

d.�n.bi /; �n.bj //C O.1/. Therefore, the angles †fn.�n.bi //fn.�n.v//fn.�n.bj // are
all uniformly bounded away from 0 for i ¤ j . Thus, fn.�n.v// is at a uniformly bounded
distance from some branch point �n.v0/ of Tn. Therefore, we define f .v/ D v0 in this
case, and the lemma follows.

The above lemma allows us to define an induced map f W .T ; p/! .T ; p/ by extend-
ing f continuously on any edge Œv;w� to the arc Œf .v/; f .w/�. Consider the finite subtree
T P � T as the convex hull of the periodic vertices of f . We first show

Lemma 2.8. Any vertex v 2 T P is periodic and f W T P ! T P is a simplicial map, i.e.,
if Œv; w� is an edge of T P , then Œf .v/; f .w/� is also an edge of T P .

Proof. If v is a vertex in T P , then there are two periodic vertices w1; w2 such that
v 2 Œw1; w2�. Let q be the least common multiple of the periods of w1 and w2.
By Lemma 2.7, dD.�n.wi /; f

q
n .�n.wi /// D O.1/. By the Schwarz lemma, we have

dD.f
q
n .�n.v//; f

q
n .�n.wi /// � dD.�n.v/; �n.wi //, thus

dD.f
q
n .�n.v//; �n.wi // � dD.�n.v/; �n.wi //CO.1/:

Since the angle †�n.w1/�n.v/�n.w2/ is uniformly bounded away from 0,

dD.�n.w1/; �n.w2// D dD.�n.v/; �n.w1//C dD.�n.v/; �n.w2//CO.1/:

A standard hyperbolic geometry estimate using horocycles gives

dD.f
q
n .�n.v//; �n.v// D O.1/:

This means that v is periodic. Thus T P is invariant under f .
A similar proof also shows that f is simplicial. Indeed, suppose it is not. Then

there exists an edge Œw1; w2� � T P such that Œf .w1/; f .w2/� is not an edge. Let
v 2 .f .w1/; f .w2// be a vertex. Then v is also periodic by the previous paragraph. Let
q be the least common multiple of the periods of w1; w2; v. Note that

dD.�n.f .w1//;�n.f .w2///D dD.�n.f .w1//;�n.v//C dD.�n.v/;�n.f .w2///CO.1/:

Thus applying Lemma 2.7 to f q�1, we get

dD.�n.w1/; �n.w2// D dD.�n.w1/; �n.f
q�1.v///

C dD.�n.f
q�1.v///; �n.w2//CO.1/:

Therefore, f q�1.v/ 2 .w1; w2/, a contradiction.

Since the vertices of Tn are uniformly quasi-invariant, we show fn is quasi-invariant
on Tn with dynamics modeled by f W .T ; p/! .T ; p/.
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Proposition 2.9. There exists a constant K such that

� if Œv1; v2� � T is an edge, then for any point xn 2 Œ�n.v1/; �n.v2/�, there exists yn 2
�n.f .Œv1; v2�// such that

dD.fn.xn/; yn/ � K for all nI

� if Œv1; v2� � T is a periodic edge of period q, then for any point xn 2 Œ�n.v1/; �n.v2/�,

dD.f
q
n .xn/; xn/ � K for all n:

Proof. The proof uses the same estimates as in the proof of Lemma 2.8. By the Schwarz
lemma,

dD.fn.xn/; fn.�n.vi /// � dD.xn; �n.vi //:

Thus, by Lemma 2.7,

dD.fn.xn/; �n.f .vi /// � dD.xn; �n.vi //CO.1/:

By Theorem 2.6 and Lemma 2.7,

dD.�n.f .v1//; �n.f .v2/// D dD.�n.v1/; �n.v2//CO.1/

D dD.xn; �n.v1//C dD.xn; �n.v2//CO.1/:

Therefore, there exists a constant K such that

dD.fn.xn/; �n.f .Œv; w�/// � K:

A similar argument proves the part on periodic edges.

Corollary 2.10. The map f is non-expanding. More precisely, let E be an open edge
of T . If there exists k with f k.E/ \E ¤ ;, then f k W E ! E is a homeomorphism.

Proof. By the Schwarz lemma, fn is distance decreasing. By Proposition 2.9, the dynam-
ics of f k on E is approximated by f kn on �n.E/. Thus f is non-expanding.

Corollary 2.11. We can add finitely many vertices to T so that f W .T ; p/! .T ; p/ is
simplicial.

Proof. By Corollary 2.10, each recurring edge is periodic. Thus, for each edge E, there
exists n such that f n.E/ � T P . We call the smallest such integer the generation of E.
By Lemma 2.8, f is simplicial on generation 0 edges. If E is generation 1, then f .E/
is a finite union of generation 0 edges. By adding finitely many vertices on E, we may
assume f is simplicial on E. The corollary now follows by induction.

Proof of Theorem 2.2. Let f W .T ;p/! .T ;p/with isomorphisms �n.T ;p/! .Tn;pn/

constructed as above. Then Corollary 2.11 shows f is simplicial. By construction of Tn,
the first three conditions are satisfied. By Lemma 2.7 and Proposition 2.9, the map is
quasi-invariant.
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Rescaling limits

Let v 2 V . We define a normalization at v or a coordinate at v as a sequence Mv;n 2

Isom.D/ such thatMv;n.0/D �n.v/. Note that there are many choices forMv;n, and they
differ by pre-composing with rotations that fix 0.

We shall think of the sequence Mv;n as giving ‘coordinates’ at v, which gives an
associated limiting disk Dv and a limiting circle S1v for the vertex v. More precisely, we
say a sequence zn 2 xD converges to z 2 xDv in v-coordinate, denoted by zn !v z or
z D limv zn, if

lim
n!1

M�1v;n.zn/ D z:

Here the subindices in Dv and S1v are used to distinguish different coordinates at different
vertices.

By Proposition 2.9, there exists a constant K such that

dD.0;M
�1
f .v/;n ı fn ıMv;n.0// D dD.Mf .v/;n.0/; fn ıMv;n.0// � K:

Thus, by Proposition 2.5, after passing to subsequences, the sequence

M�1f .v/;n ı fn ıMv;n

converges compactly on D to a proper holomorphic map Fv on the unit disk. We call Fv
the rescaling limit between v and f .v/.

We remark that it is important to keep track of the changing coordinates, thus one
should really think of Fv as a map

Fv W Dv ! Df .v/:

To emphasize this, we sometimes also write Fv D Fv!f .v/.
We also remark that M�1

f .v/;n
ı fn ıMv;n and Fv extend to rational maps on yC of

degree � 1, and M�1
f .v/;n

ı fn ıMv;n converges algebraically to Fv . This perspective is
useful as it gives more information on where the convergence M�1

f .v/;n
ı fn ıMv;n to Fv

fails to be uniform on S1.
More generally, M�1

f k.v/;n
ı f kn ı Mv;n converges compactly on D to Ff k�1.v/ ı

Ff k�2.v/ ı � � � ı Fv . We shall denote this composition by

F kv WD Ff k�1.v/ ı Ff k�2.v/ ı � � � ı Fv:

In particular, if v is a periodic point of period q, then

M�1v;n ı f
q
n ıMv;n

converges compactly on D to F qv . We shall call the map F qv the first return rescaling limit
at v. As before, all these maps extend to rational maps on yC, and the convergences are
algebraic.

Recall that ı.v/ is the local degree of a vertex v 2V , and ı.v/� 1 equals the number of
critical points of fn counted with multiplicity that stay at a bounded distance from �n.v/.
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Thus, the rescaling limit Fv at v has degree ı.v/. Also recall that �n W R=Z! S1 is the
marking for fn 2 Bd . So �n.0/ is the marked repelling fixed point of fn on S1.

By precomposing the normalizations with rotations, we make the following anchored
convention on the normalizations. Throughout this paper, the normalizations will always
be assumed to be anchored (see Figure 2.3).

Definition 2.12. Let fn 2 Bd be quasi post-critically finite, with simplicial tree map
f W .T ; p/! .T ; p/. The normalizations Mv;n at vertices v 2 V are said to be anchored
if they satisfy the following conditions:

� If v D p and ı.p/ D 1, then Mp;n is chosen so that limp �n.0/ D 1 2 S1p .

� If v D p and ı.p/ � 2, then Mp;n is chosen so that 1 2 S1p is the fixed point of Fp
nearest to limp �n.0/ counterclockwise.

� If v ¤ p, then Mv;n is chosen so that limv �n.p/ D 1 2 S1v .

To illustrate the second case in Definition 2.12, consider the sequence

fn.z/ D z
3 z � .1 � 1=n/

1 � .1 � 1=n/z
:

One can verify that it is quasi post-critically finite. Note that Lp;n.z/ D z is a normaliza-
tion at p. Under this normalization, �n.0/!p 1 2 S1p as �n.0/ D 1 is the marked fixed
point for fn for all n. This normalization Lp;n does not satisfy the anchored convention
as the rescaling limit

Fp.z/ D limL�1p;n ı fn ı Lp;n.z/ D limfn.z/ D �z
3

has fixed points at˙i . Since the fixed point i is closer to 1D limn �n.0/ counterclockwise,
one can verify that the sequence Mp;n.z/ D iz is a normalization at p, and it satisfies the
anchored convention.

DDv
�n.v/

0 DM�1
v;n.�n.v//

�n.v1/M�1
v;n.�n.v1//

�n.v2/

�n.p/

Mv;n

M�1
v;n.�n.v2//

M�1
v;n.�n.p//

t1

t2

tp

Fig. 2.3. An illustration of Mv;n for v ¤ p, and the marked points on S1v . This normalization
satisfies the anchored convention as limv �n.p/ D tp D 1 2 S1v .
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A marking of S1 at a vertex

Let v1; : : : ; vl be the list of vertices adjacent to v in T . Then ¹v1; : : : ; vlº can be identified
with the tangent space TvT of T at v. By our construction, after passing to a subsequence,
there exist l distinct points t1; : : : ; tl 2 S1v with ti D limv �n.vi / (see Figure 2.3). We
denote this correspondence by the map

�v W TvT ! S1v :

Since the angles between different edges at a vertex in Tn are uniformly bounded from
below by construction, in v-coordinate, Tn converges to the union of the geodesic rays
connecting 0 and points in �v.TvT /. In particular, if w ¤ v is in the same component of
T � ¹vº as vi , then �n.w/!v ti .

Since f is injective on each edge, we have a well-defined tangent map Df W TvT !
Tf .v/T . On the other hand, the rescaling limit Fv gives a map from S1v to S1

f .v/
. It is easy

to check that this marking of S1 at a vertex is compatible with the dynamics of the tangent
map:

Lemma 2.13. Let v 2 V . Then the holes of the rescaling limit Fv are contained in
�v.TvT / � S1v . Moreover,

Fv ı �v D �f .v/ ıDf:

Proof. The first statement follows immediately from Lemma 2.4.
To prove the ‘moreover’ part, we let w be adjacent to v with �n.w/ !v t . Thus,

Œ�n.v/; �n.w/�!v Œ0; t �. Let t 0 WD �f .v/ ıDf.w/ 2 S1
f .v/

. Then Œ�n.f .v//; �n.f .w//�
!f .v/ Œ0; t

0�. Suppose for contradiction that Fv.t/ ¤ t 0. Note that M�1
f .v/;n

ı fn ıMv;n

converges to Fv uniformly away from finitely many holes. Let K be the constant in
Proposition 2.9. Then we conclude by uniform convergence that there exists x 2 Œ0; t �
such that

dD.Œ0; t
0�;M�1f .v/;n ı fn ıMv;n.x// > 2K:

This is a contradiction.

Corollary 2.14. Let v ¤ p 2 V be periodic of period q. Then F qv has a non-repelling
fixed point at 1.

Proof. Let a 2 TvT be the direction associated to p. Since f is simplicial on T and
f .p/ D p, we have Df q.a/ D a. Since the normalizations are anchored, the direction a
corresponds to 1 2 S1v . By Lemma 2.13, Fv.1/ D 1. It is non-repelling by the Schwarz
lemma and the fact that the fixed point �n.p/ converges to 1 in v-coordinate.

Definition 2.15. We introduce an anchored marking to anchored normalizationsMv;n by
choosing a point tv 2 S1v with the following rules:

� if v is periodic, tv is the periodic point 1 2 S1v;

� inductively, for v strictly pre-periodic we choose tv as the nearest t to 1 in counter-
clockwise orientation with F.t/ D tf .v/.
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Landing of pre-periodic points

The pre-periodic points for fn are marked by pre-periodic points of md on R=Z using
�n WD �fn

. Let x 2 Q=Z be a rational angle. Then �n.x/ is a pre-periodic point for fn.
Denote the projection of �n.x/ to the convex hull Cvx Hull.Tn/ by projTn

.�n.x//.
Since there are only countably many pre-periodic points, by a standard diagonal argument
and passing to subsequences we may assume that the limit

lim
n!1

dD.projTn
.�n.x//; �n.v//

exists (it can possibly be 1) for all v 2 V and for all pre-periodic points x. We say x
lands at a vertex v 2 V if

lim
n!1

dD.projTn
.�n.x//; �n.v// <1:

We say x lands on V if x lands at v for some v 2 V . The collection of x 2Q=Z that land
at v is called the landing angles at v.

After passing to a subsequence, we may assume the limits limv �n.x/ exist in S1v for
all v and all pre-periodic points x. Another way to define the landing angles at v is to look
at the rescaling limits. The following can be checked easily from the definition:

Lemma 2.16. A pre-periodic point x lands at v 2 V if and only if

lim
v
�n.x/ … �v.TvT /:

If x does not land on V , then there exists an edge E D Œv; w� 2 T such that the
projection projTn

.�n.x// is within bounded distance of Œ�n.v/; �n.w/�. We say x lands
on the edge E in this case.

The degree of a cycle C � S1 for md is the least e � 1 such that md jC extends to a
covering of the circle of degree e. A cycle C is said to be simple if its degree is 1 (see [36]
for more details). We now show that almost all pre-periodic points land on V :

Proposition 2.17. All but finitely many pre-periodic points land on V . Moreover, let C DS
Ci be the set of periodic points that do not land on V . Then

� every cycle Ci is simple with the same rotation number;

� md jC preserves the cyclic ordering of C .

Any strictly pre-periodic point that does not land on V is eventually mapped to C .

Proof. Let x be a periodic point of period q for md . Suppose that x does not land on V .
We first show that the multiplier at �n.x/ converges to 1. Let an 2 Tn be at a uniformly
bounded distance from projTn

.�n.x// 2 Cvx Hull.Tn/. Note that dD.an; �n.v//!1 for
any vertex v 2 V .

LetMa;n 2 Isom.D/ withMa;n.0/D an. Similar to the case of vertices of Tn, we can
define a-limit in this setting. In this a-coordinate, after passing to a subsequence, Tn con-
verges to a geodesic passing through 0. Thus, there exist distinct points t1; t2 D �t1 2 S1a
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corresponding to the a-limits of vertices. After passing to a subsequence, we assume
�n.x/!a t 2 S1a. Since an and projTn

.�n.x// are a uniformly bounded distance apart,
we have t ¤ ti .

After passing to a subsequence, by Propositions 2.9 and 2.5, M�1a;n ı f
q
n ı Ma;n

converges algebraically to a degree 1 map F . An argument as for Lemma 2.13 gives
F.ti /D ti . Since �n.x/ is fixed by f qn and t is not a hole for F , F.t/D t . Thus, F D id as
it fixes three points. Therefore, .f qn /0.�n.x//! 1, in particular log j.f qn /0.�n.x//j � log2
for all sufficiently large n. By [36, Theorem 1.1], these cycles Ci are all simple with the
same rotation number, and md jC preserves the cyclic ordering of C .

Since there are only finitely many simple cycles with the same rotation number (see
[36, §2]), all but finitely many periodic points land on V .

There are only finitely many edges in T that are mapped to the edges landed by C .
Thus by pulling back, there are only finitely many strictly pre-periodic points landing at
edges, and they all come from backward orbits of C . The proposition now follows.

A vertex v 2 V is said to be simple if ı.v/ D 1, and critical if ı.v/ � 2. The same
proof also gives

Proposition 2.18. Let v 2 V . If f k.v/ is simple for all k � 0, then there are only finitely
many pre-periodic points landing at v.

We immediately have the following, which will be used to construct the dual lamina-
tion later.

Corollary 2.19. There are at most two pre-periodic points landing on an edge E; more
precisely, at most one from each side of the edge.

Proof. Suppose for contradiction that there are two pre-periodic points landing on the
same side of the edge E. Then the ribbon structure will give infinitely many periodic
points landing on E, contradicting Proposition 2.17.

Pullback of quasi-invariant tree

Given the quasi-invariant tree Tn for fn modeled by f W T ! T , we can construct the
pullback quasi-invariant tree T 1

n as follows.
Let v 2 V . Choose an ordering of the d preimages of �n.v/ under fn, and denote

them by w1;n.v/; : : : ; wd;n.v/. Define

zP 1
WD ¹.wi;n.v// W i D 1; : : : ; d; v 2 Vº:

Note that an element of zP 1 is a sequence of points in D indexed by n and it is a finite set.
After passing to a subsequence, we assume that the limits

lim
n!1

dD.wi;n.v/; wj;n.u// and lim
n!1

dD.wi;n.v/; �n.u//
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exist for all i; j 2 ¹1; : : : ; dº and all v;u 2 V . This defines an equivalence relation on zP 1,
and an equivalence class is called a cluster set. A cluster set Œ.wn/� is said to be new if
limn!1 dD.wn; �n.V// D1. We choose a representative .wn/ for each new cluster set.

Note that by construction, .fn.wn// D .�n.v// for some v 2 V . If an 2 Tn are such
that dD.an; �n.V//!1, then dD.fn.an/; �n.V//!1 by Proposition 2.9. Thus,

lim
n!1

dD.wn; Tn/ D1 for any new cluster Œ.wn/�: (2.1)

So we can apply the same inductive method in the construction of Tn to add these new
cluster sets, and get a new quasi-invariant tree T 1

n � Tn.
After passing to a subsequence, we may assume the trees T 1

n are all isomorphic with
the same ribbon structure. We denote by T 1 the underlying ribbon finite tree, with the
isomorphisms

�n W T
1
! T 1

n :

A simplicial model of the dynamics can be constructed for the pullback and is denoted by

f W .T 1; p/! .T 0; p/ WD .T ; p/ � .T 1; p/:

The rescaling limits are defined similarly and the same proof of Lemma 2.13 shows
the compatibility of the local dynamics with the tangent map. We remark that the new
vertices are all simple, so the rescaling limits are defined by degree 1 maps. Each vertex
v 2 V0 of T 0 has d preimages in T 1 counted with multiplicity. By (2.1), if E is an edge
of T 0, then it is also an edge of T 1, i.e., the inclusion map from T 0 to T 1 is simplicial.

We also remark that a priori, there are many choices in this construction. They all give
the same simplicial model f W .T 1; p/! .T 0; p/, as they are equal to the unique one
constructed combinatorially in §3.

The pullback can be iterated, and we denote the k-th pullback simplicial model by
f W .T k ; p/! .T k�1; p/ � .T k ; p/. We also denote by f W .T 1; p/! .T 1; p/ the
union of these maps.

Dual lamination of T

Let Av � Q=Z be the set of rational angles landing at v. Since �n W R=Z ! S1 is a
homeomorphism, and Tn is a ribbon tree, for any v ¤ w 2 V , Av and Aw are unlinked,
i.e., there exists an interval I � R=Z such that Av � I and Aw � R=Z � I .

Two intervals J1; J2 � R=Z are said to be essentially the same if Int.J1/ D Int.J2/
and J1 D J2. Let E D Œv; w� be an edge. We claim that there exists an essentially unique
interval I with Av � I and Aw � R=Z� I . Otherwise, there are infinitely many rational
angles that are separated by Av and Aw ; since Œv; w� is an edge, these angles must land
on E, which is a contradiction to Corollary 2.19. We denote @I D ¹t˙E º, and call t˙E the
dual angles for E. We remark that it is possible that I is a degenerate interval consisting
of a single point. In this case, @I consists of a single point.
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An equivalent way to compute t˙E is as follows. Let xE 2 TvT be the tangent vector
at v associated to E. We consider the set

IE .v/ WD
°
t 2 R=Z W lim

v
�n.t/ D �v.xE / 2 S1v

±
� R=Z:

Since �n is a homeomorphism, IE .v/ is an interval. By Lemma 2.16, one can verify that
@IE .v/ D t˙E . Note that if the other boundary point w 2 @E is chosen, then IE .w/ is
essentially the complement of IE .v/ in R=Z, so the boundary points are the same.

v3

v1

v2

v5

v4

v6

R=Z

T

R1

R2

R3
R4

R5

R6

E

tC
E

t�
E

Fig. 2.4. An illustration of the dual lamination. The rational angles in @Ri \ R=Z land at vi . The
dual angles t˙

E
for the edge E are labeled on the figure.

It can be verified that these angles are compatible with the dynamics:

Proposition 2.20. Let E be an edge of T with dual angles t˙E . Thenmd .t˙E / are the dual
angles for f .E/.

A lamination L is a family of disjoint hyperbolic geodesics in D together with the
two end points in S1 Š R=Z, whose union jLj WD

S
L is closed. An element of the

lamination is called a leaf of the lamination.
We define the leaf associated with the edge E as the hyperbolic geodesics in D con-

necting t˙E 2 R=Z Š @D. It is easy to check that leaves for different edges have disjoint
interiors.

The dual finite lamination for f W .T ; p/ ! .T ; p/ is defined as the union of all
leaves for edges of T , and is denoted by LF

T
. The leaves can be constructed for edges of

any pullbacks of T . We call the closure of the union of leaves for edges in T 1 the dual
lamination of T , and denote it by LT .

We remark that the lamination LT is defined abstractly using dual angles in R=Z.
The leaves of LT do not lie in the same disk D where fn 2 Bd or Tn is defined.

The lamination LT gives an equivalence relation �T on R=Z: a �T b if there exists
a finite chain of leaves connecting a and b. Note that different laminations may generate
the same equivalence relation.
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Periodic Fatou and Julia points

For reasons that will appear apparent later in §6, we introduce

Definition 2.21. Let v 2V . It is called a Fatou point if it is eventually mapped to a critical
periodic orbit, and a Julia point otherwise.

Let a; b 2 V . We use Œa; b�; .a; b/; Œa; b/ and .a; b� to denote the paths in T that
connect a; b, with appropriate boundary points removed.

Lemma 2.22. If v ¤ p is a periodic point, and Œp; v/ contains a periodic Fatou point,
then the first return rescaling limit F at v has an attracting fixed point on S1v .

Proof. After passing to an iterate, we may assume that f fixes Œp;v�. Let tvp WDlimv �n.p/.
By Lemma 2.13, tvp is a fixed point of the rescaling limit Fv . Since fn fixes �n.p/, by
the Schwarz lemma,M�1v;n ı fn ıMv;n moves points towardsM�1v;n.�n.p//. SinceM�1v;n ı
fn ıMv;n converges to Fv and M�1v;n.�n.p//! tvp , the fixed point tvp is non-repelling.

Suppose for contradiction that tvp is parabolic. Then dD.x; F.x// can be made arbi-
trarily small1 by making x close to tvp . Therefore, for any � > 0, there exists xn close to tvp
in v-coordinate so that dD.xn; fn.xn// < � for all sufficiently large n.

On the other hand, let c be the fixed Fatou point in Œp; v/. Let Fc be the rescaling limit
at c. Note that degFc D ı.c/ � 2, as c is a Fatou point.

We claim that tcv WD limc �n.v/ is a repelling fixed point of Fc . There are two cases. If
c D p, then Fc D Fp has a fixed point at 0, which is necessarily attracting as degFc � 2.
Thus, tcv is repelling. If c ¤ p, then by the same argument as for tvp , the point tcp WD
limc �n.p/ 2 S1c is a non-repelling fixed point of Fc . Since tcv is different from tcp , it is
repelling. This proves the claim.

Therefore for y 2 Dc near tcv , dD.y;Fc.y// �K for someK depending on the multi-
plier of the repelling fixed point tcv under Fc , and the angle †Fc.y/ytcv is greater than or
equal to �=2. Thus, for all sufficiently large n, there exists yn close to tcv in c-coordinate
such that dD.yn;fn.yn//�K, and the angle†f .yn/ynxn is greater than or equal to �=2.
By choosing � small enough, we have dD.fn.xn/; fn.yn// > dD.xn; yn/, which contra-
dicts the Schwarz lemma.

Corollary 2.23. If v ¤ p is a periodic Julia point, and Œp; v/ contains a periodic Fatou
point, then v is not a branch point of T .

Proof. Suppose for contradiction that v is a branch point; then the first return rescaling
limit F at v is the identity map as it has degree 1 and fixes three points on the circle. This
is a contradiction as F has an attracting fixed point on the circle by Lemma 2.22.

We call a periodic Fatou point v parabolic or boundary-hyperbolic if the first return
rescaling limit is parabolic or boundary-hyperbolic. If p is critical, then Œp; v/ contains a
periodic Fatou point for any v ¤ p, so we have

1Note that if tp is attracting, the hyperbolic distance dD.x; F.x// is uniformly bounded away
from 0.
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Corollary 2.24. If ı.p/ � 2, then

� every periodic branch point is a Fatou point;

� every periodic Fatou point other than p is boundary-hyperbolic.

3. Angled tree map

In this section, we introduce abstract angled tree maps that give combinatorial descriptions
of the pointed quasi-invariant trees for fn 2 Bd . The construction is similar to the angled
Hubbard tree introduced in [45] with two major differences:

� to work with quasi post-critically finite degenerations in Bd , the angled tree maps in
our setting are simplicial and marked;

� to capture the dynamics of parabolic or boundary-hyperbolic rescaling limits, the angles
are allowed to be 0˙.

We remark that unlike the angled Hubbard trees, the angle 0 plays a special role in our
setting.

Let .T ; p/ be a pointed finite tree with a ribbon structure and vertex set V . Let f W
.T ; p/! .T ; p/ be a simplicial map. The tangent space at a vertex v is identified with
the set of incident edges to v and is denoted by TvT . We define the local degree function
ı W V ! Z�1 which assigns an integer ı.v/ � 1 to each vertex v 2 V . A vertex v is said
to be critical if ı.v/ � 2 and simple otherwise. The degree of the map f is defined by

deg.f / WD 1C
X
v2V

.ı.v/ � 1/;

and we always assume deg.f / � 2. We also assume that T is non-trivial, i.e. it contains
more than one point. We say f W .T ; p/ ! .T ; p/ is minimal if T is the convex hull
of all critical orbits and V is the smallest set containing all critical orbits such that f is
simplicial.

Angle structure on T

We identify S1 D R=Z, and md W S1 ! S1 is the multiplication by d map. By our con-
vention,m1 is the identity map. For d � 2,md gives a topological model of the dynamics
on the Julia set of a degree d hyperbolic and a doubly parabolic Blaschke product.

To set up a framework that also works for singly parabolic or boundary-hyperbolic
Blaschke products uniformly, we consider an extended circle S1

d
, which is naturally

regarded as a cyclically ordered set (see [35, §2]). As a set, S1
d

is constructed from S1

by adding (formal symbols) x�; xC for any point x in the backward orbit of 0 under md
for d � 2. The cyclic ordering on S1

d
is defined so that x� (or xC) is regarded as a point

infinitesimally smaller than x (or bigger than x respectively) in the standard identification
of S1 D R=Z. We use the convention that S11 D S1.
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Given any integer k � 1, the map mk naturally extends to mk W S1d ! S1
d

by set-
ting mk.x˙/ D mk.x/˙. This is well-defined because if x is in the backward orbit of 0
under md , then mk.x/ is also in that orbit.

If f is a degree d boundary-hyperbolic Blaschke product, i.e., f has an attracting
fixed point a on the circle, then the Julia set J of f is a Cantor set on S1. The complement
S1 � J consists of countably many intervals, which are all eventually mapped to the
unique interval I � S1 that contains the attracting fixed point a. The boundary @I consists
of two repelling fixed points of f . Let O.a/ be the backward orbit of the attracting fixed
point a. Then there exists a bijective map �f W S1d ! J.f / [ O.a/ which preserves the
cyclic ordering and such that

f ı �f D �f ımd :

Note that �f .0/ D a and �f .0˙/ D @I .

a D �f .0/

�f .0
C/

�f .0
�/

I

�f .1=3/

�f .2=3/

�f .1=3
C/

�f .2=3
C/

�f .1=3
�/

�f .2=3
�/

Fig. 3.1. An illustration of the conjugacy �f for a degree 3 boundary-hyperbolic Blaschke product.
The Julia set is a Cantor set, constructed by removing the backward orbits of the interval I .

To model the dynamics of the pullbacks, we construct S1
d;D

by adding x�; xC to S1

if mD.x/ is in the backward orbit of 0 under md , and the cyclic ordering is constructed
in the same way. Note that by this construction, mD W S1d;DD0 ! S1

d;D0
is a degree D

covering between cyclically ordered sets (see [35, §2] for detailed definitions). Note that
S1
d;1
D S1

d
. We remark that the intervals can be defined naturally for S1

d;D
, and we denote

them by Œa; b�; .a; b�; Œa; b/; .a; b/ with appropriate boundary points removed.
If v 2 V has pre-period l and period q, we define the cumulative degree of v to be

�.v/ D ı.f l .v//ı.f lC1.v// : : : ı.f lCq�1.v//;

and its cumulative pre-periodic degree to be

�pre.v/ D ı.v/ı.f .v// : : : ı.f
l�1.v//:

We use the convention that �pre.v/ D 1 for all periodic vertices.
We attach an extended circle S1

�.v/;�pre.v/
to a vertex v 2 V . We define an angle func-

tion ˛ at v as an injective map

˛v W TvT ,! S1�.v/;�pre.v/
:
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We say ˛ is regular at v if ˛v.TvT / � S1 � S1
�.v/;�pre.v/

.

Definition 3.1. We say an angle function ˛ is compatible if for any v 2 V ,

(1) ˛v is cyclically compatible: if x1; x2; x3 2 TvT are clockwise oriented, then so are
˛v.x1/; ˛v.x2/; ˛v.x3/;

(2) ˛v is dynamically compatible:

� if v D p and ı.p/ D 1, then there exists a rigid rotation R, which is necessarily a
rational rotation, such that R ı ˛p D ˛p ıDf jTpT ;

� otherwise, mı.v/ ı ˛v D f̨ .v/ ıDf jTvT ;

(3) ˛v is p-compatible: if v ¤ p is periodic and x 2 TvT is the tangent vector in the
direction of p, then ˛v.x/ D 0.

We remark that if v¤ p is a periodic point of period q, and x 2 TvT is in the direction
of p, then Dvf q.x/ D x as f is simplicial. Thus condition (3) is compatible with the
dynamics.

Definition 3.2. An angled tree map is a triple

.f W .T ; p/! .T ; p/; ı; ˛ D ¹˛vº/

of a simplicial map on a pointed finite ribbon tree together with a local degree function ı
and a compatible angle function ˛ which is regular at p.

We shall use f W .T ; p/! .T ; p/ or simply T to denote an angled tree map if the
dynamics, local degree function and angle function are not ambiguous.

Pullback of an angled tree map

Given an angled tree map f W .T ; p/! .T ; p/, one can naturally construct a new angled
tree map by pulling back by the dynamics. More precisely, take v 2V and a tangent direc-
tion a 2 Tf .v/T . Let Sa be the component of T � ¹f .v/º corresponding to the direction
a 2 Tf .v/T . Let B � S1

�.v/;�pre.v/
be the preimage of ˛.a/ 2 S1

�.f .v//;�pre.f .v//
under

the corresponding map from S1
�.v/;�pre.v/

to S1
�.f .v//;�pre.f .v//

. We attach a copy of Sa at
every point in B � ˛.TvT /. The dynamics extend naturally to the new copies by identifi-
cations, and the angular structures are defined by pulling back with the identity map m1.

Let T 1 be the angled tree constructed from T by running the above algorithm for all
vertices v and all tangent directions a 2 TwT . We call

f W .T 1; p/! .T 0; p/ WD .T ; p/ � .T 1; p/

the . first/ pullback of f W .T ; p/! .T ; p/.
Note that each vertex v 2 T 0 has exactly d preimages in T 1 counted with multiplicity,

and the inclusion map i W T 0 ! T 1 is simplicial. Also note that the map f W .T 1; p/!

.T 1; p/ is no longer minimal.
This construction can be iterated. We denote the k-th pullback by f W .T k ; p/ !

.T k ; p/, and the union of the pullbacks by f W .T 1; p/! .T 1; p/.
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External angles, markings and anchored conditions

Similar to the abstract Hubbard trees (see [45, Chapter III, §4]), external angles can be
defined using the dynamics on T . They can be described as follows.

Let d D deg.f / be the degree of f W T ! T . Let T 1 be the union of the pullbacks
of T . Let �.T 1/ be the set of ends of T 1, viewed as a topological space. Note that the
ribbon structure of T 1 makes �.T 1/ a cyclically ordered set. Since T is non-trivial,
�.T 1/ is infinite. The simplicial map f W T 1 ! T 1 induces a map f� W �.T 1/ !
�.T 1/ (cf. [35, §3]). There is a natural cyclical order-preserving map

� W �.T 1/! S1 D R=Z

that transports the dynamics of f� on �.T 1/ to the dynamics ofmd on R=Z (cf. [35, §6]).
We call � an external angle marking, or simply a marking. Since the image �.�.T 1//
is invariant under m�1

d
, it is necessarily dense. We remark that there are d � 1 choices of

markings, and any two markings are related by post-composition with an element of the
automorphism group Z=.d � 1/ of md . An angled tree map together with a marking is
called a marked angled tree map.

Note that the p-compatibility condition in Definition 3.1 gives the unique normal-
ization of angle functions at a periodic vertex v ¤ p. Given a marking � on an angled
tree map T , we can normalize the angle function at all other vertices with the following
anchored convention, which is an analogue of Definitions 2.12 and 2.15.

We remark that 0 may not be in the image �.�.T 1//. But since �.�.T 1// is dense
in R=Z, there exists a sequence n 2 �.T 1/ with �.n/! 0�, i.e., �.n/ approaches 0
from below. We represent each end n by a path in T 1 that starts at p. Since ˛ is regular
at p, p̨ extends to

˛p W TpT 1 ! S1 � S1�.p/:

Since each path n gives a tangent vector xn 2 TpT 1, we can associate an internal angle
tn WD ˛p.xn/ to n. With the standard topology on S1, one can verify that the limit of tn
exists and is independent of the sequence n that we choose. We call tp WD lim tn 2 S1

the internal angle at p with respect to the marking (see Figure 3.2).

Definition 3.3. Let .f W .T ;p/! .T ;p/; ı;˛/ be a marked angled tree map. Let tp be the
internal angle at p with respect to the marking. It is said to be anchored if the following
hold:

� if ı.p/ D 1, then tp D 0;

� if ı.p/ � 2, then tp 2 .� 1
�.p/�1

; 0�;

� if v ¤ p is strictly pre-periodic and x 2 TvT is the tangent vector in the direction of p,
then ˛v.x/ 2 .� 1

ı.v/
; 0�.

We remark that by post-composing the angled functions with rotations that keep the
compatibility condition, one can always make the angled tree map anchored. Through-
out this paper, we shall always assume that an angled tree map is marked and the angle
functions are anchored.
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p v1v2

p v1v2

ı.v1/ D 2

ı.p/ D 2

T 1

T

‘fixed end A’

‘fixed end B’

Fig. 3.2. Vertices in T 1 are sent to vertices in T D T 0 with the same color. This degree 3 angled tree
map has two markings �A; �B . The corresponding ends of zero external angle are illustrated by the
two arrows. Note that 0 2 R=Z is in the image of �A but not in the image of �B . The corresponding
internal angles at p with respect to �A and �B are tp;A D 1=3 and tp;B D 0.

Realizing angled tree maps

Let fn 2Bd be a quasi post-critically finite sequence. By the discussion in §2, we have an
induced (marked) simplicial map f W .T ;p/! .T ;p/with a local degree function ı mod-
eling the dynamics of the critical orbits. By construction, f is minimal. The cumulative
degree and cumulative pre-periodic degree for v are defined similarly.

To define the angle functions, we assign the angle 0 2 S1
�.v/;�pre.v/

to the marked

point tv 2 S1v (see Definition 2.15). The angles are then determined by the conjugacy of
the tangent map with the rescaling limit (see Lemma 2.13). We remark that the angles
assigned at periodic Julia points v are rather artificial. We use the convention to assign the
angles i=�, i D 0; : : : ; � � 1, according to their cyclic order where � is the valence at v.

The above construction gives an angled tree map. An angled tree map .f W .T ; p/!
.T ; p/; ı; ˛/ that arises in this way is said to be realized by fn 2 Bd . Let Tn be the
sequence of quasi-invariant trees for fn. Since we will be working with pullbacks, we
shall say Tn realizes the angled tree map T or the angled tree map T is realized by Tn
when the underlying maps are not ambiguous. We can associate an angled tree map to the
k-th pullback T k

n of the quasi-invariant tree Tn. One can verify that this angled tree map
is the k-th pullback of the angled tree map T . We shall say T k

n realizes T k .

Admissible angled tree maps

Let f W .T ;p/! .T ;p/ be an angled tree map. We now describe a sufficient condition for
realization. A periodic vertex v is said to be attached to p if Œp;v/ contains no Fatou point.
Here Œp; v/ is the path in T that connects p and v with the boundary point v removed.
The core T C of an angled tree map is defined as the convex hull of all periodic vertices
attached to p. Since f is simplicial, any vertex in T C is periodic. Note that if ı.p/ � 2,
then T C D ¹pº.

A vertex is said to be an end point of the finite tree T if the valence at v is 1. We
say a tree T is star-shaped if there exists a unique vertex in T that is not an end point.
The unique vertex is called the center for the star-shaped tree. For k � 2, we call a star-
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shaped tree with k end points a k-star. By our definition, a tree with a single vertex is also
star-shaped with no end point.

Definition 3.4. The core T C is said to be critically star-shaped if

� T C is star-shaped with center p;

� every end point of T C is a periodic Fatou point;

� for any vertex v 2 T C , the angle function ˛v is regular at v.

If ı.p/ � 2, then T C D ¹pº and the conditions are trivially satisfied. If ı.p/ D 1,
these conditions give a way to ‘normalize’ the dynamics at p.

Definition 3.5. An angled tree map f W .T ; p/! .T ; p/ is said to be admissible if

� the core T C is critically star-shaped;

� every periodic branch point other than p is a Fatou point.

Assume T C is critically star-shaped. By Corollary 2.23, the last condition above is
necessary for realization. Thus for ı.p/ � 2, admissibility is a necessary condition for
realization. In §6, we introduce a notion of admissible splitting of a simplicial pointed
Hubbard tree. We shall see that this produces an admissible angled tree map (see Propo-
sition 6.2).

4. Realizing admissible angled tree map

In this section, we shall prove the following theorem:

Theorem 4.1. If a minimal angled tree map f W .T ; p/! .T ; p/ is admissible, then it is
realizable.

The proof is by induction. We start by showing that any degree 2 admissible angled
tree map is realizable. We then show we can build a degree d C 1 admissible angled tree
map from a degree d one. By the induction hypothesis, the degree d admissible angled
tree map is realizable by a sequence of gn 2Bd . The induction step is proved by carefully
adding a zero of the Blaschke product. More precisely, we construct a sequence fn D
ei�n z�an

1�anz
� gn where �n and an are chosen carefully, and we show that the corresponding

angled tree map is as desired.
For our purposes, it is convenient to define the distance dT .v;w/ between two vertices

in T as the number of edges in the shortest path between v and w. Since f is simplicial,
f is distance non-increasing with respect to this metric dT .

More precise statement

A degree d proper holomorphic map f W D ! D is said to be

� 1-anchored if f .1/ D 1;

� fixed point centered if f .0/ D 0;
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� zeros centered if the sum
a1 C � � � C ad

of the points of f �1.0/ (counted with multiplicity) is equal to 0;

� M -uni-critical if the critical points are all within hyperbolic distance M of 0.

Take f 2 Bd . By conjugating with a rotation fixing 0 that sends �f .0/ to 1, we can
canonically identify f with a 1-anchored, fixed point centered Blaschke product. The
following definition can be found in [38, §4]:

Definition 4.2. Let � � V be an invariant subset. To each v 2 � we associate a copy Dv
of the disk, and we define the normalized mapping scheme F for � as a collection of
1-anchored proper holomorphic maps

Fv W Dv ! Df .v/

of degree ı.v/, which are either fixed point centered or zeros centered according as v is
periodic or strictly pre-periodic under f W � ! � .

Denote by �p � V the backward orbit of p. If ı.p/ � 2, the rescaling limits give a
normalized mapping scheme on �p . Since the rescaling limits are marked by the anchored
convention (see Definition 2.15), we say that conjugacies �v between the rescaling limits
and mapping schemes have compatible markings if �v.tv/ D 1. We prove the following
more precise and technical statement which immediately implies Theorem 4.1:

Proposition 4.3. Let f W .T ; p/! .T ; p/ be a minimal admissible angled tree map of
degree d . When ı.p/ � 2, let F be a normalized mapping scheme on �p . There exists a
K-quasi post-critically finite sequence fn 2 Bd realizing the angled tree map such that

(1) the rescaling limits on �p are conjugate to F with compatible markings;

(2) there exists a constant M depending only on the tree map f .and thus independent
of F / such that

(a) for any periodic cycle C other than p, there exists a periodic point v 2 C such
that the first return rescaling limit

F qv W Dv ! Dv

is M -uni-critical, where q is the period of v;

(b) for any strictly pre-periodic vertexw … �p , the rescaling limit Fw WDw !Df .w/
is M -uni-critical and the critical values are within hyperbolic distance M of
0 2 Df .w/.

Note that condition (1) is vacuously satisfied when ı.p/ D 1. We remark that as we
degenerate F ,K may go to infinity. SinceM is independent of F , the last condition says
that nevertheless, the critical points for each vertex v stay at a uniformly bounded distance
from each other. Thus, the first return rescaling limit at v is almost uni-critical. This
provides compactness that will be used in the successive degenerations (see Lemma 4.9
and Proposition 6.15).
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We also remark that the ‘M -uni-critical’ condition may not hold for all periodic points
in the periodic cycle: if there are two or more critical vertices in the periodic cycle, the
fact that the first return map is M -uni-critical at one periodic vertex does not mean that
the map is M -uni-critical at other periodic vertices in this cycle.

Estimates in hyperbolic geometry

We start with some useful estimates that will be used frequently in the proof. The follow-
ing lemma follows from the Schwarz lemma and Koebe distortion theorem.

Lemma 4.4. Let U be a simply connected domain in C with hyperbolic metric �U jdzj.
Then for z 2 U ,

1

2dR2.z; @U /
� �U .z/ �

2

dR2.z; @U /
:

The following fact in hyperbolic geometry is very useful.

Lemma 4.5. Let z; w 2 D with jzj D 1 � ı and jwj D 1 � ıs . If 0 � s < 1, then

sdD.0; z/ � dD.0; w/ � sdD.0; z/C log 2:

If s > 1, then
s.dD.0; z/ � log 2/ � dD.0; w/ � sdD.0; z/:

Proof. Note that dD.0; z/ D log 2�ı
ı

and dD.0; w/ D log 2�ıs

ıs . So

dD.0; w/ � sdD.0; z/ D log.2 � ıs/ � log.2 � ı/s :

If s < 1, then .2 � ı/s � 2 � ıs , so dD.0; w/ � sdD.0; z/ 2 Œ0; log 2�.
If s > 1, then .2 � ı/s � 2 � ıs , so dD.0; w/ � sdD.0; z/ 2 Œ�s log 2; 0�.

Given a 2 D, we denote

ya D a=jaj 2 S1; ıa D 1 � jaj and �a D dD.0; a/:

Lemma 4.6. Let Ma.z/ D
z�a
1�Naz

. Then for 0 < s < 1,

jMa.z/C yaj � 2ı
1�s
a for all z 2 B.0; 1 � ısa/ � BH2.0; s�a/,

where BH2.0; s�a/ is the hyperbolic ball centered at 0 with radius s�a.

Proof. Note that

jMa.z/C yaj D

ˇ̌̌̌
z � aC ya � ya Naz

1 � Naz

ˇ̌̌̌
D

ˇ̌̌̌
ıaz C yaıa

1 � Naz

ˇ̌̌̌
:

Since jzj < 1 and jyaj D 1, it follows that jıaz C yaıaj � 2ıa. Since jzj � 1� ısa, we have
j1 � Nazj � ısa. Thus, jMa.z/C yaj � 2ıa=ı

s
a D 2ı

1�s
a .

More generally, we have the following estimate in terms of hyperbolic geometry:
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Lemma 4.7. Let � > 0. There exists a constant C D C.�/ such that the following holds.
Let Ma.z/ D

z�a
1�Naz

. Let z 2 D be such that the angle †0za between the hyperbolic
geodesic segments Œ0; z� and Œz; a� satisfies †0za � � . Then

jMa.z/C yaj � Cı;

where ı is the positive number such that the hyperbolic ball BH2.0; �/ with � WD dD.a; z/

has Euclidean radius 1 � ı.

Proof. Since the angle between Œa; z� and Œz; 0� is bounded below by � , there exists a
constantC1DC1.�/ such that �a � �z C ��C1, where �aD dD.0;a/ and �z D dD.0;z/.
Thus, there exists a constant C D C.�/ such that ıa � C

2
ızı, where ıa D 1 � jaj and

ız D 1� jzj. By the same computation as in Lemma 4.6, we have jMa.z/C yaj � 2ıa=ız
� Cı.

We shall also use the following estimate for critical points:

Lemma 4.8. Let C;� > 0. Let x1; : : : ; xk ; z 2D be kC 1 points with angles†xizxj � �
for any pairs i; j . Let f W D ! D be a proper map of degree d such that f .z/ D a and
f .xi / D b for all i . Suppose that

dD.z; xi / � dD.a; b/C C:

Then there exists a constant R D R.C; �; d/ such that there are k � 1 critical points
.counted with multiplicity/ of f in BH2.z; R/.

Proof. Let L D dD.a; b/, and let zi;t and at be the points on the geodesic segments
Œz; xi � and Œa; b� with dD.z; zi;t / D dD.a; at / D t . Since dD.zi;t ; xi / � LC C � t , by
the Schwarz lemma we have

f .zi;t / 2 BH2.a; t/ \ BH2.b; LC C � t /:

Thus, there exists a constant R1 D R1.C / such that dD.f .zi;t /; at / � R1. Hence
there exists a constant R2 D R2.R1; d / such that dD.zi;t ; f

�1.at // � R2 (see [35,
Corollary 10.3]). Since the angles †xizxj are bounded from below, there exists a
constant R3 D R3.�/ such that the balls BH2.zi;t ; R2/ are disjoint for each t � R3.
Thus there are k different preimages of aR3

in the ball BH2.z; R2 C R3/. We have
f .BH2.z;R2 CR3// � BH2.a;R2 CR3/ by the Schwarz lemma. Let U be the compo-
nent of f �1.BH2.a;R2 CR3// that contains z. Since f W D! D is proper, U is simply
connected. By Theorem 2.6, there exists a constantRD R.R2;R3; d /D R.C; �; d/ such
that U � BH2.z;R/. The degree of f W U ! BH2.a;R2 CR3/ is at least k, so there are
at least k � 1 critical points in U � BH2.z; R/, proving the lemma.

The following uniform separation property will also be used:

Lemma 4.9. Let f W D ! D be a proper map of degree d that is M -uni-critical. Then
there exists � D �.M/ > 0 such that for any t 2 S1, any two points in f �1.t/ are at least
a distance of � apart in the standard Euclidean metric on S1.
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Proof. Since post-composing by Isom.D/ does not change the statement of the lemma,
we may assume f 2 Bd . Since the critical set is contained in BH2.0;M/, f lives in a
compact subset of Bd , and the conclusion follows.

Realization for degree 2 angled tree maps

Let f W .T ; p/ ! .T ; p/ be a minimal admissible angled tree map. If ı.p/ D 2, then
T D ¹pº and we can simply take the constant sequence fn.z/ D Fp.z/. Therefore we
may assume ı.p/ D 1. By the compatibility condition, there exists a rigid rotation R
such that R ı ˛p D ˛p ıDf jTpT . Note that here R is necessarily a rational rotation. By
the admissibility condition, the angled tree map is uniquely determined by this rotation
number:

T D

q�1[
kD0

f k.Œp; c�/;

where c is the unique critical vertex of T . The realization for such angled tree maps has
been established in [35, §14] using ‘strong convergence’. We give a different proof here,
as the induction step uses the same idea.

Lemma 4.10. Proposition 4.3 holds in degree 2.

Proof. By the discussion in the previous paragraph, we may assume that ı.p/ D 1 with
rotation number r=q. Thus conditions .1/ and .2/ in Proposition 4.3 are trivially satisfied,
and it suffices to construct a quasi post-critically finite fn 2 B2 realizing T of rotation
number r=q.

Let R.z/ D ei2�r=qz be the rigid rotation with rotation number r=q. Let Mn.z/ D
z�an

1�anz
where an 2 RC and dD.0; an/ D n. Note Mn.z/! �z algebraically.

We consider the sequence fn.z/ D �R.z/Mn.z/ which is conjugate to a map in B2

by some rotation. Abusing notation, we shall ignore this difference and show that fn is
quasi post-critically finite and realizes the angled tree map with rotation number r=q.

Let bn 2 RC with dD.0; bn/ D n=2 be the hyperbolic midpoint of Œ0; an�. Since the
zeros of fn are 0 and an, by Lemma 4.8 there exists some constant K1 such that

dD.bn; cn/ � K1 (4.1)

where cn is the critical point of fn. Since dD.0; bn/ D
1
2
dD.0; an/, we have 1 � jbnj D

1� jR.bn/j � ı
1=2
an

by Lemma 4.5. Thus, by Lemma 4.6, the error term jfn.bn/�R.bn/j
satisfies

jfn.bn/ �R.bn/j D jR.bn/j jMn.bn/C 1j � 2ı
1=2
an

(4.2)

where ıan
D 1 � janj.

By the Schwarz lemma, dD.0; fn.bn// � n=2, so 1 � jfn.bn/j � ı
1=2
an

as well.
Therefore, by Lemma 4.4, the hyperbolic metric along the Euclidean segment
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Œfn.bn/; R.bn/�R2 is bounded above by

�H2.z/jdzj �
2

ı
1=2
an

jdzj: (4.3)

Thus, by (4.2) and (4.3),

dD.fn.bn/; R.bn// � 2ı
1=2
an
�
2

ı
1=2
an

D 4:

A similar proof and the Schwarz lemma show that for k D 1; : : : ; q,

dD.f
k
n .bn/; R

k.bn// � K2

for some constant K2. By the Schwarz lemma and (4.1), for k D 1; : : : ; q,

dD.f
k
n .cn/; R

k.bn// � K3

for some constant K3. Therefore, fn is a quasi post-critically finite sequence and realizes
the angled tree map with rotation number r=q.

Construction of the reduction

Let f W .T ; p/! .T ; p/ be a minimal admissible angled tree map of degree d C 1. We
shall construct a new admissible angled tree map of degree d by removing a ‘furthest’
critical point.

Let T 1 be the first pullback of T . Then p has exactly d C 1 preimages in T 1

counted with multiplicity. Since f is simplicial, f W T 1! T 1 is distance non-increasing
with respect to the edge metric dT 1 . Since the inclusion map i W T ! T 1 is simplicial,
dT 1 agrees with dT on T .

It is convenient to introduce a radius function r WV1!N by setting r.v/D dT 1.v;p/.
Denote rf D maxv2f �1.p/ r.v/. We say w 2 f �1.p/ � T 1 is a furthest preimage of p if
r.w/ D rf .

Lemma 4.11. Let v 2 V � V1. Then

r.v/C r.f .v// � rf :

Proof. First assume v is a critical vertex. Suppose for contradiction that r.v/C r.f .v//
> rf . Note that f .v/ ¤ p, as otherwise, v gives a further preimage of p, contrary to the
definition of rf .

Let a 2 Tf .v/T � Tf .v/T 1 be the tangent vector associated to the component contain-
ing p. By construction of T 1, the tangent vector a has ı.v/ � 2 preimages in TvT 1 under
the tangent map Df W TvT 1 ! Tf .v/T � Tf .v/T

1. At least one direction will increase
the radius function. Thus, by considering the pullback of Œp;f .v/� in the increasing direc-
tion, we can find a preimage x of p with radius r.x/ D r.v/C r.f .v// > rf , which is a
contradiction.
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If v is post-critical, let v D f l .c/ where c is critical. Since f is distance non-
increasing, r.f .v// � r.v/ � r.f .c// � r.c/, so r.v/C r.f .v// � rf .

If v is neither critical nor post-critical, since f is assumed to be minimal on T , v is
not an end point. Let w1;w2 be two critical or post-critical vertices such that v 2 Œw1;w2�
and there are no other critical or post-critical points in .w1; w2/. Thus, f restricts to an
isomorphism from Œw1; w2� to Œf .w1/; f .w2/�. Note that at least one of the two points,
sayw1, has larger radius than v. Write r.v/D r.w1/� l for some positive integer l . Since
f is an isomorphism from Œw1;w2� to Œf .w1/;f .w2/�, we have r.f .v//� r.f .w1//C l .
Thus, r.v/C r.f .v// � r.w1/C r.f .w1// � rf .

Let w be a preimage of p in T 1. Then there exists at least one critical point on the
path Œp;w� � T 1. A critical point cw 2 V on Œp;w� is said to be furthest if r.cw/ � r.c/
for any critical point c 2 V on Œp; w�. We call cw the critical point associated to w.

Lemma 4.12. If w 2 V1 is a furthest preimage of p, then

(1) rf D r.cw/C r.f .cw//;

(2) T \ Œp; w� D Œp; cw �.

Proof. Since there are no critical points in .cw ; w�, we have

dT 1.cw ; w/ D dT 1.f .cw/; p/ D r.f .cw//

and the first statement follows.
Suppose for contradiction that the second statement does not hold. Since f is mini-

mal, there exists a post-critical vertex v0 on .cw ; w�. Note that v0 has a preimage v in T

as v0 is post-critical. Since f is distance non-increasing, we have r.f .cw// � r.cw/ <
r.v0/� r.v/, so r.v/C r.v0/D r.v/C r.f .v// > rf , which contradicts Lemma 4.11.

Definition 4.13. A preimage w 2 V1 of p is said to be critically furthest if

� r.w/ D rf ;

� r.cw/ D max ¹r.cv/ W f .v/ D p and r.v/ D rf º.

We remark that cw may not be a furthest critical point. It is only furthest among the
critical points associated to furthest preimages of p.

Let w be a critically furthest preimage of p. Note that Œp; w� is a path in the pull-
back T 1. The following lemma says that the associated critical point cw 2 Œp; w� is an
end point of the original tree T .

Lemma 4.14. If w 2 V1 is a critically furthest preimage of p, then cw is an end point
of T .

Proof. Suppose for contradiction that cw is not an end point of T . There is at least one
direction a 2 Tcw

T for which the radius function is increasing. By Lemma 4.11,Df.a/ 2
Tf .cw/T corresponds to the component containing p. Thus, by considering the pullback
of Œp; f .cw/� in this direction, we find another furthest preimage v of p. Since Œp; cw � is
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strictly contained in Œp; v/ \ T , by Lemma 4.12 (2), cw is not the furthest critical point
on the path Œp; v�. Let cv be the associated critical point for v. Then r.cv/ > r.cw/. Thus,
w is not critically furthest, which is a contradiction.

Let w be a critically furthest preimage of p. We first define

Qf D f W .T ; p/! .T ; p/

with the same degree function and angle function except at c WD cw , where Qı.c/ D
ı.c/ � 1. Since c is an end point by Lemma 4.14, it is easy to check the above defini-
tion gives an admissible angled tree map of degree d .

Let zT � T be the angled subtree where the dynamics Qf is minimal. We call

. Qf W . zT ; p/! . zT ; p/; Qı; Q̨ /

the reduction of f .
Note that if ı.c/ � 3, then the dynamics Qf on T is minimal, so zT D T . If ı.c/ D 2,

then the dynamics Qf may or may not be minimal on T (depending on whether c is in the
post-critical set of other critical points or not). In any case, T is the convex hull of zT and
the orbit of c.

Induction step for realization

Let f W .T ; p/! .T ; p/ be a minimal admissible angled tree map of degree d C 1. If
ı.p/ � 2, let F be a marked and normalized mapping scheme on �p .

If ı.p/ D d C 1, then Proposition 4.3 is vacuously satisfied by taking the constant
sequence fn.z/D Fp.z/. Thus, we assume ı.p/ � d . Note that in this case, Qı.p/D ı.p/
and zFp D Fp .

We will break up the proof of Proposition 4.3 into three steps:

� Using induction, we first show that the quasi-invariant tree f W .T ; p/ ! .T ; p/ is
realized (Lemma 4.15), which already implies Theorem 4.1.

� We then show that the conditions for periodic rescaling limits in Proposition 4.3 are
satisfied (see IH4 below and Lemma 4.16).

� Finally, we perform surgery so that the conditions for strictly pre-periodic rescaling
limits in Proposition 4.3 are satisfied (Lemma 4.17).

Let . Qf W . zT ; p/ ! . zT ; p/; Qı; Q̨ / be the reduction of f . We assume the following
technical and auxiliary induction hypotheses for the reduction. It is easy to verify that all
these induction hypotheses are satisfied for the degree 2 base case.

IH1. There exists a quasi post-critically finite sequence Qfn of degree d realizing Qf W
. zT ; Qp/! . zT ; Qp/, with isomorphisms Q�n W zT ! zTn, such that the rescaling limit zFp at p
is conjugate to zFp with compatible marking.
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IH2. There exists a sequence Rn !1 such that

dD. Q�n.v/; Q�n.w// D d zT .v; w/Rn CO.1/;

where O.1/ depends on Qf and zF .

IH3. Let v 2 zV with f .v/ ¤ p. Let s0 D limf .v/ Q�n.p/ 2 S1
f .v/

and zF �1v .s0/ D

¹t1; : : : ; tQı.Qv/º � S1v . Then there exists Q� D Q�. Qf / such that

jti � tj j � Q� for all i ¤ j:

Let wi;n be the nearest zero of Qfn with limv wi;n D ti . Then

dD. Q�n.v/; wi;n/ D dD. Q�n.v/; wj;n/ for all i ¤ j:

IH4. There exists a constant zL D zL. Qf / such that for any periodic cycle C other than p,
we can order the cycle as C D ¹v1; : : : ; vqº so that

lim
n!1

dD. Q�n.viC1/; Qfn. Q�n.vi /// � zL for all i D 1; : : : ; q � 1:

We remark that IH3 is vacuously satisfied if ı. Qv/ D 1. The nearest zero in IH3 exists
as zFv.ti / D s0. By Lemma 4.8, IH3 gives a constant zR, depending only Qf , such that
BH2.�n.v/; zR/ contains ı.v/� 1 critical points of Qfn. Thus IH4 implies that the rescaling
limit

zF qv1
W Dv1

! Dv1

is zM -uni-critical for some constant zM D zM. Qf / depending only on Qf .
We also remark that the estimate in IH4 may not hold for i D q, as the hyperbolic

distance between a critical point and its image under the first return map QF qv1
may depend

on F .

Lemma 4.15. There exists a quasi post-critically finite sequence fn 2 Bd which realizes
f W .T ; p/! .T ; p/, and satisfies IH1–IH3.

Proof. We consider two cases.

Case (1): zT D T . We set �n.v/D Q�n.v/ for v 2 V . LetMc;n;M�.c/;n 2 Isom.D/ be the
coordinate at c and �.c/ respectively. Let zFc be the rescaling limit at c. Since ı.p/ � d ,
we have c ¤ p.

If f .c/ D p, set wn D �n.c/.
Otherwise, let s0D limf .c/ �n.p/ 2 S1

f .c/
. Let t1; : : : ; tQı.c/ 2 S1c be the preimages of s0

under zFc . Let wi;n be the nearest zero of Qfn to cn with limc wi;n D ti .
By IH3, we choose a point t ¤ ti 2 S1c so that the t; t1; : : : ; tQı.c/ are at least � apart,

where � depends only on f . Let wn 2 D be such that

� Mc;n.wn/ lies on the geodesic ray Œ0; t/;

� dD.�n.c/; wn/ D dD.�n.c/; wi;n/ for any i .

Let ywn D wn

jwnj
2 S1 and An.z/ D z�wn

1�wnz
.
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Consider the sequence

fn.z/ D
�1

ywn
An.z/ Qfn.z/;

which is conjugate to a map in Bd by some rotation. Again, abusing notation, we shall
not distinguish fn and its conjugate in Bd in this proof.

Throughout this proof, if not specified, the constants and O.1/ depend on the tree
map f and the mapping scheme F . Let v 2 V . We first claim that there exists a con-
stant K1 with

dD.fn.�n.v//; Qfn.�n.v/// � K1:

Denote ın WD 1 � jwnj and �n WD dD.0; wn/. Then �n D r.w/Rn C O.1/. Let s D
r.v/=r.w/. By Lemma 4.7, there exists some constantK2 such that the error term satisfies

jfn.�n.v// � Qfn.�n.v//j D j Qfn.�n.v//j jAn.�n.v//C ywnj � K2ı
1�s
n : (4.4)

By Lemma 4.11, we have r.v/C r.f .v// � rf D r.w/. Thus

dD.0; Qfn.�n.v/// D r.f .v//Rn CO.1/ � .1 � s/�n CO.1/:

Since
ˇ̌
�1
ywn
An.z/

ˇ̌
< 1 for z 2 D,

dD.0; fn.�n.v/// � dD.0; Qfn.�n.v/// � .1 � s/�n CO.1/:

Thus, by Lemma 4.4, the hyperbolic metric at z along the Euclidean segment Œfn.�n.v//;
Qfn.�n.v//�R2 satisfies

�H2.z/jdzj � K3
1

ı1�sn

jdzj:

Together with (4.4), we conclude that

dD.fn.�n.v//; Qfn.�n.v/// � K1

for some constant K1. Thus, the vertices for Tn are K1-quasi-invariant. The same proof
as in Proposition 2.9 shows that Tn is quasi-invariant under fn.

Note that fn and Qfn have the same set of zeros except forwn. If f .c/D p, i.e., c Dw,
then wn D �n.c/, so ı.c/ D Qı.c/C 1.

Otherwise, by IH3 and Lemma 4.8, there are ı.c/ critical points within a bounded
distance of �n.c/, so ı.c/ D Qı.c/C 1. The same argument also shows ı.v/ D Qı.v/ for
all v ¤ c. A similar estimate on the first pullback tree T 1 allows us to verify that we
have the correct marking for rescaling limits. So fn realizes the angled tree map f W
.T ; p/! .T ; p/.

By construction, IH1–IH3 are satisfied. This proves Case (1).

Case (2): zT ¨ T . We show we can reduce to the first case. During the reduction, we will
encounter angled tree maps that are no longer minimal. The notion of realization naturally
generalizes to such maps.
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If c 2 T is eventually mapped into zT by Qf , then there exists k � 1 with T � zT k for
some pullback of zT , which is realized by the quasi-invariant tree zT k

n for Qfn. It is easy
to see that zT k satisfies all the induction hypotheses as all the additional vertices have
degree 1. Applying the argument in Case (1) to zT k , we get the conclusion of Lemma 4.15.

Thus, we assume that the orbit of c does not intersect zT .
Suppose c is periodic with period q. Let a D proj zT .c/ be the projection of c to zT .

Since c is periodic, and f is distance non-increasing, a is periodic as well. Since there
are no periodic Julia branch points other than p, c is adjacent to a and the period of a
divides q.

If a is a periodic Fatou point, then the first return rescaling limit zF at a has degree� 2.
Let t 2 S1

�.a/;�pre.a/
be the angle associated to the direction of c. Then the corresponding

repelling periodic point s 2 S1a for zF is not a hole for zF by Lemma 2.13.
Let Ma;n 2 Isom.D/ be the local coordinate at a. We define Q�n.c/ so that

� Ma;n. Q�n.c// lies in the geodesic ray Œ0; s/;

� dD.0;Mn. Q�n.c/// D Rn D dT .a; c/Rn.

We define Q�n. Qf k.c// D Qf kn .
Q�n.c// for k D 1; : : : ; p � 1. We construct

Tn D zTn [

q�1[
kD0

Œ Q�n. Qf
k.a//; Q�n. Qf

k.c//�:

It is easy to verify that the map Qfn on Tn realizes the (non-minimal) angled tree map
Qf W .T ;p/! .T ;p/ and satisfies all the induction hypotheses as all the additional vertices

have degree 1. Thus the lemma follows from the argument in Case (1).
If a is a periodic Julia point and a ¤ p, then since T is admissible, a is not a branch

point for T . Thus a is an end point of zT . Therefore, if t 2 S1
�.a/;�pre.a/

is the angle at a

associated to the direction of c, it corresponds to the unique repelling fixed point s 2 S1a
for the degree 1 first return rescaling limit zF at a. The proof is similar to the previous
case.

If a is a periodic Julia point and a D p, then T is a star-shaped tree. The lemma then
follows directly from a similar argument to that for Lemma 4.10 (see also [35, §14]).

Finally, suppose c is strictly pre-periodic. Let b D Qf l .c/ where l is the pre-period,
and a D proj zT .b/. Let T 0 � T be the convex hull of zT and the orbit of b. The same
argument as for c periodic shows that T 0 is realized by Qfn. Then a similar argument to
the case when c is mapped into T shows that by pulling back, Qf W .T ; p/! .T ; p/ is
realized by Qfn and satisfies all the induction hypotheses. Thus, the argument in Case (1)
shows that f W .T ; p/! .T ; p/ is also realizable. This proves Case (2).

Rescaling limits for periodic orbits

We now prove that the bound for periodic orbits is independent of F .

Lemma 4.16. The realization fn for f W .T ; p/! .T ; p/ satisfies IH4.
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Proof. Recall that we have two cases after the reduction. We consider Case (1) for zT D T

here. The same modification as in Lemma 4.15 can be used to prove Case (2) for zT ¨ T .
After passing to a subsequence, we may assume that all limits exist in the follow-

ing discussion. Let ¹v1; : : : ; vqº be a periodic cycle. Changing the ordering if necessary,
by IH4, there exists M1 DM1. Qf / such that for i D 1; : : : ; q � 1,

lim
n!1

dD.�n.viC1/; Qfn.�n.vi /// �M1: (4.5)

We claim that after passing to a subsequence, there exists a constant M2 D M2.f /

such that for all i D 1; : : : ; q,

lim
n!1

dD.fn.�n.vi //; Qfn.�n.vi /// �M2: (4.6)

Let w be the new preimage of p. Then r.w/ D rf . Since vi 2 V , by Lemma 4.11 we
have r.vi /C r.f .vi // � rf . Since vi is periodic, r.f .vi // D r.vi /. Thus r.vi / � rf =2.

Suppose we have strict inequality r.vi / < rf =2. Then the error term is

jfn.�n.vi // � Qfn.�n.vi //j � K1ı
1�r.vi /=rf
n ;

where K1 is a constant depending on f and F . The hyperbolic metric at Qfn.�n.vi // and
fn.�n.vi // is

�H2.fn.�n.vi ///jdzj � �H2. Qfn.�n.vi ///jdzj � K2ı
�r.f .vi //=rf
n jdzj;

where K2 is a constant depending on f and F . Since ın ! 0, and

1 � .r.vi /C r.f .vi ///=rf D 1 � 2r.vi /=rf > 0;

we have

lim
n!1

dD.fn.�n.vi //; Qfn.�n.vi /// � lim
n!1

K1K2ı
1�

r.vi /Cr.f .vi //

rf
n D 0:

Thus, after passing to a subsequence, the claim follows by simply taking the constant
M2 D 1.

Therefore, we only need to consider the case r.vi / D rf =2. Suppose vi is not the
midpoint of Œp; w�. Then a similar estimate to the one above would also give

lim
n!1

dD.fn.�n.vi //; Qfn.�n.vi /// D 0;

so the claim follows in this case as well.
Finally, suppose vi is the midpoint of Œp; w�. By IH3 and Lemma 4.9, there exists a

constant � D �.f / such that for any n, we have

†�n.w/�n.vi /�n.p/ � �:

By the Schwarz lemma,

dD.0; Qfn.�n.vi /// � dD.�n.w/; �n.vi //:
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Let �n > 0 be such that j Qfn.�n.vi //j D 1� �n. Recall that fn.z/D �1ywn
An.z/ Qfn.z/, where

An.z/ D
z��n.w/

1��n.w/z
, and ywn D

�n.w/
j�n.w/j

2 S1. By Lemma 4.7, there exists a constantK3 D
K3.�/ such that for all n, jAn.�n.vi //C ywnj � K3�n. Therefore,

jfn.�n.vi // � Qfn.�n.vi //j D j Qfn.�n.vi /j

ˇ̌̌̌
1C

1

ywn
An.�n.vi //

ˇ̌̌̌
� K3�n:

By Lemma 4.5,

�H2.fn.�n.vi ///jdzj � �H2. Qfn.�n.vi ///jdzj �
4

�n
jdzj:

Therefore,
dD.fn.�n.vi //; Qfn.�n.vi /// � 4K3:

Since K3 depends only on f , the claim follows.
Combining (4.5) and (4.6), there exists M3 DM3.f / such that

lim
n!1

dD.�n.viC1/; fn.�n.vi /// �M3 for all i D 1; : : : ; q � 1.

Rescaling limits for strictly pre-periodic orbits

Let fn 2Bd be the quasi post-critically finite sequence realizing T , constructed as above.
Using a standard quasi-conformal surgery argument (cf. [38, Theorem 5.7] or [8]), we
show

Lemma 4.17. We can modify fn so that it satisfies the conditions of Proposition 4.3.

Proof. Let fn 2 Bd be constructed as above. Then fn has the correct rescaling limit at
the periodic orbits. We need to modify the dynamics on the strictly pre-periodic vertices
to get the desired rescaling limits while keeping the rescaling limits on periodic points
unchanged. Assume ı.p/ � 2, and let v be a strictly pre-periodic point with f .v/ D p.
The other strictly pre-periodic points can be treated using the same argument.

If ı.v/ D 1 then we can modify the marking �n so that Fv.0/ D 0, and thus v is
marked and normalized.

If ı.v/ � 2, we choose a large ball B.0; r/ � Dp containing all critical values
of the mapping scheme Fv and Fv . We choose a larger ball B.0; s/ � Dp so that
F �1v .B.0; r// � F �1v .B.0; s//. Let U D F �1v .B.0; r// � Dv and V D F �1v .B.0; s//

� Dv . Since fn ıMv;n converges compactly on D to Fv , there exists a component Vn of
.fn ıMv;n/

�1.B.0; s// approximating V . For sufficiently large n, we define

Qgn.z/ D

8̂̂<̂
:̂
fn.z/; z …Mv;n.Vn/;

Fv ıM
�1
v;n.z/; z 2Mv;n. xU/;

Hn.z/; z 2Mv;n.Vn � xU/;

whereHn.z/ is aK-quasi-regular degree ı.v/ covering between the annuliMv;n.Vn � xU/

and B.0; s/ � B.0; r/ interpolating boundary values. Note K can be chosen to be inde-
pendent of n. Let �0n be the Beltrami differential on D associated to Qgn. Then �0n D 0
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away from the annulus Mv;n.Vn � xU/. For sufficiently large n, orbits of Qgn can pass
through Mv;n.Vn � xU/ at most once. We extend �0n to a Beltrami differential on yC by
reflecting along S1. Thus, we can construct a Qgn-invariant Beltrami differential �n which
has bounded dilatation. By the measurable Riemann mapping theorem, there exists a K-
quasiconformal map  n and a Blaschke product gn such that

Qgn D  
�1
n ı gn ı  n:

Let Lv;n 2 Isom.D/ with Lv;n.0/ D  n.vn/, and set  v;n D L�1v;n ı  n ıMv;n. We have
the following commutative diagram:

.D; 0/ .D; vn/ .D; Qgn.vn//

.D; 0/ .D;  n.vn// .D; gn. n.vn///

Mv;n

 v;n

Qgn

 n  n

Lv;n gn

After passing to a subsequence,Mv;n ı Qgn converges compactly on D to a proper map
of degree ı.v/, and  n,  v;n converge toK-quasiconformal maps that preserve the circle.
Thus, Lv;n ı gn converges to a proper map of degree ı.v/. We denote this rescaling limit
by Gv . Since for sufficiently large n,  v;n is conformal on U where Qgn ıMv;n D Fv
and U contains all critical points of Fv , Gv is conformally conjugate to Fv (see [38,
Lemma 5.10]). Adjusting the coordinate Lv;n and interpolating the function Hn if neces-
sary, we can assume that the rescaling limitGv is normalized and has compatible marking.

We now show the surgery does not change the rescaling limits on periodic points. Let
w 2 V be a periodic point. Without loss of generality, we assume w is fixed. Let� � Dw
be a compact set.

We claim that for all sufficiently large n, the orbit of z 2Mw;n.�/ under fn does not
pass through Mv;n.Vn/. Indeed, since v is strictly pre-periodic, there exists k0 such that
for all k � k0 and all sufficiently large n,

dD.pn; f
�k
n .Mv;n.Vn/// � 2dT .p;w/Rn:

Therefore by the Schwarz lemma, for all sufficiently large n and z 2Mw;n.�/, f kn .z/ …
Mv;n.Vn/ for all k � k0. On the other hand, since w is fixed, for sufficiently large n and
z 2 Mw;n.�/, f kn .z/ … Mv;n.Vn/ for all k � k0. Therefore, .M�1w;n/

��n converges to 0
in L1 norm. Let Lw;n 2 Isom.D/ with Lw;n.0/ D  n.wn/ so that

 w;n WD L
�1
w;n ı  n ıMw;n

fixes 0; 1;1. Thus,  w;n converges uniformly to the identity map (see [19, Proposition
4.7.2]). Denote gw;n D L�1w;n ı gn ı Lw;n and Qgw;n D M�1w;n ı Qgn ıMw;n. We have the
commutative diagram

.D; 0/ .D; wn/ .D; Qgn.wn// .D; Qgw;n.0//

.D; 0/ .D;  n.wn// .D; gn. n.wn/// .D; gw;n.0//

Mw;n

 w;n

Qgn

 n  n

Mw;n

 w;n

Lw;n gn Lw;n
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Therefore, the rescaling limit Gw WD limn!1L
�1
w;n ı gn ı Lw;n equals Fw , i.e., we have

not changed the rescaling limits at the periodic points.
By choosing the region of modification carefully (see [38, Lemma 5.9]), the same

argument allows us to modify all strictly pre-periodic points in V simultaneously. It is
easy to verify that the modified sequence realizes f W .T ; p/! .T ; p/ and satisfies the
two conditions in Proposition 4.3.

5. Pointed Hubbard trees

In this section, we will prove the following necessary condition for a geometrically finite
polynomial to be on the boundary of Hd :

Proposition 5.1. Let .H; p/ be the pointed Hubbard tree for a geometrically finite poly-
nomial yP 2 Hd . Then .H; p/ is iterated-simplicial.

Pointed Hubbard trees

Recall that given a monic and centered polynomialP with connected Julia set, there exists
a unique Böttcher map normalized with derivative 1 at infinity. This gives a unique choice
of the angle 0 external ray, and thus a marking on P . In this section, all polynomials
considered are monic and centered.

Given a geometrically finite polynomial yP with connected Julia set, it can be per-
turbed into a subhyperbolic polynomial with topologically conjugate dynamics on the
Julia set [17]. A quasi-conformal surgery then gives a post-critically finite polynomial P
associated to yP [18].

For a post-critically finite polynomial P , the Hubbard tree H , introduced in [14],
is defined as the ‘regulated hull’ of the critical and post-critical points in the filled
Julia set KP . More precisely, an arc I � KP is called regulated if its intersection with
any bounded Fatou component consists of (at most two) segments of internal rays. The
Hubbard tree is the minimal closed regulated connected subset of K.P / containing the
critical and post-critical points (see [45, §1]).

The polynomial restricts to a map P W H ! H . In our setting, the Hubbard tree H
is marked by the Böttcher map. We say that P is simplicial on H if there exists a finite
simplicial structure onH for whichP is a simplicial map, i.e.,P sends an edge ofH to an
edge ofH . Abusing notation, we callH a simplicial Hubbard tree if the map P WH !H

is simplicial.
The realization of Hubbard trees has been studied in [45]. It is proved that an abstract

angled Hubbard tree is realizable by a post-critically finite polynomial if and only if the
tree is expanding. Thus, we shall not distinguish the Hubbard trees of monic and centered
post-critically finite polynomials from the abstract expanding angled Hubbard trees with
markings.

Definition 5.2. Let H be a Hubbard tree and p 2 H be a fixed point of P . The pair
.H; p/ is called a pointed Hubbard tree.
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A point z 2 J on the Julia set is said to be a cut point if J � ¹zº is disconnected. The
valence at z is defined as the number of components of J � ¹zº.

Let yP 2 @Hd be a geometrically finite polynomial. There exists a special non-
repelling fixed point yp D limpn of yP , where pn is the attracting fixed point of Pn 2 Hd

and Pn! yP . We remark that yp can still be an attracting fixed point for yP (see the middle
or the right example in Figure 1.1). This happens when some critical points stay at a
bounded hyperbolic distance from the attracting fixed point, while some other critical
points escape.

Let P be the corresponding post-critically finite polynomial with Hubbard tree H .
The special non-repelling fixed point yp gives a fixed point H constructed as follows. We
remark that the reason why we need to do some modification is that if the non-repelling
fixed point yp is on the Julia set, the corresponding fixed point for P may or may not be
on the Hubbard tree H .

� If yp is attracting, then it is contained in a fixed critical Fatou component. We set p to
be the corresponding Fatou fixed point in H .

� If yp is a parabolic end point, then yp is on the boundary of a unique fixed critical Fatou
component. If the corresponding Julia fixed point is in H , we set p to be that point;
otherwise, we set p to be the Fatou fixed point in H corresponding to the fixed critical
Fatou component.

� If yp is a parabolic cut point, then the corresponding Julia fixed point is contained inH .
We set p to be the corresponding Julia fixed point.

We call .H; p/ the pointed Hubbard tree corresponding to yP .
For f 2 Bd , any point in D is mapped towards the attracting fixed point 0 by the

Schwarz lemma. The following key proposition is a manifestation of the Schwarz lemma
for maps on @Hd .

Proposition 5.3. Let yP 2 Hd be geometrically finite with the special non-repelling fixed
point yp. If yv is a periodic cut point in J D J. yP / with valence �, then yv is parabolic.
Moreover, let K D K. yP / be the filled Julia set of yP .

� If yv D yp, then yv has exactly � attracting basins which are in bijective correspondence
with components of K � ¹yvº.

� If yv ¤ yp, then yv has exactly � � 1 attracting basins which are in bijective correspon-
dence with components of K � ¹yvº that do not contain yp.

Proof. The fact that yv is parabolic follows immediately from the stability of landing rays
(see [16, Lemma B.1]). Note that there are exactly � external rays landing at yv.

If yv D yp, then for any approximating polynomial Pn 2Hd of yP , there are � C 1 peri-
odic points (� repelling and one attracting) of Pn that converge to yv. Thus the parabolic
multiplicity of yv is � C 1, so there are � C 1 attracting basins. Since each component of
K � ¹yvº can correspond to at most one attracting basin of yv, and different components
of K � ¹yvº correspond to different attracting basins, the first case follows.

If yv ¤ yp, then the parabolic multiplicity of yv is �.
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We claim the component of K � ¹yvº containing yp does not give an attracting basin.
Note that the proposition follows from the claim as there are � � 1 attracting basins and
� � 1 components of K � ¹yvº that do not contain yp. We shall prove the claim using
the corresponding pointed Hubbard tree .H; p/. The periodic cut points for yP are in
correspondence with the periodic Julia cut points in H and there are only finitely many
periodic cut points as they are all parabolic.

Suppose v 2H is a closest periodic Julia cut point to p that does not satisfy the claim,
i.e., all periodic Julia cut points on Œp; v/ satisfy the claim. If there exist Julia periodic
points in Œp; v/, let w be the one furthest from p. Let uw be the vertex adjacent to yw
on .w; v/. Since yw satisfies the claim, uw is a Fatou periodic point. If there are no Julia
periodic points in Œp; v/, then p is a Fatou fixed point and let uw D p. Since yv does not
satisfy the claim, the adjacent vertex uv 2 Œuw ; v/ is a Fatou fixed point. If uw ¤ uv , there
exists a Julia periodic point in .uw ; uv/ which is necessarily a cut point, contradicting
the assumption that w is the furthest periodic Julia point. Thus uw D uv . Let � be the
corresponding Fatou component for yP . Then� converges to two distinct boundary points
under iteration, which is a contradiction. The claim follows and we conclude the proof of
the proposition.

As an illustration of the second case, consider the geometrically finite polynomial
yP 2 @H4 in Figure 1.3 (b). There is a parabolic fixed point yv ¤ yp with valence 3. This

fixed point has parabolic multiplicity 3, and is on the common boundary of three Fatou
components U1; U2; U3. The Fatou component U1 that contains yp gives a repelling direc-
tion at yv. The attracting basins at yv are thus in bijective correspondence with the other two
Fatou components.

Pointed simplicial tuning

If ı.p/ � 2, we define a combinatorial operation called pointed simplicial tuning on a
pointed Hubbard tree .H; p/.

Let .HQ; p0/ be a marked pointed simplicial Hubbard tree of degree ı.p/ associated
to a monic and centered polynomialQ. The marking gives an identification of the incident
edges with external rays for HQ. Let Hp be the regulated hull of HQ with the landing
points of those external rays (viewed as an abstract angled tree). As the first step, we
remove p and glue the Hp to the incident edges at p. We remark that to be more pre-
cise, we need to remove Tp D H \ Up , where Up is the Fatou component of p for the
polynomial P associated to the Hubbard tree H , and glue back Hp .

Let w 2 H be a preimage of p. Suppose that ı.w/ D 1. Note that the incident edges
of w correspond to vertices in Hp; we can thus remove w and glue the regulated hull
of those corresponding vertices in Hp (viewed as an abstract angled tree) to the incident
edges at w.

If ı.w/ � 2, we need to specify the pullback map as follows. Let

Pw W C ! C
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be a polynomial of degree ı.w/ with critical values z1; : : : ; zk such that under Q, each
zi is eventually mapped to a periodic critical cycle or a repelling periodic cycle on the
boundary of a bounded Fatou component for Q.

Let QHp be the regulated hull of Hp and the orbits of zi (viewed as an abstract angled
tree). The condition on zi guarantees that Q is simplicial on QHp . Let Hw be the pullback
P�1w . QHp/. As before, we remove w and glue back in a homeomorphic copy of Hw , and
also replace Hp with QHp . The dynamics and angle structures are defined naturally.

Inductively, we replace the backward orbits of p in the vertex set of H by pullbacks
with the above algorithm. The algorithm terminates as the number of branch points and
critical points in H is finite.

This algorithm may produce some end points that are not critical or post-critical.
After deleting these end points and the corresponding edges if necessary, we obtain a
new expanding pointed angled Hubbard tree .H 0; p0/, which we call a pointed simplicial
tuning of .H;p/ (see Figure 5.1). We remark that depending on how the pointed simplicial
tuning is performed, .H 0; p0/ may or may not be simplicial.

Unlike general tuning, the pointed simplicial tuning can only be performed finitely
many times, as the degree of the marked fixed point p0 is strictly smaller than the degree
of p after the operation. We say a pointed Hubbard tree .H; p/ is iterated-simplicial
if it can be constructed from the trivial pointed Hubbard tree by a sequence of pointed
simplicial tunings.

p c1
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2

0 0
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Simplicial
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Fig. 5.1. Illustrations of pointed simplicial tunings. The angles for edges are labeled on the graph.
The resulting pointed Hubbard trees for the first two are not simplicial.
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Pointed simplicial quotient

An inverse operation for pointed simplicial tuning is pointed simplicial quotient. Let us
fix a simplicial structure, i.e., a vertex set V forH . We assume that V is forward invariant,
and contains all critical points. A subtree p 2 S �H is said to be invariant if P.S/ � S .
An invariant subtree is said to be simplicial if P is a simplicial map on S . The union
of any two simplicial invariant subtrees is again a simplicial invariant subtree. Thus the
maximal simplicial invariant subtree is well-defined.

Lemma 5.4. Let .H; p/ be the pointed Hubbard tree corresponding to a geometrically
finite polynomial yP 2Hd . Let a 2 TpH be a periodic tangent direction at p of period q,
and let E D Œp; w� be the corresponding incident edge. Then P q maps E homeomorphi-
cally to E.

Proof. Suppose p is a Julia fixed point. Then the adjacent vertices are periodic Fatou
points by Proposition 5.3, and P is simplicial on the union of these edges.

Suppose p is a Fatou fixed point. Let � be the corresponding fixed Fatou component
for yP . Let x 2 @� be the corresponding periodic point in the direction a. If w D x, then
P q is a homeomorphism on Œp; w�. Otherwise, by Proposition 5.3, w is a periodic Fatou
point and the corresponding Fatou component is attracted to � at x, and the conclusion
follows.

Corollary 5.5. Let .H;p/ be the pointed Hubbard tree corresponding to a geometrically
finite polynomial yP 2Hd . IfH is non-trivial, i.e.,H ¤ ¹pº, then the maximal simplicial
invariant subtree S is non-trivial.

We say S 0 is a subtree preimage of S if S 0 is a subtree (with the simplicial structure
given by V ) and P.S 0/ � S . The maximal one exists by taking unions. Let S be the
maximal simplicial invariant subtree of .H; p/. Note that S itself is a maximal subtree
preimage of S . We construct a new tree H 0 from H by collapsing S and each inductive
maximal subtree-preimages to a point and let p0 2 H 0 be the point associated with S .
Similarly, the new vertex set V 0 is constructed from V by collapsing, and the map P
induces a map P 0 on V 0 by P 0.Œx�/ D ŒP.x/� where Œx� represents the vertex in V 0 that
x 2 V collapses to. The local degrees can also be recovered by counting the multiplicities
of all collapsed critical vertices.

Lemma 5.6. The map P 0 W V 0 ! V 0 satisfies P 0.a/ ¤ P 0.b/ whenever Œa; b� is an edge
in H 0.

Proof. Let Œa; b� be an edge. Let x;y be vertices for V that lie above a; b respectively. We
may assume that Œx; y� is an edge of H . Suppose for contradiction that P 0.x/ D P 0.y/;
then ŒP.x/� D ŒP.y/�. Thus, P.x/ and P.y/ are contained in some inductive maximal
subtree preimage S 0 of S , so ŒP.x/; P.y/� � S 0. Therefore Œx� D Œy� by maximality of
subtree preimage, which is a contradiction.
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To construct the angles at the new vertices, we first show that the conclusion of
Lemma 5.4 also holds for .H 0; p0/.

Lemma 5.7. Let a0 2 Tp0H 0 be a periodic tangent direction of period q, and let E 0 D
Œp0; w0� be the corresponding incident edge. Then .P 0/q maps E 0 homeomorphically
to E 0.

Proof. The tangent direction a0 corresponds to an edgeE D Œx;y��H with x 2 S . Since
a0 has period q, P q.Œx; y�/ contains Œx; y�. Let I D Œx0; y0�� Œx; y� be the interval closest
to x such that P q maps I homeomorphically to Œx; y�. If x D x0, then x is a periodic cut
point. By Proposition 5.3, Œx; y� corresponds to an attracting petal for the corresponding
parabolic point yx 2 J. yP /. Thus, we can extend S and still get a simplicial action, which
contradicts the maximality of S .

Therefore, x¤ x0. Suppose for contradiction that y ¤ y0. By pulling back, there exists
a periodic point on .x0; y0/, which is not on the boundary of any periodic Fatou compo-
nent. This point gives a repelling periodic cut point for yP , contradicting Proposition 5.3.
Thus y D y0, and hence .P 0/q maps E 0 homeomorphically to E 0.

Let a0 2 Tp0H 0 be a periodic tangent direction of period q corresponding to the edge
Œx; y� � H . As in the proof of Lemma 5.7, we have a map P q W Œx; y� � Œx0; y�! Œx; y�.
Thus, there exists a point w 2 Œx0; y� with period q, corresponding to a periodic end
for the polynomial Q associated with S . We define the angle at the direction a0 by the
external angle that lands at t . The angles for pre-periodic tangent directions and inductive
preimages of p0 are defined by pullback. SinceH is expanding, it is not hard to verify that
H 0 is expanding as well. We call .H 0;p0/ the pointed simplicial quotient for .H;p/. It can
be verified that this operation is an inverse for pointed simplicial tuning. More precisely,
if .H 0; p0/ is a pointed simplicial quotient of .H;p/, then .H;p/ can be constructed from
.H 0; p0/ using pointed simplicial tuning.

This process can be iterated. The same proof of Lemma 5.7 using Proposition 5.3
shows that unless the Hubbard tree is trivial, the maximal simplicial invariant subtree is
non-trivial. Since pointed simplicial quotient reduces the number of vertices, the process
eventually terminates at the trivial Hubbard tree. This proves Proposition 5.1.

6. Boundary of Hd

In this section, we prove the other direction of Theorem 1.1. Let yP 2 Hd be a marked
geometrically finite polynomial associated with the marked pointed Hubbard tree .H;p/.
Let P be the corresponding marked post-critically finite polynomial. For each critical and
post-critical Fatou component � of P , we choose a point t .�/ 2 @� as a marking which
satisfies P.t.�// D t .P.�// (see [38, §5]). The boundary marking is chosen using an
anchored convention as in Definitions 2.12 and 2.15 with respect to the external angle 0.
The topological conjugacy carries this boundary marking to yP . Recall that a Blaschke
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product is M -uni-critical if the critical set is contained in BH2.0; M/. A proper holo-
morphic map f W U ! V between two connected and simply connected proper subsets
of C is said to be M -uni-critical if there exist uniformizing maps �U and �V such that
��1V ı f ı �U W D ! D is M -uni-critical.

Let �p � V be the set of backward orbits of p and let F be a normalized mapping
scheme on �p (see Definition 4.2). We first prove the following (cf. Proposition 4.3):

Proposition 6.1. Let .H; p/ be a marked simplicial pointed Hubbard tree of degree d .
When ı.p/ � 2, let F be a normalized mapping scheme on �p . There exists a sequence
Pn 2 Hd converging to a geometrically finite polynomial yP 2 Hd associated to .H; p/.
Moreover,

(1) the dynamics of yP on the Fatou components corresponding to �p is conjugate to F

.with compatible markings/;

(2) there exists a constant M depending only on .H; p/ .and independent of F / such
that

(a) for any periodic Fatou point v ¤ p of period q, yP q on the corresponding Fatou
component �v is M -uni-critical;

(b) for any strictly pre-periodic Fatou point w … �p , if k is the smallest positive
integer such that f k.w/ is critical, then yP k W �w ! �f k.w/ is M -uni-critical
and the critical values are within hyperbolic distance M of the critical points
in �f k.w/.

Simplicial pointed Hubbard tree and admissible angled tree map

Let .H; p/ be a marked simplicial pointed Hubbard tree. We first associate to it an
admissible angled tree map. Indeed, the pointed Hubbard tree comes with a local degree
function ı. The dynamics of the polynomial P gives angles between any pair of edges
incident to a vertex (see [45]). For a periodic Julia vertex, we follow the same convention
as in §3 for realizing angled tree maps: any two consecutive edges (in cyclic ordering
at the vertex) have angle 1

�
where � is the valence at the vertex. To specify the angle 0

of the marking, we use the anchored convention in Definitions 3.1 and 3.3. Therefore,
P W .H; p/! .H; p/ is naturally an angled tree map.

The core ofH is critically star-shaped. Indeed, if ı.p/� 2, then this is vacuously true.
Otherwise, each vertex v adjacent to p is in a periodic Fatou point.

On the other hand, the Hubbard treeH may contain many periodic Julia branch points.
In the following, we introduce an operation on these branch points, which we call split
modification, to get an admissible angled tree map.

Let v ¤ p be a periodic Julia branch point. After passing to an iterate, we may assume
that v is fixed. Let S be the star-shaped subtree consisting of all vertices adjacent to v. Let
a0 be the vertex in S corresponding to the direction associated to p, and label the other
vertices by a1; : : : ; am in counterclockwise order. Since P is simplicial onH and fixes p,
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a0 is fixed, and thus all ai are fixed. By Proposition 5.3, each ai is a fixed Fatou point for
i D 1; : : : ; m.

We modify H locally in S by first removing v and its incident edges. On the first
level, we choose k1 2 ¹1; : : : ; mº and connect a0 to ak1

. On the second level, we choose
k2;1 2 ¹1; : : : ; k1 � 1º and k2;2 2 ¹k1 C 1; : : : ; mº and connect ak1

to ak2;1
and ak2;2

.
Inductively, k1; k2;1; k2;2 divide the set ¹1; : : : ; mº into four subsets (some subset may
be empty), and we proceed as above for each of the subintervals. The trees QS that can
be constructed in this way will be called admissible splittings (see Figure 6.1). For an
admissible splitting, each vertex ai , i D 0; 1; : : : ;m, can be assigned a level, which is the
edge distance between ai and a0. An edge connects a level k to a level k C 1 vertex.
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(a) A star-shaped neighborhood of a periodic Julia branch point v with two different admissible splittings with angles specified.
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(b) The corresponding dual laminations generating the same equivalence relations on S1.

Fig. 6.1. The split modification and dual laminations.

The dynamics are modified in S so that each edge of QS is fixed. The local degree
function ı is defined to be the same as before the modification. The angle function at ai
is modified with the following rule (see Figure 6.1):

� if aiaj is an edge where aj is closer to a0 than ai is, we set the angle of the tangent
direction corresponding to aj to be 0;

� if aiaj is an edge where aj is further from a0 than ai is, we set the angle of the tangent
direction corresponding to aj to be 0C if j < i and 0� if j > i ;

� the other angles remain the same.

We also modify H on the backward orbits of vertices in S by pullback. We will
assume that w ¤ v 2 V is a preimage of v. The general construction on backward orbits
can be done by induction.

If ı.w/ D 1, then we remove the 1-neighborhood of w and glue back a copy of QS .
Note that there is a unique way of gluing QS back by the dynamics.
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If ı.w/ � 2, then the pullback is not unique. First, we modify the simplicial structure
of QS by adding a vertex at the ‘midpoint’ of each edge. We call a degree ı.w/ branched
covering f W QS 0 ! QS admissible if the branch locus is contained in the midpoints of
the edges of QS . We call QS 0 an admissible ı.w/ branched cover of QS . The pullback is
constructed by removing the 1-neighborhood of w and then gluing back a copy of the
admissible ı.w/ branched cover QS 0. Similar to the degree 1 case, the gluing is determined
by the dynamics.

Note that in both cases, we may introduce some new vertices because the preimage of
the full 1-neighborhood of a periodic simple Julia branch point may not be in the Hubbard
tree. Those new vertices are defined to have local degree 1, and the angle functions are
defined by pullback.

Let T be the tree after the split modification over all periodic Julia branch vertices.
Removing vertices of T if necessary, we may assume that f is minimal. We then have
the following

Proposition 6.2. Let .H; p/ be a simplicial pointed Hubbard tree. Let f W .T ; p/ !
.T ; p/ be the minimal angled tree map after performing admissible split modification
over all periodic Julia branch vertices. Then f W .T ; p/! .T ; p/ is admissible.

We remark that, conjecturally, these different splittings and pullbacks will all result in
different accesses of points on @H and create complicated topology of Hd . To prove The-
orem 1.1, we only need the existence of one admissible splitting. To prove Theorem 1.4,
we only need two different admissible splittings (see §7). It would be interesting to know
what such combinatorial operation can tell us about the ‘complexity’ of @Hd .

Proposition 6.3. For any admissible split modification .T ; p/ of .H; p/, the dual lami-
nations LT and LH generate the same equivalence relations on S1.

Proof. By induction and pullback, it suffices to consider the splitting at a periodic Julia
branch point v 2H . Without loss of generality, we may assume v is fixed. Let a0; : : : ; ak
be the vertices adjacent to v. Then there are k C 1 angles A0; : : : ; Ak landing at v, where
Ai corresponds to the access between the Fatou components of ai and aiC1.

Let S be the subtree containing a0; : : : ; ak after the modification. By the dynamics,
Ai is the only angle landing at the right side of the union of directed edges from ai
to aiC1 (see Figure 6.1). Since the angle at the vertex ai between an incident edge in S
and an incident edge outside of S is strictly positive, Ai does not land at any other edges.
Therefore, A0; : : : ;Ak form an equivalence class of the equivalence relation generated by
the lamination for T . The claim now follows.

Carathéodory convergence

A disk is a simply connected and connected open subset in C. It is said to be hyperbolic if
it is not C. For a sequence of pointed disks .Un; un/, we say .Un; un/ converges to .U; u/
in the Carathéodory topology if
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� un ! u;

� for any compact set K � U , K � Un for all sufficiently large n;

� for any open connected set N containing u, if N � Un for all sufficiently large n, then
N � U .

Equivalently, the convergence means that un ! u and for any subsequence such that
yC � Un ! K in the Hausdorff topology on compact subsets of the sphere, U is equal to
the component of yC �K containing u (see [29, §5.1]).

Similarly, we say a sequence of proper holomorphic maps between pointed disks fn W
.Un; un/! .Vn; vn/ converges to f W .U; u/! .V; v/ if

� .Un; un/; .Vn; vn/ converge to .U; u/; .V; v/ in the Carathéodory topology;

� for all sufficiently large n, fn converges to f uniformly on compact subsets of U .

We have the following compactness result:

Theorem 6.4 ([29, Theorem 5.2]). The set of disks .Un; 0/ containing B.0; r/ for some
r > 0 is compact in the Carathéodory topology.

The definition of Carathéodory convergence naturally generalizes to simply connected
and connected open subsets of yC. Recall that by Lemma 2.3, a sequence of degree d ratio-
nal maps Rn converges uniformly on yC to a rational map R if and only if Rn converges
algebraically to R and R has degree d . The following lemma is very useful in studying
degenerations of quasi post-critically finite Blaschke products.

Lemma 6.5. Let Rn W yC ! yC be a sequence of degree d rational maps converging uni-
formly on yC to R W yC ! yC. Let Un be a sequence of invariant hyperbolic disks for Rn,
and xn 2Un. If there existsK such that dUn

.xn;Rn.xn//�K for all n, then after passing
to a subsequence, either

� limn!1 xn D x and x is fixed by R; or

� .Un; xn/ converges in the Carathéodory topology to .U; x/, and consequently Rn W
.Un; xn/! .Un; Rn.xn// converges to R W .U; x/! .U;R.x//.

Proof. After passing to a subsequence, we may assume xn! x. We may assume Un �C
for all sufficiently large n and x 2 C. Suppose x is not fixed by R. We claim there exists a
Euclidean ball of radius r such thatB.xn; r/�Un for all sufficiently large n. Suppose not;
then the hyperbolic metric �Un

.xn/jdzj at xn is going to infinity by Lemma 4.4. SinceRn
converges toR uniformly and x is not fixed, for sufficiently large n the Euclidean distance
between xn and Rn.xn/ is bounded away from 0. Thus, dUn

.xn; Rn.xn// is unbounded,
which is a contradiction. Therefore, after passing to a subsequence, the pointed disk
.Un; xn/ converges in the Carathéodory topology to .U; x/ by Theorem 6.4.

We remark that in the first case, the pointed disks .Un; xn/ usually diverge in the space
of pointed disks with the Carathéodory topology.

A typical example of divergent pointed disks can be constructed as follows. Let xnD 0
and let Un D B.�1C 1=n; 1/ [ B.1 � 1=n; 1/ be the union of two unit balls centered
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at �1C 1=n and 1 � 1=n. As n!1, yC � Un converges in the Hausdorff topology to
K D yC � .B.�1; 1/ [ B.1; 1// which contains the limit point 0 D lim xn, so .Un; xn/
diverges.

As an application of the Carathéodory limits, we have

Proposition 6.6. If fn 2 Bd is a quasi post-critically finite sequence, then after passing
to a subsequence, the corresponding polynomials Pn converge to a geometrically finite
polynomial yP .

Proof. Let Qcn be a critical point of fn and let Qxn be an iterate of Qcn with

dD. Qxn; f
q
n . Qxn// � K:

Let xn and cn be the corresponding points for Pn. After passing to a subsequence, we
assume Pn ! P , xn ! x1 2 C and cn ! c1 2 C.

Let Un be the bounded Fatou component of Pn. If x1 is fixed by P q , then c is
pre-periodic. If x1 is not fixed by P q , then by Lemma, 6.5, after passing to a subse-
quence, the pointed disk Pn W .Un; xn/! .Un; P

q
n .xn// converges to P W .U1; x1/!

.U1; P
q.x1//. So U1 is contained in the Fatou set. Hence c1 is in the Fatou set.

Since any critical point of P is approximated by critical points of Pn, we conclude
that P is geometrically finite.

Construction of geometrically finite polynomials

Let .H; p/ be a marked simplicial pointed Hubbard tree and f W .T ; p/! .T ; p/ be the
angled tree map after the admissible split modification. Let F be a normalized mapping
scheme on �p if ı.p/ � 2. Let fn 2 Bd be as in Proposition 4.3 and Pn D fn t z

d

be the corresponding polynomials. By Proposition 6.6, after passing to a subsequence,
Pn converges to a geometrically finite polynomial yP . Denote by Un the bounded Fatou
component of Pn. Using the conjugacy between D and Un, the quasi-invariant tree for fn
corresponds to a quasi-invariant tree for Pn inUn. Abusing notation, we denote this quasi-
invariant tree for Pn as Tn � Un.

We shall now prove that yP has the property desired in Proposition 6.1. Recall a vertex
v 2 V is said to be a Fatou point if v is eventually mapped to a critical periodic orbit; and
it is called a Julia point otherwise.

Lemma 6.7. Let v 2V be a periodic Fatou point of period q and let vn be the correspond-
ing point for Pn. After passing to a subsequence, .Un; vn/ converges in the Carathéodory
topology to .Uv;1; v1/, and the map

yP q W .Uv;1; v1/! .Uv;1; yP
q.v1//

is conformally conjugate to the first return rescaling limit

F qv W .Dv; 0/! .Dv; F
q
v .0//:
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Proof. The proof is similar to that of Proposition 6.6. Let Qcn be a critical point of f qn in
the cluster associated to v. Let cn be the corresponding critical point for Pn. After passing
to a subsequence, we assume cn ! c1 and Pn ! yP .

If yP q.c1/ ¤ c1, since dUn
.cn; vn/ is bounded, the claim on the Carathéodory limit

follows by Lemma 6.5. Since each P qn is conformally conjugate onUn to f qn , the limit yP q

on Uv;1 is conformally conjugate to F qv .
If yP q.c1/D c1, then c1 is a superattracting fixed point for yP q . Thus there exists an

open set U 3 c1 such that yP q.U / is compactly contained in U . Since Pn converges to yP ,
for sufficiently large n the iterates of Pn are normal on U . Thus U � Un for sufficiently
large n. The rest of the argument is the same as in the previous case.

By pulling back, we immediately get

Corollary 6.8. Let v 2 V be a Fatou point. Then after passing to a subsequence, .Un; vn/
converges in the Carathéodory topology to .Uv;1; v1/ and

yP W .Uv;1; v1/! .Uf .v/;1; yP .v1//

is conformally conjugate to the rescaling limit

Fv W .Dv; 0/! .Df .v/; Fv.0//:

By Lemma 6.7 and Corollary 6.8, if v 2 V is a Fatou point, then Uv;1 is contained in
a Fatou component �v of yP .

Corollary 6.9. Suppose ı.p/ � 2. Then Up;1 D �p and the Fatou component �p is
attracting. If v ¤ p 2 V is a periodic Fatou point, then the Fatou component �v is
parabolic.

Proof. Since ı.p/ � 2, by Lemma 6.7,�p is attracting. Since Up;1 is invariant under yP
and contains the attracting fixed point, we haveUp;1D�p . Since yP 2Hd , there exists at
most one attracting Fatou component, so�v is not attracting as v ¤ p. So�v is parabolic
by Proposition 6.6.

Recall T is a � star-shaped tree if T is a union of the � arcs Œc; xi �, i D 1; : : : ; �,
glued at c. We say T is an open � star-shaped tree if T is a union of the � arcs Œc; xi /,
i D 1; : : : ; �, glued at c.

After passing to a subsequence, we let T1 be the Hausdorff limit of Tn. We show the
following (see Figure 1.2):

Lemma 6.10. Let v 2 V be a periodic Fatou point of period q. Then T1 \ Uv;1 is an
open star-shaped tree where each limit point on @Uv;1 is pre-periodic. Each tangent
direction a 2 TvT gives one limit point sa 2 @Uv;1. The limiting graph T1 gives an
attracting direction for sa if a corresponds to the direction of p and a repelling direction
otherwise.

Proof. We first note that the quasi-invariant trees converge to an open star-shaped tree
in Dv . For any compact subset K � Uv;1, T1 \K is a star-shaped tree by Lemma 6.7.
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Let x be a limit point of T1 \ Uv;1 in @Uv;1. Then there exists a sequence xn ! x and
xn 2 Tn \ Uv;1.

After passing to a subsequence, we may assume xn is either quasi-fixed or quasi pre-
fixed by yP k for some large k dividing q. If xn is quasi-fixed, then dUn

.xn; P
k
n .xn// �K.

Since xn ! @Uv;1, the hyperbolic metric �Un
.xn/jdzj goes to infinity by Lemma 4.4.

Thus the Euclidean distance dR2.xn; P
k
n .xn// goes to 0 and we conclude that x is fixed

by yP k . If xn is quasi pre-fixed, then the same argument shows x is pre-fixed. Since the
fixed points of yP k are discrete, each tangent gives one limit point.

The last statement follows from comparing with the dynamics of F qv on Dv .

We remark that different tangent directions of T at v may give the same limit point,
thus the closure T1 \ Uv;1 is a graph that is not necessarily a tree (see Figure 1.2). The
same proof also gives the following more general statement, where xn are allowed to be
on the edges of Tn:

Lemma 6.11. Let xn 2 Tn \ Un be quasi periodic with period q that converges to x.
If x is not fixed by yP q , then .Un; xn/ converges to .U; x/ in the Carathéodory topology
and T1 \ U is an open star-shaped tree whose limit points on @U are pre-periodic.
Each tangent direction a 2 TxT gives one limit point sa. The limiting graph T1 gives an
attracting direction for sa if a corresponds to the direction of p and a repelling direction
otherwise.

Proposition 6.12. Let v ¤ w 2 V be Fatou points. Then the Fatou components �v
and �w are not equal.

Proof. Interchanging v and w if necessary, we may assume v is closer to p than w is.
Assume v;w are periodic; the case when v;w are strictly pre-periodic is proved similarly.
After passing to an iterate, we assume v and w are fixed. If v D p, then the statement
follows from Corollary 6.9. Thus we assume v;w ¤ p.

Let sv;1 2 @Uv;1 and sw;1 2 @Uv;1 be the corresponding parabolic fixed points.
Let Ev; Ew be the incident edges at v and w in the direction of p. Let sv;n 2 Ev;n � Tn
(and sw;n) be a sequence that converges to sv;1 (and sw;1 respectively). Suppose for
contradiction that �v D �w . Then sv;1 D sw;1 and Uv; Uw are in the same attracting
petal. We consider two cases.

Case (1): v;w are in the same component of T � ¹pº. Let b be the point furthest from p

on Œp; v� \ Œp; w�.
If b D v, i.e., v 2 Œp; w�, we consider the oriented arcs Œpn; wn� � Tn (see Fig-

ure 6.2, left). Since sv;1 D sw;1, the limit of the oriented arcs Œsv;n; sw;n� � Œpn; wn�
contains a simple oriented loop  containing sv;1. By Lemma 6.11, T1 is contained
in the bounded Fatou sets of yP except at finitely many pre-periodic points. Since  is
simple,  D

Sk
jD1 j is a finite union of closed smooth arcs i , whose interiors are all

contained in�v . Since Œp;w� is fixed, @j are fixed points on @�v . Since Pn sends points
on Œpn; wn� towards pn, j gives a repelling direction for one of the end points and an
attracting direction for the other. Therefore k D 1 and  is a loop in �v [ ¹sv;1º.
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Fig. 6.2. A schematic diagram for the limit of quasi-invariant trees Tn. The arrows represent the
dynamics by Pn: the points on Tn are moving towards the fixed point pn.

The loop  does not enclosew1 as  \Uw;1 D ; and @Uw;1 intersects the Julia set.
Similarly,  does not enclose p1 D limpn. Since Œpn; wn� is an oriented arc, its limit S
containing  does not have a transverse intersection. If v … T C , then p1 ¤ sv;1. Thus
the limits of Œpn; sv;n� and Œsv;n; sw;n� are non-trivial and give two repelling directions
separating Uv;1 and Uw;1, so they are not in the same attracting basin, which is a con-
tradiction. Otherwise, ˛v.TvT / � S1. Thus, the limit of the arc for Œp;w� in Dv separates
periodic points on S1v , so  encloses repelling periodic points, which is a contradiction.

If b ¤ v, since T is admissible, b is a critical fixed point (see Figure 6.2, middle). The
limit of Œbn; sv;n� [ Œbn; sw;n� contains a simple loop  containing b1. An argument as
above shows that  is contained in �b except at one point. Since the limit of the arc for
Œv; w� in Db separates periodic points on S1

b
,  encloses repelling periodic points, which

is a contradiction.

Case (2): v;w are in different components of T � ¹pº. If v;w … T C , then the proof is the
same as above by considering the limit Œpn; sv;n�[ Œpn; sw;n� (see Figure 6.2, right). Oth-
erwise, label the adjacent vertices to p by v1; : : : ; vk counterclockwise. Let t i 2 S1 be the
unique fixed point of md landing on the right side of the oriented arc Œvi ; p� [ Œp; viC1�.
If t i does not land at vi (or viC1), then the first return rescaling limit Fvi (or FviC1 )
has a repelling direction in the clockwise (or counterclockwise) direction from the fixed
point 0 2 S1

vi (or S1
viC1 ), giving a repelling direction that separates Uvi ;1 and UviC1;1.

Therefore, �vi are all different and the statement follows.

We prove the lamination of yP gives the desired equivalence relation.

Proposition 6.13. Let a 2 H be a Julia point. Then there exists a corresponding pre-
periodic point ya 2 J. yP / such that an external angle lands at a if and only if it lands
at ya.

Proof. We assume a is periodic, as the strictly pre-periodic case can be proved by pull-
back. After passing to an iterate, we may assume a is fixed.

If a ¤ p, denote the adjacent vertices by a0; : : : ; am�1. We assume that the vertices
are labeled counterclockwise and a0 is the unique vertex that is closer to p than a is.
Each ai is a periodic Fatou point as H is simplicial. There are exactly m external rays
landing at a. Let A0; : : : ; Am�1 be the angles landing at a, where Ai corresponds to the
access between the Fatou components associated to ai and aiC1. Let S � T be the convex
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Fig. 6.3. The subtree S after the split modification on the left with its dual lamination on the right.

hull of a0; : : : ; am after the admissible splitting (see Figure 6.3). Let ysi 2 @Uai ;1 be the
fixed point of yP associated to the direction towards a0. Note ysi is a parabolic fixed point
for yP .

By Proposition 6.3, we can find periodic points si;C
k
D limai

�n.A
i;C
k
/ and si;�

k
D

limai
�n.A

i;�
k
/ in S1ai

that are not holes such that Ai;C
k

and Ai;�
k

converge to Ai from
below and Ai�1 from above in counterclockwise orientation (see Figure 6.3). Let ysi;˙

k
be

the corresponding periodic points of yP . We letRk be the domain bounded by geodesics of
Œys
i;�
k
;ys
i;C
k
� in the Fatou component and external rays of angles Ai;˙

k
for i D 0; : : : ;m � 1.

Note thatRkC1 �Rk and the fixed points ysi i D 1; : : : ;m � 1, are all contained inRn. For
sufficiently large n, the external angles landing at ¹ysi W i D 1; : : : ; m � 1º are exactly Aj ,
j D 0; : : : ;m � 1. Since�ai

¤ �aj
by Proposition 6.12, there are at leastm� 1 attract-

ing petals as the attracting fixed point of Pn does not converge to ysi . By counting the
multiplicity of the parabolic fixed points, ysi must all be the same. Let ya be this parabolic
fixed point. Then the angles landing at it are exactly Ai , i D 0; : : : ; m � 1.

If a D p with valence k, then by Proposition 6.12 there are k attracting petals at the
parabolic fixed point ya. The same nested domain argument shows the angles landing at ya
are exactly the k angles landing at a.

Proposition 6.14. The polynomials yP and P have topologically conjugate dynamics on
their Julia sets.

Proof. By Proposition 6.12, the critical and post-critical Fatou components of yP are in
correspondence with those of P . By Proposition 6.13, the external angles landing at roots
of critical, post-critical Fatou components and critical, post-critical Julia points are the
same for yP and P . Since these landing angles uniquely determine the dynamics of yP
and P on their Julia sets, the proposition follows.

M -uni-critical doubly parabolic Blaschke product

Up to conjugation, there exists a unique uni-critical doubly parabolic Blaschke product
for each degree:

f .z/ D
zd C a

1C azd
for a D

d � 1

d C 1
:
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Recall that a degree d proper holomorphic map f W D ! D is M -uni-critical if the crit-
ical points are contained in BH2.0;M/. The following compactness result is useful and
interesting.

Proposition 6.15. The space of degree d M -uni-critical doubly parabolic Blaschke prod-
ucts is bounded in the space of degree d proper maps on D.

Proof. Suppose for contradiction that this space is not bounded. Then there exists a
sequence of M -uni-critical doubly parabolic Blaschke products fn that are degenerat-
ing when viewed as rational maps. We normalize by rotation so that 1 is the parabolic
fixed point. Since fn is degenerating and the critical points are all within hyperbolic dis-
tance M of 0, after passing to a subsequence, fn converges algebraically to a constant
function t by Lemma 2.4.

Suppose t D 1. By Lemma 4.9, the preimages f �1n .1/ are uniformly separated. Thus
we can choose an arc 1 2  � S1 so that fn is injective on  and its end points @ are not
holes. Since fn.@/! 1 and fn./ contains 1, for sufficiently large n, 1 has at least one
attracting direction on S1, which is a contradiction.

Suppose t ¤ 1. Choose a diskU with 12U , t … xU and such that @U contains no holes.
Then for sufficiently large n, U contains no critical values of fn and f �1n .@U /\ @U D ;

as fn.@U /! t . Thus the component V of f �1n .U / containing 1 is contained in U , and
fn is univalent on V , which is a contradiction to 1 being a parabolic fixed point.

Proof of Proposition 6.1. By our construction, Pn ! yP and yP corresponds to the Hub-
bard tree .H; p/ by Proposition 6.14. The dynamics on �v for v 2 �p is conjugate to F

by Lemma 6.7 and Corollary 6.9. Let M1 DM1.f / be the constant in Proposition 4.3. If
C � V is a periodic Fatou cycle of period q, there exists v 2 C for which F qv is M1-uni-
critical. Since yP q W Uv1;1 ! Uv1;1 is conjugate to F qv1

on Dv1
by Lemma 6.7, yP q on

Uv1;1 isM1-uni-critical. SinceUv1;1��v1
, and the inclusion is distance non-increasing

(with respect to the hyperbolic metric) by the Schwarz lemma, yP q on the Fatou compo-
nent �v1

is also M1-uni-critical. Since yP q conjugates to a doubly parabolic Blaschke
product on �v1

, by Proposition 6.15, d�v1
.c; yP q.c// � M2 for all critical points c and

some constant M2 depending only on M1. Therefore, yP q on �w is M -uni-critical for all
w 2 C , with M depending only on the tree map.

The same argument works for strictly pre-periodic points, and the proposition follows.

Degenerations on @Hd

Let S � Hd be the space of all geometrically finite polynomials associated to a pointed
simplicial Hubbard tree .H; p/. Proposition 6.1 implies that

(1) S projects onto the space B�p of all normalized mapping schemes on �p (see Defi-
nition 4.2);

(2) each fiber contains at least one polynomial which is M -uni-critical on all other Fatou
components.



Y. Luo 62

pn c1;n c2;n p c1 c2

Fig. 6.4. The convergence to a degree 3 geometrically finite polynomial yP (on the right) with
iterated-simplicial pointed Hubbard tree that is not simplicial. The critical point c2;n is ‘hidden’
behind c1;n. The escaping rates of the two critical points are incompatible, and c2;n is not quasi
pre-periodic. yP cannot be obtained directly by a quasi post-critically finite degeneration.

The space B�p is the product of (normalized) spaces of Blaschke products (see [38,
§4]). The degenerations on B�p can be defined similarly:

Definition 6.16. Let Fn 2B�p . We say that this sequence isK-quasi post-critically finite
if we can label the critical points of Fn as c1;n; : : : ; ck;n in such a way that for each i ,
there exists a quasi pre-period li and a quasi period qi with

dD.F
li
n .ci;n/;F

liCqi
n .ci;n// � K:

Let qn 2 Dp be the unique attracting fixed point for Fn. For a 2 �p , define Qa;n
inductively with Qp;n D ¹qnº and Qa;n D F �1a;n .Qf .a/;n/.

For each vertex a 2 �p , the quasi-invariant trees Ta;n are constructed similarly to the
case of Bd . The dynamics are modeled by a collection of simplicial maps

Fa W .Ta;Qa/! .Tf .a/;Qf .a//;

with rescaling limits Fv W Dv ! DF .v/ where v is a vertex of Ta, a 2 �p . Here Qa is a
finite set corresponding to Qa;n.

These simplicial maps with the rescaling limits are combinatorially modeled by
an angled tree mapping scheme, a collection of simplicial maps Fa W .Ta; Qa/ !

.Tf .a/; Qf .a// with local degree functions and anchored, compatible angle functions.
The angled tree mapping schemes are said to be admissible if Fp W .Tp; q/ ! .Tp; q/

is admissible.
Minimality of the angled tree mapping schemes is defined similarly to angled tree

maps. Note that for a minimal angled tree mapping scheme, Fp W .Tp; q/! .Tp; q/ may
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not be minimal as it may contain vertices corresponding to orbits of critical points in Dv
with v ¤ p.

Let �q �
S
a2�p

Ta be the backward orbits of q under the angled tree mapping
scheme F .

Since the induced dynamics f W �p ! �p is particularly easy (it has a unique fixed
point at p and all the other points are in the backward orbits of p), by pulling back the
degeneration on Dp , Proposition 4.3 can be easily generalized to degenerations in B�p :

Proposition 6.17. Let F W
S
a2�p

.Ta;Qa/!
S
a2�p

.Ta;Qa/ be a minimal admissible
angled tree mapping scheme for �p . When ı.q/ � 2, let G be a normalized mapping
scheme on �q . There exists a K-quasi post-critically finite sequence Fn 2 B�p realizing
F such that

(1) the rescaling limits on �q are conjugate to G ;

(2) there exists a constantM depending only on the angled tree mapping scheme F .and
thus independent of G / such that

(a) for any periodic cycle C other than q, there exists a periodic point v 2 C such
that the first return rescaling limit

F kv W Dv ! Dv

is M -uni-critical, where k is the period of v;

(b) for any strictly pre-periodic vertexw … �q , the rescaling limit Fw WDw !Df .w/
is M -uni-critical and the critical values are within hyperbolic distance M of
0 2 Df .w/.

Let .H 0; p0/ be a pointed simplicial tuning of .H; p/. Then there exists an associated
angled tree mapping scheme

Fa W .Ta;Qa/! .Tf .a/;Qf .a//:

By performing an admissible splitting on Tp and pull back the modifications accordingly
to Ta, a¤ p, we can define a quasi post-critically finite degeneration Fn 2B�p by Propo-
sition 6.17. By Proposition 6.1, we can find a sequence Qn 2 S � Hd whose dynamics
on Fatou components of �p are conjugate to Fn 2 B�p while remaining M -uni-critical
on all other Fatou components.

Since Hd is compact, after passing to a subsequence, Qn converges to Q 2 Hd . The
same argument as in Proposition 6.6, which uses Lemma 6.5, shows that Q is geomet-
rically finite. By Proposition 6.15, the Fatou component �v;n of Qn for v 2 V � �p
converges to a corresponding Fatou component �v . The same argument as for Proposi-
tion 6.12 shows that the corresponding Fatou components of�v are different for different
Fatou vertices of Ta; a 2 �p . Thus, a similar proof to those for Propositions 6.13 and 6.14
shows that the associated pointed Hubbard tree for Q is .H 0; p0/. Moreover, by Proposi-
tion 6.17, the space S 0 �Hd of all geometrically finite polynomials associated to .H 0;p0/
again satisfies the two properties listed at the beginning of this subsection. Therefore, by
induction, we have
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Proposition 6.18. Let .H; p/ be an iterated-simplicial Hubbard tree. Then there exists a
geometrically finite polynomial yP 2 Hd associated to it.

Proof of Theorem 1.1. The theorem follows from Propositions 5.1 and 6.18.

7. Self-bumps on @Hd

In this section, we shall prove Theorem 1.4. We first explain the phenomenon with an
example in degree 4, which can then be easily generalized to any higher degree.

Consider the geometrically finite polynomial

yP .z/ D z4 � 3
8
z2 C 9

8
z � 3

256
:

It has a superattracting fixed point at �3
4

, and a double parabolic fixed point at 1
4

. The
associated pointed Hubbard tree is a tripod

H D Œv; a0� [ Œv; a1� [ Œv; a2�

where p D a0 and the vertices are ordered counterclockwise (see Figure 1.3 (b)).
The dynamics fixes all three edges. There are two distinct admissible split modifica-

tions, resulting in two different admissible angled tree maps:

1T WD Œa0; v� [ Œv; a1� [ Œa1; a2�;

2T WD Œa0; v� [ Œv; a2� [ Œa2; a1�:

Let 1Pn; 2Pn 2 Hd be the two sequences of polynomials associated to 1T and 2T , where
every polynomial in the sequences is assumed to have a superattracting fixed point asso-
ciated to a0 (see Figure 1.3 (c, d)). There are three bounded critical Fatou components for
yP , and each Fatou component is fixed and contains one critical point. One is superattract-

ing, and the other two are parabolic. Thus, the dynamics on the Fatou components are
rigid (see [27, §6]). Hence both 1Pn and 2Pn converge to yP .

Denote the repelling fixed points by 1x1;n; 1x2;n; 1x3;n and 2x1;n; 2x2;n; 2x3;n respec-
tively. Then ixj;n converges to the parabolic fixed point 1

4
for yP . We label them so that the

three fixed points are ordered counterclockwise and ix2;n corresponds to the fixed point
that is accessible from the positive real axis in the limit. To prove that yP gives a self-bump
on @Hd , we study the multipliers of the three fixed points.

Residue computation

Let f be a holomorphic function defined in a neighborhood of z0 2 C, and suppose z0 is
an isolated fixed point of f . The residue of f at the fixed point z0 is

res.f; z0/ D ReszDz0

dz

f .z/ � z

where the right-hand side is the residue of the 1-form at z0. The residue is invariant under
conformal changes of coordinate, thus it can also be defined for a fixed point at1.
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If the multiplier at z0 is � ¤ 1, then the residue is

res.f; z0/ D
1

� � 1
:

Thus, z0 is a repelling fixed point if and only if

Re.res.f; z0// > �1=2:

Let C be an oriented closed curve that bounds a domain D with no fixed point on C .
Then the Residue Theorem shows thatX

zi fixed point inD

res.f; zi / D
1

2�i

Z
C

dz

f .z/ � z
:

For a global rational map f W yC ! yC, we haveX
zi fixed point

res.f; zi / D �1:

Back to our setting, an explicit computation shows res. yP ; 1/ D 1.

Lemma 7.1. Let U � P4 be any sufficiently small neighborhood of yP . Let f 2 U \H4,
and z be any repelling fixed point of f . Then Im.f 0.z// ¤ 0.

Proof. Let z1; z2; z3 be the three repelling fixed points of f . If we choose U sufficiently
small, then the multipliers �i are close to 1 and the sum

3X
iD1

res.f; zi / D
3X
iD1

1

�i � 1

is close to res. yP ; 1/ D 1. If Im.�1/ D 0, then �1 > 1, so

Re

�
1

�2 � 1
C

1

�3 � 1

�
is very negative. Thus at least one of the multipliers is attracting, which is a contradiction.

To prove that the intersection of any sufficiently small neighborhood U of yP with H4

is disconnected, it suffices to show that the signatures, i.e., signs of the imaginary parts of
the multipliers of ixj;n, are different for the two sequences.

Signatures of a simple parabolic point

Let f be a holomorphic function in a neighborhood of 0 2 C. Assume that 0 is an iso-
lated simple parabolic fixed point of f . After a conformal change of coordinate, we may
assume that

f .z/ D z C z2 CO.z3/
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where a > 0. Note that near 0, the positive real axis is a repelling direction, while the
negative real axis is an attracting direction. Assume that we perform a small perturbation
so that the parabolic fixed point splits into two repelling fixed points. After conjugating
with z 7! zC c if necessary, we may assume that these two fixed points are˙�, symmetric
with respect to 0. Since we assume that the two fixed points are both repelling, � is not a
real number. By this normalization, an easy computation shows that the signatures of ˙�
equal the signs of the imaginary parts of˙�.

Splitting the double parabolic point

To compute the signature, we degenerate in two steps, which allows us to consider per-
turbations of only simple parabolic points. Consider the degree 4 polynomial Q 2 @H4

with a superattracting fixed point of local degree 3 and with a parabolic fixed point on the
boundary of the immediate superattracting basin. We can degenerate the dynamics on the
attracting Fatou component while staying on @H4 (see Proposition 6.1).

We choose the marking for the degree 3 Blaschke product so that 0 2 R=Z Š S1

corresponds to the parabolic fixed point ofQ. We call this repelling fixed point the marked
fixed point. We construct two geometrically finite sequences of Blaschke products 1fn
and 2fn, with quasi-invariant trees

iT D Œp; a�;

where p and a are fixed points of local degree 2. The rescaling limits at a are different:
For 1T , the marked fixed point has angle 0C at the vertex a, while it has angle 0� at the
vertex a for 2T . We also assume that both sequences have a superattracting fixed point.
Then the corresponding sequences of polynomials 1Qn and 2Qn both converge to yP .z/
(see Figure 1.3 (c, d)).

For sufficiently large n, we can perturb 1Qn and 2Qn slightly to get two polynomials
1Pn and 2Pn in H4, with iPn ! yP . As before, we denote the three repelling fixed points
of iPn by ix1;n;

ix2;n;
ix3;n, where ix2;n corresponds to the fixed point that is accessible

from the positive real axis in the limit (see Figure 1.3).
Note that iPn is constructed from iQn by splitting the simple parabolic fixed point into

two repelling fixed points. Using the orientation of the dynamics near the simple parabolic
fixed point of iQn, we can compute that the signature at 1x2;n isC, while the signature at
2x2;n is �. Thus, by Lemma 7.1, Theorem 1.4 holds for degree 4.

If we replace the superattracting fixed point by a superattracting fixed point of degree
d � 2, Theorem 1.4 holds for any degree d � 4.
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