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Abstract. We develop a theory of multilevel distributions of eigenvalues which complements
Dyson’s threefold ˇ D 1; 2; 4 approach corresponding to real/complex/quaternion matrices by
ˇ D 1 point. Our central objects are the G1E ensemble, which is a counterpart of the classi-
cal Gaussian Orthogonal/Unitary/Symplectic ensembles, and the Airy1 line ensemble, which is a
collection of continuous curves serving as a scaling limit for largest eigenvalues at ˇ D 1. We
develop two points of view on these objects. The probabilistic one treats them as partition functions
of certain additive polymers collecting white noise. The integrable point of view expresses their dis-
tributions through the so-called associated Hermite polynomials and integrals of the Airy function.
We also outline universal appearances of our ensembles as scaling limits.
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1. Introduction

1.1. Motivations

Traditionally, random matrix theory1 deals with real, complex, and quaternion matri-
ces, their eigenvalues and eigenvectors. Following the work of Wigner, Dyson, Mehta,
and others in the 1950–60s, a central role is played by Gaussian ensembles, which are
defined as follows: Let X be an infinite Z>0 � Z>0 matrix with i.i.d. standard normal
real/complex/quaternion matrix elements, normalized so that their real parts have variance
2=ˇ with ˇ D 1=2=4, respectively. TheN �N principal submatrixMN of XCX

�

2
is then

called the Gaussian Orthogonal/Unitary/Symplectic ensemble of rankN . The matrixMN

is Hermitian, it has N real eigenvalues �1 � � � � � �N and their distribution is explicit.
The joint density is proportional to

Y
1�i<j�N

.�j � �i /
ˇ

NY
iD1

exp
�
�
ˇ
4
.�i /

2
�
: (1.1)

Although originally in (1.1) only ˇ D 1; 2; 4 appear, the formula suggests the possibility
of taking arbitrary positive real values for ˇ. In the terminology of statistical mechanics,
such ˇ can be interpreted as inverse temperature. More recently the distribution (1.1) was
found in [27] to govern, for any ˇ > 0, the eigenvalues of tridiagonal real symmetric
random matrices. Multiple other reasons to be interested in the Gaussian ˇ-ensembles
(1.1) with arbitrary ˇ > 0 are reviewed in [2, Chapter 20]; they include connections to
the theory of Jack and Macdonald symmetric polynomials, to Coulomb log-gases, and
to the Calogero–Sutherland quantum many-body system. One can go further and replace
exp.�ˇ

4
.�i /

2/ in (1.1) by any potential V.�i / leading to a class of distributions known as
ˇ-ensembles.

1See, e.g., the textbooks [2, 6, 37, 56] for general accounts.
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Fig. 1. The figures show the arithmetic mean of the probability densities (MATLAB simulation
using 5 � 106 samples) of the three eigenvalues of 3 � 3 matrices. The light green solid lines
correspond to eigenvalues sampled from GˇE ensembles (1.1) at ˇ D 1=2=4, N D 3. The black
dash-dotted lines correspond to the result of the 3-term approximation of eigenvalues of the form
�i D hi C

1p
ˇ
�i C

1
ˇ
ri , i D 1; 2; 3, where .h1; h2; h3/ D .�

p
3; 0;
p
3/ are the roots of the

degree 3 Hermite polynomial, .�1; �2; �3/ is a Gaussian vector, whose study is one of our topics,
and .r1; r2; r3/ is a deterministic vector not discussed in this text.

Beyond ˇ D 1; 2; 4, there are two other special values of ˇ for ˇ-ensembles. First, at
ˇ D 0 the interactions between particles disappear and we link to the classical probability
theory dealing with sequences of independent random variables. We are not going to
consider this value here. Instead, we concentrate on ˇ D 1, following [8, 28, 31, 42, 70].
The point of view of [28, 31] is that many characteristics of the distribution (1.1) (such
as the mean and variance of the individual eigenvalues xi for finite N and as N !1)
are well-approximated by Taylor expansions near ˇ D 1. In particular, their numerical
simulations show a good match between the first two non-trivial asymptotic terms and
exact expressions even at ˇ D 1, which seems very far from ˇ D1. Our own simulations
for the Gaussian ensembles of 3� 3matrices are shown in Figure 1. We see an astonishing
match between exact probability densities and their approximations from ˇ D1.

The ˇ D 1 ensembles or, equivalently, the behavior of ˇ-ensembles at large values
of ˇ is the central theme of this article. As we explain in Section 2, a ˇ D 1 ensemble
consists of two pieces of data: The first one is a deterministic particle configuration, which
is a ˇ !1 limit of ˇ-ensembles, such as (1.1); the second piece is a Gaussian vector
describing asymptotic fluctuations around this limit. We would like to combine large ˇ
with large N . In other words, we deal with asymptotic questions about large-dimensional
ensembles of ˇ D1 random matrices.

We discover that the ˇ D 1 case possesses a lot of integrability and the asymptotic
questions can be understood in precise details, going far beyond what is known for general
values of ˇ > 0. This is our main message: ˇ D1 is accessible to the same extent as the
most well-studied case ˇ D 2.

1.2. Second dimension and asymptotics

For our asymptotic results an important role is played by an extension of ˇ-ensembles to
two-dimensional systems. In fact, there are two distinct extensions, which are both very
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natural. The first one originates in [30], where Dyson suggested in the 1960s identifying
(1.1) with a fixed time distribution of the Dyson Brownian motion. The latter is an N -
dimensional stochastic evolution .X1.t/ � � � � � XN .t//, solving the SDE

dXi .t/ D
X
j¤i

dt
Xi .t/ �Xj .t/

C

s
2

ˇ
dWi .t/; i D 1; : : : ; N; (1.2)

where Wi .t/ are independent standard Brownian motions. One shows that at t D 1 the
law of the solution of (1.2) with zero initial condition X1.0/ D � � � D XN .0/ D 0 is given
by (1.1). [30] constructed the evolution (1.2) at ˇ D 1; 2; 4 as the projection onto the
eigenvalues of a dynamics on Hermitian matrices in which each matrix element evolves
as a Brownian motion. Yet, (1.2) makes sense for any2 ˇ > 0. The Dyson Brownian
motion is a key ingredient in proofs of many recent limit theorems for random matrices
and ˇ-ensembles; see, e.g., [6, 33].

Another 2d extension is constructed by considering the joint distribution of eigenval-
ues of all principal top-leftN �N corners of the infinite Hermitian matrix XCX�

2
simulta-

neously forN D 1;2; : : : . In this way one arrives at an array of numbers ¹�ki º1�i�k , where
�k1 � �

k
2 � � � � � �

k
k

are the eigenvalues of the k � k corner. The eigenvalues satisfy the
deterministic inequalities �kC1i � �ki � �

kC1
iC1 and the law of the subarray ¹�ki º1�i�k�N

has density proportional to

N�1Y
kD1

h Y
1�i<j�k

.�kj ��
k
i /
2�ˇ

i
�

h kY
aD1

kC1Y
bD1

j�ka ��
kC1
b
j
ˇ=2�1

i
�

NY
iD1

exp
�
�
ˇ
4
.�Ni /

2
�
: (1.3)

We call this distribution the Gaussian ˇ-corners process. Modern computations leading
to (1.3) for ˇ D 1; 2; 4 can be found in [13, 58], while the underlying ideas arose in
representation theory back in the 1950s; see [41, Section 9.3]. The consistency between
(1.3) and (1.1) is automatic from the construction at ˇ D 1; 2; 4, but needs an additional
argument for general ˇ > 0, which can be obtained either using a 100-year old integration
identity from [26] (see also [5]) or as a limiting case of the branching rules for Jack and
Macdonald symmetric polynomials; see [18, Appendix], [43].

Beyond intrinsic interest, the multilevel distributions (1.3) were used recently to prove
asymptotic theorems leading to the one-level distribution (1.1). The central idea here is
that the multilevel distribution can be uniquely identified by some of its simple features,
which (1.1) is lacking, such as conditional uniformity at ˇ D 2 (notice that most of the
factors in (1.3) disappear at ˇ D 2); see [25,40]. In wider contexts, the usefulness of sim-
ilar multilevel distributions and their characteristic Gibbs properties was demonstrated,
e.g., in [20–22].

In this text we focus on the largest eigenvalues in ˇ-ensembles and their 2d extensions.
Let us state two of our main results. We use the notation Ai.x/ for the Airy function and
we let a1 > a2 > � � � be its zeros.

2For ˇ < 1 additional care is required, since the particles start to collide with each other;
see [19].



Universal objects of the infinite beta random matrix theory 5

Theorem 1.1. Suppose that an infinite random array ¹�ki º1�i�k is distributed so that for
each N its projection onto indices 1 � i � k � N has the law (1.3). In addition, for each
kD 1;2; : : : , let xk1 < x

k
2 < � � �< x

k
k

be the roots of the degree k Hermite polynomial3 and
set �.t/ D N C b2tN 2=3c: Then we have the following limit in the sense of convergence
of finite-dimensional distributions of the two-dimensional stochastic process:

lim
N!1

lim
ˇ!1

N 1=6
p
ˇ
�
�
�.t/

�.t/C1�i
� x

�.t/

�.t/C1�i

�
D Z.i; t/; i 2 Z>0; t 2 R;

where Z.i; t/ is a mean-zero Gaussian process with covariance

EZ.i; t/Z.j; s/D
2

Ai0.ai /Ai0.aj /

Z 1
0

Ai.aiCy/Ai.ajCy/exp.�jt�sjy/
dy
y
: (1.4)

Notably, for the Dyson Brownian motion the limit turns out to be the same. More
specifically, while the t parameter in Theorem 1.1 refers to the difference in the size of
a submatrix, in Theorem 1.2 below the size of the matrix is fixed and t is time in the
stochastic evolution. And still we get the same limit behavior.4

Theorem 1.2. Suppose that the N -dimensional dynamics .Xi .t//NiD1 solves (1.2) with
X1.0/ D � � � D XN .0/ D 0. In addition, for each k D 1; 2; : : : , let xk1 < x

k
2 < � � � < x

k
k

be the roots of the degree k Hermite polynomial and set �.t/ D 1C 2tN�1=3: Then we
have the following limit in the sense of convergence of finite-dimensional distributions of
the two-dimensional stochastic process:

lim
N!1

lim
ˇ!1

N 1=6
p
ˇ
�
XNC1�i .t/ �

�
�.t/ˇ

2

�1=2
xNNC1�i

�
D Z.i; t/; i 2 Z>0; t 2 R:

Remark 1.3. In both Theorems 1.1 and 1.2 we deal with an iterative limit, i.e. we first let
ˇ !1 and then N !1. One could expect that the joint limit N; ˇ !1 is the same,
yet we do not prove such results in this text.

The limiting process Z.i; t/ can be defined in such a way that for each fixed i D
1; 2; : : : , it becomes an almost surely continuous function of t ; see Section 6.4 for a proof
and Figure 2 for a simulation. While we are not going to provide details in this direction,
we expect that convergence in Theorems 1.1 and 1.2 can be upgraded to convergence in
law in an appropriate space of continuous functions.

In addition to the explicit formula for the covariances (1.4) we develop an equivalent
stochastic point of view on the limiting process Z.i; t/, i 2 Z>0, t 2 R, appearing in
Theorems 1.1 and 1.2. For that we consider a continuous time homogeneous Markov
chain X.x0/.t/, t � 0, taking values in the state space Z>0. The initial value is x0 2 Z>0,

3Here and below we use the monic “probabilistic” Hermite polynomials with weight function
e�x

2=2.
4We conjecture that the same is true for each ˇ > 0: if we remove limˇ!1 from Theorems

1.1 and 1.2, then the N !1 limits should still coincide. Heuristically, one reason is that transition
probabilities for the dynamics in both theorems can be obtained by specializations and limits from
(skew) Jack polynomials; see [43].
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Fig. 2. Left: Bullets show a random sample of the three largest eigenvalues in the Gaussian ˇ-
corners process for corners of size k D 80; : : : ; 119 and with ˇ D 50. The thin lines are the
corresponding roots of the Hermite polynomials. Right: A random sample of the limiting process
Z.i; t/ for �1 � t � 1; the black thin line for i D 1, the blue solid line for i D 2, the cyan dotted
line for i D 3.

i.e. X.x0/.0/ D x0. For i; j 2 Z>0 we define the intensity of the jump from i to j to be

Q.i ! j / D
2

.ai � aj /2
:

The transition probabilities Pt .i ! j / for this Markov chain can be expressed through
integrals of the Airy function, as we explain in Section 6.3.

Next, we take a countable collection of Brownian motionsW .i/.t/, i 2 Z>0. For each
i D 1; 2; : : : and t 2 R we can identify Z.i; t/ with the following random variable:

Z.i; t/ D 2EX.i/.r/; r�0

Z 1
rD0

dW .X.i/.r//.t C r/: (1.5)

In words, we start the Markov chain X from i at time t , follow its trajectory, and col-
lect the white noises PW .j / along it. Z.i; t/ is the expectation over the randomness coming
from X; it is still a random variable with randomness coming from the Brownian motions.
Alternatively, we can view Z.i; t/ as the partition function of a directed polymer in addi-
tive Gaussian noise. The form of the expression (1.5) is a bit vague, since it is unclear
how to compute the r-integral, as it seems to be infinite. A more mathematically precise
(but perhaps less elegant) form is obtained by swapping the integration and expectation
signs, resulting in the following expression (see Theorem 6.5):

Z.i; t/ D 2

1X
jD1

Z 1
rDt

Pr�t .i ! j / dW .j /.r/: (1.6)

The decay of Pr�t .i ! j / as either r !1 or j !1 implies that (1.6) is well-defined.
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Note that the representation (1.6) implies that the correlations between Z.i; t/ and
Z.j; s/ are always positive. This agrees with our simulation in the right panel of Figure 2,
which gives a feeling of attraction between the trajectories of the particles. In contrast,
for finite ˇ the drift of the Dyson Brownian motion (1.2) leads to repulsion rather than
attraction.

We call the process Z.i; t/, i D 1; 2; : : : , t 2 R, the Airy1 line ensemble and we treat
its definition and appearance in Theorems 1.1 and 1.2 as the central results of our text.

1.3. Comparison to previous results

Most results about the asymptotic behavior of ˇ-ensembles are available for single level
ensembles as in (1.1). At ˇ D 1; 2; 4 the detailed understanding can be achieved through
the theory of determinantal/Pfaffian point processes, which encode the probabilistic infor-
mation in a function of two variables called a correlation kernel. This kernel is expressed
through orthogonal polynomials, which makes its asymptotics accessible. In particular,
the scaling limit for the largest eigenvalues of the Gaussian Orthogonal/Unitary/Sym-
plectic ensembles, their connections to the Airy functions and Painlevé equations were
developed in [36, 65, 66].

For general values of ˇ > 0 the available approach is very different. It starts from the
realization of the ensemble as the eigenvalue distribution of certain tridiagonal matrices,
analyzes the asymptotics of these matrices, and in this way identifies the scaling limits
of the largest eigenvalues with (highly non-linear) functionals of Brownian motion; see
[27,32,44,61] for different faces of this approach. We refer to the ˇD 1;2;4 cases as inte-
grable and the general ˇ > 0 case as probabilistic. To a large extent they are disjoint and
many results are hard to translate from one language into another: for instance, the match
between expected Laplace transform of the largest eigenvalues computed in two ways
in [44] gave rise to a brand new distributional identity for integrated local times of the
Brownian excursion. From this perspective, our ˇ D1 results are an exception, since we
are able to match the explicit covariance (1.4) of Z.i; t/ with its stochastic representation
(1.5), (1.6).

In principle, tridiagonal matrices can be used to study certain marginals of Z.i; t/.
In particular, using this approach [28, 31] produced a formula for the variance of the
individual components of Z.i; t/. In other words, they present5 a one-point version of
Theorems 1.1 and 1.2. Interestingly, while their formula also involves an integral of the
Airy function, it is of different form than the i D j , t D s specialization of (1.4)—yet,
numerically both formulas output the same numbers.

When it comes to the 2d extensions of ˇ-ensembles, many results are again available
at ˇ D 2. The N !1 limiting object for the largest eigenvalues is called the Airy Line

5While the articles formulate the statement for all i > 0, the supporting argument is given
only for i D 1. In adition to our limit regime, they also analyze the limit in different order
limˇ!1 limN!1.
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Ensemble—it is a determinantal point process with correlation kernel expressed through
the Airy functions, and it also enjoys a Brownian Gibbs resampling property; see [22, 38,
39, 53], and [35, Section 4.4] for the analogues of our Theorems 1.1 and 1.2 at ˇ D 2.
For ˇ D 1 the N !1 limit of the largest eigenvalues for a common 3d extension of the
corners process (1.3) and the Dyson Brownian motion (1.2) was computed in [62].

Outside ˇ D 1; 2, the available information about joint distributions of the N !1
limit of either corners process or the Dyson Brownian motion is very limited. Develop-
ing proper understanding of these objects remains a major open problem.6 One possible
approach is to give a proper mathematical meaning to the N ! 1 limit of the Dyson
Brownian motion SDE (1.2) and to the notion of its solution; see [59] and references
therein. There are still technical difficulties when analyzing largest eigenvalues through
this approach outside ˇ D 1; 2; 4. For the bulk limits (i.e. for the eigenvalues in the middle
of the spectrum) such an SDE point of view was put on rigorous grounds in [67].7 Yet,
even after we manage to convince ourselves that SDE (1.2) has a proper large N limit, it
would still remain unclear how to solve the limiting equations. From this point of view,
Theorems 1.1 and 1.2 are the first results computing the precise probabilistic characteris-
tics of the N !1 limit of the joint distributions of largest eigenvalues at several times
or levels outside ˇ D 1; 2; 4.

One conceptual feature which unites our ˇ D 1 study with the classical ˇ D 1; 2; 4
cases is that the infinite-dimensional limiting process gets identified through a function
of finitely many variables (two variables if we speak about one-level distributions as in
(1.1) or four variables if we deal with 2d extensions as in (1.3)). However, the role of
this function becomes different: for ˇ D 1; 2; 4 the description proceeds in terms of the
correlation kernels of determinantal or Pfaffian point processes, while for ˇ D1 we deal
with Gaussian processes uniquely fixed by their covariances. Still, in all the situations
the limiting behavior of largest eigenvalues gets expressed through the Airy functions.
A vague theoretical physics analogy suggests calling ˇ D 1; 2; 4 results fermionic, while
our ˇ D1 theorems being a bosonic counterpart.

1.4. Universality

We expect that the Airy1 line ensemble appears in ˇ; N ! 1 regime in many other
problems going well beyond Theorems 1.1 and 1.2. We are not going to pursue this uni-
versality direction here; let us only mention possible setups, where the appearance of the
Airy1 line ensemble seems plausible:

(1) The corners process (1.3) and the Dyson Brownian motion (1.2) have a common
3d extension, which is a stochastic evolution on arrays of interlacing eigenvalues

6On the technical side the problem stems from the fact that tridiagonal matrices (which were
instrumental in understanding limits of ˇ-ensembles) are not compatible with 2d extensions.

7One can similarly restate the corners process (1.3) as a Markov chain with time coordinate
given by k. For this process the bulk limit is also available; see [46, 57].
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constructed in [43]. We expect that the scaling limit of the largest eigenvalues in a 2d
section of such evolution along a space-like path (i.e. along a sequence of times and
corner sizes .ti ; ki / satisfying t1 � t2 � � � � , k1 � k2 � � � � ) should converge to Z.i; t/

as ˇ;N !1. Results of this type for ˇ D 1; 2 were proven in [35, 62].

(2) One can replace exp.�ˇ
4
.�i /

2/ in (1.1) by a more general potential V.�i / and the
resulting formula would give the stationary distribution for a version of the Dyson
Brownian motion with an additional drift term (see, e.g., [1,52] and references therein
for more details on the Dyson Brownian motion with a potential). In a slightly differ-
ent direction, one can also start the Dyson Brownian motion from more complicated
initial conditions thanX1.0/D � � � D XN .0/D 0 which we consider. One could hope
that an analogue of Theorem 1.2 holds in such settings under mild restrictions on
V.�/ and on initial conditions.

(3) One can modify the definition of the corners process (1.3) by replacing
exp.�ˇ

4
.�Ni /

2/. The most extreme case is obtained if we remove this factor altogether
and instead impose deterministic equalities �Ni D yi , i D 1; : : : ; N . For ˇ D 1; 2; 4
this corresponds to taking an N � N Hermitian matrix with deterministic eigenval-
ues and uniformly random orthonormal eigenvectors and considering the law of the
eigenvalues of its principal corners. In contrast to (1.3) the definition is not going to
be consistent over varying N (if we replace N by N C 1, then �Ni becomes random
and can no longer be deterministic), yet we can assume that .y1; : : : ; yN / changes
with N in a regular way as N ! 1 and then analyze the behavior of the largest
eigenvalues of corners of size � N˛ for some 0 < ˛ < 1. We expect an analogue of
Theorem 1.1 to hold in such setting and present a partial result in this direction in
Theorem 2.17.

There is also universality of a different kind, namely, the Gaussian ˇ-corners pro-
cess (1.3) and its ˇ D 1 counterpart appear as scaling limits in various setups. Let us
explain this by starting from the real ˇ D 1 example. Consider a uniformly random point
.v1; : : : ; vN / on the unit sphere SN�1 in RN . A direct computation shows that each indi-
vidual squared coordinate .vi /2 is distributed as Beta random variable B.1

2
; N�1

2
/, which

can then be used to show that E .vi /2 D
1
N

, E .vi /4 D
3

N.NC2/
, E .vi /2.vj /2 D

1
N.NC2/

.
Now take an N �N Hermitian matrix ƒ with deterministic eigenvalues �1; : : : ; �N and
uniformly random eigenvectors. The top-left matrix element ƒ11 can be written as

�1.v1/
2
C�2.v2/

2
C� � �C�N .vN /

2; .v1; : : : ; vN / a uniformly random vector on SN�1:

Computing the mean and variance of ƒ11 using the above moments of .vi /2 and using
additional arguments to show the asymptotic Gaussianity, one proves the distributional
convergence

ƒ11 �
�1 C � � � C �N

N
�

s
1

N C 2

�PN
iD1.�i /

2

N
�
.
PN
iD1 �i /

2

N 2

�
�N .0; 2/; N !1:

This result should be treated as convergence of the recentered and rescaled 1 � 1 corner
of the matrix to the 1 � 1 Gaussian Orthogonal Ensemble, whose eigenvalues are given
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by (1.3) with ˇ D 1. The procedure can be generalized in two directions: instead of 1 � 1
we can consider arbitrary n � n corners and instead of ˇ D 1 we can consider arbitrary
ˇ > 0. The result remains the same: the scaling limit is always given by the Gaussian
ˇ-corners process (1.3); see [23, 55].

Section 2.4 contains a ˇ D 1 version of such results. It starts from the observation
of [42] that the process formed by the eigenvalues of corners of an N � N Hermitian
matrix with fixed spectrum and uniformly random eigenvectors admits a non-degenerate
ˇ ! 1 scaling limit. This limit is an interesting N.N � 1/=2-dimensional Gaussian
process, whose components are attached to the lattice of all zeros of all derivatives of
a degree N real-valued polynomial. The next step is to let N !1, and Theorem 2.12
shows that under very mild restrictions the limit (which is a counterpart of the eigenvalue
process for fixed size corners of a large matrix from the previous paragraph) is universally
given by the ˇ D1 version of the Gaussian ˇ-corners process (1.3).

1.5. Our methods

For the proofs we start from the computation of the ˇ!1 fixedN limit in (1.3), follow-
ing [42]. In the first order, individual eigenvalues at level k converge to the roots of the
degree k Hermite polynomial, limˇ!1 �

k
i D x

k
i , and we are led to study the fluctuations

around these roots:
�ki D lim

ˇ!1

p
ˇ .�ki � x

k
i /:

While theN.N � 1/=2-dimensional process ¹�ki º1�i�k�N is Gaussian and has an explicit
density (see Section 2.2), computing itsN !1 limit is far from obvious: each coordinate
of this process interacts with many others in a non-trivial way.

An important ingredient underlying all our results is identification of �ki with a parti-
tion function of a directed additive polymer obtained by running a random walk on roots
of the Hermite polynomials and collecting white noises along the trajectories. This is a
discrete version of the representation (1.5) for Z.i; t/. Thus, our asymptotic problems are
now reduced to the study of this random walk. In one time step the walker jumps from a
root of the degree k Hermite polynomial to a root of the degree kC 1Hermite polynomial
with probability of jump from x to y being equal to 1

.kC1/.x�y/2
.

Our next step is to diagonalize the transition semigroup of the random walk. It turns
out that for each j � k the transition probabilities preserve the space of polynomials of
degree � j , and moreover are explicitly diagonalized in the basis of certain polynomials
Q
.k/
m .z/, 0 � m < k. We further give two descriptions of the polynomials Q.k/

m .z/. On
the one hand, for fixed k, these are the first k monic orthogonal polynomials with respect
to the discrete uniform weight on the roots of the degree k Hermite polynomial Hk.z/.
On the other hand, they are the associated Hermite polynomials first studied in [10]. The
three-term recurrence (in m) satisfied by these polynomials is the same as the recurrence
of the Hermite polynomials, but read in the opposite order.8

8In the terminology of [24] and [69], Q.k/m .z/ are dual polynomials to Hk.z/.
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Formula (1.4) eventually arises as a limit of the expression for the covariance of �ki
through the polynomials Q.k/

m .z/. In order to compute this limit, we need to compute the
asymptotics of the polynomialsQ.k/

m .z/ at the locations of the largest roots of the Hermite
polynomials Hk.z/. We remark that while the asymptotic behavior of orthogonal poly-
nomials supported on discrete sets has been studied in great detail, one typically assumes
that the support of the weight function locally looks like a lattice; see, e.g., [12] for such
results. However, in our case the largest roots of the Hermite polynomials approximate
zeros of the Airy function, which are very far from forming a lattice. Hence, the type of
the asymptotics of Q.k/

m .z/ that we develop seems to be new; see Theorem 6.1 for the
exact statement and proof.

For the Dyson Brownian motion of Theorem 1.2 the story is similar: again the poly-
nomials Q.k/

m .z/ and their asymptotic behavior play a crucial role.
Let us outline the directions in which our approach might generalize. The representa-

tion of the ˇ !1 limit of the corners process through a random walk collecting noises
exists not only for the Gaussian ensemble (1.3), but also for the process formed by the
ˇ version of the operation of cutting corners from a Hermitian matrix with fixed spec-
trum and uniformly random eigenvectors, discussed in the previous section. However, the
general situation is complicated by two features. First, the variance of the noise becomes
inhomogeneous. Second, we do not know any reasonable identification for the polynomi-
als diagonalizing the random walk transition matrix, in particular, it is unclear whether
they are orthogonal with respect to some natural weight. On the other hand, since we
already know the answers from Theorems 1.1 and 1.2, it might be possible to show that
they remain valid in a more general setting by arguing directly and probabilistically in
terms of the random walk—this would be a step toward the universality of the previous
section. Simultaneously, we also expect that our representation through the random walk
should be helpful in studying other joint limits as ˇ; N !1, such bulk local limits or
global fluctuations of the spectra.

Finally, let us mention two other texts which appeared almost simultaneously with our
paper.9 Both texts deal with the Dyson Brownian motion (1.2). The article [50] proves an
existence theorem for the edge limit at finite values of ˇ > 1 (as in Theorem 1.2, but with
ˇ staying finite) and shows that the limit can be thought of as a solution to an N D 1
version of (1.2). The approach of [50] does not give explicit formulas for the edge limit
and it is unclear whether our Z.i; t/ can be identified directly by letting ˇ !1 in the
results of [50]—this is an interesting open question. The paper [7] computes the fixed time
edge limit of the ˇ D 1 Dyson Brownian motion providing a different approach to the
asymptotic results of [28,31]; in other words, [7] covers the intersection of Theorems 1.1
and 1.2 corresponding to the t D 0 marginal. The associated Hermite polynomials also
appear in [7], but in a different way: in our work they diagonalize transition matrices,
while in [7] they are eigenfunctions of fixed time covariance matrices. We also remark

9The three groups of authors were working independently and without knowing about each
other’s projects.
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that [7, Section 6] makes a step in the universality direction of Section 1.4 by analyzing
the N; ˇ ! 1 limits of the Laguerre ensemble which can be obtained from (1.1) by
replacing exp.�ˇ

4
.�i /

2/ with another weight function.

2. ˇ D 1 multilevel ensembles

The goal of this section is to define the ˇ !1 fixed N limits of the multidimensional
objects of general ˇ random matrix theory: ˇ-corners processes and the Dyson Brownian
motion.

2.1. 1-corners process

Take anN �N random Hermitian matrix with fixed spectrum xN1 ; : : : ; x
N
N and uniformly

random eigenvectors.10 Let xki , i � k � N � 1, be the i th eigenvalue of the top-left k � k
corner of this matrix. This procedure can be done for real, complex, or quaternion matrix
elements (corresponding to ˇD 1;2;4, respectively, see [58] for the modern proof), result-
ing in the joint laws for the array ¹�ki º1�i�k�N�1 given by the density (with respect to
the Lebesgue measure)

1

ZN;ˇ

N�1Y
kD1

h Y
1�i<j�k

.�kj � �
k
i /
2�ˇ

i
�

h kY
aD1

kC1Y
bD1

j�ka � �
kC1
b
j
ˇ=2�1

i
; (2.1)

where ZN;ˇ is the normalizing constant, and the eigenvalues �ki satisfy the deterministic
inequalities �kC1i � �ki � �

kC1
iC1 for all 1 � i � k � N � 1.

While our ultimate interest is in the N ! 1 asymptotics of (2.1), it was noticed
in [42] that a simpler object can be obtained if we first let ˇ!1 while keeping N fixed.
Namely, as ˇ !1, the values ¹�ki º become deterministic (“crystallize”), tending to an
array ¹xki º. The latter can be computed recursively using the relation Pk�1.x/D 1

k
P 0
k
.x/,

where Pk.x/ D
Qk
jD1.x � x

k
j / is the characteristic polynomial for the limiting level k

eigenvalues.11 Recentering around these limiting values and renormalizing by
p
ˇ we

arrive at the1-corners process. This is a Gaussian process

¹�ki º1�i�k�N D lim
ˇ!1

¹
p
ˇ .�kj � x

k
j /º1�i�k�N ;

where �N1 D �N2 D � � � D �NN D 0, and the other coordinates (see [42, (11)]) have the
common density proportional to

exp
�N�1X
kD1

� X
1�i<j�k

.�ki � �
k
j /
2

2.xki � x
k
j /
2
�

kX
aD1

kC1X
bD1

.�ka � �
kC1
b

/2

4.xka � x
kC1
b

/2

��
: (2.2)

10Equivalently, we deal with the uniform measure on all Hermitian matrices with fixed spectrum
xN1 ; : : : ; x

N
N

.
11Thus, the polynomials Pk.x/ form an Appell sequence.
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2.2. Gaussian1-corners process

A special role in our exposition is played by the Gaussian 1-corners process,12 in
which the polynomials Pk.x/ D Hk.x/ are the Hermite polynomials and the top row
�N1 ; �

N
2 ; : : : ; �

N
N is also random rather than deterministically vanishing. This object can

be obtained as the ˇ ! 1 limit of the corners process constructed from the Gaussian
ˇ-ensemble, which is a distribution on arrays ¹�ki º1�i�k�N obtained from (2.1) by mak-
ing the top row random and distributed according to the Gaussian ˇ-ensemble (1.1). The
distribution of the full array ¹�ki º1�i�k�N was given in (1.3). Recentering �ki around the
zeros of the Hermite polynomials, multiplying by

p
ˇ and letting ˇ ! 1 we get the

Gaussian 1-corners process. For one level the link to the zeros of the Hermite polyno-
mials is classical (see [63, Section 6.7], [48]), while the second order Gaussianity was
investigated in [28]. The multilevel result is obtained through a straightforward Taylor
expansion of (1.3) near its maximum given by the roots of the Hermite polynomials [42,
Theorem 1.6].

Recasting the result of the ˇ !1 limit transition, we deal with an infinite-dimen-
sional centered Gaussian vector �ji , 1 � i � j , such that for each fixed N D 1; 2; : : : ; the
N.N C 1/-dimensional marginal ¹�ji º1�i�j�N has density proportional to

exp
�
�

NX
iD1

.�Ni /
2

4
C

N�1X
kD1

� X
1�i<j�k

.�ki � �
k
j /
2

2.xki � x
k
j /
2
�

kX
aD1

kC1X
bD1

.�ka � �
kC1
b

/2

4.xka � x
kC1
b

/2

��
; (2.3)

where xki is the i th root (i D 1 means the smallest) of the degree k Hermite polyno-
mial Hk .

Proposition 2.1. The definition in (2.3) is consistent: restricting ¹�ji º1�i�j�N to the
k.kC 1/=2 coordinates ¹�ji º1�i�j�k gives an object of the same type. Further, restriction
of ¹�ji º1�i�j�N to the N particles �N1 ; �

N
2 ; : : : ; �

N
N has density proportional to

exp
�
�

NX
iD1

.�Ni /
2

4
�

X
1�i<j�N

.�Ni � �
N
j /

2

2.xNi � x
N
j /

2

�
: (2.4)

Proof. Following [42], formula (2.3) is obtained as the ˇ ! 1 limit of the density
of the Gaussian ˇ-corners process of [43, Definition 1.1] at t D 2=ˇ and the consis-
tency becomes the corollary of the consistency of the latter definition. Similarly, (2.4) is
the ˇ!1 limit of the density of the Gaussian ˇ-ensemble; it is a projection of (2.3), as
follows (by letting ˇ!1) from the fact that the Gaussian ˇ-corners process projects to
the Gaussian ˇ-ensemble, which can be found in [43, Corollary 5.4].

12Note the double meaning of the word Gaussian here. The process is a Gaussian vector and it
also arises as a limit of eigenvalues of Gaussian matrices.
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2.3. Dyson Brownian motion at ˇ D1

Recall that the Dyson Brownian motion (see, e.g., [56, Chapter 9], [6, Section 4.3]) is an
N -dimensional stochastic process with coordinates X1.t/ � � � � � XN .t/, t � 0, defined
as a solution to the system of SDEs

dXi .t/ D
X
j¤i

dt
Xi .t/ �Xj .t/

C

s
2

ˇ
dWi .t/; i D 1; : : : ; N; t � 0; (2.5)

where W1.t/; : : : ; WN .t/ is a collection of independent standard Brownian motions. The
evolution (2.5) should be supplied with initial conditions and in this text we are only going
to consider the case X1.0/ D � � � D XN .0/ D 0. In this situation the distribution of the
solution to (1.2) at a fixed time t is (a rescaled version of) the Gaussian ˇ-ensemble of
density Y

1�i<j�N

.�j � �i /
ˇ

NY
iD1

exp
�
�
ˇ
4t
.�i /

2
�
: (2.6)

Since we are ultimately interested in the ˇ ! 1 limit, we can assume ˇ � 1; in this
situation (2.5) has a unique strong solution [6, Section 4.3]. Hence, we deal with a pair
of N -dimensional stochastic processes .Xi .t/IWi .t//NiD1, t � 0, such that .Wi .t//NiD1 is
the standard Brownian motion, for each t > 0 the law of .Xi .t//NiD1 is given by (2.6) (in
particular Xi .0/ D 0), and .Xi .t//NiD1 is the unique strong solution to (1.2) on the time
interval Œ0;C1/.

Theorem 2.2. FixN , letX1.t/� � � � �XN .t/ be the solution to (2.5) withX1.0/D � � � D
XN .0/ D 0 and let xN1 < � � � < xNN be the roots of the degree N Hermite polynomial.
Define

�Ni .t/ D lim
ˇ!1

p
ˇ .Xi .t/ �

p
t xNi /: (2.7)

Then the N -dimensional .Gaussian/ vector .�N1 .t/; : : : ; �
N
N .t// solves a linear SDE

d�Ni .t/ D �
X
j¤i

�Ni .t/ � �
N
j .t/

t.xNi � x
N
j /

2
dt C

p
2 dWi .t/; t � 0; (2.8)

with initial condition �N1 .0/ D � � � D �
N
N .0/ D 0. The convergence in (2.7) is in law in the

space of N -dimensional continuous functions on each interval Œt1; t2� with 0 < t1 < t2,
and joint with the law of Wi .t/, t � 0, 1 � i � N .the latter does not depend on ˇ/.

Before turning to the proof of Theorem 2.2 let us look at the limiting SDE (2.8).

Lemma 2.3. Let .Wi .t//NiD1, t � 0, be a standard Brownian motion. There exists a unique
stochastic process .�Ni .t//

N
iD1, t � 0, such that for each " > 0, .�Ni .t//

N
iD1 is a strong

solution to (2.8) for t 2 Œ";C1/ and

lim
t!0

�Ni .t/ D 0 in probability for each i D 1; : : : ; N:
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We prove Lemma 2.3 in Section 7.1; the solution is expressed there as a sum involving
Ito integrals and orthogonal polynomials. This solution is the limiting process in Theo-
rem 2.2.

We expect that convergence in Theorem 2.2 can be upgraded to almost sure uniform
convergence on each interval Œ0;T �, T > 0. Such an upgrade would need a careful analysis
at t D 0, where both (2.5) and (2.8) are singular. Because eventually our interest is in
large t (as in Theorem 1.2), we decided not to pursue this analysis here and to phrase
Theorem 2.2 in the way avoiding t D 0. A variant of Theorem 2.2 for a different initial
condition can be found in [70]. We also give a proof here in order to make the paper
self-contained.

Proof of Theorem 2.2. We start by computing the first order limit yi .t/ WD limˇ!1Xi .t/.
There are several ways to do it. First, looking at (2.6) we conclude that y1.t/ < � � �<yN .t/
should solve the variational problem

Y
1�i<j�N

.yj � yi /

NY
iD1

exp
�
�
1

4t
.yi /

2

�
! max: (2.9)

The latter is known to be solved by rescaled zeros of the Hermite polynomials:
yi .t/ D

p
t xNi . Such a variational characterization of roots dates back to the work of

T. Stieltjes (see [63, Section 6.7], [48]). We can also let ˇ!1 directly in (2.5) conclud-
ing that yi .t/ should solve

dyi .t/D
X
j¤i

dt
yi .t/ � yj .t/

; i D 1; : : : ;N; t � 0I y1.0/D � � � D yN .0/D 0: (2.10)

The fact that yi .t/ D
p
t xNi solve (2.10) will follow once we show that

1

2
xNi D

X
j¤i

1

xNi � x
N
j

; i D 1; : : : ; N: (2.11)

The latter identity is equivalent to the vanishing of the logarithmic derivatives in each yi
of (2.9) at t D 1 for the maximizing configuration yi D xNi .

Next, let us compute the centered fixed t limit of Xi .t/ as ˇ!1. For that we Taylor
expand the (logarithm of the) density (2.6) around the N -tuple .

p
t xNi /

N
iD1. In the same

way as in Proposition 2.1, this results in a limiting relation involving a rescaled version
of (2.4):

lim
ˇ!1

p
ˇ .Xi .t/ �

p
t xNi /

N
iD1

d
D .
p
t ui /

N
iD1; (2.12)

where .u1; : : : ; uN / is a Gaussian vector with density proportional to

exp
�
�

X
1�i<j�N

1

2.xNi � x
N
j /

2
.ui � uj /

2
�

NX
iD1

1
4
.ui /

2

�
:
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Let us emphasize that (2.12) is a distributional limit at a fixed time t . In order to deduce
the multi-time limit, we further write

Xi .t/ D
p
t xNi C

1p
ˇ
�i .t/

and plug this into (2.5), getting

1

2
p
t
xNi dt C

1p
ˇ

d�i .t/ D
X
j¤i

dt
p
t xNi �

p
t xNj C

1p
ˇ
�i .t/�

1p
ˇ
�j .t/

C

s
2

ˇ
dWi .t/:

(2.13)

Further, Taylor expanding the dt term on the right-hand side in small parameter 1p
ˇ

we
get

1

2
p
t
xNi dt C

1p
ˇ

d�i .t/

D

X
j¤i

dt
p
t xNi �

p
t xNi

C
1p
ˇ

X
j¤i

dt .�j .t/ � �i .t//
t.xNi � x

N
j /

2
C

s
2

ˇ
dWi .t/CO

�
1

ˇ

�
:

Using (2.11) to cancel the first terms on the right-hand and left-hand sides, multiplying
by
p
ˇ, and letting ˇ !1 we get (2.8).

Now choose " > 0. For t � ", the ˇ!1 convergence of the SDE that �i .t/ satisfies
towards (2.8), together with (2.12), implies that .�Ni .t//

N
iD1 D limˇ!1.�i .t//

N
iD1 is the

solution of (2.8) on the time interval Œ";C1/ with initial condition given by .
p
" ui /

N
iD1;

see [70, proof of Theorem 2.2] for some details. Note that the solution is unique by general
theorems on SDEs with Lipschitz coefficients (see, e.g., [47, Theorem 21.3]).

Clearly, the initial condition �Ni ."/
d
D
p
"ui for each i converges to 0 as "! 0 in dis-

tribution, and hence also in probability. We conclude that the limiting process .�Ni .t//
N
iD1,

t � 0, is as claimed in Lemma 2.3.

2.4. Asymptotic results for corners processes

We presented the N !1 asymptotic results about the Gaussian 1-corners process of
Section 2.2 and the ˇ D 1 Dyson Brownian motion of Section 2.3 in Theorems 1.1 and
1.2, respectively. In this section we give several N !1 asymptotic results dealing with
the ˇ D1-corners process ¹�ki º of Section 2.1.

The definition of the process �ki relies on the (deterministic) configuration of the
points xki . Recall that we start from an N -tuple y1 � � � � � yN , and define the monic
polynomials

PN .x/ D

NY
iD1

.x � yi /; Pk.x/ D
1

N.N � 1/ � � � .N � k C 1/

�
@

@x

�N�k
PN .x/:

(2.14)
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Fig. 3. Three scaling regimes and limiting objects for the grid formed by the zeros of the derivatives
of PN .x/.

The points xk1 � � � � � x
k
k

are defined as the k (real) roots of Pk.x/. We study the points
xki in three scaling regimes, which are schematically shown in Figure 3.

For N -tuples y1 � � � � � yN (with each yi D yi .N / depending on N , although we
omit this dependence from the notations) we introduce various quantities describing it:

� (Centered) moments:

�N D
1

N

NX
iD1

yi ; .�N /
2
D

1

N

NX
iD1

.yi � �N /
2; .�N /

3
D

1

N

NX
iD1

jyi � �N j
3:

� Empirical measures:

�N D
1

N

NX
iD1

ıyi :

We would like to have asymptotic control on yi and for different applications we use
different topologies summarized in the following three assumptions:

Assumption 2.4. We have
lim
N!1

�N

�N
N�1=6 D 0: (2.15)

Remark 2.5. A typical situation is that both �N and �N stay bounded away from 0

and1, in which case the assumption holds automatically.

Assumption 2.6. As N ! 1, the measures �N weakly converge to a compactly sup-
ported probability measure �.

Assumption 2.7. (1) AsN !1, the measures �N weakly converge to a compactly sup-
ported probability measure �.

(2) The supremum of the support of � is B and limN!1 yN D B:
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(3) For a constant # > 0 which does not depend on N , we have yNC1�i � yN�i > #=N
for all 1 � i � #N .

(4) � has a density �.x/ on ŒB � #;B� which satisfies �.x/ � #.B � x/ on this interval.

Remark 2.8. The conditions in Assumption 2.7 are tuned so as to guarantee the conver-
gence in Theorem 2.17 below of the largest points xk

kC1�i
to the roots of the Airy function

for all the range of ratios 0 < k=N < 1; these conditions will be used in Lemma 8.1. If
we only aim at small values of the ratio k=N , then the conditions can be significantly
weakened: small k has a smoothing role, which leads automatically to the necessary edge
behavior.

If we are interested in the smallest points xki (rather than the largest), then we need to
use similar conditions with N C 1� i indices replaced by i and with supremum B of the
support replaced by its infimum A.

The first two results of this section explain the prominent role of the Gaussian 1-
corners process as a scaling limit.

Theorem 2.9. Let ¹xki º1�i�k be the roots of Pk.x/ as in (2.14). Under Assumption 2.4,
for each fixed 1 � i � k,

lim
N!1

p
N

�N
.xki � �N / D h

k
i ;

where hk1 ; : : : ; h
k
k

are the k roots of the degree k Hermite polynomial Hk.x/.

Remark 2.10. For a particular case when xNi , i D 1; : : : ; N , are i.i.d. random variables,
a result similar to Theorem 2.9 can be found in [45].

Example 2.11. Suppose that N is even, N D 2M , and

PN .x/D P2M .x/D .xC1/
M .x�1/M D x2M �Mx2M�2C

M.M � 1/

2
x2M�4C� � � :

In this situation �N D 0, �2N D 1, and �3N D 1. Hence, Theorem 2.9 applies. Let us check
its conclusion directly for k D 3. Indeed,

P3.x/ D
1

2M.2M �1/ � � � 4

@2M�3

@x2M�3
P2M .x/ D x

3
�

6M

2M.2M �1/
x D x3�

3

2M �1
x:

We see that as M !1,

.2M/3=2P3

�
x
p
2M

�
! x3 � 3x: (2.16)

Because x3 � 3x is the degree 3 Hermite polynomial, (2.16) agrees with Theorem 2.9.

Theorem 2.12. For each N D 1; 2; : : : ; take an N -tuple of reals y1 � � � � � yN and let
¹�ki .N /º1�i�k�N be a Gaussian vector distributed as the1-corners process (2.2) with



Universal objects of the infinite beta random matrix theory 19

top level xNi D yi , i D 1; : : : ; N . Under Assumption 2.4 for each fixed K D 1; 2; : : : , we
have convergence in distribution

lim
N!1

p
N

�N
¹�ki .N /º1�i�k�K D ¹�

k
i º1�i�k�K ;

where ¹�ki º is the Gaussian1-corners process of Section 2.2.

For the next results, we need to introduce an equation on an unknown variable z, with
parameters 1 � k � N � 1 and x 2 R,

1

N
�
P 0N .z C x/

PN .z C x/
D
N � k C 1

N
�
1

z
; z 2 C: (2.17)

In our approach this equation arises as a critical point condition G0.z/ D 0 with

G.z/ WD
1

N
ln.PN .z C x// �

N � k C 1

N
ln z: (2.18)

Lemma 2.13. Either all roots of (2.17) are real, or it has a unique pair of complex
conjugate roots.

Proof. Let us first assume that all yi are distinct. After clearing the denominators, (2.17)
is a polynomial equation of degree N . Hence, it has at most N roots. On the other hand,
(2.17) can be rewritten as

1

N

NX
iD1

1

z � .yi � x/
�
N � k C 1

N
�
1

z
D 0: (2.19)

Let us look at theN � 1 intervals .yi � x;yiC1 � x/, 1� i �N � 1, on the real axis. The
point 0 belongs to at most one of them. For the remaining N � 2 intervals, the function
on the left-hand side of (2.19) is continuous and changes its sign from positive at z D
yi � x C 0 to negative at z D yiC1 � x � 0. Therefore, each such interval contains a root
of (2.17) and we have foundN � 2 real roots. Hence, there are at most two complex roots.

For the case when some yi are allowed to coincide, the argument remains the same
with the only difference being that the polynomial equation now has degree “number of
distinct values of yi” rather than N .

Whenever (2.17) has two complex roots, we say that .x; k=N / belongs to the liquid
region (sometimes also called the band) and denote by zc the corresponding root in the
upper half-plane. Otherwise, we say that .x; k=N / belongs to the void region.

Theorem 2.14. Under Assumption 2.6 choose .x; k=N / in the liquid region in such a
way that as N !1, k=N is bounded away from 0 and 1 and zc stays bounded away
from the real axis and from1. Then, zooming in near x, the point configurations

¹N.xki � x/º
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Fig. 4. Particles near a point x in the bulk resemble a lattice with spacings proportional to 1=N .

asymptotically form a lattice .see Figure 4/ with fixed spacing u D limN!1.x
k
iC1 � x

k
i /

and fixed spacing v D limN!1.x
k
i � x

kC1
i / .satisfying 0 < v < u/ such that

u D �

�
N � k C 1

N
Im

1

zc

��1
; v D u �

1

�
arg.zc/:

Remark 2.15. Results of this type are known in the literature: see, e.g., [34].

Remark 2.16. When all the roots of (2.17) are real, we expect to observe no points
from ¹xki º near .x;k=n/, hence the name “void region”. We do not prove such a statement
here, but it can probably be proven by the same methods we use in the Appendix.

Looking carefully into the argument of Lemma 2.13, one can notice that for a very
large (positive or negative) x all roots of (2.17) are real and such an x belongs to the
void region. If we start decreasing x from C1, then at some point we eventually reach
the liquid region. This transition point is the right edge of the liquid region. Note that at
this point the complex conjugate roots zc and zc merge together, forming a double root
of (2.17).

Let a1 > a2 > � � � be the zeros of the Airy function Ai.x/.

Theorem 2.17. Under Assumption 2.7, asN !1 and with k varying in such a way that
k=N stays bounded away from 0 and from 1, let x D x.N; k/ be the largest real number
such that (2.17) has a double root, and let zc 2 R denote the location of this root. Then
for each i D 1; 2; : : : ,

lim
N!1

N 2=3
xk
kC1�i

� x

�
D ai ;

where ai is the i th largest zero of the Airy function and, using G.z/ given by (2.18), we
have

� D z2c

�
G000.zc/

2

�1=3
N

N � k C 1
:

Remark 2.18. A very similar statement holds for the smallest points xki , i D 1; 2; : : : ,
with the difference being that x is replaced by the smallest real number for which (2.17)
has a double root. Note that G000.zc/ > 0 when we deal with the largest points xk

kC1�i
,

and G000.zc/ < 0 when we deal with the smallest points xki .



Universal objects of the infinite beta random matrix theory 21

Remark 2.19. One can expect that in the setting of Theorem 2.17, the two-dimensional
process .i; t/ 7! c2N

2=3�
kCc1N

2=3t

kCc1N2=3t�i
converges to Z.i; t/ after a proper choice of the

deterministic constants c1; c2 > 0. This should be viewed as a (conjectural) extension of
Theorem 1.1.

The proofs of Theorems 2.9, 2.14, and 2.17 are based on the steepest descent analysis
of contour integrals, and are given in the Appendix (Section 8). The proof of Theorem
2.12 is in Section 5.

3. Innovations and the jumping process

Our approach to the asymptotic theorems for ¹�ki º and ¹�ki º is based on their represen-
tations as partition functions of directed polymers (with heavy-tailed jumps) collecting
additive independent Gaussian noises. In this section we introduce such representations.

As before, we start from a collection ¹xki º of roots of an Appell sequence of polyno-
mials (2.14). We define a collection of numbers ˛k

a;b
by

˛ka;b D
.xka � x

kC1
b

/�2PkC1
b0D1.x

k
a � x

kC1
b0

/�2
; 1 � a � k; 1 � b � k C 1: (3.1)

The definition readily implies that the ˛k
a;b

form a stochastic matrix:

8a; b ˛ka;b > 0; and 8a

kC1X
bD1

˛ka;b D 1: (3.2)

We also define a linear operatorAk with matrix .˛k
a;b
/aD1;:::;k; bD1;:::;kC1: it maps .kC 1/-

dimensional space to k-dimensional space.

Remark 3.1. Ak can be interpreted as the differential of the k-dimensional vector of
roots of the derivative P 0

kC1
as a function of k C 1 roots of PkC1. In this interpretation,

the identity
PkC1
bD1 ˛

k
a;b
D 1 becomes a corollary of the observation that shifting all the

roots of a polynomial by a constant " we also shift every root of its derivative by the same
constant ".

Definition 3.2. The jumping process is a Markov process with the set of allowed states
Xk WD ¹x

k
a ºaD1;:::;k at time k, and with the transition probabilities given by (3.1),

P .xka ! xkC1
b

/ D ˛ka;b :

The product of matrices Ak then becomes its diffusion kernel:

Definition 3.3. The diffusion kernelKk;`.a! b/ is defined as the (transition) probability
that the jumping process, starting at xka at time k, at time ` > k ends up at x`

b
. Formally,

Kk;`.a! b/ D .Ak � � �A`�1/a;b :
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Theorem 3.4. The process ¹�ki º1�i�k�N of Section 2.1 can be represented as

�ka D

N�1X
`Dk

X̀
bD1

Kk;`.a! b/ � �`b; (3.3)

where �`
b

are independent Gaussian random variables with variance

Var �`b D
2PkC1

bD1.x
`
b
� x`C1c /�2

D �2
P`C1.x

`
b
/

P 00
`C1

.x`
b
/
: (3.4)

We also have

Cov.�k1a1 ; �
k2
a2
/ D

N�1X
`Dmax.k1;k2/

�X̀
bD1

Kk1;l .a1 ! b/Kk2;`.a2 ! b/ � Var �`b
�
: (3.5)

Theorem 3.5. The process ¹�ki º1�i�k of Section 2.2 can be represented as

�ka D

1X
`Dk

X̀
bD1

Kk;`.a! b/ � �`b; (3.6)

where �`
b

are independent Gaussian random variables with variance

Var �`b D
2

`C 1
: (3.7)

We also have

Cov.�k1a1 ; �
k2
a2
/ D

1X
`Dmax.k1;k2/

�X̀
bD1

2

`C 1
Kk1;l .a1 ! b/Kk2;`.a2 ! b/

�
: (3.8)

Remark 3.6. Let us emphasize thatKk;`.a! b/ depends on the array ¹xji º. In particular,
in Theorem 3.5 the diffusion kernel is constructed using roots of the Hermite polynomials,
while in Theorem 3.4 more general configurations are allowed.

In words, Theorems 3.4 and 3.5 say that ¹�ki º and ¹�ki º are averages over the trajecto-
ries of the jumping process of the sums of independent Gaussian noises collected by this
process. In the rest of the section we prove these theorems.

Consider the process ¹�ki º1�i�k�N of Section 2.1 as a vector-valued process ¹E�kºNkD1,

where E�k D .�k1 ; : : : ; �
k
k
/. It is immediate to see from (2.2) that this process is Markovian:

conditionally on any E�k0 , the values of �k with k < k0 are independent of those with
k > k0.

Now, let us compute the conditional distribution of E�k given E�kC1. One way to do this
is by letting ˇ!1 in the similar finite ˇ conditional distribution, computed in [43, (1.6)]
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or [42, (56)]. The computations result in the density of the conditional distribution of E�k
given E�kC1 being proportional to

exp
�
�

kX
aD1

kC1X
bD1

.�ka � �
kC1
b

/2

4.xka � x
kC1
b

/2

�
D

kY
aD1

exp
�
�

kC1X
bD1

.�ka � �
kC1
b

/2

4.xka � x
kC1
b

/2

�
: (3.9)

Completing the squares in the last formula, we rewrite it as

C �

kY
aD1

exp
�
�
1

4

� kC1X
bD1

1

.xka � x
kC1
b

/2

��
�ka �

kC1X
bD1

�kC1
b

.xka � x
kC1
b

/�2PkC1
b0D1.x

k
a � x

kC1
b0

/�2

�2�
;

(3.10)
where C is a constant which does not depend on �k1 ; : : : ; �

k
k

. The conditional expectation

E.E�k j E�kC1/ can thus be written as

E.�ka j E�kC1/ D
kC1X
bD1

˛ka;b�
kC1
b

; where ˛ka;b D
.xka � x

kC1
b

/�2PkC1
b0D1.x

k
a � x

kC1
b0

/�2
: (3.11)

We write E�k as a sum of this conditional expectation and of the innovations vector
E�k D E�k � E.E�k j E�kC1/. From (3.10) we see that E�k has independent components with

Var �ka D
2PkC1

bD1.x
k
a � x

kC1
b

/�2
D �2

PkC1.x
k
a /

P 00
kC1

.xka /
; (3.12)

where the second equality comes from differentiating the relation
P 0
kC1

.y/

PkC1.y/
DPkC1

bD1
1

y�x
kC1
b

, substituting y D xka , and using P 0
kC1

.xka / D 0.

Now, let us iterate the representation

E�k D Ak E�kC1 C E�k ;

going from an arbitrary level k all the way to the top level N . Since �Ni D 0, 1 � i � N ,
we get

E�k D E�k C Ak E�kC1 C AkAkC1E�kC2 C � � � C AkAkC1 � � �AN�2E�N�1; (3.13)

which is precisely (3.3). The identity (3.5) directly follows from (3.3) and independence
of �ka , thus finishing the proof of Theorem 3.4.

Let us now develop a similar representation for the Gaussian 1-corners process �ki
of (2.3). In this particular case, Pk.X/ D Hk.x/ are the Hermite polynomials and they
satisfy the differential equation

H 00k .x/ � xH
0
k.x/C kHk.x/ D 0: (3.14)

Thus, at every root y ofHk D 1
kC1

H 0
kC1

one has HkC1.y/
H 00
kC1

.y/
D�

1
kC1

. Hence, Var�k
b
D

2
kC1

for all b.
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Another distinction is that �Ni no longer vanishes and (3.3) gets modified to

�ka D

N�1X
`Dk

X̀
bD1

Kk;`.a! b/ � �`b C

NX
bD1

Kk;N .a! b/�Nb : (3.15)

Since N > k is arbitrary in (3.15), we can also take N D1, getting

�ka D

1X
`Dk

X̀
bD1

Kk;`.a! b/ � �`b; (3.16)

which is the same as (3.6).

Remark 3.7. The series (3.16) is almost surely convergent, as follows (by Kolmogorov’s
three series theorem, see, e.g., [29, Theorem 2.5.8]) from the independence of the terms �`n
and convergence of the series defining the variance of �ka , i.e.

1X
`Dk

X̀
bD1

.Kk;`.a! b//2 �
2

`C 1
<1:

The last inequality is implied by the upper bound Kk;`.a! b/ � k=` of Lemma 5.1.

Remark 3.8. For the transition from (3.15) to (3.16), one should additionally check that

lim
N!1

NX
bD1

Kk;N .a! b/�Nb D 0 in probability. (3.17)

For that, let us note that, by construction, the vectors .�N
b
/N
bD1

and .�`
b
/1�b�`<N in (3.15)

are uncorrelated. Hence,

Var.�ka / D Var
�N�1X
`Dk

X̀
bD1

Kk;`.a! b/ � �`b

�
C Var

� NX
bD1

Kk;N .a! b/�Nb

�
: (3.18)

Letting N !1 in the last identity, (3.17) would follow if we manage to prove that

Var.�ka / D Var
� 1X
`Dk

X̀
bD1

Kk;`.a! b/ � �`b

�
: (3.19)

This identity will be established in Corollary 7.5 by relying on the representation of
Kk;`.a! b/ in terms of orthogonal polynomials.13

Using independence of �ka , the representation (3.6) implies (3.8). The proof of Theo-
rem 3.5 is finished.

13Before reaching Corollary 7.5, the reader might assume that we deal with the process of (3.6)
whenever we mention �ka .
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4. Random walks through orthogonal polynomials

The aim of this section is to diagonalize the stochastic matrices Ak from (3.2) using a
special class of orthogonal polynomials.

4.1. Preservation of polynomials

Let us choose a sequence of polynomials Pk.x/ such that Pk is a monic polynomial of
degree k and Pk�1.x/ D 1

k
P 0
k
.x/ for each k D 1; 2; : : : . Each polynomial Pk is further

assumed to have k distinct real roots, which constitute the set Xk .

Definition 4.1. Fk is the k-dimensional space of functions on Xk .

We further define Dk to be the dual operator to Ak :

Definition 4.2. The operator Dk maps Fk to FkC1 by

ŒDkf �.x/ D
X
y2Xk

�
f .y/

.x � y/2

� X
x02XkC1

1

.x0 � y/2

��1�
; x 2 XkC1:

We are going to mostly concentrate on the action ofDk on polynomial functions. It is
important to note that since Fk is finite-dimensional, the monomials xn, n D 0; 1; 2; : : : ;
are linearly dependent. Hence, there can be several representations of Dk , whose equiva-
lence is sometimes non-evident.

Proposition 4.3. For each m D 0; 1; : : : ; k � 1, the linear operator Dk preserves the
space of polynomials of degree at most m. In more detail,

Dkx
m
D

�
1 �

mC 1

k C 1

�
xm C .a polynomial of degree at most m � 1/:

In the proof we rely on the following identity.

Lemma 4.4. For y 2 Xk we haveX
x2XkC1

1

.x � y/2
D �

P 00
kC1

.y/

PkC1.y/
: (4.1)

Proof. This is a reformulation of the second equality in (3.4).

Proof of Proposition 4.3. We are going to use two integral representations for the action
of the operator Dk on polynomial functions. First,

ŒDkf �.x/ D �
1

2� i

I
Xk

f .z/ �
PkC1.z/

P 0
kC1

.z/
�

dz
.z � x/2

; (4.2)

where the integration contour is positively (i.e. counter-clockwise) oriented and includes
all poles at points of Xk , but not x. Indeed, taking into account (4.1), the sum of the
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residues of (4.2) at points y 2 Xk matches the sum in the definition of Dk . Second, for
x 2 XkC1, using PkC1.x/ D 0, we can deform the integration contour in (4.2) through
the simple pole at z D x picking up the residue f .x/ there and get

ŒDkf �.x/ D f .x/ �
1

2� i

I
1

f .z/ �
PkC1.z/

P 0
kC1

.z/
�

dz
.z � x/2

; (4.3)

where the integration now goes in the positive direction over a very large contour enclos-
ing all singularities of the integrand. Let us emphasize that (4.2) and (4.3) are only equal
for x 2 XkC1. We now specialize to f .x/ D xm and compute the integral in (4.3) as
a residue at1. For that we expand, for large z,

1

.z � x/2
D

1

z2
C 2

x

z3
C 3

x2

z4
C 4

x3

z5
C � � � : (4.4)

Note that zm � PkC1.z/
P 0
kC1

.z/
grows in the leading order as zmC1

kC1
. Hence, only the first mC 1

terms in (4.4), which are
1

z2
C � � � C .mC 1/

xm

zmC2
;

contribute to the residue. We conclude that this residue is a degree m polynomial of the
form mC1

kC1
xm C � � � .

4.2. Lattices with 3-term recurrence

Our next task is to introduce a basis in Fk such that the action of Dk is diagonal with
respect to this basis. We have been unable to present a satisfactory definition for generic
choices of Pk and need to restrict ourselves to the following class:14

Definition 4.5. We say that polynomials Pk.z/ are classical if

P 00k .z/˛k.z/C P
0
k.z/ˇk.z/C Pk.z/ D 0; (4.5)

where ˛k.z/ is a polynomial of degree at most 2 and ˇk.z/ is a polynomial of degree at
most 1.

Examples are given by classical orthogonal polynomials; see, e.g., [54] and Sec-
tion 4.3.

Definition 4.6. Fix k and equip Xk with the weight

wk.y/ D �
1

k.k C 1/
�
PkC1.y/

Pk�1.y/
D �

PkC1.y/

P 00
kC1

.y/
: (4.6)

14As of 2021, we do not know other classes of Pk leading to explicit identification of a basis.
Another possible good case for future investigations is a ˇ D 1 version of the ergodic measures
on eigenvalues of corners of general ˇ-random matrices of infinite size; see, e.g., [11] and [15,
Section 4.4] for discussion of these measures.
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Consider a scalar product on Fk :

hf; gik D
X
y2Xk

f .y/g.y/wk.y/: (4.7)

DefineQ.k/
m .x/,mD 0;1; : : : ;k � 1, to be the monic orthogonal polynomials with respect

to this scalar product.

Remark 4.7. Due to interlacing between the roots of PkC1 and its derivative, the weight
wk.y/, y 2 Xk , is positive.

Remark 4.8. For each y 2 Xk , due to (4.5) and vanishing of Pk.y/, we have wk.y/ D
˛kC1.y/.

Theorem 4.9. Suppose that polynomials Pk.z/ are classical. Then for 0 �m � k � 1 we
have

DkQ
.k/
m D

�
1 �

mC 1

k C 1

�
Q.kC1/
m : (4.8)

Proof. Proposition 4.3 implies that DkQ
.k/
m is a degree m polynomial with leading coef-

ficient 1 � mC1
kC1

. Hence, it remains to prove that

hDkQ
.k/
m ; xj ikC1

‹
D 0; 0 � j � m � 1: (4.9)

We are going to use the following contour integral representation of the scalar product
hf; gik for polynomial functions f and g:

hf; gik D �
1

k C 1
�
1

2� i

I
Xk

f .z/g.z/
PkC1.z/

Pk.z/
dz; (4.10)

where the integration contour is counter-clockwise oriented and encloses all singularities
of the integrand, which has k poles at the points of Xk , the roots of Pk.z/. The sum of
the residues at these poles matches the definition of the scalar product. Formula (4.10)
remains valid even for non-polynomial functions f and g as long as these functions have
an analytic continuation to a small complex neighborhood of Xk ; in this situation the
integration contour should be a union of small loops around points of Xk .

Combining (4.2) with (4.10), we need to proveI
XkC1

�I
Xk

Q.k/
m .z/ �

PkC1.z/

Pk.z/

dz
.z � u/2

�
uj
PkC2.u/

PkC1.u/
du ‹
D 0: (4.11)

Note that the internal integral might fail to be a polynomial in u. The u-integral in (4.11)
is over a union of k C 1 small loops around points of XkC1 and the z-integral is over a
union of k small loops around points of Xk .

We would like to deform the u-contour in (4.11) to make it a large circle. In this
deformation we encounter singularities at the double pole u D z resulting (up to a 2� i
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factor, which we omitted) in an additional residue term given by the integralI
Xk

Q.k/
m .z/ �

PkC1.z/

Pk.z/

@

@z

�
zj
PkC2.z/

PkC1.z/

�
dz

D

I
Xk

Q.k/
m .z/ �

PkC1.z/

Pk.z/
jzj�1

PkC2.z/

PkC1.z/
dz C

I
Xk

Q.k/
m .z/ �

PkC1.z/

Pk.z/
zj .k C 2/ dz

�

I
Xk

Q.k/
m .z/ �

PkC1.z/

Pk.z/
zj
PkC2.z/.k C 1/Pk.z/

.PkC1.z//2
dz: (4.12)

Let us show that each of the integrals on the right-hand side of (4.12) vanishes. In the
last one the factor Pk.z/ cancels out and there are no singularities inside the integration
contour. The middle integral is a scalar product ofQ.k/

m and zj .kC 2/, and thus vanishes.
For the remaining first integral we use the three-term relation (4.5):

j

I
Xk

Q.k/
m .z/zj�1 �

PkC2.z/

Pk.z/
dz

D j

I
Xk

Q.k/
m .z/zj�1 �

.k C 2/.k C 1/Pk.z/˛kC2.z/

Pk.z/
dz

C j

I
Xk

Q.k/
m .z/zj�1 �

.k C 2/PkC1.z/ˇkC2.z/

Pk.z/
dz: (4.13)

For the last two integrals, the first one has integrand with no singularities, hence
it vanishes.15 The second integral is a scalar product of Q.k/

m with the polynomial
zj�1.k C 2/ˇkC2.z/ of degree at most j , hence it also vanishes.

Now (4.11) got converted intoI
1

�I
Xk

Q.k/
m .z/ �

PkC1.z/

Pk.z/

dz
.z � u/2

�
uj
PkC2.u/

PkC1.u/
du

‹
D 0: (4.14)

Let us integrate in u first by computing the u-residue at1. For that we expand 1=.z � u/2

in a 1=u power series. Since uj PkC2.u/
PkC1.u/

grows as .k C 2/ujC1, we only need terms up to

1=ujC2 in the expansion, i.e. we need

1

.z � u/2
D

1

u2
C 2

z

u3
C � � � C .j C 1/

zj

ujC2
C .� � � /;

where the .� � � / terms can be ignored. We conclude that the u-integral is a polynomial in
z of degree at most j . Hence, the z-integral becomes a scalar product of Q.k/

m with this
polynomial and vanishes.

15Note that this is the only place where ˛kC2.z/ appears and we do not need it to be a polynomial
in order for this argument to work. Yet, it is unclear whether this observation can be used to add any
generality to the theorem that we are proving.
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4.3. Hermite, Laguerre, and Jacobi examples

In this section we list the classical polynomials for which (4.5) is satisfied. We take the
formulas directly from [49].

First, the (monic) Hermite polynomials form an Appell sequence,H 0
k
.z/D kHk�1.z/,

and also satisfy the differential equation

H 00k .z/ � zH
0
k.z/C kHk.z/ D 0:

Hence, they fit into Definition 4.5. The weight is constant in this case:

wk.y/ D
1

k C 1
; y 2 Xk : (4.15)

The second example is given by the generalized Laguerre polynomialsL.˛/
k
.z/, which

solve the second order differential equation

zf 00.z/C .˛ C 1 � z/f 0.z/C kf .z/ D 0; k D 0; 1; : : : : (4.16)

The leading coefficient of L.˛/
k
.z/ is usually chosen to be .�1/k

kŠ
and in this normalization

they satisfy the relation
@

@z
L
.˛/

k
.z/ D �L

.˛C1/

k�1
.z/:

Hence, the polynomials

Pk.z/ D .�1/
kkŠ � L

.˛�k/

k
.z/; k D 0; 1; 2; : : : ;

are monic, form an Appell sequence, and fit into Definition 4.5. The weight is linear in
this case:

wk.y/ D
y

k C 1
; y 2 Xk :

The third example is given by the Jacobi polynomials J .˛;ˇ/
k

.z/, which solve the sec-
ond order differential equation

.1� z2/f 00.z/C .ˇ � ˛ � .˛C ˇC 2/z/f 0.z/C k.kC ˛C ˇC 1/f .z/D 0: (4.17)

If we use the normalization of [49], then the leading coefficient is

2�m
�.˛ C ˇ C 2k C 1/

�.k C 1/�.˛ C ˇ C k C 1/

and the polynomials satisfy the relation

@

@z
J
.˛;ˇ/

k
.z/ D

k C ˛ C ˇ C 1

2
J
.˛C1;ˇC1/

k�1
.z/:

Hence, the polynomials

Pk.z/ D 2
m�.k C 1/�.˛ C ˇ C k C 1/

�.˛ C ˇ C 2k C 1/
J
.˛�k;ˇ�k/

k
.z/; k D 0; 1; 2; : : : ; (4.18)
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are monic, form an Appell sequence, and fit into Definition 4.5. The weight is quadratic:

wk.y/ D
1 � y2

.k C 1/.k C ˛ C ˇ C 2/
; y 2 Xk : (4.19)

We remark that if ˛;ˇ >�1, then the Jacobi and Laguerre polynomials are orthogonal
(with respect to the weights .1 � z/˛.1C z/ˇ on Œ�1; 1� and x˛e�x on Œ0;C1/, respec-
tively), yet, this restriction on the parameters is not necessary for the polynomials to be
well-defined and for the above identities to hold. Note, however, that we need the polyno-
mials to be real-rooted, which is always true for ˛; ˇ > �1, but fails for some values of
˛; ˇ � �1: see, e.g., [16, 51].

4.4. Consequences of orthogonality

Our main motivation for the introduction of the orthogonal polynomials Q.k/
j is that they

are helpful in analyzing the covariance (3.5).

Theorem 4.10. Suppose that polynomials Pk.z/ are classical and letQ.k/
m be as in Defi-

nition 4.6. Then the stochastic process ¹�ka º1�a�k�N admits the following formula for the
covariance:

Cov.�k1a1 ; �
k2
a2
/ D 2wk1.x

k1
a1
/wk2.x

k2
a2
/

N�1X
`Dmax.k1;k2/

min.k1;k2/�1X
mD0

Q.k1/
m .xk1a1 /Q

.k2/
m .xk2a2 /

�
hQ

.`/
m ;Q

.`/
m i`

hQ
.k1/
m ;Q

.k1/
m ik1hQ

.k2/
m ;Q

.k2/
m ik2

`�1Y
jDk1

�
1 �

mC 1

j C 1

� `�1Y
jDk2

�
1 �

mC 1

j C 1

�
: (4.20)

Further, if Pk.z/ are the Hermite polynomials and we deal with ¹�ka º1�a�k , then

Cov.�k1a1 ; �
k2
a2
/ D 2wk1.x

k1
a1
/wk2.x

k2
a2
/

1X
`Dmax.k1;k2/

min.k1;k2/�1X
mD0

Q.k1/
m .xk1a1 /Q

.k2/
m .xk2a2 /

�
hQ

.`/
m ;Q

.`/
m i`

hQ
.k1/
m ;Q

.k1/
m ik1hQ

.k2/
m ;Q

.k2/
m ik2

`�1Y
jDk1

�
1 �

mC 1

j C 1

� `�1Y
jDk2

�
1 �

mC 1

j C 1

�
: (4.21)

Proof. The diffusion kernel of Definition 3.3 admits a spectral representation. Using the
notation 1xka for the delta-function at xka , we have

Kk;`.a! b/ D ŒD`�1 � � �DkC1Dk1xka �.x
`
b/

D

k�1X
mD0

h1xka ;Q
.k/
m ik

hQ
.k/
m ;Q

.k/
m ik

ŒDkDkC1 � � �D`�1Q
.k/
m �.x`b/�

D wk.x
k
a /

k�1X
mD0

Q
.k/
m .xka /Q

.`/
m .x

`
b
/

hQ
.k/
m ;Q

.k/
m ik

`�1Y
jDk

�
1 �

mC 1

j C 1

�
: (4.22)
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Using (3.5) and Var �`
b
D 2w`.x

`
b
/, we further write

Cov.�k1a1 ; �
k2
a2
/ D 2

N�1X
`Dmax.k1;k2/

hKk1;`.a1 ! �/;K
k2;`.a2 ! �/i`

D 2wk1.x
k1
a1
/wk2.x

k2
a2
/

N�1X
`Dmax.k1;k2/

k1�1X
m1D0

k2�1X
m2D0

Q.k1/
m1

.xk1a1 /Q
.k2/
m2

.xk2a2 /

�
hQ

.`/
m1 ;Q

.`/
m2i`

hQ
.k1/
m1 ;Q

.k1/
m1 ik1hQ

.k2/
m2 ;Q

.k2/
m2 ik2

�

`�1Y
jDk1

�
1 �

m1 C 1

j C 1

� `�1Y
jDk2

�
1 �

m2 C 1

j C 1

�
: (4.23)

Orthogonality implies m1 D m2 and the last expression simplifies to

2wk1.x
k1
a1
/wk2.x

k2
a2
/

N�1X
`Dmax.k1;k2/

min.k1;k2/�1X
mD0

Q.k1/
m .xk1a1 /Q

.k2/
m .xk2a2 /

�
hQ

.`/
m ;Q

.`/
m i`

hQ
.k1/
m ;Q

.k1/
m ik1hQ

.k2/
m ;Q

.k2/
m ik2

�

`�1Y
jDk1

�
1 �

mC 1

j C 1

� `�1Y
jDk2

�
1 �

mC 1

j C 1

�
: (4.24)

For ¹�ka º1�a�k the argument is the same.

4.5. Duality property

In the previous subsection we explained how ¹�ka º1�a�k�N can be analyzed using the
orthogonal polynomialsQ.k/

m .z/ of Definition 4.6. Our next aim is to collect the necessary
tools to obtain the asymptotic theorems for these polynomials.

Although the polynomials Q.k/
m .z/ are not well-known, they have appeared in the

literature previously. Some of their properties are explained in [69] with certain elements
of the constructions going back to [17,24] and others being rooted in classical orthogonal
polynomial topics: associated polynomials (we rely on [10]), quadrature formulas, and
Christoffel numbers. Let us present a general framework.

Suppose that we are given a sequence of monic orthogonal polynomials16 Pn.x/,
n D 0; 1; 2; : : : ; satisfying a three-term recurrence

PnC1.x/C bnPn.x/C unPn�1.x/ D xPn.x/ (4.25)

16We do NOT assume these polynomials form an Appell sequence.
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with an initial condition

P0.x/ D 1; P1.x/ D x � b0:

One way to think about (4.25) is by considering a tridiagonal matrix of the form0BBB@
b0 u1 0 : : :

1 b1 u2 0 : : :

0 1 b2
:::

: : :

1CCCA : (4.26)

Then (4.25) says that the operator of multiplication by x is given by the matrix (4.26) in
the basis of orthogonal polynomials P0.x/;P1.x/; : : : . Simultaneously, denoting by Mn

the top-left n � n corner of (4.26), we see that the recurrence (4.25) is solved by

Pn.x/ D det.x �Mn/: (4.27)

Fix N > 0 and define dual polynomials Qn.x/, n D 0; 1; : : : ; N � 1, through the dual
recurrence

QnC1.x/C bN�n�1Qn.x/C uN�nQn�1.x/ D xQn.x/ (4.28)

with the initial condition

Q0.x/ D 1; Q1.x/ D x � bN�1:

In other words, the N �N tridiagonal matrices corresponding to (4.25) and (4.28) differ
by reflection in the � diagonal.

It turns out that the polynomials Qn have an explicit orthogonality measure, which is
supported on the N roots of PN and has weight

w�.x/ D
PN�1.x/

P 0N .x/
for x such that PN .x/ D 0: (4.29)

[69, (1.20)] explains thatX
xWPN .x/D0

w�.x/Qm.x/Qn.x/ D 1nDm � hn; 0 � n;m � N � 1: (4.30)

Let us compare the weight w�.x/ of (4.29) with wk.x/ of Definition 4.5. In general, the
formulas are different, but it is important to recall that we actually deal with classical
polynomials. Indeed, [3] suggested defining classical orthogonal polynomials as those
satisfying a relation

�.x/P 0n.x/ D .˛nx C ˇn/Pn.x/C nPn�1.x/; n � 1; (4.31)

where �.x/ is a polynomial (which then has to be of degree at most 2). Relation (4.31)
readily implies that w�.x/ is a polynomial of degree at most 2 (and the latter fact can be
used as yet another definition of classical orthogonal polynomials, see [69]), matching the
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examples of Section 4.3. In particular, for the monic Jacobi polynomials (4.18) relation
(4.31) takes the form

.x2 � 1/P 0n.x/ D

�
nx C n

ˇ2 � ˛2

.˛ C ˇ/.2nC ˛ C ˇ/

�
Pn.x/

�
4n.nC ˛ C ˇ/.nC ˛/.nC ˇ/

.2nC ˛ C ˇ � 1/.2nC ˛ C ˇ/2
Pn�1.x/;

giving the match between w�.x/ and wk.x/ of (4.19) up to a constant factor. Hence,
monic orthogonal polynomials with respect to these weights coincide.

We also rely on a link between dual and associated polynomials. Fix a parameter
c D 0; 1; 2; : : : ; and define the associated polynomials P

.c/
n .x/ as a solution to the three-

term recurrence

P
.c/
nC1.x/C bnCcP

.c/
n .x/C unCcP

.c/
n�1.x/ D xP .c/

n .x/ (4.32)

and the initial condition

P
.c/
0 .x/ D 1; P

.c/
1 .x/ D x � bc :

In terms of the tridiagonal matrix (4.26) we deleted the first c rows and the first c columns.
Then, either using [69, Theorem 1] or comparing (4.27) for dual and associated poly-

nomials, one identifies

Qn.x/ D P .N�n/
n .x/; 0 � n � N: (4.33)

In particular, QN D P
.0/
N D PN .

For us the most important case is when Pk.x/ are the Hermite polynomials. In this sit-
uation, we saw in Section 4.3 that wk.x/D 1

kC1
. On the other hand, P 0n.x/D nPn�1.x/,

and therefore w�.x/ is also a constant. Taking into account the three-term relation for the
Hermite polynomials

HnC1.x/C nHn�1.x/ D xHn.x/

and for the associated version

H
.c/
nC1.x/C .nC c/H

.c/
n�1.x/ D xH

.c/
n .x/;

we record the conclusion:

Proposition 4.11. Let Pk.z/, k D 0; 1; 2; : : : ; be the Hermite polynomials Hk.z/. Then
the orthogonal polynomials Q.k/

m .z/ of Definition 4.6 satisfy the three-term recurrence

Q
.k/
mC1.z/C .k �m/Q

.k/
m�1.z/ D zQ

.k/
m .z/; 0 � m � k � 1; (4.34)

and the initial conditions

Q
.k/
0 .z/ D 1; Q

.k/
1 .z/ D z: (4.35)

We also have an identity with the associated Hermite polynomials:

Q.k/
m .z/ D H .k�m/

m .z/; 0 � m � k: (4.36)
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Corollary 4.12. We have

hQ.k/
m ;Q.k/

m ik D
k.k � 1/.k � 2/ � � � .k �m/

k C 1
: (4.37)

Proof. For any sequence of orthogonal polynomials satisfying a three-term recurrence of
the form (4.25), the ratio of the norm of the mth polynomial and the norm of the 0th
polynomial is u1 � � �um.

Here is one more ingredient we need (we use the Pochhammer symbol .x/n D
x.x C 1/ � � � .x C n � 1/).

Proposition 4.13. The associated Hermite polynomials have an explicit generating func-
tion:

1X
nD0

vn
H
.c/
n .x/

.c C 1/n
D cv�c exp.�v2=2C xv/

Z v

0

uc�1 exp.u2=2 � xu/du; (4.38)

which can be rewritten using (4.36) as a contour integral

Q.k/
m .x/ D

.k �m/mC1

2� i

I
0

v�.k�m/ exp.�v2=2C xv/

�

�Z v

0

uk�m�1 exp.u2=2 � xu/ du
�

dv
vmC1

: (4.39)

Proof. See [10, (4.14)], but note a different definition of the Hermite polynomials used
there—they are orthogonal with respect to exp.�x2/ in [10] rather than exp.�x2=2/ used
here.

Remark 4.14. One can directly check that the right-hand side of (4.39) satisfies relations
(4.34) and (4.35).

5. G1E limit: proof of Theorem 2.12

The proof relies on several lemmas. We use the notations of Section 3. As before, for
1 � k � N , xki are the roots of Pk.x/ � .@=@x/N�kPN .x/, and Kk;`.a ! b/ are the
diffusion kernels of Definition 3.3.

Lemma 5.1. The matrix elements of the diffusion kernel of Definition 3.3 satisfy

Kk;`.a! b/ � k=`; ` > k: (5.1)

Proof. Applying Proposition 4.3 with m D 0 we get, for each b 2 ¹1; : : : ; `º,

kX
aD1

Kk;`.a! b/ D

�
1 �

1

k C 1

�
�

�
1 �

1

k C 2

�
� � �

�
1 �

1

`

�
D
k

`
:

In words, the above formula says that the uniform measure on Xk is mapped to the uni-
form measure on Xl by our diffusion. It remains to use the non-negativity of the kernel
Kk;`.a! b/.
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Lemma 5.2. For each 1 � k < N we have

kX
iD1

Var.�ki / D
2

k C 1

�
1

k C 1

kC1X
iD1

.xkC1i /2 �

�
1

k C 1

kC1X
iD1

xkC1i

�2�
: (5.2)

Proof. Using (3.4) we write

kX
iD1

Var.�ki / D �2
kX
iD1

PkC1.x
k
i /

P 00
kC1

.xki /
D �2

X
xWP 0

kC1
.x/D0

PkC1.x/

P 00
kC1

.x/
D �

1

� i

I
1

PkC1.z/

P 0
kC1

.z/
dz;

(5.3)

where the integration is over a large positively oriented contour enclosing all singularities
of the integrand. We further compute the last integral as the coefficient of 1=z in the
following power series expansion at z D1:

PkC1.z/

P 0
kC1

.z/
D

�kC1X
iD1

1

z � xkC1i

��1
D z

�kC1X
iD1

1

1 � xkC1i =z

��1
D

z

k C 1

�
1C

1

k C 1

kC1X
iD1

xkC1i

z
C

1

k C 1

kC1X
iD1

�
xkC1i

z

�2
CO.z�3/

��1
D

z

k C 1
�

1

.k C 1/2

kC1X
iD1

xkC1i

C
1

z.k C 1/

��
1

k C 1

kC1X
iD1

xkC1i

�2
�

1

k C 1

kC1X
iD1

.xkC1i /2
�
CO.z�2/:

The coefficient of 1=z in the last expression matches the desired formula.

Lemma 5.3. If
PN
iD1 x

N
i D 0 and 1

N

PN
iD1.x

N
i /

2 D �2, then for all 1� k �N we have

kX
iD1

xki D 0 and
1

k

kX
iD1

.xki /
2
D
k � 1

N � 1
�2:

Proof. We proceed by induction on N � k, the base case N � k D 0 being obvious.
Suppose that the statement is true for some k. Then

Pk.z/ D

kY
iD1

.z � xki / D z
k
�

� kX
iD1

xki

�
� zk�1 C

�X
i<j

xki x
k
j

�
� zk�2 � � � �

D zk � 0 � zk�1 C

�
1

2

� kX
iD1

xki

�2
�
1

2

kX
iD1

.xki /
2

�
� zk�2 � � � �

D zk � 0 � zk�1 �
1

2

� kX
iD1

.xki /
2
�
� zk�2 � � � � :
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Differentiating, we get

Pk�1.z/ D
1

k

@

@z
Pk.z/ D z

k�1
� 0 � zk�2 �

k � 2

2k

� kX
iD1

.xki /
2
�
� zk�3 � � � � :

Comparing the coefficient of zk�2 with the expansion of Pk�1.z/ D
Qk�1
iD1 .z � x

k�1
i /,

we conclude that
Pk�1
iD1 x

k�1
i D 0. Then comparing the coefficient of zk�3 and dividing

by k � 1 we deduce

1

k � 1

k�1X
iD1

.xk�1i /2 D
k � 2

k � 1
�
1

k

kX
iD1

.xki /
2:

Proof of Theorem 2.12. We are going to assume that �N D 0 and �N D
p
N . All other

cases can be obtained by shifting and rescaling the relevant variables. Theorem 2.9 then
implies the convergence of xki , i D 1; : : : ; k, towards the roots hki of the Hermite polyno-
mial Hk .

We further use the expansions (3.3) and (3.16). We have

�ka D

N�1X
`Dk

X̀
bD1

Kk;`.a! b/ � �`b; (5.4)

where �`
b

are independent centered Gaussians with variances (3.4). Also

�ka D

1X
`Dk

X̀
bD1

QKk;`.a! b/ � Q�`b; (5.5)

where the variances of the noises Q�`n and kernels QKk;`.a! b/ are now constructed using
the roots hki of the Hermite polynomials instead of xki .

Convergence of xki towards hki readily implies that the expansion (5.4) converges to
(5.5) term by term. It remains to produce a tail bound showing that the terms with large `
do not contribute to (5.4) (and a similar argument will work for (5.5)).

For that we write, using Lemmas 5.1–5.3,

Var
�N�1X
`DL

X̀
bD1

Kk;`.a! b/ � �`b

�
D

N�1X
`DL

X̀
bD1

.Kk;`.a! b//2 � Var.�`b/

�

N�1X
`DL

�
max
1�b�`

Kk;`.a! b/
�2
�

X̀
bD1

Var.�`b/

�

N�1X
`DL

k2

`2
�

2

`C 1
�

`

N � 1
�N � 4k2

NX
`DL

1

`2
; (5.6)

which converges (uniformly in N ) to zero as L!1.
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6. Edge limit: proof of Theorem 1.1 and properties of Z.i; t/

This section has four parts. First, we analyze the orthogonal polynomials Q.k/
m .z/ in the

asymptotic regime relevant to Theorems 1.1 and 1.2. Then we prove Theorem 1.1. In
the third subsection we explain how the limiting object (Airy1 line ensemble) can be
identified with a partition function of a polymer whose trajectories travel over the roots
of the Airy function. Finally, in the last subsection we apply the Kolmogorov continuity
theorem to deduce the regularity of the trajectories of Z.i; t/.

6.1. Asymptotic theorem for the polynomials Q.k/
m .z/

Recall that the Airy function Ai.z/ is defined as a solution to the differential equation

Ai00.z/ D z Ai.z/; (6.1)

given explicitly by the contour integral

Ai.z/ WD
1

2� i

Z
exp.v3=3 � zv/ dv; (6.2)

where the contour in the integral is the upwards-directed contour which is the union of
the lines ¹e�i�=3t W t � 0º and ¹ei�=3t W t � 0º.

Theorem 6.1. Let the polynomials Q.k/
m be as in Definition 4.5 for Pk being the Hermite

polynomialsHk . Let xkC1�i
k

be the i th largest root ofHk . Then for each fixed i D 1;2; : : : ,
as k !1 we have

k�1=3
Q
.k/
m .xk

kC1�i
/q

hQ
.k/
m ;Q

.k/
m ik

D
Ai
�
ai C

m

k1=3

�
Ai0.ai /

.1C o.1//; (6.3)

where ai is the i th largest real zero of the Airy function and convergence is uniform over
m such that the ratio m=k1=3 belongs to compact subsets of Œ0;C1/. In addition, there
exists C > 0 such that we have a uniform boundˇ̌̌̌
ˇk�1=3 Q

.k/
m .xk

kC1�i
/q

hQ
.k/
m ;Q

.k/
m ik

ˇ̌̌̌
ˇ < C

�
1C

m

k1=3

��1
; 0 � m � k � 1; k D 1; 2; : : : : (6.4)

We present two proofs of Theorem 6.1. The first one shows that relation (4.34) after
proper rescaling of variables converges to the Airy differential equation (6.1). This is how
we first arrived at the asymptotic statement (6.3). In principle, the convergence of the
equations should imply the desired convergence of their solutions, yet, additional tech-
nical efforts are needed (the Airy differential equation has a second solution, which is
explosive at C1 and may potentially lead to large errors in approximations). Simultane-
ously with our work (and independently) Theorem 6.1 was obtained by Baik et al. [7];
they also rely on (4.34) and use several clever analytic tricks to show convergence of its
solution to the Airy function.
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Fig. 5. The blue points are . m
k1=3

; k�1=3
Q
.k/
m .xk

k
/q

hQ
.k/
m ;Q

.k/
m ik

/ for k D 200 and m D 0; 1; : : : ; 100. The

gray thick line is the graph of Ai.a1CyCk�1=3/
Ai0.a1/

, and the green dash-dotted line is the graph of
Ai.a1Cy/

Ai0.a1/
.

In our second proof we provide a very different argument and arrive at an integral rep-
resentation for the right-hand side of (6.3) (different from (6.2)) by applying the steepest
descent analysis to the generating function of (4.38).

Remark 6.2. While it does not matter for the validity of the statement, but from the
numerical point of view, we found that if we replace the right-hand side of (6.3) with

Ai
�
ai C

mC1

k1=3

�
Ai0.ai /

;

we get a better agreement for the finite values of k: see Figure 5.

Remark 6.3. Here is a way to check normalizations in (6.3). Note that the matrix"
1

p
k C 1

Q
.k/
m .xk

kC1�i
/q

hQ
.k/
m ;Q

.k/
m ik

#
1�i�k; 0�m�k�1

is orthogonal. Hence,
k�1X
mD0

1

k C 1
�
.Q

.k/
m .xk

kC1�i
//2

hQ
.k/
m ;Q

.k/
m ik

D 1: (6.5)

As k !1 the sum becomes an integral. Hence, if the normalization in (6.3) is correct,
then we should have Z 1

0

�
Ai.ai C y/

Ai0.ai /

�2
dy D 1:
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But indeed, integrating by parts, using Ai.ai / D 0 and the Airy differential equation, we
have Z 1

ai

Ai2.y/ dy D �2
Z 1

ai

Ai0.y/Ai.y/y dy D �2
Z 1

ai

Ai0.y/Ai00.y/ dy

D .Ai0.y//2
ˇ̌ai
C1
D .Ai0.ai //2: (6.6)

The same orthogonality implies that we should also haveZ 1
0

�
Ai.ai C y/

Ai0.ai /

��
Ai.aj C y/

Ai0.aj /

�
dy D 0; i ¤ j:

And indeed,

@

@y
ŒAi.ai C y/Ai0.aj C y/ � Ai0.ai C y/Ai.aj C y/�

D .aj C y/Ai.ai C y/Ai.aj C y/ � .ai C y/Ai.ai C y/Ai.aj C y/

D .aj � ai /Ai.ai C y/Ai.aj C y/:

Hence, 1
aj�ai

ŒAi.ai C y/Ai0.aj C y/ � Ai0.ai C y/Ai.aj C y/� is an antiderivative of
Ai.ai C y/Ai.aj C y/, which implies (6.3).

Sketch of the first proof of Theorem 6.1. We start by noting that as k !1,

xkkC1�i D 2
p
k C k�1=6ai .1C o.1//; (6.7)

as follows from the Plancherel–Rotach asymptotics (going back to [60]) for the Hermite
polynomials Hk.x/ for x close to 2

p
k. Using (4.37) we transform (4.34) into

p
k �m � 1

Q
.k/
mC1.x

k
kC1�i

/q
hQ

.k/
mC1;Q

.k/
mC1ik

C
p
k �m

Q
.k/
m�1.x

k
kC1�i

/q
hQ

.k/
m�1;Q

.k/
m�1ik

D
�
2
p
k C k�1=6ai .1C o.1//

� Q.k/
m .xk

kC1�i
/q

hQ
.k/
m ;Q

.k/
m ik

: (6.8)

Dividing (6.8) by
p
k and Taylor expanding square roots using

p
1 � q D 1 � q

2
C o.q/,

we get

Q
.k/
mC1.x

k
kC1�i

/q
hQ

.k/
mC1;Q

.k/
mC1ik

� 2
Q
.k/
m .xk

kC1�i
/q

hQ
.k/
m ;Q

.k/
m ik

C
Q
.k/
m�1.x

k
kC1�i

/q
hQ

.k/
m�1;Q

.k/
m�1ik

D k�2=3ai .1C o.1//
Q
.k/
m .xk

kC1�i
/q

hQ
.k/
m ;Q

.k/
m ik

C
m

2k
.1C o.1//

 
Q
.k/
mC1.x

k
kC1�i

/q
hQ

.k/
mC1;Q

.k/
mC1ik

C
Q
.k/
m�1.x

k
kC1�i

/q
hQ

.k/
m�1;Q

.k/
m�1ik

!
: (6.9)
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Next, let y D m=k1=3 be finite. Then in the leading order (6.9) becomes

k2=3

 
Q
.k/
mC1.x

k
kC1�i

/q
hQ

.k/
mC1;Q

.k/
mC1ik

� 2
Q
.k/
m .xk

kC1�i
/q

hQ
.k/
m ;Q

.k/
m ik

C
Q
.k/
m�1.x

k
kC1�i

/q
hQ

.k/
m�1;Q

.k/
m�1ik

!

� ai
Q
.k/
m .xk

kC1�i
/q

hQ
.k/
m ;Q

.k/
m ik

C
y

2

 
Q
.k/
mC1.x

k
kC1�i

/q
hQ

.k/
mC1;Q

.k/
mC1ik

C
Q
.k/
m�1.x

k
kC1�i

/q
hQ

.k/
m�1;Q

.k/
m�1ik

!
: (6.10)

If we now treat
Q
.k/
m .xk

kC1�i
/

p
hQ
.k/
m ;Q

.k/
m ik

as a function of y, then (6.10) is precisely a finite-difference

approximation of the differential equation (6.1) upon identification z D y C ai .
It remains to match the boundary conditions and normalization. Note that the right-

hand side of (6.3) as a function of y has value 0 and derivative 1 at y D 0. For the left-hand
side, Q.k/

0 .xk
kC1�i

/ D 1, and therefore, as k !1,

k�1=3
Q
.k/
0 .xk

kC1�i
/q

hQ
.k/
0 ;Q

.k/
0 ik

D k�1=3

r
k C 1

k
! 0: (6.11)

On the other hand, Q.k/
1 .z/ D z and its norm is k.k�1/

kC1
according to (4.37). Hence,

k�1=3

 
Q
.k/
1 .xk

kC1�i
/q

hQ
.k/
0 ;Q

.k/
0 ik

�
Q
.k/
0 .xk

kC1�i
/q

hQ
.k/
0 ;Q

.k/
0 ik

!

D k�1=3
�
2
p
k .1C o.1//

s
k C 1

k.k � 1/
�

r
k C 1

k

�
D k�1=3.1C o.1//: (6.12)

This means that k�1=3 Q
.k/
m .x

kC1�i
k

/
p
hQ
.k/
m ;Q

.k/
m ik

as a function of y grows by k�1=3 when y is

increased by k�1=3 (near y D 0). Thus, we have a match with unit derivative at y D 0.

Second proof of Theorem 6.1. The proof splits into two parts. First, we explain how to
find the leading asymptotics giving the answer for a fixed y D m=k1=3 2 .0;C1/ and
then we explain how to achieve the desired uniformity over all y 2 Œ0;C1/.

Part 1. We use the contour integral representation (4.39) written as

Q.k/
m .x/ D

.k �m/mC1

2� i

I
0

v�k�1 exp.�v2=2C xv/

�

�Z v

0

uk�m�1 exp.u2=2 � xu/ du
�

dv: (6.13)

Throughout the proof we always assume that x D xk
kC1�i

for some i D 1; 2; : : : . Note
that

kŠ

2� i

I
0

v�k�1 exp.�v2=2C xv/ dv D Hk.x/ D 0 at x D xkkC1�i : (6.14)
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Thus, the lower limit of the u-integral can be changed from 0 to any other point without
changing the value of the double integral. Let us change this limit to 1 and then integrate
by parts in (6.13). We get

Q.k/
m .x/ D �

.k �m/mC1

2� i

I
0

�Z v

1

u�k�1 exp.�u2=2C xu/ du
�

� vk�m�1 exp.v2=2 � xv/ dv: (6.15)

The transition from (6.13) to (6.15) uses the fact that the internal u-integral is a meromor-
phic single-valued function of v, which follows from the independence of the value of the
integral from the choice of integration path implied by (6.14) (otherwise, integration by
parts would have led to the appearance of an additional term).

The lower limit 1 of the u-integral in (6.15) again can be changed to any other point
(this time, because of vk�m�1 exp.v2=2 � xv/ having no singularities in the complex
plane, leading to vanishing of its contour integrals). It is convenient for us to change this
point to �1, leading to the final expression

Q.k/
m .x/ D �

.k �m/mC1

2� i

I
0

�Z v

�1

u�k�1 exp.�u2=2C xu/ du
�

� vk�m�1 exp.v2=2 � xv/ dv: (6.16)

Next, we apply to the integral (6.16) a version of the steepest descent method. This method
guides us to deform the integration contour to pass through the critical points of the inte-
grand and to localize the integration to neighborhoods of these points.

Denote

F.v/ WD � ln.v�k exp.�v2=2C 2
p
k v// D k ln.v/C v2=2 � 2

p
kv:

Then using the asymptotic expansion (6.7) for x, the u-dependent part of the integrand in
(6.16) becomes

1

u
exp.�F.u// � exp.k�1=6.ai C o.1//u/;

and the remaining factors in (6.16), explicitly depending on v, admit a similar representa-
tion in terms of F.v/. While it might seem that F changes with k, in fact, the dependence
on k is very simple:

F.v/ D k OF . Ov/C k ln.
p
k/; OF . Ov/ D ln. Ov/C Ov2=2 � 2 Ov; Ov D v=

p
k: (6.17)

Thus, all the properties of F.v/ can be read off from analyzing a single explicit function
OF . Ov/. Further, notice

F 0.v/ D
k

v
C v � 2

p
k; F 00.v/ D �

k

v2
C 1; F 000.v/ D 2

k

v3
:

Hence, v D
p
k is a double critical point of the function F.v/. We are going to deform

the v-integration contour to pass near this point, so that the asymptotics of the integral is
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Fig. 6. The graph of Re OF .z/ of (6.17) globally (left) and locally near the double critical point at
z D 1 (right).

vu

√
k

0

2
√
k

2
√
k

−2
√
k

θ
√
k

θ̄
√
k

Fig. 7. The v-contour is shown in solid black. The u-contour for points v close to
p
k is shown in

dashed blue. The points �
p
k and N�

p
k give the minima of ReF.v/ on the v-contour.

given by the contribution of a small neighborhood of the critical point. It is helpful to take
a look at the graph of ReF.v/ before explaining the geometry of the contours, and we
refer to Figure 6.

The desired integration contours are shown in Figure 7. The v-contour in the upper
half-plane is chosen so that it starts from

p
k at the angle �=3 and has growing jvj as

we move away from
p
k until we reach the line Im v D 2

p
k, at which point the contour

follows this line to the left until the point v D �2C 2i and then proceeds vertically till
the real axis. In the lower half-plane the v-contour is given by the mirror image. Figure 8
shows the graph of ReF.v/ (in the changed coordinates of (6.17)) along the v-contour:
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Fig. 8. Three panels show the graph of Re OF . Ov/ with Ov D v=
p
k and v as in Figure 7. Left:

Re OF .1C t exp.i�=3//. Middle: Re OF .1C 2=
p
3 � t C 2i/. Right: Re OF .�2C 2i � t i/. The mini-

mum in the middle graph is attained at Ov D � .

the real part is minimized at points �
p
k, N�
p
k and maximized at the intersections of the

contour with the real axis.
Further, when v is on the right part of the contour between N� and � (in particular, when

it is close to
p
k), the u-contour (which we explain here in the reverse direction from v

to �1) starts from v and first follows the v-contour until the point
p
k, then it continues

from
p
k at the angle 2�=3 to another level line Im.F.z// D 0 until it gets back to the

real axis far left from the origin, at which point it proceeds to �1 along a horizontal line.
When v is on the left part of the contour, we instead follow the v-contour to the point
�2
p
k and then continue to �1.

The choice of the contours achieves the following goal: the absolute value of the u-
integrand, which is ˇ̌

1
u
� exp.�F.u// � exp.k�1=6.ai C o.1//u/

ˇ̌
;

starts from being very close to 0 when u D 1, and then grows as we approach v and
has a sharp extremum near v. Hence, the absolute value of the v-integral can be upper
bounded by

ˇ̌
1
v

exp.�F.v// exp.k�1=6.ai C o.1//v/
ˇ̌
. This implies that the v-integrand

is upper bounded by jvj�m, and therefore, since jvj is minimized near
p
k, the integrand

is sharply decaying as v moves away from
p
k. In more detail, the part of the v-integral

outside the "
p
k-neighborhood of

p
k is upper bounded by

const �
p
k � k�m=2.1C "=2/�m; (6.18)

where the
p
k factor arises from the length of the integration contour. Since we are inter-

ested in the regime whenm is proportional to k1=3, (6.18) is exponentially small compared
to the leading contribution which comes next.

The overall conclusion is that the integral is dominated by the contribution of a small
neighborhood of

p
k. We can Taylor expand F.v/ in that neighborhood:

F.v/ D F.
p
k/C

1

3
p
k
.v �

p
k/3 CO

�
.v �

p
k/4

k

�
:
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We further introduce the new variables

Qv D k�1=6.v �
p
k/; Qu D k�1=6.u �

p
k/:

The contour integral (6.16) then asymptotically behaves as

.k �m/mC1

2� i

Z e
� i
3 1

e
�� i
3 1

�Z Qv
e
2� i
3 1

exp
�
�
1
3
Qu3 C ai QuC ai

p
k
� k1=6 d Qu
p
k C k1=6 Qu

�
� exp

�
1
3
Qv3 � ai Qv � ai

p
k
�
.
p
k C k1=6 Qv/�yk

1=3�1k1=6 d Qv: (6.19)

Equivalently, this is

.k �m/mC1

k1=6 � k
mC1
2

1

2� i

Z e
� i
3 1

e
�� i
3 1

�Z Qv
e
2� i
3 1

exp
�
�
1
3
Qu3 C ai Qu

�
d Qu
�

exp
�
1
3
Qv3 � ai Qv � y Qv

�
d Qv:

(6.20)

In the last integral the Qv-contour is the upwards-directed union of the lines ¹e�i�=3t W t � 0º

and ¹ei�=3t W t � 0º. The internal Ou-integral has quickly growing integrand, and therefore
it is dominated by the end-point Qv giving the value � exp.�1

3
Qv3 C ai Qv/, which cancels

with a part of the second exponent in (6.20). As a result, the integrand is exponentially
decaying in Qv for each y >0. Combining this with an explicit expression for hQ.k/

m ;Q
.k/
m ik

of (4.37) we conclude that the left-hand side of (6.3) converges as k !1 to

�
1

2� i

Z ei�=31

e�i�=31

�Z Qv
e2i�=31

exp
�
�
1
3
Qu3 C ai Qu

�
d Qu
�

exp
�
1
3
Qv3 � ai Qv � y Qv

�
d Qv: (6.21)

It remains to identify the last double integral with Ai.aiCy/
Ai0.ai /

. For that we analyze the double
contour integral as a function of y. Let us denote this function by A.y C ai /.

Let us apply the Airy operator to (6.21), i.e. we compute @2

@y2
A.y C ai / �

.ai C y/A.y C ai /, getting

�
1

2� i

Z ei�=31

e�i�=31

�Z Qv
e2i�=31

exp
�
�
1
3
Qu3 C ai Qu

�
d Qu
�
. Qv2 � ai � y/ exp

�
1
3
Qv3 � ai Qv � y Qv

�
d Qv:

(6.22)

We now recognize @
@Qv

exp
�
1
3
Qv3 � ai Qv � y Qv

�
and can integrate by parts, noticing that�Z Qv

e2i�=31
exp

�
�
1
3
Qu3 C ai Qu

�
d Qu
�

exp
�
1
3
Qv3 � ai Qv � y Qv

�
vanishes at both infinities by the previous arguments. We get

1

2� i

Z ei�=31

e�i�=31
exp

�
�
1
3
Qv3 C ai Qv

�
exp

�
1
3
Qv3 � ai Qv � y Qv

�
d Qv; (6.23)

which is 0. In addition it is clear from (6.21) that limy!C1A.y/D 0, since the integrand
is fast converging to zero.
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We conclude that A.y/ is a solution to the Airy equation, which vanishes at C1.
This implies (see, e.g., [68])

A.y C ai / D c � Ai.y C ai /

for some constant c 2 R. This constant is fixed by the argument of Remark 6.3, as soon
as we have uniformity of convergence in m and the tail bound (6.4) justifying the conver-
gence of the sum (6.5) to the integral (6.3). This finishes Part 1 of the proof.

Part 2. We now explain an extension of the argument of the first part giving the uniform
convergence over y 2 Œ0;C1/ and the tail bound (6.4). Notice that in the previous argu-
ments uniformity of the asymptotics for y in compact subsets of .0;C1/ is obtained for
free. Thus, we only need to investigate the y ! 0 and y !1 boundary points. We start
from the latter.

For large y D m=k1=3 we need to establish the uniform bound (6.4). For that the first
step is to figure out a similar bound for the asymptotic expression (6.21).17 Take a radius
1 neighborhood around 0. The part of the Qv-integral in (6.21) outside this neighborhood
decays exponentially fast as y grows. Inside the neighborhood we can upper bound the
integral by

const �
ˇ̌̌̌Z 1

0

exp.�y exp.i�=3/t/ dt
ˇ̌̌̌
D O

�
1

y

�
; y !1:

Switching to the prelimit asymptotic expression given by (6.19) and (6.20), notice that
the prefactor (after dividing by k1=3hQ.k/

m ;Q
.k/
m i

1=2

k
) is decreasing inm, and therefore we

can ignore it for the large m asymptotic upper bound. After getting rid of the prefactor,
the only m-dependent factor in the integrand is

.1C k�1=3 Qv/�m D .1C k�1=3 Qv/�yk
1=3

:

Hence, the prelimit expression is upper bounded for large y exactly in the same way as
the limiting expression (6.21).

Proceeding to y close to 0we need to explain that the expression (6.21) is a convergent
integral, i.e. the Qv-integrand decays fast enough as Qv goes to infinity along the integration
contour. For that we use the following transformation (obtained by integrating by parts)
of the integral over a part of the real axis:Z q



exp.�˛u3 � ˇu/ du D
Z q



1

�3˛u2 � ˇ
�
@

@u
Œexp.�˛u3 � ˇu/� dy

D
exp.�˛q3 � ˇq/
�3˛q2 � ˇ

�
exp.�˛3 � ˇ/
�3˛q2 � ˇ

�

Z q



6˛u

.3˛u2 C ˇ/2
exp.�˛u3 � ˇu/ dy:

(6.24)

17A much faster decay is known for the Airy function as its argument tends to C1, but it is
harder to see from our formulas.
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In the part of the Qu integral in (6.21) from 0 to Qv, the direction of integration is exp.˙i�=3/,
and therefore the parameter ˛ in the last formula is ˛ D 1

3
exp.˙i�/ D �1

3
. Hence, the

integrands in (6.24) are fast growing in u and the formula implies an upper bound on
the integral of the form O. 1

1Cq2
exp.�˛q3 � ˇq//. The large positive real number q

corresponds to j Qvj in (6.21) and we conclude that the integrand in the Qv-integral decays as
O. 1

1CjQvj2
/ or faster for any value of y � 0. Therefore, the integral is uniformly convergent

in y � 0.
The next problem is that for small y (or small m), we can no longer guarantee the

exponential decay of (6.18). Note that ifm > kı for some small ı > 0, then .1C "=2/�m

is fast decaying and our arguments go through. Thus, it remains to study the casem < kı ,
corresponding to very small positive values of y. Note that according to (6.3) we expect
to see the Airy function at a point close to its zero ai in the limit. Hence, we need to show
that for m < kı the left-hand side of (6.3) converges to zero. Let us denote this left-hand
side by Q

.k/
m . We now reexamine the equations which we developed in the first proof of

Theorem 6.1. In particular, (6.11) and (6.12) yield

Q
.k/
0 D k

�1=3.1C o.1//; Q
.k/
1 �Q

.k/
0 D k

�1=3.1C o.1//; k !1: (6.25)

The recurrence (6.8) in the asymptotic form (6.10) then implies the following bound valid
for all 0 < m < k1=3, in which C > 0 is a constant that can be made explicit:

k2=3j.Q
.k/
mC1�Q.k/

m /� .Q.k/
m �Q

.k/
m�1/j � C � .jQ

.k/
mC1jC jQ

.k/
m jC jQ

.k/
m�1j/: (6.26)

We now show that the following two inequalities hold for all large enough k and all
0 < m < k1=6:

jQ.k/
m j < 2.m

2
C 1/k�1=3; jQ.k/

m �Q
.k/
m�1j < .mC 1/k

�1=3: (6.27)

We prove (6.27) by induction on m. For m D 1 this is implied by (6.11) and (6.12).
Suppose that the statement holds up to some value of m and let us prove it for m C 1.
Using (6.26) we write

jQ
.k/
mC1 �Q.k/

m j � jQ
.k/
m �Q

.k/
m�1j C Ck

�2=3.jQ
.k/
mC1j C jQ

.k/
m j C jQ

.k/
m�1j/

� jQ.k/
m �Q

.k/
m�1j C Ck

�2=3.jQ
.k/
m�1j C 2jQ

.k/
m j/C Ck

�2=3
jQ

.k/
mC1 �Q.k/

m j:

Hence, for large k,

jQ
.k/
mC1 �Q.k/

m j � .1 � Ck
�2=3/�1ŒjQ.k/

m �Q
.k/
m�1j C Ck

�2=3.jQ
.k/
m�1j C 2jQ

.k/
m j/�

� .1 � Ck�2=3/�1
�
.mC 1/k�1=3 C 1

2
k�1=3

�
� .mC 2/k�1=3:

Simultaneously,

jQ
.k/
mC1j � jQ

.k/
mC1j C jQ

.k/
mC1 �Q.k/

m j � 2 � .m
2
C 1/ � k�1=3 C .mC 2/ � k�1=3

� 2 � ..mC 1/2 C 1/ � k�1=3;

which finishes the proof of (6.27). Since (6.27) implies that limk!1 jQ
.k/
m j D 0 uniformly

over 0 � m � k1=6� for any  > 0, we are done.
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6.2. Proof of Theorem 1.1

We deal with the consecutive N !1, ˇ !1 limit and compute the latter first, as in
Section 2.2. The ˇ !1 limit is already a Gaussian process, hence it remains to study
the behavior of its covariance as N !1. For that we are going to pass to the limit in the
formula for the covariance of (4.21). Let us first simplify it by plugging in the expressions
for the weight and norm from Sections 4.3 and 4.5. We have

Cov.�k1a1 ; �
k2
a2
/

D
2

p
k1 C 1

p
k2 C 1

1X
`Dmax.k1;k2/

min.k1;k2/�1X
mD0

Q
.k1/
m .x

k1
a1 /q

hQ
.k1/
m ;Q

.k1/
m ik1

Q
.k2/
m .x

k2
a2 /q

hQ
.k2/
m ;Q

.k2/
m ik2

�
.`�m/mC1

.`C1/�
p
.k1�m/mC1

p
.k2�m/mC1

`�1Y
jDk1

�
1�

mC1

jC1

� `�1Y
jDk2

�
1�

mC1

jC1

�
: (6.28)

Next we would like to study the asymptotics of the last line in (6.28) in the regime18

k1DNC2N
2=3t1; k2DNC2N

2=3t2; `DNC2N 2=3�; mD yN 1=3; N !1:

(6.29)

Using ln.1C u/D uCO.u2/ and the notation f � g whenever the ratio f=g tends to 1,
we write

.` �m/mC1 D `
mC1

mY
iD1

�
1 �

i

`

�
D `mC1 exp

�
�

mX
iD1

i

`
CO

�
m3

`2

��
D `mC1 exp

�
O

�
m2

`

�
CO

�
m3

`2

��
� `mC1 D NmC1

�
1C

2�

N 1=3

�yN1=3C1
� NmC1 exp.2y�/:

Similarly, we havep
.k1 �m/mC1 � N

mC1
2 exp.yt1/;

p
.k2 �m/mC1 � N

mC1
2 exp.yt2/:

Further,

`�1Y
jDk1

�
1 �

mC 1

j C 1

�
D exp

�
�

`�1X
jDk1

mC 1

j C 1
CO

�
.` � k1/m

2

k21

��
� exp.2y.t1 � �//;

and similarly
`�1Y
jDk2

�
1 �

mC 1

j C 1

�
� exp.2y.t2 � �//:

18We omit integer parts in order to shorten the notations.
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Altogether, the second line in (6.28) behaves as N !1 as

1

N
exp

�
y.2� � t1 � t2 C 2t1 � 2�C 2t2 � 2�/

�
D

1

N
exp.y.t1 C t2 � 2�//:

Summing over ` the second line in (6.28), we see an approximation of a computable
integral:

1X
`Dmax.k1;k2/

.`�m/mC1

.`C1/ �
p
.k1�m/mC1

p
.k2�m/mC1

`�1Y
jDk1

�
1�

mC1

j C1

� `�1Y
jDk2

�
1�

mC1

j C1

�
� 2N�1=3

Z 1
max.t1;t2/

exp.y.t1 C t2 � 2�// d� D N�1=3
1

y
exp.�yjt1 � t2j/;

where the prefactor 2 appears because of 2 in (6.29). Further, the m-sum in (6.28)
becomes, as N !1,

N 1=3 Cov.�k1a1 ; �
k2
a2
/ D 2N�1=3

�

min.k1;k2/�1X
mD0

k
�1=3
1

Q
.k1/
m .x

k1
a1 /q

hQ
.k1/
m ;Q

.k1/
m ik1

k
�1=3
2

Q
.k2/
m .x

k2
a2 /q

hQ
.k2/
m ;Q

.k2/
m ik2

1

y
exp.�yjt1 � t2j/:

(6.30)

Plugging in k1 D �.t1/, k2 D �.t2/, a1 D i , a2 D j and using Theorem 6.1 we recognize
a Riemann sum approximating as N !1 the integral on the right-hand side of (1.4).
(The tail part corresponding to the large values of m is controlled by the uniform bound
(6.4).) This finishes the proof of Theorem 1.1.

6.3. Random walk representation

Consider the matrix

Pt .i ! j / D

Z 1
0

Ai.ai C y/Ai.aj C y/
Ai0.ai /Ai0.aj /

exp.�ty/ dy; ai ; aj zeros of Ai.z/:

Theorem 6.4. The matrices Pt .i ! j /, t � 0, i; j 2 Z>0, form a stochastic semigroup,
which means that

(1) Pt .i ! j / � 0 for each t > 0 and P0.i; j / D 1iDj ;

(2) for each t � 0,
1X
jD1

Pt .i ! j / D 1I (6.31)

(3) for each t; s � 0 and each i; j 2 Z>0,

1X
qD1

Pt .i ! q/Ps.q ! j / D PtCs.i ! j /: (6.32)
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Proof. The proof is based on the combination of two ideas. First, Pt .i ! j / is a limit
of the diffusion kernels Kk;`.a ! b/ of Section 3, which shows that it is non-negative.
In principle, stochasticity and the semigroup property might have been lost in the limit
transition: the equalities (6.31) and (6.32) might have turned into inequalities. In order
to rule out this possibility we find explicit eigenfunctions of Pt .i ! j / with eigenvalues
arbitrarily close to 1.

Step 1. Consider the Gaussian1-corners process with xki being the roots of the Hermite
polynomials. Then (4.22) yields an expression for the corresponding diffusion kernels:

Kk;`.a! b/ D
1

k C 1

k�1X
mD0

Q
.k/
m .xka /Q

.`/
m .x

`
b
/

hQ
.k/
m ;Q

.k/
m ik

`�1Y
jDk

�
1 �

mC 1

j C 1

�
:

Set ` D k C b2tk2=3c, a D k C 1 � i , b D `C 1 � j and let k !1 in the last formula
using Theorem 6.1, formula (4.37) and the computation, for m � yk1=3,vuut hQ.k/

m ;Q
.k/
m i`

hQ
.k/
m ;Q

.k/
m ik

`�1Y
jDk

�
1 �

mC 1

j C 1

�
D

vuut k C 1

mC 1

mY
jD0

�
1C

` � k

k � j

� `�1Y
jDk

�
1 �

mC 1

j C 1

�
� exp.ty/ exp.�2ty/ D exp.�ty/:

We get
lim
k!1

Kk;kCb2tk
2=3c.k C 1 � i ! `C 1 � j / D Pt .i ! j /: (6.33)

Since the matrices Kk;`.a ! b/ are stochastic, we conclude that Pt .i ! j / � 0 andP1
jD1 Pt .i ! j / � 1.

Step 2. For y � 0 denote

Ai .y/ D
Ai.ai C y/

Ai0.ai /
:

As functions of y, these are eigenfunctions of the Sturm–Liouville operator corresponding
to the Airy differential operator on Œ0;C1/ with Dirichlet boundary condition at y D 0:

@2

@y2
Ai .y/C yAi .y/ D aiAi .y/; y � 0I Ai .0/ D 0:

We also know that they are orthonormal (see Remark 6.3):Z 1
0

Ai .y/Aj .y/ dy D ıiDj :

The general theory of Sturm–Liouville expansions (see [64, Sections 2.7 and 4.12] or [68,
Section 4.4]) shows that the functions Ai .y/, i D 1; 2; : : : ; form a complete orthonormal
basis. In particular, we can expand Ai exp.�ty/ in this basis, yielding

Ai .y/ exp.�ty/ D
1X
jD1

Aj .y/

Z 1
0

Aj .y/.Ai .y/ exp.�ty// dy: (6.34)
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Let us now change the point of view, fix some y > 0 and treat Ai .y/ as a function of i .
Then (6.34) means that this is an eigenvector of the matrix Pt .i ! j / with eigenvalue
exp.�ty/. Note that we cannot take y D 0 here, since Ai .0/ vanishes.

The definition of Ai implies that, for each i D 1; 2; : : : ,

lim
y!0

1

y
Ai .y/ D 1: (6.35)

In addition, there is a uniform bound:

lim
y!0

sup
i�1

ˇ̌̌̌
1

y
Ai .y/

ˇ̌̌̌
D 1; (6.36)

which follows from the known asymptotic expansions for Ai.x/ as x ! �1, and for
Ai0.ai / as i !1, see, e.g., [68, (2.48) and (2.58)].

We can now apply (6.34) to getˇ̌̌̌
1

y
Ai .y/exp.�ty/

ˇ̌̌̌
D

ˇ̌̌̌
1

y

1X
jD1

Aj .y/Pt .i! j /

ˇ̌̌̌
� sup
j�1

ˇ̌̌̌
1

y
Aj .y/

ˇ̌̌̌ 1X
jD1

Pt .i! j /: (6.37)

Letting y ! 0 using (6.35) and (6.36) we conclude that
P1
jD1 Pt .i ! j / � 1. Com-

bining this with the opposite inequality established in the first step we conclude thatP1
jD1 Pt .i ! j / D 1.

Step 3. It remains to prove the semigroup property. By definition, it is satisfied by the
matrices Kk;`.a! b/ and we have

X̀
cD1

Kk;`.a! c/K`;r .c ! b/ D Kk;r .a! b/: (6.38)

We now set ` D k C b2tk2=3c, r D `C b2sk2=3c, a D k C 1 � i , c D `C 1 � q, b D
r C 1� j and let k!1. Using (6.33) we see that the terms of the series (6.38) converge
towards those of (6.32). It remains to notice an asymptotic tail bound: for any fixedM we
have

`�MX
cD1

Kk;`.a! c/K`;r .c ! b/ �

`�MX
cD1

Kk;`.a! c/ D 1 �
X̀

cD`�MC1

Kk;`.a! c/

! 1 �

MX
qD1

Pt .i ! q/: (6.39)

Since
P1
qD1Pt .i ! q/D 1, by choosing large enoughM we can make (6.39) arbitrarily

small. Hence, the k !1 limit of (6.38) gives (6.32).
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Let us consider a continuous time homogeneous Markov chain X.x0/.t/, t � 0, taking
values in the state space Z>0. The initial value is x0, i.e. X.x0/.0/ D x0. The transition
probabilities are given by Pt :

Prob.X.x0/.t/ D a/ D Pt .x0 ! a/:

Next, we take a countable collection of standard Brownian motionsW .i/.t/, i 2 Z>0.
For each x 2 Z>0 and t 2 R define a random variable

Z.i; t/ D 2

1X
jD1

Z 1
t

Pr�t .i ! j / dW .j /.r/:

An alternative expression for Z.i; t/ was given in (1.5). In words, we start the Markov
chain X from i at time t and add the white noises PW .i/ along its trajectory. Z.i; t/ is the
expectation of the sum over the randomness coming from X; it is still a random variable
with randomness coming from the Brownian motions. We can also view Z.i; t/ as the
partition function of a directed polymer in additive Gaussian noise.

Theorem 6.5. The finite-dimensional distributions of Z.i; t/ are the same as ones of the
limit in Theorems 1.1 and 1.2, i.e. the covariance EZ.i; t/Z.j; s/ matches the right-hand
side of (1.4).

Proof. Since Ito integral is an L2-isometry, we have

EZ.i; t/Z.j; s/ D 4E
1X
aD1

Z 1
t

Pr�t .i!a/ dW .a/.r/

1X
bD1

Z 1
s

Pr 0�s.i!b/ dW .b/.r 0/

D 4

Z 1
max.t;s/

1X
`D1

Pr�t .i ! `/Pr�s.j ! `/ dr: (6.40)

Using the symmetry Pt .x; y/D Pt .y; x/ and the semigroup property (6.32), we compute
the sum over ` and get

4

Z 1
max.t;s/

P2r�t�s.i ! j / dr

D 4

Z 1
max.t;s/

dr
Z 1
0

Ai.ai C y/Ai.aj C y/
Ai0.ai /Ai0.aj /

exp.�.2r � t � s/y/ dy:

Changing the order of integration and computing the dr integral we finally get

2

Z 1
0

Ai.ai C y/Ai.aj C y/
Ai0.ai /Ai0.aj /

exp.�.2max.t; s/ � t � s/y/
dy
y
:

Our next aim is to compute the intensities of the Markov chain X.x/.t/, matching its
description at the end of Section 1.2.
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Proposition 6.6. We have

@

@t
Pt .i ! j /

ˇ̌̌̌
tD0

D

´
2

.ai�aj /2
; i ¤ j;

2
3
ai ; i D j:

(6.41)

For the proof we need two computations of indefinite integrals.

Lemma 6.7. Fix any a 2 R and introduce the notation

Aia D Ai.y C a/:

Then

@

@y

�
2a � y

3
Ai0a Ai0a C

1

3
Ai0a Aia C

.y C a/.y � 2a/

3
Aia Aia

�
D y Aia Aia; (6.42)

Also for any a; b 2 R,

@

@y

�
2Ai0a Ai0bC.a � b/.y Ai0a Aib �y Aia Ai0b/ � 2y Aia Aib

� .aC b/Aia AibC2
Aia Ai0b �Ai0a Aib

b � a

�
D .a � b/2y Aia Aib : (6.43)

Proof. The method for finding such identities is suggested in [4]. The identities them-
selves are checked by direct differentiation using (6.1). The left-hand side of (6.42) is
transformed as follows:�
�1

3
Ai0a Ai0aC2.aC y/

2a � y

3
Ai0a Aia

�
C

�
1

3
.aC y/Aia AiaC

1

3
Ai0a Ai0a

�
C

�
2
.y C a/.y � 2a/

3
Ai0a AiaC

y C aC y � 2a

3
Aia Aia

�
D y Aia Aia :

The left-hand side of (6.43) is transformed as follows:�
2.y C a/Aia Ai0bC2.y C b/Ai0a Aib

�
C .a � b/

�
.Ai0a Aib �Aia Ai0b/C y..y C a/Aia Aib �.y C b/Aia Aib/

�
�
�
2Aia AibC2y Ai0a AibC2y Aia Ai0b

�
� .aC b/.Ai0a AibCAia Ai0b/

C

�
2

b � a
..y C b/Aia Aib �.y C a/Aia Aib/

�
D .a � b/2y Aia Aib :

Proof of Proposition 6.6. Differentiating under the integral sign, we get

@

@t
Pt .i ! j /

ˇ̌̌̌
tD0

D �

Z 1
0

y
Ai.ai C y/Ai.aj C y/

Ai0.ai /Ai0.aj /
dy: (6.44)
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For the case i D j we apply (6.42) converting the last expression into

1

Ai0.ai /Ai0.ai /

�
2ai � y

3
Ai0ai Ai0ai C

1

3
Ai0ai Aiai C

.y C ai /.y � 2ai /

3
Aiai Aiai

�ˇ̌̌̌yD0
yD1

D
2

3
ai : (6.45)

When i ¤ j , we apply (6.43) instead.

We end this section by noting conservativity of the semigroup Pt .i ! j /, i.e. the sum
of its intensities over j vanishes.

Lemma 6.8. We have X
j�1W j¤i

1

.ai � aj /2
D �

1

3
ai :

Proof. This is just one of many similar identities found in [14]. Alternatively, it can be
proven as the k !1 limit of the identity of Lemma 4.4 specialized by (4.6) and (4.15),

kX
jD1

1

.xk
kC1�j

� xk�1
k�i

/2
D k;

where xka are the roots of the Hermite polynomials.

6.4. Hölder continuity of Z.i; t/

Theorem 6.9. The process Z.i; t/ has a continuous modification such that for each i D
1; 2; : : : the process Z.i; t/ is almost surely a locally  -Hölder continuous function of t
for all 0 <  < 1=2.

Proof. By the Kolmogorov continuity theorem (see e.g. [47, Theorem 3.23]) it suffices to
check that for each i D 1; 2; : : : and each d D 1; 2; : : : there exists a constanct C.i; d/
such that

E .Z.i; t/ � Z.i; s//2d � C.i; d/jt � sjd ; t; s 2 R: (6.46)

Because Z.i; t/�Z.i; s/ is a mean 0 Gaussian random variable, (6.46) for d D 1 implies
it for all d D 2; 3; : : : . For d D 1, we recall the formula for the covariance obtained by
substituting i D j in (1.4):

EZ.i; t/Z.i; s/ D
2

ŒAi0.ai /�2

Z 1
0

ŒAi.ai C y/�2 exp.�jt � sjy/
dy
y
:

Using the inequality exp.�a/ � 1 � a, valid for a � 0, we get

EZ.i; t/Z.i; s/ �
2

ŒAi0.ai /�2

Z 1
0

ŒAi.ai C y/�2
dy
y
�

2jt � sj

ŒAi0.ai /�2

Z 1
0

ŒAi.ai C y/�2 dy:
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The first integral in the last formula is EZ2.i; t/ D EZ2.i; s/ and the second integral is
computed by (6.6). We conclude that

EZ.i; t/Z.i; s/ � EZ2.i; t/ � 2jt � sj:

Hence,
E .Z.i; t/ � Z.i; s//2 � 4jt � sj;

which implies (6.46) for d D 1.

7. The ˇ D 1 Dyson Brownian motion: proof of Theorem 1.2

The proof is split into two parts. First, we express the covariance of the ˇ ! 1 limit
of the Dyson Brownian motion (as in Theorem 2.2) through the orthogonal polynomials
Qk
i .x/. Then we use the asymptotics of these polynomials established in Theorem 6.1 to

finish the proof. This section also contains the proofs of Lemma 2.3 and identity (3.19)
(see Remark 7.6).

7.1. Covariance of the ˇ D1 Dyson Brownian motion

The aim of this section is to solve the inhomogeneous linear equations (2.8). By the
well-known algorithm for finding solutions to inhomogeneous differential equations, we
need to start by identifying N linearly independent solutions to the homogeneous version
of (2.8).

Theorem 7.1. Consider a linear N -dimensional system of differential equations

dzi .t/ D �
X
j¤i

zi .t/ � zj .t/

t.xNi � x
N
j /

2
dt; t � 0; i D 1; : : : ; N; (7.1)

where xNi is the i th zero of the Hermite polynomialHN .x/. LetQ.m/
N be themth orthogo-

nal polynomial with respect to the uniform measure on ¹xN1 ; : : : ; x
N
N º, as in Definition 4.6.

Then for each m D 0; 1; : : : ; N � 1, the N -dimensional vector

zi .t/ D t
�m=2Q

.m/
N .xiN /; i D 1; : : : ; N; (7.2)

is a solution to (7.1).

Remark 7.2. The statement of Theorem 7.1 is closely related to that of Theorem 4.9.
In random matrix terminology, Theorem 4.9 corresponds to changing the matrix size,
while Theorem 7.1 is about time evolution of a matrix of a fixed size. Our proofs of these
theorems follow similar schemes: essentially we show that the dynamics (7.1) preserves
both polynomiality and orthogonality with respect to the counting measure on the set
¹
p
t xN1 ;

p
t xN2 ; : : : ;

p
t xNN º.
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Proof of Theorem 7.1. The statement will follow as soon as we show that

m

2
Q
.m/
N .xNi / D

X
j¤i

Q
.m/
N .xNi / �Q

.m/
N .xNj /

.xNi � x
N
j /

2
; 0 � m � N � 1: (7.3)

In order to prove (7.3) we set L to be the linear operator in N -dimensional Euclidean
space `2.xN1 ; x

N
2 ; : : : ; x

N
N / (with respect to counting measure) with matrix 1

.xN
i
�xN
j
/2

,

i; j D 1; : : : ; N , in the standard coordinate basis. Let LQ be the matrix of the same
operator L in the orthonormal basis of functions

Q
.0/
N .x/q

.N C1/hQ
.0/
N ;Q

.0/
N iN

;
Q
.1/
N .x/q

.N C1/hQ
.1/
N ;Q

.1/
N iN

; : : : ;
Q
.N�1/
N .x/q

.N C1/hQ
.N�1/
N ;Q

.N�1/
N i

:

Relation (7.3) is readily implied by the following three properties that we will prove:

(1) The matrix LQ is symmetric.

(2) The matrix LQ is triangular.

(3) The diagonal elements of LQ are 0; 1
2
; 2
2
; 3
2
; : : : ; N�1

2
.

For the first property note that L is symmetric in the standard coordinate basis. Hence, its
matrix in any orthonormal basis is also symmetric and so is LQ. For the remaining two
properties we fix 0�m�N � 1 and consider the functionR.m/ W ¹xN1 ; x

N
2 ; : : : ; x

N
N º!R

given by

R.m/.xNi / WD �
m

2
Q
.m/
N .xNi /C

X
j¤i

Q
.m/
N .xNi / �Q

.m/
N .xNj /

.xNi � x
N
j /

2
: (7.4)

The desired two properties of LQ will follow immediately if we manage to prove that
R.m/ is a polynomial of degree at most m � 1 of the real argument xNi , i D 1; : : : ; N .
In fact, the exact nature of the polynomial Q.m/

N is irrelevant here. Expanding Q.m/
N into

monomials, it suffices to check that the function

xNi 7! �
m

2
.xNi /

m
C

X
j¤i

.xNi /
m � .xNj /

m

.xNi � x
N
j /

2
; i D 1; : : : ; N; (7.5)

is a polynomial of degree at most m � 1. The last expression transforms into

�
m

2
.xNi /

m
C

X
j¤i

.xNi /
m�1 C .xNi /

m�2.xNj /C � � � C .x
N
j /

m�1

xNi � x
N
j

; i D 1; : : : ;N: (7.6)

Let us use an identity which is implied by (2.11):

m

2
.xNi /

m
�

X
j¤i

m.xNi /
m�1

xNi � x
N
j

D 0; i D 1; : : : ; N: (7.7)
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Subtracting (7.7) from (7.6), we convert the latter intoX
j¤i

Œ.xNi /
m�1�.xNi /

m�1�C Œ.xNi /
m�2.xNj /�.x

N
i /

m�1�C� � �C Œ.xNj /
m�1�.xNi /

m�1�

xNi �x
N
j

D �

X
j¤i

�
0C .xNi /

m�2
C .xNi /

m�3ŒxNi C x
N
j �C � � �

C Œ.xNj /
m�2
C .xNj /

m�3.xNi /C � � � C .x
N
i /

m�2�
�
; (7.8)

which is a (minus) sum of expressions of the form

.xNi /
`
X
j¤i

.xNj /
m�2�`

D .xNi /
`.pm�2�` � x

m�2�`
i /; (7.9)

where 0 � ` �m� 2 and pk D
PN
jD1.x

N
j /

k . The expression (7.9) is a polynomial in xNi
of degree m � 2, whose coefficients do not depend on i . Hence, (7.5) is a polynomial
in xNi of degree at most m � 2 (which is even better than the degree at most m � 1 that
we wanted to have).

We can now write down an explicit formula for the solution to (2.8).

Theorem 7.3. The system of SDEs (2.8) is solved by

�Ni .t/ D
p
2

N�1X
mD0

Q
.m/
N .xNi /

NX
jD1

Q
.m/
N .xNj /

.N C 1/hQ
.m/
N ;Q

.m/
N iN

Z t

0

�
s

t

�m=2
dWj .s/; (7.10)

where the scalar product hQ.m/
N ; Q

.m/
N iN is as in Definition 4.6 and Corollary 4.12, so

that

.N C 1/hf; giN D

NX
aD1

f .xNa /g.x
N
a /:

Proof. Using the result of Theorem 7.1 we have

d�Ni .t/D
p
2d
�N�1X
mD0

t�m=2Q
.m/
N .xiN /

NX
jD1

Q
.m/
N .xNj /

.N C 1/hQ
.m/
N ;Q

.m/
N iN

Z t

0

sm=2 dWj .s/
�

D
p
2

N�1X
mD0

dŒt�m=2Q.m/
N .xNi /�

NX
jD1

Q
.m/
N .xNj /

.N C 1/hQ
.m/
N ;Q

.m/
N iN

Z t

0

sm=2 dWj .s/

C
p
2

N�1X
mD0

t�m=2Q
.m/
N .xNi /

NX
jD1

Q
.m/
N .x

j
N /

.N C 1/hQ
.m/
N ;Q

.m/
N iN

d
�Z t

0

sm=2 dWj .s/
�

D �

X
j¤i

�Ni .t/ � �
N
j .t/

t.xNi � x
N
j /

2
C
p
2

N�1X
mD0

NX
jD1

Q
.m/
N .xNi /Q

.m/
N .xNj /

.N C 1/hQ
.m/
N ;Q

.m/
N iN

Wj .t/

D �

X
j¤i

�Ni .t/ � �
N
j .t/

t.xNi � x
N
j /

2
C
p
2Wj .t/; (7.11)
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where the last identity is obtained by changing the order of summation and using the fact

that the matrix .i; m/ 7! Q
.m/
N

.xN
i
/q

.NC1/hQ
.m/
N

;Q
.m/
N
iN

is orthogonal.

We further show that (7.10) is the unique solution of Lemma 2.3.

Proof of Lemma 2.3. In Theorem 7.3 we checked that (7.10) solves the SDE (2.8). It
is also clear that this solution satisfies the initial condition limt!0 �

N
i .t/ D 0. Thus,

it remains to check the uniqueness. Let .�Ni .t//
N
iD1 and . Q�Ni .t//

N
iD1 be two stochas-

tic processes satisfying the conditions of Lemma 2.3 with the same Brownian motions
.Wi .t//

N
iD1. Then their difference solves a deterministic homogeneous linear differential

equation

dŒ�Ni � Q�
N
i �.t/ D �

X
j¤i

Œ�Ni �
Q�Ni �.t/ � Œ�

N
j � �

N
j �.t/

t.xNi � x
N
j /

2
dt; t > 0; i D 1; : : : ; N:

A complete basis of solutions of this equation was found in Theorem 7.1. None of the
non-zero solutions tends to .0; : : : ; 0/ at t ! 0. Hence, �Ni .t/ � Q�

N
i .t/ must be almost

surely equal to zero for all i D 1; : : : ; N and all t � 0.

Lemma 7.4. .�Ni .t//
N
iD1, t � 0, of Theorem 7.3 is a mean zero Gaussian process with

covariance

Cov.�Ni .t/; �
N
j .s// D 2

N�1X
mD0

Q
.m/
N .xNi /Q

.m/
N .xNj /

.N C 1/hQ
.m/
N ;Q

.m/
N iN

�
.min.t; s//mC1

.mC 1/.ts/m=2
: (7.12)

Proof. Using the isometry property of stochastic integrals

E

Z t

0

f .�/ dWa.�/
Z s

0

g.�/ dWb.�/ D ıaDb

Z min.t;s/

0

f .�/g.�/ d�

and (7.10), we have

E�Ni .t/�
N
j .s/ D 2E

�N�1X
mD0

Q
.m/
N .xNi /

NX
aD1

Q
.m/
N .xNa /

.N C 1/hQ
.m/
N ;Q

.m/
N iN

Z t

0

�
�

t

�m=2
dWa.�/

�

N�1X
`D0

Q
.`/
N .x

N
j /

NX
bD1

Q
.`/
N .x

N
b
/

.N C 1/hQ
.`/
N ;Q

.`/
N iN

Z s

0

�
�

s

�`=2
dWb.�/

�
D

2

.N C 1/2
E

�N�1X
mD0

N�1X
`D0

Q
.m/
N .xNi /Q

.`/
N .x

N
j /

NX
aD1

Q
.m/
N .xNa /

hQ
.m/
N ;Q

.m/
N iN

Q
.`/
N .x

N
a /

hQ
.`/
N ;Q

.`/
N iN

�

Z min.t;s/

0

�
�

t

�m=2�
�

s

�`=2
d�
�
: (7.13)

It remains to compute the � -integral and to use the orthogonality relation

1

N C 1

NX
aD1

Q
.m/
N .xNa /Q

.`/
N .x

N
a / D ımD` � hQ

.m/
N ;Q

.m/
N iN :



V. Gorin, V. Kleptsyn 58

Corollary 7.5. The fixed t covariance of the process .�Ni .t//
N
iD1 of Theorem 2.2 .equiv-

alently, of the Gaussian vector of (2.12)/ is given by

Cov.�Ni .t/; �
N
j .t// D

2t

N C 1

N�1X
mD0

Q
.m/
N .xNi /Q

.m/
N .xNj /

.mC 1/hQ
.m/
N ;Q

.m/
N iN

: (7.14)

At t D 1 the same formula also computes the covariance Cov.�Ni ; �
N
j / for the double

infinite sum (3.6) of Theorem 3.5.

Remark 7.6. Comparing (2.4) with (2.12), we conclude that the left-hand side of
(3.19) coincides with the variance of �Ni .1/. Hence, the last statement of Corollary 7.5
implies (3.19).

Remark 7.7. Formula (7.14) was also proven in [9, Theorem 3.1]: the proof there is
based on an explicit diagonalization of the quadratic form in the exponent of (3.19).

Proof of Corollary 7.5. Formula (7.14) is obtained by substituting t D s into (7.12).
On the other hand, the covariance of the infinite sum (3.6) is computed by setting

k1 D k1 D N in (4.21). Using (4.15), it becomes

Cov.�Na1 ; �
N
a2
/ D

2

.N C 1/2

1X
`DN

N�1X
mD0

Q.N/
m .xNa1/Q

.N/
m .xNa2/

�
hQ

.`/
m ;Q

.`/
m i`

hQ
.N/
m ;Q

.N/
m iN hQ

.N/
m ;Q

.N/
m iN

`�1Y
jDN

�
1 �

mC 1

j C 1

�2
: (7.15)

In order to match (7.15) with (7.14) at t D 1, we interchange the order of the summations
in the former and compute the sum

P1
`DN for each 0 � m � N � 1, using the explicit

formula for hQ.`/
m ;Q

.`/
m i` from Corollary 4.12 and the Pochhammer symbol notation:

1X
`DN

hQ.`/
m ;Q

.`/
m i`

`�1Y
jDN

�
1 �

mC 1

j C 1

�2
D

1X
`DN

`.` � 1/ � � � .` �m/

`C 1
�

�
.N �m/.N C 1 �m/ � � � .` �m � 1/

.N C 1/.N C 2/ � � � `

�2
D

1X
`DN

.N �m/.N �mC 1/ � � � .` � 1/`

.N C 1/.N C 2/ � � � .`C 1/
�
.N �m/.N C 1 �m/ � � � .` �m � 1/

.N C 1/.N C 2/ � � � `

D
.N �m/ � � �N

N C 1

1X
`DN

.N �m/`�N

.N C 2/`�N

D
.N �m/.N �mC 1/ � � �N

N C 1
2F1.1;N �mIN C 2I 1/; (7.16)
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where 2F1 is the Gauss hypergeometric function. Its value can be computed using Gauss’s
summation theorem:

2F1.a; bI cI 1/ D
�.c/�.c � a � b/

�.c � a/�.c � b/
:

Hence, we further transform (7.16) into

.N �m/.N �mC 1/ � � �N

N C 1
�
�.N C 2/�.mC 1/

�.N C 1/�.mC 2/
D
.N �m/.N �mC 1/ � � �N

mC 1
:

Plugging the result back into (7.15) and using Corollary 4.12 again, we arrive at (7.14)
with t D 1, as desired.

7.2. Proof of Theorem 1.2

The theorem deals with the iterative limit N !1, ˇ!1. The latter limit is computed
in Theorem 2.2, it is a Gaussian process and we use the result of Lemma 7.4 for its
covariance. It remains to let N !1 in (7.12), i.e. to compute the limit

lim
N!1

EŒN 1=3�NNC1�i .1C 2tN
�1=3/�NNC1�j .1C 2sN

�1=3/�

D lim
N!1

2N 1=3

N�1X
mD0

Q
.m/
N .xNC1�iN /Q

.m/
N .x

NC1�j
N /

.N C 1/hQ
.m/
N ;Q

.m/
N iN

�
.1C 2N�1=3 min.t; s//mC1

.mC 1/.1C 2N�1=3t /m=2.1C 2N�1=3s/m=2
: (7.17)

We use Theorem 6.1 to compute the asymptotic behavior of Q.m/
N .xNC1�iN / and

Q
.m/
N .x

NC1�j
N /, transforming (7.17) into

lim
N!1

2

N�1X
mD0

Ai
�
ai C

m

N1=3

�
Ai
�
aj C

m

N1=3

�
Ai0.ai /Ai0.aj /

�
.1C 2N�1=3 min.t; s//mC1

.mC 1/.1C 2N�1=3t /m=2.1C 2N�1=3s/m=2
: (7.18)

The terms in the last sum rapidly decay as m=N 1=3 ! C1. Hence, denoting y D

m=N 1=3 and using the N !1 asymptotic approximation

.1C 2N�1=3 min.t; s//mC1

.mC 1/.1C 2N�1=3t /m=2.1C 2N�1=3s/m=2
� N�1=3

1

y
exp.2ymin.t; s/ � yt � ys/

D N�1=3
1

y
exp.�yjt � sj/;

(7.18) becomes a Riemann sum approximating as N !1 the integral

2

Z 1
0

Ai.ai C y/Ai.aj C y/
Ai0.ai /Ai0.aj /

exp.�yjt � sj/
dy
y
;

thus matching (1.4) and finishing the proof.
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8. Appendix: steepest descent analysis

Proof of Theorem 2.9. Rescaling and shifing the variables yi , we can (and will) assume
without loss of generality that �N D 0 and �N D 1.

We use the contour integral representation of the derivative to write

Pk.y/ D

�
N

k

��1
�
1

2� i

I
0

PN .z C y/

zN�kC1
dz; (8.1)

where the integral is over a positively oriented loop enclosing 0. We further set

y D
x
p
N
:

Our aim is to show that up to certain factors which have no zeros, Pk.x=
p
N/ becomes

the degree k Hermite polynomial as N !1. By the Hurwitz theorem, this will imply
the desired convergence of zeros.

Using (8.1) and writing� to indicate equality up to factors independent of x, we have

Pk

�
x
p
N

�
�

I
0

NY
iD1

�
1C
�yi C

xp
N

z

�
dz
z1�k

:

Note that jyi j=
p
N ! 0 uniformly in i as N !1 due to Assumption 2.4. Hence, we

can change the variable z D
p
N=w and use the Taylor series expansion ln.1 C q/ D

q � q2=2CO.q3/ to get

Pk

�
x
p
N

�
�

I
0

exp
� NX
iD1

ln
�
1C

w
p
N
�

�
�yi C

x
p
N

���
dw
wkC1

D

I
0

exp
� NX
iD1

�
w
p
N
�

�
�yi C

x
p
N

��
�
1

2

NX
iD1

w2

N
.�yi /

2
�
1

2

NX
iD1

w2x2

N 2

C
1

2

w2

N
p
N
x

NX
iD1

yi C
1

N
p
N

NX
iD1

O..�yi /
3/C o.1/

�
dw
wkC1

:

By Assumption 2.4 and our choices of �N and �N ,

NX
iD1

yi D 0;
1

N

NX
iD1

.yi /
2
D �N D 1;

1

N
p
N

NX
iD1

jyi j
3
D
.�N /

3

p
N
D o.1/:

Hence, we conclude that after factoring out the x-independent constants, Pk.x=
p
N/

converges (uniformly over x belonging to a compact subsets of the complex plane) to

kŠ

2� i

I
0

expŒwx � w2=2�
dw
wkC1

;

which is a known contour integral representation for the Hermite polynomial Hk.x/; see
[49, (9.15.10)].
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Proof of Theorem 2.14. Since we deal only with roots of polynomials, but not with their
values, we can and will omit various multiplicative constants. We wish to investigate the
zeros of the function Pk.xC 1

N
�/ of a complex variable � asN !1. Using the contour

integral representation of the derivative, we have

Pk

�
x C

1

N
�

�
�

I
PN .z C x/�

z � 1
N
�
�N�kC1 dz;

where the integration contour encloses the unique pole of the integrand at z D 1
N
�. We

wish to apply the steepest descent method to the last integral. For that we write the inte-
grand as

exp.NG.z// �
�
1 �

�

Nz

��NCk�1
; (8.2)

where

G.z/ D
1

N
ln.PN .z C x// �

N � k C 1

N
ln z:

The second factor in (8.2) converges as N !1, and we are led to study the first oscil-
lating factor. The steepest descent method suggests deforming the contours of integration
so that they pass through the critical points of G.z/. Thus, we arrive at the equation
G0.z/ D 0, which is (2.17). We deform the contours to pass through the complex critical
points zc and zc . The contour itself is then the union of the curves ImG.z/D const along
which ReG.z/ has maxima at z D zc and z D zc . The result is that the dominating con-
tribution to the integral is given by small neighborhoods of these critical points. Near the
critical point zc we have

G.z/ D G.zc/C
G00.zc/

2
.z � zc/

2
C o..z � zc/

2/:

Note that G00.zc/ is non-zero, since its vanishing would mean a double critical point for
G.z/, which is impossible, as the argument of Lemma 2.13 explains.19 Hence, making
a change of variable z D zc C

1p
N
p
G00.zc/

w, the integral near zc becomes a Gaussian
integral and evaluates explicitly as N !1 to

1
p
N

s
2�

G00.zc/
� exp.NG.zc// � exp

�
N � k C 1

N
�
�

zc

�
; (8.3)

where the last factor arose from the limit of the second factor in (8.2). In principle, one
should be careful in choosing the branch of

p
G00.zc/ in (8.3), but the final asymptotic

theorem is not sensitive to this aspect and we will not detail it. Similarly, the contribution
of the neighborhood of zc iss

2�

G00.zc/
� exp.NG.zc// � exp

�
N � k C 1

N
�
�

zc

�
; (8.4)

19We also need G00.zc/ to remain bounded away from 0 as N ! 1, which follows from its
convergence to a limiting value under Assumption 2.6.
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Note that G.z/ D G.z/. Hence, we conclude that

Pk

�
x C

1

N
�

�
�

1p
G00.zc/

exp.iN ImG.zc// � exp
�
N � k C 1

N
�
�

zc

�
.1C r1.�//

C
1p

G00.zc/
exp.�iN ImG.zc// � exp

�
N � k C 1

N
�
�

zc

�
.1C r2.�//; (8.5)

where � hides �-independent factors and r1.�/, r2.�/ are complex remainders, which
tend to 0 as N ! 1 (uniformly over � in compact sets). By Hurwitz’s theorem (or
Rouché’s theorem) zeros of a uniformly convergent sequence of holomorphic functions
converge to those of the limiting function. Applying this statement to Pk.x C 1

N
�/ as a

function of � (after multiplication by a proper constant to get the right-hand side of (8.5),
and noting that the exponent iN ImG.zc/ in exp.iN ImG.zc// can be made bounded by
using 2� i-periodicity of exp.�/), we conclude that the zeros of Pk.x C 1

N
�/ as N !1

are the same as those of

exp.iN ImG.zc// � exp
�
N � kC 1

N
�
�

zc

�
C exp.�iN ImG.zc// � exp

�
N � kC 1

N
�
�

zc

�
:

(8.6)
For fixed ratio N�kC1

N
the latter zeros form a lattice on the real line with step

u D �

�
N � k C 1

N
Im

1

zc

��1
:

On the other hand, if we increase k by 1, then the change in N�kC1
N

is negligible, but the
definition ofG changes: exp.NG.z// is multiplied by z. We can still use the same critical
point zc in the asymptotic computation and only changeNG.zc/ in (8.6) by adding a new
term ln.zc/. We conclude that k ! k C 1 results in the shift of the lattice of zeros to the
left by

v D u �
1

�
Im ln.zc/ D u �

1

�
arg.zc/:

Proof of Theorem 2.17. We follow the same approach as in Theorem 2.14. The only dif-
ference is that now we have a double critical point zc on the real line, instead of a pair
of complex conjugate critical points. Our first task is to identify the location of this point.
Here we rely on a lemma, which we prove a bit later.

Lemma 8.1. Under the assumptions of Theorem 2.17, the .unique/ double critical
point zc of (2.17) satisfies zc > yN � x > 0, and moreover the difference zc � .yN � x/
stays bounded away from 0 as N !1. The third derivative G000.zc/ is positive and stays
bounded away from 0 and1 as N !1.

Next, we write

Pk

�
x C

1

N 2=3
�

�
�

I
exp.NG.z//

�
1 �

�

N 2=3z

��NCk�1
dz; (8.7)
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where

G.z/ D
1

N
ln.PN .z C x// �

N � k C 1

N
ln z:

We deform the integration contour to pass through zc and the integral becomes dominated
by a small neighborhood of this point.20 In this neighborhood we have

G.z/ D G.zc/C
G000.zc/

6
.z � zc/

3
C o.z � zc/

3:

We make a change of variable

z D zc CN
�1=3w:

We need to find the asymptotic expansion of the second factor in the integrand of (8.7):�
1 �

�

N 2=3z

��NCk�1
D

�
1 �

�

N 2=3zc

��NCk�1
�

�
.N 2=3z � �/.N 2=3zc/

.N 2=3zc � �/.N 2=3z/

��NCk�1
D

�
1 �

�

N 2=3zc

��NCk�1
�

�
.zc CN

�1=3w �N�2=3�/.zc/

.zc �N�2=3�/.zc CN�1=3w/

��NCk�1
D

�
1 �

�

N 2=3zc

��NCk�1
�

�
1C

N�1�w

z2c CN
�1=3wzc �N�2=3zc �N�1�w

��NCk�1
:

As N !1, the first factor is a function of (finite) �, which has no zeros and therefore
can be ignored for our computations. The second factor asymptotically becomes

exp
�
�
N � k C 1

N
�
�w

z2c

�
:

We conclude that up to factors which have no zeros (as functions of �),

Pk

�
x C

1

N 2=3
�

�
�

Z
exp

�
G000.zc/

6
w3 �

N � k C 1

N
�
�w

z2c

�
dw: (8.8)

We have some freedom in choosing the contour of integration, as long as it extends to
infinity in both directions in such a way that the integrand decays. Our choice is to inte-
grate over the unions of two rays arg.w/D˙�=3, which gives real negative values forw3

(recall that G000.zc/ > 0).
We now recall the contour integral representation of the Airy function:

Ai.�/ D
1

2� i

Z
exp

�
Qw3

3
� � Qw

�
d Qw; (8.9)

where the integration contour is the same as in (8.8). Changing the integration variable
in (8.8) to

w D

�
2

G000.zc/

�1=3
Qw;

20We omit a standard justification of this fact.



V. Gorin, V. Kleptsyn 64

we conclude that

Pk

�
x C

1

N 2=3
�

�
�

Z
exp

�
Qw3

3
�

�
2

G000.zc/

�1=3
N � k C 1

N
�
� Qw

z2c

�
d Qw

� Ai
�
� �

�
2

G000.zc/

�1=3
N � k C 1

N
�
1

z2c

�
:

Proof of Lemma 8.1. Note that roots of a polynomial smoothly depend on the coefficients
of this polynomial as long as roots do not merge together. We use this observation to
deform from the x D C1 case down to the first x when a double root of (2.17) arises.
Recall from Lemma 2.13 that (2.17) has N roots (with multiplicity). When x is large
positive, we can pin down all these roots on the real line: following the sign changes of
(2.19), we locate N � 1 roots inside the intervals .yiC1 � x; yi � x/, 1 � i < N , and
another root in .0;C1/. This remains true as long as x > yN . Let us investigate what
happens when x becomes slightly smaller, i.e. for x D yN � ". We claim that we now
have two distinct roots in the interval .yN � x;C1/. Indeed, the function on the left-
hand side of (2.19) is positive at z D yN � x C 0, becomes negative for slightly larger z
(because of the contribution of �N�kC1

N
�
1
z

; in this part the lower bound on the spacings
yNC1�i � yi in Assumption 2.7 becomes important), and then it is again positive for very
large z!C1. When we further decrease x, all other roots continue to lie in the intervals
.yiC1 � x; yi � x/, and therefore the first appearance of a double root is when the above
two roots in .yN � x;C1/ merge. Hence, zc > yN � x > 0.

Now set ı.N /D zc � .yN � x/. Our aim is to show that ı.N / is bounded away from 0

as N !1. Towards a contradiction, assume that ı.N / can become arbitrarily small, i.e.
there is a growing sequence Nm such that limm!1 ı.Nm/ D 0. Then one can find a
constantD > 0 such that yNm � x > D for allm. (Indeed, otherwise, passing to a further
subsequence if necessary, we would get limm!1.yNm � x/ D 0, and consequently the
left-hand side of (2.19) would be negative at zc due to the dominating contribution of
�
N�kC1
N
�
1
z

.) But then we can upper bound G00.zc/ as

G00.zc/ D �
1

N

NX
iD1

1

.zc � .yi � x//2
C
N � k C 1

N
�
1

z2c

< �
1

N

NX
iD1

1

.ı.N /C yN � yi /2
C
N � k C 1

N
�
1

D2
: (8.10)

Since by Assumption 2.7, the empirical measure of ¹yiº converges to a measure � sup-
ported on ŒA; B�, and since yN converges to B andZ B

A

1

.B � x/2
�.dx/ D C1;

inequality (8.10) implies that G00.zc/ goes to �1 as N !1, which contradicts G00.zc/
D 0. Hence, our assumption was wrong and ı.N / is indeed bounded away from 0.
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Next, G000.zc/ is non-negative, since G0.z/ is a non-negative function of z 2
.yN � x;C1/ with a minimum G0.zc/ D 0. Further, G000.zc/ is bounded away from1
immediately from the formula

G000.zc/ D 2
1

N

NX
iD1

1

.ı.N /C yN � yi /3
� 2

N � k C 1

N
�
1

z3c

and the facts that ı.N / is bounded away from 0 and zc > ı.N /.
It remains to show that G000.zc/ is bounded away from 0. Indeed, otherwise, passing

to a subsequence if necessary, we would see a triple root at zc for the function G.z/. But
(by the Hurwitz or Rouché theorem) this is impossible, since for finite N we have shown
that G.z/ has only a double root at zc and no other roots in a neighborhood.
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