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Abstract. We introduce a presentation of the Chow ring of a matroid by a new set of generators,
called “simplicial generators.” These generators are analogous to nef divisors on projective toric
varieties, and admit a combinatorial interpretation via the theory of matroid quotients. Using this
combinatorial interpretation, we (i) produce a bijection between a monomial basis of the Chow
ring and a relative generalization of Schubert matroids, (ii) recover the Poincaré duality property,
(iii) give a formula for the volume polynomial, which we show is log-concave in the positive orthant,
and (iv) recover the validity of Hodge–Riemann relations in degree 1, which is the part of the
Hodge theory of matroids that currently accounts for all combinatorial applications of the work of
Adiprasito et al. (2018). Our work avoids the use of “flips,” the key technical tool employed in that
work.
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1. Introduction

Chow rings of matroids were introduced in [27] as generalizations of cohomology rings
of wonderful compactifications of hyperplane arrangement complements [17]:

Definition 1.0.1. LetM be a loopless matroid of rank r D d C 1 on a ground set E. The
Chow ring of M is a graded ring A�FY .M/ D

Ld
iD0A

i
F Y .M/ defined as

A�FY .M/ WD

RŒzF j F � E a nonempty flat of M�

hzF zF 0 j F;F 0 incomparablei C h
P
F�a zF j a an atom in the lattice of flats of M i

:

We introduce a presentation of the Chow ring by a new set of generators:
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Definition 3.2.1. LetM be a loopless matroid on E. The simplicial presentation A�
r
.M/

of the Chow ring of M is the quotient of a polynomial ring RŒhF j F � E a nonempty
flat of M� by the kernel of the surjective map

RŒhF j F � E a nonempty flat of M�! A�FY .M/ where hF 7! �
X
G�F

zG :

The generators hF of A�
r
.M/ are called the simplicial generators of the Chow ring ofM .

The simplicial presentation allows us to

(i) interpret the simplicial generators and their monomials in A�
r
.M/ combinatorially

via the theory of matroid quotients;

(ii) recover the Poincaré duality property of A�
r
.M/;

(iii) compute the volume polynomial of A�
r
.M/, which we show to be Lorentzian in the

sense of [10], and whose formula generalizes a main result of [50];

(iv) give a simplified proof of the Hodge–Riemann relations in degree 0 and 1 for
matroids, which is the part of the Hodge theory of matroids in [1] that accounts
for all currently known combinatorial applications of [1].

We achieve these by establishing combinatorial properties of the simplicial presenta-
tion that reflect the following two geometric observations:

(A) Suppose base-point-free divisorsD1; : : : ;Ds on a variety X generate the Chow ring
A�.X/, and Y � X is a subvariety. Then the pullback map A�.X/! A�.Y / can
be computed via the intersections of Y with general hyperplane pullbacks of X !
P .H 0.Di //. If furthermore the pullback map is surjective, then these intersections
generate A�.Y /.

(B) For base-point-free divisors D1; : : : ; Ds whose sum is an ample divisor on a pro-
jective variety Y , let vol.t1; : : : ; ts/ be the volume polynomial

R
Y
.t1D1 C � � �

C tsDs/
dimY . Then vol.t/, as a function Rs ! R, is positive and log-concave on

the positive orthant Rs>0 [42, §1.6.A].

When a matroid M is realizable, its Chow ring is isomorphic to the Chow ring of a
projective variety YR.M/, which is a subvariety of a projective toric variety XAn

, and the
pullback A�.XAn

/! A�.YR.M// is surjective (see §2.3). In this case, unlike the classical
presentation A�FY .M/, the generators of our presentation A�

r
.M/ represent base-point-

free divisor classes on YR.M/, obtained as pullbacks of base-point-free divisor classes
on XAn

that generate A�.XAn
/ (see §3.2). We demonstrate that even when M is not

necessarily realizable, the generators of A�
r
.M/ display behaviors analogous to those of

base-point-free divisors on the projective varieties.

1.1. Main results

(i) Simplicial generators and their monomials as matroid quotients. The principal trun-
cation of a matroidM by a flat F is a new matroid with bases ¹B n f WB a basis ofM and
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f 2 B \ F ¤ ;º: When M is realizable, so that hF 2 A1r.M/ represents a base-point-
free divisor class on a projective variety YR.M/, the principal truncation by F corresponds
to any general hyperplane pullback of the map defined by hF (Remarks 3.2.6 & 3.2.7).
For an arbitrary matroid, the following analogue holds.

Theorem 3.2.3. Let M be a loopless matroid. The simplicial generator hF 2 A�r.M/

corresponds, via the cap product .see §2.1 for a definition/, to the principal truncation
of M by the flat F .

We use this interpretation of the simplicial generators to study their monomials
in A�

r
.M/. A monomial basis for A�

r
.M/ is obtained by carrying over a Gröbner basis

computation for the classical presentation A�FY .M/ in [27] (Proposition 3.3.2 & Corol-
lary 3.3.3). This monomial basis, which we call the nested basis, now has the following
combinatorial interpretation.

Definition 3.3.4. Let M 0 be a matroid quotient of M (that is, every flat of M 0 is a flat
of M ), denoted f WM 0�M . Write nf .S/ WD rkM .S/ � rkM 0.S/ for a subset S of the
ground set. An f -cyclic flat of f is a flat F ofM 0 such that F is minimal (with respect to
inclusion) among the flats G of M 0 with nf .G/ D nf .F /. The matroid M 0 is a relative
nested quotient of M if the f -cyclic flats form a chain.

Theorem 3.3.8. There is a natural bijection, via the cap product, between the nested
basis of A�

r
.M/ and the set of relative nested quotients of M .

When the matroid M is a Boolean matroid, i.e. a matroid whose ground set is a basis,
the relative nested quotients of M are known as “nested matroids,” studied previously
in [33] in the context of Chow rings of permutohedral varieties.

(ii) The Poincaré duality property. We build upon the bijection in Theorem 3.3.8 to
establish the following theorem, which mirrors the fact that for certain classes of vari-
eties,1 ifA�.X/!A�.Y / is surjective for Y �X , thenA�.Y /'A�.X/=ann.ŒY �/where
ann.ŒY �/ D ¹� 2 A�.X/ j � � ŒY � D 0º.

Theorem 4.2.1. Let M be a loopless matroid on ¹0; 1; : : : ; nº, and XAn
the permuto-

hedral variety of dimension n. Let �M be the Bergman class of the matroid M consid-
ered as an element of A�.XAn

/. Then A�.M/ ' A�.XAn
/=ann.�M /, where ann.�M / D

¹� 2 A�.XAn
/ j � ��M D 0º:

The Poincaré duality property for A�
r
.M/ was established in [1, Theorem 6.19] by a

double induction. In our case, the Poincaré duality property is a simple algebraic conse-
quence of Theorem 4.2.1 (Corollary 4.2.2).

1These include varieties on which rational and numerical equivalence coincide, which is a fea-
ture shared by all varieties that inspire the combinatorics of this paper. See the first footnote in §2.1.
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(iii) The volume polynomial and its log-concavity. The following formula computes the
intersection numbers of the simplicial generators hF .

Theorem 5.2.4. For M a loopless matroid of rank r D d C 1, let
R
M
W Ad .M/! R be

the degree map. For a multiset ¹F1; : : : ; Fd º of nonempty flats, we haveZ
M

hF1
� � � hFd

D

´
1 if rkM .

S
j2J Fj / � jJ j C 1 for every ; ¨ J � ¹1; : : : ; dº;

0 otherwise:

That these intersection numbers are either 1 or 0 stands in stark contrast to calculations
in the classical presentation of the Chow ring of a matroid, which were carried out in [25].

The intersection numbers collect together into the “volume polynomial” of A�
r
.M/,

defined in the following corollary. The corollary recovers [50, Corollary 9.4] on volumes
of generalized permutohedra when M is set to be the Boolean matroid.

Corollary 5.2.5. Let M be a loopless matroid on E of rank d C 1. The volume polyno-
mial VPrM .t/ 2 QŒtF j F � E a nonempty flat in M� of A�

r
.M/, defined as VPrM .t/ WDR

M
.
P
F tF hF /

d , is
VPrM .t/ D

X
.F1;:::;Fd /

tF1
� � � tFd

where the sum is over ordered collections .F1; : : : ; Fd / of flats with rkM .
S
j2J Fj / �

jJ j C 1 for every ; ¨ J � ¹1; : : : ; dº.

The volume polynomial VPrM , as a real-valued function, is therefore positive in its
positive orthant, as are volume polynomials of base-point-free divisors on projective vari-
eties. Moreover, it displays the log-concavity behavior described in (B).

Corollary 5.3.2. As a real-valued function, VPrM .t/ is log-concave in its positive orthant.

Log-concavity is a consequence of the following statement.

Theorem 5.3.1. The volume polynomial VPrM .t/ of a loopless matroid M is Lorentzian
in the sense of [10].

Lorentzian polynomials are multivariate polynomials characterized by two condi-
tions: one on their supports and one on their partial derivatives (see §5.1). We show that
VPrM satisfies these two conditions by using Theorem 5.2.4 to understand the support
of VPrM (Proposition 5.3.3) and by using Theorem 3.2.3 to understand the partial deriva-
tives of VPrM as volume polynomials of principal truncations of M .

(iv) A simplified proof of the Hodge–Riemann relations in degree 1. We use log-concavity
of VPrM to give a simplified proof of the Hodge–Riemann relations in degree 1 for Chow
rings of matroids:

Theorem 6.2.1. Let M be a loopless matroid of rank r D d C 1 on a ground set E, and
` 2 A1.M/ a combinatorially ample divisor class .see §2.2). Then the Chow ring A�.M/

with the degree map
R
M

satisfies the Kähler package in degree 0 and 1. That is, for i � 1,
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(HL�1) (hard Lefschetz in degree � 1) multiplication by `

Li` W A
i .M/! Ad�i .M/; a 7! `d�2ia;

is an isomorphism,

(HR�1) (Hodge–Riemann relations in degree � 1) the symmetric form

.�1/iQi
` W A

i .M/ � Ai .M/! R; .x; y/ 7! .�1/i
Z
M

xy`d�2i ;

is nondegenerate on Ai .M/ and positive-definite when restricted to the degree i
primitive space P i

`
WD ¹z 2 Ai .M/ j `d�2iC1z D 0º of `.

The authors of [1] establish the Hodge–Riemann relations in all degrees by a double-
inductive argument that utilizes a generalization of Bergman fans of matroids. In our
case, the log-concavity of VPrM (Corollary 5.3.2) provides us a key step in the induction
in degrees � 1, and thus our proof of Theorem 6.2.1 is a single induction on ranks of
matroids and involves only the classical Bergman fans of matroids.

The validity of the Hodge–Riemann relation in degree 1 accounts for all currently
known combinatorial applications of [1], including the Heron–Rota–Welsh conjecture.
Huh has posed the discovery of combinatorial applications for the Hodge–Riemann rela-
tions in higher degrees as an open problem [37].

Organization

In Section 2, we develop the necessary background on Chow rings of matroids. In Sec-
tion 3, we introduce the simplicial presentation of the Chow ring, study its structural
properties via principal truncations, and introduce the relative nested quotients. In Sec-
tion 4, we establish the Poincaré duality property for matroids. In Section 5, we calculate
intersection numbers with respect to the simplicial presentation, and prove that the vol-
ume polynomial of the Chow ring in the simplicial presentation is Lorentzian. Finally, in
Section 6 we apply our results to give a simplified proof of the Hodge theory in degree 1
for matroids.

2. Preliminaries

In this section, we review relevant background material on Chow rings of matroids.
Familiarity with toric and tropical geometry, from which the combinatorial notions here
originate, can be helpful but is not necessary. As references we point to [29] and [15] for
toric geometry, and to [31], [44, Chapter 6], and [1, §4–§5] for tropical geometry.

In §2.1, we describe Chow cohomology rings and Minkowski weights of fans, and
in §2.2 we illustrate these notions in the setting of matroids. These first two subsections are
purely combinatorial. In §2.3, we provide the underlying geometric picture that motivates
many of the combinatorial constructions.
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2.1. Chow cohomology rings and Minkowski weights

We give a brief account of Chow cohomology rings and Minkowski weights of smooth
fans, which are combinatorial analogues of cohomology rings and homology classes of
algebraic varieties.2

We set the following notation and definitions for rational fans over a lattice.

� Let N be a lattice of rank n, and N_ the dual lattice. We write NR WD N ˝Z R.

� For † � NR a rational fan, let †.k/ be the set of k-dimensional cones of †.

� For a ray � 2 †.1/, write u� 2 N for the primitive ray vector that generates � \N .

� A fan † is smooth if, for all cones � of †, the set of primitive ray vectors of � can
be extended to a basis of N . A smooth fan is simplicial in the sense that every k-
dimensional cone is generated by k rays.

� A fan † is said to be complete if its support j†j is equal to NR.

Convention. Throughout this section, we assume that † � NR is a smooth fan of dimen-
sion d , which is not necessarily complete.

Definition 2.1.1. The Chow cohomology ring A�.†/ of † is a graded R-algebra

A�.†/ WD
RŒx� j � 2 †.1/�

h
Q
�2S x� j S � †.1/ do not form a cone in †i C h

P
�m.u�/x� j m 2 N

_i
:

Geometrically, the ring A�.†/ is the Chow ring A�.X†/ of the toric variety X† asso-
ciated to the fan †. See [16, §10.1] for the case where † is complete, and [7] or [11] for
the general case. From this geometric description of A�.†/, or directly from the algebraic
definition above, one can check that A`.†/ D 0 unless 0 � ` � d .

We call a linear combination
P
� c�x� 2RŒx� W � 2†.1/� of the variables x� a divisor

on†. Divisors of special interest in algebraic geometry are ample and nef divisors.3 They
have the following combinatorial description for a complete fan † (i.e. a complete toric
variety X†).

A divisorD D
P
�2†.1/ c�x� on a complete fan† defines a piecewise-linear function

'D W NR ! R, determined by being linear on each cone of † with 'D.u�/ D c�. We

2We use real coefficients for Chow cohomology rings and Minkowski weights, although Chow
rings of algebraic varieties initially take integral coefficients. The algebraic varieties that motivate
the constructions here—smooth complete toric varieties and wonderful compactifications—share
the feature that the Chow ring, the integral cohomology ring, and the ring of algebraic cycles modulo
numerical equivalence all coincide [23, Appendix C.3.4]. In particular, their Chow rings are torsion-
free. In this paper, while most of our arguments work over Z, we will always work over R for
convenience.

3Base-point-free divisor classes are nef, and on toric varieties nef conversely implies base-point-
free [15, Theorem 6.3.12]. In agreement with the terminology of [1], we will call certain divisors
“combinatorially nef” (see §2.2) although they are furthermore base-point-free on wonderful com-
pactifications of realizable matroids.
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say that D is a nef divisor if 'D is a convex function on NR, that is, 'D.u/C 'D.u0/ �
'.u C u0/ for all u; u0 2 NR. If further the inequalities 'D.u/ C 'D.u0/ � '.u C u0/
are strict whenever u and u0 are not in a common cone of †, we say that D is ample.
Nef (resp. ample) divisors on † correspond to polytopes in N_R whose outer normal fans
coarsen (resp. equal) †.

Theorem 2.1.2 ([15, Theorems 6.1.5–6.1.7]). Let † be a smooth complete fan. A nef
divisor D D

P
�2†.1/ c�x� on † defines a polytope PD � N_R by

PD WD ¹m 2 N
_
R j m.u�/ � c� 8� 2 †.1/º;

whose outer normal fan coarsens †. Conversely, such a polytope P � N_R defines a nef
divisor

DP WD
X
�2†.1/

max ¹m.u�/ j m 2 P ºx�:

A nef divisor D is ample if the outer normal fan of PD is equal to †.

A divisor D defines an element ŒD� 2 A1.†/, which we call the divisor class (of D)
on †. We say that a divisor class � 2 A1.†/ is nef (resp. ample) if any choice of a divi-
sor D representing � is nef (resp. ample). This is well-defined because two divisors
D and D0 represent the same divisor class if and only if 'D � 'D0 is a linear function
on NR. In terms of polytopes, two nef divisors D and D0 define the same divisor class if
and only if PD and PD0 are parallel translates.

Remark 2.1.3. Any nef divisor class ŒD� 2 A1.†/ is effective, that is, it can be written
as a nonnegative linear combination D D

P
�2†.1/ c�x� (with c� � 0 for all � 2 †.1/).

This is an immediate consequence of Theorem 2.1.2: Given a nef divisorD, translating if
necessary one can assume that the polytope PD contains the origin in its relative interior.

WithA�.†/ as an analogue of a cohomology ring, we describe analogues of homology
groups.

Definition 2.1.4. An `-dimensional Minkowski weight on † is a function � W †.`/! R
such that for each � 2 †.` � 1/, the function � satisfies the balancing conditionX

���
�2†.`/

�.�/u�n� 2 spanR.�/;

where � n � denotes the unique ray of � that is not in � . The support of�, denoted j�j, is
the union of cones � 2†.`/ such that�.�/¤ 0. We write MW`.†/ for the group (under
addition) of `-dimensional Minkowski weights on †.

The groups of Minkowski weights are analogues of homology groups because they
are dual to the Chow cohomology ring in the following way.
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Lemma 2.1.5 ([44, Theorem 6.7.5]4). For 0 � ` � d , we have an isomorphism

t† W MW`.†/
�
! Hom.A`.†/;Z/ determined by � 7!

�
.
Q
�2�.1/ x�/ 7! �.�/

�
:

This isomorphism is an analogue of the Kronecker duality map in algebraic topology.
We use it to define combinatorial analogues of some standard operations in algebraic
topology. We define the cap product by

Ak.†/�MW`.†/!MW`�k.†/; .�;�/ 7! � \� WD
�
� 7! .t†�/.� �

Q
�2�.1/ x�/

�
;

which makes MW�.†/ into a graded A�.†/-module. When † satisfies MWd .†/ ' R,
the fundamental class �† is defined as its generator (unique up to scaling), and the cap
product with the fundamental class defines the map

ı† W A
�.†/! MWd��.†/; � 7! � \�†:

In particular, noting that MW0.†/ D R, the degree map is defined asZ
†

W Ad .†/! R; � 7! � \�†:

If † is complete, one can check that MWn.†/ ' R, where the fundamental class
�† is given by �†.�/ D 1 for each cone � 2 †.n/. In this case, we have the following
analogue of the Poincaré duality theorem in algebraic topology.

Theorem 2.1.6 ([31, Theorem 3.1, Proposition 4.1 (b), Theorem 4.2]). For † a smooth
complete fan, the cap product with the fundamental class �†,

ı† W A
k.†/

�
! MWn�k.†/; � 7! � \�†;

is an isomorphism for each 0 � k � n. Equivalently .by Lemma 2.1.5/, the pairing

Ak.†/ � An�k.†/! R; .a; a0/ 7!

Z
†

aa0;

is nondegenerate for each 0 � k � n.

The isomorphisms in Theorem 2.1.6 make
Ln
iD0MWn�i .†/ into a graded ring when

† is complete. We write MW�.†/ WD MWn��.†/ for this graded ring. For complete
fans, the resulting multiplication structure on the Minkowski weights is known as the
stable intersection, denoted \st, in tropical geometry. We will only need a special case
of stable intersections,5 which we provide explicitly in the context of matroids in §3.1
(Proposition 3.1.8).

In the proof of Lemma 3.2.5, we will need the following explicit description of the
map ı† W A1.†/

�
!MWn�1.†/ for nef divisor classes on a complete fan †. It is familiar

to tropical geometers as tropical hypersurfaces [44, Proposition 3.3.2 & Theorem 6.7.7].

4Currently [44, Theorem 6.7.5] has a typo—it is missing Hom.�;Z/. The statement here was
made implicitly in [30], and follows the notation of [1, Proposition 5.6].

5See [31], [44, §3.6], or [38] for a definition of stable intersections. It may help to note the
suggestiveness of the notations here—we have � \� D ı†.�/ \st �.
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Proposition 2.1.7. LetD be a nef divisor on† such that the corresponding polytope PD
is a lattice polytope. Then the Minkowski weight �PD

WD ı†.ŒD�/ 2 MWn�1.†/ given
by Theorem 2.1.6 is defined by

�PD
.�/ D

´
`.PD.�// if there is � 2 †PD

.n � 1/ such that j� j � j� j;

0 otherwise;

for each � 2 †.n � 1/, where PD.�/ is the edge of PD corresponding to the cone
� 2 †Q.n � 1/, and `.PD.�// is its lattice length, i.e. the number of lattice points
on PD.�/ minus 1.

We end this subsection by noting the functoriality of the constructions here. An inclu-
sion of fans � W †0 ,! † defines the pullback map ��, which is a surjective map of graded
rings

�� W A�.†/� A�.†0/; x� 7!

´
x� if � 2 †0.1/;

0 otherwise:

Comparing the presentations of A�.†/ and A�.†0/, one checks easily that this map coin-
cides with the quotient of A�.†/ by the ideal hx� j � 2 †.1/ n†0.1/i � A�.†/. Dually, a
Minkowski weight �0 on †0 is naturally a Minkowski weight on †. In this case we often
abuse the notation and write �0 for both Minkowski weights.

Remark 2.1.8. Unraveling the definitions, one checks that the cap product is functorial
in the following sense: The pullback map �� W A�.†/! A�.†0/ makes MW�.†0/ into an
A�.†/-module. Explicitly, if � 2 A�.†/ and �0 2 MW`.†

0/, then ��� \ �0 D � \ �0,
where �0 on the right hand side is considered as a Minkowski weight on †.

2.2. Bergman classes and Chow rings of matroids

We now specialize our discussion to matroids. We begin with the braid fan, on which
matroids will arise as certain Minkowski weights.

First, we fix some notations. Let E WD ¹0; 1; : : : ; nº, and for a subset S � E write
eS WD

P
i2S ei , where e0; : : : ; en is the standard basis of ZE . Let N be the lattice

N D ZE=ZeE , and write uS for the image of eS in N . The dual lattice of N is N_ D
.ZeE /? D ¹.y0; : : : ; yn/ 2 ZE j

Pn
iD0 yi D 0º.

The braid fan (of dimension n), denoted †An
, is the outer normal fan of the standard

permutohedron (of dimension n), which is the polytope

…n WD Conv.w.0; 1; : : : ; n/ 2 RE j all permutations w of E/:

Concretely, the braid fan†An
is a complete fan inNR whose cones are Cone.uS1

; : : : ;uSk
/

� NR, one for each chain of nonempty proper subsets ; ¨ S1 ¨ � � � ¨ Sk ¨ E. In par-
ticular, the primitive rays of †An

are ¹uS j ; ¨ S ¨ Eº. This fan is also known as the
Coxeter complex of the type A root system, hence the notation †An

. The associated toric
variety of †An

, denoted XAn
, is often called the permutohedral variety (of dimension n).
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We assume familiarity with the basics of matroids, and refer to [48, 56] as general
references. We fix the following notation for matroids: We write Ur;E for the uniform
matroid of rank r on E, and we set a matroid M to have

� ground set E D ¹0; 1; : : : ; nº,

� B.M/ the set of bases of M ,

� rkM the rank function of M , or simply rk when the matroid in question is clear,

� LM the lattice of flats of M , which we also use to denote the set of flats,

� A.M/ the set of atoms of LM , which are flats of rank 1,

� �.M/ the set of spanning sets of M , which are subsets of E that contain a basis of M ,

� clM .S/ the closure of a subset S � E, which is the smallest flat of M containing S ,

� Q.M/ the base polytope of M , which is the polytope Conv.eB j B 2 B.M// � RE .

Matroids define Minkowski weights on †An
in the following way.

Proposition 2.2.1. Let M be a loopless matroid M of rank r D d C 1.

(1) .[44, Theorem 4.4.5]/ A function �M W †An
.d/! R defined by

�M .Cone.uS1
; : : : ; uSd

// D

´
1 if S1; : : : ; Sd are flats of M;

0 otherwise;

for each chain of nonempty proper subsets ;¨ S1 ¨ � � �¨ Sk ¨E is a d -dimensional
Minkowski weight on †An

.

(2) .[1, Proposition 5.2]/ Let†M be the smooth fan structure on the support j�M j inher-
ited from †An

. That is, †M is a subfan of †An
whose cones are Cone.uF1

; : : : ; uFk
/

� NR, one for each chain of nonempty proper flats ; ¨ F1 ¨ � � � ¨ Fk ¨ E of M .
Then the Bergman class �M is the unique d -dimensional Minkowski weight on †M
(up to scaling).

Definition 2.2.2. With notations as in Proposition 2.2.1 above, we call the Minkowski
weight �M the Bergman class of M , and we call the fan †M the Bergman fan6 of M .

In Section 3 we will need the following description of supports of Bergman classes.

Lemma 2.2.3 ([44, Corollary 4.2.11]). Let M be a loopless matroid, and Q.M/ its base
polytope. The support j�M j of its Bergman class is equal to the union of cones � in the
outer normal fan of Q.M/ satisfying the following condition: The corresponding face
Q.M/.�/ of � is a base polytope of a loopless matroid.

6Some define the Bergman fan of M as a coarser smooth fan structure on the support j†M j.
A smooth fan structure on j†M j that coarsens †M corresponds to a choice of a building set on the
lattice LM of flats [5, 26]. Here we will always take the smooth fan structure for †M as a subfan
of †An

.
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The Chow ring of a matroid is defined as the Chow cohomology ring of its Bergman
fan. Explicitly, we have the following.

Definition 2.2.4. The Chow ring of a loopless matroid M is the graded ring

A�.M/ WD A�.†M /

D
RŒxF j F 2 LM n ¹;; Eº�

hxF xF 0 j F;F 0 incomparablei C h
P
F�a xF �

P
G�b xG j a; b 2 A.M/i

:

We call linear combinations of the variables xF divisors on M , and the elements of
A1.M/ divisor classes on M . The divisor class of

P
F�a xF for any atom a 2 A.M/

is called the hyperplane class of M , and is denoted ˛.M/ or just ˛ if the matroid in
question is clear.

Remark 2.2.5. The ring A�.M/ was first studied in [27] under a slightly different pre-
sentation, which for clarity is denoted A�FY .M/ and is given as

A�FY .M/ WD
RŒzF j F 2 LM n ¹;º�

hzF zF 0 j F;F 0 incomparablei C h
P
F�a zF j a 2 A.M/i

:

That is, we have xF D zF for every nonempty proper flat F 2LM , and zE D�˛. As both
presentataions A�.M/ and A�FY .M/ are relevant for us, we will use the variable names
x; z in a consistent manner; for example, in the summation

P
F�F 0 xF it is implied that

F ¨ E, whereas
P
F�F 0 zF includes zE as a summand.

Since MW.†M / ' R by Proposition 2.2.1 (2), with the Bergman class as the funda-
mental class, the Chow ring of a matroid M has the degree map

R
M
W Ad .†M /! R,

defined by the cap product � 7! � \�M . Explicitly, it is determined byZ
M

xF1
� � � xFd

D 1 for every maximal chain F1 ¨ � � � ¨ Fd in LM n ¹;; Eº:

Note that the braid fan †An
is the Bergman fan of the Boolean matroid UjE j;E , and

its fundamental class �†An
is the Bergman class of UjE j;E . We will thus always identify

A�.†An
/ D A�.UjE j;E /.

We end this subsection with a discussion of nef and ample divisors on the braid fan,
and the resulting analogous notions for Bergman fans. The following characterization of
nef divisors on†An

, which is a specialization of Theorem 2.1.2, was recognized in various
works [2, 20, 47, 50]; for a modern treatment and generalization to arbitrary Coxeter root
systems we point to [4].

Proposition 2.2.6. The following are equivalent for a divisor D D
P
;¨S¨E cSxS 2

A1.†An
/:

(1) D is a nef divisor on †An
,

(2) the function c.�/ W 2E ! R satisfies the submodular property

cA C cB � cA[B C cA\B for all A;B � E where c; D cE D 0;
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(3) the normal fan of the polytope PD D ¹m 2 N
_
R j m.uS / � cS 8; ¨ S ¨ Eº

coarsens †An
,

(4) every edge of PD is parallel to ei � ej for some i ¤ j 2 E.

Remark 2.2.7. Often the polytope PD is constructed in an affine translate of N_R
in RE , for which the presentation A�FY .†An

/ is useful. Given a submodular function
c.�/ W 2

E ! Z with c; D 0 but cE possibly nonzero, the generalized permutohedron asso-
ciated to c.�/ is the polytope

P.c/ WD ¹y 2 .RE /_ j y.eE / D cE and y.eS / � cS 8; ¨ S ¨ Œn�º:

This polytope lives in the translate of N_R where the points have coordinate sum cE . One
translates P.c/ to N_R as follows. Fix an element i 2 E. We have

P.c/ � cEei D ¹m 2 N_R j m.uS / � cS � cE˛
.i/
S 8Sº � N

_
R ;

where ˛.i/S D 1 if i 2 S and 0 otherwise. Since the divisor class of
P
;¨S¨E ˛

.i/
S xS is

the hyperplane class ˛ in A1.UjE j;E / D A1.†An
/, the nef divisor class that the polytope

P.c/ corresponds to is

�cE˛ C
X
;¨S¨E

cSxS D
X
;¨S�E

cSzS :

The notion of nef and ample divisors on a matroid is inherited from the braid fan.
First, note that for a loopless matroid M , the inclusion of fans �M W †M ,! †An

induces
the pullback map

��M W A
�.†An

/! A�.M/ defined by xS 7!

´
xS if S ¨ E is a flat of M ,

0 otherwise.

When we wish to clarify whether a variable xS is an element of A�.M/ or A�.†An
/, we

write
xS .M/ WD ��MxS ;

in which case xS is considered as an element of A�.†An
/ and xS .M/ of A�.M/.

The pullback map motivates the following notions regarding divisors on M . We say
that a divisor (class) on M is combinatorially nef if it is a pullback of a nef divisor
(class) on †An

. A combinatorially ample divisor (class) is defined similarly. Explicitly, a
divisor D D

P
F 2LM n¹;;Eº

cF � xF .M/ is combinatorially nef if there exists a function
a.�/ W 2

E ! Z such that a; D aE D 0, aF D cF for all flats F 2 LM , and

aA C aB � aA[B C aA\B for all A;B � E:

Say D is ample if the inequality is strict whenever A and B are incomparable.
Combinatorially nef (resp. ample) divisor classes on M are closed under nonnegative

linear combinations, since nef (resp. ample) divisor classes on complete fans are in gen-
eral. We thus let xKM (resp. KM ) be the cone in A1.M/ of combinatorially nef (resp.
ample) divisor classes on M , called the combinatorially nef (resp. ample) cone of M .
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Remark 2.2.8. It follows from Remark 2.1.3 that a combinatorially nef divisor class
ŒD� 2 A1.M/ is effective; that is, it can be written as D D

P
F cF xF where cF � 0 for

all F 2 LM n ¹;; Eº.

2.3. The geometry of matroids via wonderful compactifications

We provide the underlying algebraic geometry of the combinatorial constructions in the
previous two subsections.

Let M be a loopless matroid on E D ¹0; 1; : : : ; nº of rank r D d C 1 realizable over
a field k, which we may assume to be algebraically closed. A realization R.M/ of M
consists of any of the following equivalent pieces of data:

� a list E D ¹v0; : : : ; vnº of vectors spanning a k-vector space V ' k
r , or

� a surjection knC1� V where ei 7! vi , or

� an injection PV � ,! Pn
k

, dualizing the surjection knC1� V .

For a realization R.M/ of M with PV � ,! Pn, the coordinate hyperplanes of Pn

intersect with PV � to give the associated hyperplane arrangement AR.M/ on PV �,
which is encoded by the flats of M in the following way. For each nonempty flat F
of M , let LF be a linear subspace of V � defined by

LF WD ¹f 2 V
�
j f .vi / D 0 8vi 2 F º;

and let PLF be the linear subvariety of PV �. The hyperplanes of AR.M/ are
¹PLaºa2A.M/ corresponding to the atoms, and more generally, a flat F of rank c cor-
responds to the c-codimensional linear subvariety PLF .

We denote by VYR.M/ the hyperplane arrangement complement PV � n
S

AR.M/. It
is a linear subvariety of an algebraic torus in the following way: The algebraic torus
TN D .k

�/nC1=k� of the latticeN DZnC1=Z.1; : : : ;1/ is the complement of the union of
coordinate hyperplanes in Pn, and hence VYR.M/ is the intersection of PV � with TN . The
linear subvariety VYR.M/ � TN is related to the Bergman class of M by tropicalization in
the following way (see [44, §3] for tropicalizations of subvarieties of an algebraic torus).

Theorem 2.3.1. Let R.M/ be a realization of a loopless matroidM , and let VYR.M/�TN
be the associated hyperplane arrangement complement. Recall that the permutohedral
variety XAn

is a toric variety with the torus TN .

(1) .[44, Theorem 4.1.11]/ The support of the tropicalization of VYR.M/, denoted
trop. VYR.M//, equals the support of the Bergman fan �M .

(2) .[44, Proposition 6.4.17 & Theorem 6.7.7]/ It follows that the closure YR.M/ of
VYR.M/ in the permutohedral variety XAn

satisfies

ı†An
.ŒYR.M/�/ D �M ;

where ı†An
is the isomorphism A�.XAn

/ ' MWn��.†An
/ in Theorem 2.1.6.
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In other words, the Bergman class�M corresponds to the Chow homology class of the
closure YR.M/ of VYR.M/ in the permutohedral variety XAn

. The variety YR.M/ is called
the wonderful compactification of the hyperplane arrangement complement VYR.M/.

Remark 2.3.2. The wonderful compactification YR.M/ can be described in two equiva-
lent ways [17, §3.2].

(1) The variety YR.M/ is obtained as a series of blow-ups on PV � by the following pro-
cess: First blow up the points ¹PLF ºrk.F /Drk.E/�1, then blow up the strict transforms
of the lines ¹PLF ºrk.F /Drk.E/�2, and continue until having blown up strict transforms
of ¹PLF ºrk.F /D1. We denote by �R.M/ W YR.M/ ! PV � the blow-down map.

(2) For each nonempty flat F of M , the projection away from the linear subvariety
PLF � PV � is a rational map PV �Ü P .V �=LF /. The variety YR.M/ is then
the (closure of the) graph of the rational map

PV �Ü
Y

F 2LM n¹;º

P .V �=LF /:

When UnC1;nC1 is realized as the standard basis of knC1, the associated wonderful
compactification is the toric variety XAn

of the braid fan. It is obtained from Pn by blow-
ing up the coordinate points, then the (strict transforms of) coordinate lines, and so forth.
Let us write �An

WX†An
!Pn for the blow-down map. Then for a realization PV � ,!Pn

of a loopless matroid M , Remark 2.3.2 (1) above expresses the wonderful compactifica-
tion YR.M/ as the strict transform of PV � � Pn under the sequence of blow-ups �An

. In
other words, we have a diagram

YR.M/
� � �M //

�R.M/

��

X†An

�An

��

PV � �
�

// Pn

The boundary of YR.M/ n
VYR.M/ consists of the exceptional divisors EF obtained by

blowing up (strict transforms of) PLF . These divisors have simple-normal-crossings [17],
and consequently the intersection theory of the boundary divisors of YR.M/ is encoded in
the matroid. More precisely, the Chow ring A�.YR.M// of the variety YR.M/ is isomor-
phic to the Chow cohomology ring A�.M/ of the Bergman fan of M [27, Corollary 2].

Remark 2.3.3. We note the following geometric observations about the presentation

A�.YR.M// ' A
�.M/

D
RŒxF j F 2 LM n ¹;; Eº�

hxF xF 0 j F;F 0 incomparablei C h
P
F�a xF �

P
G�b xG j a; b 2 A.M/i

:

(1) The variables xF correspond to the exceptional divisors EF obtained by blowing up
(strict transforms of) PLF .
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(2) The quadric relations xF xF 0 D 0 reflect the fact that two exceptional divisors from
blowing up two nonintersecting linear subspaces do not intersect.

(3) The linear relations defining A�.M/ reflect the fact that for any atom a 2 A.M/, we
have �zE D ˛.M/ D

P
F�a xF D �

�
R.M/

h where h D c1.OPV �.1// is the hyper-
plane class of PV �.

(4) Under A�.YR.M// ' A�.M/ and A�.X†An
/ ' A�.†An

/, the pullback map ��M W
A�.X†An

/! A�.YR.M// along the closed embedding �M W YR.M/ ,! X†An
is the

pullback map of the Chow cohomology rings of †M and †An
induced by the inclu-

sion of fans †M ,! †An
. In particular, the pullback map is surjective.

(5) A divisor class D 2 A1.M/ is combinatorially ample [nef] if and only if there exists
an ample [nef] divisor class L on XAn

such that ��ML D D. Combinatorially ample
[nef] divisors are ample [nef] on the variety YR.M/.

Remark 2.3.4 (Relation to (A)). The geometry and the combinatorics of the permutohe-
dral variety XAn

have been widely studied in various contexts including moduli spaces
[6,43], convex optimization [20,47], Hopf monoids [2,18], and lattice polyhedra [50,51].
In our case, the varietyXAn

plays the role of the ambient varietyX in (A), and the wonder-
ful compactification YR.M/ plays the role of the subvariety Y � X . In §3.2, we introduce
base-point-free divisor classes on XAn

that generate A�.XAn
/.

3. The simplicial presentation and its monomials

In this section, we introduce the paper’s main object of study: a new presentation of the
Chow ring of a matroid which we call the simplicial presentation A�

r
.M/ of A�.M/.

After a combinatorial preparation in §3.1, we introduce the simplicial presentation in
§3.2 and show that multiplying by its generators corresponds to a matroid operation called
principal truncations. In §3.3, we extend this correspondence to establish a combinatorial
interpretation of a monomial basis of the Chow ring of a matroid.

3.1. Matroid quotients, principal truncations, and matroid intersections

We first review the relevant combinatorial notions. We point to [48, §7] and [33, §2.3] for
further details.

Let M and M 0 be matroids on a common ground set E D ¹0; 1; : : : ; nº.

Definition 3.1.1. The matroid M 0 is a .matroid/ quotient of M , written f W M 0� M ,
if every flat of M 0 is also a flat of M . In particular, if M and M 0 are loopless, then
f WM 0�M if and only if †M 0 � †M .

Example 3.1.2. Any matroid on the ground set E is a quotient of the Boolean matroid
UjE j;E . Any Bergman fan of a loopless matroid is a subfan of the braid fan.

Example 3.1.3 (Realizable matroid quotients). Matroid quotients model linear surjec-
tions (dually, linear injections) in the following way. Let M and M 0 have realizations by
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k
E � V and kE � V 0 (respectively). If there exists a commuting diagram of linear

maps

k
E V

k
E V 0

or dually

Pn
k

PV �

Pn
k

PV 0�

then M 0 is a matroid quotient of M . Matroid quotients M 0�M arising in this way are
called realizable. We caution that a matroid quotient M 0� M with both M 0 and M
realizable over the same field need not be realizable (for an example, see [9, §1.7.5]).

For a matroid quotient f W M 0� M , the f -nullity of a subset A � E is defined to
be

nf .A/ WD rkM .A/ � rkM 0.A/:

We say that M 0 is an elementary .matroid/ quotient of M if nf .E/ D 1, or equivalently
rk.M 0/ D rk.M/ � 1. An elementary quotient of M corresponds to a modular cut K

of M , which is a nonempty collection K � LM of flats satisfying

(1) if F1 2K and F1 � F2, then F2 2K ,

(2) if F1; F2 2 K and rkM .F1/ C rkM .F2/ D rkM .F1 [ F2/ C rkM .F1 \ F2/, then
F1 \ F2 2K .

A modular cut K of M defines an elementary quotient M 0�M by

LM 0 WD ¹F 2 LM j F is not covered by an element of Kº [K;

where F is covered byG if F �G and rk.F /D rk.G/� 1. Conversely, given an elemen-
tary quotient f WM 0�M , one recovers the modular cut K ofM defining the elementary
quotient by

K D ¹F 2 LM 0 j nf .F / D 1º:

We write M 0
K
�M to denote an elementary quotient of M given by a modular cut K .

Example 3.1.4. LetM have a realization kE� V . For K a modular cut ofM , let vK be
a nonzero vector contained in

T
F 2K span

k
.F / and not contained in any span of a flat that

is not in K .7 Dually, with the notation as in §2.3, we have a general hyperplane HK D

¹f 2 V � j f .vK/ D 0º in V � containing
S
F 2K LF . Let us consider the commuting

diagram

k
E V

k
E V=span

k
.vK/

or dually

PE
k

PV �

PE
k

PHK

7For such vK to exist, the field k must be large enough, and the elementary matroid quotient
defined by the modular cut K must be realizable.
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The map k
E � V=span

k
.vK/ is a realization of the matroid M 0 of the elementary

quotient M 0
K
� M defined by K . Dually, with the notation as in §2.3, the associated

hyperplane arrangement AR.M 0/ is the intersection of PHK with the coordinate hyper-
planes in PE

k
. Equivalently, the hyperplane arrangement AR.M 0/ is the intersection of

PHK with the hyperplanes in the hyperplane arrangement AR.M/ under the inclusion
PHK � PV �.

Of particular interest in our case is when K is the interval ŒF; E� � LM , since an
interval in LM is always a modular cut. We call the resulting elementary quotient, denoted
TF .M/, the principal truncation ofM associated to the flat F . An explicit description of
principal truncations follows.

Proposition 3.1.5 ([48, Exercise 7.2.4.]). The principal truncation TF .M/ of a matroid
M associated to a flat F 2 LM of rank at least 1 has bases

B.TF .M// D ¹B n f j B 2 B.M/ and f 2 B \ F ¤ ;º;

and the flats of TF .M/ partition into two sets, LTF .M/ D K t L, according to their
f -nullities by

K D ¹G 2 LTF .M/ j nf .G/ D 1º D ¹G 2 LM j F � Gº;

L D ¹G 2 LTF .M/ j nf .G/ D 0º

D ¹G 2 LM j G not covered by an element in ŒF;E�º:

Remark 3.1.6. In Example 3.1.4, if K D ŒF; E� for some flat F , then we can set vK D

vF , a general vector in span
k
.F /, and dually, we can setHK DHF , a general hyperplane

in V � containing LF .

We end our combinatorial preparation by connecting matroid quotients to Minkowski
weights on braid fans via the notion of matroid intersections. Recall that a spanning set
of a matroid is a subset that contains a basis of the matroid.

Definition 3.1.7. The matroid intersection8 of two matroids M and N on a common
ground set E is a new matroidM ^N on E whose family of spanning sets is �.M ^N/

D ¹S \ S 0 j S 2 �.M/; S 0 2 �.N /º.

The matroid M ^ N is a matroid quotient of both M and N . Matroid intersection
behaves well in relation to Minkowski weights in the following way. Recall that the
isomorphism A�.†An

/ ' MWn��.†An
/ of Theorem 2.1.6 makes MWn��.†An

/ into a
graded ring, with multiplication called the stable intersection \st. The following propo-
sition states that stable intersections of Bergman classes are Bergman classes of matroid
intersections.

8Matroid intersection, as defined here and in [12, 56], is related to but different from the same
terminology used in [20,41], where one considers pairwise intersections of independent sets of two
matroids.
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Proposition 3.1.8 ([55, Proposition 4.4], [33, Remark 2.31]). Let M and N be two
matroids on a common ground set E, and let �M and �N be their Bergman classes,
which are Minkowski weights on †An

. Then

�M \st �N D

´
�M^N if M ^N is loopless;

0 otherwise.

3.2. The variables of the simplicial presentation

We now define a new presentation A�
r
.M/ of the Chow ring of a matroid M , and dis-

cuss its first properties. The key result here is that the variables of A�
r
.M/ correspond to

principal truncations of M .
We prepare by noting a distinguished set of nef divisor classes on†An

and their poly-
topes, considered in [50]. For a nonempty subset S of E, let

rS WD Conv.�ei j i 2 S/ � RE

denote the negative standard simplex of S . As the edges of rS are parallel translates of
ei � ej for i ¤ j 2 S , Proposition 2.2.6 (in the form of Remark 2.2.7) implies that rS is
a polytope with the corresponding nef divisor class

hS WD �
X
S�T

zT 2 A
1
F Y .†An

/:

These divisors were considered in [50]9 and implicitly in [33]. We now consider the
presentation of A�.M/ given by pullbacks of these nef divisor classes corresponding to
(negative) standard simplices. For M a loopless matroid on E, and ; ¤ S � E, denote
hS .M/ WD ��MhS . If F D clM .S/ is the smallest flat containing S , note that

hS .M/ WD ��MhS D �
X
S�T

zT .M/ D �
X

F�G2LM

zG.M/ D ��MhF ; (1)

as zT .M/ D ��M zT D 0 for all T � E not a flat of M . By construction, the elements
hF .M/ 2 A1.M/ are (combinatorially) nef divisor classes on M . We will simply write
hF for hF .M/ when there is no confusion.

Definition 3.2.1. For M a loopless matroid on E, the simplicial presentation A�
r
.M/ of

the Chow ring of M is the presentation of A�.M/ whose generators are ¹hF ºF 2LM n¹;º

where
hF WD �

X
F�G

zG 2 A
�
FY .M/:

We call ¹hF ºF 2LM n¹;º
the simplicial generators.

9In [50] the author uses yS to denote the nef divisor of the standard simplex of S instead of the
negative standard simplex. This difference is due to using inner normal fans instead of outer normal
fans of polytopes.
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The variable h here stands for “hyperplane”; for the geometric origin of the sim-
plicial presentation see Remarks 3.2.6 and 3.2.7. The linear change of variables from
¹zF ºF 2LM n¹;º

to ¹hF ºF 2LM n¹;º
is evidently invertible, given by an upper triangular

matrix. Explicitly, by Möbius inversion we have

�zF D
X
F�G

�.F;G/hG

where � is the Möbius function on the lattice LM . Thus, the explicit presentation of
A�
r
.M/ is

A�r.M/ WD RŒhF j F 2 LM n ¹;º�=.I C J /

where

I D hha j a 2 A.M/i;

J D
D�X
F�G

�.F;G/hG

�� X
F 0�G0

�.F 0; G0/hG0
� ˇ̌̌

F;F 0 incomparable
E
:

Denote by L �2M the set of flats of M of rank at least 2. Noting that ha D 0 2 A�r.M/ for
any atom a 2A.M/, we define ¹hF j F 2L �2M º to be the nontrivial simplicial generators
of the Chow ring of M . They form a basis of A1

r
.M/.

Remark 3.2.2. When the matroid M is the cyclic matroid of the complete graph Kn�1
on n � 1 vertices, the Chow ring of M is the cohomology ring of the Deligne–Knudson–
Mumford space xM0;n of rational curves with n marked points [17, §4.3], [44, Theo-
rem 6.4.12]. In this case, by using the minimal building set instead of the maximal build-
ing set, the simplicial presentation recovers the Etingof–Henriques–Kamnitzer–Rains–
Singh presentation of the cohomology ring of xM0;n [24, 54]. In this presentation, the
author of [19] showed that the cohomology ring of xM0;n is Koszul because it has a
quadratic Gröbner basis. In the classical presentation, the Chow ring of any matroid with
rank > 3 has no quadratic Gröbner basis.

The following theorem, which relates the variables of the simplicial presentation
to principal truncations, is the key property of the simplicial presentation that we use
throughout this paper. Let us first fix a notation:

Notation. For a nonempty subset S � E, we denote by HS the matroid with bases

B.HS / WD ¹E n i j i 2 Sº;

or equivalently HS D UjEnS j;EnS ˚ UjS j�1;S .

Theorem 3.2.3. LetM be a loopless matroid onE, and S a nonempty subset ofE. Write
F for the smallest flat of M containing S . Then HS ^M D TF .M/, and the nef divisor
class hS 2 A1r.†An

/ satisfies

hS \�M D

´
�TF .M/ if rkM .S/ > 1;

0 otherwise:
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The theorem will follow mostly from the following lemma.

Lemma 3.2.4. Let M and HS be as in the statement of Theorem 3.2.3, and let F be the
smallest flat of M containing S . Then

HS ^M D TF .M/; (2)

and consequently

�HF
\st �M D

´
�TF .M/ if rkM .F / > 1;

0 otherwise.
(3)

Proof. We first show that (3) follows from (2). A matroid is loopless if and only if the
empty set ; is a flat. By Proposition 3.1.5, the matroid TF .M/ is thus loopless if and only
if ; is not covered by an element in the interval ŒF; E�. As claimed, this happens if and
only if rkM .F / > 1.

We now prove (2). By definition of HS ^ M , the minimal elements in the set
�.HS ^M/ of spanning sets are B n i where B 2 B.M/ and i 2 B \ S ¤ ;. Since
minimal spanning sets are bases, we have

B.HS ^M/ D ¹B n i j B 2 B.M/; i 2 B \ S ¤ ;º:

When S D F , this is the description of the bases of TF .M/ in Proposition 3.1.5, so it
remains to showHS ^M DHF ^M . Evidently, we have B.HS ^M/ �B.HF ^M/

since S � F . For the other inclusion, suppose we have a basis B n f of HF ^M where
B 2 B.M/ and f 2 B \ F ¤ ;. We show that there is an element s 2 S such that B 0 D
.B n f /[ s is also a basis ofM , which implies thatB n f DB 0 n s is a basis ofHS ^M .
First, because F is the closure of S , we have rkM ..B n f / [ S/ D rkM ..B n f / [ F /.
We also have rkM ..B n f / [ F / D rkM .B [ F / D rkM .E/ since B is a basis. Since
B n f is independent in M , we thus conclude from rkM ..B n f / [ S/ D rkM .E/ that
B n f can be extended to a basis by an element in S . That is, there exists an element
s 2 S such that .B n f / [ s is a basis of M , as desired.

Proof of Theorem 3.2.3. Let ı†An
W A�.†An

/
�
!MWn��.†An

/ be the isomorphism map
in Theorem 2.1.6. We claim that ı†An

.hS / D �HS
, which is proved in Lemma 3.2.5

below. Our desired statement then follows immediately from Lemma 3.2.4, because
hS \�M D .ı†An

.hS // \st �M by the definition of stable intersection \st.

Lemma 3.2.5. Let ı†An
W A�.†An

/
�
! MWn��.†An

/ be the isomorphism map in Theo-
rem 2.1.6. Then

ı†An
.hS / D �HS

:

Proof. We claim that the support j�HS
j of �HS

is equal to the support of the .n � 1/-
skeleton of the outer normal fan of the negative standard simplex rS . If this is the case,
then Proposition 2.1.7 implies ı†An

.hS / D �HS
because all the edges of the negative

standard simplex rS have lattice length 1.
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Now, to prove the claim, note first that the translate rS C eE of rS is
Conv.eEni j i 2 S/ � RE ; which is equal to the base polytope Q.HS / of HS . Since
all faces of Q.HS /, except for the vertices, are base polytopes of loopless matroids, by
Lemma 2.2.3 the support of j�HS

j equals the support of the .n� 1/-dimensional skeleton
of the outer normal fan of rS .

Theorem 3.2.3 encodes the combinatorics of the following geometric motivation for
the simplicial presentation.

Remark 3.2.6. We recall the following standard fact in algebraic geometry. Let L � V �

be an inclusion of vector spaces, so that PL is a linear subvariety of PV �. Let X D
BlPL PV � be the blow-up of PV � along PL, which is also the graph of the rational map
PV �Ü P .V �=L/, and let � WX ! PV � be the blow-down map. Let hD c1.OPV �.1//

denote the hyperplane class, and E the exceptional divisor of the blow-up. Then the map
BlPL PV � ! P .V �=L/ corresponds to the linear series jOX .��h � E/j, so the sections
of the line bundle OX .��h � E/ correspond to the hyperplanes in PV � that contain PL.

Now, suppose M has a realization R.M/ over an algebraically closed field k as
PV � ,! Pn, and let notations be as in §2.3. The geometry of A�.YR.M// ' A�.M/

in Remark 2.3.3 implies

hF D
X
G�F

�zG D �zE �
X
G�F

xG D �
�
R.M/h �

X
G�F

EG ;

and hence hF represents the divisor class of the strict transform of a general hyperplane
in PV � containing the linear subvariety PLF . Thus multiplying by hF corresponds to
intersecting by a general hyperplane in PV � containing PLF , which corresponds to the
principal truncation TF .M/ by Example 3.1.4 (in the form of Remark 3.1.6). More pre-
cisely, we have

hF � ŒYR.M/� D ŒYR.TF .M//� 2 A
�.X†An

/:

Theorem 3.2.3 is the combinatorial mirror of this geometric observation.

Remark 3.2.7 (Relation to (A)). Suppose M has a realization R.M/ by PV � ,! Pn.
By the second description in Remark 2.3.2 (2), the wonderful compactification YR.M/ is
embedded in the product

Q
F 2LM n¹;º

P .V �=LF / of projective spaces. We described hF
as a divisor class represented by the strict transform of a general hyperplane in PV �

containing PLF in Remark 3.2.6. Alternatively, the variable hF thus represents the
base-point-free divisor obtained as the hyperplane class pullback of the map YR.M/ !

P .V �=LF /. In other words, the divisor classes hS 2A�r.M/ play the role of “base-point-
free divisor classes,” and we have interpreted the hyperplane class pullbacks of the maps
they define as principal truncations.

Remark 3.2.8. In the classical presentationA�.†An
/, the cap product xS \�M is almost

never a Bergman class of a matroid—it is a Minkowski weight which may have negative
weights on some cones. This reflects the geometry that the divisor xS is effective but
usually not nef.
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3.3. A monomial basis of the simplicial presentation and relative nested quotients

We introduce the notion of relative nested quotients, which are relative generalizations
of (loopless) Schubert matroids in matroid theory, and we show that they are in bijection
with elements of a monomial basis of A�

r
.M/.

We start by producing a monomial basis ofA�
r
.M/ via the Gröbner basis computation

in [27]. Pick a total order > on elements of LM such that F > G if rkM .F / � rkM .G/,
and take the induced lex monomial order on A�FY .M/. A Gröbner basis for A�FY .M/

was given as follows.

Theorem 3.3.1 ([27, Theorem 1]). The following form a Gröbner basis for the ideal
of A�FY .M/:8̂̂<̂

:̂
zF zG ; F and G are incomparable nonempty flats;

zF .
P
H�G zH /

rkG�rkF ; F ¨ G nonempty flats;

.
P
H�G zH /

rkG ; G a nonempty flat:

In [27], the authors associate a ring to an atomic lattice with a chosen “building set,”
and [27, Theorem 1] provides a Gröbner basis for the defining ideal of these more general
rings. In our setting, the atomic lattice is the lattice of flats of a matroid, and the building
set is the collection of all nonempty flats. We now note that the Gröbner basis in [27]
carries over to the simplicial presentation as follows. Again, pick a total ordering> of LM

such that if rkM .F / � rkM .G/, then F > G.

Proposition 3.3.2. The following is a Gröbner basis for the defining ideal of A�
r
.M/

with respect to the lex monomial ordering induced by >:8̂̂<̂
:̂
.
P
F�G �.F;G/hG/.

P
F 0�G0 �.F

0; G0/hG0/; F; F 0 incomparable;

.
P
F�G �.F;G/hG/ � h

rkF 0�rkF
F 0 ; F ¨ F 0;

hrkF
F ; F 2 LM n ¹;º:

Proof. Let SFY D RŒzF j F 2LM n ¹;º� and Sr D RŒhF j F 2LM n ¹;º�, and define
' W SFY ! Sr to be the substitution zF 7! �

P
F�G �.F;G/hG .

Observe that ' is lower triangular with �1’s on the diagonal when the variables zF
and hF are written in descending order with respect to >. Hence, if f 2 S with initial
monomial ze1

F1
� � � z

ek

Fk
, then the initial monomial of '.f / is he1

F1
� � � h

ek

Fk
. The proposition

now follows from the fact that the elements of the Gröbner basis above are the images
under ' of the elements of the Gröbner basis given in Theorem 3.3.1.

As a result, we obtain a monomial basis of A�
r
.M/.

Corollary 3.3.3. For c 2 Z�0, a monomial R-basis for the degree c part Ac
r
.M/ of the

Chow ring A�
r
.M/ of a matroid M is°

h
a1

F1
� � �h

ak

Fk

ˇ̌̌ X
ai D c; ; D F0 ¨ F1 ¨ � � � ¨ Fk ; 1 � ai < rkM .Fi / � rkM .Fi�1/

±
:

We call this basis of A�
r
.M/ the nested basis of the Chow ring of M .
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Proof. If B is a Gröbner basis for an ideal I of a polynomial ring R over a field k, then
the monomials not divisible by the initial term of any element of B are a k-basis for R=I
[49, Theorem 39.6]. Applying this fact to the Gröbner basis of Proposition 3.3.2 yields
the result.

While the nested basis of A�
r
.M/ looks identical to the one given for A�FY .M/ in

[27, Corollary 1], we show here that with the simplicial presentation the monomials in
the basis now allow for a combinatorial interpretation as a distinguished set of matroid
quotients of M .

Let f WM 0�M be a matroid quotient on a ground set E.

Definition 3.3.4. An f -cyclic flat of f is a flat F 2 LM 0 such that F is minimal (with
respect to inclusion) among the flats F 0 2 LM 0 such that nf .F 0/ D nf .F /. A matroid
M 0 is a relative nested quotient of M if the f -cyclic flats of M 0 form a chain.

Relative nested quotients are relative generalizations of (loopless) Schubert matroids:

Example 3.3.5. If M D UjE j;E then any matroid M 0 is a quotient f WM 0�M . In this
case, we have nf .A/ D jAj � rkM 0.A/ for a subset A � E. So, if further a subset B ¨ A
satisfies nf .B/D nf .A/, then jAj � jBj D rkM 0.A/� rkM 0.B/, which occurs if and only
if A n B is a set of coloops in the restriction M 0jA. In other words, the f -cyclic flats of
M 0 are precisely the cyclic flats of M 0, which are flats F of M 0 such that M 0jF has
no coloops. Moreover, the relative nested quotients of UjE j;E are called nested matroids,
which in the literature also go by the name of (loopless) Schubert matroids because they
are realized by general points in the appropriate Schubert subvarieties of Grassmannians.
See [33, §2.2] for more on cyclic flats and nested matroids.

The data of cyclic flats of a matroid and their ranks determine the matroid [13, Propo-
sition 2.1]. We generalize the statement to f -cyclic flats of a matroid quotient. We first
need the following fact about obtaining any matroid quotient as a sequence of elementary
quotients.

Lemma 3.3.6. (1) ([36], [12, Exercise 7.20]) Any matroid quotient f W M 0� M can
be obtained as a sequence of elementary quotients in a canonical way called the
Higgs factorization of f . The Higgs factorization of a quotient f W M 0� M with
nf .E/ D c is a sequence of elementary quotients

M 0 DM0

K1�M1

K2� � � �
Kc�Mc DM

where the bases of Mi for i D 1; : : : ; c are defined as

B.Mi / D ¹A � E j A spanning in M 0, independent in M , and jAj D rk.M 0/C iº:

(2) .[39, Theorem 3.4]/ The modular cuts Ki of the Higgs factorization are

Ki D ¹G 2 LMi
j nf .G/ � iº:
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Proposition 3.3.7. The data of the f -cyclic flats, their f -nullities, and the matroid M
determine the quotient f WM 0�M . More precisely, writing nf .E/D c, the data recov-

ers the Higgs factorization M 0 DM0

K1�M1

K2� � � �
Kc�Mc DM of f by specifying the

modular cuts Ki to be

Ki D ¹G 2 LMi
j G � F for some F 2 cyc.f / with nf .F / � iº

for each i D 1; : : : ; c.

Proof. For each i D 1; : : : ; c, the modular cut Ki is ¹G 2 LMi
j nf .G/ � iº by

Lemma 3.3.6 (2). This can equivalently be written as ¹G 2 LMi
j G � F for some

F 2 cyc.f / with nf .F / � iº by the definition of f -cyclic flats.

We now show that the nested basis of A�
r
.M/ given in Corollary 3.3.3 is in bijection

with the set of relative nested quotients of M .

Theorem 3.3.8. Let M be a loopless matroid of rank r D d C 1. For each 0 � c � d ,
the cap product map

Acr.M/! MWd�c.†M /; � 7! � \�M ;

induces a bijection between the monomial basis for Ac
r
.M/ given in Corollary 3.3.3 and

the set of Bergman classes �M 0 of loopless relative nested quotients M 0 � M with
rk.M 0/ D rk.M/ � c.

Let us first prove a lemma. For a flat F of a matroid M , and an integer a � 0, denote
by TF a.M/ the matroid obtained fromM by performing a many times the principal trun-
cation associated to F . Such iteration of TF is well-defined because principal truncation
associated to F preserves F as a flat.

Lemma 3.3.9. Let f WM 0�M be a matroid quotient formed by two loopless matroids,
and let F be a nonempty flat of M 0. Then the following hold:

(1) SupposeG is another flat ofM 0 such thatG ¨ F , and a < rkM 0.F /� rkM 0.G/. Then
the subsetG is a flat of TF a.M 0/. In particular, settingG D ;, the matroid TF a.M 0/
is loopless if a < rkM 0.F /.

(2) Suppose F � S for every nonempty f -cyclic flat S of M 0. Denote by g the matroid
quotient g W TF .M 0/� M . Then the set cyc.g/ of g-cyclic flats equals ¹F º [
cyc.f /.

Proof. For statement (1), we first recall the description of the flats in a principal truncation
(Proposition 3.1.5): A flatG0 ofM 0 satisfyingG0 ¨ F remains a flat in TF .M 0/ if F does
not cover G0 in M 0. Moreover, the rank of F decreases by 1 each time one performs the
principal truncation TF . Hence, the condition a < rkM 0.F / � rkM 0.G/ ensures that G is
not covered by F in the matroid TF a�1.M 0/, and so G is a flat of TF a.M 0/.

For statement (2), again by Proposition 3.1.5, the set ŒF; E� D ¹F 0 j F 0 2 LM 0 and
F 0 � F º is exactly the set of flats of TF .M 0/ satisfying rkM 0.F / � rkTF .M 0/.F

0/ D 1,
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and the other flats of TF .M 0/ do not change in rank when considered as flats ofM 0. Thus,
since F is contained in every nonempty f -cyclic flat of M 0, the subset F is a g-cyclic
flat with ng.F /D nf .F /C 1, and if S is a nonempty f -cyclic flat with nf .S/D k, then
S is a g-cyclic flat with ng.S/ D k C 1.

Proof of Theorem 3.3.8. Let ha1

F1
� � � h

ak

Fk
be an element of the monomial basis given

in Corollary 3.3.3. By repeated application of Theorem 3.2.3 combined with Lem-
ma 3.3.9 (1), we have

h
a1

F1
� � � h

ak

Fk
\�M D �M 0

where M 0 is the loopless matroid obtained from M by a sequence of principal trun-
cations, first by Fk repeated ak times, then by Fk�1 repeated ak�1 times, and so
forth. Moreover, Lemma 3.3.9 (2) implies that f W M 0� M is a matroid quotient with
cyc.f / D ¹;; F1; : : : ; Fkº and nf .Fj / D

Pj
iD1 ai . We have thus shown that an element

of the nested basis defines a loopless relative nested quotient by the cap product.
Conversely, let f W M 0� M be a loopless relative nested quotient with cyc.f / D

¹; ¨ F1 ¨ � � � ¨ Fkº. Define integers a1; : : : ; ak by nf .Fj / D
Pj
iD1 ai for all j D

1; : : : ; k. Proposition 3.3.7 implies that the f -cyclic flats and their f -nullities of a relative
nested quotient f WM 0�M recover the Higgs factorization

M 0 DM0

K1�M1

K2� � � �
Kc�Mc DM

of f by specifying the modular cuts to be

Ki D ¹G 2 LMi
j G � F for some F 2 cyc.f / with nf .F / � iº:

Thus, since by assumption the f -cyclic flats form a chain, the descriptions of the modular
cuts Ki imply that the matroid M 0 is obtained by a sequence of principal truncations,
first by Fk repeated ak times, then by Fk�1 repeated ak�1 times, and so forth, where
aj D nf .Fj / � nf .Fj�1/ for j > 1, and a1 D nf .F1/.

Moreover, the bijection given in the previous theorem respects linear independence.

Proposition 3.3.10. The elements of

¹�M 0 jM
0 is a loopless relative nested quotient of M º

are linearly independent in MW�.†An
/.

Proof. The proof is a modification of the one given for nested matroids in [33, Proposi-
tion 3.2]. Fix a matroid M , and let

M D ¹�M 0 jM
0 is a rank r loopless relative nested quotient of M º:

Write ; D F0 ¨ F1 ¨ � � � ¨ Fk for the cyclic flats of the quotient M 0�M , and define
 WM ! Nr by

.�M 0/i WD

´
rkM 0.Fi / � rkM 0.Fi�1/ if 1 � i � k;

0 otherwise.
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We show that there are no relations among the elements of M using a lexicographic
induction. The following claim will be used repeatedly.

Claim. Let �M 0 2M , let F D ¹; D F0 ¨ F1 ¨ � � � ¨ Fkº be the cyclic flats of f W
M 0�M , and let F 0 be a maximal chain of flats of M 0 containing F . If �N 0 2M for
a quotient g W N 0� M has the property that F 0 is also a maximal chain of flats of N 0,
then either M 0 D N 0 or .�N 0/ <lex .�M 0/.

Proof of claim. If M 0 ¤ N 0, then there exists a minimal 0 < j � k such that Fj is not
cyclic in N 0. Hence, there is a cyclic flat G of N 0 with Fj�1 � G ¨ Fj and ng.G/ D
ng.Fj /. Moreover, G ¤ Fj�1 because

ng.G/ D ng.Fj / D nf .Fj / > nf .Fj�1/ D ng.Fj�1/:

Consequently, .�N 0/j < .�M 0/j , so .�N 0/ <lex .�M 0/ by our choice of j . ˘

Now we prove the proposition. Suppose that
P
�M 02M

cM 0�M 0 D 0. We show that
cM 0 D 0 for all M 0.

If �M 0 2M with .�M 0/ lex-minimal in .M /, then the claim implies that there
is a cone of †An

on which �M 0 takes value 1 and all other elements of M take value 0;
therefore, cM 0 D 0. Otherwise, .�M 0/ is not lex-minimal. Suppose by induction that
cN 0 D 0 for all�N 0 2M with .�N 0/ <lex .�M 0/. By the claim, there is a cone of†An

on which �M 0 takes value 1 and all elements �N 00 of M such that .�N 00/ 6<lex .�M 0/

take value 0; therefore, cM 0 D 0, as desired.

4. The Poincaré duality property

As a first application of the simplicial presentation, we establish the Poincaré duality
property for Chow rings of matroids. While this was established in [1, Theorem 6.19] by
a double induction, our proof is not inductive.

We review some facts about Poincaré duality algebras in §4.1, but we will only need
a small portion of these facts in this section—the rest will be needed later in Section 6.
We prove the Poincaré duality property of Chow rings of matroids and discuss some
consequences in §4.2.

4.1. Poincaré duality algebras

We review some general algebraic notions about Poincaré duality algebras. Let k be a
field.

Definition 4.1.1. A graded finite (commutative) k-algebra A� D
Ld
iD0 A

i is a .graded/
Poincaré duality algebra of dimension d if (i)A0Dk, and (ii) there exists an isomorphismR
W Ad

�
! k, called the degree map of A�, such that the map

Ak ! Hom.Ad�k ;k/; � 7!

�
� 7!

Z
� � �

�
;
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is an isomorphism for all 0 � k � d , or equivalently the pairing

Ai � Ad�i ! Ad ' k; .�; �/ 7!

Z
� � �;

is nondegenerate for all 0 � i � d .

We write .A�;
R
/ for a Poincaré duality algebra with a chosen degree map

R
. In Sec-

tion 6, we will often drop the degree symbol
R

when the context is clear. In particular,
for � 2 A1 we will often write �d to mean

R
�d . Two useful facts about Poincaré duality

algebras follow. Both are straightforward to check.

Proposition 4.1.2. Let .A�;
R
A
/ and .B�;

R
B
/ be Poincaré duality algebras of dimension

dA and dB over a common field k.

(1) The tensor product .A˝ B/� D
L
�.
L
iCjD� A

i ˝ Bj / is also a Poincaré duality
algebra of dimension dA C dB with degree mapZ

A˝B

W .A˝ B/dACdB D AdA ˝ BdB ! k; a˝ b 7!

Z
A

a �

Z
B

b:

(2) A surjection A�� B� of Poincaré duality algebras of the same dimension is an
isomorphism.

We will use the following construction to establish that Chow rings of matroids are
Poincaré duality algebras.

Proposition 4.1.3. If .A�;
R
/ is a Poincaré duality algebra of dimension d , and f 2 A�

a homogeneous element of degree k, then the k-algebra

A�=ann.f /; where ann.f / D ¹a 2 A� j af D 0º;

is a Poincaré duality algebra of dimension d � k with the induced degree map
R
f

defined
by
R
f
.aC ann.f // WD

R
af for a 2 Ad�k .

Proof. This is a straightforward check; see [46, Corollary I.2.3] for example.

It will sometimes be convenient to identify elements of the ring A�=ann.f / with ele-
ments of the principal ideal hf i � A�, with multiplication given by af � bf D .ab/ � f .
The construction in Proposition 4.1.3 will arise in §4.2 with f being the Bergman class
of a matroid.

The rest of this subsection will not be needed until Section 6.
We describe another way the construction in Proposition 4.1.3 arises in the context of

Chow cohomology rings of fans. Let† be a d -dimensional smooth rational fan inNR for
a latticeN , and let � 2†.1/ be ray. Denote by xu the image of u 2NR under the projection
NR � NR=span.�/. The star of † at � is a .d � 1/-dimensional fan in NR=span.�/
defined by

star.�;†/ WD ¹x� j � 2 † contains �º:
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By definition of the Chow cohomology ring, one can check that there is a surjection
A�.†/� A�.star.�;†// determined by

x�0 7!

´
x�0 if �0 and � form a cone in †;

0 otherwise;

for each �0 ¤ �. Since

hx�0 j �
0 and � do not form a cone in †i � annA�.†/.x�/;

we get an induced map

�� W A
�.star.�;†//� A�.†/=ann.x�/:

In Section 6, we will use the following criterion for �� to be an isomorphism.

Proposition 4.1.4 ([1, Proposition 7.13]). Suppose that the Chow cohomology ringA�.†/
is a Poincaré duality algebra. Then the map �� W A�.star.�;†//� A�.†/=ann.x�/ is an
isomorphism if and only if A�.star.�;†// is a Poincaré duality algebra.

Proof. The algebra A�.†/=ann.x�/ is a Poincaré duality algebra by Proposition 4.1.3.
The statement thus follows from Proposition 4.1.2 (2).

4.2. Poincaré duality for matroids

We show that the Chow ring A�.M/ of a loopless matroid M is a Poincaré duality alge-
bra with

R
M

as the degree map. While this was proved in [1, Theorem 6.19], we give a
noninductive proof by using the simplicial presentation.

Our main theorem of the section is the following.

Theorem 4.2.1. Let M be a loopless matroid of rank r D d C 1 on a ground set E D
¹0;1; : : : ;nº, and consider the Bergman class�M 2MWd .†An

/ as an element ofA�.†An
/

via the isomorphism A�.†An
/ ' MWn��.†An

/ in Theorem 2.1.6. Then

A�.M/ ' A�.†An
/=ann.�M /:

SinceA�.†An
/ is a Poincaré duality algebra (Theorem 2.1.6), Proposition 4.1.3 imme-

diately implies the following corollary.

Corollary 4.2.2. The Chow ring A�.M/ is a graded Poincaré duality algebra of dimen-
sion rk.M/ � 1 with

R
M

as the degree map.

Remark 4.2.3. Because †An
is a smooth projective fan, there exists a purely combina-

torial proof of the Poincaré duality for its Chow cohomology ring via the line shelling
of the fan [28, 45]. While Bergman fans of matroids are also shellable [8], they are not
complete, and the arguments of [28,45] do not readily modify to give Poincaré duality for
Chow rings of matroids.
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Rephrasing Corollary 4.2.2 yields the following generalization of [33, Corollary 3.13].

Corollary 4.2.4. For each 0 � c � d , the cap product map

Ac.M/! MWd�c.†M /; � 7! � \�M ;

is an isomorphism of R-vector spaces. Thus, the Bergman classes of relative nested quo-
tients form a basis of MW�.†M /.

Proof. The first statement follows from Corollary 4.2.2 and from Hom.Ac.M/;R/ '
MWd�c.†M / (Lemma 2.1.5). Theorem 3.3.8 then implies the second statement.

Remark 4.2.5 (cf. (A)). Let YR.M/ be the wonderful compactification of a realization
of M . Since the pullback map A�.X†An

/ ! A�.YR.M// along the closed embedding
YR.M/ ,! XAn

is surjective (Remark 2.3.3), we have

A�.M/ ' A�.YR.M// ' A
�.X†An

/=ann.ŒYR.M/�/:

Proof of Theorem 4.2.1. Recall that the isomorphism A�.†An
/ ' MWn��.†An

/ makes
the set of Minkowski weights into a graded ring, denoted MW�.†An

/. Let ��M be the
pullback map of the inclusion �M W†M ,!†An

. A formal property of cap products, given
below in Lemma 4.2.6, gives us a commuting diagram of surjections

A�.†An
/ MW�.†An

/

A�.M/ MW�.†An
/=ann.�M /

�

��
M

� � \�†An

��M � � \�M

Here, we have identified the elements of MW�.†An
/=ann.�M / with the elements of the

principal ideal h�M i � MW�.†An
/, which is generated by Minkowski weights of the

form � \�M where � 2 A�.M/. Proposition 3.3.10 then states that the bottom horizontal
map preserves linear independence, and hence is injective as well.

Lemma 4.2.6. Let �� be the pullback map of an inclusion of fans � W †0 ,! † where † is
complete, and let ı† W A�.†/

�
!MW�.†/ be the isomorphism in Theorem 2.1.6. Suppose

� is a Minkowski weight on † whose support j�j is contained the support j†0j. Then we
have a diagram

A�.†/ MW�.†/

A�.†0/ MW�.†/=ann.�/

�

��

� � \�†

��� � \�

Proof. We need to show that the kernel hx� j � 2 †.1/ n†0.1/i � A�.†/ of the pullback
map �� is contained in the kernel of the map A�.†/

�
! MW�.†/� MW�.†/=ann.�/.

Since j�j � j†0j, we may consider � as a Minkowski weight on †0, and thus by functo-
riality of the cap product (Remark 2.1.8), we have x� \� D ��x� \� D 0 \� D 0 for
x� 2 A

�.†/ where � 2 †.1/ n†0.1/.
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5. Log-concavity of the volume polynomial

A presentation of a graded Poincaré duality algebra A� can be encoded via the Macaulay
inverse system into a single polynomial VPA, called the volume polynomial of A� [22,
§21.2]. In geometric contexts, the volume polynomial takes on an additional meaning:

� If A� is the ring of algebraic cycles modulo numerical equivalence on a smooth projec-
tive variety, then VPA measures degrees of ample divisors (see [21]).

� If A� is the Chow cohomology ring of a complete smooth fan †, then VPA measures
the volumes of polytopes whose normal fans coarsen † (see [15, §13]).

In both geometric contexts, the volume polynomial of A� is positive and log-concave on
the ample cone when considered as a function A1 ! R.

In this section, we give a combinatorial formula for the volume polynomial VPrM of
the Chow ring A�

r
.M/ of a loopless matroid M . We show that, as in the geometric cases,

the volume polynomial VPrM when regarded as a function A1
r
.M/! R is both positive

and log-concave on a subcone K r
M of the ample cone KM generated by the nontrivial

simplicial generators. While the results of [1] imply that the volume polynomial of a
matroid has such properties, we give an independent proof by establishing that VPrM is a
Lorentzian polynomial as defined in [10]. In §6, we build upon the results of this section
to conclude that VPrM is both positive and log-concave on the entire ample cone KM .

5.1. Volume polynomials and Lorentzian polynomials

Here we review the notion of volume polynomials and how they generalize to Lorentzian
polynomials.

One can encode a graded Poincaré duality algebra into a single polynomial called the
volume polynomial as follows.

Definition 5.1.1. Let .A�;
R
/ be a graded Poincaré duality algebra of dimension d that is

generated in degree 1, with a chosen presentationA� D kŒx1; : : : ; xs�=I and a degree mapR
WAd ! k. Then its volume polynomial VPA is a multivariate polynomial in kŒt1; : : : ; ts�

defined by

VPA.t1; : : : ; ts/ WD

Z
.t1x1 C � � � C tsxs/

d

where we extend the degree map
R

to AŒt1; : : : ; ts�! kŒt1; : : : ; ts�.

If .A�;
R
/ is a Poincaré duality algebra with a presentation A� D kŒx1; : : : ; xs�=I ,

then the defining ideal I can be recovered from the volume polynomial VPA as follows
[15, Lemma 13.4.7]:

I D
®
f .x1; : : : ; xs/ 2 kŒx1; : : : ; xs�

ˇ̌
f
�
@
@t1
; : : : ; @

@ts

�
� VPA.t1; : : : ; ts/ D 0

¯
:

In [10], the authors define Lorentzian polynomials as a generalization of volume poly-
nomials in algebraic geometry and stable polynomials in optimization. Here we briefly
summarize the relevant results.
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Definition 5.1.2. A homogeneous polynomial f 2 RŒx1; : : : ; xn� of degree d is strictly
Lorentzian if its support consists of all monomials in x of degree d , all of its coefficients
are positive, and any of its .d � 2/nd order partial derivatives @i1 � � � @id�2

f has Hessian
matrix with Lorentzian signature .C;�;�; : : : ;�/. Lorentzian polynomials are polyno-
mials that can be obtained as a limit of strictly Lorentzian polynomials.

To characterize Lorentzian polynomials, we need a combinatorial notion which gen-
eralizes the exchange axiom for matroids: a collection of points J � Zn�0 is M-convex
if for any ˛; ˇ 2 J and i 2 Œn� with ˛i > ˇi there exists j 2 Œn� such that j̨ < ǰ

and ˛ � ei C ej 2 J . When the elements of J all have the same coordinate sum, this is
equivalent to stating that the convex hull of J is a generalized permutohedron [47, Theo-
rem 4.15].

The following characterization can be seen as a linear algebraic abstraction of the
proof of Teissier–Khovanskii inequalities via the Hodge index theorem for algebraic sur-
faces.

Theorem 5.1.3 ([10, Theorem 5.1]). A homogeneous polynomial f 2 RŒx1; : : : ; xn� of
degree d with nonnegative coefficients is Lorentzian if and only if the following two con-
ditions are satisfied:

(1) The support of f is M-convex.

(2) The Hessian matrix of @i1 � � � @id�2
f has at most one positive eigenvalue for any

choice of d � 2 partial derivatives.

The Lorentzian property is preserved under nonnegative linear change of variables:

Proposition 5.1.4 ([10, Theorem 2.10]). If f 2 RŒx1; : : : ; xn� is Lorentzian, then so is
f .Ax/ 2 RŒx1; : : : ; xm� for any n �m matrix A with nonnegative entries.

Applications to log-concavity phenomena in combinatorics arise from the following
properties of Lorentzian polynomials.

Theorem 5.1.5. Let f 2 RŒx1; : : : ; xn� be a homogeneous polynomial with nonnegative
coefficients. The Lorentzian property of f can be characterized via log-concavity proper-
ties as follows.

(1) .[10, Theorem 5.3]/ A homogeneous polynomial f is Lorentzian if and only if f is
strongly log-concave, in the sense that if g is any partial derivative of f of any order,
then either g is identically zero or logg is concave on the positive orthant Rn>0.

(2) .[10, Example 5.2]/ If n D 2, so that f D
Pd
kD0 akx

k
1x

d�k
2 , then f is Lorentzian if

and only if .a0; a1; : : : ; ad / has no internal zeroes and is ultra log-concave, that is,

ak1
ak3
¤ 0 H) ak2

¤ 0 for all 0 � k1 < k2 < k3 � d ,

a2
k�
d
k

�2 � ak�1akC1�
d
k�1

��
d
kC1

� for all 0 < k < d:
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We remark that [strictly] Lorentzian polynomials arise in classical algebraic geometry
whenever one has a set of nef [ample] divisors on a smooth projective variety.

Remark 5.1.6. Let ¹D1; : : : ; Dsº be nef [ample] divisors on a smooth projective k-
variety X of dimension d , and A.X/ the Chow ring. Let

R
X
W Ad .X/! R be the degree

map obtained as the pushforward map along the structure map X ! Speck. Then

volX
� sX
iD1

tiDi

�
WD lim

q!1

dimkH
0.q

P
i tiDi /

qd=dŠ
D

Z
X

�X
i

tiDi

�d
is a [strictly] Lorentzian polynomial ([42, Corollary 1.6.3 (iii)] or [10, Theorem 10.1]).

5.2. The dragon Hall–Rado formula

We prepare our formula for the volume polynomial of A�
r
.M/ by describing the combi-

natorial notions in [50] that we generalize to arbitrary matroids.
We first recall Hall’s marriage theorem and Rado’s generalization; for proofs we point

to [48, §11.2]. Let E D Œn� D ¹0; 1; : : : ; nº. A transversal of a collection ¹A0; : : : ; Amº
(repetitions allowed) of subsets of E is a subset I � E such that there exists a bijection
� W ¹A0; : : : ; Amº ! I satisfying �.Ai / 2 Ai for all 0 � i � m.

Hall’s well-known marriage theorem [32] states that a transversal of ¹A0; : : : ; Anº
exists if and only if j

S
j2J Ai j � jJ j for all J � Œn�. The following theorem of Rado

gives a matroid generalization of the condition given in Hall’s theorem.

Theorem 5.2.1 (Rado’s theorem [52]). LetM be a matroid on E. A family ¹A0; : : : ;Amº
of subsets of E has a transversal I � E that is independent in M if and only if

rkM
�[
j2J

Aj

�
� jJ j; 8J � Œm�:

Hall’s condition can be recovered from Rado’s by settingM DUjE j;E andmD n. See
[48, Theorem 11.2.2] for more information and a proof of Rado’s theorem. The follow-
ing variant of Hall’s marriage theorem was investigated by Postnikov as a combinatorial
interpretation of a formula for volumes of generalized permutohedra [50, §5, §9].

Proposition 5.2.2 (Dragon marriage condition). Let ¹A1; : : : ; Anº be a collection of sub-
sets of E D ¹0; 1; : : : ; nº. There is a transversal I � E n ¹eº of ¹A1; : : : ; Anº for every
e 2 E if and only if ˇ̌̌[

j2J

Aj

ˇ̌̌
� jJ j C 1; 8; ¨ J � ¹1; : : : ; nº:

The dragon marriage theorem above follows easily from Hall’s original marriage the-
orem, and conversely, one can obtain Hall’s marriage theorem from the dragon marriage
theorem as follows: given A0; : : : ; An � E as in Hall’s theorem, set E 0 D E t ¹�º and
A0i WD A0 t ¹�º for each 0 � i � n and apply Postnikov’s theorem to ¹A00; : : : ; A

0
nº.

We now consider a variant of Rado’s theorem in the same spirit.
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Proposition 5.2.3 (Dragon Hall–Rado condition). Let M be a matroid on E, and
let ¹A1; : : : ; Amº be a collection of subsets of E. There is a transversal I � E n ¹eº
of ¹A1; : : : ; Amº for every e 2 E if and only if

rkM
�[
j2J

Aj

�
� jJ j C 1; 8; ¨ J � ¹1; : : : ; mº

and when this condition is satisfied, we say that ¹A1; : : : ; Amº satisfy the dragon Hall–
Rado condition of M , or DHR.M/ for short.

Proof. This follows from Theorem 5.2.1 and the observation that independent transver-
sals I � E n ¹eº of ¹A1; : : : ; Amº are the same as independent transversals of
¹A1 n ¹eº; : : : ; Am n ¹eºº.

We can obtain Rado’s theorem from the dragon Hall–Rado theorem by an argument
analogous to how Hall’s marriage theorem is obtained from the dragon marriage theorem.
In summary, the combinatorics introduced in this subsection thus far can be schematically
laid out as follows with the indicated logical implications:

Hall’s marriage theorem Rado’s theorem

Dragon marriage theorem Dragon Hall–Rado theorem

We are now ready to compute the intersection numbers of the variables hF in the
simplicial presentation of the Chow ring of a matroid M .

Theorem 5.2.4. Let ¹A1; : : : ; Ad º be a collection of subsets of E, and M a loopless
matroid on E of rank d C 1. Let HA1

; : : : ; HAd
be matroids as defined in Proposition

3.2.4. Then

M ^HA1
^ � � � ^HAd

D U1;E ” ¹A1; : : : ; Ad º satisfies DHR.M/:

Thus, Z
M

hA1
.M/ � � � hAd

.M/ D

´
1 if ¹A1; : : : ; Ad º satisfies DHR.M/;

0 otherwise.

Proof. For the first assertion, we begin by making two easy observations:

(1) M ^HS has a loop if and only if rkM .S/ D 1.

(2) ([48, Exercise 7.3.10]) For the elementary quotient f W M � M ^HS , by Propo-
sition 3.1.5 we have ¹T � E j nf .T / D 1º D ¹T � E j clM .T / � Sº: In particular,
the rank of T � E decreases by 1 in the elementary quotient if T � S .

For the) direction, suppose rkM .
S
j2J Aj /� k for a nonempty J D ¹j1; : : : ; jkº �

¹1; : : : ; dº. Then, for zM WD M ^ HAj1
^ � � � ^ HAjk�1

we have rk zM .
S
j2J Aj / �

k � .k � 1/ D 1, so that M ^
V
j2J HAj

already has a loop.
For the ( direction, we induct on d . The base case d D 1 is easily verified. Now,

we claim that if ¹A1; : : : ; Ad º satisfies the dragon Hall–Rado condition for M , then
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so does ¹A1; : : : ; Ad�1º for zM WD M ^ HAd
. For the sake of contradiction, suppose

¹A1; : : : ; Ad�1º fails DHR. zM/, that is, without loss of generality, rk zM .A1 [ � � � [ Ak/
� k for some 1 � k � d � 1. Then we must have had rkM .A1 [ � � � [ Ak/ D k C 1

with clM .A1 [ � � � [ Ak/ � Ad . But then rkM .A1 [ � � � [ Ak [ Ad / D k C 1, violating
DHR.M/.

For the second assertion, we first note thatZ
M

hA1
.M/ � � � hAd

.M/ D

Z
†An

hA1
� � � hAd

\�M :

Repeated application of Theorem 3.2.3 implies that hA1
� � � hAd

\ �M is either 0 or the
Bergman class �M 0 of a loopless matroid M 0 of rank 1 where M 0 moreover equals
M ^HA1

^ � � � ^HAd
. Since U1;E is the unique loopless matroid of rank 1 on E, which

defines the Bergman class �U1;E
by �U1;E

.0/ D 1 where 0 is the zero-dimensional cone
of †An

, we conclude that
R
†An

hA1
� � � hAd

\ �M equals 1 if ¹A1; : : : ; Ad º satisfies
DHR.M/ and equals 0 otherwise.

We obtain as an immediate corollary the promised generalization of [50, Corol-
lary 9.4]. Recall that L �2M denotes the flats of M of rank at least 2.

Corollary 5.2.5. Let M be a loopless matroid on E of rank d C 1. The volume polyno-
mial VPrM .t/ 2 QŒtF j F 2 L �2M � of A�

r
.M/ is

VPrM .t/ D
X

.F1;:::;Fd /

tF1
� � � tFd

where the sum is over ordered collections of nonempty flats F1; : : : ; Fd of M satisfying
DHR.M/. Alternatively,

VPrM .t/ D
X

¹F
d1
1
;:::;F

dk
k
º

�
d

d1; : : : ; dk

�
t
d1

F1
� � � t

dk

Fk

where the sum is over size d multisets ¹F d1

1 ; : : : ; F
dk

k
º of flats ofM satisfying DHR.M/.

One recovers the following central result of [50] by setting M D UjE j;E .

Corollary 5.2.6 ([50, Corollary 9.4]). The volume polynomial VPrUnC1;nC1
.t/ of

A�
r
.XAn

/ is
VPrUnC1;nC1

.t/ D
X

.S1;:::;Sn/

tS1
� � � tSn

where the sum is over ordered collections of nonempty subsets S1; : : : ; Sn such that
j
S
j2J Sj j � jJ j C 1 for any ; ¨ J � ¹1; : : : ; nº.

The volume polynomial VPM of the more classical presentation A�.M/ of the Chow
ring of a matroid M by generators ¹xF j F 2 LM n ¹;; Eºº was computed in [25].
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5.3. Volume polynomial of a matroid is Lorentzian

Motivated by Remark 5.1.6 and the fact that the simplicial generators are combinatori-
ally nef, we prove here that the volume polynomial VPrM of the simplicial presentation
A�
r
.M/ is Lorentzian.

Theorem 5.3.1. The volume polynomial VPrM 2 RŒtF j F 2L �2M � of a loopless matroid
M is Lorentzian.

As an immediate corollary, by applying Theorem 5.1.5 to Theorem 5.3.1 we obtain:

Corollary 5.3.2. The volume polynomial VPrM , as a polynomial in RŒtF j F 2 L �2M �,

is strongly log-concave in the positive orthant R
L�2

M

>0 . In other words, as a function
A1.M/!R, the polynomial VPrM is strongly log-concave in the interior of the cone K r

M

generated by the nontrivial simplicial generators.

We will show that the volume polynomial VPrM of a loopless matroid M satisfies the
two conditions listed in Theorem 5.1.3. First, we see that the dragon Hall–Rado condition
description of the support of VPrM implies that VPrM has M-convex support.

Proposition 5.3.3. Let ¹F1; : : : ; Fd º and ¹G1; : : : ; Gd º be two multisets of flats of M
such that both tF1

� � � tFd
and tG1

� � � tGd
are in the support of VPrM . Without loss of

generality, supposeGd is a flat which appears more times in ¹G1; : : : ;Gd º than it does in
¹F1; : : : ;Fd º. Then there exists another flat Fm which appears more times in ¹F1; : : : ;Fd º
than it does in ¹G1; : : : ; Gd º such that tF1

� � � tFd
tGd

=tFm
is in the support of VPrM .

Proof. First note that ¹F1; : : : ; Fd º and ¹G1; : : : ; Gd º satisfy the dragon Hall–Rado con-
dition. In this argument, we borrow standard language from (poly)matroid theory [35].
Let us call a multiset of flats ¹A1; : : : Akº dependent if rkM .

Sk
jD1Aj / � k, and indepen-

dent otherwise. We will also call a minimal dependent set of flats a circuit. We claim that
the multiset of flats ¹F1; : : : ; Fd ; Gd º contains a unique circuit X . The proposition will
follow from this claim because we can take Fm to be any flat in X which appears more
times in ¹F1; : : : ; Fd º than it does in ¹G1; : : : ; Gd º, and ¹F1; : : : ; Fd ; Gd º n ¹Fmº will
satisfy the dragon Hall–Rado condition.

To prove the claim, suppose to the contrary that ¹R1; : : : ; Raº and ¹S1; : : : ; Sbº
are two distinct circuits which are both subsets of ¹F1; : : : ; Fd ; Gd º. We will derive
a contradiction by producing a dependent set of flats contained in ¹F1; : : : ; Fd º. By
assumption, rkM .

Sa
jD1 Rj / � a, and for each 1 � i � a, we have rkM .

S
j¤i Rj / � a,

therefore rkM .
Sa
jD1Rj /D a. Similarly, rkM .

Sb
jD1 Sj /D b. Because ¹R1; : : : ;Raº and

¹S1; : : : ; Sbº are not fully contained in ¹F1; : : : ; Fd º, we know thatGd 2 ¹R1; : : : ;Raº \
¹S1; : : : ; Sbº. Let ¹R1; : : : ; Raº \ ¹S1; : : : ; Sbº D ¹T1; : : : ; Tcº, where the intersection is
multiset intersection, and without loss of generality assume Gd D Ra D Sb D Tc .

Let R and S be the joins of the elements in ¹R1; : : : ; Raº and ¹S1; : : : ; Sbº, respec-
tively. We haveRD

Wa�1
jD1Rj D

Wa
jD1Rj and S D

Wb�1
jD1Sj D

Wb
jD1Sj , since otherwise
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¹R1; : : : ; Ra�1º and ¹S1; : : : ; Sb�1º would both be dependent, contradicting minimal-
ity. Therefore the join of the elements in the multiset ¹R1; : : : ; Ra�1; S1; : : : ; Sb�1º n
¹T1; : : : ; Tc�1º is R _ S . Note that the previous subtraction is multiset subtraction. Fur-
thermore, j¹R1; : : : ;Ra�1;S1; : : : ;Sb�1º n ¹T1; : : : ; Tc�1ºj D .a� 1/C .b � 1/� .c � 1/
D aC b � c � 1:

By minimality of ¹R1; : : : ; Raº and ¹S1; : : : ; Sbº, we know that ¹T1; : : : ; Tcº is inde-
pendent, thus rkM .

Sc
jD1 Tj / � c C 1. Submodularity then gives

rkM .R [ S/ � rkM .R/C rkM .S/ � rkM .R \ S/

� aC b � rkM
� c[
jD1

Tj

�
� aC b � c � 1:

Therefore the multiset ¹R1; : : : ; Ra�1; S1; : : : ; Sb�1º n ¹T1; : : : Tc�1º is dependent
in ¹F1; : : : ; Fd º, which contradicts the fact that this set satisfied the dragon Hall–Rado
condition.

Remark 5.3.4. Suppose M has a realization R.M/. By Remark 2.3.2 (2), the wonder-
ful compactification YR.M/ is embedded in the product

Q
F 2LM n¹;º

P .V �=LF /. Our
simplicial generators are pullbacks of the hyperplane classes of the projective spaces
P .V �=LF / (see Remark 3.2.7). Thus, in this case, that the support of VPrM is M-convex
follows from the result of [14] that the multidegree of an irreducible variety in a product
of projective spaces has M-convex support.

Proof of Theorem 5.3.1. LetM be a loopless matroid of rank r D d C 1. There is nothing
to prove if d D 1, so we assume d � 2. The support of VPrM is M-convex by the previous
proposition. We now show that the quadrics obtained as the .d � 2/-th partial derivatives
have the desired signature. Observe that for a flat G of rank � 2, we have

@

@tG
VPrM .t/ D d

Z
M

hG �
� X
F 2L�2

M

tF hF

�d�1
D d

Z
TG.M/

� X
F 2L�2

M

tF hclTG .M/.F /

�d�1
:

Now, suppose ¹F1; : : : ; Fd�2º is a multiset of size d � 2 consisting of flats of M with
rank at least 2. If ¹F1; : : : ;Fd�2º does not satisfy DHR.M/, then @tF1

� � �@tFd�2
VPrM � 0,

so we may assume that ¹F1; : : : ; Fd�2º satisfies DHR.M/. One computes that

@tF1
� � � @tFd�2

VPrM .t/ D
dŠ

2Š

Z
M 0

� X
F 2L�2

M

tF hclM 0 .F /

�2
where M 0 D M ^ HF1

^ � � � ^ HFd�2
is a loopless matroid of rank 3. By Proposi-

tion 5.1.4, it suffices to check that VPrM 0 is Lorentzian. For any loopless matroid M 0 of
rank 3, the degree 1 part A1

r
.M/ of its Chow ring has the simplicial basis ¹hE º [ ¹hF j

rkM 0.F / D 2º. Noting that
R
M 0
hE � hE D 1,

R
M 0
hE � hF D 1, and

R
M 0
hF � hF 0 D 1 if
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F ¤ F 0 and 0 otherwise, the Hessian matrix of the quadratic form VPrM 0 is 2 times the
matrix

H D

26666664
1 1 1 � � � 1

1 0 1 � � � 1

1 1
: : :

: : :
:::

:::
:::

: : :
: : : 1

1 1 � � � 1 0

37777775 ; which is congruent to

26664
1

�1

: : :

�1

37775
via the symmetric Gaussian elimination: Explicitly, let Ei be the elementary matrix such
that multiplying Ei by a matrix A results in adding �1 times the first row of A to the
i -th row of A, and let ETi be its transpose. Then the claimed congruence is given by
EjLM n¹;ºj

� � �E3E2HET2 E
T
3 � � �E

T
jLM n¹;ºj

.

6. The Hodge theory of matroids in degrees at most 1

The reduced characteristic polynomial of M is defined as

N�M .t/ WD
1

t � 1

X
F 2LM

�.;; F /t rk.M/�rk.F /
D

dX
kD0

.�1/k�k.M/td�k

where �.�;�/ is the Möbius function of the lattice LM and �i .M/ is the absolute value
of the i -th coefficient of x�M .t/. The Heron–Rota–Welsh conjecture [34,53,56] stated that

�k�1.M/�kC1.M/ � �k.M/2 for 0 < k < d:

To resolve the conjecture, the authors of [1] showed that the Chow ring of a matroid
satisfies properties enjoyed by the cohomology ring of a smooth projective complex vari-
ety. Namely, these are the Poincaré duality property, the hard Lefschetz property, and
the Hodge–Riemann relations, which together form the “Kähler package.” In particu-
lar, the Hodge–Riemann relation in degree 1 implies the Heron–Rota–Welsh conjecture
[1, §9].

To prove that the Chow ring of a matroid satisfies the Hodge–Riemann relations, the
authors of [1] adapt a line of argument that originally appeared in McMullen’s work
on simple polytopes [45]. Their method employs a double induction on the rank of the
matroid and the size of an order filter on the matroid’s lattice of flats: the outer induction
on rank shows that the Hodge–Riemann relations hold for all ample classes if they hold
for a single ample class, and the inner induction on the size of an order filter is then used
to construct an ample class for which the Hodge–Riemann relations can be verified.

In this section, we independently establish the Hodge–Riemann relations in degree 1
using a similar argument. As we have established in the previous section that the volume
polynomial VPrM of a matroid M is strongly log-concave in the subcone K r

M of the
ample cone KM , we are able to avoid working with generalized Bergman fans associated
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to order filters and the flipping operation which interpolates between them. Thus our proof
involves only classical Bergman fans associated to matroids and takes the form of a single
induction on rank alone.

6.1. The Kähler package in degree 1 and log-concavity

We begin by discussing here the statements of the Kähler package, and how in degree 1
they relate to log-concavity. We then provide some generalities on the inductive paradigm
for proving Kähler package for Chow cohomology rings of fans, similar to one in [1]
adapted from the earlier work [45].

Definition 6.1.1. Let .A�;
R
/ be a Poincaré duality k-algebra of dimension d with degree

map
R

. For ` 2 A1 and 0 � i � bd=2c, we define Lk
`

to be the Lefschetz operator

Li` W A
i
! Ad�i ; a 7! `d�2ia;

and define Qi
`

to be the Hodge–Riemann symmetric bilinear form

Qi
` W A

i
� Ai ! k; .x; y/ 7!

Z
xy`d�2i :

We define the set of degree i primitive classes of ` to be P i
`
WD ¹x 2 Ak j x`d�2iC1 D 0º.

Definition 6.1.2. Let .A�;
R
/ be a Poincaré duality R-algebra of dimension d , and let

` 2 A1. For 0 � i � bd=2c, we say that .A�;
R
/ satisfies

� HLi
`

if Li
`

induces an isomorphism between Ai and Ad�i ,

� HRi
`

if the symmetric form .�1/iQi
`

is positive-definite when restricted to P i
`

.

Moreover, for K a convex cone in A1, we say that .A�;
R
;K / satisfies the hard Lef-

schetz property (HLiK ), resp. the Hodge–Riemann relation (HRiK ), in degree i if A�

satisfies HLi
`
, resp. HRi

`
, for all ` 2 K .

The Poincaré duality property (PD) of .A�;
R
/ implies that the form Qi

`
is nondegen-

erate if and only if HLi
`

holds. The properties (PD), (HL), and (HR) together are called
the Kähler package for a graded ring A�. We will write HL�i and HR�i to mean hard
Lefschetz property and Hodge–Riemann in degrees at most i , respectively. The relation
between log-concavity and the Kähler package in degree � 1 was realized in various
contexts; for a survey we point to [37]. We will only need the following, adapted from
[10, Proposition 5.6]. It also appeared in [3, §2.3], and is a consequence of the Cauchy
interlacing theorem.

Proposition 6.1.3. Let A� be a Poincaré duality R-algebra of dimension d with degree
map

R
, and K a convex cone in A1. Suppose .A�;

R
;K / satisfy HL0K and HR0K . Then

the following are equivalent:

(1) The volume function vol W A1 ! R, ` 7!
R
`d , is log-concave on K .

(2) For any ` 2 K , the symmetric form Q1
`

has exactly one positive eigenvalue.
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In particular, if the volume polynomial VPA of A� D RŒx1; : : : ; xs�=I is Lorentzian, then
.A�;

R
;K / satisfies HR�1K where K is the interior of Cone.x1; : : : ; xs/, provided that

A� satisfies HL�1K .

We now turn to an inductive paradigm for establishing (HL) and (HR). We assume
all Poincaré duality algebras to be over R. We begin by noting an easy linear algebraic
observation also made in [1, Proposition 7.16].

Proposition 6.1.4. Let .A�;
R
;K / be a Poincaré duality algebra which satisfies HLiK

for K in a convex cone in A1. Suppose that .A�;
R
/ satisfies HRi

`
for some ` 2K . Then

A� satisfies HRiK .

Proof. Let `0 2K , and let l.t/D t`C .1� t /`0 for t 2 Œ0;1� be a line segment connecting
` and `0. By convexity of K , we know that every point on l is in K . If the signature of
the bilinear pairing Qi

l.t/
changes along l.t/ starting at `, then it must degenerate at some

point l.t0/ for t0 2 Œ0; 1�, but this violates HLiK .

We now note how properties (HL) and (HR) behave under tensor products and quo-
tients by annihilators of an element. While these are adapted from [1, §7] where they are
phrased in terms of Chow cohomology rings of fans, since we restrict ourselves Kähler
package up to degree 1, we can provide here easier and more direct proofs for general
Poincaré duality algebras.

Proposition 6.1.5. Let .A�;
R
A
/ and .B�;

R
B
/ be two Poincaré duality algebras of dimen-

sion dA � 1 and dB � 1. Suppose that A� and B� satisfy HR�1
`A

and HR�1
`B

, respectively,

then ..A˝ B/�;
R
A˝B

/ satisfies HR�1
`A˝1C1˝`B

.

Before giving the proof, we remark that if dA D 0 then .A˝B/� ' B� (and likewise
if dB D 0) so that the statement in the proposition is trivially satisfied after suitable mod-
ifications. If dA D 1 (or dB D 1), so that HR1

`A
(or HR1

`B
) is vacuous, our proof below

implies that .A� ˝ B�/ satisfies HR1
`A˝1C1˝`B

if HR0
`A

and HR0
`B

are satisfied.

Proof of Proposition 6.1.5. Set ` WD `A ˝ 1C 1˝ `B . First, note that HR0
`

follows eas-
ily from the description of the Poincaré duality algebra .A˝B/� in Proposition 4.1.2 (1).
Now, we verify that .A˝B/� satisfies HR1

`
. Let v1; : : : ; vm and w1; : : : ; wn be orthonor-

mal bases for P 1
`A

and P 1
`B

, respectively. Then

A1 Š

mM
iD1

hvi i ˚ h`Ai and B1 Š

nM
iD1

hwi i ˚ h`Bi:

Noting that .A˝ B/� is a Poincaré duality algebra of dimension d D dA C dB , we
expand

`d�2 D ..`A ˝ 1/C .1˝ `B//
d�2
D

d�2X
iD0

�
d � 2

i

�
.`iA ˝ `

d�i�2
B /:



S. Backman, C. Eur, C. Simpson 40

The symmetric matrix for Q1
`

with respect to the above basis is given by

Q1
` .a; b/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

�
�
d�2
dA

�
; a D b D vi ˝ 1;

�
�
d�2
dB

�
; a D b D 1˝ wj ;

�
�
d�2
dA�2

�
; a D b D `A ˝ 1;

�
�
d�2
dA

�
; a D b D 1˝ `B ;

�
�
d�2
dA�1

�
a D `A ˝ 1 and b D 1˝ `B ;

�
�
d�2
dB�1

�
; a D 1˝ `B and b D `A ˝ 1;

0; a D vi ˝ 1 and b D 1˝ wj or 1˝ `B ;

0; a D vi ˝ 1 or `A ˝ 1 and b D 1˝ wj ;

where � WD .
R
A
`
dA

A /.
R
B
`
dB

B /.
So the matrix Q1

`
.a; b/ is a block matrix comprised of three blocks. By HR1

`A

and HR1
`B

, the first two blocks are negative identity matrices induced by ¹vi ˝ 1º �
¹vi ˝ 1º and ¹1 ˝ wj º � ¹1 ˝ wj º. The third and only nontrivial block is induced by
¹`A ˝ 1; 1˝ `Bº � ¹`A ˝ 1; 1˝ `Bº, which gives the 2 � 2 matrix

M D �

"�
d�2
dA�2

� �
d�2
dA�1

��
d�2
dA�1

� �
d�2
dA

� # :
One computes that det.M/ < 0, and hence M has signature .C;�/. We conclude that
Q1
`
.a; b/ is nondegenerate and has exactly one positive eigenvalue, completing the proof.

Proposition 6.1.6. Let .A� D RŒx1; : : : ; xs�=I;
R
/ be a Poincaré duality algebra of

dimension d , and let `2A1 be an effective divisor—that is, a nonnegative linear combina-
tion of ¹x1; : : : ; xsº. Denote by `k the image of ` inA�=ann.xk/. For 0� i � b.d � 1/=2c,
if .A�=ann.xk/;

R
xk
/ satisfies HRi

`k
for every k D 1; : : : ; s, then .A�;

R
/ satisfies HLi

`
.

Proof. Let `D
Ps
kD1 ckxk with ck 2R�0, and suppose `d�2if D 0 for some f 2Ai . We

will show that f D 0 necessarily. Let fi be the image of f inA�=ann.xi /. As 0D `d�2if ,
we have 0 D `d�2i

k
fk , and since A�=ann.xk/ is a Poincaré duality algebra of dimension

d � 1, we conclude that fk belongs to the primitive space P i
`k

. Now, we note that for
all k,

0 D

Z
`d�2if 2 D

Z �X
k

ckxk

�
`d�2i�1f 2 D

X
k

�Z
xk

ck`
d�2i�1
k f 2k

�
and

R
xk
ck`

d�2i�1
k

f 2
k
� 0 by HRi

`k
. Moreover, as Q1

`k
is negative-definite on P i

`k
, we

conclude each fk is 0, that is, xkf D 0 for all k D 1; : : : ; s. Since ¹x1; : : : ; xsº gen-
erate A�, the Poincaré duality property of A� implies that if f ¤ 0 then there exists a
polynomial g.x/ of degree d � i such that

R
g.x/f ¤ 0, and hence we conclude that

f D 0.
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6.2. Kähler package in degree at most 1 for matroids

We now specialize our discussion to the setting of matroids, and establish Kähler package
in degree at most 1 for Chow rings of matroids. As a consequence, we recover the proof
of the Heron–Rota–Welsh conjecture as in [1].

Theorem 6.2.1. The Chow ring of a matroid .A�.M/;
R
M
;KM / satisfies HL�1KM

and
HR�1KM

.

We will prove the theorem by induction on the rank of the matroid. The key com-
binatorial observation that allows one to reduce the rank is the following, adapted from
[1, Proposition 3.5]. It underlies the well-known Hopf algebraic structure for the lattice
of flats of a matroid; see [2, 40] for a detailed discussion of such structures.

Lemma 6.2.2. LetM be a loopless matroid, and F a nonempty proper flat ofM . Let �F
be the ray corresponding to F in the Bergman fan †M of M . Then

(1) star.†M ; �F / ' †M jF �†M=F , and consequently

(2) we have an isomorphism of Poincaré duality algebras

A�.M/=ann.xF / ' .A.M jF /˝ A.M=F //�

such that if ` 2 KM then its image in A�.M/=ann.xF / is in .KM jF ˝ 1/ ˚ .1 ˝

KM=F /.

Proof. A face of †M is in star.†M ; F / if and only if it corresponds to a flag of flats
which contains F . Any such flag naturally factors as the concatenation of two flags, one
with maximal element strictly contained in F , and the other with minimal element F .
This geometrically corresponds to the factorization of fans in (1).

For (2), first note that M jF and M=F are loopless since F is a flat. Then,
combine Propositions 4.1.2 and 4.1.4 with the easily verifiable fact that A�.† � †0/
' .A.†/ ˝ A.†0//� for rational fans † and †0. This proves the isomorphism
A�.M/=ann.xF /' .A.M jF /˝A.M=F //�. Lastly, the statement about `2KM follows
from the fact that submodular functions on lattices remain submodular under restriction
to intervals in the lattice.

The remaining key part of the induction in the proof of Theorem 6.2.1, in light of
Proposition 6.1.4, is to establish HR1

`
for some divisor ` 2KM . In [1] the authors employ

the method of order filters and flips for this purpose; in our case, the Lorentzian property
of the volume polynomial provides the desired key step.

Lemma 6.2.3. Let M be a loopless matroid of rank r D d C 1 � 2, and recall that K r
M

is the interior of the cone generated by the nontrivial simplicial generators of A�
r
.M/. .It

is a subcone of KM ./ For any ` 2 K r
M , we have

R
M
`d > 0. If further r D d C 1 � 3,

then the form Q1
`

has exactly one positive eigenvalue. In particular, HR1KM
is satisfied

for M with rank 3.
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Proof. The statement
R
M
`d > 0 follows from our dragon Hall–Rado formula (Corollary

5.2.5). When the rank of M is at least 3, that the form Q1
`

has exactly one positive eigen-
value follows from combining Theorem 5.3.1 and Proposition 6.1.3. Lastly, when rank of
M equals 3, the bilinear formQ1

`
is the Poincaré pairing A1.M/�A2�1.M/! A2.M/,

which is nondegenerate and independent of ` 2 K r
M . Thus, we deduce HR1

`0
for any ele-

ment `0 2 KM since Q1
`0
D Q1

`
.

Proof of Theorem 6.2.1. We proceed by induction on the rank of the matroidM . The base
case consists of rank�2matroids for HL0KM

&HR0KM
and rank�3 for HL1KM

&HR1KM
.

For these cases, the stated properties are either vacuous or easily verified with the use of
Lemma 6.2.3. Let now M be a loopless matroid of rank r D d C 1 on a ground set E.

Observe that HL0KM
and HR0KM

both hold if and only if
R
M
`d > 0 for all ` 2 KM .

Moreover, given HL1
`
, the property HR1

`
holds if and only if Q1

`
has exactly one pos-

itive eigenvalue. Combined with Lemma 6.2.3 and Proposition 6.1.4, these facts imply
that proving HL�1KM

is sufficient to establish HR�1KM
. By Remark 2.2.8, any element

` 2KM can be written as a nonnegative linear combination of ¹xF j F 2LM n ¹;; Eºº;
therefore, by Proposition 6.1.6, to establish HL�1KM

, it suffices in turn to prove HR�1

for A�.M/=ann.xF / for every nonempty proper flat F . Finally, A�.M/=ann.xF / '
.A.M jF /˝ A.M=F //� by Lemma 6.2.2 (2), so by the induction hypothesis and Propo-
sition 6.1.5, the proof is complete.

We conclude by recounting the argument in [1, §9] that the Hodge–Riemann relations
in degree 1 imply the Heron–Rota–Welsh conjecture.

Lemma 6.2.4 ([1, Lemma 9.6]). Let `1; `2 2 A1.M/. If `2 is nef, then�Z
M

`21`
d�2
2

��Z
M

`22`
d�2
2

�
�

�Z
M

`1`2`
d�2
2

�2
:

Proof. Suppose first that `2 is ample. By Theorem 6.2.1, A�.M/ satisfies HL�1
`2

, so
we obtain a decomposition A1.M/ Š h`2i ˚ P

1
`2

that is orthogonal with respect to the

Hodge–Riemann form Q1
`2

. By HR�1
`2

, Q1
`2

is positive-definite on P 1
`2

and negative-
definite on h`2i; therefore, the restriction of Q1

`2
to the subspace h`1; `2i � A1.M/ is

neither positive-definite nor negative-definite, so�Z
M

`21`
d�2
2

��Z
M

`22`
d�2
2

�
<

�Z
M

`1`2`
d�2
2

�2
:

If `2 is merely nef rather than ample, then for any ample element `, the class `2.t/ WD
`2 C t` is ample for all t > 0. An ample ` exists by Lemma 6.2.3. Taking the limit as
t ! 0 in the inequality�Z

M

`21`2.t/
d�2

��Z
M

`2.t/
2`2.t/

d�2

�
<

�Z
M

`1`2.t/`2.t/
d�2

�2
yields the desired inequality.
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Corollary 6.2.5. For each 0 < k < d ,

�k�1.M/�kC1.M/ � �k.M/2:

Proof. This proof is reproduced from [1, Proposition 9.8]. We proceed by induction
on rk.M/. When k < d � 1, the induction hypothesis applied to the truncation TE .M/

implies the inequality because the absolute values of the lower coefficients of x�TE .M/

are the same as those of x�M . Now, consider k D d � 1. For any i 2 E, denote ˛ WDP
i2F xF 2 A

1.M/ and ˇ WD
P
i 62F xF . Both ˛ and ˇ are independent of the choice

of i and are nef. Proposition 9.5 of [1] states that �k.M/ D
R
M
˛d�kˇk ; therefore, the

desired inequality is�Z
M

˛2ˇd�2
��Z

M

ˇ2ˇd�2
�
�

�Z
M

˛ˇˇd�2
�2
:

Since ˛ and ˇ are nef, this inequality holds by Lemma 6.2.4.
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