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Abstract. We prove a version of the strong Taylor’s conjecture for stable graphs: if G is a stable
graph whose chromatic number is strictly greater than Æ2.@0/ then G contains all finite subgraphs
of Shn.!/ and thus has elementary extensions of unbounded chromatic number. This completes
the picture from our previous work. The main new model-theoretic ingredient is a generalization of
the classical construction of Ehrenfeucht–Mostowski models to an infinitary setting, giving a new
characterization of stability.
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1. Introduction

The chromatic number �.G/ of a graph G D .V; E/ is the minimal cardinal ~ for which
there exists a vertex coloring with ~ colors. There is a long history of structure theorems
deriving from large chromatic number assumptions; see, e.g., [8]. The main topic of this
paper will be the following conjecture proposed by Erdős–Hajnal–Shelah [5, Problem 2]
and Taylor [1, Problem 43, p. 508].

Conjecture (Strong Taylor’s Conjecture). For any graph G with �.G/ > @0 there exists
an n 2 N such that G contains all finite subgraphs of Shn.!/.

Here, for a cardinal �, the shift graph Shn.�/ is the graph whose vertices are increasing
n-tuples of ordinals less than �, and we put an edge between s and t if for every 1 � i �
n� 1, s.i/D t .i � 1/ or vice versa. The shift graphs Shn.�/ have large chromatic numbers
depending on �; see Fact 2.4 below. Consequently, if the strong Taylor’s conjecture holds
for a graph G, then the graph has elementary extensions of unbounded chromatic number
(having the same family of finite subgraphs).
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The strong Taylor’s conjecture was refuted in [6, Theorem 4]. See [8] and the intro-
duction of [7] for more historical information.

In [7] we initiated the study of variants of the strong Taylor’s conjecture for some
classes of graphs with stable first order theory (stable graphs). Stability theory, which
is the study of stable theories and originated in the works of the third author in the 60s
and 70s, is one of the most influential and important subjects in modern model theory.
Examples of stable theories include abelian groups, modules, algebraically closed fields,
graph-theoretic trees, or more generally superflat graphs [13]. Stability also had an impact
in combinatorics, e.g. [2, 10] to name a few.

More precisely, in [7] we proved the strong Taylor’s conjecture for !-stable graphs
and variants of the conjecture for superstable graphs (replacing @0 by 2@0 ) and for stable
graphs which are interpretable in a stationary stable theory (replacing @0 by Æ2.@0/). As
there exist stable graphs that are not interpretable in a stationary stable structure (see [7,
Proposition 5.22, Remark 5.23]), we asked what is the situation in general stable graphs
and in this paper we answer it with the following theorem.

Theorem (Corollary 6.2). Let G D .V; E/ be a stable graph. If �.G/ > Æ2.@0/ then G
contains all finite subgraphs of Shn.!/ for some n 2 N.

The key tool in proving the results for !-stable graphs and superstable graphs is that
every large enough saturated model is an Ehrenfeucht–Mostowski model (EM-model) in
some bounded expansion of the language.

An EM-model is a model which is the definable closure of an indiscernible sequence
and was originally used by Ehrenfeucht–Mostowski in order to find models with many
automorphisms [3]. It was shown by Lascar [9, Section 5.1] that every saturated model of
cardinality @1 in an !-stable theory is an EM-model in some countable expansion of the
language; this was later generalized to any cardinality by Mariou [12, Theorem C] and to
superstable theories by Mariou [11, Theorem 3.B] and by the third author [15].

It was shown by Mariou [11, Theorem 3.A] that in a certain sense the existence of such
saturated EM-models for a stable theory necessarily implies that the theory is superstable.
Consequently, a different tool is needed in order to prove the theorem for general stable
theories.

In the stationary stable case, we use a variant of representations of structures in the
sense of [16]. However, this method does not seem to easily adjust to the general stable
case.

In this paper we resolve this problem by generalizing the notion of EM-models to
infinitary EM-models and show in Theorem 3.7 that such saturated models exist for any
stable theory. The definition is a bit technical, so here we will settle with an informal
description:

In an EM-model every element is given by a term and a finite sequence of ele-
ments from the generating indiscernible sequence. Analogously, in an infinitary EM-
model every element is given by some “term” with infinite (but bounded) arity and a
suitable sequence of elements from an indiscernible sequence.

We prove that the existence of saturated infinitary EM-models characterizes stability.
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Theorem (Theorem 3.7). The following are equivalent for a complete L-theory T :

(1) T is stable.

(2) Let �; � and � be cardinals satisfying � D cf.�/ � min ¹�.T /; jT jCº C @1, �<� D
�� 2�CjT j and �D �<� ��, and let T � T sk be an expansion with definable Skolem
functions such that jT j D jT skj in a language L�Lsk. Then there exists an infinitary
EM-model M sk ˆ T sk based on .˛; �/, where ˛ 2 �U for some set U of cardinality
at most �, such that M DM sk�L is saturated of cardinality �.

See the paragraph before Lemma 3.4 for the definition of �.T /.
Section 3 is the only purely model-theoretic section and is the only place where sta-

bility is used. The results of this section (more specifically Theorem 3.7) are only used in
Section 6. In Section 4 we study graphs on (perhaps infinite) increasing sequences whose
edge relation is determined by the order type. Aiming to prove that if the chromatic num-
ber is large, then one can embed shift graphs, we analyze several different cases. The last
case we deal with in Section 4 turns out to be rather complicated, so we devote all of
Section 5 to it. There, we employ ideas inspired by PCF theory to get a coloring of small
cardinality. Section 6 concludes the paper.

2. Preliminaries

We use small Latin letters a; b; c for tuples and capital letters A; B; C for sets. We also
employ the standard model-theoretic abuse of notation and write a 2 A even for tuples
when the length of the tuple is immaterial or understood from context.

For any two sets A and J , let AJ be the set of injective functions from J to A (where
the notation is taken from the falling factorial notation), and if .A; </ and .J; </ are
both linearly ordered sets, let .AJ /< be the subset of AJ consisting of strictly increasing
functions. If we want to emphasize the order on J we will write .A.J;<//<.

Throughout this paper, we interchangeably use sequence notation and function nota-
tion for elements of AJ , e.g. for f 2 AJ , f .i/ D fi . For any sequence � we denote by
Range.�/ the underlying set of the sequence (i.e. its image). If .A;<A/ and .B; <B/ are
linearly ordered sets, then the most significant coordinate of the lexicographic order on
A � B is the left one.

2.1. Stability

We use fairly standard model-theoretic terminology and notation; see for example [17, 18].
We gather some of the needed notions. For stability, the reader can also consult [14].

We denote by tp.a=A/ the complete type of a over A. Let .I;</ be a linearly ordered
set. A sequence hai W i 2 I i inside a first order structure is indiscernible if for any
i1 < � � � < ik and j1 < � � � < jk in I ,

tp.ai1 ; : : : ; aik / D tp.aj1 ; : : : ; ajk /:
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A structureM is �-saturated, for a cardinal �, if any type p overAwith jAj<� is realized
inM . The structureM is saturated if it is jM j-saturated. A monster model for T , usually
denoted by U , is a large saturated model containing all sets and models (as elementary
substructures) we will encounter.2 All subsets and models will be small, i.e. of cardinality
< jU j.

A first order theory T is stable if there does not exist a model M ˆ T , a formula
'.x; y/ and elements hai 2M W i < !i such thatM ˆ '.ai ; aj /, i < j . An equivalent
definition is that there exists some � � jT j such that for all M ˆ T with jM j � � the
cardinality of complete types over M is at most �. For any such �, T has a saturated
model of cardinality of � [14, Theorem VIII.4.7].

Every indiscernible sequence in a stable theory is totally indiscernible, i.e. in the nota-
tion above, for any i1; : : : ; ik and j1; : : : ; jk in I ,

tp.ai1 ; : : : ; aik / D tp.aj1 ; : : : ; ajk /:

Other than these notions, we will also require basic understanding of forking. See the
above references for more information.

2.2. Graph theory

Here we gather some facts on graphs and the chromatic number of graphs (all can be
found in [7]).

By a graph we mean a pair G D .V; E/ where E � V 2 is symmetric and irreflexive.
A graph homomorphism betweenG1D .V1;E1/ andG2D .V2;E2/ is a map f W V1! V2
such that f .e/ 2 E2 for every e 2 E1. If f is injective we will say that f embeds G1
into G2 as a subgraph. If in addition we require that f .e/ 2 E2 if and only if e 2 E1 we
will say that f embeds G1 into G2 as an induced subgraph.

Definition 2.1. Let G D .V;E/ be a graph.

(1) For a cardinal ~, a vertex coloring (or just coloring) of cardinality ~ is a function
c W V ! ~ such that x E y implies c.x/ ¤ c.y/ for all x; y 2 V .

(2) The chromatic number �.G/ is the minimal cardinality of a vertex coloring of G.

These are the basic properties of �.G/ that we will require:

Fact 2.2 ([7, Lemma 2.3]). Let G D .V;E/ be a graph.

(1) If V D
S
i2I Vi then �.G/ �

P
i2I �.Vi ; E�Vi /.

(2) If E D
S
i2I Ei .with each Ei being symmetric/ then �.G/ �

Q
i2I �.V;Ei /.

(3) If ' W H ! G is a graph homomorphism then �.H/ � �.G/.

2There are set-theoretic issues in assuming that such a model exists, but these are overcome by
standard techniques from set theory that ensure the generalized continuum hypothesis from some
point on while fixing a fragment of the universe. The reader can just accept this or alternatively
assume that U is merely �-saturated and �-strongly homogeneous for large enough �.
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(4) If ' W .H;EH /! .G;EG/ is a surjective graph homomorphism with

e 2 EH ” '.e/ 2 EG

then �.H/ D �.G/.

Example 2.3. For any finite number r � 1 and any linearly ordered set .A;</, let Shr .A/
(or Shr .A;</ if we want to emphasize the order), the shift graph on A, be the following
graph: its set of vertices is the set .Ar /< of increasing r-tuples s0; : : : ; sr�1, and we put
an edge between s and t if for every 1 � i � r � 1, s.i/ D t .i � 1/ or vice versa. It is
an easy exercise to show that Shr .A/ is a connected graph. If r D 1 this gives KA, the
complete graph on A.

Fact 2.4 ([7, Fact 2.6], [4, proof of Theorem 2]). Let 2 � r < ! be a natural number and
~ be a cardinal. Then

�.Shr .Ær�1.~/C// � ~C:

Finally, the following fact is a very useful tool.

Fact 2.5 ([7, Proposition 3.2]). Let G D .V; E/ be a graph and assume there exists a
graph homomorphism t W Shk.!/! G. Then there exists n � k such that

(�) G contains all finite subgraphs of Shn.!/.

Consequently, if H is a graph that contains all finite subgraphs of Shk.!/ for some k,
and t W H ! G is a graph homomorphism, then there exists some n � k such that G sat-
isfies .�/.

3. Infinitary EM-models and stability

Let T be a first order theory and U a monster model for T .
An EM-model for T is a model that is the definable closure of an indiscernible

sequence (possibly in some expansion of the theory which admits Skolem functions).
Every element in an EM-model is of the form t .ai1 ; : : : ; ain/, where t is a term (in

the expanded language) and ai1 ; : : : ; ain are elements of the indiscernible sequence. In
other words, to any element we may associate a pair .i; �/, where i < jT j (this codes the
term ti . Nxi /) and � is an increasing sequence of cardinality j Nxi j.

Mariou [11, 12] and Shelah [15] proved that if T is !-stable or even superstable then
it has an EM-model in some expansion of the language whose restriction to the original
language is saturated. For general stable theories, as we will see in this section, one needs
to allow “terms” with possibly infinite arity to get a parallel result.

Let � � @0 be a regular cardinal (which we think of as a bound on the arity) and let
� be a cardinal (which we think of as a bound on the number of terms). Let ˛ 2 �� be a
function assigning to each function its arity.

Definition 3.1. Let � be a cardinal, .I;</ a linearly ordered set, U a set and ˛ 2 �U . Let
a D hai;� W i 2 U; � 2 .I

˛i /<i be a sequence of tuples from U .
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We say that a is .˛; I /-indiscernible if for every hij 2 U W j < ki, h�j 2 .I
˛ij /< W

j < ki and h�j 2 .I
˛ij /< W j < ki if there exists a partial isomorphism of .I;</mapping

h�j W j < ki to h�j W j < ki then haij ;�j W j < ki and haij ;�j W j < ki have the same type.

Recall that given a subset A � U and an ultrafilter D on A we may define the global
average type pD D Av.D ;U/ by

pD ` '.x; b/ ” '.A; b/ 2 D :

Obviously, pD is finitely satisfiable in A.

Remark 3.2. If D is an ultrafilter on A and A � B then ¹U � B W .9V 2 D/.V � U/º

is the unique ultrafilter D 0 on B containing D and pD D pD 0 .

For any linearly ordered set .I; </ and A � B , we say that hai W i 2 I i realizes
.pD/

˝I jB if for any k 2 I , ak ˆ pD jBhai W i < k 2 I i.

Proposition 3.3. Assume that U has definable Skolem functions. Let � � @0 be a regular
cardinal and �<� D � � 2�CjLj a cardinal. Let ˛ 2 �� be any function and let .I;</ be
any infinite linear order.

(1) There exist U � � � � and a non-constant .˛0; I /-indiscernible sequence

a D hai;k;� W .i; k/ 2 U; � 2 .I
˛i /<i;

where ˛0 2 �U is defined by ˛0
.i;k/
D ˛i , for .i; k/ 2 U , such that U� dcl.Range.a//

� U .

(2) For j < � and � 2 .I j̨ /<, if

A � Aj;� D dcl
�
¹ai;k;� W .i; k/ 2 U; i < j; � 2 .Range.�/˛i /<º

�
with jAj< � and non-algebraic p 2 S.A/ then there exists k <� with .j;k/ 2U such
that aj;k;� ˆ p. Moreover, if p is finitely satisfiable in A then so is tp.aj;k;�=Aj;�/.

(3) If in addition .I; </ is well-ordered and ˛ satisfies ˛i D .i mod �/ then:

(a) For any A � dcl.Range.a// with jAj < � there exist i < � and � 2 .I ˛i /< satis-
fying A � Ai;� .

(b) dcl.Range.a// is �-saturated.

(c) Assume that .I; </ is a cardinal with cf.I / � �. For any infinite A � B �
dcl.Range.a// with jBj < �, there is a non-principal ultrafilter D on A such
that .pD/

˝I jB is realized in dcl.Range.a//.

Proof. Since U has definable Skolem functions, for any A � U , dcl.A/ is an elementary
substructure of U .

First we pick, once and for all, for any small A � U and any p 2 S.A/ finitely satisfi-
able in A, a non-principal ultrafilter Up on A extending the filter ¹'.A; a/ W '.x; a/ 2 pº.
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The construction is by induction on j < �. Let j < � and assume we found ¹Ui � � W
i < j º and non-constant a<j D hai;k;� W i < j; k 2 Ui ; � 2 .I

˛i /<i such that a<j is
..˛0/<j ; I /-indiscernible, where ..˛0/<j /i;k D ˛i for i < j and k 2 Ui .

If .I j̨ /< D ; then there is nothing to do. Otherwise, fix some �� 2 .I j̨ /< and let

Aj;�� D dcl
�
¹ai;k;� W .i; k/ 2 U; i < j; � 2 .Range.��/˛i /<º

�
:

Note that jAj;�j � �. Indeed, this follows from the inequalities

� � j j̨ j
<�
� � � �<� � �:

For any A � Aj;�� with jAj < � and a non-algebraic type p 2 S1.A/ we choose
an extension Qp of p to Aj;�� and a non-principal ultrafilter D.p/ on Aj;�� such that
Qp D pD.p/jAj;�� , in the following way:

� If p is finitely satisfiable in A then let D.p/ be the unique ultrafilter (on Aj;�� ) extend-
ing the ultrafilter Up on A (which extended ¹'.A; a/ W '.x; a/ 2 pº, as chosen above).
We let Qp D pD.p/jAj;�� .

� Otherwise, let Qp be any non-algebraic extension of p to Aj;�� . Since Aj;�� is a model,
Qp is finitely satisfiable inAj;�� . Let D.p/DU Qp be the non-principal ultrafilter extend-

ing ¹'.Aj;�� ; b/ W '.x; b/ 2 Qpº from above.

We note that there are at most �<� � � subsets A � Aj;�� with jAj < � and for all
such A there are at most 2�CjLj � � types on A.

Let Uj � � be such that h.pj;k;�� ;Dj;k;��/ W k 2 Uj i enumerates the set of pairs
. Qp;D.p// for non-algebraic p 2 S1.A/ and any A as above.

By the induction hypothesis, any partial order isomorphism � of I induces a partial
elementary map y� whose domain is

dcl
�
¹ai;k;� W i < j; k 2 Ui ; Range.�/ � Dom.�/º

�
;

mapping ai;k;� 7! ai;k;�.�/, where �.�/ D � ı �. Note that for any �1; �2, if �1 ı �2
makes sense then 2�1 ı �2 Dc�1 ıc�2.

Note that, by the induction hypothesis on j , for any order-preserving partial isomor-
phism � of I whose domain contains Range.��/, y�.Aj;��/ D Aj;�.��/:

As a result, for any � 2 .I j̨ /< the unique order isomorphism ���;� W �
�! � induces

an elementary map 1���;� whose domain isAj;�� and whose range is preciselyAj;�, which
is given by ai;k;� 7! ai;k;���;�.�/. For every k 2 Uj let pj;k;� D1���;�.pj;k;��/ 2 S.Aj;�/
and let Dj;k;� D1���;�.Dj;k;��/.

Claim 3.3.1. For any � 2 .I j̨ /< and � a partial isomorphism of I whose domain con-
tains Range.�/, y�.Aj;�/ D Aj;�.�/, y�.pj;k;�/ D pj;k;�.�/ and y�.Dj;k;�/ D Dj;k;�.�/.

Proof. There is no harm in restricting � to Range.�/. Let ���;� W �� ! � be the unique
order isomorphism, so � ı ���;� is the unique isomorphism from �� to �.�/ and thus
equal to ���;�.�/. Hence � D ���;�.�/ ı ��1��;�. The result follows. claim
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Let ..I j̨ /<; <
lex/ be the lexicographic ordering and let .Uj ; </ be the order induced

from �. By induction on k 2 Uj , by compactness we may find a sequence haj;k;� W
� 2 .I j̨ /<i such that for any � 2 .I j̨ /<,

aj;k;� ˆ pDj;k;� jBj;k;�;

where

Bj;k;� D Cj [ ¹aj;l;� W l < k; l 2 Uj ; � 2 .I
j̨ /<º [ ¹aj;k;� W � <

lex �; � 2 .I j̨ /<º;

where Cj D ¹ai;l;� W i < j; l 2 Ui ; � 2 .I ˛i /<º.
We show ..˛0/�j ; I /-indiscernibility by induction on ¹.i; l/ W i � j; l 2 Uiº (with the

lexicographic ordering). In other words, given k 2 Uj , we assume that for any h.ir ; lr / W
r < ni with .ir ; lr / < .j; k/ and lr 2 Ur , any h�r 2 .I

˛ir /< W r < ni and any partial
isomorphism � of I whose domain contains

S
¹Range.�r / W r < nº,

tp.ai0;l0;�0 ; : : : ; ain�1;ln�1;�n�1/ D tp.ai0;l0;�.�0/; : : : ; ain�1;ln�1;�.�n�1//:

We wish to show the same statement for .ir ; lr / � .j; k/.
We prove by induction on n that for any Nb�¹ai;l;� W .i; l/ < .j;k/; �2 .I ˛i /<; l 2Uiº,

any �n�1 <lex � � �<lex �0 2 .I
j̨ /< and any partial isomorphism � of .I;</whose domain

contains

Range.�0/ [ � � � [ Range.�n�1/ [
[
¹Range.�/ W ai;l;� 2 Nbº;

we have

tp.aj;k;�0 ; : : : ; aj;k;�n�1 ; Nb/ D tp.aj;k;�.�0/; : : : ; aj;k;�.�n�1/; y�. Nb//:

Let '.x0; : : : ; xn�1; Nb/ be some formula, where Nb is as above. We show that

'.x0; : : : ; xn�1; Nb/ 2 pDj;k;�0
˝ � � � ˝ pDj;k;�n�1

” '.x0; : : : ; xn�1; y�. Nb// 2 pDj;k;�.�0/
˝ � � � ˝ pDj;k;�.�n�1/

:

Indeed, if '.x0; : : : ; xn�1; Nb/ 2 pDj;k;�0
˝ � � � ˝ pDj;k;�n�1

then by the choice of the
aj;k;�’s, '.aj;k;�0 ; : : : ; aj;k;�n�1 ; Nb/ holds and thus X D '.Aj;�0 ; aj;k;�1 ; : : : ; aj;k;�n�1 ; Nb/
2 Dj;k;�0 . By Claim 3.3.1, y�.X/ 2 Dj;k;�.�0/. By the induction hypothesis (on n), y� is
elementary on aj;k;�1 [ � � � [ aj;k;�n�1 [ Nb, and consequently

y�.X/ D '.Aj;�.�0/; aj;k;�.�1/; : : : ; aj;k;�.�n�1/; y�.
Nb// 2 Dj;k;�.�0/;

and as � preserves <lex,

'.x0; aj;k;�.�1/; : : : ; aj;k;�.�n�1/; y�.
Nb// 2 pDj;k;�.�0/

jBj;k;�.�0/:

As a result, by the choice of the aj;k;�’s,

'.aj;k;�.�0/; aj;k;�.�1/; : : : ; aj;k;�.�n�1/; y�.
Nb// holds,
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and thus
'.x0; : : : ; xn�1; y�. Nb// 2 pDj;k;�.�0/

˝ � � � ˝ pDj;k;�.�n�1/
:

This proves .1/, i.e. aD hai;k;� W i < �; k 2 Ui ; � 2 .I ˛i /<i is .˛0; I /-indiscernible (with
U D ¹.i; k/ 2 � � � W k 2 Uiº).

.2/ follows immediately from the construction in (1).

.3/ Now assume that .I; </ is well-ordered and ˛ satisfies ˛i D .i mod �/ and let
A � a with jAj < �. Since .I; </ is well-ordered, there exist an ordinal ˇ and an order
isomorphism � W ˇ !

S
aj;l;�2A

Range.�/. Since � is a regular cardinal and for every
aj;l;� 2 A we have jRange.�/j D j j̨ j < �, it follows that ˇ < �.

Since � < 2� � � and �<� D � (so cf.�/ � �), we have yj D supaj;l;�2A j < �.

Let i D yj � � C ˇ < �. By the choice of ˛, ˛i D ˇ and � 2 .I ˛i /<. This implies that
A � Ai;� . This gives (3.a). For (3.b), since dcl.Range.a// is a model, it is enough to deal
with non-algebraic types, which is exactly .2/.

Item (3.c) follows from the construction; we give the details. Let A� B with jBj< �.
By (3.a) there exist j < � and � 2 .I j̨ /< such that B � Aj;� . As cf.I / � �, there is
some Range.�/ < � 2 I . Let p 2 S.A/ be a non-algebraic type that is finitely satisfiable
inA and k 2UjC1 be such that .pjC1;k;�_� ;DjC1;�_�/ are the type (overAjC1;�_� )
and non-principal ultrafilter (on AjC1;�_� ) corresponding to p and A � AjC1;�_� as
above.

By Claim 3.3.1, for any Range.�/ <  2 I ,

AjC1;�_ D y��_�;�_ .AjC1;�_�/; pjC1;k;�_ D y��_�;�_ .pjC1;�_�/:

Observe that sinceA�Aj;� , y��_�;�_ fixesA pointwise. By Remark 3.2 and the choice
of the ultrafilters above, for every Range.�/ <  2 I , pDjC1;k;�_�

D pDjC1;k;�_ . Let
pD WD pDjC1;k;�_�

. It is finitely satisfiable in A.
By the choice of elements, for any Range.�/ <  2 I ,

ajC1;k;�_ ˆ pD jAj;�hajC1;k;�_ı W Range.�/ < ı < i:

We end by noting that since we are assuming that .I;</ is a cardinal and cf.I / � � > j̨ ,
it follows that j¹ W Range.�/ <  2 I ºj D jI j.

In stable theories, for any infinite indiscernible sequence I over some set A one may
take the limit type defined by

lim.I / D ¹'.x; c/ W '.a; c/ holds for cofinitely many a 2 I º:

It is a consistent complete type by stability. It is obviously finitely satisfiable in I . More-
over, if D is a non-principal ultrafilter on I , then pD D lim.I /. We often write lim.I=A/
D lim.I /jA.

Recall that for a theory T , �.T / is the least cardinal � such that for all B and type
p 2 S.B/ there exists A � B with jAj < � such that p does not fork over A, if such
a cardinal exists, and 1 otherwise. By, e.g., [18, Proposition 7.2.5], if �.T / <1 then
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�.T / � jT jC. For stable theories, this agrees with [14, Definition III.3.1] and [14, Corol-
lary III.3.3]

The following is [14, Lemma III.3.10]; we give a proof for completeness.

Lemma 3.4. Let T be a stable theory and M ˆ T . If M is .�.T /C @1/-saturated and
every countable indiscernible sequence over A � M , with jAj < �.T /, in M can be
extended to one of cardinality � then M is �-saturated.

Proof. We may assume that � > �.T / C @1. By passing to M eq (and T eq) there is
no harm in assuming that T eliminates imaginaries. Let p 2 S.C / with C � M and
jC j < �. Let B � C with jBj < �.T / be such that p does not fork over B . Let q � p
be a non-forking global extension. Since M is �.T /-saturated, we may find a sequence
S D hbi W i < !i �M satisfying bi ˆ qjBhbj W j < ii. Note that qjBS is stationary by
[14, Corollary III.2.11].

Since M is .�.T /C@1/-saturated, we may find a Morley sequence I D hai W i < !i
of q over SB , i.e. ai ˆ qjSBa<i and ai 2M . It follows that I is also a Morley sequence
of q over acl.B/.3 Let I � J �M be an indiscernible sequence (over B) of cardinality �.
As a result, J is also a Morley sequence of q over acl.B/.

By [14, Lemma III.1.10 (2)], lim.J=M/ D qjM and in particular lim.J=C / D p. By
[14, Corollary III.3.5 (1)], there is J0 � J with J n J0 indiscernible over C and jJ0j �
�.T /C jC j< �. In particular, jJ n J0j � @0 and thus for every c 2 J n J0, p D tp.c=C /.

Definition 3.5. Let T be a theory. We say thatM ˆ T is an infinitary EM-model based on
.˛; I / if M D dcl.a/, where a is a non-constant .˛; I /-indiscernible sequence for .˛; I /
as in Definition 3.1.

Lemma 3.6. Let T be any theory. Let � � @0 be a cardinal, .I;</ a linearly ordered set,
and ˛ 2 �U , where U is a set. If a D hai;� W i 2 U; � 2 .I ˛i /<i is an .˛; I /-indiscernible
sequence, in some modelM ˆ T , then there exists some set yU , with j yU j � jT j � jU j � �<� ,
and y̨ 2 � yU and an .y̨; I /-indiscernible sequence b whose underlying set is dcl.a/.

Proof. For any p � � let 'p W otp.p/! p be the unique order isomorphism. Let F be
the collection of all ;-definable functions. We consider the family yU of tuples

.f . Nv/; s0; p0; : : : ; sj Nvj�1; pj Nvj�1/

satisfying

� f . Nv/ 2 F ,

� s0; : : : ; sj Nvj�1 2 U ,

� for any i < j Nvj, pi � � with otp.pi / D ˛si ,

�
S
i<j Nvj pi 2 Ord.

3It is standard to see that I is independent and indiscernible over acl.B/. On the other hand,
since qjBS is stationary, it isolates a complete type over acl.BS/.
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We note that j yU j � jT j � jU j<@0 � .�<�/<@0 � jT j � jU j � �<� : Let y̨ 2 � yU be the function
mapping x D .f . Nv/; s0; p0; : : : ; sj Nvj�1; pj Nvj�1/ to

S
i<j Nvj pi < �. For any such x 2 yU and

� 2 .I y̨x /< set

bx;� D f .as0;��p0ı'p0 ; : : : ; asj Nvj�1;��pj Nvj�1ı'pj Nvj�1 /:

Note that for any j < j Nvj, .��pj / ı 'pj 2 .I
˛sj /<.

Let b D hbx;� W x 2 yU ; � 2 .I y̨x /<i. We will show that b is .y̨; I /-indiscernible.

Consider hxj 2 yU W j < ki, h�j 2 .I
y̨xj /< W j < ki and let � be a partial isomorphism

of .I; </ whose domain contains
S
j<k Range.�j /. For j < k, we write

bxj ;�j D fj .asj;0;�j�pj;0ı'pj;0 ; : : : ; asj;j Nvj j�1;�j�pj;j Nvj j�1ı'pj;j Nvj j�1
/:

Since a is .˛; U /-indiscernible, the type of

hasj;0;�j�pj;0ı'pj;0 ; : : : ; asj;j Nvj�1;�j�pj;j Nvj j�1ı'pj;j Nvj j�1
W j < ki

is equal to the type of

hasj;0;�.�j�pj;0ı'pj;0 /; : : : ; asj; Nvj�1;�.�j�pj;j Nvj j�1ı'pj;j Nvj j�1
/ W j < ki;

and consequently the type of hbxj ;�j W j < ki is equal to the type of hbxj ;�.�j / W j < ki.
Finally, let c 2 dcl.a/, that is, there exists a definable function f . Nv/ 2 F

and ai0;�0 ; : : : aij Nvj�1;�j Nvj�1 2 a such that c D f .ai0;�0 ; : : : aij Nvj�1;�j Nvj�1/. Let r DS
i<j Nvj Range.�i / and  W r ! otp.r/ be the unique order isomorphism. For any

j < j Nvj set pj D  .Range.�j //. For x D .f . Nv/; i0; p0; : : : ; ij Nvj�1; pj Nvj�1/ and
� D  �1, c D bx;� (because e.g. ��p0 ı 'p0 D  �1� .Range.�0// ı ' .Range.�0// D

 �1� .Range.�0// ı  ı �0 D �0).

Theorem 3.7. The following are equivalent for a complete L-theory T :

(1) T is stable.

(2) Let �, � and � be cardinals satisfying � D cf.�/ � min ¹�.T /; jT jCº C @1, �<� D
�� 2�CjT j and �D �<� ��, and let T � T sk be an expansion with definable Skolem
functions such that jT j D jT skj in a language L�Lsk. Then there exists an infinitary
EM-model M sk ˆ T sk based on .˛; �/, where ˛ 2 �U for some set U of cardinality
at most �, such that M DM sk�L is saturated of cardinality �.

(3) There exists a saturated model of singular cardinality.

Remark 3.8. For example, assuming T is stable, the assumptions in (2) hold for � D
� D 2�CjT j for any � D cf.�/ � �.T /C @1.

Proof. .1/).2/. Since T is stable, �.T / � jT jC by [14, Corollary III.3.3] and thus
min ¹�.T /; jT jCº D �.T /.

In the following, the superscript sk means that we work in T sk.
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We apply Proposition 3.3 (1, 3) with U there being a monster model for T sk and
.I; </ D .�; </. Consequently, there exists an .˛0; �/-indiscernible sequence a, where
˛0 is as in the proposition. Let M sk D dclsk.a/ and M D M sk�L. Note that jM skj D

jM j D � � �<� D �.
Towards applying Lemma 3.4, note thatM is indeed .�.T /C@1/-saturated by Propo-

sition 3.3 (3.b) and the assumption on �. Let I �M be an infinite countable indiscernible
sequence over some B �M with jBj < �.T / � �.

Since � < �cf.�/, necessarily cf.�/ � �, so by Proposition 3.3 (3.c) there is a non-
principal ultrafilter D on I and elements hai 2 dcl.Range.a// W i < �i satisfying

ai ˆ p
sk
D jBI hak W k < ii

for any i < �. Let pD be the restriction of psk
D

to L. Thus pD D lim.I / and for every
i < �,

ai ˆ lim.I /jBI hak W k < ii:

By stability, I C hai W i < �i is indiscernible over B (see also [17, Exercise 2.25] and
[14, Lemma III.1.7 (2)]). By Lemma 3.4, M is saturated.

.2/).3/. Let � D jT jC and let � D � D Æ�.�/. Then �<� D � because � is regu-
lar. Indeed, any function from some � < � to � is a function to Æ˛.�/ for some ˛ < �.
So �� D sup˛<�.Æ˛.�/�/. But sup˛<�.Æ˛.�/�/ D sup˛<�.Æ˛C1.�/�/, and Æ˛C1.�/� D
.2Æ˛.�//� D 2Æ˛.�/�� D 2Æ˛.�/ D Æ˛C1.�/ because � > �. Consequently, �� D � and
�<� D �.

Hence, by (2), there is a saturated model of size � (note that � is singular of cofinality
� < �).

.3/).1/. By (3), there is a saturated model of size �with � singular. Hence, �<�>�.
As a result, by [14, Theorem VIII.4.7], T is �-stable (and hence stable).

4. Order-type graphs with large chromatic number

In this section we discuss graphs whose vertices are (possibly infinite) increasing
sequences, where the edge relation is determined by the order type. More specifically,
our main interest in this section is the following type of graphs.

Definition 4.1. Let .I; </ and .J; </ be linearly ordered sets and Na ¤ Nb 2 .I J /< be
increasing sequences. We define a graph EJ

Na; Nb
and a directed graph DJ

Na; Nb
on .I J /< by:

� Nc EJ
Na; Nb
Nd , otp. Nc; Nd/ D otp. Na; Nb/ _ otp. Nd; Nc/ D otp. Na; Nb/.

� Nc DJ

Na; Nb
Nd , otp. Nc; Nd/ D otp. Na; Nb/:

We omit J from EJ
Na; Nb

and DJ

Na; Nb
when it is clear from the context.

We call these graphs the .directed/ order-type graphs.

Remark 4.2. Although it will not define a graph, we sometimes use the notation D
Na; Nb

and E
Na; Nb even if Na D Nb.
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In Section 4.1 we isolate a family of order-type graphs whose members contain all
finite subgraphs of Shm.!/ for a certain integerm (Corollary 4.7). In Section 4.2 we show
that order-type graphs with large chromatic number fall into this family (Theorem 4.8).

4.1. Embedding shift graphs into order-type graphs

Definition 4.3. Let .I;</ and .J;</ be linearly ordered sets, Na; Nb 2 .I J /< be increasing
sequences and 0 < k < !.

We say that h Na; Nbi is k-orderly if there exists a finite partition Conv.Im. Na/[ Im. Nb//D
C0 [ � � � [Ck into convex increasing subsets such that for every n < k and i 2 J we have
ai 2 Cn, bi 2 CnC1.

Recall the following from [7].

Definition 4.4. For any linearly ordered set .A;</ and k � 1, let LShk.A/ be the directed
graph ..Ak/<;D/, were .�; �/ 2D if and only if �.i/D �.i � 1/ for 0 < i < k (if k > 1)
and �.0/ < �.0/ (if k D 1).

Lemma 4.5. Let 0 < k < ! be an integer, ˛; ı be ordinals, and .I;</ any infinite linearly
ordered set satisfying .ı � .2 � ˛ C 1/k ; <lex/ � .I; </. Let Na; Nb 2 .I ˛/<. If h Na; Nbi is k-
orderly then there exists a function ' W LShk.ı/! .I ˛/< such that for any �;� 2 LShk.ı/,
if .�; �/ 2 D then '.�/ D

Na; Nb '.�/.

Proof. Assume that Conv.Im. Na/; Im. Nb// D C0 [ � � � [ Ck , as in the definition.
Let ˛� D ˛ [ ¹ˇ� W ˇ < ˛º [ ¹1º, where the ˇ�’s are immediate predecessors and

1 is a maximal element, i.e. for any ˇ <  < ˛,

�  < ˇ� < ˇ,

� � < ˇ� if and only  < ˇ,

�  <1.

For any S � ˛, let S� be S [ ¹s� W s 2 Sº [ ¹0�;1º.
For any x 2 .˛�/n, we denote by x� the immediate predecessor of x in the lexico-

graphic order if it exists, and otherwise let x�D x. Note that for any xD .x0; : : : ;xn�1/¤
.0�; : : : ; 0�/ 2 .˛�/n, if the maximal l < n with xl ¤ 0� satisfies xl < ˛ then x has an
immediate predecessor.

Note that the order type of ˛� is 2 � ˛C 1, so by the assumption on I we may replace I
by an isomorphic copy to get that .ı � .˛�/k ; <lex/ � .I; </.

For any 0� i � k � 1 let Si D ¹ˇ < ˛ W aˇ 2 Ciº and let G D ¹ Ng D hgi W Si [ ¹1º!

.S�
k�1
� � � � � S�0 ; <

lex/ W i < ki W gi increasingº.
For any Ng 2 G and � 2 .ık/< let f�; Ng 2 .I ˛/< be defined by

f�; Ng.ˇ/ D .�.nˇ /; gnˇ .ˇ// 2 ı � .S
�
k�1 � � � � � S

�
0 / � I;

where ˇ 2 Snˇ . We note that f�; Ng is increasing: if nˇ1 < nˇ2 then �.nˇ1/ < �.nˇ2/. If
nˇ1 D nˇ2 then the result follows since gnˇ1 D gnˇ2 is increasing.
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Claim 4.5.1. There exists Ng 2 G such that for any �;� 2 Shk.ı/ satisfying �.i/D �.i � 1/
for 0 < i < k .if k > 1/ or �.0/ < �.0/ .if k D 1/, f�; Ng D Na; Nb f�; Ng .

Proof. For the purpose of this proof, for 1 � i � k let �i W S�k�1 � � � � � S
�
0 !

S�
k�1
� � � � � S�

k�i
be the projection on the first i coordinates. We choose increasing func-

tions gi W Si [ ¹1º! S�
k�1
� � � � � S�

k�i
� ¹0�º � � � � � ¹0�º by downward induction on

i < k. Define gk�1 by setting gk�1.ˇ/ D .ˇ; 0�; : : : ; 0�/ for ˇ 2 Sk�1 [ ¹1º.
Assume that gi has been defined and we want to define gi�1.
For any ˇ 2 Si�1 if there is  2 Si minimal such that bˇ � a then define

gi�1.ˇ/ D

´
gi ./ D .�k�i .gi .//; 0

�; : : : ; 0�/ if a D bˇ ;

.�i .gi .//
�; ˇ; 0�; : : : ; 0�/ otherwise.

If such a minimal  2 Si does not exist then we define

gi�1.ˇ/ D .�i .gi .1//; ˇ; 0
�; : : : ; 0�/:

Lastly,
gi�1.1/ D .�i .gi .1//;1; 0

�; : : : ; 0�/:

Subclaim. For any 0 � i � k � 1, and for every ˇ 2 Si , �i .gi .ˇ// has an immediate
predecessor, i.e., for every  < ˇ 2 Si , �i .gi .ˇ// > �i .gi .ˇ//�.

For any 0 � i � k � 1, gi is increasing.

Proof. It follows by downward induction that for any ˇ 2 Si , if gi .ˇ/ D .x0; : : : ; xk�1/
then the maximal l < k such that xl ¤ 0� satisfies xl < ˛.

The fact that the gi s are increasing now follows by downward induction. subclaim

The main observation is that for any 1 � i < k,

.�/ otp.haˇ W ˇ 2 Si i; hbˇ W ˇ 2 Si�1i/ D otp.hgi .ˇ/ W ˇ 2 Si i; hgi�1.ˇ/ W ˇ 2 Si�1i/:

To see this, let 1 � i < k. Since gi and gi�1 are increasing, it is enough to compare aˇ1
and bˇ2 , where ˇ1 2 Si and ˇ2 2 Si�1.

� If aˇ1 D bˇ2 then ˇ1 2 Si is minimal such that bˇ2 � aˇ1 and thus by definition
gi�1.ˇ2/ D gi .ˇ1/.

� Assume aˇ1 < bˇ2 . If there does not exist a minimal  2 Si with bˇ2 � a then

gi�1.ˇ2/ D .�i .gi .1//; ˇ2; 0
�; : : : ; 0�/

> .�i .gi .ˇ1//; 0
�; : : : ; 0�/ D gi .ˇ1/:

Otherwise, let ˇ1 <  2 Si be minimal such that bˇ2 � a . If bˇ2 D a then gi�1.ˇ2/D
gi ./ > gi .ˇ1/: If bˇ2 < a then

gi�1.ˇ2/ D .�i .gi .//
�; ˇ2; 0

�; : : : ; 0�/

> .�i .gi .ˇ1//; 0
�; 0�; : : : ; 0�/ D gi .ˇ1/:
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� Assume aˇ1 > bˇ2 and let  2 Si be minimal such that a � bˇ2 , so  � ˇ1. If a D bˇ2
then  < ˇ1 and gi�1.ˇ2/ D gi ./ < gi .ˇ1/: If a > bˇ2 then

gi�1.ˇ2/ D .�i .gi .//
�; ˇ2; 0

�; : : : ; 0�/

< .�i .gi .ˇ1//; 0
�; : : : ; 0�/ D gi .ˇ1/:

This proves .�/. Let �; � 2 LShk.ı/ be as in the statement of the lemma. We proceed to
prove that f�; Ng D Na; Nb f�; Ng .

Let ˇ1; ˇ2 < ˛ and assume that ˇ1 2 Sn1 and ˇ2 2 Sn2 for some 0 � n1; n2 � k � 1.
Note that if bˇ2 2 Cn for some 0 < n � k, then n2 D n � 1. Assume that k > 1.

� Assume that 0 < n1 < k, bˇ2 2 Cn1 . So n2 D n1 � 1. Assume that aˇ1 � bˇ2 , where
� 2 ¹<;>;Dº. By .�/, gn1.ˇ1/� gn2.ˇ2/ and as a result

f�; Ng.ˇ1/ D .�.n1/; gn1.ˇ1// D .�.n1 � 1/; gn1.ˇ1//� .�.n1 � 1/; gn2.ˇ2//
D .�.n2/; gn2.ˇ2// D f�; Ng.ˇ2/:

� If bˇ2 2 Cn for some n1 < n < k then necessarily aˇ1 < bˇ2 and n2 D n � 1 � n1.
Consequently,

f�; Ng.ˇ1/ D .�.n1/; gn1.ˇ1// < .�.n1 C 1/; gn2.ˇ2// D .�.n1/; gn2.ˇ2//

� .�.n2/; gn2.ˇ2// D f�; Ng.ˇ2/:

� If bˇ2 2 Cn for some n < n1 then necessarily 0 < n < n1, aˇ1 > bˇ2 and n2 D n� 1 <
n1 � 1. Hence

f�; Ng.ˇ1/ D .�.n1/; gn1.ˇ1// D .�.n1 � 1/; gn1.ˇ1//

> .�.n2/; gn2.ˇ2// D f�; Ng.ˇ2/:

� If bˇ2 2 Ck then necessarily n2 D k � 1 and aˇ1 < bˇ2 . As a result

f�; Ng.ˇ1/ D .�.n1/; gn1.ˇ1// � .�.k � 1/; gn1.ˇ1// D .�.k � 2/; gn1.ˇ1//

< .�.k � 1/; gn2.ˇ2// D .�.n2/; gn2.ˇ2// D f�; Ng.ˇ2/:

If k D 1 then n1 D n2 D 0 and

f�; Ng.ˇ1/ D .�.0/; gn1.ˇ1// < .�.0/; gn2.ˇ2// D f�; Ng.ˇ2/: claim

We may now define a map ' W LShk.ı/! .I ˛/< by letting for � 2 LShk.ı/, '.�/ D
f�; Ng 2 .I

˛/<. This maps satisfies the requirements by the previous claim.

Definition 4.6. Let .I;</ and .J;</ be linearly ordered sets and Na; Nb 2 .I J /< be increas-
ing sequences. We say that ¹ Na; Nbº is k-orderly covered if there exists an increasing ordered
partition hJ" W " 2 Si of J into convex sets for some S � J such that for every " 2 S ,
exactly one of the following holds:

(1) h Na�J"; Nb�J"i is k"-orderly for some 0 < k" � k;
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(2) h Nb�J"; Na�J"i is k"-orderly for some 0 < k" � k;

(3) jJ"j D 1 and Na�J" D Nb�J".
Moreover, for every " < "0 2 S , Im. Na�J"/ < Im. Nb�J"0/ and Im. Nb�J"/ < Im. Na�J"0/.

Corollary 4.7. Let ˛ be an ordinal, and .I; </ any infinite linearly ordered set with
.j˛jCC@0;</� .I;</. Let Na¤ Nb 2 .I ˛/< be some fixed sequences. If ¹ Na; Nbº is k-orderly
covered then ..I ˛/<; E Na; Nb/ contains all finite subgraphs of Shm.!/ for some m � k.

Proof. Let hJ" W " 2 Si be an increasing partition of ˛ as in Definition 4.6, where S � ˛.
Since Na ¤ Nb, there exists " 2 S such that jJ"j > 1.

For any " 2 S with jJ"j > 1, we say that J" is

� of type A if h Na�J"; Nb�J"i is k"-orderly,

� of type B if h Nb�J"; Na�J"i is k"-orderly.

Let N < ! be some natural number. By replacing I with an isomorphic copy, we
may assume that .˛ � .N � .2˛ C 1/k/; <lex/ � .I; </. Let " 2 S and let I" D ¹"º �
.N � .2˛ C 1/k/.

If jJ"j D 1 then we let '" W LSh1.N /! ..I"/
J"/< be such that '".�/ is the constant

function giving ."; 0; : : : ; 0/.
For any " 2 S let E"

Na; Nb
D E

Na�J"; Nb�J"
and D"

Na; Nb
D D

Na�J"; Nb�J"
and similarly E"

Nb; Na

and D"
Nb; Na

.

If jJ"j > 1 and J" is of type A then let '" W LShk".N / ! ...I"/
J"/<; D

"

Na; Nb
/ be as

supplied by Lemma 4.5, i.e., for any �; � 2 .N k"/<, if �.i/ D �.i � 1/ for 0 < i < k"
(if k" > 1) and �.0/ < �.0/ (if k" D 1) then otp.'".�/; '".�// D otp. Na�J"; Nb�J"/.

If jJ"j > 1 and J" is of type B then let b'" W LShk".N / ! ...I"/
J"/<; D

"
Nb; Na
/ be as

supplied by Lemma 4.5, i.e, for any �; � 2 .N k"/<, if �.i/ D �.i � 1/ for 0 < i < k"
(if k" > 1) and �.0/ < �.0/ (if k" D 1) then otp.b'".�/; b'".�// D otp. Nb�J"; Na�J"/.

By composing with the isomorphism RShk".N / ! LShk".N / mapping the tuple
.x0; : : : ; xk"�1/ to .N � 1� xk"�1; : : : ;N � 1� x0/, we arrive at a directed graph homo-
morphism '" W RShk".N /! ...I"/

J"/<; D
"
Nb; Na
/. By definition this map can be seen as a

directed graph homomorphism '" W LShk".N /! ...I"/
J"/<;D

"

Na; Nb
/.

For 1 �m � k let �m W .N k/<! .Nm/< be the projection on the firstm coordinates.
Note that it is a directed graph homomorphism LShk.N /! LShm.N /. We now define
' W LShk.N /! ..I ˛/<; D Na; Nb/. For any � 2 .N k/<, " 2 S and ˇ < ˛, let ".ˇ/ 2 S be
such that ˇ 2 J". We define

'.�/.ˇ/ D .".ˇ/; '".ˇ/.�k".�//.ˇ//:

Since, for any " 2 S and � 2 .N k/<, '".�k".�// is increasing, it is clear that '.�/ is
increasing as well.

Assume that �; � 2 LShk.N / are connected, i.e., �.i/ D �.i � 1/ for 0 < i < k

(if k > 1) and �.0/< �.0/ (if kD 1). It is routine to check that otp.'.�/;'.�//D otp. Na; Nb/.
As a result, ' is also a graph homomorphism from Shk.N / to ..I ˛/<; E Na; Nb/.
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We have proved that for every N < ! there exists a graph homomorphism 'N W

Shk.N / ! ..I ˛/<; E Na; Nb/. By compactness, we may find a graph homomorphism
Shk.!/!H for some elementary extension ..I ˛/<;E Na; Nb/ � .H ;E/. By Fact 2.5, there
exists m � k such that ..I ˛/<; E Na; Nb/ contains all finite subgraphs of Shm.!/.

4.2. Analyzing order-type graphs with large chromatic number

The main goal of this section is to prove that every order-type graph of large enough
chromatic number is k-orderly covered for some k, i.e. we will prove the following.

Theorem 4.8. Let ˛ be an ordinal, and .�; </ an infinite ordinal with j˛jC C @0 < � .
Let Na ¤ Nb 2 .�˛/< be some fixed sequences. Let G D ..�˛/<; E Na; Nb/. If �.G/ > Æ2.@0/
then G contains all finite subgraphs of Shm.!/ for some m 2 N.

In order to achieve this we will need to analyze the order-type of two infinite
sequences. The tools developed here, we believe, may be useful in their own right.

We fix some ordinals ˛ and � with � infinite and Na¤ Nb 2 .�˛/< increasing sequences.
We partition ˛ D J0 [ JC [ J�, where

J0 D ¹ˇ < ˛ W aˇ D bˇ º; JC D ¹ˇ < ˛ W aˇ < bˇ º; J� D ¹ˇ < ˛ W bˇ < aˇ º:

Let R be the minimal convex equivalence relation on ˛ containing

¹.ˇ; / W aˇ D bº; ¹.ˇ; / W aˇ < a � bˇ º and ¹.ˇ; / W bˇ < b � aˇ º:

Lemma 4.9. Let A;B 2 ˛=R and assume that A < B . Then Im. Na�A/ < Im. Nb�B/ and
Im. Nb�A/ < Im. Na�B/.

Proof. We will show that Im. Na�A/ < Im. Nb�B/; the other assertion follows similarly.
Let ˇ 2 A and  2 B , so ˇ <  . If aˇ � b then bˇ < b � aˇ and hence ˇ R  ,
contradiction.

Lemma 4.10. (1) For any ˇ 2 J0, Œˇ�R � J0.

(2) For any ˇ 2 JC, Œˇ�R � JC.

(3) For any ˇ 2 J�, Œˇ�R � J�. Moreover, Œˇ�R D ¹ˇº for ˇ 2 J0.

Proof. To prove (1)–(3) it is sufficient to prove a weaker version where we assume that
ˇ D min Œˇ�R.

We show .2/; items .1/ and .3/ are proved similarly. Assume that Œˇ�R 6¨ JC. Let
X D ¹ı < ˛ W ı 2 Œˇ�R ^ .8ˇ � x � ı/.ax < bx/º (in (1) we replace ax < bx by ax D bx
and in (3) by ax > bx). By the assumptions, X is a non-empty initial segment of Œˇ�R and
Y D Œˇ�R nX is non-empty convex.

We will show that both X and Y are closed under the relations defining R and thus
derive a contradiction to the minimality of R.
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Assume that ay D bz with y 2 X and z 2 Y . Since X is an initial segment, y < z.
Consequently, ay < by < bz , contradiction. Now assume that z 2 X and y 2 Y , so there
exists z < x � y with ax � bx and as a result az <bz <bx � ax � ay D bz , contradiction.

Assume that ay < az � by with y 2 X and z 2 Y , so y < z. Hence there is some
y < x � z with ax � bx , hence ay < az � by < bx � ax � az , contradiction. Now
assume that z 2 X and y 2 Y , so z < y. This implies that az < ay < az , contradiction.

Assume that by < bz � ay with y 2 X and z 2 Y . Consequently, ay < by < bz � ay ,
contradiction. Now assume that z 2 X and y 2 Y , so z < y. As a result, bz < by < bz ,
contradiction.

Finally, we show the “moreover” part. Assume it is not true; then by .1/ it is easy
to see that both ¹ˇº and Œˇ�R n ¹ˇº are closed under the relations generating R. This
contradicts the minimality of R.

By Lemma 4.10, R�JC is an equivalence relation on JC. For any A 2 JC=R we
construct a set ZA � A. We construct a sequence ıAn for n < ! as follows. Let ıA0 D
minA and assume that ıAn has been chosen. Let ıAnC1 2 A be the minimal index satisfying
bıAn � aıAnC1

if such exists, otherwise stop. Let ZA D hıAn W n < nAi, where nA � !. Note

that ZA is a strictly increasing sequence because A 2 JC=R. Furthermore, set CA D
Conv.Im. Na�A/ [ Im. Nb�A// and

� CA0 D ŒaıA
0
; bıA

0
/;

� if nA D ! then for any 0 < n < ! set CAn D ŒbıA
n�1
; bıAn /;

� if nA < ! then for any 0 < n < nA set CAn D ŒbıA
n�1
; bıAn / and CAnA D ¹x 2 C

A W

bıA
nA�1

� xº.

Lemma 4.11. Let A 2 JC=R.

(1) If nA D ! then A D
S
n<! Œı

A
0 ; ı

A
n �.

(2) If nA D ! then CA D
S
n<! C

A
n .

(3) For every ˇ 2 A and 0 � n < nA, aˇ 2 CAn , bˇ 2 C
A
nC1.

Proof. (1) Let X D
S
n<! Œı

A
0 ; ı

A
n �. Since the ıAn ’s are chosen from A, and A is convex,

X � A. As in the proof of Lemma 4.10, it is enough to show that both X and Y D A nX
are closed under the relations defining R.

If x; y 2 A satisfy ax D by then since by D ax < bx we conclude that y < x and thus
if x 2 X then y 2 X . Now if we assume that y 2 X , e.g. y < ıAn , then ax D by < bıAn �
aıA
nC1

, so x < ıAnC1.

Assume that x; y 2 A satisfy ax < ay � bx . If x 2 X , e.g. x < ıAn , then ax < ay �
bx < bıAn � aıAnC1

, so y < ıAnC1. If y 2 X then since x < y we conclude that x 2 X as
well.

Assume that x; y 2 A satisfy bx < by � ax . If y 2 X then since x < y it follows that
x 2 X as well. Assume that y 2 Y , i.e. y � ıAn for all n. But then bıAn � by � ax < bx
for all n. This implies that ıAn < x for all n and hence x … X as well.
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(2) The right-to-left inclusion is straightforward. For the other inclusion, let x 2 CA.
Since ıA0 D minA and A 2 JC=R, it follows that aıA

0
D minCA and hence aıA

0
� x. If

there exists n < ! with x < bıAn then for the minimal such n, x 2 CAn . Otherwise, since
aˇ < bˇ for any ˇ 2 A, we may assume that x � bˇ for some ˇ 2 A. Hence x � bıAn for
some n < ! by .1/.

(3) Let ˇ 2 A and n be as in the statement. Assume that nA D ! is infinite (nA < ! is
similar).

Let aˇ 2CAn . First assume nD 0, i.e. aıA
0
� aˇ < bıA

0
. It is always true that bıA

0
� bˇ .

If ˇ � ıA1 then aıA
1
� aˇ < bıA

0
, contradicting the choice of ıA1 .

Now, if n > 0 then bıA
n�1
� aˇ < bıAn and thus by definition of ıAn , we have ıAn � ˇ so

bıAn � bˇ . If, on the other hand, ˇ � ıAnC1 then aıA
nC1
� aˇ < bıAn , contradiction. Hence

bıAn � bˇ < bıAnC1
.

Let bˇ 2 CAnC1. By .2/, aˇ 2 CAk for some k < !. Using the above we conclude that
bˇ 2 C

A
kC1

and thus k C 1 D nC 1, i.e. k D n.

Lemma 4.12. For any A 2 JC=R there exists an increasing sequence h�An 2 A W n < nAi
such that for every n with nC 1 < nA,

a�A
nC1
� b�An ;

and for every n with nC 2 < nA,

b�An < a�AnC2
:

Proof. Let n be such that n C 1 < nA. Assume for now that bın ¤ aınC1 (and hence
bın < aınC1 ) and assume towards a contradiction that

.�/ for any " 2 .ın; ınC1/,
b" < aınC1 :

Note that this implies that for any such ", aın < a" < bın < b" < aınC1 . LetX D ¹ˇ 2 A W
ˇ < ınC1º and Y D A nX . This gives a convex partition of A, and we will show that both
X and Y are closed under the relations defining R.

Let ˇ; 2Awith aˇ D b . If ˇ < ınC1 and  � ınC1 then bınC1 � b D aˇ < aınC1 ,
contradiction. Now assume that  < ınC1 and ˇ � ınC1. If  � ın then aınC1 � aˇ D
b � bın , contradiction. If  > ın then aınC1 � aˇ D b < aınC1 since  2 .ın; ınC1/
and by .�/, contradiction.

Let ˇ;  2 A with aˇ < a � bˇ . Assume that ˇ < ınC1 and  � ınC1. If ˇ � ın
then aınC1 � a � bˇ � bın , contradiction. If ˇ 2 .ın; ınC1/ then bˇ < aınC1 � a � bˇ
by .�/, contradiction. Note that we cannot have  < ınC1 and ˇ � ınC1 since ˇ <  by
assumption.

Let ˇ;  2 A with bˇ < b � aˇ . If ˇ < ınC1 and  � ınC1 then bınC1 � b � aˇ <
aınC1 < bınC1 , contradiction. As before,  < ınC1 and ˇ � ınC1 is not possible since
ˇ <  .
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As a result, we may conclude that for all n such that nC 1 < nA we may find n 2
.ın; ınC1� satisfying aın < an � bın � aınC1 � bn (if bın D aınC1 choose n D ınC1,
otherwise use the above).

Let I D ¹ın; n W nC 1 < nAº. The crucial property is that for every  2 I n ¹sup I º
there is some ˇ 2 I satisfying a <aˇ � b . We note that for every n such that nC1< nA,
if  � ın then ˇ � ınC1. Indeed, otherwise aınC1 < aˇ � b � bın , contradiction.

We construct a sequence h�n W n < ki for some k � ! as follows. Define �0 D ı0 and
for every n let �nC1 2 I be maximal4 with a�n < a�nC1 � b�n , if it exists. Obviously, this
is an increasing sequence. We claim that k � nA. By induction on n < k with n < nA,
�n � ın. In particular, if nC 1 < nA then �nC1 exists. Finally, we note that by maximality,
for all nC 2 < nA, a�nC1 � b�n < a�nC2 .

For A 2 J�=R we make dual (i.e. exchanging the roles of Na and Nb) constructions and
similar properties hold.

Corollary 4.13. Let ˛ be an ordinal, and .�; </ an infinite ordinal with j˛jC C @0 < � .
Let Na ¤ Nb 2 .�˛/< be some fixed sequences. Let G D ..�˛/<; E Na; Nb/. If there exists
0 < k < ! with nA � k for all A 2 .JC [ J�/=R then G contains all finite subgraphs
of Shm.!/ for some m � k.

Proof. By Lemmas 4.9 and 4.11 (3), ¹ Na; Nbº is k-orderly covered in the sense of Defini-
tion 4.6. Now apply Corollary 4.7.

The aim of the rest of this section is to prove that ¹nA W A 2 .JC [ J�/=Rº has a finite
bound. From now on we will only need the sequences defined in Lemma 4.12.

Lemma 4.14. If �.G/ > 2@0 then for any A 2 .JC [ J�/=R, nA < !.

Proof. We assume that A 2 JC=R; the proof for A 2 J�=R is similar. Assume towards a
contradiction that nA D !. We will show that �.G/ � 2@0 .

Let S D ¹ˇ � � W cf.ˇ/ D @0º. Let h�l D �Al 2 A W l < !i be the sequence supplied
by Lemma 4.12.

For any  2 S choose an increasing sequence h˛;n W n < !i �  of ordinals with
limit  . We define a coloring map c W .�˛/< ! 2@0�@0 . For any Nf 2 .�˛/< let . Nf / D
sup ¹f�l W l < !º 2 S and

c. Nf / D ¹.l; n/ W l; n < !; f�l < ˛. Nf /;nº:

To show that it is a legal coloring, let Nf ; Ng 2 .�˛/< be such that otp. Nf ; Ng/D otp. Na; Nb/. By
assumption f�l < f�lC1 � g�l � f�lC2 for l < !, and hence . Nf /D . Ng/. By definition,
there is some n < ! such that f�0 < ˛. Nf /;n and let k be the minimal such that f�kC1 �
˛. Nf /;n. So by minimality of k,

f�k < ˛. Nf /;n � f�kC1 � g�k ;

and hence .k; n/ 2 c. Nf / but .k; n/ … c. Ng/, so c. Nf / ¤ c. Ng/.

4If nA is finite then such a maximal element clearly exists. Otherwise, for � 2 I there is some
n < ! such that b� < aın , and hence � 2 ¹� 2 I W a� � b� º is finite.
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The next lemma requires a more complicated argument: see Section 5 below. Let us
introduce some notation.

Fix some sequence hA" 2 .JC=R W "<!i. For any "<!, let J"D¹�
A"
n 2A" W n<nA"º

be the sequence supplied by Lemma 4.12 applied to A". Let J D
S
"<! J", � D .�

J /<,

R0 D ¹. Nc; Nd/ 2 �2 W otp. Nc; Nd/ D otp. Na�J; Nb�J /º and � D Æ2.@0/:

Note that R0 is an irreflexive relation on � such that if f1; f2 2 � and f1 R0 f2, then for
every " < ! and i 2 J", the following hold:

f1.i/ < f2.i/; (1)

and for any i 2 J" with Suc.i/ 2 J",

f1.Suc.i// � f2.i/; (2)

and for any i 2 J" with Suc.Suc.i// 2 J",

f2.i/ < f1.Suc.Suc.i///; (3)

where Suc.i/ is the successor of i in J".
Under these assumptions (or more generally under Assumption 5.1), we will prove in

Conclusion 5.9 that

.�/ If nA" <! for all " < !, then there exists a function c W�! � such that if f1; f2 2�
and f1 R0 f2 then c.f1/ ¤ c.f2/. In other words, there exists a coloring of the
directed graph .�;R0/ of cardinality �.

Lemma 4.15. If �.G/ > Æ2.@0/ then the set ¹nA W A 2 .JC [ J�/=Rº is bounded.

Proof. By Lemma 4.14, for any A 2 .JC [ J�/=R, nA < !. We will show that ¹nA W
A 2 JC=Rº and ¹nA W A 2 J�=Rº are both bounded.

Assume that ¹nA W A 2 JC=Rº is unbounded. Let ¹A" 2 JC=R W " < !º be a family
of convex equivalence classes such that " < nA" .

By .�/, there exists a function c W � ! Æ2.@0/ such that if f1; f2 2 � and
f1 R

0 f2 then c.f1/ ¤ c.f2/. Let H D .�; .R0/sym/ be the graph induced by R0 (i.e.
. Nc; Nd/ 2 .R0/sym , . Nc; Nd/ 2 R0 _ . Nd; Nc/ 2 R0). The map c induces a coloring on H and
hence �.H/ � Æ2.@0/. Since the map .�˛/< ! � given by � 7! ��J is a graph homo-
morphism, �.G/ � Æ2.@0/, and this contradicts the assumption.

If on the other hand ¹nA W A 2 J�=Rº is unbounded then we proceed as above but
using

R00 D ¹. Nc; Nd/ 2 �2 W otp. Nc; Nd/ D otp. Nb�J; Na�J /º

and the dual construction (replacing R0 by R00 in .�/) mentioned above instead and arrive
at a similar contradiction.

Finally, we may conclude:

Proof of Theorem 4.8. This is a direct consequence of Corollary 4.13 and Lemma 4.15.
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5. Coloring increasing functions

This section’s main result is Conclusion 5.9, used in the final stage of the previous section.
We prove that under mild conditions on a directed graph, namely Assumption 5.1, on a
family of strictly increasing functions there exists a coloring of small cardinality.

Let � D cf.�/ be a regular cardinal and .J; </ a well-order of cofinality �. Let
� D .2�/C, � be an ordinal and � D �<� a cardinal.

Let hJ" W " < �i be an increasing partition of J into finite convex sets. Assume that
sup"<� jJ"j D !. Let D be a non-principal ultrafilter on � containing the filter generated
by ¹¹" < � W jJ"j � nº W n < !º.

Let� be the set of functions from J to � that are strictly increasing on each J" (" < �).
Let H D .� C 1/� .

Assumption 5.1. R is an irreflexive relation on � such that if f1; f2 2 � and f1 R f2,
then for every " < � and i 2 J",

f1.i/ < f2.i/; (1)

and for any i 2 J" with Suc.i/ 2 J",

f1.Suc.i// � f2.i/; (2)

and for any i 2 J" with Suc.Suc.i// 2 J",

f2.i/ < f1.Suc.Suc.i///; (3)

where Suc.i/ is the successor of i in the finite set J".

We say a subset X of � is trivial if f1 6R f2 for any f1; f2 2 X .

Definition 5.2. An approximation a is a partition � D
S
s2Sa

�a
s (so all the �a

s’s are
non-empty), �a

s 2 �
<� and ha

s 2 H (s 2 Sa) satisfying

(1) for every s 2 Sa and f 2 �a
s , ¹" < � W Range.f �J"/ � ha

s."/º 2 D ;

(2) if s ¤ t 2 Sa and �a
s D �

a
t then for every f1 2 �a

s and f2 2 �a
t , f1 6R f2.

We want to define when one approximation is better than the other.

Definition 5.3. For two approximations a and b we will say that a Eg b if there exists a
surjective function g W Sb ! Sa satisfying

(1) for any s 2 Sa, ¹�b
t W t 2 g

�1.s/º is a partition of �a
s;

(2) if s 2 Sa and �a
s is trivial then g�1.s/ is a singleton t 2 Sb satisfying ha

s D h
b
t and

�a
s D �

b
t (in particular, �a

t is also trivial);

(3) for t 2 Sb, ¹" < � W hb
t ."/ � h

a
g.t/

."/º 2 D ;

(4) for t 2 Sb, �a
g.t/

is an initial segment of �b
t .

We will say that a Gg b if a Eg b and in addition for every t 2 Sb, either �b
t is trivial

or ¹" < � W hb
t ."/ < h

a
g.t/

."/º 2 D .
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The following is clear.

Lemma 5.4. Let a; b and c be approximations. If a Eg b and b Eh c then a Egıh c. If
in addition either a Gg b or b Gh c then a Ggıh c.

Proposition 5.5. Let a be an approximation. Then there exists an approximation a Eg b
satisfying the following:

(1) If t 2 Sb,�a
g.t/

is non-trivial and ¹" < � W 0 < cf.ha
g.t/

."// � �º 2D then either�b
t

is trivial or ¹" < � W hb
t ."/ < h

a
g.t/

."/º 2 D .

(2) If t 2 Sb is such that ¹" < � W 0 < cf.ha
g.t/

."// � �º … D then hb
t D h

a
g.t/

and �b
t D

�a
g.t/

.

Lastly, for t 2 Sb, if �a
g.t/
2 �� with � < � then �b

t 2 �
�C1.

Proof. We partition Sa into S1 D ¹s 2 Sa W .8
D" < �/.0 < cf.ha

s."// � �/ and �a
s is

non-trivialº and S0 D Sa n S1.
Fix any s 2 S1. For any " < �, if 0 < cf.ha

s."// � � we choose an unbounded subset
Cs;" � h

a
s."/ of order type cf.ha

s."//, and we set Cs;" D ¹ha
s."//º otherwise.

Set As D ¹" < � W 0 < cf.ha
s."// � �º. Note that As 2 D .

Let Hs D ¹h 2 H W if " 2 As then h."/ 2 Cs;", and h."/ D ha
s."/ otherwiseº. Since

�� D �, jHsj � � and hence there is some �s � � and an enumeration hhs;� W � < �si

of Hs .
By induction on � < �s we define

�s;� D ¹f 2 �
a
s W .8

D" < �/.Range.f �J"/ � hs;�."//º n
[
˛<�

�s;˛;

and for � D �s ,

�s;� D ¹f 2�
a
s W .8

D" < �/.ha
s."/ is a successor and ha

s."/� 1Dmax Range.f �J"//º:

We claim that �a
s D

F
���s

�s;� . Let f 2 �a
s . Note that for every " 2 As either (a) there

is an ordinal  2 Cs;" such that Range.f �J"/ �  or (b) there is no such  . We may find
A0s � As such that A0s 2 D and either (a) holds for all " 2 A0s , or (b) holds for all " 2 A0s .

Assume that (a) holds for all " 2A0s and let h" W " 2A0siwitness this. Define a function
h 2 Hs by setting h."/ D " for all " 2 A0s . For " … A0s choose arbitrary h."/ as long
as h 2 Hs . Let � < �s be minimal such that .8D" < �/.Range.f �J"/ � hs;�."//, so
f 2 �s;� .

Now, assume that (b) holds for all " 2 A0s . As a is an approximation (see Defini-
tion 5.2 (1)) we may assume that for all " 2 A0s , Range.f �J"/ � ha

s."/ but we cannot find
any  2Cs;" satisfying Range.f �J"/�  . For any " 2A0s , because J" is finite this implies
that cf.ha

s."// D 1, i.e. ha
s."/ is a successor ordinal and ha

s."/ � 1 D max Range.f �J"/.
Hence f 2 �s;�s .

Let Sb D ¹.s; �/ W s 2 S1; � � �s; �s;� ¤ ;º [ S0 and let g W Sb! Sa be the function
defined by g.s; �/ D s for s 2 S1 and g.s/ D s otherwise. For any s 2 S0 let �b

s D �
a
s ,
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hb
s D h

a
s and �b

s D �
a
s
_
h0i. For s 2 S1, if � � �s we set�b

.s;�/
D�s;� and �b

.s;�/
D �a

s
_
h�i.

Finally, for � < �s we set hb
.s;�/
D hs;� and for � D �s we set hb

.s;�/
D ha

s .

Claim 5.5.1. b is an approximation and a Eg b.

Proof. We first show that b is an approximation. Items .1/ and .2/ from the definition
follow since a is an approximation and in view of the construction above. For example, if
.s1; �1/ ¤ .s2; �2/ 2 Sb and �b

.s1;�1/
D �b

.s2;�2/
then since �1 D �2 necessarily s1 ¤ s2 and

�a
s1
D �a

s2
, so we may use the fact that a is an approximation.

Finally, a Eg b by construction. claim

Showing .1/ from the statement of the proposition boils down to showing that �b
.s;�s/

D �s;�s is trivial. This follows from Assumption 5.1 (1).

Proposition 5.6. Let a be an approximation. Then there exists an approximation a Eg b
satisfying the following:

(1) If t 2 Sb with ¹" < � W cf.ha
g.t/

."// > �º 2 D then either �b
t is trivial or ¹" < � W

hb
t ."/ < h

a
g.t/

."/º 2 D .

(2) If t 2 Sb is such that ¹" < � W cf.ha
g.t/

."// > �º …D then hb
t D h

a
g.t/

and�b
t D�

a
g.t/

.

Lastly, for t 2 Sb, if �a
g.t/
2 �� with � < � , then �b

t 2 �
�C1.

Proof. Let S1 D ¹s 2 Sa W �
a
s is non-trivial and .8D" < �/.cf.ha

s."// > �º and S0 D
Sa n S1. Fix any s 2 S1. Let As D ¹" < � W cf.ha

s."// > �º, so As 2 D .
Let Ds D ¹D 2D WD � Asº be the induced ultrafilter on As . Consider the ultraprod-

uct
Q
"2As

ha
s."/=Ds . We may consider it as a linearly ordered set, ordered by <Ds .

Claim 5.6.1. There exists a sequence Hs D hhs;ˇ 2 H W ˇ < ˇsi satisfying

(1) for all " 2 As and ˇ < ˇs , hs;ˇ ."/ < ha
s."/;

(2) for all " 2 � n As and ˇ < ˇs , hs;ˇ ."/ D ha
s."/;

(3) h.hs;ˇ�As/=Ds W ˇ < ˇsi is <Ds increasing and cofinal in
Q
"2As

ha
s."/=Ds;

(4) for any f 2�a
s there exists ˇ < ˇs such that ¹" < � W Range.f �J"/� hs;ˇ ."/º 2D .

Proof. First we choose a well-ordered increasing cofinal sequence in
Q
"2As

ha
s."/=Ds

and then choose a sequence of representatives hhs;ˇ�As W ˇ < ˇsi. To get (2), set hs;ˇ ."/
D ha

s."/ for any " 2 � n As . This gives us (1)–(3).
We show (4). Let f 2 �a

s . Since a is an approximation, the set Xs;f D ¹" 2 As W
Range.f �J"/ � ha

s."/º is in D . Let hf W As ! Ord be the function defined by mapping
" 2 Xs;f to max Range.f �J"/ C 1 and " 2 As n Xs;f to 0. Note that for any " 2 As ,
hf ."/ < ha

s."/. Indeed, if hf ."/ D ha
s."/ for some " 2 Xs;f , then ha

s."/ is a successor,
contradicting " 2 As . Similarly (and even easier), this holds if " 2 As n Xs;f . It follows
that for some ˇ < ˇs , hf =Ds �Ds .hs;ˇ�As/=Ds and it is easy to check that such a ˇ
satisfies (4). claim
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For any f 2 �a
s , n < ! and ˇ < ˇs let Bn.f; hs;ˇ / D ¹" < � W j¹i 2 J" W f .i/ �

hs;ˇ ."/ºj � nº. By Claim 5.6.1 (4), we may set ˇs;n.f / D min ¹ˇ W Bn.f; hs;ˇ / 2 Dº.
Note that ˇs;n.f / � ˇs;nC1.f /. Let ˇs.f / D min ¹ˇs;n.f / W n < !º and let ns.f / D
min ¹n < ! W .8k � n/.ˇs;k.f / D ˇs;n.f //º.

Claim 5.6.2. ¹" < � W j¹i 2 J" W f .i/ � hs;ˇs.f /."/ºj D ns.f /º 2 D .

Proof. Call this set Ys;f . Note that Ys;f � Bns.f /.f; hs;ˇs.f //.
If ns.f / D 0 then Ys;f D B0.f; hs;ˇs;0.f // 2 D . Assume ns.f / > 0. If Ys;f … D

then ¹" < � W j¹i 2 J" W f .i/� hs;ˇs.f /."/ºj � ns.f /� 1º 2D . So ˇs;ns.f /�1 � ˇs.f /D
ˇs;ns.f /.f /, contradiction. claim

For s 2 S1, ˇ < ˇs and n < !, let �.s;ˇ;n/ D ¹f 2 �a
s W ˇs.f / D ˇ; ns.f / D nº.

Let Sb D ¹.s; ˇ; n/ W s 2 S1; ˇ < ˇs; n < !; �.s;ˇ;n/ ¤ ;º [ S0 and let g W Sb ! Sa

be the function defined by g.s; ˇ; n/ D s for s 2 S1 and g.s/ D s otherwise. For any
s 2 S0 let �b

s D �
a
s , h

b
s D h

a
s and �b

s D �
a
s
_
h0i. For s 2 S1, ˇ < ˇs and n < !, we set

�b
.s;ˇ;n/

D �.s;ˇ;n/, �b
.s;ˇ;n/

D �a
s
_
hni and

hb
.s;ˇ;n/ D

´
hs;ˇ ; n D 0;

ha
s; n > 0:

Claim 5.6.3. b is an approximation and a Eg b.

Proof. We check that b satisfies .1/ and .2/ from the definition. .1/ follows by the choice
of hb

.s;ˇ;n/
.

We are left with .2/. Let t 2 S0 and .s; ˇ; n/ with s 2 S1. If �b
t D �

b
.s;ˇ;n/

then �a
t D �

a
s

so the result follows since a is an approximation. Let .s1; ˇ1; n1/ ¤ .s2; ˇ2; n2/ 2 Sb. If
�b
.s1;ˇ1;n1/

D �b
.s2;ˇ2;n2/

then �a
s1
D �a

s2
. If s1 ¤ s2 then the result follows since a is an

approximation. So assume that s D s1 D s2 and nD n1 D n2. Assume that ˇ1 < ˇ2 < ˇs
and let f1 2 �b

.s;ˇ1;n/
and f2 2 �b

.s;ˇ2;n/
. We need to show that f1 6R f2 and f2 6R f1.

By choice of ˇ1 D ˇs.f1/ and n D ns.f1/, Bn.f1; hs;ˇ1/ 2 D . On the other hand,
since ˇ1 < ˇ2 D ˇs.f2/ � ˇs;nC2.f2/, it follows that BnC2.f2; hs;ˇ1/ … D , i.e. � n
BnC2.f2; hs;ˇ1/ 2 D . Let " 2 Bn.f1; hs;ˇ1/ \ .� n BnC2.f2; hs;ˇ1// and let il be the
.nC l/-th element of J" from the end, for l D 1; 2; 3. As a result,

f1.i3/ < f1.i1/ < hs;ˇ1."/ � f2.i3/:

Consequently, f1 6R f2 by Assumption 5.1 (3) (since Suc.Suc.i3// D i1) and f2 6R f1 by
Assumption 5.1 (1).

a Eg b by construction. claim

To complete the proof, we note that for .s; ˇ; n/ 2 Sb with n > 0, �b
.s;ˇ;n/

is trivial.
Let f1; f2 2�b

.s;ˇ;n/
. By Claim 5.6.2, and the assumptions on D , we may find " < � such

that for l D 1; 2 the following holds:

(1) j¹i 2 J" W fl .i/ � hs;ˇ ."/ºj D n,

(2) jJ"j > n.
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Since n > 0, letting i be the n C 1-th element from the end of J" we have fl .i/ <
hs;ˇ ."/ � fl .Suc.i// for l D 1; 2. If f1 R f2 then f1.Suc.i// � f2.i/ < hs;ˇ ."/ by
Assumption 5.1 (2), contradiction.

Proposition 5.7. Let a be an approximation. Then there exists an approximation c and a
surjective function r W Sc ! Sa such that a Gr c. Moreover, for t 2 Sc, if �a

r.t/
2 �� , with

� < � , then �c
t 2 �

�C2.

Proof. Let a Eg b be the approximation supplied by Proposition 5.5 and let b Ef c be
the approximation supplied by Proposition 5.6. Note that a Egıf c by Lemma 5.4; we
claim that a Ggıf c.

Let t 2 Sc. Since a is an approximation and sup"<� jJ"j D !, we cannot have that
¹" < � W cf.ha

gf .t/
."// D 0º 2 D ; see Definition 5.2 (1).

Assume that ¹" < � W 0 < cf.ha
gf .t/

."// � �º 2 D . If �a
gf .t/

is trivial then so is �c
t ,

so assume not. By Proposition 5.5 (1) applied to f .t/ 2 Sb, either �b
f .t/

is trivial (and
thus so is �c

t ) or ¹" < � W hb
f .t/

."/ < ha
gf .t/

."/º 2 D . If it is the latter then, since ¹" < � W
hc
t ."/ � h

b
f .t/

."/º 2 D , we conclude that ¹" < � W hc
t ."/ < h

a
gf .t/

."/º 2 D .
Assume that ¹"<� Wcf.ha

gf .t/
."//>�º2D . In particular, since by Proposition 5.5 (2),

ha
gf .t/

D hb
f .t/

, it follows that ¹" < � W cf.hb
f .t/

."// > �º 2 D . Assuming that �c
t is not

trivial, by Proposition 5.6 (1), ¹" < � W hc
t ."/ < h

b
f .t/

."/º 2 D . Since ¹" < � W hb
f .t/

."/ �

ha
gf .t/

."/º 2 D we conclude that ¹" < � W hc
t ."/ < h

a
gf .t/

."/º 2 D , as needed.
The “moreover” part follows immediately from the construction.

Lemma 5.8. Let ı < � be a limit ordinal and ha˛ W ˛ < ıi a sequence of approximations.
Assume that a˛ Eg˛;ˇ aˇ for ˛ < ˇ < ı, and g˛;ˇ ı gˇ; D g˛; for ˛ < ˇ <  < ı.
Then the inverse limit exists, i.e. there are .aı ; hg˛;ı W ˛ < ıi/ such that a˛ Eg˛;ı aı and
g˛;ˇ ı gˇ;ı D g˛;ı for ˛ < ˇ < ı.

In particular, if a˛ Gg˛;ˇ aˇ for some ˛ < ˇ < ı then a˛ Gg˛;ı aı .
Furthermore, for any t 2 Saı , if � D sup ¹� W �a˛

g˛;ı.t/
2 �� ; ˛ < ıº then �aı

t 2 �
�C1.

Proof. For every f 2 � let tf 2
Q
˛<ı Sa˛ be the function defined by tf .˛/ D s if and

only if f 2 �a˛
s . Note that for ˛ < ˇ < ı, since for any s 2 Sa˛ , ¹�aˇ

t W t 2 g
�1
˛;ˇ
.s/º is a

partition of �a˛
s , necessarily g˛;ˇ .tf .ˇ// D tf .˛/.

Let S� D ¹tf W f 2 �º and for any t 2 S�, let �t D ¹f 2 � W tf D tº. Clearly, it is a
partition of �. Furthermore, note that if t1; t2 2 S� and ˛ < ı is such that t1.˛/ D t2.˛/
then t1.˛0/ D t2.˛0/ for any ˛0 � ˛.

Let S0 D ¹t 2 S� W .9˛ < ı/.�
a˛
t.˛/

is trivial/º and S1 D S� n S0.
For any t 2 S1 and " < �, let At;" D ¹h

a˛
t.˛/
."/ W ˛ < ıº. Obviously, 1 � jAt;"j � jıj <

� � �.
For every .t;h=D/ 2 S1 �

Q
"<� At;"=D let�.t;h=D/D ¹f 2�t W .8D" < �/.h."/D

min ¹x 2 At;" W Range.f �J"/ � xº/º. Let Saı D ¹.t; h=D/ 2 S1 �
Q
"<� At;"=D W

�.t;h=D/ ¤;º[ S0. For t 2 S0, set�aı
t D�

a˛
t.˛/

and haı
t D h

a˛
t.˛/

, where ˛ < ı is minimal
such that �a˛

t.˛/
is trivial. For .t; h=D/ 2 Saı n S0, set �aı

.t;h=D/
D �.t;h=D/.
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Note that if t 2 S1 then ¹" < � W .9x 2At;"/.Range.f �J"/� x/º 2D because this set
contains ¹" < � W Range.f �J"/ � ha0

t.0/
."/º, which is in D since a0 is an approximation

and f 2 �a0
t.0/

. Thus for any t 2 S1 and for every f 2 �t there is a unique h=D 2Q
"<� At;"=D such that f 2 �aı

.t;h=D/
. We choose haı

.t;h=D/
to be any representative of the

class h=D .
For any t 2 S0 and ˛ < ı, g˛;ı.t/ D t .˛/, and for every .t; h=D/ 2 Saı n S0 and

˛ < ı, g˛;ı..t; h=D// D t .˛/. Note that it already follows that g˛;ˇ ı gˇ;ı D g˛;ı for
˛ < ˇ < ı.

For any t 2 S0 let
�

aı
t D

[
¹�

a˛
t.˛/
W ˛ < ıº_h0i:

Now let .t; h=D/ 2 Saı n S0. Since �� D �, there exists some t � � and an enumer-
ation of

Q
"<� At;"=D as hht;=D W  < t i. Now for .t; h=D/ 2 Saı set

�
aı
.t;h=D/

D

[
¹�

a˛
t.˛/
W ˛ < ıº_hi;

where h=D D ht;=D . Assume that t D tf for some f 2 � and let ˛ < ˇ < ı. Since
g˛;ˇ .t.ˇ// D t .˛/, �

a˛
t.˛/

is an initial segment of �aˇ
t.ˇ/

. This implies that �aı
.t;h=D/

2 ��C1,
where � D sup ¹� W �a˛

g˛;ı.t/
2 �� ; ˛ < ıº.

We check that aı is an approximation. Item (1) of Definition 5.2 follows from the
definition of �aı

t and the choice of haı
t , for t 2 Saı .

We show item (2). Let .t1; h1=D/¤ .t2; h2=D/ 2 Saı n S0, assume that �aı
.t1;h1=D/

D

�
aı
.t2;h2=D/

and let f1 2 �
aı
.t1;h1=D/

and f2 2 �
aı
.t2;h2=D/

. If t1 ¤ t2 then there exists some
˛ < ı such that t1.˛/¤ t2.˛/. But �a˛

t1.˛/
D �

a˛
t2.˛/

and hence f1 6R f2. Assume that t1D t2.
Since �aı

.t1;h1=D/
D �

aı
.t2;h2=D/

, it follows that h1=D D h2=D , which gives a contradiction.
Let .t; h=D/ 2 Saı n S0 and s 2 S0. If s ¤ t then the same argument as above applies.
On the other hand, it cannot be that s D t by the definition of S0. If t1 ¤ t2 2 S0 then the
same argument as above applies.

Finally, we show that a˛ Eg˛;ı aı for ˛ < ı. Items (1), (2) and (4) are straightfor-
ward. We show item (3). Let t 2 S0 and let ˛0 < ı be minimal such that�a˛0

t.˛0/
is trivial. If

˛0 � ˛ then haı
t D h

a˛0
t.˛0/
D h

a˛
t.˛/

. If ˛ < ˛0 then ¹" < � W haı
t ."/ � h

a˛
t.˛/
."/º 2D because

h
aı
t D h

a˛0
t.˛0/

. Now let .t; h=D/ 2 Saı n S0. Since �aı
.t;h=D/

is non-empty, we may choose
some function f 2�aı

.t;h=D/
. On the one hand, since f 2�a˛

t.˛/
and since a˛ is an approx-

imation, ¹" < � W Range.f �J"/ � ha˛
t.˛/
."/º 2D . On the other hand, since f 2�aı

.t;h=D/
,

we see that ¹" < � W h."/ D min ¹x 2 At;" W Range.f �J"/ � xºº 2 D . Combining these
observations with the fact that ha˛

t.˛/
2 At;", it follows that ¹" < � W h."/ � ha˛

t.˛/
."/º 2 D

since it contains the intersection of the two sets.

Conclusion 5.9. There exists a function c W �! � such that if f1; f2 2 � and f1 R f2
then c.f1/ ¤ c.f2/.

Proof. We define .a� ; hg�;� W � < �i/ such that a� Gg�;� a� (for � < �), by induction on
� < � D .2�/C.
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� If � D 0 then�a0 D�, Sa0 D ¹0º,�
a0
0 D�

a0 , �a0
0 D; and let ha0

0 2H be the constant
function � .

� If � D ˛ C 1 for some ˛ < � then let a˛ Gg˛;� a� be the approximation supplied by
Proposition 5.7. For any � � ˛ we define g�;� D g�;˛ ı g˛;� .

� If � is a limit ordinal we apply Lemma 5.8.

It follows by induction, and using Proposition 5.7 and Lemma 5.8, that for ˛ < ˇ < �
and t 2 Sa˛ and s 2 Saˇ , if �a˛

t 2 �
�1 and �aˇ

s 2 �
�2 then �1 < �2 and hence �a˛

t ¤ �
aˇ
s .

Claim 5.9.1. (1) For any � 2 �<� ,

�� WD
[
¹�

a�
s W � < �; s 2 Sa� ; �

a�
s is trivial and �a�

s D �º

is trivial.

(2) � D
S
�2�<� ��.

Proof. .1/ Let � 2 �<� and f1; f2 2 ��. By definition, there exist s1 2 Sa�1
and s2 2

Sa�2
such that f1 2 �

a�1
s1 and f2 2 �

a�2
s2 . As noted above, since �

a�1
s1 D �

a�2
s2 , necessarily

� D �1 D �2. If s1 D s2 then f1 6R f2 since �a�
s1 D �

a�
s2 is trivial. If s1 ¤ s2 then by the

definition of approximation, since �a�
s1 D �

a�
s2 , we have f1 6R f2.

.2/ Assume that there exists some f 2 � n
S
�2�<� ��. We construct a sequence

hh� 2 H W � < �i of functions such that for any ˛ < ˇ < � , hˇ <D h˛ .
For any � < � let h� D h

a�
t for the unique t 2 Sa� such that f 2 �a�

t . By assumption,
�

a�
t is non-trivial for any such � (otherwise f 2 �� for � D �a�

t ). For any ˛ < ˇ < � ,
since a˛ Gg˛;ˇ aˇ , we have hˇ <D h˛ .

We color pairs ¹.h˛; hˇ / W ˛ < ˇ < �º of functions by � colors, by declaring that
.h˛; hˇ / has color "˛;ˇ < � if "˛;ˇ is the minimal " for which hˇ ."/ < h˛."/. We know
that such an " exists, since hˇ <D h˛ . By Erdős–Rado there exists a subset A � � of
cardinality �C and " < � such that hˇ ."/ < h˛."/ for every ˛ < ˇ 2 A. This contradicts
the fact that the ordinals are well-ordered. claim

Recalling that �<� D � (as cardinals), we may now define c W�! � by choosing for
every f 2 � some � 2 �<� such that f 2 �� and setting c.f / D �.

6. Conclusion: stable graphs

We now combine the results of the previous sections.

Theorem 6.1. Let L be a first order language containing a binary relation E. Let T be
an L-theory specifying thatE is a symmetric and irreflexive relation. LetG D .V IE; : : : /
ˆ T be an infinitary EM-model based on .˛; �/, where ˛ 2 �U for some set U , � � @0
a cardinal and � an ordinal with � < � . Let ~ > 22

<.�C@1/
C jT j � jU j be a regular

cardinal. If �.G/ � ~ then G contains all finite subgraphs of Shn.!/ for some n 2 N.



Infinite stable graphs with large chromatic number II 29

Proof. By Lemma 3.6 there exists some .y̨; �/-indiscernible sequence b D hbi;� W

i 2 yU ; � 2 .� y̨i /<i whose underlying set is V , where y̨ 2 � yU and yU is a set such that
j yU j � jT j � jU j � �<� :

Let B D ¹.i; �/ W i 2 yU ; � 2 .� y̨i /<º and R D ¹..i1; �1/; .i2; �2// W bi1;�1 E bi2;�2º.
Since .i;�/ 7! bi;� is surjective and ..i1; �1/; .i2; �2//2R, .bi1;�1bi2;�2/2E, it follows
that �.B; R/ D �.G/ � ~ (by Fact 2.2 (4)). Moreover, by Fact 2.5 it is enough to prove
the conclusion for the graph .B;R/.

For any i 2 yU let Bi D ¹.i; �/ W � 2 .�˛i /<º. By Fact 2.2 (1), since B D
S
i2 yU

Bi , it
follows that ~ � �.B;R/ �

P
i2 yU

�.Bi ; R�Bi /. By definition5 � � 2<� , which implies
�<� � �� D 2� � 22

<�
and thus ~ > j yU j. Since ~ is a regular cardinal, there exists i 2 yU

with �.Bi ; R�Bi / � ~. As a result, it is enough to prove the conclusion for the graph
..� y̨i /<; S/, where S D ¹.�1; �2/ W .i; �1/ R .i; �2/º.

For P D ¹otp. Na; Nb/ W . Na; Nb/ 2 Sº, by .y̨; �/-indiscernibility,

S D
[
p2P

¹. Nc; Nd/ 2 ..� y̨i /</
2
W otp. Nc; Nd/ D p _ otp. Nd; Nc/ D pº:

By Fact 2.2 (2),

~ � �..� y̨i /<; S// �
Y
p2P

�..� y̨i /<; Pp/;

where Pp D ¹. Nc; Nd/ 2 ..� y̨i /</2 W otp. Nc; Nd/ D p _ otp. Nd; Nc/ D pº. Assume towards a
contradiction that �..� y̨i /<; Pp/ � Æ2.@0/ for all p 2 P . Hence ~ � Æ2.@0/2

j˛i jC@0
�

Æ2.j˛i j C @0/. Since j˛i j C @0 < � C @1 and ~ > 22
<.�C@1/ , we derive a contradiction.

Consequently, there exists p 2 P with �..� y̨i /<;Pp/ > Æ2.@0/ and we may conclude
by Theorem 4.8.

Corollary 6.2. Let G D .V;E/ be a stable graph. If �.G/ > Æ2.@0/ then G contains all
finite subgraphs of Shn.!/ for some n 2 N.

Proof. Let T D Th.G/ and T sk be a complete expansion of T with definable Skolem
functions in the language E 2 Lsk.

We apply Theorem 3.7 with � D@1,�D 2@1 and �D 2max ¹�;jGjº. We get an infinitary
EM-model G sk ˆ T sk based on .˛;�/, where ˛ 2 �U for some set U of cardinality at most
�, such that G D G sk�¹Eº is saturated of cardinality �. Since G is saturated of cardinality
> jGj, we may embed G as an elementary substructure of G . Since �.G / � �.G/ >
Æ2.@0/ and the conclusion is an elementary property, it is enough to show it for G .

Since 22
<.�C@1/

C jT j C jU j � 22
@0
C @0 C � � Æ2.@0/ C 2@1 D Æ2.@0/, Theo-

rem 6.1 applies with � D � and ~ D .Æ2.@0//C.

Acknowledgments. We thank the anonymous referees for their careful reading and useful com-
ments.

5As 2<� D sup ¹2� W � < �º, if 2<� < � then 22
<�
� 2<� .
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