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Abstract. We show that the spatially homogeneous Boltzmann equation evolves as the gradient
flow of the entropy with respect to a suitable geometry on the space of probability measures which
takes the collision process into account. This gradient flow structure allows to give a new proof
for the convergence of Kac’s random walk to the homogeneous Boltzmann equation, exploiting the
stability of gradient flows.
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1. Introduction

Since the pioneering work of Otto [30] it has been known that many diffusion equations
can be cast as gradient flows of entropy functionals on the space of probability measures.
The relevant geometry is given by the L2-Wasserstein distance. This approach has been
used for a variety of equations as a powerful tool in the study of the trend to equilibrium,
stability questions and construction of solutions. In each case – as a direct consequence
of the gradient flow structure – the driving entropy functional is non-increasing along the
solution. One of the most emblematic dissipative evolution equations is the Boltzmann
equation modelling the evolution of a dilute gas under elastic collisions of the particles,
and Boltzmann’s famous H-theorem asserts that the entropy is non-increasing along its
solutions. However, uncovering a gradient flow structure for this equation has been an
open problem since [30].

In this article we provide a solution and give a characterization of the spatially homo-
geneous Boltzmann equation as a gradient flow of the entropy. The crucial new insight
is the identification of a novel geometry on the space of probability measures that takes
the collision process between particles into account. Our main motivation to consider
this gradient structure stems from the Kac program, in particular the propagation of
chaos for Kac’s stochastic many particle systems and its convergence to the homoge-
neous Boltzmann equation. We provide a new proof of this result by exhibiting a gradient
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flow structure also for the Kac system and showing that it �-converges to our gradient
structure for the Boltzmann equation in the spirit of Sandier–Serfaty [33].

1.1. Homogeneous Boltzmann equation and gradient flow structure

We consider the spatially homogeneous Boltzmann equation

@tf D Q.f /; (1.1)

where f W Rd ! RC is a probability density and Q denotes the Boltzmann collision
operator given by

Q.f / D

Z
Rd

Z
Sd�1

�
f 0f 0� � ff��B.v � v�; !/ dv� d!: (1.2)

Here B is the collision kernel and v; v� and v0; v0� denote the pre- and post-collisional
velocities respectively which are related according to

v0 D v � hv � v�; !i!; v0� D v� C hv � v�; !i!; ! 2 Sd�1; (1.3)

and we will often use the notation f D f .v/, f� D f .v�/, f 0 D f .v0/, f 0� D f .v0�/.
We consider regularized collision kernels with cutoff, more precisely, we assume that
B.v � v�; !/ is bounded away from zero and comparable to .1C jv � v�j2/=2 for some
 2 .�1; 1�; see Assumption 2.1 for more details.

Boltzmann’s H-theorem asserts that the entropy H .f /D
R
f logf is non-increasing

along solutions to the Boltzmann equation, more precisely, we have d
dtH .ft / D �D.ft /

� 0; where

D.ft / D
1

4

Z
log

f 0f 0�
ff�

.f 0f 0� � ff�/B.v � v�; !/ d! dv� dv: (1.4)

Let us now give a heuristic description of the gradient flow structure of the Boltzmann
equation. We recall that the gradient flow of a function E on a Riemannian manifold M
is given as Pxt D �rE.xt / D �Kxt

DE.xt / with DE being the differential of E and
Kx W T

�
xM ! TxM the canonical map from the cotangent to the tangent space induced

by the Riemannian metric.
For the Boltzmann equation we formally take the manifold to be the set P .Rd / of

probability densities on Rd and the driving functional to be the entropy H . Its differential
DH .f / at f is given as logf D ıH

ıf
in the sense that for any tangent vector, i.e. a func-

tion s with
R
s.v/ dv D 0, we have lim"!0 "

�1ŒH .f C "s/ �H .f /� D DH .f /Œs� DR
log f .v/s.v/ dv. Identifying the gradient flow structure of the Boltzmann equation

requires identifying the right geometry on the set P .Rd / given in terms of a suitable
map K. This is achieved by introducing the Onsager operator KB

f
given by

KB
f '.v/ D �

Z
Nr'ƒ.f /B.v � v�; !/ dv� d!: (1.5)
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Here we have set Nr' D '0 C '0� � ' � '� and ƒ.f / is shorthand for ƒ.ff�; f 0f 0�/,
whereƒ.s; t/D .s � t /=.log s � log t / denotes the logarithmic mean. Now the Boltzmann
equation can be written as

@tf D Q.f / D �KB
f DH .f /;

giving the desired gradient flow structure.
This gradient flow interpretation of the Boltzmann equation can also be expressed

by the following variational characterization. Denoting by h�; �if the Riemannian metric
at f we find for any curve .ft / of probability densities that

H .fT / �H .f0/ D

Z T

0

hrH .ft /; @tf ift
dt � �

1

2

Z T

0

ŒjrH .ft /j
2
ft
C j@tf j

2
ft
� dt:

(1.6)

Moreover, equality holds if and only if @tf D �rH .ft /, i.e. .ft / is the gradient flow of
the entropy, hence the solution to the Boltzmann equation. In this sense, the Boltzmann
equation is a steepest descent flow decreasing the entropy as fast as possible.

Our first main result is a rigorous implementation of this variational characterization.
To this end we replace the formal norm of the gradient and the speed of the curve with
suitable notions. Note that

jsj2f D

Z
'KB

f ' D
1

4

Z
j Nr'j2ƒ.f /B.v � v�; !/ d! dv� dv

with ' such that KB
f
' D s and where we have symmetrized over v; v�; v0; v0�. In par-

ticular, the dissipation (1.4) takes the role of norm of the gradient, i.e. jrH .f /j2
f
DR

logfKB
f

logf D D.f /.
In order to define the notion of speed of a curve .ft /t , we first consider the equation

@tf .v/ DKB
ft
 t .v/ D �

Z
Nr tƒ.f /B.v � v�; !/ dv� d!: (1.7)

We perform a change of variables, setting Ut .v; v�; !/ D Nr tƒ.f /B.v � v�; !/ so that
(1.7) becomes linear in .f; U / and reads for all test functions ' as

d
dt

Z
'ft D

1

4

Z
Nr'Ut : (1.8)

This will be called collision rate equation since U governs the evolution of the density f
by prescribing the rate at which collisions happen between the particles. Now, the quantityR T
0
j@tf j

2
f

dt will be replaced by the action

AT .f / WD inf
²
1

4

Z T

0

Z
jUt j

2

ƒ.ft /B
dt
³
; (1.9)

where the infimum is over all .Ut /t satisfying the collision rate equation (1.8). See Sec-
tion 3 for the precise construction where we study (1.8) and (1.9) in a natural measure-
valued setting. Under Assumption 2.1 on B we then have the following variational char-
acterization; see Theorem 4.3 below.
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Theorem 1.1. For any curve .ft /t2Œ0;T � of probability densities with H .f0/ < 1 and
bounded moment of order 2Cmax.0; / we have

JT .f / WD H .fT / �H .f0/C
1

2

Z T

0

D.ft / dt C
1

2
AT .f / � 0:

Moreover, JT .f / D 0 if and only if .ft /t is a solution to the homogeneous Boltzmann
equation starting from f0.

We remark that this result can be recast in the framework of gradient flows in metric
spaces as developed in [1]. In particular, it is possible to construct the Riemannian dis-
tance WB on P .Rd / associated with the Onsager operator KB . We explore this point of
view in the appendix.

We will also discuss a generalization of the previous theorem giving variational char-
acterizations of the Boltzmann equation in terms of so-called generalized gradient struc-
tures. To this end one considers a pair of primal and dual dissipation potentials R.f; '/

and R�.f; �/ that are convex conjugate in the second variable. Then similar to (1.6) we
find formally for any curve .ft / of densities that

H .fT / �H .f0/ D

Z T

0

hDH .ft /; @tf i dt

� �

Z T

0

ŒR.ft ; @tf /CR�.ft ;�DH .ft //� dt:

Equality is attained if and only if

@tf D D�R
�.f;�DH .f //: (1.10)

Hence the latter evolution is characterized as minimizer of the functional

LT .f / WD H .fT / �H .f0/C

Z T

0

ŒR.ft ; @tf /CR�.ft ;�DH .ft //� dt: (1.11)

Under suitable compatibility assumptions on R and H , the resulting evolution (1.10) is
indeed the Boltzmann equation. One choice for R.f; @tf / and R�.f;�DH .f // are the
quadratic expressions

1
2
j@tf j

2
f D

1
2
h@tf;K

B
f @tf i and 1

2
jrH .f /j2f D

1
2
hDH .f /;KB

f DH .f /i

by which we recover the gradient flow structure already discussed. One compelling moti-
vation for such generalized gradient structures comes from the fact that in many situations
they arise naturally from the analysis of large deviations for an underlying microscopic
particle system whose limiting behavior is described by (1.10). Namely, the functional LT

appears as the rate function for large deviations on the path level; see e.g. [26] for an in
depth discussion. In the construction of the generalized gradient structure, we follow the
approach of [31], where such structures have been analyzed in detail in the context of
jump processes.
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In the present setting we obtain the following result. Fix a pair of even, lower semi-
continuous convex conjugate functions‰;‰� WR! Œ0;1/with‰.0/D‰�.0/D 0 and a
1-homogeneous concave function � W Œ0;1/� Œ0;1/! Œ0;1/ such that the compatibility
condition

.‰�/0.log s � log t /�.s; t/ D s � t 8s; t > 0

holds (see Assumption 4.4 for additional assumptions on ‰� and � ). Set

R.f; U / WD
1

4

Z
‰
� U

�.f /B

�
�.f /B dv dv� d!;

D‰�.f / WD R�.f;�DH.f // WD
1

4

Z
‰�.� Nr logf /�.f /B dv dv� d!;

where we have set �.f / WD �.ff�; f 0f 0�/. Then we have (see Theorem 4.6 below):

Theorem 1.2. For any curve .ft / of probability densities with H .f0/ <1 and bounded
moment of order 2Cmax.0; / and .Ut / such that the collision rate equation (1.8) holds
we have

LT .f; U / WD H .fT / �H .f0/C

Z T

0

ŒD‰�.ft /CR.ft ; Ut /� dt � 0: (1.12)

Moreover, LT .f; U / D 0 if and only if .ft / is a solution to the homogeneous Boltzmann
equation and Ut D .ff� � f 0f 0�/B .

This generalized gradient structure encompasses in particular the previous quadratic
structure by choosing � Dƒ (the logarithmic mean) and‰.�/D‰�.�/D 1

2
j�j2. Another

particular choice of interest is

�.s; t/ D
p
st ; ‰�.�/ D 4.cosh.�=2/ � 1/:

This particular variational structure seems to have been explicitly identified for the first
time by Grmela, see e.g. [18, Eq. (A7)]. For jump processes a similar structure is con-
nected with the large deviations on the path level for the empirical measure of a growing
number of independent particles; see e.g. [31]. Here, the resulting structure can be related,
at least formally, to the large deviations of the Kac particle system that we describe below.

1.2. Consistency for Kac’s random walk

A central motivation for considering the gradient flow structure just described is to give
a new proof of the convergence of Kac’s random walk to the solution of the spatially
homogeneous Boltzmann equation. Kac introduced his random walk in the seminal work
[21] as a probabilistic model for N colliding particles. It is a continuous time Markov
chain on the set XN of N velocities with fixed momentum and energy,

XN WD

°
.v1; : : : ; vN / 2 RdN

ˇ̌̌ NX
iD1

vi D 0;

NX
iD1

jvi j
2
D Nd

±
:
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In each step, two uniformly chosen particles i; j collide, i.e. v is updated to R!ijv D
.v1; : : : ; v

0
i ; : : : ; v

0
j ; : : : ; vN / where v0i D vi � hvi � vj ; !i! and v0j D vj C hvi � vj ; !i!

with a random collision parameter ! 2 Sd�1 distributed according to B.vi � vj ; �/. The
rate is chosen in such a way that on average, N collisions occur per unit of time. More
precisely, the generator of the Markov chain is given by

Af .v/ D
1

2N

Z
Sd�1

X
i;j

Œf .R!ijv/ � f .v/�B.vi � vj ; !/ d!: (1.13)

The Markov chain is reversible with respect to the Hausdorff measure �N on XN . If we
denote by �Nt the law of the Markov chain starting from �N0 , then its density f Nt with
respect to �N satisfies Kac’s master equation @tf Nt D Af

N
t .

A natural way to study the convergence of Kac’s random walk to the Boltzmann equa-
tion is via its empirical measures LN .v/ D 1

N

PN
iD1 ıvi

2 P .Rd /. We will show the
following:

Theorem 1.3. Let B satisfy Assumption 2.1. For each N let .�Nt /t�0 be the law of Kac’s
random walk starting from �N0 and denote by cNt WD .LN /#�

N
t 2 P .P .Rd // the law of

its empirical measures. Assume that �N0 is well-prepared for some �0 D f0L 2 P .Rd /
with H .�0/ <1 .if  > 0 assume in addition finite fourth moment of �0/ in the sense
that as N !1,

cN0 * ı�0
;

1

N
H .�N0 j�N /! H .�0jM/:

Assume further that for some p > 2Cmax.0; /,

sup
N

hENp ; �
N
0 i <1; ENp .v/ WD

1

N

NX
iD1

jvi j
p:

Then, for all t > 0, as N !1 we have

cNt * ı�t
;

1

N
H .�Nt j�N /! H .�t jM/; (1.14)

where �t D ftL and ft is the unique solution to the spatially homogeneous Boltzmann
equation with initial datum f0.

Here H .�j�N / denotes the relative entropy with respect to �N and H .�jM/ the rel-
ative entropy with respect to the standard Gaussian density M in Rd . Note that the
well-preparedness assumption is satisfied for instance if the initial velocities are indepen-
dent, i.e. �N0 D�

˝N
0 . An important feature of Kac’s model is the propagation of chaos:

if the initial distribution of velocities is asymptotically independent as N !1 then the
same holds for all times. One way of making this precise is the convergence (1.14), which
is usually called entropic propagation of chaos. This is motivated by the fact that for a
true product measure we have H .�˝N / D N �H .�/.

We point out that the previous theorem is well-known even for a larger class of col-
lision kernels; see the references below. The contribution we make here is to provide a
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new angle of attack on this problem by exploiting the gradient flow structure. We will use
the stability of gradient flows following the approach of Sandier–Serfaty [33]. It turns out
that Kac’s random walk is the gradient flow of the entropy H .�j�N / in P .XN / equipped
with a suitable geometry, as we shall make precise in Section 5.1. In particular, the energy
dissipation identity

JNT .�
N /DH .�Nt j�N /�H .�N0 j�N /C

1

2

Z T

0

DN .�Nt /dt C
1

2
AN
T .�

N /D 0 (1.15)

holds, where DN is the dissipation of H .�j�N / along the master equation and AN
T .�

N /

is the action. This is based on results for general Markov chains and jump processes in
[15, 23, 25]. To obtain the desired convergence to the Boltzmann equation it is sufficient
together with some compactness to prove convergence (in fact only lim inf estimates) for
the constituent elements of the gradient flow structure, the entropy, dissipation and the
action, which allows one to pass to the limit in (1.15).

1.3. Connection to the literature

For an overview of results for the spatially homogeneous Boltzmann equation, we refer to
the review by Desvillettes [13]. Modifications of the Wasserstein geometry have been
studied by Maas [23] and Mielke [25] who found gradient flow structures for finite
Markov chains and reaction-diffusion equations. The gradient flow structure for the homo-
geneous Boltzmann equation obtained here is related to the discrete framework of reaction
equations in [25]. Formally, the homogeneous Boltzmann equation could be seen as a
binary reaction equation with a continuum of species indexed by the velocity. Recently,
a gradient flow characterization for the homogeneous Landau equation has been given
in [10] using a similar approach. Spatially inhomogeneous linear Boltzmann equations
have been characterized variationally in [4] using a variant of the energy dissipation iden-
tity. The underlying structure is non-quadratic and inspired by large deviations. We also
mention the work [5], where the large deviations of a Kac type particle system with con-
servation of momentum but not of energy have been determined and a corresponding
generalized gradient structure for the limiting Boltzmann type equation has been estab-
lished.

Theorem 1.3 on the convergence of Kac’s random walk goes back to Kac [21] who
proved an analogue for a simplified model with one-dimensional velocities. The first
proof of convergence to the homogeneous Boltzmann equation for the model considered
here is due to Sznitman [34]. In both cases more general collision kernels are consid-
ered, including in particular the case of hard spheres. Quantitative convergence results
in Wasserstein distance were obtained later by Mischler–Mouhot [27], Norris [29], and
Cortez–Fontbona [11]. Quantitative estimates for the entropic propagation of chaos in the
Kac model, i.e. on the speed of convergence in (1.14), have been given by Carrapatoso [9].
Similar results have been obtained for the Landau equation and other related models; see
e.g. [16, 17, 20]. We also mention the discussion of the relation between different quanti-
fied notions of chaoticity in [9] and in the work of Hauray and Mischler [19].
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1.4. Organization

In Section 2 we collect the necessary preliminaries. In Section 3 we introduce the collision
rate equation and the action of a curve. The characterization of the Boltzmann equation
as entropic gradient flow is obtained in Section 4. In Section 5 we exhibit a gradient flow
structure for Kac’s random walk and prove its convergence to the Boltzmann equation.

Appendices A, B, and C contain the construction of the distance associated to the
Onsager operator, a reformulation of our results in the framework of gradient flows in
metric spaces, and a variational approximation scheme for the Boltzmann equation based
on the gradient structure.

2. Preliminaries

2.1. Homogeneous Boltzmann equation, entropy and dissipation

Let d � 3. We denote by P .Rd / the space of Borel probability measures on Rd equipped
with the topology of weak convergence in duality with bounded continuous functions. We
denote by H .�/ the Boltzmann–Shannon entropy defined for � 2 P .Rd / by

H .�/ D

Z
f .v/ logf .v/ dv

provided � D fL is absolutely continuous with respect to Lebesgue measure L and
max.f log f; 0/ is integrable, otherwise we set H .�/ D C1. We will also write H .f /

if � D fL.
For p � 1, let Pp.Rd / D ¹� 2 P .Rd / W

R
jvjp d�.v/ <1º denote the set of proba-

bility measures with finite moment of order p. We will write

Ep.�/ WD

Z
jvjp d�.v/: (2.1)

For � 2 P2.Rd / we define by

M.�/ WD

Z
v d�.v/; E.�/ WD E2.�/ D

Z
jvj2 d�.v/ (2.2)

the momentum and energy of �. For E > 0 we let

Pp;E .R
d / WD ¹� 2 Pp.R

d / W Ep.�/ � Eº; (2.3)

the set of measures with energy less than E. Note that Pp;E .Rd / is compact for the weak
topology. For m 2 Rd and E > 0 we let

Mm;E .v/ D
1

.2�E/d=2
exp

�
�
jv �mj2

2E

�
;

denote the Maxwellian or Gaussian density distribution with momentum m and
energy Ed . The relative entropy with respect toMm;E of a probability measure �D fL
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is defined by

H .�jMm;E / D

Z
f .v/ log

f .v/

Mm;E .v/
dv: (2.4)

For any � 2 P2.Rd / we have

H .�/ D H .�jMm;E / �
1

2

Z
1

E
jv �mj2 �.dv/ �

d

2
log.2�E/: (2.5)

By Jensen’s inequality we have H .�jMm;E / � 0. Hence, we see that H is bounded below
on P2;E .Rd /. Moreover, H .�/DH .�jM�/CH .M�/. Finally, H is lower semicontin-
uous on P2.Rd / with respect to weak convergence. This follows from the corresponding
property of H .�jMm;E / and lower semicontinuity of moments.

We collect some well-known results on existence and uniqueness and propagation of
integrability for the homogeneous Boltzmann equation. We use the notation

hki WD
p
1C jkj2; k 2 Rd :

Moreover, we use the weightedL1 spacesL1s .R
d /WD¹f 2L1.Rd /W

R
hvisjf .v/jdv<1º.

Throughout this article we make the following assumption on the collision kernel.

Assumption 2.1. B W Rd � Sd�1 ! RC is measurable, continuous with respect
to the first variable, invariant under the transformation (1.3), and there exist constants
 2 .�1; 1� and cB > 0 such that for all k 2 Rd and ! 2 Sd�1,

c�1B hki

� B.k; !/ � cBhki

 : (2.6)

Let us recall that typical choices of the collision kernel motivated on physical grounds
are B.k; !/ D jkjb.˛/ with ˛ the angle between k and !. The assumption above corre-
sponds to an angular cut-off assumption removing the typical singularity in b as well as a
regularization near k D 0 removing the singularity for  < 0 and ensuring boundedness
away from zero for  > 0.

Theorem 2.2. Let f0 W Rd ! RC be such thatZ
Rd

hvi2f0.v/ dv <1;
Z
f0.v/ logf0.v/ dv <1:

If  > 0 assume in addition that f0 2 L14.R
d /. Then there exists a unique non-negative

solution f 2 C.Œ0;1/IL1.Rd //\L1..0;1/IL12.R
d // to the homogeneous Boltzmann

equation (1.1) conserving mass, momentum and energy, i.e.Z
.1; v; jvj2/ft .v/ dv D

Z
.1; v; jvj2/f0.v/ dv 8t � 0:

Moreover, for all t > 0,

H .ft / �H .fs/ D �

Z t

0

D.fr / dr � 0; (2.7)

where

D.f / WD

Z
R2N

Z
Sd�1

log
f 0f 0�
ff�

Œf 0f 0� � ff��B.v � v�; !/ dv dv� d!: (2.8)



M. Erbar 10

Proof. For existence, conservation of mass, momentum, and energy, as well as uniqueness
we refer to [3]. The entropy identity (2.7) is proven in [22].

We note that for conventional hard potential kernels of the form B.k; !/ D jkjb.�/,
 2 .0; 1�, uniqueness of conservative solutions is known assuming only finite energy of
the initial datum [28]. For general kernels as considered here we could not retrieve such
an improved result in the literature.

The quantity D.f / is called the entropy dissipation. More generally, we define the
entropy dissipation D.�/ for a probability measure � by setting D.�/ D D.f / provided
� D fL is absolutely continuous, andC1 otherwise.

2.2. Regularization by convolution

For t > 0, we consider the Maxwellian distribution

Mt .v/ D
1

.2�t/d=2
exp

�
jvj2

2t

�
;

and note that
R
jvj2Mt .v/ dv D 2t . We write M WDM1.

For any non-negative f 2 L1 with kf kL1 D 1, Mt � f is C1 with the bounds

jMt � f j � Ct ; j logMt � f j.v/ � Ct .1C jvj
2/; (2.9)

for a suitable constant Ct (see for instance [8]).
For fixed ! 2 Sd�1 we will denote by T! the transformation .v; v�/ 7! .v0; v0�/ with

v0; v0� given by (1.3). Note that T! is involutive and has unit Jacobian determinant. We
will set

X D .v; v�/; X 0 D .v0; v0�/ D T!X:

By abuse of notation we denote the Maxwellian distribution in R2d again by Mt . Note
that Mt .X/ WDMt .v/Mt .v�/. For a function F W Rd �Rd ! R we will set

T!F.X/ WD F.T!X/:

Convolution behaves well under tensorization. More precisely, if for a function f W

Rd ! R we set F D f ˝ f , i.e. F.X/ D ff�, then

F �Mt D .f �Mt /˝ .f �Mt /:

The following commutation relation with the pre-post-collision change of variables
will be crucial. It can be found in [35, Prop. 4]. For the reader’s convenience we will give
the short proof.

Lemma 2.3. Let F W R2d ! R. Then for each ! 2 Sd�1 and any t > 0,

.T!F / �Mt D T!.F �Mt /: (2.10)

If F D ff� we have Mt � .f
0f 0�/ D .Mt � f /

0.Mt � f /
0
�.



A gradient flow approach to the Boltzmann equation 11

Proof. First note that Mt .T!X/ D Mt .X/, since the relation between pre- and post-
collisional velocities is such that jvj2 C jv�j2 D jv0j2 C jv0�j

2. Using also the fact that T!
is involutive with unit determinant, we find

..T!F / �Mt /.X/ D

Z
F.T!Y /Mt .X � Y / dY D

Z
F.Y /Mt .X � T

�1
! Y / dY

D

Z
F.Y /Mt .T!X � Y / dY D .F �Mt /.T!X/:

Lemma 2.4. For any p 2 R and 0 < ı < 1 we haveZ
Rd

hwipMı.v � w/ dw � C hvip

for a constant C depending only on jpj and on mjpj.M/ D
R
jvjjpjM.v/ dv.

Proof. We use the fact that for any p 2 R and x; y 2 Rd ,

hxip

hyip
� 2jpj=2hx � yijpj; (2.11)

known as Peetre’s inequality. (2.11) can be readily checked for p D 2. Taking non-
negative powers yields (2.11) for p � 0. Reversing the roles of x and y and taking positive
powers yields the statement for p < 0.

Now, using (2.11) we can estimateZ
hwipMı.v � w/ dw � 2jpj=2hvip

Z
hv � wiMı.v � w/ dw

D 2jpj=2hvip
Z
.1C ı2jwj2/jpj=2M.w/ dw;

and the claim readily follows.

2.3. Integral functionals on measures

We provide here basic results on integral functionals on measures that will be often used
in the following.

Let X be locally compact Polish space. We denote by M.XIRn/ the space of vector-
valued Borel measures with finite variation on X. It will be endowed with the weak�

topology of convergence in duality with C0.XIRn/, i.e. continuous functions vanishing
at infinity. Let f W Rn ! Œ0;1� be a convex, lower semicontinuous, and superlinear and
let � be a non-negative finite Borel measure on X. Define on M.XIRn/ the functional
F .�j�/ via

Ff . j�/ D

Z
X

f

�
d
d�

�
d�; (2.12)

and set Ff . j�/ D C1 if � is not absolutely continuous with respect to  . Note that
the definition is independent of the choice of � if f is positively 1-homogeneous, i.e.
f .�r/ D �f .r/ for all r 2 Rn and � � 0. We will write Ff .�/ instead of Ff .�j�/ in this
case.
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Lemma 2.5. (i) Ff .�j�/ is convex and sequentially lower semicontinuous with respect
to weak� convergence.

(ii) Assume that f is 1-homogeneous. If Y is another locally compact Polish space and
T WX! Y is Borel measurable, then Ff .T#/�Ff ./ for all  , where F is defined
analogously on M.YIRn/.

Proof. (i) This is proven in [7, Thm. 3.4.3].
(ii) Let N i D T#

i and N� D T#� . Let .�y/y2Y be a disintegration of � with respect
to N� , i.e. each �y is a measure on X such that y 7! �y.E/ is Borel measurable for all
Borel sets E �X, �y.E/D �y.E \ T �1.y// and �y.X/D �.X/ for all y, and �.E/DR
�y.E/ d N�.y/. Write � D �� , and note that N� D N� N� with N�.y/ WD

R
�.x/ �y.dx/. Now

put �y.x/ D �.x/= N�.y/. Then

Ff .T#/ D

Z
Y

f Œ N�� d N� D
Z

Y

f

�Z
X

�y d�y N�.y/
�
N�.dy/

�

Z
Y

Z
X

f Œ�y.x/ N�.y/� �y.dx/ N�.dy/ D
Z
f Œ�� d� D Ff ./;

where we have used Jensen’s inequality due to the convexity and homogeneity of ˛.

As a first consequence we obtain

Lemma 2.6 (Lower semicontinuity of dissipation). For any sequence .�n/ in P .Rd /
converging weakly to � we have

D.�/ � lim inf
n

D.�n/: (2.13)

Proof. Consider the convex, lower semicontinuous, and 1-homogeneous function G.s; t/
D

1
4
.t � s/.log t � logs/. For�2P .Rd / define non-negative measures�1;�2 2MC.�/

by
�1.dv; dv�; d!/ WD B.v � v�; !/�.dv/�.dv�/ d!; �2 WD T#�

1;

where T is the change of variables .v; v�; !/ 7! .T!.v; v�/; !/ between pre- and post-
collisional variables defined in (1.3). We note that

D.�/ D G .�1; �2/ WD

Z
G

�
d�1

d�
;

d�2

d�

�
d�;

where � is any measure such that �1; �2 � � . Note that by Assumption 2.1 on the
collision kernelB , the weak convergence of�n to� implies the weak� convergence of�in
to �i in M.�/ for i D 1; 2. Now the claim follows immediately from Lemma 2.5.

3. Collision rate equation and action

In this section, we rigorously define the notion of speed of a curve .ft /t associated to the
formal Onsager operator KB . In the next subsection we study the collision rate equation
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(1.8) in a measure-valued framework replacing ft with probability measures �t and Ut
with a family of signed measures on Rd �Rd � Sd�1. In Section 3.2 we study the action
functional (1.9) on measures and define the action of a curve.

3.1. The collision rate equation

Let us set
� D Rd �Rd � Sd�1

and denote by M.�/ the space of signed Borel measures with finite variation on �
equipped with the weak� topology in duality with continuous functions vanishing at infin-
ity. Recall that P .Rd / denotes the space of Borel probability measures on Rd equipped
with the topology of weak convergence in duality with bounded continuous functions.

We define solutions to the collision rate equation in the following way.

Definition 3.1 (Collision rate equation). We denote by CRET the set of all pairs .�;U/
satisfying the following conditions:

(i) � W Œ0; T �! P .Rd / is weakly continuous;

(ii) .Ut /t2Œ0;T � is a Borel family of measures in M.�/;

(iii)
R T
0
jUt j.Y / dt <1;

(iv) for any ' 2 Cb.Rd / we have, in the sense of distributions,

d
dt

Z
' d�t D

1

4

Z
Nr' dUt : (3.1)

Moreover, we will denote by CRET . N�0; N�1/ the set of pairs .�;U/ 2 CRET satisfying
in addition �0 D N�0; �1 D N�1.

Note that the integrability condition (iii) ensures that the right hand side in (iv) is
well-defined. The measures Ut will be called collision rates.

Remark 3.2. If .�;U/ 2 CRET , then for any ' 2 Cb.Rd / and 0� t0 � t1 � T we haveZ
' d�t1 �

Z
' d�t0 D

1

4

Z t1

t0

Z
Nr' dUt dt: (3.2)

This follows readily from (iv) together with the continuity of t 7! �t in (i).
The curve .�t /t2Œ0;T � is also absolutely continuous with respect to the total variation

norm. Indeed, from (3.2) we inferˇ̌̌̌Z
' d.�t1 � �t0/

ˇ̌̌̌
� j'j1

Z t1

t0

jUt j.�/ dt;

and hence k�t1 � �t0kTV �
R t1
t0
jUt j dt . Moreover, the distribution @t�t on Œ0; T � �Rd

is actually a signed measure with total variation bounded by
R T
0
jUt j.�/ dt .
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Remark 3.3. The continuity equation can sometimes be tested against more general test
functions. For instance, let .�;U/ 2 CRET and let U satisfy the stronger integrability
condition Z T

0

Z
Œhvip C hv�i

p� djUt j dt <1 (3.3)

for some p > 0. Then (3.2) holds for all ' WRd !R continuous and satisfying the growth
condition j'.v/j � chvip . This follows immediately by approximation with functions in
Cb and the trivial estimate hv0ip C hv0�i

p � Cp.hvi
p C hv�i

p/. If �t has density ft with
respect to Lebesgue measure, we infer as above thatˇ̌̌̌Z

hvip'.v/.ft1.v/ � ft0.v// dv
ˇ̌̌̌
� C j'j1

Z t1

t0

Z
Œhvip C hv�i

p� djUt j dt;

and hence t 7! hvipft is absolutely continuous in L1.

Next, we note that being a solution to the collision rate equation is invariant under
Maxwellian regularization.

Given � 2 P .Rd /, we define its convolution with the Maxwellian M as usual as the
measure � �M 2 P .Rd / given by

.� �M/.dv/ D
Z

Rd

M.v � w/�.dw/ dv:

Given U 2M.R2d � Sd�1/ we define its convolution U �M with the Maxwellian M
in R2d as the measure given by

.U �M/.dX; d!/ D
Z

R2d

M.X � Y /U.dY; d!/ dX:

Lemma 3.4. Let .�;U/ 2 CRET and set �ıt WDMı ��t and Uı
t WDMı �Ut for ı � 0

and t 2 Œ0; T �. Then .�ı ;Uı/ 2 CRET .

Proof. Fix a test function ' and set ˆ.X/ WD '.v/C '.v�/. Then, using (2.10), we find
(dropping ı in the notation)

d
dt

Z
' d.�t �M/ D

d
dt

Z
.' �M/ d�t D

Z
Nr.' �M/ dUt

D

Z
Œ.ˆ �M/.T!X/ � .ˆ �M/.X/� dUt .X; !/

D

Z
Œ..T!ˆ/ �M/.X/ � .ˆ �M/.X/� dUt .X; !/

D

Z
Œˆ.T!X/ �ˆ.X/� d.Ut �M/.X; !/ D

Z
Nr' d.Ut �M/;

which shows that
.� �M;U �M/ 2 CRET :
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3.2. The action functional

Let us first recall the definition of the logarithmic mean ƒ W RC �RC ! RC given by

ƒ.s; t/ D

Z 1

0

s˛t1�˛ d˛ D
s � t

log s � log t
; (3.4)

the latter expression being valid for positive s ¤ t . Note that ƒ is concave and positively
homogeneous, i.e. ƒ.˛s; ˛t/ D ˛ƒ.s; t/ for all ˛ � 0. Moreover, it is easy to check that

ƒ.s; t/ �
s C t

2
8s; t � 0: (3.5)

Given a function f W Rd ! RC we will often write

ƒ.f /.v; v�; !/ D ƒ.ff�; f
0f 0�/:

We can now define a function ˛ W RC �RC �R! Œ0;1� by setting

˛.s; t; u/ WD

8̂̂<̂
:̂

u2

4ƒ.s;t/
; ƒ.s; t/ ¤ 0;

0; ƒ.s; t/ D 0 and u D 0;

C1; ƒ.s; t/ D 0 and u ¤ 0:

(3.6)

The function ˛ is lower semicontinuous, convex and positively homogeneous, i.e. for all
u2R, s; t � 0, and r > 0we have ˛.rs; rt; ru/D r˛.s; t;u/. Indeed, this is easily checked
using homogeneity and concavity of ƒ and the convexity of the function .u; y/ 7! u2=y

on R � .0;1/.
We will now define an action functional on pairs of measures .�;U/where�2P .Rd /

and U 2M.�/, generalizing (1.9). For later reference, we work first in a more general
setting.

We consider the integral functional associated with the function ˛ on the space
M.X IR3/ of vector-valued Borel measures with finite variation on a locally compact
Polish space X as defined in (2.12), i.e. we set

F˛.�/ WD

Z
˛

�
d�1

dj�j
;

d�2

dj�j
;

d�3

dj�j

�
dj�j; (3.7)

where j�j denotes the variation of �.

Definition 3.5 (Action). For � 2 P .Rd / and U 2M.�/ the action is defined by

A.�;U/ WD F˛.�
1; �2;U/; (3.8)

where �1; �2 are non-negative measures in MC.�/ given by

�1.dv; dv�; d!/ WD B.v � v�; !/�.dv/�.dv�/ d!; �2 WD T#�
1; (3.9)

where T is the change of variables .v; v�; !/ 7! .T!.v; v�/; !/ between pre- and post-
collisional variables defined in (1.3).
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If the measure � is absolutely continuous with respect to the Lebesgue measure L

on Rd , the next lemma shows that we recover (1.9). For this we denote by B 2M.�/ the
measure given by

B.dv; dv�; d!/ D B.v � v�; !/ dv dv� d!:

Lemma 3.6. Let � D fL 2 P .Rd / and U 2M.�/ be such that A.�;U/ <1. Then
there exists a Borel function U W �! R such that U D Uƒ.f /B and

A.�;U/ D
1

4

Z
jU.v; v�; !/j

2ƒ.f /B.v � v�; !/ dv dv� d!: (3.10)

Proof. Note that �i D �iB; i D 1; 2, with

�1.v; v�; !/ D f .v/f .v�/ and �2.v; v�; !/ D f .v
0/f .v0�/:

Choose � 2M.�/ such that B D h� and U D zU� are both absolutely continuous with
respect to � and denote by z�i the density of �i with respect to � . Now by homogeneity
of ˛,

A.�;U/ D

Z
˛.z�1; z�2; zU/ d� <1: (3.11)

Let A � � be such that
R
A
ƒ.�1; �2/ dB D 0. Homogeneity of ƒ yields

0 D

Z
A

ƒ.�1; �2/ dB D

Z
A

ƒ.z�1; z�2/ d�;

i.e. ƒ.z�1; z�2/ D 0 � -a.e. on A. Now the finiteness of the integral in (3.11) implies that
zU D 0 �-a.e. on A. Thus jUj.A/ D 0 and hence U is absolutely continuous with respect
to the measure ƒ.f /B. Formula (3.10) now follows immediately from the homogeneity
of ˛.

In view of the previous lemma, given a pair of functions f WRd !RC andU W�!R
we will define their action via A.f; U / WD A.�;U/ with � D fL and U D Uƒ.f / zB.

Next, we establish lower semicontinuity of the action with respect to convergence of�
and U.

Lemma 3.7 (Lower semicontinuity of the action). Assume that�n*�weakly in P .Rd /
and Un *

� U weakly� in M.�/. Then

A.�;U/ � lim inf
n

A.�n;Un/:

Proof. Note that by Assumption 2.1 on the collision kernel B , the weak convergence of
�n to � implies the weak� convergence of �in to �i in M.�/ for i D 1; 2. Now the claim
follows immediately from Lemma 2.5.

The next estimate will be useful at several points in this paper. For later reference, we
formulate it in the general context of (3.7).
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Lemma 3.8 (Integrability estimate). For any Borel function ‰ W X ! RC, any � 2
M.X IR3/ with F˛.�/ <1 and with �1; �2 non-negative measures we haveZ

‰ dj�3j �
p
2F˛.�/

�Z
‰2 d.�1 C �2/

�1=2
: (3.12)

Proof. Let us write �i D �i j�j. Since F˛.�/ is finite, the set A D ¹˛.�1; �2; �3/ D 1º
has zero measure with respect to j�j. We can now estimateZ

‰ dj�3j �
Z
‰j�3j dj�j D 2

Z
Ac

‰
p
ƒ.�1; �2/

p
˛.�1; �2; �3/ dj�j

� 2

�Z
˛.�1; �2; �3/ dj�j

�1=2�Z
Ac

‰2ƒ.�1; �2/ dj�j
�1=2

�
p
2F˛.�/

�Z
‰2 d.�1 C �2/

�1=2
;

where the last inequality follows from the estimate (3.5).

Corollary 3.9. Let .�;U/ 2 CRET be such that A WD
R T
0

A.�t ;Ut / dt and E WDR T
0

E2pCC.�t /dt are finite for some p > 0 where C Dmax.; 0/. Then the integrability
condition (3.3) is satisfied, more preciselyZ T

0

Z
Œhvip C hv�i

p� djUt j dt �
p
ACBCp;E:

Proof. Let �i ;U 2M.�� Œ0; T �/ be given by d�i D d�it dt and dUD dUt dt and note
that Z T

0

A.�t ;Ut / dt D
Z T

0

F˛.�
1
t ; �

2
t ;Ut / dt D F˛.�

1; �2;U/:

Then one concludes by Lemma 3.8, choosing ‰.v; v�; !; t/ D hvip C hv�ip .

Note that for a given curve .�t /t2Œ0;T � there will be several compatible collision rates
.Ut /t such that .�;U/ 2 CRET . For instance, when Vt is symmetric under the trans-
formation .v; v�; !/ 7! .v0; v0�; !/ we have

R
Nr' dVt D 0 for any test function '. Hence,

.�;UC V/ 2 CRET whenever .�;U/ 2 CRET . Thus, we define the action of a curve
as the minimal action of all compatible collision rates.

Definition 3.10 (Action of a curve). Given a curve .�t /t2Œ0;T � in P .Rd / its action is
defined by

AT .�/ WD inf
²Z T

0

A.�t ;Ut / dt W .�;U/ 2 CRET

³
: (3.13)

If there is no U with .�;U/ 2 CRET , we set AT .�/ D C1.

The next result shows that under additional control on the energy of the curve, the
infimum above is attained by an optimal collision rate.
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Proposition 3.11 (Optimal collision rate). Let .�t /t2Œ0;T � be a curve in P .Rd / such that

AT .�/ <1; E WD

Z T

0

E2.�t / dt <1: (3.14)

Then there exists a family .Ut /t with .�;U/ 2 CRET attaining the infimum in (3.13).

Proof. Let .Un
t /t be a minimizing sequence of collision rates for (3.13) and define the

measures Un 2M.� � Œ0; T �/ given by dUn D dUn
t dt . By Lemma 3.8, for every mea-

surable function ‰ on R2d � Sd�1 � Œ0; T � we have

sup
n

Z
‰ djUn

j

�
p
2A

�Z
.‰2 C‰2 ı T /B.v � v�; !/ d! d�t .v/ d�t .v�/ dt

�1=2
; (3.15)

with A D supn
R T
0

A.�t ;U
n
t / dt <1. Choosing ‰ D 1��I and using Assumption 2.1,

we obtain jUnj.�� I /� 2
p
CBAE �L.I /. Hence, Un has uniformly bounded variation

and up to extracting a subsequence we have Un *� U in M.� � Œ0; T �/. Moreover, we
see that U can be disintegrated with respect to Lebesgue measure on Œ0; T � and we can
write U D

R T
0

Ut dt for a Borel family .Ut / still satisfying (iii) in Definition 3.1.
To see that .�;U/ 2 CRET , it suffices to show that for any test functions a 2

C.Œ0; T �/ and ' 2 Cb.Rd / we haveZ
a.t/ Nr' dUn

t dt
n!1
����!

Z
a.t/ Nr' dUt dt: (3.16)

This follows from a straightforward argument, approximating Nr' with compactly sup-
ported continuous functions� once we establish the following tightness estimate for Un:
Denoting by BR the ball of radius R in R2d and MR WD B

c
R � S

d�1 � Œ0; T � we have

jUn
j.MR/ � 2

p
ACB

�Z T

0

Z
Bc

R=2

Œhvi C hv�i
 � d�t .v/ d�t .v�/ dt

�1=2
� 2

p
ACBE
p
R

;

which goes to zero uniformly in n as R !1. This estimate follows again from (3.15),
noting that if .v; v�/ or .v0; v0�/ lies outside BR, then .v; v�/ lies outside of BR=2, and

further using the estimate
R
¹jvj�Rº

hvi d�t .v/�
R
hvi2

R
d�t .v/, since  � 1, and the upper

bound on the energy in (3.14). Finally, we conclude that
R T
0

A.�t ;Ut /dt DA.�/ noting
that

R T
0

A.�t ;Ut / dt D F˛.�
1; �2;U/ and using lower semicontinuity of F˛ .

4. Variational characterization of the homogeneous Boltzmann equation

In this section we establish the variational characterization of the homogeneous Boltz-
mann equation, stated in Theorem 1.1. The crucial ingredient is a chain rule allowing one
to take derivatives of the entropy along suitable curves of finite action.



A gradient flow approach to the Boltzmann equation 19

Recall that Ep.�/ denotes the p-moment of �.

Proposition 4.1 (Chain rule). Let .�;U/ 2 CRET with .�t /t � Pp.Rd / be such that
H .�t / is finite for some t 2 Œ0; T �, and suppose that

E WD

Z T

0

Ep.�t / dt <1;

where p D 2Cmax.; 0/, andZ T

0

p
A.�t ;Ut / dt <1;

Z T

0

p
D.�t /

p
A.�t ;Ut / dt <1: (4.1)

Then H .�t / <1 for all t 2 Œ0; T �, and

H .�t / �H .�s/ D

Z t

s

1

4

Z
¹ƒ.fr>0º

Nr logfr dUr dr 80 � s � t � T; (4.2)

where fr is the density of �r . In particular, the map t 7!H .�t / is absolutely continuous
and

d
dt

H .�t / D
1

4

Z
Nr logft dUt for a.e. t: (4.3)

Note that assumption (4.1) and Lemma 3.6 imply that for a.e. t , �t is absolutely
continuous with a density ft , and Ut is absolutely continuous with a density Utƒ.ft /B ,
in particular the set of .v; v�; !/ where ƒ.ft / D 0 is negligible for Ut . Hence the right
hand side in (4.2) is well-defined since f; f�; f 0; f 0� > 0 on ¹ƒ.f / > 0º. More precisely,
this and similar integrals in what follows will be understood implicitly to be taken over
the set ¹ƒ.ft / > 0/º.

As a preparatory result we establish the following continuity property of the action
and dissipation under Maxwellian convolution.

Lemma 4.2. Let� 2P .Rd / and U 2M.�/ be such that A.�;U/ <1 andD.�/ <1.
Let �ı DMı � � and Uı DMı �U denote convolutions with the Maxwellian. Then

lim
ı!0

A.�ı ;Uı/ D A.�;U/; lim
ı!0

D.�ı/ D D.�/: (4.4)

Moreover, there is a constant C depending only on  and cB from Assumption 2.1 such
that

A.�ı ;Uı/ � CA.�;U/; D.�ı/ � CD.�/ 8ı > 0: (4.5)

In the proofs of the last two results, we took inspiration from [10] to treat the case
of unbounded kernels B , namely in the usage of the Peetre inequality and the follow-
ing version of the dominated convergence theorem (see e.g. [32, Chap. 4, Thm. 17]),
termed the extended dominated convergence theorem: Let .Rı/ı>0 and .Iı/ı>0 be fam-
ilies of measurable functions on a measure space X with Iı � 0 and let R; I be mea-
surable. Assume that Rı ; I ı converge pointwise to R; I respectively, jRı j � I ı a.e., and
limı!0

R
X
I ı D

R
X
I . Then also limı!0

R
X
Rı D

R
X
R.
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Proof of Lemma 4.2. We first prove (4.4), (4.5) for the dissipation D. Let � D f dv and
U D U dX d! and put F.X/ D ff�. Similarly let f ı D Mı � f , F ı D Mı � F and
U ı DMı � U be the respective densities of �ı , �ı ˝ �ı� and Uı . Now,

D.�ı/ D

Z
Bƒ.f ı/j Nrf ı j2 dX d! D

Z
BG.F ı ; T!F

ı/ dX d! DW
Z
Lı1 dX d!;

where G.x; y/ D .x � y/.log x � logy/ is convex. Note that Lı1.X; !/ converges point-
wise to L.X; !/ WD B � G.F; T!F / as ı ! 0, and

R
L dX d! D D.�/. From the com-

mutation relation of Lemma 2.3 and Jensen’s inequality we infer the majorant

Lı1 � B � .Mı � ŒG.F; T!F /�/ DW L
ı
2:

Obviously also Lı2 ! L pointwise as ı ! 0. To prove the continuity (4.4) it suffices by
the extended dominated convergence theorem to show that

R
Lı2 dX d! !

R
L dX d!.

But by self-adjointness of convolution we haveZ
Lı2 dX d! D

Z
B � .Mı � ŒG.F; T!F /�/ dX d!

D

Z
.Mı � B/ �G.F; T!F / dX d! WD

Z
Lı3 dX d!;

and again Lı3 ! L. Now, by Assumption 2.1 and Lemma 2.4 we have

.Mı � B/.X; !/ � cB

Z
hv � v� � .w � w�/i

Mı.w/Mı.w�/ dw dw�

� CcBhv � v�i

� Cc

2
BB.X;!/:

Hence, we have a majorant Lı3 � CL, and dominated convergence yields
R
Lı2 dX d! DR

Lı3 dX d! !
R
L dX d! as desired. Note that the previous argument also yields the

bound (4.5).
To prove the corresponding claims for the action A, we proceed in the same way,

writing

A.�ı ;Uı/ D

Z
B�1

jU ı j2

ƒ.F ı ; T!F ı/
dX d!;

and use convexity of the function .u; r; s/ 7! juj2=ƒ.r; s/ and also, in the last step, the
bound M ı � B�1 � CB�1.

Proof of Proposition 4.1. Note that by (4.1) and Lemma 3.6 we have �r D fr dv, Ur D

Ur dX d! for a.e. r and suitable densities fr ; Ur . We will now proceed in several steps.

Step 1: Regularization. We will perform a three-fold regularization procedure. First, we
regularize the curve by convolution with the Maxwellian. For ı > 0 we set �ıt DMı ��t
and Uı

t D Mı �Ut . Then we perform a convolution in time. For a standard mollifier �
on R supported in Œ�1; 1� and � > 0 we define

�
ı;�
t D

Z
�.t 0/�ıt��t 0 dt

0; U
ı;�
t D

Z
�.t 0/Uı

t��t 0 dt
0:
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(For this the curves are assumed to be extended trivially by �ı0;U
ı
0 on Œ��; 0� and simi-

larly on ŒT; T C ��.) By Lemma 3.4 we have .�ı ;Uı/ 2 CRET and by linearity of the
collision rate equation also .�ı;�;Uı;�/ 2 CRET .

Finally, let g be a probability density in P2;E .Rd / such that

jlogg.v/j � C hvi (4.6)

for some constant C (for instance, choose g.v/ proportional to e�˛jvj for suitable ˛ > 0).
Then we set, for " > 0, �ı;�;" WD .1C "/�1.�ı;� C "gL/ and Uı;�;" D .1C "/�1Uı;�,
and note that .�ı;�;";Uı;�;"/ 2 CRET . Let f ı ; U ı denote the densities of �ı ;Uı , and
similarly for � and ".

Step 2: Estimates for the regularized curve. Note that the time-integrated p-moment of
�ır is bounded as Z T

0

Ep.�
ı;�;"
r / dr � E (4.7)

with p D 2Cmax.; 0/ for all ı; �; " > 0.
Next, we look at the behavior of the action and dissipation under regularization. From

Lemma 4.2 we have

A.�ı ;Uı/ � CA.�;U/; D.�ı/ � CD.�/: (4.8)

A similar convexity argument givesZ T

0

A.�ı;�r ;Uı;�
r / dr � C

Z T

0

A.�r ;Ur / dr: (4.9)

Taking into account Corollary 3.9 and (4.7) we obtainZ T

0

Z
Œhvi C hv�i� djUı;�

r j dr � C; (4.10)

uniformly in ı; � > 0.

Step 3: Integrated chain rule for regularized curve. Now, we claim that

d
dr

H .�ı;�;"r / D

Z
Rd

logf ı;�;"r @rf
ı;�;"
r D

1

4

Z
�

Nr logf ı;�;"r U ı;�;"r ; (4.11)

where the integral over� is with respect to the measure dX d!. Indeed, to justify the first
identity in (4.11) we use convexity of r 7! r log r and (4.6) to estimate

1

h
jf
ı;�;"
rCh

logf ı;�;"
rCh

� f ı;�;"r logf ı;�;"r j � C hvi
1

h
jf
ı;�;"
rCh

� f ı;�;"r j

� C hvik�0k1

Z T

0

.f ıt C "g/ dt:

Since .ft /t has uniformly bounded time-integrated second moment, by dominated con-
vergence we can take the time derivative inside the integral. The second identity in (4.11)
follows by applying the collision rate equation using (4.6) and (4.10); see Remark 3.3.
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Integrating (4.11) between s and t we obtain

H .f
ı;�;"
t / �H .f ı;�;"s / D

Z t

s

1

4

Z
�

Nr logf ı;�;"r U ı;�;"r dr: (4.12)

Step 4: Passing to the limit. We will now pass to the limit in (4.12) to obtain (4.2) letting
�! 0, "! 0 and ı ! 0 in this order. Consider first the right hand side.

(a) RHS, � ! 0. Using the bound jlog f ı;�;"r j � c.ı; "/hvi ensured by (4.6) which is
uniform in � for fixed ı; " and the integrability condition (4.10) for U ı;�, we can pass to
the limit as �! 0 and obtain

.1C "/�1
Z t

s

1

4

Z
�

Nr log.f ır C "g/U
ı
r dr: (4.13)

(b) RHS, "! 0. We use the estimate (dropping time parameter r in notation)

j Nr log.f ı C "g/U ı j �
q
j Nr log.f ı C "g/j2ƒ.f ı C "g/B �

s
jU ı j2

Bƒ.f ı C "g/

�

q
j Nr log.f ı C "g/j � j.f ı C "g/..f ı/� C "g�/ � ..f ı/0 C "g0/..f ı/0� C "g0�/jB

�

s
jU ı j2

Bƒ.f ı/

�

p
C.hvi2 C hv�i2/hv � v�i

�

q
j.f ı C "g/..f ı/� C "g�/ � ..f ı/0 C "g0/..f ı/0� C "g

0
�/j

s
jU ı j2

Bƒ.f ı/
: (4.14)

Here, in the second inequality we have used the definition of ƒ and the monotonicity of
the logarithmic mean. In the third inequality we have used the bound (2.9) and Assump-
tion 2.1. By the moment assumptions on f and Lemma 4.2, one readily checks that the
right hand side in (4.14) is integrable on Œ0;T ��� and its integral converges to that of the
same expression with " D 0. Thus, the extended dominated convergence theorem allows
us to pass to the limit as "! 0 in (4.13) and obtainZ t

s

1

4

Z
Nr logf ır U

ı
r dr: (4.15)

(c) RHS, ı ! 0. Note that Nr log f ır U
ı
r converges pointwise to Nr log fr Ur as ı ! 0 at

every r where the densities of �r ;Ur exist. To pass to the limit in the integral over � we
use the majorant (dropping the time parameter r in notation)

j Nr logf ı U ı j �
1

2
j Nr logf ı j2ƒ.f ı/B C

1

2

jU ı j2

Bƒ.f ı/
DW

1

2
.I ı1 C I

ı
2 /:

Obviously I ı1 ! I 01 and I ı2 ! I 02 pointwise, where I 01 and I 02 are the corresponding
expressions with f ı , U ı replaced by f; U . By Lemma 4.2, we also haveZ

I ı1 D D.f
ı/! D.f / D

Z
I 01 ;

Z
I ı2 D A.f ı ; U ı/! A.f; U / D

Z
I 02
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as ı ! 0 for a.e. r 2 Œ0; T �. Thus by the extended dominated convergence theorem we
can pass to the limit in the space integral in (4.15).

Finally, to pass to the limit in the time integral, we use the already established almost
everywhere in time convergence of the space integral and exhibit a similar majorant using
Lemma 4.2:Z

Nr logf ır U
ı
r dr �

�Z
I ı1

�1=2�Z
I ı2

�1=2
� C

p
D.�r /

p
A.�r ;Ur /:

Recall that the last expression is integrable by assumption.

(d) LHS. Let us now show convergence of the left hand side of (4.12). Appealing to the
bound (4.6) for g we obtain the estimate

jH .f
ı;�;"
t / �H .f

ı;"
t /j � C

Z
hvijf

ı;"
t��t 0

� f
ı;"
t j�.t

0/ dt 0;

and we can pass to the limit as � ! 0 by the continuity of t 7! hvif ı;"t in L1; see
Remark 3.3. The bound (2.9) allows us to pass to the limit as " ! 0 and we are left
with H .f ıt / �H .f ıs /. Assume first that H .�s/ is finite. Recall that entropy is decreas-
ing along the Ornstein–Uhlenbeck semigroup and lower semicontinuous. As ı ! 0

we thus infer that H .f ıt / increases to H .�t /. Hence, H .f ıt / � H .f ıs / converges to
H .ft / � H .fs/ and H .�t / is finite due to the boundedness of the right hand side
of (4.2) in the limit. Since by assumption there exists s with H .�s/ < 1, this shows
that H .�t / <1 for all t 2 Œ0; T � and (4.2) is established.

Finally, using the estimate

1

4

Z
Nr logfr dUr �

p
D.�r /

p
A.�r ;Ur /; (4.16)

obtained just as before for f ır , we see that t 7! H .�t / is absolutely continuous and (4.3)
follows.

We can now prove the variational characterization of the homogeneous Boltzmann
equation as the gradient flow of the entropy. For convenience we rephrase the statement
here.

By a solution to the homogeneous Boltzmann equation we mean a family .ft /t�0 of
probability densities with f 2 C.Œ0;1/IL1.Rd // \ L1.Œ0;1/IL12.R

d // such that for
all ' 2 C1c .R

d /, in the sense of distributions,

d
dt

Z
Rd

'ft D �
1

4

Z
Nr'.f 0f 0� � ff�/B.v � v�; !/ dv dv� d!: (4.17)

Theorem 4.3. Let .ft /t2Œ0;T � be a curve of probability densities in Pp.Rd / such that

H .f0/ <1;

Z T

0

Ep.ft / dt <1 (4.18)

with p D 2Cmax.; 0/. Then

JT .f / WD H .fT / �H .f0/C
1

2

Z T

0

D.ft / dt C
1

2
AT .f / � 0:
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Moreover, JT .f / D 0 if and only if .ft /t is a solution to the homogeneous Boltzmann
equation satisfying the integrability assumptions (4.18) andZ T

0

D.ft / dt <1: (4.19)

Assuming finite entropy and energy (and finite fourth moment for  > 0) of the initial
datum f0, Theorem 2.2 gives existence and uniqueness of a solution .ft /t to the homoge-
neous Boltzmann equation. It satisfies (4.18) and (2.7); in particular, (4.19) holds. Thus,
there is actually only one curve such that JT .f / D 0, namely the unique solution to the
Boltzmann equation.

Proof of Theorem 4.3. Let .ft /t2Œ0;T � be a curve satisfying (4.18). To show JT .f /� 0we
can assume that AT .f / <1 and

R T
0
D.ft /dt <1, since otherwise JT .f /DC1. Let

.Ut /t be optimal collision rates given by Proposition 3.11. But then JT .f / � 0 follows
immediately from Proposition 4.1 and the estimate (4.16).

We now show that any solution .ft / to the Boltzmann equation satisfying (4.18) and
(4.19) satisfies JT .f / D 0. Setting �t D ftL and

Ut D �
Nr logftƒ.ft /B D �Œ.f 0/t .f 0�/t � ft .f�/t �B;

we see by (4.17) that .�;U/ belongs to CRE . Moreover, A.�t ;Ut / D D.ft / and thus
by (4.19) we can apply the chain rule (4.2) to obtain

H .fT / �H .f0/ D �

Z T

0

D.ft / dt D �
1

2

Z T

0

D.ft / dt �
1

2
AT .�/;

i.e. JT .f / D 0.
Conversely, let us show that any curve .ft /t with JT .f / D 0 is a solution to the

Boltzmann equation satisfying (4.19). From (4.18) we find that H .�t / < 1 for all t
and that AT .f / <1 and (4.19) holds. By Proposition 3.11 there exists a family Ut with
.�;U/ 2 CRET such that

R T
0

A.ft ;Ut /dt DAT .f /, in particular t 7! ft is continuous
in L1; see Remark 3.2. By Lemma 3.6 the measure Ut has a density Utƒ.ft /B . From
the chain rule (4.2) and the Cauchy–Schwarz and Young inequalities we infer that

H .fT / �H .f0/ D

Z T

0

1

4

Z
Nr logfrUrƒ.fr /B dr

� �

Z T

0

�s
1

4

Z
j Nr logfr j2ƒ.fr /B

s
1

4

Z
jUr j2ƒ.fr /B

�
dr

� �
1

2

Z T

0

�
1

4

Z
j Nr logfr j2ƒ.fr /B C

1

4

Z
jUr j

2ƒ.fr /B

�
dr

D �
1

2

Z T

0

D.fr / dr �
1

2
AT .f /:

Since JT .f / D 0, we see that the two inequalities have to be identities. This implies thatR T
0

R
jUr C Nr logfr j2ƒ.fr /B dt D 0, hence Ur D� Nr logfr for a.e. r and a.e. .v; v�;!/
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with ƒ.fr /.v; v�; !/ > 0. Thus, the collision rate equation for .�;U/ turns into the dis-
tributional formulation of the Boltzmann equation.

The results obtained in this section can be recast in the framework of gradient flows
in metric spaces. The action functional gives rise to a distance WB on Pp;E .Rd / and the
Boltzmann equation is characterized as the gradient flow of H (i.e. a curve of maximal
slope) in the metric space .Pp;E .Rd /;WB/. We refer to the appendix for a discussion of
this point of view, in particular to Corollary B.3.

Generalized gradient structures

We will now briefly discuss possible generalizations of the variational characterization
of the Boltzmann equation above using generalized gradient structures. Such structures
arise naturally from the large deviation behavior of an underlying microscopic stochastic
system; see the discussion in the introduction. We refer the reader e.g. to [26] and the
references therein. Here we aim to indicate how the characterization in Theorem 4.3 can
be generalized to non-quadratic gradient structures. A very detailed discussion of gen-
eralized gradient structures in the case of jump processes has recently been performed
in [31]. We will mainly follow their terminology and constructions and adapt them to the
present case of the Boltzmann equation. In comparison, we will impose more restrictive
conditions on the gradient structures we consider in order to simplify the presentation
while still encompassing the main examples we are interested in; see Example 4.7.

Let us fix a dual dissipation density ‰� and a flux density map � as follows.

Assumption 4.4. (1) The function‰� WR! Œ0;1/ is convex, differentiable, superlinear
and even, with ‰�.0/ D 0.

(2) The function � W Œ0;1/ � Œ0;1/! Œ0;1/ is continuous, concave, not identically 0
and it satisfies

� symmetry: �.r; s/ D �.s; r/ for all s; r 2 Œ0;1/;

� positive 1-homogeneity: �.�r; �s/ D ��.r; s/ for all r; s 2 Œ0;1/ and � � 0;

� behavior at 0: �.0; t/ D 0 for all t 2 Œ0;1/.

(3) In addition we have

� compatibility: .‰�/0.log s � log t /�.s; t/ D s � t for all s; t > 0;

� there exists a convex lower semicontinuous function G‰� W Œ0;1/ � Œ0;1/ !
Œ0;1/ such that

1
4
‰�.log t � log s/�.s; t/ D G‰�.s; t/ 8s; t > 0;

and G‰�.s; t/ D 0 if and only if s D t .

Let ‰ W R ! R be the convex conjugate of ‰� and note that it is strictly convex,
strictly increasing, superlinear and even, with ‰.0/ D 0.



M. Erbar 26

Given � 2 P .Rd /, we define the measure �� 2MC.�/ via

�� WD �

�
d�1

d�
;

d�2

d�

�
�; (4.20)

where �1; �2 are given by (3.9) and � is any measure such that �1; �2 � � . Due
to the 1-homogeneity of � the definition is independent of � . Note that if � is abso-
lutely continuous with respect to Lebesgue measure with density f , then d�� D
�.ff�; f

0f 0�/B dv dv� d!.
We can now define the primal and dual dissipation potentials.

Definition 4.5. Given measures � 2 P .Rd /, U 2M.�/ we define

R.�;U/ WD
1

4

Z
�

‰

�
dU

d��

�
d��; (4.21)

provided U � ��, and R.�;U/ D C1 else. Given moreover a measurable function
� W �! R we define

R�.�; �/ WD
1

4

Z
�

‰�.�/ d��: (4.22)

Finally, we define

D‰�.�/ WD

Z
�

G‰�.ff�; f
0f 0�/B dv dv� d! (4.23)

provided � is absolutely continuous with density f , and set D‰�.�/ D C1 otherwise.

The functional D‰� takes over the role of the entropy dissipation and is formally
given by

D‰�.�/ D R�.�;� Nr logf /

provided � has density f .
Note that the primal dissipation potential can be rewritten as the integral functional

R.�;U/ D Fˇ .�
1; �2;U/ using the notation (2.12), with the function ˇ defined by

ˇ.s; t; u/ WD

8̂̂<̂
:̂
1
4
‰. u

�.s;t/
/�.s; t/; �.s; t/ ¤ 0;

0; �.s; t/ D 0 and u D 0;

C1; �.s; t/ D 0 and u ¤ 0:

Since ˇ W Œ0;1/ � Œ0;1/ � R! Œ0;1� is again convex and lower semicontinuous, an
analogue to Lemma 3.7 shows that R is convex and lower semicontinuous with respect to
weak convergence of � and weak� convergence of U. Similarly the assumptions on G‰�
guarantee that D‰� is convex and lower semicontinuous with respect to weak conver-
gence.

We can now formulate the variational characterization of the Boltzmann equation.
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Theorem 4.6. Let .�;U/ 2 CRET with .�t /t � Pp.Rd / be such that

H .�0/ <1;

Z T

0

Ep.�t / dt <1 (4.24)

with p D 2Cmax.; 0/. Then

LT .�;U/ WD H .�T / �H .�0/C

Z T

0

ŒD‰�.�t /CR.�t ;Ut /� dt � 0: (4.25)

Moreover, LT .�;U/ D 0 if and only if �t has density ft with .ft /t a solution to the
homogeneous Boltzmann equation.

Proof. We can follow with small modifications the proof of Proposition 4.1 and Theorem
4.3. Let us highlight the main steps.

First note that by the convex duality of ‰ and ‰�, for s; t > 0 we have the estimate

1

4
j.log t � log s/wj D

1

4

ˇ̌̌̌
.log s � log t /

w

�.s; t/

ˇ̌̌̌
�.s; t/

�
1

4
‰

�
w

�.s; t/

�
�.s; t/C

1

4
‰�.log s � log t /�.s; t/

D
1

4
‰

�
w

�.s; t/

�
�.s; t/CG‰�.s; t/: (4.26)

Moreover, we have equality,

1

4
.log t � log s/w D �

1

4
‰

�
w

�.s; t/

�
�.s; t/ �G‰�.s; t/; (4.27)

if and only if w D .‰�/0.log s � log t /�.s; t/ and hence by Assumption 4.4 if and only if
w D s � t .

To prove (4.25) we can assume that
R T
0
ŒD‰�.�t / C R.�t ; Ut /� dt < 1 since

otherwise the estimate holds trivially. Then arguing as in Lemma 3.6 we infer for a.e. t
that �t and Ut have densities ft and Ut D Wt�.ft /B respectively, where �.f / WD
�.ff�; f

0; f 0�/. In particular, the set of v; v�; ! where �.ft / D 0 is negligible for Ut .
The first step is then to establish the chain rule

H .�t / �H .�s/ D

Z t

s

1

4

Z
Nr logfr dUr dr 80 � s � t � T: (4.28)

According to the previous comment, the integral can be restricted to the set ¹�.fr / > 0º
and is thus well-defined. One argues as in the proof of Proposition 4.1 by regularization
and replaces 1

2
A.�;U/ and 1

2
D.�/ with R.�;U/ and D‰�.�/. The estimate (4.26)

yields the necessary majorants. The essential properties of A and D used in the proof
were convexity and lower semicontinuity which still hold under our assumptions for R

and D‰� .
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From (4.28) we obtain (4.25) by estimating as in (4.26) on the set ¹�.f / > 0º:

1

4
Nr logf � U D �

1

4
�.f /.� Nrf /B

U

�.f /B

� �
1

4
‰

�
U

�.f /B

�
�.f /B �

1

4
‰�.� Nrf /�.f /B:

Now, assume that equality is attained in (4.25). Then for a.e. t and a.e. on ¹�.ft / > 0º we
must have

U D .‰�/0.� Nrf /�.f /B D Œff� � f
0f 0��B:

On the set where �.ft /D 0 and henceUt D 0we must haveG‰�.ff�;f 0f 0�/D 0. But the
assumptions on G‰� and � then imply that on ¹�.f /D 0º we have ff� D f 0f 0� D 0 and
thus again U D ff� � f 0f 0�, i.e. .ft / is a solution to the Boltzmann equation. Conversely,
a solution to the Boltzmann equation leads to equality in (4.25).

Example 4.7. Finally, let us highlight two examples of generalized gradient structures
compatible with our Assumption 4.4.

� Quadratic gradient structure: Choosing

� D ƒ; ‰�.r/ D ‰.r/ D 1
2
r2;

with ƒ the logarithmic mean defined in (3.4), we recover the framework considered in
the previous section and the gradient flow characterization of Theorem 4.3. Namely,
D‰�.�/ D

1
2
D.�/ and R.�;U/ D 1

2
A.�;U/ yields the action functional defined in

Definition 3.5.

� cosh structure: Let us set

�.s; t/ D
p
st ; ‰�.�/ D 4.cosh.�=2/ � 1/:

Then we obtain

‰.s/ D 2s log
�
s C
p
s2 C 4

2

�
�

p
s2 C 4C 4;

as well as
G‰�.s; t/ D

1
4
‰�.log t � log s/�.s; t/ D 1

2
.
p
s �
p
t /2:

Let us mention that generalized gradient structures involving cosh such as the latter
example arise naturally in the context of large deviations for jump processes. Namely, the
associated functional LT from (4.25) is the path-level large deviation rate functional for
the empirical measure of N independent copies of the process in the limit N !1; see
for instance [26, 31]. In the present setting, the second structure in the above examples
can formally be related to the large deviations of the Kac process considered in the next
section. However, to the best of our knowledge no full large deviation principle for this
classical Kac system with conservation of momentum and energy has been established
yet. In [5] a large deviation principle for a Kac type system with only conservation of
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momentum is established, which gives rise to a cosh-type generalized gradient structure
for the corresponding limiting Boltzmann type equation. A similar structure has also been
used in [4] to give a variational characterization of linear spatially inhomogeneous Boltz-
mann equations.

5. Consistency with Kac’s random walk

In this section we give a new proof of the convergence of Kac’s random walk to the
solution of the spatially homogeneous Boltzmann equation (see Theorem 1.3), exploiting
the fact that both evolutions have a gradient flow structure. We recall from Section 1.2
that Kac’s random walk is the continuous time Markov chain on

XN WD

°
.v1; : : : ; vN / 2 RdN

ˇ̌̌ NX
iD1

vi D 0;

NX
iD1

jvi j
2
D Nd

±
with generator

Af .v/ D
1

N

Z
Sd�1

X
i<j

Œf .R!ijv/ � f .v/�B.vi � vj ; !/ d!; (5.1)

where R!ijv D .v1; : : : ; v
0
i ; : : : ; v

0
j ; : : : ; vN /, with v0i D vi � hvi � vj ; !i! and v0j D vj C

hvi � vj ; !i!. Let us denote by �N the normalized Hausdorff measure on XN and note
that the Markov chain is reversible with respect to �N . Denoting by �Nt the law of the
chain starting from �N0 , its density f Nt with respect to �N satisfies Kac’s master equation

@tf
N
t D Af

N
t : (5.2)

We recall the following result. For v 2 RNd and p � 1 we set

ENp .v/ WD
1

N

NX
iD1

jvi j
p:

Lemma 5.1 (Propagation of moments for Kac’s random walk, [27, Lem. 5.3]). Let �N0
be an initial condition with hENp ; �

N
0 i D

R
ENp d�N0 <1. Then the law .�Nt /t�0 of Kac’s

random walk satisfies

sup
t�0

hENp ; �
N
t i � max ¹Cp; hENp ; �

N
0 iº

for some constant Cp depending only on p.

We will first detail the gradient flow structure of the master equation.

5.1. Gradient flow structure

Kac’s random walk possesses the structure of a gradient flow in P .XN / of the relative
entropy H .�j�N /with respect to a suitable geometry on P .XN / as we shall now describe.
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For general Markov chains on finite state spaces a gradient flow structure has been discov-
ered in [23, 25]. Here we briefly show how to extend this result to the present case of the
continuous state space XN . The construction is similar to that in Section 3; see also [15].
Let us stress, however, that for the purpose of showing consistency with the Boltzmann
equation it will only be important to know that the solution .ft /t to (5.2) satisfies the
energy identity JNT .f / D 0; see (5.5) below.

We introduce a jump kernel on XN by setting

J.v; du/ D
1

2N

Z
Sd�1

NX
i;jD1

ıR!
ij

v.du/B.vi � vj ; !/ d!:

Given a probability measure � 2 P .XN / we define �1; �2 2M.XN �XN / via

d�1.v;u/ D J.v; du/ d�.v/; d�2.v;u/ D J.u; dv/ d�.u/: (5.3)

For a pair .�;V/ with � 2 P .XN / and V 2M.XN �XN / we define the action

AN .�;V/ WD 2F˛.�
1; �2;V/;

where F˛ is defined in (3.7). We define a distance on P .XN / by setting

WN .�0; �1/
2
WD inf

�;V

Z 1

0

AN .�t ;Vt / dt;

where the infimum is taken over all curves .�t /t2Œ0;1� connecting �0 to �1 and all
.Vt /t2Œ0;1� subject to the continuity equation

d
dt

Z
XN

' d�t �
1

2

Z
X2

N

Œ'.u/ � '.v/� dVt .v;u/ D 0; 8' 2 Cb.XN /:

It follows from the results in [15, Thm. 4.4, Prop. 4.3], by considering J as a jump kernel
on the ambient space RdN , that WN defines a distance and that the infimum in the defi-
nition is attained by an optimal pair .�;V/. For a curve .�t /t2Œ0;T � in P .XN / we define
its action by

AN
T .�/ WD inf

²Z T

0

AN .�t ;Vt / dt
³
;

where the infimum is taken over all .Vt /t such that .�;V/ satisfy the continuity equation.
There exists an optimal V attaining the infimum; see [15, Prop. 4.3]. In fact, for a.e. t ,
AN .�t ;Vt / equals the metric derivative of the curve with respect to WN . We define the
entropy dissipation of � 2 P .XN / by

DN .�/ D
1

4N

Z
XN

Z
Sd�1

X
i;j

Œf .R!ijv/ � f .v/�

� Œlogf .R!ijv/ � logf .v/�B.vi � vj ; !/ d! d�N .v/
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provided � D f�N , and we set DN .�/ D C1 if � is not absolutely continuous. Note
that along any solution ft to the master equation (5.2) we have

d
dt

H .ft j�N / D �D
N .ft /: (5.4)

Proposition 5.2. For any curve .�t /t2Œ0;T � in P .XN / with H .�0j�N / <1 we have

JNT .�/ D H .�T j�N / �HN .�0j�N /C
1

2

Z T

0

DN .�t / dt C
1

2
AN
T .�/ � 0: (5.5)

Moreover, JNT .�/ D 0 if and only if �t D ft�N where ft solves (5.2).

Proof. We will focus on showing that any solution .�t /t to the master equation (5.2)
satisfies JNT .�/ D 0, since this will be used in what follows. The other statements can
be obtained by following a line of reasoning as in Section 4, namely establishing a chain
rule for the entropy analogous to Proposition 4.1 via a regularization argument (in fact,
the situation is much simpler due to linearity of the master equation).

Let �t D ft�N be a solution to the master equation (5.2). Then the couple .�t ;Vt /
solves the continuity equation if we choose

dVt .v;u/ D ‰t .v;u/ƒ.ft .v/; ft .u// J.v; du/ �N . dv/

with ‰t .v;u/ D logft .u/ � logft .v/. Note moreover that

A.�t ;Vt / D DN .�t /:

Thus, integrating (5.4) yields JT .�/ D 0.

5.2. Convergence to the Boltzmann equation

In this section we will give a new proof that the distribution of the empirical measure
of N particles evolving by Kac’s random walk converges to the solution of the homoge-
neous Boltzmann equation as N !1. For convenience let us recall the setup and the
convergence statement.

Consider the map assigning to a configuration in XN its empirical measure

LN W XN ! P .Rd /; v 7!
1

N

NX
iD1

ıvi
:

Let us set
P�.R

d / WD ¹� 2 P .Rd / WM.�/ D 0; E.�/ D dº;

the set of probability measures with zero momentum and energy d (recall (2.2)). Note
that for any v 2XN we have LNv 2 P�.Rd /. Let us denote by M DM 0;d the standard
Maxwellian distribution and by H .�jM/ the relative entropy (see (2.4)). We consider
P�.Rd / as a subset of P .Rd / equipped with the topology of weak convergence.
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Theorem 5.3. For each N let .�Nt /t�0 be the law of Kac’s random walk starting from
�N0 and let cNt WD .LN /#�

N
t be the law of the empirical measures. Assume that �N0 is

well-prepared for some �0 D f0L 2 P�.Rd / .if  > 0 assume further E4.�0/ <1/ with
H .�0jM/ <1 in the sense that as N !1,

cN0 * ı�0
;

1

N
H .�N0 j�N /! H .�0jM/:

Assume further that for some p > 2Cmax.; 0/ ,

sup
N

hENp ; �
N
0 i <1:

Then, for all t > 0, as N !1 we have

cNt * ı�t
;

1

N
H .�Nt j�N /! H .�t jM/; (5.6)

where �t D ftL and ft is the unique solution to the spatially homogeneous Boltzmann
equation with initial datum f0.

The strategy of the proof will be to pass to the limit in the variational formulation
of the master equation and obtain the variational formulation of the Boltzmann equation.
The key ingredient to this will be to establish lim inf estimates relating the entropy, dis-
sipation and action for the Kac walk and the Boltzmann equation. Although the proofs
of the latter might seem long, the core argument is rather simple and boils down to the
lower semicontinuity of integral functionals stated in Lemma 2.5. A non-trivial additional
ingredient that we develop is a probabilistic representation result that allows us to view
certain curves in P .P�.Rd // as superpositions of curves in P�.Rd /; see Proposition 5.5.

Let us now first give the proof of the convergence theorem. Afterwards we will
develop the necessary ingredients.

Proof of Theorem 5.3. By Proposition 5.2 we know that .�Nt /t�0 satisfies

H .�NT j�N / �H .�N0 j�N /C
1

2

Z T

0

DN .�Nt / dt C
1

2
AN
T .�/ D 0: (5.7)

Together with the convergence of H .�N0 j�N /=N this implies in particular

sup
N

1

N
AN
T .�

N / <1:

The compactness result of Lemma 5.4 then shows that for every continuous curve .ct /t�0
in P .P .Rd // with ct concentrated on P�.Rd /\Pp;E .Rd / for all t and suitable E > 0,
up to a subsequence we have cNt *ct weakly for all t . A priori, ct is not a Dirac measure.
However, by the superposition principle of Proposition 5.5 the curve .ct /t2Œ0;T � can be
represented as ct D .et /#‚ for a probability measure ‚ on C.Œ0; T �IP .Rd //. Thanks to
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the lim inf inequalities for the entropy, dissipation and action given by (5.28), (5.14) and
(5.13), dividing by N in (5.7) and passing to lim inf we obtainZ �

H .�T / �H .�0/C
1

2

Z T

0

D.�t / dt C
1

2
AT .�/

�
d‚.�/ � 0; (5.8)

using also the fact that H .�jM/ D H .�/ CH .M/ for � 2 P�.Rd / and that �0; �T 2
P�.Rd / for ‚-a.e. �. By Theorem 4.3 the integrand is non-negative. Thus we have in
fact equality in (5.8) and we infer that ‚ is concentrated on gradient flow curves .�t /t ,
i.e. satisfying JT .�/D 0. Since‚-a.s. �0 D �0 and the unique gradient flow curve starting
from �0 is given by �t D ftL with ft the solution to the Boltzmann equation with initial
datum f0, we infer that ct D .et /#‚D ı�t

for all t and the convergence of cNt to ı�t
holds

for the full sequence. Finally, we prove (5.6). From the previous discussion we retain that

0 � lim inf
N

1

N
JNT .�

N / � JT .�/ D lim inf
N

1

N
H .�NT j�N / �H .�T jM/

C
1

2

�
lim inf
N

1

N

Z T

0

DN .�
N
t / dt CAN

T .�
N / �

Z T

0

D.�t / dt CAT .�/

�
� 0:

Using again (5.28), (5.13), (5.14), we infer that we have equality:

lim inf
N

1

N
H .�Nt j�N / D H .�t jM/:

Since by the same argument this must hold for any subsequence, we conclude the conver-
gence (5.6) for the full sequence.

We now develop the ingredients to the previous proof. We will first show that any
sequence of curves in P .XN / with uniformly bounded action after passing to the empir-
ical measure admits a limit curve in P .P .Rd //. Then we will give a representation of
this curve as a superposition of curves in P .Rd / and establish lim inf inequalities for the
action and dissipation of the limit curve. Finally, we prove the lim inf inequality for the
entropy.

5.2.1. Convergence to a limit curve.

Lemma 5.4. Let .�Nt /t2Œ0;T � be a sequence of curves in P .XN / such that

sup
N

1

N
AN
T .�

N / <1; (5.9)

and for some p0 > 2Cmax.; 0/,

sup
N

sup
t2Œ0;T �

hENp ; �
N
t i <1: (5.10)

Put cNt D .LN /#�
N
t . Then there exists a continuous curve .ct /t2Œ0;T � in P .P .Rd // such

that up to a subsequence we have cNt * ct weakly and ct is concentrated on P�.Rd / for
all t 2 Œ0; T �.
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Proof. We consider the set P2;E .Rd / of probability measures with energy less than E,
with E D d (recall (2.3)). Recall that P2;E .Rd / is compact with respect to weak con-
vergence, hence also P .P2;E .Rd // is compact. On P2;E .Rd /, weak convergence is
equivalent to convergence of the first moment, or convergence in the L1-Wasserstein dis-
tanceW1. Let us denote by zW1 the L1-Wasserstein distance on P .P2;E .Rd // induced by
the L1-Wasserstein distance W1 on P2;E .Rd /. Since W1 is bounded on P2;E .Rd /, the
space .P .P2;E .Rd //; zW1/ is compact. We claim that

WN .�
N
s ; �

N
t / �

C
p
N
W1;d .�

N
s ; �

N
t / � C

p
N zW1.c

N
s ; c

N
t / (5.11)

for some universal constant C > 0. Indeed, to prove the first inequality we view �Ns ; �
N
t

as measures on RNd equipped with the distance d.v; u/ D
P
i jvi � ui j and let W1;d

denote the L1-Wasserstein distance induced by d . Then the estimate follows from [15,
Prop. 4.5] once we note that

R
RNd d.v; u/

2J.v; du/ � CN , where C depends on the
moment bound in (5.10). The second inequality follows from the fact that the map LN
is 1=N -Lipschitz from .RNd ; d / to .P .Rd /; W1/. Together with (5.11), (5.9) implies
that the curves .cNt /t are uniformly equicontinuous in P .P2;E .Rd // with respect to the
distance zW1. Thus, the Arzelà–Ascoli theorem implies that there exists a continuous curve
.ct /t2Œ0;T � in P .P2;E .Rd // such that up to extraction of a subsequence, cNt *ct weakly
for all t 2 Œ0; T �.

Finally, assume in addition (5.10) and let us show that ct is concentrated on P�.Rd /
for all t . We need to show ct .¹M D 0;E D dº/ D 1. Since cNt .¹M D 0º/ D 1 and M is
continuous on P2;E .Rd /, and hence ¹M D 0º is closed, the weak convergence cNt * ct
implies that ct .¹M D 0º/ D 1. It remains to show that ct .¹E D dº/ D 1. Since ct is con-
centrated on P2;E .Rd / D ¹E � dº, it suffices to show that hE; ct i D limN hE; c

N
t i D d .

Set Ep.�/ WD
R
jvjp d�.v/. Then (5.10) implies that for any t ,

sup
N

hEp; c
N
t i <1: (5.12)

Note that E2 D E . Since by Jensen’s inequality we have E2.�/
p=2 � Ep.�/, (5.12)

readily shows that E2 is uniformly integrable with respect to cNt . Moreover,
supN cNt .¹E2C" � Rº/ ! 0 as R ! 1 for " < p � 2 and E2 is continuous on
¹E2C" � Rº. Thus we obtain the desired convergence hE2; ct i D limN hE2; c

N
t i (see

e.g. [1, Prop. 5.1.10]).

5.2.2. Superposition principle and limits for the action and dissipation

Proposition 5.5 (Superposition principle for the limit curve). Let .�Nt /t2Œ0;T � be a se-
quence of curves in P .XN / satisfying (5.9) and (5.10), put cNt D .LN /#�

N
t , and let

.ct /t2Œ0;T � be the limit curve of Lemma 5.4. Then there exists a Borel probability mea-
sure ‚ on C.Œ0; T �IP .Rd // and a Borel family .U�

t /t2Œ0;T �; �2P .Rd / of measures such
that the following hold:

� ct D .et /#‚ for all t 2 Œ0; T �,



A gradient flow approach to the Boltzmann equation 35

� for ‚-a.e. curve .�t /t2Œ0;T �, the pair .�t ;U
�t

t /t2Œ0;T � belongs to CRET , and �t 2
Pp;E .Rd / for p D 2Cmax.; 0/ and suitable E > 0 and all t 2 Œ0; T �.

Proposition 5.6 (lim inf inequality for action and dissipation). In the setting of Proposi-
tion 5.5 we have

lim inf
N

1

N
AN
T .�

N / �

Z
AT .�/ d‚.�/; (5.13)

lim inf
N

1

N

Z T

0

DN .�Nt / dt �
Z �Z T

0

D.�t / dt
�

d‚.�/; (5.14)

where AT .�/, D.�/ are the action and dissipation defined in (3.13), (2.8).

In order to prove Proposition 5.5, we will describe curves in P .P .Rd / as curves
in P .R1/ by choosing a countable number of coordinates given by integrals against
test functions. This allows one to employ a superposition principle for solutions to the
continuity equation over R1 by Ambrosio and Trevisan [2]. Let us briefly recall this
result.

Consider R1 D RN , let pi W R1 ! R be the natural projections for i 2 N and let
�n D .p1; : : : ; pn/ W R1 ! Rn. Equip R1 with the separable and complete distance

d1.x; y/ D

1X
nD1

2�n min ¹1; jpn.x/ � pn.y/jº:

In a similar way, C.Œ0; T �IR1/ can be equipped with a separable and complete distance.
We denote by ACw.Œ0; T �IR1/ the subset of C.Œ0; T �IR1/ consisting of all  such that
pi ı  2 AC.Œ0; T �IR/ for all i .

A function F W R1 ! R is called smooth cylindrical if it is of the form

F.x/ D  .p1.x/; : : : ; pn.x//

for some  2 C 1
b
.Rn/ and n 2 N. Its gradient rF W R1 ! R1 is defined by

rF.x/ D
�
@1 .�n.x//; : : : ; @n .�n.x//; 0; 0; : : :

�
:

Then we have the following representation result.

Theorem 5.7 ([2, Thm. 7.1]). Let b W .0; T / �R1! R1 be a Borel vector field and let
.�t /t2.0;T / be a family of Borel probability measures on R1 continuous in duality with
smooth cylinder functions satisfyingZ T

0

jpi .bt /j d�t dt <1 8i 2 N; (5.15)

and in the sense of distributions in .0; T /,

d
dt

Z
F d�t D

Z
.bt ;rF / d�t 8F smooth cylindrical: (5.16)

Then there exists a Borel probability measure � on C.Œ0; T �IR1/ satisfying .et /#� D �t
for all t , concentrated on  2ACw.Œ0;T �;R1/ solving the ODE P D bt ./ a.e. in .0;T /.
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Proof of Proposition 5.5. We will proceed in three steps. Starting from a solution to the
discrete continuity equation over XN we pass to the empirical measure and obtain a
limiting family of collision rates U

�
t . Then, by choosing integrals against a collection of

test functions as coordinates, we describe the limiting curve c via a continuity equation
over R1 with a vector field determined by the collision rates U

�
t . Finally, we apply the

superposition principle for R1 and see that the resulting random curve in R1 is indeed
the coordinate description of a random curve .�t / in P .Rd / solving the collision rate
equation driven by the rates U

�t

t .

Step 1: Limiting collision rate. Recall from Section 5.1 that we can choose measures
VN
t 2M.XN �XN / such that AN

T .�
N /D

R T
0

AN .�
N
t ;V

N
t / dt . Let us define the mea-

sures VN WD VN
t dt and �N;k WD �N;kt dt , k D 1; 2, in M.XN �XN � Œ0; T �/. Note that

by the structure of the jump kernel J , for any .v; u/ in the support of �N;1t ; �
N;2
t with

v ¤ u, there exist unique .i; j; !/ with 1 � i < j � N , ! 2 Sd�1 such that u D R!ij .v/
(when v D u, we pick i D j and ! at random). We push forward VN ; �N;k by the map
.v;u/ 7! .LN .v/;LN .u/; vi ; vj ;!/with i; j;! as above. This defines measures N ;ˇN;k

on Pp;E .Rd /2 � .Rd /2 � Sd�1 � Œ0; T �. We find that

dˇN;1.�; �0; v; v�; !; t/ D
N

2
ı�N;v;v�;! .d�0/ B.v � v�; !/ �.dv/ �.dv�/ d! dcNt .�/ dt

D
N

2
ı�N;v;v�;! .d�0/ d�1.v; v�; !/ dcNt .�/ dt; (5.17)

dˇN;2.�; �0; v; v�; !; t/ D
N

2
ı
�0N;T�1

! .v;v�/;!
.d�/B.v � v�; !/

� d.T!/#�0˝2.v; v�/ d! dcNt .�
0/ dt

D
N

2
ı
�0N;T�1

! .v;v�/;!
.d�/ d�02.v; v�; !/ dcNt .�

0/ dt; (5.18)

where we set �N;v;v�;! D �C 1
N
.ıv0 C ıv0� � ıv � ıv�/ with v; v�; v0; v0� related via (1.3);

recall that cNt D .LN /#�
N
t and recall the notation (3.9). To see this, note that LN .u/ D

LN .v/
N;vi ;vj ;! if u D R!ij .v/ and we can write

NX
i;jD1

f .vi ; vj / D N
2

Z
f .v; v�/ LN .v/.dv/LN .v/.dv�/:

To obtain the expression for ˇN;2, note further that if vDR!i;j .u/, then we have .vi ; vj /D
T!.ui ; uj /.

From the weak convergence of cNt to ct for all t granted by Lemma 5.4, we infer that
as N !1 we have 2

N
ˇN;k * ˇk in duality with Cb where

dˇk.�; �0; v; v�; !; t/ D ı�.d�0/ d�k.v; v�; !/ dct .�/ dt: (5.19)

From Lemma 2.5 (ii) we infer that

F˛

�
2

N
ˇN;1;

2

N
ˇN;2;

2

N
N
�
�
2

N
F˛.�

N;1; �N;2;VN / D
1

N
AN
T .�

N /;
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and the last expression is bounded by assumption. From Lemma 3.8 we infer as in the
proof of Proposition 3.11 that 2

N
N has uniformly bounded variation and hence con-

verges weakly� up to a further subsequence to a limit  . By lower semicontinuity and
homogeneity of F˛ we find

F˛.ˇ
1; ˇ2; / � lim inf

N

1

N
AN
T .�

N /: (5.20)

As in Lemma 3.6 we infer from finiteness of the left hand side that  is absolutely contin-
uous with respect to the measure L WD ı�.d�0/ ƒ.�1; �2/ ct .d�/ dt , where ƒ.�1; �2/ WD
ƒ. d�1

d� ;
d�2

d� / d� for any � such that �1; �2 � � . Hence there exists a Borel function
U W Pp;E .Rd /2 � .Rd /2 � Sd�1 � Œ0; T �! R such that  D UL and we can write

d.�; �0; v; v�; !; t/ D ı�.d�0/ dU
�
t .v; v�; !/ dct .�/ dt; (5.21)

where .U�
t /�;t is the Borel family of measures defined by

dU
�
t .v; v�; !/ D U.�; �; v; v�; !; t/ dƒ.�1; �2/.v; v�; !/:

Note further that

F˛.; ˇ
1; ˇ2/ D

Z T

0

Z
A.�;U

�
t / dct .�/ dt: (5.22)

Step 2: Continuity equation in R1. We now describe the curve .ct / as an evolution in
P .R1/. Fix a countable collection ¹fiºi2N of functions that is dense (with respect to uni-
form convergence) in the set of 1-Lipschitz functions on Rd vanishing at 0. Define a map
I W Pp;E .Rd /! R1 by setting

I.�/ WD .hf1; �i; hf2; �i; : : :/;

and write Im D �m ı I . Note that I is injective and continuous with respect to the dis-
tance W1 on Pp;E .Rd / by Kantorovich duality. I.Pp;E .Rd // is closed in R1, since
.Pp;E .Rd /; W1/ is compact, and I�1 W I.X/ ! Pp;E .Rd / is continuous with respect
to W1.

We define a curve .�t /t2Œ0;T � via �t WD I#ct and note that it is continuous in duality
with smooth cylinder functions by continuity of t 7! ct . We define a Borel vector field
b W .0; T / �R1 ! R1 via

bit .x/ D

´
1
4

R
Nrfi dU

�
t ; x D I.�/ 2 I.Pp;E .Rd //;

0; x … I.Pp;E .Rd //:
(5.23)

We claim that .�; b/ satisfies the continuity equation in R1, i.e. (5.15), (5.16). Indeed,
(5.15) follows from (5.22) and (5.20) with Corollary 3.9. To show (5.16), fix a smooth
cylinder function F.x/ D  .p1.x/; : : : ; pn.x// and a 2 C1c .0; T /. From the continuity
equation for .�Nt ;V

N
t / we obtain, after passing to the empirical measure,Z T

0

a0.t/

Z
F ı I dcNt dt D �

1

2

Z
a.t/ŒF .I.�N;v;v�;!// � F.I.�//� dN :
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Note that F.I.�N;v;v�;!// � F.I.�// D 1
N

P
i @i .I

m.�// Nrfi .v; v�; !/ C o.1/. We
infer from the convergence of cNt to ct and of 2

N
N to  and (5.21) thatZ T

0

a0.t/

Z
F ı I dct dt D �

1

4

Z T

0

a.t/

Z X
i

@i .I
m.�// Nrfi dU

�
t dct .�/ dt

D �

Z T

0

a.t/

Z
hbt ;rF i d�t dt; (5.24)

which is (5.16).

Step 3: Probabilistic representation. By Theorem 5.7 there exists a Borel probability
measure � on C.Œ0; T �IR1/ concentrated on the solutions  2 ACw.Œ0; T �IR1/ to the
ODE P D bt ./ such that .et /#�D �t for all t . Since �t is concentrated on the closed set
I.Pp;E .Rd // for all t , we find that x t 2 I.Pp;E .Rd // for all t 2 Œ0; T � and � a.e.  . Thus
we can set‚D �#�, where �maps  2 C.Œ0; T �IR1/ to I�1 ı  2 C.Œ0; T �IPp;E .Rd //.
It remains to check that ‚ has the desired properties.

Since �t D I#ct we immediately get .et /#‚ D ct for all t . Further, since for fixed i
we have hfi ; �./i D �i ./, we see by (5.23) that t 7! hfi ; �t i is absolutely continuous
and

d
dt
hfi ; �t i D C

1

4

Z
Nrfi dU

�t

t for a.e. t 2 .0; T / and ‚-a.e. �: (5.25)

From (5.22), (5.20) and Corollary 3.9 we deduce that the integrability condition (3.3)
holds (with p D 1). This allows us to extend (5.25) to all Lipschitz f . Hence for ‚-
a.e. curve � we conclude that t 7! .�t ;U

�t

t / belongs to CREET .

Proof of Proposition 5.6. We recall from (5.20) and (5.22) thatZ T

0

Z
A.�;U

�
t / dct .�/ dt � lim inf

N

1

N
AN
T .�

N /: (5.26)

We obtain a lim inf estimate for the dissipation in a similar fashion. We note that

DN .�Nt / D 2G .�
N;1; �N;2/;

where G is the integral functional defined in the proof of Lemma 2.6. From Lemma 2.5
we obtain

lim inf
N

Z T

0

1

N
DN .�Nt / dt � lim inf

N
G

�
2

N
ˇN;1;

2

N
ˇN;2

�
� G .ˇ1; ˇ2/

D

Z T

0

Z
D.�/ dct .�/ dt; (5.27)

where we recall the definition of ˇN;k and ˇk from (5.17)–(5.19). By Proposition 5.5
we can then rewrite (5.26) and (5.27) as (5.13) and (5.14), noting that ‚-a.e. curve .�t /t
satisfies AT .�/ �

R T
0

A.�t ;U
�t

t / dt .



A gradient flow approach to the Boltzmann equation 39

5.2.3. Limit for the relative entropy.

Proposition 5.8 (lim inf inequality for the entropy). Let .�N /N be a sequence of mea-
sures in P .XN / such that cN D .LN /#�N converges weakly to c 2 P .Pp;E .Rd //. Then

lim inf
N

1

N
H .�N j�N / �

Z
H .�jM/ dc.�/: (5.28)

To prove this result, we will rely on ideas from large deviation theory. Namely, we will
exploit the fact that the empirical measure of independent Gaussian distributed points
in Rd satisfies a large deviation principle and that this implies a �-lim inf inequality
for the relative entropy with respect to the law of this empirical measure. Then we will
conclude by relating the entropy with respect to �N to the entropy with respect to the
product Gaussian distribution. Let us briefly explain the concepts we will be using. For
background on large deviation theory we refer to [12].

Let X be a Polish space and equip the set P .X/ of Borel probability measures with
the weak topology. Let I W X ! Œ0;1� be a lower semicontinuous function. A sequence
.mN /N of measures in P .X/ is said to satisfy a large deviation principle with rate func-
tion I (and speed N ) if for any open set O and any closed set C in X their probabilities
are asymptotically controlled as

lim inf
N

1

N
logmN .O/ � � inf

x2O
I.x/; lim sup

N

1

N
logmN .C / � � inf

x2C
I.x/:

If the second inequality holds only for all compact sets C , we speak of a weak large
deviation upper bound. This weak upper bound is equivalent to a �-lim inf inequality for
the relative entropy:

Lemma 5.9 ([24, Thm. 3.5] (P1),(H2)). .mN / satisfies a weak large deviation upper
bound with rate function I and speed N if and only if for any sequence .�N / in P .X/

converging to � we have

lim inf
N

1

N
H .�N jmN / �

Z
X

I d�:

We will also use the following disintegration principle for the relative entropy, which
can be verified by a direct computation.

Let Y be a further Polish space, �;m two probability measures on X, and T WX! Y

be a Borel map. Let �.� j T D y/ and m.� j T D y/ denote the disintegration of � and m
with respect to T , i.e. �.� jT D y/ are probability measures concentrated on T �1.y/ such
that for any measurable set A � X, y 7! �.A jT D y/ is measurable, and

�.A/ D

Z
Y

�.A jT D y/ dT#�.y/;

and similarly for m. Then

H .�jm/ D H .T#�jT#m/C

Z
Y

H .�.� jT D y/jm.� jT D y// dT#�.y/: (5.29)
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Since the relative entropy is non-negative, we have in particular

H .�jm/ � H .T#�jT#m/: (5.30)

Proof of Proposition 5.8. (i) Let N 2P .RNd / denote the distribution ofN independent
standard d -dimensional Gaussian vectors, i.e. N has density

gN .v1; : : : ; vN / D .2�/
�Nd=2 exp

�
�

NX
iD1

jvi j
2

2

�
with respect to Lebesgue measure on RNd . Note that �N is obtained by conditioning N
to XN � RdN , i.e.

�N D N .� jM
N
D 0; EN D d/ D

gNR
XN

gN d�N
�N ;

with MN .v/ D .1=N /
P
i vi and EN .v/ D .1=N /

P
i jvi j

2. This follows immediately
from gN being constant on XN .

(ii) We now claim that the analog of (5.28) holds for N : if z�N is a sequence in
P .RNd / such that cN D .LN /# z�N converges weakly to c, then

lim inf
N

1

N
H .z�N jN / �

Z
H .�jM/ dc.�/: (5.31)

Setting mN WD .LN /#N we infer from (5.30) that H .z�N jN / � H .cN jmN /. Thus, it
suffices to show that

lim inf
N

1

N
H .cN jmN / �

Z
H .�jM/ c.d�/: (5.32)

By Sanov’s theorem on large deviations for empirical measures [12, Thm. 6.2.10], mN
satisfies a large deviation principle with rate function H .�jM/ on P .Rd / equipped with
the weak topology. Thus, (5.32) follows from Lemma 5.9.

(iii) Finally, we will conclude by relating H .�jN / and H .�j�N /. For m 2 Rd ,
E > 0, define ‰m;E W RNd ! RNd by ‰m;E .v/ D .

p
E v1 Cm; : : : ;

p
E vn Cm/. Let

QN D .M
N ;EN /#N in P .Rd � Œ0;1// be the distribution of momentum and energy

under N . We have N .� jMN D m;EN D E/ D .‰m;E=d /#�N as in (i). Hence N dis-
integrates as N D

R
.‰m;E=d /#�N dQN .m;E/. Define a map ‰ W P .XN /! P .RNd /

via
‰.�/ D

Z
.‰m;E=d /#� dQN .m;E/:

Note that .MN ; EN /#‰.�/ D QN . Thus, the disintegration formula (5.29) with T D
.MN ;EN / gives

H .‰.�/jN / D

Z
H ..‰m;E=d /#�j.‰m;E=d /#�N / dQN .m;E/ D H .�j�N /;

where the last equality follows from (5.30) and ‰m;E being bijective. Since
.LN /#�

N * c implies .LN /#‰.�N / * c, we can now deduce (5.28) from (5.31).
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Appendix A. The collision distance

In this section, we present a new type of distance between probability measures on Rd

which is formally the Riemannian distance associated to the Onsager operator KB (see
(1.5)). The Riemannian distance WB between two probability densities f0; f1 is formally
given as

WB.f0; f1/
2
D inf

²
1

4

Z 1

0

Z
j Nr t j

2ƒ.ft /B.v � v�; !/ d! dv� dv dt
³
; (A.1)

where the infimum runs over all curves of densities t 7! ft connecting f0 to f1 and all
functions  W Œ0; 1� �Rd ! R related via

@tft .v/C

Z
Nr tƒ.ft /B.v � v�; !/ d! dv� D 0: (A.2)

Note that the definition of WB resembles the dynamic formulation of the L2-Wasserstein
distance, known as the Benamou–Brenier formula [6]. Here, the collision rate equation
(A.2) takes over the role of the usual continuity equation.

The distance WB will be constructed by relaxing the minimization problem above to
a measure-valued framework and by minimizing the action as defined in Section 3 over
curves connecting two given probability measures via the collision rate equation.

In this section, we will relax the assumptions on the collision kernel and require:

Assumption A.1. B W Rd � Sd�1 ! RC is measurable, invariant under the transforma-
tion (1.3), k 7! B.k; !/ is continuous for a.e. ! and there exist constants  2 .�1; 1�
and cB > 0 such that Z

Sd�1

B.k; !/ d! � cBhki 8k 2 Rd : (A.3)

The following result will allow us to extract subsequential limits from sequences of
solutions to the collision rate equation with uniform action and moment bounds.

Given p � 1 and E > 0 we will write

CRE
p;E
T WD ¹.�;U/ 2 CRET W �t 2 Pp;E .R

d / 8t 2 Œ0; T �º:

Proposition A.2 (Compactness of solutions with bounded action and moments). Let
.�n;Un/ be a sequence in CRE

p;E
T with p � 2 such that

sup
n

Z T

0

A.�nt ;U
n
t / dt <1: (A.4)

Then there exists a couple .�;U/ 2 CRE
p;E
T such that up to extraction of a subsequence,

�nt * �t weakly in P .Rd / for all t 2 Œ0; T �;

Un *� U weakly� in M.� � Œ0; T �/:
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Moreover, along this subsequence we haveZ T

0

A.�t ;Ut / dt � lim inf
n

Z T

0

A.�nt ;U
n
t / dt:

Proof. Thanks to the uniform bounds on action and moments, we can proceed verba-
tim as in the proof of Proposition 3.11 to obtain existence of a Borel family .Ut /t2Œ0;T �
satisfying (iii) of Definition 3.1 such that Un

t dt converges weakly� to Ut dt and the con-
vergence (3.16) holds. By a further argument based on (3.15), we can approximate the
indicator function 1.t0;t1/ for any 0 � t0 < t1 � T by functions a 2 C.Œ0; T �/ and obtain,
for any � 2 Cb.Rd /, Z t1

t0

Z
Nr� dUn

t dt
n!1
����!

Z t1

t0

Z
Nr� dUt dt: (A.5)

Finally, we show existence of a limiting curve .�t /t2Œ0;T �. Since Pp;E .Rd / is compact
with respect to weak convergence, after extraction of another subsequence we can assume
that �n0 * �0 weakly for some �0 2 P .Rd /. Using this, the convergence (A.5) and the
collision rate equation in the form (3.2) we infer that �nt converges weakly to some prob-
ability measure �t for every t 2 Œ0; T �, and .�;U/ satisfies (3.2). In particular, t 7! �t is
weakly continuous and hence .�;U/ 2 CRET . By lower semicontinuity of moments, we
infer Ep.�t / � E for all t . The lower semicontinuity statement follows from Lemma 2.5
by noting that

R T
0

A.�nt ;U
n
t / dt D F˛.�

n;1; �n;2;Un/ with �n;k D �n;kt dt .

Given p � 2 and E > 0 we now define the following distance:

Definition A.3 (Distance). For �0; �1 2 Pp;E .Rd / we define

WB.�0; �1/
2
WD inf

²Z 1

0

A.�t ;Ut / dt W .�;U/ 2 CRE
p;E
1 .�0; �1/

³
; (A.6)

with the convention that WB.�0; �1/ D C1 if the set over which the infimum is taken
is empty.

Remark A.4. In the same way one could construct an (a priori smaller) extended distance
on the full space P .Rd / by dropping the moment constraint and minimize over CRE1
instead of CRE

p;E
1 . We will not explore this here. We stress that WB defined as above

depends implicitly on the choice of p and E.

Let us give an equivalent characterization of the infimum in (A.6).

Lemma A.5. For any T > 0 and �0; �1 2 Pp;E .Rd / we have

WB.�0; �1/ D inf
²Z T

0

p
A.�t ;Ut / dt W .�;U/ 2 CRE

p;E
T .�0; �1/

³
:

Proof. This follows from a standard reparametrization argument. See [1, Lem. 1.1.4] or
[14, Thm. 5.4] for details in similar situations.
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The next result shows that the infimum in the definition above is in fact a minimum.

Proposition A.6. Let �0; �1 2 Pp;E .Rd / be such that W WDWB.�0; �1/ is finite. Then
the infimum in (A.6) is attained by a curve .�;U/2CREE1 .�0;�1/ satisfying A.�t ;Ut /

D W 2 for a.e. t 2 Œ0; 1�.

Proof. Existence of a minimizing curve .�;U/ 2 CREE1 .�0; �1/ follows immediately
by the direct method taking into account Proposition A.2. Invoking Lemma A.5 and
Jensen’s inequality we see that this curve satisfiesZ 1

0

p
A.�t ;Ut / dt � W D

�Z 1

0

A.�t ;Ut / dt
�1=2

�

Z 1

0

p
A.�t ;Ut / dt:

Hence we must have A.�t ;Ut / D W
2 for a.e. t 2 Œ0; 1�.

We have the following properties of the function WB .

Theorem A.7. WB defines an .extended/ distance on Pp;E .Rd /. The topology, it induces
is stronger than the weak topology and bounded sets with respect to WB are weakly
compact. Moreover, the map .�0; �1/ 7! WB.�0; �1/ is lower semicontinuous with
respect to weak convergence. For each � 2 Pp;E .Rd / the set P� WD ¹� 2 Pp;E .Rd / W
WB.�; �/ <1º equipped with the distance WB is a complete geodesic space.

Here, we call a function d W X � X ! Œ0;1� an extended distance on the set X if it
is symmetric, satisfies the triangle inequality and vanishes precisely on the diagonal.

Proof of Theorem A.7. Symmetry of WB is obvious from the fact that ˛.w; �; �/ D
˛.�w; �; �/. Equation (3.2) shows that two curves in CRE

p;E
1 can be concatenated to

obtain a curve in CRE
p;E
2 . Hence the triangle inequality follows easily using Lemma A.5.

To see that WB.�0;�1/ > 0 whenever �0 ¤ �1 assume that WB.�0;�1/D 0 and choose
a minimizing curve .�;U/ 2 CRE

p;E
1 .�0; �1/. Then we must have A.�t ;Ut / D 0 and

hence Ut D 0 for a.e. t 2 .0; 1/. From the continuity equation in the form (3.2) we infer
�0 D �1.

The compactness assertion and lower semicontinuity of WB follow immediately from
Proposition A.2. These in turn imply that the topology induced by WB is stronger than
the weak one.

Let us now fix � 2 Pp;E .Rd / and let �0; �1 2 P� . By the triangle inequality we
have WB.�0;�1/ <1 and hence Proposition A.6 yields existence of a minimizing curve
.�;U/ 2 CRE

p;E
1 .�0; �1/. The curve t 7! �t is then a constant speed geodesic in P�

since it satisfies

WB.�s; �t / D

Z t

s

p
A.�r ;Ur / dr D .t � s/WB.�0; �1/ 80 � s � t � 1:

To show completeness, let .�n/n be a Cauchy sequence in P� . In particular, the sequence
is bounded with respect to WB and we can find a subsequence (still indexed by n) and
�1 2 Pp;E .Rd / such that �n * �1 weakly. Invoking lower semicontinuity of WB and
the Cauchy condition we infer that WB.�

n; �1/! 0 as n!1 and �1 2 P� .
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It is not yet clear when precisely the distance WB is finite. However, it is easily seen
to be finite along solutions to the Boltzmann equation: if ft is a solution according to
Theorem 2.2 and we set �t D ftL and

Ut D
Nr logft ƒ.ft /B D Œ.f 0/t .f 0�/t � ft .f�/t �B;

then .�;U/ 2 CREE and we have A.�t ;Ut / D D.�t /. Thus,

WB.�0; �T / �

Z T

0

p
D.�t / dt

�
p
T

�Z T

0

D.�t / dt
�1=2

D
p
T
p

H .�0/ �H .�T /:

The following result shows that the distance WB can be bounded from below by the
L1-Wasserstein distance. Recall that the L1-Wasserstein distance is defined for �0; �1 2
P .Rd / by

W1.�0; �1/ WD inf
�

Z
jx � yj�.dx; dy/;

where the infimum is taken over all probability measures � 2 P .Rd � Rd / whose first
and second marginals are �0 and �1 respectively.

Proposition A.8. Let p � 2Cmax.; 0/. For any �0; �1 2 Pp;E .Rd / we have

W1.�0; �1/ �
p
2cBEWB.�0; �1/:

Proof. We can assume that WB.�0; �1/ < 1. Take a minimizing curve .�; U/ in
CRE

p;E
1 .�0; �1/ and let ' W Rd ! R be a bounded 1-Lipschitz function. This implies

that j Nr'j � 2jv � v�j. Taking into account Remark 3.3 and using Lemma 3.8, we estimateˇ̌̌̌Z
' d�1 �

Z
' d�0

ˇ̌̌̌
D
1

4

ˇ̌̌̌Z 1

0

Z
Nr' dUt dt

ˇ̌̌̌
�
1

2

Z 1

0

Z
jv � v�j djUt j.v; v�; !/ dt

�

�Z 1

0

A.�t ;Ut / dt
�1=2�Z 1

0

Z
Œjvj2 C jv�j

2�B.v � v�; !/�t .dv/�t .dv�/ dt
�1=2

�
p
2cBEWB.�0; �1/:

Here we have also used (A.3) and the fact that �t has p-moment less than E in the
last inequality. Taking the supremum over all bounded 1-Lipschitz functions ' yields the
claim by Kantorovich–Rubinstein duality (see [36, Thm. 5.10, 5.16]).

We now give a characterization of absolutely continuous curves with respect to WB .
See (B.1) and (B.2) for the definition of absolutely continuous curves and their metric
derivative.
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Proposition A.9 (Metric velocity). A curve .�t /t2Œ0;T � in Pp;E .Rd / is absolutely con-
tinuous with respect to WB if and only if there exists a Borel family .Ut /t2Œ0;T � such that
.�;U/ 2 CRE

p;E
T and Z T

0

p
A.�t ;Ut / dt <1:

In this case, the metric derivative is bounded as j P�j2.t/ � A.�t ;Ut / for a.e. t 2 Œ0; T �.
Moreover, there exists a unique Borel family zUt with .�; zU/ 2 CRE

p;E
T such that

j P�j2.t/ D A.�t ; zUt / for a.e. t 2 Œ0; T �: (A.7)

Proof. The proof follows from the very same arguments as in [14, Thm. 5.17].

We can describe the optimal velocity measures zUt appearing in the preceding propo-
sition in more detail. We define T� to be the set of all U 2M.�/ such that A.�;U/ <1

and A.�;U/ � A.�;UC �/ for all � 2M.�/ satisfying

1

4

Z
�

Nr� d� D 0 8� 2 C1c .�/:

Corollary A.10. Let .�;U/ 2 CRE
p;E
T be such that the curve t 7! �t is absolutely

continuous with respect to WB . Then U satisfies (A.7) if and only if Ut 2 T�t
for a.e.

t 2 Œ0; T �.

If � is absolutely continuous with respect to Lebesgue measure L we can give an
explicit description of T�. Recall that B 2M.�/ is the measure given by dB.v; v�;!/D

B.v � v�; !/ dv dv� d!.

Proposition A.11. Let �D f m 2Pp;E .Rd /. Then U 2 T� if and only if UD Uƒ.f /B

is absolutely continuous with respect to the measure ƒ.f /B and

U 2 ¹ Nr' W ' 2 C1c .R
d /º

L2.ƒ.f /B/

DW Tf :

Proof. If A.�;U/ is finite we infer from Lemma 3.6 that U D Uƒ.f /B for some den-
sity U W �! R, and A.�;U/ D kU k2

L2.ƒ.f /B/
. Now the optimality condition in the

definition of T� is equivalent to

kU kL2.ƒ.f /B/ � kU C V kL2.ƒ.f /B/ 8V 2 Nf ;

where

Nf WD

²
V 2 L2.ƒ.f /B/ W

Z
Nr�Vƒ.f /B D 0 8� 2 C1c .R

d /

³
:

This implies the assertion after noting that Nf is the orthogonal complement of Tf in L2.

In the light of the formal Riemannian interpretation of the distance WB one should
view T� as the tangent space at the measure �. This is reminiscent of Otto’s Riemannian
interpretation of the L2-Wasserstein space [30].
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Appendix B. Metric gradient flow

In this section, we recast the variational characterization of Section 4 in the language of
the theory of gradient flows in metric spaces. Let us briefly recall the basics of that theory.
For a detailed account we refer the reader to [1].

Let .X; d/ be a complete metric space and let E W X ! .�1;1� be a function with
proper domain, i.e. the set D.E/ WD ¹x W E.x/ <1º is non-empty.

A curve .xt /t2.a;b/ in .X;d/ is called p-absolutely continuous for p � 1 if there exists
m 2 Lp..a; b// such that

d.xs; xt / �

Z t

s

m.r/ dr 8a � s � t � b: (B.1)

In this case we write x 2 ACp..a; b/I .X; d//. For p D 1 we simply drop p from the
notation. Similarly, one defines locally p-absolutely continuous curves. For a locally
absolutely continuous curve the metric derivative defined by

j Pxj.t/ WD lim
h!0

d.xtCh; xt /

jhj
(B.2)

exists for a.e. t and is the minimal m in (B.1) (see [1, Thm. 1.1.2]).
The following notion plays the role of the modulus of the gradient in a metric setting.

Definition B.1 (Strong upper gradient). A function g W X ! Œ0;1� is called a strong
upper gradient of E if for any x 2 AC..a; b/I .X; d// the function g ı x is Borel and

jE.xs/ �E.xt /j �

Z t

s

g.xr /j Pxj.r/ dr 8a � s � t � b:

Note that by the definition of strong upper gradient, and Young’s inequality ab �
1
2
.a2 C b2/, we find that for all s � t ,

E.xt / �E.xs/C
1

2

Z t

s

Œg.xr /
2
C j Pxj2.r/� dr � 0:

Definition B.2 (Curve of maximal slope). A locally 2-absolutely continuous curve
.xt /t2.0;1/ is called a curve of maximal slope of E with respect to its strong upper gradi-
ent g if t 7! E.xt / is non-increasing and

E.xt / �E.xs/C
1

2

Z t

s

Œg.xr /
2
C j Pxj2.r/� dr � 0 80 < s � t: (B.3)

We say that a curve of maximal slope starts from x0 2 X if limt&0 xt D x0.

Equivalently, we can require equality in (B.3). If a strong upper gradient g of E is
fixed we also call a curve of maximal slope of E (relative to g) a gradient flow curve.

Finally, we define the (descending) metric slope of E as the function j@Ej W D.E/!
Œ0;1� given by

j@Ej.x/ D lim sup
y!x

max ¹E.x/ �E.y/; 0º
d.x; y/

: (B.4)
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The metric slope is in general only a weak upper gradient E (see [1, Thm. 1.2.5]).
In our application to the homogeneous Boltzmann equation, we will show that the square
root of the dissipation D provides a strong upper gradient for the entropy H .

Let us assume that p� 2Cmax.;0/ and that the collision kernelB satisfies Assump-
tion 2.1. Then we have the following

Corollary B.3 (Boltzmann equation as curve of maximal slope).
p
D is a strong upper

gradient for H on .Pp;E .Rd /;WB/. Moreover, for any�0 2Pp;E .Rd /with H .�0/ <1,
the curves of maximal slope of H with respect to the strong upper gradient

p
D starting

from �0 are precisely the solutions to the Boltzmann equation satisfying (4.19).

Proof. Let .�r /r be an absolutely continuous curve such thatZ t

s

p
D.�r / j P�j.r/ dr <1:

This implies that �r has a density fr (and hence by Lemma 3.6, Ur has a density Ur ) for
a.e. r . We can also assume that one of the measures �s;�t has finite entropy, say�s . Then
Proposition 4.1 together with the estimate (4.16) immediately implies that

p
D is a strong

upper gradient. Theorem 4.3 gives the identification of curves of maximal slope.

Appendix C. Variational approximation scheme

In this section, we consider a time-discrete variational approximation scheme for the
homogeneous Boltzmann equation. Recall that we make Assumption 2.1 on the colli-
sion kernel B and let p � 2C max.; 0/. The scheme can be interpreted as the implicit
Euler scheme for the gradient flow equation. Given a time step � > 0 and an initial datum
�0 2 Pp;E .Rd / with H .�0/ <1, we consider a sequence .��n/n in Pp;E .Rd / defined
recursively via

��0 D �0; ��n 2 argmin
�

�
H .�/C

1

2�
WB.�; �

�
n�1/

2

�
: (C.1)

Then we build a discrete gradient flow trajectory as the piecewise constant interpolation
. N��t /t�0 given by

N��0 D �0; N��t D �
�
n if t 2 ..n � 1/�; n��: (C.2)

Then we have the following result.

Theorem C.1. For any � > 0 and �0 2 Pp;E .Rd / with H .�0/ < 1 the variational
scheme (C.1) admits a solution .��n/n. As � ! 0, for any family of discrete solutions
there exists a sequence �k ! 0 and a locally 2-absolutely continuous curve .�t /t�0 such
that

N�
�k
t * �t 8t 2 Œ0;1/: (C.3)

Moreover, any such limit curve is a gradient flow of the entropy, i.e. a solution to the
Boltzmann equation satisfying (4.19).
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With the knowledge that the Boltzmann equation in our setting has a unique solution
(assuming in addition E4.�0/ <1/ if  > 0), we obtain convergence of N��t to the solution
to the Boltzmann equation for any sequence of time steps � ! 0.

With the work we have done so far, Theorem C.1 follows basically from standard gen-
eral results for metric gradient flows where (C.1) is known as the minimizing movement
scheme (see [1, Sec. 2.3]). We need one small additional ingredient relating the dissi-
pation D to the metric slope j@H j of the entropy in the metric space .Pp;E .Rd /;WB/.
Recall (B.4) for the definition of the metric slope. We consider its sequentially lower
semicontinuous envelope, or relaxed slope j@�H j, given by

j@�H j.�/ D inf
°

lim inf
n!1

j@H .�n/ W �n * �; sup
n
¹WB.�n; �/;H .�n/º <1

±
:

Lemma C.2. For any � 2 Pp;E .Rd / with H .�/ <1 we have
p
D.�/ � j@�H .�/j: In

particular, j@�H .�/j is a strong upper gradient for H .

Proof. Let f be the density of � and consider the solution .ft / to the homogeneous
Boltzmann equation with initial datum f . Set �t D ftL and observe that

D.f / � lim
t&0

H .�/ �H .�t /

t
D lim

t&0

H .�/ �H .�t /

WB.�t ; �/

WB.�t ; �/

t

� j@H .�/j j P�j.0/ � j@H .�/j
p
D.�/:

Thus,
p
D.�/ � j@H .�/j for any such �. The claim follows immediately from the lower

semicontinuity of D (Lemma 2.6).

Proof of Theorem C.1. We verify that the present situation is consistent with the abstract
setting considered in [1, Sec. 2].

We consider the metric space .P�0
;WB/ and endow it with the weak topology � .

By Theorem A.7, .P�0
;WB/ is complete, WB is lower semicontinuous with respect to �

and induces a stronger topology. Recall from Section 2 that the entropy H is bounded
below on Pp;E .Rd / and lower semicontinuous with respect to weak convergence. More-
over, Pp;E .Rd / is compact with respect to weak convergence. Thus, the conditions in
[1, Assumption 2.1 (a)–(c)] are satisfied.

Existence of a solution to the variational scheme (C.1) and of a subsequential limit
curve .�t /t now follows from [1, Cor. 2.2.2, Prop. 2.2.3]. Moreover, [1, Thm. 2.3.2]
shows that the limit curve is a curve of maximal slope for the strong upper gradient j@�H j,
i.e.

1

2

Z t

0

Œj P�j2.r/C j@�H .�r /j
2� dr CH .�t / � H .�0/:

Thus, by Lemma C.2, it is also a curve of maximal slope for the strong upper gradi-
ent
p
D.
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