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Abstract. Using quantization techniques, we show that the ı-invariant of Fujita–Odaka coincides
with the optimal exponent in a certain Moser–Trudinger type inequality. Consequently, we obtain
a uniform Yau–Tian–Donaldson theorem for the existence of twisted Kähler–Einstein metrics with
arbitrary polarizations. Our approach mainly uses pluripotential theory, which does not involve
Cheeger–Colding–Tian theory or the non-Archimedean language. A new computable criterion for
the existence of constant scalar curvature Kähler metrics is also given.
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1. Introduction

A fundamental problem in Kähler geometry is to find canonical metrics on a given man-
ifold. A problem of this sort is often called the Yau–Tian–Donaldson (YTD) conjecture,
which predicts that the existence of canonical metrics is equivalent to certain algebro-
geometric stability notion. This article, as a continuation of the author’s recent joint work
with Rubinstein–Tian [36], is mainly concerned with the existence of twisted Kähler–
Einstein (tKE) metrics on projective manifolds. We will present a short quantization
proof of a uniform version of the YTD conjecture, by directly relating Fujita–Odaka’s
ı-invariant [29] (that characterizes unform Ding stability [10,13]) to the existence of tKE
metrics.

The key ingredient in our approach is the analytic ı-invariant defined as the optimal
exponent of a certain Moser–Trudinger inequality, which we denote by ıA. This analytic
threshold characterizes the coercivity of Ding functionals and hence governs the existence
of tKE metrics. In the prequel [36] we set up a quantization approach whose goal is to
show that ı and ıA are actually equal, a conjecture made by the author in [43]. If this
works out then one would have a new proof for the uniform YTD conjecture. Although
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this goal was not achieved in [36], we were able to prove a quantized version saying
that ım D ıAm indeed holds at each level m, so that ım characterizes the existence of
certain balanced metrics in them-th Bergman space. In view of Donaldson’s quantization
framework [25], this makes our conjectural picture about ı and ıA even more promising.

In this article we completely settle our conjecture. Our result can be viewed as an
analogue of Demailly’s result [14, Appendix] (see also Shi [37]) on the algebraic inter-
pretation of Tian’s ˛-invariant, the proof of which actually greatly influenced this article
and its prequel [36].

Main Theorem. The equality ı.L/ D ıA.L/ holds for any ample line bundle L.

Consequently, we obtain a new proof of the uniform YTD conjecture, in a much
simpler fashion than the other known approaches in the literature. More precisely, our
approach only uses the following analytic ingredients:

� Tian’s seminal work [39] on the asymptotics of Bergman kernels (see also
Bouche [11]);

� the lower semicontinuity result of Demailly–Kollár [22];

� the existence of geodesics in the space of Kähler metrics going back to Chen [16];

� the variational approach of Berman, Boucksom, Eyssidieux, Guedj and Zeriahi [4, 5];

� a quantized maximum principle due to Berndtsson [9].

While on the algebraic side, we only need

� Fujita–Odaka’s basis divisor characterization of ım [29];

� Blum–Jonsson’s valuative definition of ı [10].

When the underlying manifold is Fano, a special case of our main theorem has essen-
tially been obtained by Berman–Boucksom–Jonsson [6] (see also [15, Appendix] and
[43, Corollary 3.10]), which says that min ¹s; ıº D min ¹s; ıAº D the greatest Ricci lower
bound, where s denotes the nef threshold. Note that the approach in [6] crucially relies
on the convexity of twisted K-energy and the compactness of weak geodesic rays, which
unfortunately cannot directly yield ı D ıA when these thresholds surpass s. In contrast,
our quantization argument mainly takes place in the finite-dimensional Bergman space
without involving the convexity of Ding or Mabuchi functionals. Hence as a consequence,
we can treat arbitrary (even irrational!) polarizations and establish the very much desired
equality ı D ıA. Somewhat surprisingly, our approach not only yields stronger results,
but in fact comes with a quite short proof.1 Note that our methods extend easily to the
case of klt currents as treated in [6] (which we will indeed adopt in what follows), and
more generally also to the coupled soliton case considered in [36]. Our work even has
applications in finding constant scalar curvature Kähler (cscK) metrics, since we will give
a new computable criterion for the coercivity of the K-energy.

1However, we should emphasize that the non-Archimedean formalism in [6] indeed plays a key
role when it comes to the cscK problem; see e.g. [31] for some recent breakthrough.
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Organization. The rest of this article is organized as follows. We will fix our setup and
notation, and state more precisely our main results in Section 2. In Section 3 we elaborate
on how ıA is related to the existence of canonical metrics. Then in Section 4 we recall
some necessary quantization techniques on the Bergman space and prove the key estimate,
Proposition 4.2. Finally, our main results, Theorems 2.2–2.4, are proved in Section 5.

2. Setup and the main results

2.1. Notation and definitions

LetX be a projective manifold of dimension n with an ample R-line bundle L over it. Fix
a smooth Hermitian metric h on L such that

! WD �dd c log h 2 c1.L/

is a Kähler form (here dd c D
p
�1@N@
2�

). Put V WD
R
X
!n D Ln: To make our result a bit

more general, we will also fix (following [6])

a closed positive .1; 1/-current � with klt singularities,

meaning that, when writing � D dd c locally, one has e� 2Lploc for some p > 1. A case
of particular interest is when � D Œ�� is the integration current along some effective klt
divisor�, which relates to the edge-cone metrics for log pairs. The reader may take � D 0
for simplicity as it will make no essential difference.

Now we recall the definition of the ı-invariant, which was first introduced by Fujita–
Odaka [29] using basis type divisors, and then reformulated by Blum–Jonsson [10] in a
more valuative fashion. To incorporate � , we will use the following definition of Berman–
Boucksom–Jonsson [6]:

ı.LI �/ WD inf
E

A� .E/

SL.E/
:

Here E runs through all the prime divisors over X , i.e., E is a divisor contained in some
birational model Y

�
�! X over X . Moreover,

A� .E/ WD 1C ordE .KY � ��KX / � ordE .�/

denotes the log discrepancy, where ordE .�/ is the Lelong number of ��� at a very generic
point of E; and

SL.E/ WD
1

vol.L/

Z 1
0

vol.��L � xE/ dx

denotes the expected vanishing order of L along E.
Historically, the case of the most interest is when L D �KX and � D 0, i.e., the Fano

case. Regarding the existence of Kähler–Einstein metrics on such manifolds, a notion
called K-stability was introduced by Tian [40] and later reformulated more algebraically
by Donaldson [26]. This stability notion has recently been further polished by Fujita and
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Li’s valuative criterion [28,30], and we now know (see [10, Theorem B]) that ı.�KX / > 1
is equivalent to .X;�KX / being uniformly K-stable, a condition stronger than K-stability
(but actually these two are equivalent, at least in the smooth setting). It is also known
that uniform K-stability is equivalent to the uniform Ding stability of Berman [2]. More
recently Boucksom–Jonsson [10] further extend the definition of uniform Ding stability
to general polarizations using ı-invariants, which we will adopt in this article.

Definition 2.1. We say .X;L; �/ is uniformly Ding stable if ı.LI �/ > 1.

Under the YTD framework, it is expected that such a notion would imply the existence
of tKE metrics. In the literature, the most examined case is when c1.L/ D c1.X/ � Œ� �,
namely, the “log Fano” setting. By using continuity methods (cf. [18, 21, 34, 41, 42]) or
the variational approach (cf. [6, 32, 33]), we now have a fairly good understanding of the
YTD conjecture in this scenario. The upshot is that one can indeed find a Kähler current
!tKE 2 c1.L/ solving

Ric.!tKE/ D !tKE C �

under the stability assumption. Here Ric.�/ WD �dd c log det.�/ denotes the Ricci operator.
The solution !tKE is precisely what we mean by a twisted Kähler–Einstein metric (cf.
also [4, 6]).

However, to the author’s knowledge, none of the known approaches to the above state-
ment works well in the case where � is merely quasi-positive, the main difficulty being
that there is no convexity available for twisted K-energy in the non-Fano setting. In what
follows we will present a quantization approach to circumvent this difficulty, which allows
us to work even without the Fano condition.

More precisely, given any (not necessarily semipositive) smooth representative � 2
c1.X/ � c1.L/ � Œ� �, we want to investigate the following tKE equation:

Ric.!tKE/ D !tKE C �C �: (2.1)

To study this, a crucial input is taken from the work of Ding [24], who essentially showed
that the solvability of the above equation is governed by a certain Moser–Trudinger type
inequality. Inspired by this viewpoint, the author introduced an analytic ı-invariant in [43],
which we now describe.

Put
H .X; !/ WD ¹� 2 C1.X;R/ j !� WD ! C dd

c� > 0º:

Let E W H .X; !/! R denote the Monge–Ampère energy defined by

E.�/ WD
1

.nC 1/V

nX
iD0

Z
X

�!n�i ^ !i� for � 2 H .X; !/:

Also fix a smooth representative �0 2 Œ� �, so we can write � D �0 C dd c for some usc
function  on X . We may rescale  so that

�� WD e
� !n (2.2)
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defines a probability measure on X (i.e.,
R
X
d�� D 1). Note that � being klt is equivalent

to saying that for any p > 1 sufficiently close to 1, there exists Ap > 0 such thatZ
X

e�p !n < Ap: (2.3)

The analytic ı-invariant of .X;L; �/ is then defined by

ıA.LI �/ WD sup
²
� > 0

ˇ̌̌̌
9C� > 0 W

Z
X

e��.��E.�// d�� < C� for any � 2 H .X; !/

³
;

(2.4)

which does not depend on the choice of ! or �0. As explained in [43], ıA.LI �/ > 1

is equivalent to the coercivity of a certain twisted Ding functional whose critical point
gives rise to the desired tKE metric. It is further conjectured in [43] that one should have
ı.LI�/D ıA.LI�/:Given this, (2.1) can be solved when ı.LI�/ > 1, i.e., when .X;L;�/
is uniformly Ding stable.

2.2. Main results

In this article we confirm the aforementioned conjecture.

Theorem 2.2 (Main Theorem). For any ample R-line bundle L, one has

ı.LI �/ D ıA.LI �/:

In particular, uniform Ding stability implies the coercivity of twisted Ding function-
als, and as a consequence, we obtain a new proof of the uniform YTD conjecture and
generalize the known results in the log Fano case (e.g., [6, Theorem A]) to the following
more general setting, with possibly irrational polarizations.

Theorem 2.3. Assume that .X;L; �/ is uniformly Ding stable. Then for any smooth form
� 2 c1.X/ � c1.L/ � Œ� �, there exists a Kähler current !tKE 2 c1.L/ solving

Ric.!tKE/ D !tKE C �C �:

As mentioned in the Introduction, the proof of Theorem 2.2 uses the quantization
approach initiated in [36], which already implies one direction: ıA.LI �/ � ı.LI �/ when
L is an ample Q-line bundle. For completeness we will recall its proof in Section 5.
For the other direction, ıA.LI �/ � ı.LI �/, we will crucially use a quantized maximum
principle due to Berndtsson [9], which enables us to bound ıA from below using finite-
dimensional data, hence the result. The general case of an R-line bundle then follows
by invoking the continuity of ı and ıA in the ample cone (cf. [43]). At the end of this
article we will briefly explain how to generalize our approach to the coupled soliton case
considered in [36].

In fact, we expect that our approach can be generalized to the case of big line
bundles, yielding new existence results for the general Monge–Ampère equations con-
sidered in [12], and answering some questions proposed in [43, Section 6.3]. Another
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direction to pursue would be to consider the case of singular varieties (as in [33, 34]) or
the equivariant case (as in [32]).

Now take � D 0, in which case we will drop � from our notation. Then Theorem 2.2
has the following interesting application, yielding a new criterion for the existence of
cscK metrics. This also answers [43, Question 6.13].

Theorem 2.4. Let L be an ample R-line bundle. Assume that KX C ı.L/L is ample
and ı.L/ > n�.L/ � .n � 1/s.L/, where �.L/ WD �KX �L

n�1

Ln
and s.L/ WD sup ¹s 2 R j

�KX � sL > 0º. Then X admits a unique constant scalar curvature Kähler metric
in c1.L/.

Recent progress made by Ahmadinezhad–Zhuang [1] shows that one can effectively
compute ı-invariants by induction and inversion of adjunction. So we expect that Theo-
rem 2.4 can be applied to find more new examples of cscK manifolds. Also observe that
the assumption in Theorem 2.4 is purely algebraic, so the author wonders if one can show
uniform K-stability for .X;L/ under the same condition using only algebraic arguments;
see [23] for related discussions.

3. Existence of canonical metrics

In this section we explain how ıA is related to the canonical metrics in Kähler geometry,
following [43]. The discussions below in fact hold for general Kähler classes as well.

We begin by introducing a twisted version of the ˛-invariant of Tian [38]. Set

˛.LI�/ WD sup
²
˛ > 0

ˇ̌̌̌
9C˛ >0 W

Z
X

e�˛.��sup�/d�� <C˛ for all � 2H .X;!/

³
: (3.1)

Lemma 3.1. One always has ˛.LI �/ > 0.

Proof. Using Hölder’s inequality, the assertion follows from [38, Proposition 2.1]
and (2.3).

As a consequence, one also has ıA.LI �/ > 0 since E.�/ � sup�. Note that ˛.LI �/
will be used several times in this article, as it can effectively control bad terms when doing
integration.

3.1. Twisted Ding functional

In this part we relate ıA to tKE metrics. Pick any smooth representative � 2 c1.X/ �
c1.L/ � Œ� �. Then we can find f 2 C1.X;R/ satisfying

Ric.!/ D ! C �C �0 C dd cf;

where we recall that �0 2 Œ� � is the smooth representative we have fixed. Then the twisted
Ding functional is defined by

D�C�.�/ WD � log
Z
X

ef �� d�� �E.�/ for � 2 H .X; !/:
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Actually, one can extendD�C�.�/ to the larger space E1.X;!/ (see [5] for the definition).
Using a variational argument, a critical point � 2 E1.X; !/ of D�C�.�/ will give rise to a
solution to (2.1) (see [4, Section 4]). A sufficient condition to guarantee the existence of
such a critical point is called coercivity, which we now recall.

Definition 3.2. The twisted Ding functionalD�C�.�/ is called coercive if there exist " > 0
and C > 0 such that

D�C�.�/ � ".sup� �E.�// � C for all � 2 H .X; !/:

Using Demailly’s regularization, the above definition is equivalent to coercivity inves-
tigated in [4] and hence D�C� being coercive implies the existence of a solution to (2.1)
by [4, Section 4].

Proposition 3.3. If ıA.LI�/ > 1, thenD�C�.�/ is coercive for any smooth representative
� 2 c1.X/ � c1.L/ � Œ� �.

Proof. This is already contained in [43, Proposition 3.6] (which in fact says that the con-
verse is also true). It suffices to show that, for some " > 0 and C > 0,

� log
Z
X

e�� d�� �E.�/ � ".sup� �E.�// � C for any � 2 H .X; !/:

To see this, fix � 2 .1; ıA.LI�// and ˛ 2 .0;min ¹1;˛.LI�/º/. Then by Hölder’s inequal-
ity,

� log
Z
X

e�� d�� �E.�/

� �
1 � ˛

� � ˛
log

Z
X

e��� d�� �
� � 1

� � ˛

Z
X

e�˛� d�� �E.�/

D �
1 � ˛

� � ˛
log

Z
X

e��.��E.�// d�� �
� � 1

� � ˛

Z
X

e�˛.��sup�/ d��

C
˛.� � 1/

� � ˛
.sup� �E.�//:

Then the assertion follows from (2.4) and (3.1).

Corollary 3.4. If ıA.LI �/ > 1, then there exists a solution to (2.1) for any smooth rep-
resentative � 2 c1.X/ � c1.L/ � Œ� �.

3.2. K-energy and constant scalar curvature metric

In this part we relate ıA to cscK metrics. For simplicity assume � D 0, and hence � will
be suppressed in our notation. Let us first recall several functionals. For � 2 H .X; !/,
define

� the I -functional: I.�/ WD 1
V

R
X
�.!n � !n�/I
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� the J -functional: J.�/ WD 1
V

R
X
�!n �E.�/I

� entropy: H.�/ WD 1
V

R
X

log
!n�
!n
!n� I

� J-energy: J.�/ WD n .�KX /�L
n�1

Ln
E.�/ � 1

V

R
X
� Ric.!/ ^

Pn�1
iD0 !

i ^ !n�1�i� I

� K-energy: K.�/ WD H.�/C J.�/:

A Kähler metric !� 2 c1.L/ is a cscK metric if and only if � is a critical point of the K-
energy (cf. [35]). The following result says that ıA.L/ is the coercivity threshold ofH.�/.

Proposition 3.5 ([43, Proposition 3.5]). We have

ıA.L/ D sup ¹� > 0 j 9C� > 0 W H.�/ � �.I � J /.�/ � C� for all � 2 H .X; !/º:

Let �.L/ WD �KX �L
n�1

Ln
denote the slope and s.L/ WD sup ¹s 2 R j �KX � sL > 0º

the nef threshold. As explained in [43, Section 6.2], if KX C ıA.L/L is ample and
ıA.L/C .n � 1/s.L/ � n�.L/ > 0, then for some " > 0 and C" > 0,

K.�/ � ".I � J /.�/ � C" for all � 2 H .X; !/;

meaning that the K-energy is coercive. So by Chen–Cheng [17, Theorem 4.1], there exists
a cscK metric in c1.L/. Moreover, by [3, Theorem 1.3] such a metric is unique as in this
case the automorphism group must be discrete. As a consequence, we have the following

Corollary 3.6 ([43, Corollary 6.12]). Assume that KX C ıA.L/L is ample and ıA.L/ >
n�.L/ � .n � 1/s.L/. Then there exists a unique cscK metric in c1.L/.

4. Quantization

We collect some necessary quantization techniques for the proof of our main theorem. In
this section we assume L is an ample line bundle over X . By rescaling L we will assume
further that L is very ample.

Put
Rm WD H

0.X;mL/ and dm WD dimRm:

As in Section 2, fix a smooth positively curved Hermitian metric h on L with ! WD
�dd c log h.

4.1. Bergman space

Note that there is a natural Hermitian inner product

Hm WD

Z
X

hm.�; �/!n

on Rm induced by h. More generally, for any bounded function � on X , we may consider

H�
m WD

Z
X

.he��/m.�; �/!n:

So in particular Hm D H 0
m.
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Now put
Pm.X;L/ WD ¹Hermitian inner products on Rmº:

and

Bm.X; !/ WD
°
� D

1

m
log

dmX
iD1

j�i j
2
hm

ˇ̌̌̌
¹�iº is a basis of Rm

±
:

The classical Fubini–Study map FS W Pm.X;L/! Bm.X; !/ is a bijection, where

FS.H/ WD
1

m
log

dmX
iD1

j�i j
2
hm for H 2 Pm where ¹�iº is any H -orthonormal basis:

In particular, Bm.X; !/ � H .X; !/ is a finite-dimensional subspace (when identified
with Pm.X;L/ Š GL.dm;C/=U.dm/).

For any � 2 H .X; !/, we set for simplicity

�.m/ WD FS.H�
m/:

It then follows from the definition thatZ
X

em.�
.m/��/!n D dm for any � 2 H .X; !/: (4.1)

This simple identity will be used in the proof of Theorem 2.2.
Note that any two Hermitian inner products can be joined by the (unique) Bergman

geodesic. More specifically, given any two Hm;0; Hm;1 2 Pm.X; L/, one can find an
Hm;0-orthonormal basis under which Hm;1 D diag.e�1 ; : : : ; e�dm / is diagonal. Then the
Bergman geodesic Ht takes the form

Hm;t WD diag.e�1t ; : : : ; e�dm t /:

4.2. Quantized ı-invariant

Now as in [36], we consider the following quantized Monge–Ampère energy:

Em.�/ WD
1

mdm
log

detHm
det FS�1.�/

for � 2 Bm.X; !/:

In the literature this is also known as (up to a sign) Donaldson’s Lm-functional (cf. [27]).
Observe that Em.FS.�// is linear along any Bergman geodesics emanating from Hm. So
in particular

Em.FS.Hm;1// D
d

dt

ˇ̌̌̌
tD0

Em.FS.Hm;t // (4.2)

for any Bergman geodesic Œ0; 1� 3 t 7! Hm;t with Hm;0 D Hm:
Put

ım.LI�/ WD sup
²
� > 0

ˇ̌̌̌
9C� > 0 W

Z
X

e��.��Em.�// d�� <C� for any � 2Bm

³
: (4.3)
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By our previous work [36, Theorem B.3] (whose proof requires the estimate of
Demailly–Kollár [22]), this coincides with the original basis divisor formulation of Fujita–
Odaka [29]. Moreover, by [10, Theorem A] and [6, Theorem 7.3] the limit of ım.LI �/
exists and one has

ı.LI �/ D lim
m!1

ım.LI �/: (4.4)

Note that ım.LI �/ characterizes the coercivity of a certain quantized Ding functional,
whose critical points correspond to “balanced metrics”; see [36, Theorem B.7] for a quan-
tized version of Theorem 2.3.

4.3. Comparing E with Em

Given any � 2 H .X; !/, it has been known since the work of Donaldson that E.�/ D
limm!1 Em.�

.m//: But this convergence is not uniform when � varies in H .X; !/,
which is the main stumbling block in the quantization approach. To overcome this, we
recall a quantized maximum principle due to Berndtsson [9].

The setup is as follows. For any ample line bundle E over X , let g be a smooth
positively curved metric on E with � WD �dd c log g > 0 being its curvature form. Pick
two elements �0; �1 2 H .X; �/. It was shown by Chen [16] and more recently by Chu–
Tosatti–Weinkove [19] that there always exists a C 1;1 geodesic �t joining �0 and �1. For
the reader’s convenience, we briefly recall the definition. Let Œ0; 1� 3 t 7! �t be a family of
functions on Œ0; 1� �X with C 1;1 regularity up to the boundary. Let S WD ¹0 < Re s < 1º
� C be the unit strip and let � W S � X ! X denote the projection to the second com-
ponent. Then we say �t is a C 1;1 subgeodesic if it satisfies ���C dd cS�X�Re s � 0: We
say it is a C 1;1 geodesic if it further satisfies the homogeneous Monge–Ampère equation:
.���C dd cS�X�Re s/

nC1 D 0:

Now given any C 1;1 subgeodesic joining �0 and �1, one may consider

Hilb�t WD
Z
X

g.�; �/e��t ;

which is a family of Hermitian inner products on H 0.X; E C KX / joining Hilb�0 and
Hilb�1 (we do not need any volume form in the above integral). Then Berndtsson’s quan-
tized maximum principle says the following, which in fact holds for subgeodesics with
much less regularity; see [20, Proposition 2.12].

Proposition 4.1 ([9, Proposition 3.1]). Let Œ0; 1� 3 t 7! Ht be the Bergman geodesic
connecting Hilb�0 and Hilb�1 . Then

Ht � Hilb�t for t 2 Œ0; 1�:

We will now apply this result to the setting whereE WDmL�KX and g WD hm˝!n.
As a consequence, we obtain the following key estimate, which can be viewed as a weak
version of the “partial C 0 estimate”.
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Proposition 4.2. For any " 2 .0; 1/, there exist m0 D m0.X;L; !; "/ 2 N such that

E.�/ � Em...1 � "/�/
.m//C " sup� for any m � m0 and � 2 H .X; !/.

Proof. Since the statement is translation invariant, we assume that sup� D 0. Let Œ0; 1� 3
t 7! �t be a C 1;1 geodesic connecting 0 and �, with �0 D 0 and �1 D �. The geodesic
condition implies that �t is convex in t , so we have

P�0 WD
d

dt

ˇ̌̌̌
tD0

�t � 0

as � � 0. Put Q�t WD .1 � "/�t : Observe that .he� Q�t /m ˝ !n gives rise to a family of
Hermitian metrics onmL�KX , which is in fact a C 1;1 subgeodesic wheneverm satisfies
m"! � � Ric.!/. Indeed, let S WD ¹0 < Re s < 1º � C be the unit strip and let � W
S � X ! X denote the projection to the second component. Then .he� Q�Re s /m ˝ !n

induces a Hermitian metric on ��.mL�KX / over S �X whose curvature form satisfies

��.m! C Ric.!//Cm.1 � "/dd cS�X�Re s � 0

whenever m"! � �Ric.!/. It then follows from Proposition 4.1 that

Hm;t � H
Q�t
m for t 2 Œ0; 1�;

where Œ0; 1� 3 t 7! Hm;t is the Bergman geodesic in Pm.X;L/ joining H 0
m and H .1�"/�

m

with Hm;0 D H 0
m and Hm;1 D H

.1�"/�
m . So we obtain

Em.FS.Hm;t // � Em.FS.H Q�tm // for t 2 Œ0; 1�;

with equality at t D 0; 1. Fixing an H 0
m-orthonormal basis ¹siº of Rm, by (4.2) we obtain

Em...1 � "/�/
.m// D

d

dt

ˇ̌̌̌
tD0

Em.FS.Hm;t //

�
d

dt

ˇ̌̌̌
tD0

Em.FS.H Q�tm // D
1 � "

dm

Z
X

P�0

� dmX
iD1

jsi j
2
hm

�
!n;

where the last equality is by direct calculation using the definition of Em. Now by the
first order expansion of Bergman kernels going back to Tian [39] (with respect to the
background metric !), one hasPdm

iD1 jsi j
2
hm

dm
�

1

.1 � "/V
for all m� 1.

So we arrive at (recall P�0 � 0)

Em...1 � "/�/
.m// �

1

V

Z
X

P�0!
n
D E.�/;

where the last equality follows from the well-known fact that E is linear along the geo-
desic �t . This completes the proof.
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Remark 4.3. After the appearance of this work on arXiv, the author was informed by
Berndtsson that Proposition 4.2 also follows from the fact that Em.FS.H

Q�t
m // is convex

in t . And Berman kindly communicated to the author that, using Berndtsson’s convexity,
our estimate is essentially contained in [7]; see in particular (3.4) in loc. cit. The author
is grateful to them for these communications. But we need to emphasize that our proof
here is slightly different, with a small advantage that it can be directly generalized to the
weighted setting to treat soliton type metrics; see also Remark 5.3.

One can also bound E from below in terms of Em on the Bergman space Bm.X; !/.
This direction is already known; see [5, Lemma 7.7] or [36, Lemma 5.2]. We record it
here for completeness.

Proposition 4.4. For any " > 0, there exists m0 D m0.X;L; !; "/ 2 N such that

Em.�/ � .1 � "/E.�/C " sup� C " for any m � m0 and � 2 Bm.X; !/.

5. Proving ı D ıA

In this section we prove our main results. Firstly, we prove Theorem 2.2 in the case where
L is a bona fide ample line bundle, so that we can apply quantization techniques.

Theorem 5.1. Let L be an ample line bundle. Then ıA.LI �/ D ı.LI �/

Proof. The proof splits into two steps.

Step 1: ıA.LI �/ � ı.LI �/. In view of (4.4), it suffices to show that, for any � 2

.0; ıA.LI �// one has ım.LI �/ > � for all m� 1. In other words, for any m� 1, we
need to find some constant Cm;� > 0 such thatZ

X

e��.��Em.�// d�� < Cm;� for all � 2 Bm.X; !/:

Assume that sup� D 0. For any small " > 0, by Proposition 4.4 and Hölder’s inequality,Z
X

e��.��Em.�// d��

�

Z
X

e��.��.1�"/E.�//C�" d�� D e
�"
�

Z
X

e��.1�"/.��E.�// � e��"� d��

� e�"
�Z

X

e
��.1�"/
1��"=˛

.��E.�// d��

�1��"=˛�Z
X

e�˛� d��

��"=˛
for all m � m0.X; L; !; "/, where ˛ 2 .0; ˛.LI �// is some fixed number. We may fix
"� 1 such that

�.1 � "/

1 � �"=˛
< ıA.LI �/:
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Then by (2.4) and (3.1), there exist C�; C˛ > 0 such thatZ
X

e��.��Em.�// d�� < e
�".C�/

1��"=˛.C˛/
�"=˛

for all � 2 Bm.X; !/ whenever m is large enough. This proves the assertion.

Step 2: ıA.LI �/ � ı.LI �/. It suffices to show that, for any � 2 .0; ı.LI �//, there exists
C� > 0 such that Z

X

e��.��E.�// d�� < C� for any � 2 H .X; !/.

Again assume that sup� D 0. Fix any ˛ 2 .0; ˛.LI �//. Fix p0 > 1 such that (2.3) holds
for any p 2 .1; p0/. Let also " > 0 be a sufficiently small number, to be fixed later. Set
Q� WD .1 � "/�: Then by Proposition 4.2 and the generalized Hölder inequality, for any
m � m0.X;L; !; "/, we can writeZ
X

e��.��E.�// d��

�

Z
X

e��.��Em.
Q�.m/// d�� D

Z
X

e�.
Q�.m/� Q�/

� e��.
Q�.m/�Em. Q�

.m///
� e��"� d��

�

�Z
X

e
p
m. Q�.m/� Q�/ d��

� �p
m
�Z

X

e

��. Q�.m/�Em. Q�
.m///

1� �p
m
��"˛ d��

�1� �p
m
��"˛

�

�Z
X

e�˛� d��

��"
˛

� .dm/
�
m

�Z
X

e
�

p
m 

p
m�1!n

� �p
m
� �m

�Z
X

e

��. Q�.m/�Em. Q�
.m///

1� �p
m
��"˛ d��

�1� �p
m
��"˛

�

�Z
X

e�˛� d��

��"
˛

;

where we have used (2.2) and (4.1) in the last inequality. We now fix "� 1 and m�
m0.X;L; !; "/ such that

p
m

p
m � 1

< p0 and
�

1 � �p
m
�
�"
˛

< ım.LI �/:

Then by (2.3), (4.3) and (3.1) there exist Am > 0, Cm;� > 0 and C˛ > 0 (recall sup� D 0)
such thatZ

X

e��.��E.�// d�� < .dm/
�=m
� .Am/

�=
p
m��=m

� .Cm;�/
1��=

p
m��"=˛

� .C˛/
�"=˛:

Note that all the constants are uniform, independent of �. So we finally arrive atR
X
e��.��E.�// d�� < C� for some uniform C� > 0, as desired.
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Proof of Theorem 2.2. Since the equality ı.LI �/ D ıA.LI �/ holds for any ample line
bundle, by rescaling, it holds for any ample Q-line bundle. Now by the continuity of
ı and ıA in the ample cone (cf. [43]), the same assertion holds for any ample R-line
bundle.

Proof of Theorem 2.3. The result follows from Theorem 2.2 and Corollary 3.4.

Proof of Theorem 2.4. The result follows from Theorem 2.2 and Corollary 3.6.

By Proposition 3.5 we also obtain an algebraic characterization of the coercivity
threshold of the entropy. One should compare this with the non-Archimedean formula-
tion [13, (2.9)] proposed by Berman.

Corollary 5.2. For any ample R-line bundle L one has

ı.L/ D sup ¹� > 0 j 9C� > 0 W H.�/ � �.I � J /.�/ � C� for all � 2 H .X; !/º:

Remark 5.3. Finally, we explain how to generalize our approach to the coupled
KE/soliton case considered in [36], which then yields a uniform YTD theorem for the
existence of coupled KE/soliton metrics. The extension to the coupled KE case is straight-
forward: one only needs to replace � and E.�/ by

P
i �i and

P
i E!i .�i / respectively,

and then slightly adjust the proof of Theorem 5.1. For the more general coupled soli-
ton case, essentially one only needs to replace E by its “g-weighted” version, Eg , and
then adjust Propositions 4.2 and 4.4 accordingly, which can be done with the help of
[8, Proposition 4.4], the asymptotics for weighted Bergman kernels. Then the argument
goes through almost verbatim. See our previous work [36] for more explanations. The
details are left to the interested reader.
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