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Abstract. To a graph, Hausel and Proudfoot associate two complex manifolds, B and D, which
behave, respectively, like moduli of local systems on a Riemann surface and moduli of Higgs
bundles. For instance, B is a moduli space of microlocal sheaves, which generalize local systems,
and D carries the structure of a complex integrable system.

We show the Euler characteristics of these varieties count spanning subtrees of the graph, and
the point-count over a finite field for B is a generating polynomial for spanning subgraphs. This
polynomial satisfies a deletion-contraction relation, which we lift to a deletion-contraction exact
triangle for the cohomology of B. There is a corresponding triangle for D.

Finally, we prove that B and D are diffeomorphic, the diffeomorphism carries the weight fil-
tration on the cohomology of B to the perverse Leray filtration on the cohomology of D, and all
these structures are compatible with the deletion-contraction triangles.
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1. Introduction

Consider the following spaces:

� B, the locus C2 n ¹1C xy D 0º, the first nontrivial multiplicative quiver variety, the
moduli of microlocal sheaves on a singular Lagrangian torus;

� D, a neighborhood of the nodal elliptic curve in its versal deformation, the simplest
degeneration in a complex integrable system, a local model for 4-dimensional hyper-
kähler geometry.

Each of the above spaces is the progenitor of a family, with one member for each
connected multigraph � with loops. The initial examples are those associated to the
graph�. These families were introduced by Hausel and Proudfoot [41], who observed
that B and D are analogous to moduli of local systems and the moduli of Higgs bundles
on an algebraic curve, respectively, and conjectured the existence of diffeomorphisms
B.�/ ŠD.�/, analogous to the nonabelian Hodge correspondence.

That correspondence [77–79] relates three perspectives on nonabelian Lie-group-
valued cohomology: locally constant sheaves (Betti), bundles with connection (de Rham),
and Higgs bundles (Dolbeault). We are most interested in the case where the underly-
ing variety is an algebraic curve C , and in the (non-complex-analytic!) diffeomorphism
between the moduli MB.C; n/ of rank n locally constant simple sheaves, i.e. simple rep-
resentations �1.C /!GLn.C /, and the moduli Mx@.C;n/ of stable rank nHiggs bundles.
The Higgs bundle moduli carries Hitchin’s integrable system,H WMx@.C; n/! A, where
A parameterizes n-multisections of T �C (‘spectral curves’) [46, 47]. The fiber over the
point corresponding to a smooth spectral curve † is its Jacobian J.†/.

We believe B.�/ and D.�/ are in some sense microlocal versions of the nonabelian
cohomology spaces, and give some ideas in this direction in Remark 1.2.2. In any case,
Hausel and Proudfoot conjectured the following relationship between them, which we
establish:

Theorem 1.0.1 (Theorem 11.1.6). For any graph � , there is a canonical homotopy equiv-
alence induced by a noncanonical open embedding D.�/ � B.�/.

Remark 1.0.2. The results of the present article are cohomological in nature, so do not
depend on the precise geometric details of the embedding above; in fact, we construct
a family of such embeddings depending on various parameters, and any of these may
be used. For purely motivational purposes (to sharpen the analogy with the nonabelian
Hodge correspondence), we note the following possibilities. D.�/ carries a (noncom-
plete) hyperkähler metric, and in particular a twistor sphere of complex structures. Using
Theorem B.0.1, it is possible to choose the embedding D.�/ � B.�/ such that the com-
plex structure on B.�/ restricts to one of the complex structures on D.�/, different
from the one in which D admits a holomorphic integrable system. It is also possible
to deform the open embedding to a (not especially natural) diffeomorphism, by using
Proposition 11.1.9.
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Recall that the Grothendieck ring of varieties is formally generated by varieties, sub-
ject to the relation jX j D jX n Y j C jY j when Y is a subvariety of X , and we write jX j,
jY j, etc. to denote the class in the Grothendieck ring. The ring structure descends from
the Cartesian product of varieties.

Theorem 1.0.3. The following identities hold in the Grothendieck ring of varieties:

jB.�/j D L2 � LC 1; (1.1)

jB.�/j D

8̂̂<̂
:̂
jB.�=e/j; e is a bridge;

jB.� n e/j � jB.�/j; e is a loop;

jB.� n e/j � LC jB.�=e/j; otherwise;

(1.2)

jB.�/j D
X

�02Span.�/

.L � 1/2b1.�
0/Lb1.�/�b1.�

0/: (1.3)

In particular, the Euler characteristic of B.�/ is the number of spanning subtrees of � .

Here, (1.1) is elementary, and (1.3) follows from (1.1), (1.2), and general facts about
the Tutte polynomial [6, Chapter 10, Theorem 2]. Theorem 1.0.3 is proven in Section 6.4.

Let us recall the relationship between the Grothendieck ring of varieties and coho-
mology. The cohomology of any algebraic variety X carries two filtrations; a decreasing
‘Hodge’ filtration and an increasing ‘weight’ filtration [18–20]. We are interested here in
the latter; its i th step on the j th cohomology group is denoted WiH j .X/, and the asso-
ciated graded spaces are denoted by grWi H j .X/. One records these dimensions in the
mixed Poincaré polynomial:

PX .q; t/ D
X
i;j

qi tj dim grWi H j .X/

Under specializing q! 1, one recovers the usual Poincaré polynomial. There is an analo-
gous construction with compactly supported cohomology, PXc .q; t/. When X is smooth,
one has the Poincaré dualityPXc .q; t/D .qt

2/dimXPX .q�1; t�1/. In any case,PXc .q;�1/
factors through the Grothendieck ring.

In [42], the quantity PXc .q;�1/ was determined for the character varieties MB.C /,
and also for twisted versions corresponding to Higgs bundles of nonzero degree.1 These
explicit formulas, together with the complete description of the cohomology for GL.2/,
led to a conjectural formula for the full mixed Hodge polynomial. Inspection of the con-
jectural formula suggested certain curious properties of the cohomology [42].

The remarkable ‘P D W ’ conjecture of [14] was proposed to explain these curiosi-
ties. The setup is as follows. Given any map f W X ! A of algebraic varieties, there is a
filtration on H�.X/ Š H�.A;Rf�CX / arising from truncation of Rf�CX in the (middle)

1[42] does not compute classes in the Grothendieck ring, and in fact these remain unknown.
Instead, they determine PXc .q;�1/ by counting points over finite fields.
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perverse t -structure on A; this is termed the perverse Leray filtration. The P D W con-
jecture asserts that under Simpson’s correspondence, the weight filtration on the character
variety goes to the perverse Leray filtration associated to Hitchin’s integrable system on
the moduli of Higgs bundles. This conjecture was established in [14] in the GL.2/ case,
and very recently for any rank on a genus 2 curve [13]. One of its original motivations,
the ‘curious Hard Lefschetz’ conjecture, is now established [59]. Some additional special
cases have been verified [73, 82], and some tests of structural predictions verified [16].
A certain limit of the conjecture appears to be related to a comparison of limiting behav-
ior of the Hitchin fibration with the geometry of the boundary complex of the character
variety [76]. Relationships between perverse and weight filtrations have also been found
in other settings of hyperkähler geometry [15,38,39]. In particular, the 4-real-dimensional
examples of the spaces under investigation here were studied in [84]. A similar sounding
(but at present not directly related) statement has been found in homological mirror sym-
metry [51]. While this paper was in review, the original conjecture was addressed by
two preprints: one by Hausel, Mellit, Minets and Schiffmann [40], and one by Maulik–
Shen [57].

In our setting, the space D.�/ is the central fiber of a certain natural family; we
may correspondingly equip its cohomology with a perverse filtration. Meanwhile, B.�/

carries a weight filtration, due to being an algebraic variety. We will prove:

Theorem 1.0.4 (Theorem 11.2.6). The homotopy equivalence D.�/ ,!B.�/ carries the
weight filtration on H�.B.�// to .twice/ the perverse Leray filtration on H�.D.�//.

Our argument does not proceed by computing both sides. Indeed, we do not know
generators for the cohomology ring, much less relations. While we know P

B.�/
c .q;�1/,

we do not have even a conjecture on PB.�/
c .q; t/, or on the analogous perverse Poincaré

polynomial of D.�/.
Instead we proceed by upgrading the deletion-contraction relations of Theorem 1.0.3

to deletion-contraction exact triangles. By the end we will have shown:

Theorem 1.0.5 (Theorems 6.3.5, 8.5.3, 11.3.1, 11.3.2). For any edge e which is neither
a loop nor a bridge, there are deletion-contraction long exact sequences, intertwined by
pullback along D.�/ ,! B.�/,

H��2.B.� n e/;Q/.�1/ H�.B.�/;Q/ H�.B.�=e/;Q/

H��2.D.� n e/;Q/¹�1º H�.D.�/;Q/ H�.D.�=e/;Q/

The sequences are strictly compatible with the weight and perverse Leray filtrations,
respectively. The .�1/ and ¹�1º indicate shifts of these filtrations.

The existence of the intertwined long exact sequences is nontrivial, but in some sense
it is proven by pure thought, using the excision triangle on the top, the nearby-vanishing
triangle at the bottom, and geometric arguments for commutativity of the diagram. One
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would like to conclude compatibility with filtrations by induction on the size of the graph.
This does not immediately work, for two reasons. The first: we do not know a pure thought
argument that the Dolbeault sequence is strictly compatible with the perverse Leray fil-
tration; in fact, we will only learn this at the very end of the paper. The second: even had
we known this, there is the following difficulty: consider two short exact sequences of
filtered vector spaces, and maps strictly compatible with the filtration. Suppose given an
isomorphism of the underlying short exact sequences which respects the filtration save on
the middle term. Must it respect the filtrations on the middle term? Alas, no.

To deal with these difficulties we introduce yet a third filtration, which is defined only
in terms of the deletion maps.

Definition 1.0.6 (Deletion filtration). Let Graphı be the category whose objects are con-
nected oriented graphs and whose morphisms are inclusions whose complement contains
no loop. Let grab be the category whose objects are graded abelian groups, and whose
morphisms are arbitrary (not graded) abelian group morphisms. Let

A� W Graphı ! grab

be a covariant functor such thatA�.� 0! �/ has degree 2j�j � 2j� 0j, i.e., the correspond-
ing map A�.� 0/Œ2j� 0j�! A�.�/Œ2j�j� has degree zero.

If � has only loops and bridges, then we define 0 D Di�1.Ai .�// � Di .Ai .�// D
Ai .�/. Otherwise, we set

Di�kAi .�/ D Span.¹image.Ai�2k.� 0// j j� n � 0j D kº/:

Here the span is over all maps � 0 ! � .

It is immediate from the definition that D� is (not necessarily strictly) preserved by all
maps A.� � � 0/ W A.� 0/¹j� 0jº ! A.�/¹j�jº where ¹�º indicates a shift of the filtration.
It is also evident that it is the minimal such filtration.

Once we have shown the deletion maps act identically on the cohomology of the B.�/

and D.�/, it follows that the corresponding deletion filtrations must agree on the B and
D sides. Thus it remains to show the deletion filtration agrees with the weight and per-
verse filtrations. This proves to be rather involved; our argument depends on introducing
a combinatorial model in which the third filtration is manifest, and then arguing on each
side that this combinatorial model can be realized by some (rather different on the two
sides) geometric construction.

1.1. Outline

We begin in Section 3 by recalling from [61] the combinatorial description of a certain
complex C.�/ associated to any graph. This complex will turn out to have geometric
interpretations both as the cohomology of B.�/, and of D.�/. Nevertheless in Section 3
we confine ourselves to a purely combinatorial discussion. We construct explicitly the
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deletion-contraction filtration exact sequence, and note some of its properties. In particu-
lar, we observe that the deletion-contraction sequences themselves induce a filtration on
the cohomology. A key point about C.�/ is that the resulting filtration is easy to describe.

In Section 4 we adapt the formalism of moment maps and symplectic reduction to
situations when no symplectic structure is present. Symplectic reduction applies in the
situation of a group G acting on a symplectic manifold with moment map � W X ! g�

(which, together with the symplectic structure, encodes the group action). Here we con-
sider arbitrary spaces X with an action of a group G preserving a map � W X ! A to an
abelian group A; we call such things .G;A/-spaces. The map � in no way encodes the
group action.

Nevertheless, given a .G;A/-space X , we can define its reduction X ��2A G WD
��1.�/=G. Given two .G;A/-spaces X; Y , we can form a product .G;A/-space X � Y .
Similarly, we can form the quotientX ?Y DX � Y � G. This construction is ‘functorial’,
meaning that a map Y 0 ! Y induces a map X ? Y 0 ! X ? Y .

In Section 5 we build spaces from graphs. From any .G;A/-space X together with
a graph � and an element �v 2 A for each vertex of � , we construct a space X.�; �/ in
Section 5.1. In particular, X is recovered from the one-loop graph: X D X.�/.

Given an edge e in � , we form new graphs �=e and � n e by contracting (resp. delet-
ing) e. Our main tools for studying X.�/ are the two relations of the form X.�=e/ ? X D

X.�/ and X.�=e/ ? point D X.� n e/.
In Section 6 we turn our attention to the spaces B.�/. They are built from the basic

space B D C2 n ¹xy C 1 D 0º. Using functoriality of the ? product, we turn properties
of B into properties of B.�/. In Section 6.3, we use this to obtain the Betti deletion-
contraction sequence

! H��2.B.� n e/;Q.�1//! H�.B.�/;Q/! H�.B.�=e/;Q/! :

The key geometric construction is an embedding of a line bundle over B.� n e/ into
B.�/, with complement B.�=e/. The resulting long exact sequence of a pair is our
deletion-contraction sequence. The same geometry immediately implies equation (1.2)
above.

The deletion maps equip the cohomology of B.�/ with a deletion filtration. The dele-
tion maps are induced by maps of algebraic varieties, hence respect the weight filtration;
minimality of the deletion filtration implies it is bounded by the weight filtration. In fact,
they are equal; to prove this we construct an explicit complex of differential forms, which
on the one hand is sensitive to the weight filtration, and on the other, can be identified
with the complex C.�/, compatibly with deletion-contraction. The deletion filtration is
explicit on C.�/, allowing us to conclude.

In Section 8, we turn to the Dolbeault space D.�/. The special case D D D.�/ is
the Tate curve, and the more general spaces are degenerating families of abelian varieties
built as subquotients of powers of D.�/. We study these spaces in families; in particular,
there is a family of spaces over the unit disk D �C whose general fiber is D.�=e/, whose
special fiber is homotopic to D.�/, and whose singular locus is homotopic to D.� n e/.
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The nearby-vanishing triangle gives rise, ultimately, to the deletion-contraction sequence
in this setting.

As with the moduli of Higgs bundles, the spaces D.�/ have the structure of complex
analytic integrable systems. We explore this structure further in Section 9, in particular
describing the fibers and characterizing the monodromy. We need these results to show the
deletion maps preserve the perverse filtration, hence that the deletion filtration is bounded
by the perverse filtration. Additionally, borrowing a calculation of [61], we show that
C.�/ also computes the cohomology of the spaces D.�/, compatibly with the perverse
filtrations.

Finally, in Section 11, we begin comparing B and D. First we construct a smooth
embedding and homotopy equivalence between the basic spaces, D � B. Due to the
similarity of the constructions of these spaces, this induces a similar inclusion D.�/ �

B.�/, thus proving Theorem 1.0.1 (= 11.1.6).
We show in Section 11.3 that the deletion maps are intertwined by D.�/! B.�/.

The key geometric input is a relation between the subspace used in the long exact
sequence of a pair (on the Betti side) and the vanishing thimble for the degenerating
family (on the Dolbeault side). It follows immediately that the Betti and Dolbeault dele-
tion filtrations are identified. In particular, dimensions of the associated graded pieces of
the Dolbeault deletion filtration equal those of the C-filtration. Then since the Dolbeault
deletion filtration is bounded by the perverse Leray filtration, but both these have associ-
ated graded dimensions matching that of the C-filtration, we conclude that in fact these
filtrations must be equal. Having identified the deletion filtrations with the weight and
perverse Leray filtrations on the respective sides, we deduce Theorem 1.0.4 (= 11.2.6).
Some further geometric considerations give the full intertwining of Theorem 1.0.5.

1.2. Some additional remarks

Remark 1.2.1. More generally, the spaces B.�/ and D.�/ can be (and were originally
[41]) defined with an arbitrary integer matrix in place of the adjacency matrix of the graph;
in this generality they have orbifold points (see Remark 5.3.4). Deletion-contraction rela-
tions have a well known generalization to this matroidal setting [70, Chapter 3]. We expect
that in fact all the results of the paper generalize as well, with proofs complicated only by
increased bookkeeping.

Remark 1.2.2. Here we will explain that B.�/ and D.�/ in some sense model the non-
abelian cohomology spaces ‘near’ a nodal spectral curve with dual graph � , and that this,
along with our results, hints at the existence of a ‘microlocal’ version of nonabelian Hodge
theory.

By microlocal, we mean as always ‘locally in the cotangent bundle’, i.e. locally
around the spectral curve † � T �C , and correspondingly locally around the correspond-
ing Hitchin fiber, itself a multisection of the cotangent bundle T �BunGLn.C /.

Consider a smooth spectral curve. A neighborhood of J.†/ inside Mx@.C; n/ will
be diffeomorphic (and in fact symplectomorphic) to a neighborhood of the zero section
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of T �J.†/ DMx@.†; 1/, which in turn is – by the abelian case of the nonabelian Hodge
correspondence – diffeomorphic to MB.†;1/. That is, there is a diffeomorphism between
a neighborhood of the Dolbeault data for † and the moduli space of Betti data on †.

We turn to singular spectral curves. Assuming † is a reduced, possibly reducible,
curve, the Hitchin fiber is a compactification of its Jacobian; we denote it xJ .†/. We will
be interested in the cohomology of this singular fiber. Denoting by z† the normalization
of the curve, it is known that H�. xJ .†// Š H�.J.z†//˝D.†/ for some graded vector
space D.†/ depending only on the singularities of †.2

Here we focus on the simplest case, when† has only nodes. Let �† be the dual graph:
it has vertices for the irreducible components of†, and edges for the nodes. Let us explain
how the D.�†/ is similar to a neighborhood in the Hitchin system of the fiber over Œ†�.
The space D.�†/ is smooth; D.�†/ � J.z†/ has the same dimension as Mx@.C; n/, and
it follows from its construction that D.�†/ carries the structure of an integrable system.
The data defining D.�/ did not depend on complex structure parameters, so it cannot be
expected that the central fiber of D.�/ is analytically related to the Hitchin fiber xJ .†/.
In fact, even when † has rational components, the corresponding central fibers need not
be homeomorphic, and even if they are, the corresponding integrable systems need not
be fiberwise homeomorphic. Nevertheless, we will see thatH�.D.�†// ŠD.†/, in fact
compatibly with the perverse Leray filtration (see Remark 10.3.5). In this sense, D.�†/

is a model (or replacement) for the local topology in Mx@.C; n/ around xJ .†/.
There is also a sense in which B.�†/ captures ‘Betti information near †’. More pre-

cisely, one can view † as a (singular) Lagrangian and study the moduli space MB.†; 1/

of rank 1 microlocal sheaves on †.3 Were † smooth, this would be the space of rank 1
local systems we encountered above. In the nodal case, moduli of microlocal sheaves is
shown in [4] to match certain multiplicative Nakajima varieties [12, 83]; comparing the
results there to the definitions here, it is immediate that there is an algebraic isomorphism

MB.†; 1/ ŠMB.z†; 1/ �B.�†/:

In fact, the relationship between microlocal sheaves on a spectral cover and the neigh-
borhood of the corresponding Hitchin fiber should hold in some greater generality. In
particular, at least for spectral curves the links of whose singularities are torus knots, a
similar statement can be tortured out of the identification in [74] of moduli of Stokes data
as moduli of sheaves microsupported along a Legendrian, plus the nonabelian Hodge cor-

2When † is not irreducible, the compactification of the Jacobian depends on the choice of a
stability condition. However, it follows from [61] thatH�. xJ .†// is in fact independent of a generic
such choice, and genericity is known to follow from smoothness of the total space of the Hitchin
fibration.

3Equivalently [31, Section 6.2], of the wrapped Fukaya category of a completion of a neigbor-
hood of †. From this point of view, one sees an embedding MB .†; 1/! MB .C; n/ is induced
by pullback of pseudo-perfect modules under a nonexact Viterbo restriction, modulo convergence
issues. The case of smooth spectral curve is [27]. What is by no means clear is if or why xJ .†/ lies
in the image, let alone why it should be a deformation retract thereof. We will not use or discuss
this further here.
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respondence in the presence of irregular singularities [5]. As explained in the introduction
of [75], a comparison of the numerics of that article with those of [33, 68] reveals a faint
shadow of a ‘P D W ’ phenomenon here as well.

On the other hand, while we construct an embedding D.�/ �B.�/, we do not know
a category of which the former space is a moduli space, much less a functor between
categories inducing this map. It would be preferable to have such a category and functor.
Relatedly, we have described how the spaces D.�/ and B.�/ are cohomologically related
to Hitchin fibers, but not given maps of spaces, much less of categories.

We end with the question: is there a microlocal nonabelian Hodge theory?

Remark 1.2.3. Recall from [72] and subsequent developments that if one considers
N D 2 super Yang–Mills for U.n/ with g adjoint matter fields, then the vacua in R4

form the base of a Hitchin system corresponding to the moduli of Higgs bundles over
a base curve of genus g. At low energy, in a vacuum corresponding to a spectral curve
with (for convenience) rational components, the theory is described by an abelian gauge
theory with gauge fields corresponding to the components of the spectral curve, and bifun-
damentals or adjoints corresponding to the nodes. That is, it corresponds to the dual graph
of the curve. We expect there should be some physical account of why the cohomology
of the corresponding multiplicative quiver variety is identical to the cohomology of the
Hitchin fiber, and more optimistically, why this should identify weight and perverse Leray
filtrations (as we have mathematically proven is the case).

There is a string-theoretic account of why the perverse filtration on the cohomology
of the Higgs moduli space should lead to the bigraded numbers guessed by [42] for the
weight filtration on the character variety (see [8–11, 24, 25]). It is not immediately clear
how this relates to the above notions, but it would be interesting to make such a connec-
tion. In particular, unlike [42], we have not been able to compute (or guess) the mixed
Poincaré polynomials of the multiplicative hypertoric varieties.

Remark 1.2.4. The embedding D.�/�B.�/ has the flavor of a hyperkähler rotation. In
particular, it carries the central fiber of the integrable system D.�/ to a non-holomorphic
Lagrangian subvariety of B.�/, which should be the Lagrangian skeleton of an appro-
priate Weinstein structure. This fact, which we do not prove here, suggests a way to
calculate the Fukaya category of B.�/, using the approach of [28, 30–32, 54, 64]. This
idea is explored in [29], building on calculations of [58].

Remark 1.2.5. A shadow of Theorem 1.0.4 can be seen by comparing equation (1.3)
above to [61, Theorem 1.1], after specializing L! 1 in the latter. We do not know what
parameter should be introduced in our formula to recover the L of [61]; this corresponds
to asking how to characterize the filtration on the Betti moduli space which corresponds
to the weight filtration on the Dolbeault moduli space. This question does not arise in
the setting of the original P D W conjecture, because in that situation, the cohomology
of the Dolbeault space is pure, i.e. the weight filtration arises from the cohomological
grading. In the present case, the (central fiber of the) Dolbeault space does not have pure
cohomology.



Deletion-contraction triangles for Hausel–Proudfoot varieties 11

Remark 1.2.6. The deletion-contraction relation enjoys various connections with the
skein relation of knot theory; it may be expected that deletion-contraction exact sequences
enjoy similar connections with the skein exact sequences in knot homology theories such
as [53]. Indeed, this is true by construction in various extant categorifications of the Tutte
polynomial and its specializations [44, 45, 49, 80, 81], though we do not know how these
constructions relate to H�.B.�//.

In this context we recall the relation between knot invariants and the perverse polyno-
mial of Hitchin fibers [56, 67]; and its conjectural lift to the cohomological level [33, 66].

2. Graph conventions and some linear algebra

For us, a graph will always mean a finite simplicial set with only 0- and 1-simplices, or
in other words, what is sometimes called an ‘oriented multigraph with loops’. That is, we
have the data of a finite set of edges E.�/, a finite set of vertices V.�/, and two maps
h; t W E.�/! V.�/.

As � is a simplicial set, given a (for us always abelian) group A, we may form the
simplicial chains and cochains. There are (by definition) canonical isomorphisms

C0.�; A/ ' A
V.�/
' C 0.�; A/;

C1.�; A/ ' A
E.�/

' C 1.�; A/:

We write AV.�/ or xC 0.�; A/ for the quotient by the subgroup of constant functions, and
xC0.�; A/ for the subgroup of chains summing to zero via the group law of A.

We denote the differentials by d� W C1.�; A/ ! C0.�; A/ and d�� W C
0.�; A/ !

C 1.�; A/, respectively. The formula for d� is

d� W A
E.�/

! AV.�/; e 7! h.e/ � t .e/:

We often use the inclusion H1.�;R/ D ker.d�/ � AE.�/.
We write

H.�; A/ WD H1.�; A/˚ H1.�; A/: (2.1)

Note that all chain and cochain groups, and all homology and cohomology groups,
are canonically independent of the choice of orientations on edges of � .

For � 2 C0.�; A/ D AV.�/, we will write

H1.�; A/� WD d�1� .�/: (2.2)

When nonempty, H1.�;A/� is the translation of H1.�;A/�C1.�;A/ by any d� -preimage
of �, and is thus a torsor for H1.�; A/ D H1.�; A/0.

Definition 2.0.1. For a 2AE.�/, we write Supp.a/� � for the subgraph consisting of all
vertices of � , and those edges whose corresponding coordinate in a is nonzero. We say
� 2 xC0.�;A/ is generic if for all a 2 H1.�;A/� � C1.�;A/D AE.�/, the graph Supp.a/
is connected.
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Remark 2.0.2. Note that if � is disconnected, then � is generic iff H1.�; A/� D ;.

The geometric significance of Definition 2.0.1 becomes apparent in Proposition 5.3.2
below.

Lemma 2.0.3. Suppose A is a vector space of positive dimension over an infinite field.
Then there exist generic � 2 xC0.�; A/. The same holds when A is a .commutative/ Lie
group of positive dimension.

Proof. Consider the complement � of the generic locus of xC0.�; A/. It is the union over
all disconnected subgraphs � 0 � � of the image of d� W C1.� 0; A/! xC0.�; A/.

Since xC0.�; A/ D xC0.� 0; A/, we can identify the latter map with d�0 W C1.� 0; A/!
xC0.�

0; A/. The cokernel has dimension 1 less than the number of connected components
of � 0, and in particular the image is a proper subspace. It follows that� is a proper subset
of xC0.�; A/.

For commutative Lie groups, the result follows from the same argument on tangent
spaces.

Lemma 2.0.4. Suppose A D A1 � A2 is a product of positive-dimensional commutative
Lie groups. Then there exist generic � 2 xC0.�; 0 � A2/.

Proof. Given � 0 � � , the map d� WC1.� 0;A1 �A2/! xC0.�;A1 �A2/may be identified
with the product map C1.� 0; A1/ � C1.� 0; A2/! xC0.�; A1/ � xC0.�; A2/: We can now
argue as for Lemma 2.0.3.

Let us now consider deletion and contractions.

Definition 2.0.5. Given a graph � , the graph � n e is defined by deleting the edge e. If
e is not a loop, then the graph �=e is defined by ‘contracting’ e, i.e., by removing it and
collapsing h.e/ and t .e/ to a single vertex v.e/.

There are evident maps (of simplicial sets) � n e ! � ! �=e, the second being
defined only when  is not a loop. These induce in particular maps C0.� n e/Š C0.�/!
C0.�=e/. We will use the following notation:

Definition 2.0.6. For � 2 C0.�; A/:

(1) We write � n e 2 C0.� n e;A/ for the preimage of � under C0.�;A/
�
 � C0.� n e;A/.

(2) If e is not a loop, we write �=e for the image of � under the map C0.�/! C0.�=e/.

Lemma 2.0.7. If � is generic, then so are � n e and �=e.

Proof. We have the commutative diagram

H1.�; A/� C1.�; A/ C0.�; A/

H1.� n e; A/�=e C1.� n e; A/ C0.� n e; A/

d�

d�ne

(2.3)
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In particular, the support of any a 2 H1.� n e; A/�=e is equal to the support of its image
in H1.�; A/� .

If e is not a loop, then we have the commutative diagram

H1.�; A/� C1.�; A/ C0.�; A/

H1.�=e; A/�=e C1.�=e; A/ C0.�=e; A/

�

d�

d�=e

(2.4)

Thus, the support of any a 2 H1.�=e;A/�=e is the image of the corresponding support of
its preimage in H1.�; A/� .

Remark 2.0.8. Suppose instead of starting with a single edge e 2 E.�/, we are given
a subset J � E.�/. Definition 2.0.6 can be iterated to define � n J and �=J . Iterating
Lemma 2.0.7 shows that these are also generic.

Note that combining the left vertical morphisms of (2.3) and (2.4), we obtain

H1.� n e; A/�=e ,! H1.�; A/� Š H1.�=e; A/�=e: (2.5)

Corollary 2.0.9. Let � be generic, and let e be a bridge, i.e. suppose � n e is discon-
nected. Then H1.� n e; A/�ne is empty.

Proof. Follows from Remark 2.0.2 and Lemma 2.0.7.

For later use we describe some structures associated to a contracted edge. Any edge e
determines a map

A! AE.�/ D C 1.�;E/! H 1.�;E/

(which is injective so long as e is not a bridge). Assuming e is not a loop, we define the
map ˛e W A! H1.�=e; A/ by demanding commutativity of the following diagram:

H1.� n e; A/ H1.�; A/ A

cok.˛e/ H1.�=e; A/ A

� �

˛e

(2.6)

Similarly, an edge e determines a map H1.�; A/� ! C 1.�; A/! A; so long as e is not
a loop, we define the map ˇe W H1.�=e; A/�=e ! A by demanding commutativity of the
following diagram:

H1.� n e; A/�ne H1.�; A/� A

ker.ˇe/ H1.�=e; A/�=e A

� �

ˇe

(2.7)
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3. Combinatorial model

In this section, we will give a purely combinatorial model for the cohomology of our B.�/

or D.�/, equipped with the appropriate filtration. The model was originally introduced
in [61] to describe the perverse filtration on the cohomology of the compactified Jacobian
of a nodal curve, which as mentioned above is closely related to D.�/.

We write our complexes over an arbitrary commutative ringR, which in the remainder
of this article will always be Z, Q or C.

Definition 3.0.1. Let J be a subset of edges of � . We write

C2k;l .�;R/ WD
M
jJ jDk

^l
H.� n J;R/; C2kC1;l .�;R/ WD 0:

We will often suppress the choice of R. Let C�.�/ WD
L
2kClD� C2k;l .�/. We now

define a differential C�.�/! C�C1.�/.
Let e be an edge, viewed as a class in H1.�;R/. We have a map he;�i WH1.�;R/!R

given by the composition of H1.�;R/! RE.�/ with the projection RE.�/! R onto the
eth coordinate. We extend this to a linear function

he;�i W H.�;R/! R

by setting he; f i D 0 for f 2 H1.�; R/. Given e 2 E.�/, consider the map ehe;�i W
H.�/ ! H.�/ which takes x to ehe; xi. This map depends on the edge e but not on
its orientation. We extend it, via the Leibniz rule, to a linear map ehe;�i W

Vl H.�/!Vl H.�/.

Lemma 3.0.2. The image of ehe;�i is the subspace

e ^
^l�1�

H1.� n e/˚ H1.�/
�
: (3.1)

Proof. Note that H1.� n e/˚ H1.�/ D ker.ehe;�i/. Choose any splitting of H.�/ into
ker.ehe;�i/˚ F where F is rank 1; then ehe;�i restricts to an isomorphism F ŠRe. We
have

Vl H.�/D .F ˝
Vl�1 ker.ehe;�i//˚

Vl ker.ehe;�i/. The map ehe;�i takes the
left-hand summand isomorphically onto (3.1) and kills the right-hand summand.

When e is not a bridge, we have an identification e ^
Vl�1

.H1.� n e/˚ H1.�// DVl�1 H.� n e/, and thus we obtain a map

de W
^l

H.�/!
^l�1

H.� n e/:

More explicitly,

de.x1 ^ x2 ^ � � � ^ xl / D

lX
iD1

.�1/i�1he; xi ix1 ^ x2 ^ � � � ^ yxi ^ � � � ^ xl :

Here the hat indicates that a factor has been omitted.
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Definition 3.0.3. Let dC W C
2k;l .�/! C2kC2;l�1.�/ be the linear map whose restriction

to
Vl H.� n J / is the direct sum over all nonbridge edges e in � n J of de W

Vl H.� n J /
!
Vl�1 H.� n J n e/.

Lemma 3.0.4. The map dC makes C�.�/ into a complex, i.e. d2C D 0.

Proof. It is easy to see that d2e D 0. We must check that additionally de1de2 D �de2de1 .
The sign arises when passing from ehe;�i to de , which involves reordering the factors of
a wedge product so that the factor e comes out in front. Indeed, we may write the image
of de2.x0 ^ � � � ^ xN / under e1he1;�i as a sum of terms .�1/jx0 ^ � � � ^ e1he1; xi i ^
� � � ^ yxj ^ � � � ^ xN with i < j and .�1/jx0 ^ � � � ^ yxj ^ � � � ^ e1he1; xi i ^ � � � ^ xN with
i > j . Then de1de2.x0 ^ � � � ^ xN / is the sum of terms .�1/iCjx0 ^ � � � ^ yxi ^ � � � ^
yxj ^ � � � ^ xN with i < j and .�1/iCj�1x0 ^ � � � ^ yxj ^ � � � ^ yxi ^ � � � ^ xN with i > j .
Exchanging e1 and e2 exchanges the signs.

Lemma 3.0.5. The complexes .C�.�/; dC/ associated to different orientations of � are
canonically isomorphic.

Proof. Suppose the orientations differ at a single edge e. Let "e be the automorphism of
C�.�/ which multiplies

V
H.� n J / by �1 if e 2 J , and is the identity on the other

summands. Then "e intertwines the differentials associated to the two orientations. If
the orientations differ at multiple edges, the differentials are intertwined by a product of
such "e .

V4 H.J /

V3 H.J /
L3
iD1

V2 H.J n ei /

V2 H.J /
L3
iD1

V1 H.J n ei /
L3
i;jD1

V0 H.J n ei ; ej /

V1 H.J /
L3
iD1

V0 H.J n ei /

V0 H.J /

dC

dC dC

dC

Fig. 1. The complex C�.J /, where J is the graph with two vertices joined by three edges e1; e2; e3.
We have only indicated the groups which are not automatically zero for degree reasons. The coho-
mological grading increases as one moves up or to the right. The cohomology is described in
Figure 2.
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0 1 2

4 R

3 R2 R

2 R2 0 R

1 R2 R

0 R

Fig. 2. The cohomology of C�.J /. The C-grading is indicated on the left, while the number jJ j of
deleted edges is indicated on the top row. The cohomological grading is the sum of these numbers.

By construction, the differential dC takes C2k;l .�/ to C2kC2;l�1.�/, and thus
preserves the subspace Cm.�/ WD

L
aC2bDm Ca;b.�/. We thus have Hi .C.�// DL

m Hi .Cm.�//.

Definition 3.0.6. We call this extra grading on cohomology the C-grading, so that
Hi .Cm.�// has C-degree m.

Fix an edge e 2 � which is neither a loop nor a bridge. We can identify C��2.� n e/

with the subcomplex of C�.�/ consisting of the summands
Vl H.� n J /with e 2 J . If we

ignore the differential, the quotient complex is given by the summands
Vl H.� n J / with

e … J . The homotopy equivalence � n J ! .� n J /=e D .�=e/ n J identifies each such
summand with

Vl H..�=e/ n J /; the quotient complex therefore has the same underlying
graded vector space as C�.�=e/. The differentials also match, and thus we have

0! C��2.� n e/! C�.�/! C�.�=e/! 0 (3.2)

Definition 3.0.7. The resulting long exact sequence

! H��2.C.� n e//
aC
e
��! H�.C.�//

bC
e
��! H�.C.�=e//

cC
e
��! (3.3)

is the C-deletion-contraction sequence.

With a view to applying Definition 1.0.6, we consider the following more general
situation. Suppose � 0 is a connected subgraph of � whose complement contains no self-
edges. Then we likewise have a subcomplex C��2j�n�

0j!C�.�/, given by all summandsVl H.� n J / with � 0 � � n J . The induced map in cohomology can be written as the
composition, in any order, of the maps aC

e for e 2 � n � 0. In particular, the compositions
in different orders are all equal.

We can thus make the following special case of Definition 1.0.6.

Definition 3.0.8. The C-deletion filtration is the filtration defined by Definition 1.0.6,
where the covariant functor A takes � to H�.C.�// and takes � 0! � to the composition
of aC

e (in any order) for e 2 � n � 0.

By construction, the maps bC
e and cC

e respect the C-grading, whereas the map aC
e

increases the grading by 1. Hence the kth step DkHi .C.�// lies in the subspace
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of C-degree � i � k. The reverse inclusion is clear, and thus DkHi .C.�// DL
m�2i�k Hi .Cm.�//.

Corollary 3.0.9. The C-deletion filtration is induced by the C-grading on H�.C.�//.

Viewed as a sequence of filtered vector spaces, the maps of a graded sequence strictly
preserve the filtrations.

Corollary 3.0.10. The C-deletion-contraction sequence strictly preserves the C-filtration.

4. Generalized moment maps

Let us review moment maps. A symplectic form ! on a manifold X determines a map
f 7! !#df from functions to vector fields. Fixing a Lie algebra g, we get similarly a map
from g�-valued functions to g�-valued vector fields. When such a resulting vector field
integrates to the action of a Lie groupG, the action is termed Hamiltonian, the function is
termed the moment map, and isG-equivariant (with respect to the coadjoint action on g�).
In case f is submersive over 0, and G acts freely on f �1.0/, the symplectic reduction
X==G WD f �1.0/=G inherits a symplectic structure. More generally we may reduce along
coadjoint orbits: X==OG D f �1.O/=G. If in addition X carried a Kähler structure and
G acts by isometries, the reduction inherits a Kähler structure as well. If X carries a
hyperkähler structure and a G-action which is independently Hamiltonian for the Kähler
forms !I ;!J ;!K with moment maps fI ; fJ ; fK WX ! g�, then there is under analogous
conditions a hyperkähler reduction X====G WD .f �1I .0/ \ f �1J .0/ \ f �1K .0//=G.

In the present article we will only be concerned with G commutative. Then a map
X ! g� isG-equivariant iff it is constant on orbits; the coadjoint orbits are just the points
of g�.

There is a related notion of group-valued moment map [1]; in general this is somewhat
sophisticated; here we will need only the commutative case, which is much simpler. ForG
a connected commutative Lie group, note that its Lie algebra g is also its universal cover.
In this case, given a G-action on X , we say f W X ! G is a multiplicative moment map
if it is constant on fibers and the map Qf W X �G g! g Š g� is a moment map for the
natural G-action on X �G g. One defines reduction as for ordinary moment maps, and
the usual proofs of compatibility of reduction with Kähler or hyperkähler structure go
through unchanged (e.g. [48, Theorem 3.1]).

The various notions above play a prominent role in the literature on character varieties
and related spaces. The spaces we will consider in this paper also have such Hamiltonian
structures. The constructions we perform with them will require and retain such struc-
tures, but often at intermediate stages will not be (quasi-)Hamiltonian or hyperkähler, in
particular due to the group action being too small or the target of the moment map too
large. E.g., we may have a subgroupH � G and be interested in ��1.O/=H . IfG andH
are abelian, this retains a Hamiltonian action of G=H .
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What will always be present is the structure of the action of a (commutative) Lie
group G and a map to another commutative Lie group M , constant on fibers. Here we
develop some basic manipulations of such structures.

4.1. .G;M/-spaces

Recall that for a group G, we say a space X is a G-space if it carries a G-action.

Definition 4.1.1. Fix a group G and a G-space M . By a .G;M/-space, we mean a G-
space X and a G-equivariant map �X W X ! M . A morphism of .G; M/-spaces is a
G-equivariant map f W X ! Y such that �Y D �X ı f .

Remark 4.1.2. We write ‘space’ above to mean element in some appropriate category
which will be clear from context. For us this will always be a category of smooth mani-
folds, possibly with extra structure, e.g. complex manifolds, Kähler manifolds, etc.

For instance, if we say that X is a complex .G; M/-variety, we mean that G is a
complex algebraic group, M is a complex variety, and the G-action and map �X are
algebraic.

Remark 4.1.3. Soon (in Convention 4.3.6) we impose much stricter requirements on the
allowable G;M : we will require G to be commutative and the G-action on M to be
trivial. We begin in the present generality only for the sake of making clear when these
hypotheses become relevant, namely in Lemma 4.3.4.

Example 4.1.4. IfM has a distinguished point 0 2M , then we write 0 WD 0.G;M/ for the
.G;M/-space given by a point carrying the trivial G-action and whose image under the
map � is 0 2M .

Example 4.1.5. If X is a space with a G-action, and O is a space with a map to M , we
write ŒX �O� for the .G;M/-space whose underlying space is X �O , on which G acts
by multiplication on the first factor and trivially on the second, equipped with the map
� W X �O ! O via the second projection.

In particular, we will often consider ŒG �M� where G acts by (left) translation on the
first factor.

Example 4.1.6. Any G-stable subset of a .G;M/-space inherits a .G;M/-structure. In
particular, given a .G;M/-spaceX and any subsetO �M , the space��1X .O/�X carries
a natural .G;M/-structure.

Remark 4.1.7. Recall that a symplectic manifold carries a canonical Poisson structure,
and there is a standard Poisson structure defined on g�. A .G;g�/-structure on a manifold
X arises from a Hamiltonian G-action for the symplectic form ! iff the G-equivariant
� W X ! g� is Poisson.

Definition 4.1.8. Fix a group G and a G-space M . Suppose given a group homomor-
phism � W H ! G, an H -space N , and a morphism of H -spaces � W M ! N . Then
composition with .�; �/ determines a functor from .G;M/-spaces to .H;N /-spaces.



Deletion-contraction triangles for Hausel–Proudfoot varieties 19

Example 4.1.9. IfH is a Lie subgroup ofG, then the natural mapsH !G and g�! h�

determine as above a functor from .G; g�/-spaces to .H; h�/-spaces. This functor evi-
dently takes Hamiltonian G-structures to Hamiltonian H -structures.

However, we also have a functor from .G; g�/-spaces to .H; g�/-spaces, just by
restriction of the group action.

4.2. Reduction

Definition 4.2.1. Let X be a .G;M/-space. For a G-invariant point m 2M , we define

X �m G WD �
�1
X .m/=G

If we wish to emphasize M , we write X �m2M G.

Remark 4.2.2. Whenever we write ��1X .m/=G, we are implicitly asserting that the quo-
tient makes sense. More precisely, since we are always working with smooth manifolds,
we require that m is a regular value of � and that the G-action on ��1X .m/ is free.

Remark 4.2.3. In our applications, the G-action on M is trivial, i.e. every point m 2M
is invariant. (When the G-action is not trivial, it is natural to also allow invariant subsets
in place of m.)

Remark 4.2.4. WhenX is a HamiltonianG-space and �X WX ! g� is the moment map,
this is the classical symplectic reduction.

Let us note the following elementary compatibilities:

Lemma 4.2.5. An injection H ,! G determines a surjection X �m H ! X �m G.

Lemma 4.2.6. Let � WM ! N be a morphism of G-spaces. Let m 2M . For a .G;M/-
space X , there is a Cartesian square

X �m G X ��.m/ G

m ��1�.m/

(4.1)

Remark 4.2.7. It will later be relevant that if � W M ! N is a group homomorphism,
then ��1�.m/ is a torsor for the kernel.

4.3. Convolution of .G;M/-spaces

Definition 4.3.1. LetM;N beG-spaces with aG-equivariant morphism c WM �N !N .
Then from a .G;M/-space X and a .G;N /-space Y , we construct a .G;N /-space X � Y
as follows. The underlying space is X � Y , and

g.x; y/ D .gx; gy/; �X�Y .x; y/ D c.�X .x/; �Y .y//:



Z. Dancso, M. McBreen, V. Shende 20

For n 2 NG , we also write

X ?G;N;n Y WD .X � Y / �n G D �
�1
X�Y .n/=G:

If the choice of G, N , or n is clear from context, we may omit them. In particular, we
will uniformly employ the abbreviations ?C� WD ?C�;C� , ?U1 WD ?U1;U1 and ?C�U1 WD

?U1;C�U1 . Here U1 denotes the unit circle.

Remark 4.3.2. Throughout this text we are working with smooth manifolds. In this
context, the notation X ?n Y implicitly asserts that n is a regular value for the map
c.�X ; �Y / W X � Y ! N and that G acts freely on c.�X ; �Y /�1.n/.

Remark 4.3.3. As mentioned above, in the remaining sections we always have G com-
mutative and acting trivially on M and N . The additional structures needed in the above
definition will always come from M being a commutative group, and N being an M -
torsor (and usually N DM ).

Lemma 4.3.4. In the setting of Definition 4.3.1, assume in addition thatG is commutative
and acts trivially on M . Then we may equip X ? Y with a .G;M/-structure by defining
g.x; y/ D .gx; y/ and �X?Y .x; y/ D �X .x/.

Proof. The main point is to check that the written formulas, which are well defined on
X � Y , descend to the quotient. We should check that .gx; y/ and .ghx; hy/ are in the
same G-orbit in X � Y ; this follows from commutativity of G. We should check that
�X .hx/ D �X .x/; this follows from equivariance of � and triviality of the G-action
on M .

Remark 4.3.5. There is a .G; N /-space isomorphism X � Y Š Y � X . If, in addition
to the hypotheses of Lemma 4.3.4, we have N D M and the map c W M �M ! M is
commutative, then there is an isomorphism of spaces � W X ?m Y Š Y ?m X for any m.
If the binary operation defined by c has inverses, then the .G;M/-structures on X ?m Y

and Y ?m X are related by �.g � .x; y// D g�1 � �.x; y/ and �X?Y D m � �Y ?X .

Convention 4.3.6. For the remainder of the article, when we discuss .G; M/-spaces,
G will always be a commutative group, and the G-action on M will be trivial. When
we discuss convolution, we always additionally require M D N and ask that the map
c WM �M !M define the structure of a commutative group.

Example 4.3.7. Recall that 0 D 0.G;M/ denotes the point with trivial G-action and � D
0 2M . For any .G;M/-space X , and any m 2M , we have

X ?m 0 D X �m G D 0 ?m X:

Lemma 4.3.4 asserts that the resulting space should acquire a .G;M/-structure. Note the
resulting G-action is trivial, and the map � is the constant map with value m on the left,
or 0 on the right.
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4.4. Some convolution lemmas

Lemma 4.4.1. Given a .G;M/-space X and a .G;M/-map f W Y ! Y 00, the formula
x � y 7! x � f .y/ restricts and descends to give a .G;M/-map

fX W X ? Y ! X ? Y 0:

Proof. If x � y 2 X � Y lies in ��1X�Y .�/, then x � f .y/ lies in ��1X�Y 0.�/ since f
preserves the moment map. The resulting map id� f W ��1X�Y .�/! ��1X�Y 0.�/ isG-equiv-
ariant, and thus descends to the quotients.

Remark 4.4.2. Suppose Y , Y 0 and X have exhaustions by compact G-equivariant sub-
sets, compatible with the map f . Then fX is compatible with the exhaustions of X ? Y

and X ? Y 0 obtained from taking Cartesian products of compact sets.

Lemma 4.4.3. If f W Y ! Y 0 is injective .resp. surjective/, then fX W X ? Y ! X ? Y 0

is injective .resp. surjective/.

Proof. If f is injective .resp. surjective/, then so is f � id WX � Y !X � Y 0. Injectivity
is clearly preserved by restriction to��1X�Y .�/ and��1X�Y 0.�/. To see that surjectivity is also
preserved, note that if �.x; y0/ D �, then for any preimage y of y0, �.x; y/ D �. Finally,
passing to G-quotients preserves injectivity and surjectivity of G-equivariant maps.

Lemma 4.4.4. If f W Y ! Y 0 is an open .resp. closed/ embedding, then fX W X ? Y !

X ? Y is an open .resp. closed/ embedding.

Proof. By Lemma 4.4.3, it is enough to check that if Y � Y 0 is open, thenX ?Y �X ?Y 0

is open. The opens of X ? Y 0 are given by intersecting G-invariant opens of X � Y 0 with
��1X�Y 0.�/. In particular, X ? Y D X � Y \ ��1X�Y 0.�/=G is open.

Lemma 4.4.5. Let X be a .G;M/-space. Let G act freely on T , and let O �M . Then

X ?� ŒT �O� D �
�1
X .� �O/ �G T

and is naturally a ��1X .� �O/-bundle over T=G with structure group G.

Proof. We have ��1
X�ŒT�O�

.�/D ��1X .� �O/� T . Taking the quotient byG on both sides
gives the desired identification.

We often use the following very special case:

Corollary 4.4.6. Let X be a .G;M/-space. For any O � M , there is a canonical iso-
morphism of .G;M/-spaces

X ?� ŒG �O� Š �
�1
X .� �O/:

In particular, for any � 2M , there is a canonical isomorphism X ?� ŒG �M� D X .
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Lemma 4.4.7. LetX1 be a .G1 �G2;M1 �M2/-space, and letX2 be a .G2;M2/-space.
View X1 �X2 as a .G1 �G2;M1 �M2/-space, where

.g1; g2/ � .x1; x2/ WD ..g1; g2/ � x1; g2 � x2/;

�X1�X2.x1; x2/ WD �X1.x1/C .0; �X2.x2//:

Then for �1 2M1 and �2 2M2,

.X1 �X2/ �.�1;�2/ G1 �G2 D .X1 ��1 G1/ ?G2;M2;�2 X2: (4.2)

5. Spaces from graphs

Fix commutative connected Lie groups G;M . We regard G as acting trivially on M . Let
Z be a .G;M/-space. Let � be a connected graph, and � an assignment of an element
of M to each vertex. From this data, we will produce a new space Z.�; �/.

5.1. Construction

Recall from Section 2 above our conventions and notation for graphs.
Given a .G; M/-space Z, there is an action of C 1.�; G/ D GE.�/ on ZE.�/,

together with a map �
E.�/
Z W ZE.�/ ! ME.�/ D C1.�; M/. Thus ZE.�/ is a

.C 1.�;G/; C1.�;M//-space.
We viewZE.�/ as a . xC 0.�;G/; xC0.�;M//-space by composition with .d�� ; d�/ as in

Definition 4.1.8. We write �� WZE.�/! xC0.�;M/ for the associated map. By definition,
we have �� D d� ı �

E.�/
Z .

Definition 5.1.1. Let � be a graph, let � 2 xC0.�;M/ � C0.�;M/ D MV.�/, and let Z
be a .G;M/-space. We define

Z.�; �/ WD ZE.�/ �� xC
0.�;G/:

When the choice of � is clear from context or irrelevant, we simply write Z.�/. On
the other hand, if we wish to emphasize the dependence on .G;M/, we writeZG;M .�;�/.
In Section 5.3, we discuss criteria which ensure that � is a regular point of �� and that
the xC 0.�;G/-action is free, hence that Z.�; �/ is a smooth manifold.

The following diagram summarizes the situation, and defines the map �res:

Z.�; �/ ��1� .�/=
xC 0.�;G/ ��1� .�/ ZE.�/

H1.�;M/� d�1� .�/ d�1� .�/ C1.�;M/

�res �
E.�/
Z

(5.1)

Example 5.1.2. Since d� D 0, we have Z D Z.�; 0/.

Lemma 5.1.3. Suppose � contains a loop e. Then Z.�/ D Z.� n e/ �Z.�/.
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Proof. This follows from the fact that xC 0.�;G/ acts trivially on the factor ofZ associated
to e.

Proposition 5.1.4. The action of C 1.�;G/ on ZE.�/ descends to an action of H1.�;G/
on Z.�; �/. Combined with the map �res W Z.�; �/ ! H1.�; M/� above, this defines
an .H1.�; G/;H1.�;M/�/-space structure on Z.�; �/. Finally, if �Z is proper, then so
is �res.

Proof. Regarding properness, note that it is preserved both by restriction to the closed set
��1� .�/ and by descent to the quotient by xC 0.�;G/.

Lemma 5.1.5. For � disconnected and � 2 xC0.�;M/ generic in the sense of Definition
2.0.1, we have Z.�; �/ D ;.

Proof. The locus H1.�; A/� is empty by Remark 2.0.2. Since Z.�; �/ is a quotient of a
preimage of this locus in ZE.�/, it is also empty.

Remark 5.1.6. Since we will always assume that � is generic, we will always have
Z.�; �/ D ; for � disconnected. Such ‘empty’ graph spaces arise naturally if we start
with a connected graph � with generic �, and produce a disconnected graph by deleting a
bridge, with parameter � n e as in Definition 2.0.6.

Lemma 5.1.7. Let Z D ŒG �M�. Then Z.�; �/ Š ŒH1.�;G/ � H1.�;M/��.

Proof. We identify

ŒG �M�E.�/ D ŒC 1.�;G/ � C1.�;M/�:

Then we have ��1� .�/ D ŒG
E.�/ � H1.�;M/��, and

��1.�/= xC 0.�;G/ D ŒH1.�;G/ � H1.�;M/��:

5.2. Independence from orientation

Pick a subset J of the edges of � , and let � 0 be the oriented graph obtained from � by
switching the orientation of each edge in J .

Proposition 5.2.1. Let f W Z ! Z be an automorphism of topological spaces which
intertwines the G-action with the inverse G-action and the A-map with the inverse A-
map. Then f determines an isomorphism of topological spaces

Z.�/
�
�! Z.� 0/:

If f is a map of smooth manifolds or algebraic varieties, then so is the induced map.

Proof. The map ZE.�/ ! ZE.�
0/ given by f on the factors in J and by the identity

everywhere else intertwines the group actions and moment maps for � and � 0, and thus
descends to the requisite isomorphism.
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5.3. Smoothness

As always, we work in some category of smooth manifolds, possibly with extra structure.
Thus Z is a smooth manifold, and �Z W Z !M is a C1 map. We impose the following
additional hypothesis for the remainder of the section:

Hypothesis 5.3.1. The map �Z WZ!M restricts to a submersion overM n 0, on which
G acts freely.

Proposition 5.3.2. Suppose that � is generic .Definition 2.0.1/. Then � is a regular value
of �� , and the action of GV.�/ on ��1� .�/ is free. In particular, Z.�; �/ is smooth, and

dimZ.�; �/ D jE.�/j dimZ C .1 � jV.�/j/.dimG C dimM/:

Proof. We begin by studying the group action. By Hypothesis 5.3.1, the action of
C 1.�; G/ on .�

E.�/
Z /�1.a/ restricts to a free action of C 1.Supp.a/; G/. Thus for

xC 0.�;G/ to act freely on .�E.�/Z /�1.a/, it is sufficient that the composition

xC 0.�;G/
d�
�
��! C 1.�;G/! C 1.Supp.a/; G/ (5.2)

be injective. Here the second map is the natural projection. The composition is the differ-
ential d�Supp.a/. Thus, the kernel is trivial exactly when Supp.a/ is connected.

We use a similar argument to show that the map �� WZE.�/! xC0.�;M/ is a submer-
sion. We can factor the differential d�� as d.d�/ ı d.�E.�//. For any z 2 .�E.�/Z /�1.a/,
the image of the differential d�E.�/ contains the tangent space of ME.Supp.a// D

C1.Supp.a/;M/. Dually to (5.2), we have a surjective composition

C1.Supp.a/;M/! C1.�;M/! xC0.�;M/:

Thus d.d�/ is a surjection even when restricted to the tangent space ofME.Supp.a//. Thus
�� is a submersion, and ��1� .�/ is smooth.

Remark 5.3.3. If dim G C dim M D dim Z, the dimension formula simplifies to
dimZ.�; �/ D dimZ � dim H1.�/. In fact, below we will always have dimZ D 4.

Remark 5.3.4. Definition 5.1.1 makes sense with d� replaced by a general integer matrix
D WZn!Zk . The definition of generic � can be extended to this case, but in general such
Z.D; �/ will have orbifold singularities.

5.4. Stabilizers

We consider the action of H1.�; G/ on Z.�; �/. We are interested in the stabilizer of a
point z 2 Z.�; �/.

Lemma 5.4.1. Under Hypothesis 5.3.1, H1.Supp.a/; G/ acts freely on ��1res .a/ for
a 2 H1.�;A/� .



Deletion-contraction triangles for Hausel–Proudfoot varieties 25

Proof. By definition, ��1res .a/ is a xC 0.�; G/-quotient of a subspace of .M n 0/Supp.a/ �

ME.�/nSupp.a/. By the hypothesis, C 1.Supp.a/; G/ acts freely on this locus. Hence
H1.Supp.a/; G/ acts freely on the quotient.

5.5. An open cover

Definition 5.5.1. Let D � ��1Z .0/ be a closed subset. Then for any subgraph � 0 � � we
define

OU�0 WD .Z nD/
E.�0/

�ZE.�n�
0/
� ZE.�/:

We write U�0 for the image of OU�0 \ ��1Z .0/ in Z.�; �/. Note U�0 is an open subset.

Lemma 5.5.2. Let T .�/ be the set of spanning trees of � . For � generic, we have[
T2T .�/

UT D Z.�; �/:

Proof. Let x 2 Z.�; �/ and fix a lift Ox 2 ��1� .�/. Let a D �E.�/Z . Ox/. By genericity of �,
Supp.a/ contains a spanning tree T � � . Thus Ox 2 OUT and x 2 UT .

Remark 5.5.3. Lemma 5.5.2 gives another proof that Z.�; �/ is smooth for generic �,
though not that it is Hausdorff.

We will later be interested inD satisfying Z nD Š ŒG �M�. These have the follow-
ing additional properties:

Lemma 5.5.4. An isomorphism Z nD Š ŒG �M� determines an isomorphism

UT Š Z.�=T / D Z
E.�=T /: (5.3)

Remark 5.5.5. Note there is a canonical identification E.�=T / D E.� n T /, and these
sets are canonically identified with a basis of H1.�/.

Proof. We have

U�0 D ŒG �M�E.T / �ZE.�=T / �� xC
0.�;G/ D ŒGE.T / �ME.T /� ? ZE.�=T /:

Applying Corollary 4.4.6 withG0 D xC 0.�;G/D GE.T / andM 0 D xC0.�;M/DME.T /,
we get a natural isomorphism UT Š Z

E.�=T /.

The isomorphism (5.3) is easiest to describe on a slightly smaller open. We have\
T2T .�/

UT D .Z nD/
E.�/ �� xC

0.�;G/ Š H1.�;G/ � H1.�;M/:

Lemma 5.5.6. For any given spanning tree T � � , there is a natural isomorphism

H1.�;G/ � H1.�;M/ Š .G �M/E.�=T / (5.4)

induced by the contraction �! �=T D�E.�=T /. If .�; / is an element of the left-hand
side, with � D

P
e…T �ee, this isomorphism takes .�; / to .�e; he; i/e…T .
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Lemma 5.5.7. The isomorphism (5.3) fits into the commutative diagram

UT ZE.�=T /

H1.�;G/ � H1.�;M/ .G �M/E.�=T /

�

�

(5.5)

where the bottom arrow is (5.4).

5.6. Deletion, contraction, and convolution

In this section we will explain howZ.�;�/ behaves under contraction (Lemma 5.6.2) and
deletion (Lemma 5.6.4).

A key ingredient is a .G; M/-structure on the set Z.�=e; �=e/ associated to
the newly contracted edge e. Recall that by Proposition 5.1.4, Z.�=e; �=e/ is an
.H1.�=e;G/;H1.�=e;M/�=e/-space. Recall from diagrams (2.6) and (2.7) we have maps

˛e W G ! H1.�=e;G/; ˇe W H1.�=e;M/�=e !M:

Definition 5.6.1. The .G;M/-structure on Z.�=e; �=e/ defined by composition (Defini-
tion 4.1.8) with the maps ˛e; ˇe will be called the deletion-contraction .G;M/-structure.
We denote the map to M by �.e/ W Z.�=e; �=e/!M .

The deletion-contraction structure is related to the splitting

ZE.�/ D ZE.�=e/ �Ze: (5.6)

Indeed, let us write �e W � ! �=e for the contraction. Any vertex v 2 � determines
natural maps vŠ W G ! xC 0.�;G/ and vŠ W C0.�;G/! G. We have an isomorphism

��e � t .e/Š W
xC 0.�=e;G/ �G Š xC 0.�;G/: (5.7)

Using (5.6) and (5.7) we transport the xC 0.�; G/-structure on ZE.�/ to a
xC 0.�=e; G/ � G-structure on ZE.�=e/ � Ze . The resulting xC 0.�=e; G/-structure on
ZE.�=e/ andG-structure onZe are the standard ones. The resulting xC 0.�=e;G/-structure
onZe is trivial, and the resultingG-structure onZE.�=e/ is the deletion-contraction struc-
ture.

We have an isomorphism

.�e/� � t .e/
Š
W C0.�;M/ Š C0.�=e;M/ �M: (5.8)

This map carries � 7! .�=e; �t.e// where �t.e/ is the coefficient of � at t .e/.
Consider the composition

� W ZE.�=e/ �Ze Š ZE.�/
��
��! C0.�;M/ Š C0.�=e;M/ �M:

One checks that
�.w; z/ D .��=e.w/; �.e/.w//C .0; �.z//: (5.9)
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Lemma 5.6.2. We have a Cartesian diagram of spaces

Z.�; �/ .Z.�=e; �=e/ �Z/=G

H1.�;M/� H1.�=e;M/�=e �M

(5.10)

where the right-hand map descends from the product map Z.�=e; �=e/ � Z !

H1.�=e;M/�=e �M and the bottom map is given by pushforward along � ! �=e on
the first factor and taking the coefficient of e on the second factor. The convolution on the
upper right is taken with respect to the deletion-contraction .G;M/-structure.

The image of Z.�; �/ in .Z.�=e; �=e/ �Z/=G is naturally identified as

Z.�=e; �=e/ ?G;M;�t.e/ Z:

Proof. We claim that

Z.�; �/ WD ZE.�/ �� xC
0.�;G/

D .ZE.�=e/ �Z/ �.�=e;�t.e// .
xC 0.�=e;G/ �G/

D Z.�=e; �=e/ ?G;M;�t.e/ Z:

In passing from the second to the third line, we have used Lemma 4.4.7. More precisely,
to apply this lemma, we view ZE.�=e/ as a . xC 0.�=e; G/ � G; xC0.�=e;M/ �M/-space
using the product of its standard structure and its deletion-contraction structure. The
remaining hypothesis of the lemma is verified by (5.9), and we translate the conclusion of
the lemma through the definition Z.�=e; �=e/ WD ZE.�=e/ ��=e xC

0.�=e; G/. This gives
the top isomorphism of (5.10).

The map ZE.�/ ! C1.�; M/ descends to the left-hand vertical map, whereas
ZE.�=e/ � Z ! C1.�=e; M/ � M descends to the right-hand vertical map. These
maps are intertwined by the identifications ZE.�/ ! ZE.�=e/ � Z and C1.�; M/ !

C1.�=e;M/ �M , and this latter identification defines the bottom map.

Remark 5.6.3. While .Z.�=e; �=e/ �Z/=G may not be a free quotient, it is free along
the locus where we take the fiber product, so this will cause no difficulty.

Let 0 be the point with the trivial .G;M/-structure.

Lemma 5.6.4. We have the commutative diagram

Z.� n e; � n e/ .Z.�=e; �=e/ � 0/=G

H1.� n e;M/�ne H1.�=e;M/�=e �M

(5.11)

where the bottom row is given by (2.5) on the first factor, and the zero map on the second
factor. The image of Z.� n e; � n e/ in .Z.�=e; �=e/ � 0/=G is naturally identified as
Z.�=e; �=e/ ?G;M;�t.e/ 0.
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Proof. Observe the canonical identificationsE.� n e/DE.�=e/ and C0.� n e/DC0.�/
and xC 0.� n e/ D xC 0.�/. The top isomorphism now follows from Z.�=e; �=e/ D

ZE.�=e/ ��=e xC
0.�=e;G/ and

Z.� n e; � n e/ D ZE.�ne/ ��ne xC
0.� n e;G/

D .ZE.�=e/ � 0/ �.�=e;�t.e// .
xC 0.�=e;G/ �G/:

The last equality is obtained by applying Lemma 4.4.7 to ZE.�=e/ and 0. To do so, we
view ZE.�=e/ as a . xC 0.�=e; G/ � G; xC0.�=e;M/ �M/-space using the product of its
standard structure and its deletion-contraction structure.

The compatibility of the bottom map is a direct calculation.

Corollary 5.6.5. Suppose � n e is disconnected and � is generic. Then

Z.�=e; �=e/ ?�t.e/ 0 D ;:

The same holds when 0 is replaced by any .G;M/-space S with �.S/ D 1.

Proof. Apply Lemmas 5.1.5 and 2.0.7 to Z.� n e; � n e/.

We often abbreviate Z.�/ WD Z.�; �/ and likewise Z.�=e/ WD Z.�=e; �=e/ and
Z.� n e/ WD Z.� n e; � n e/.

Lemma 5.6.6. An inclusion of .G;M/-spaces 0! Z defines inclusions

Z.� n e; � n e/! Z.�; �/ (5.12)

for any edge e 2 � .

Proof. Consider the embedding

ZE.�ne/ � 0! ZE.�ne/ �Z D ZE.�/:

This map induces a map of xC 0.�;G/-reductions. The codomain reduces to Z.�; �/. The
domain reduces to

ZE.�ne/ � 0 �� xC
0.�;G/ D ZE.�ne/ ��ne xC

0.� n e;G/ D Z.� n e; � n e/:

6. B.�/

6.1. Construction

Definition 6.1.1. We define the space

B WD C2
n ¹1C xy D 0º

and the maps

�C�

B W B! C�; .x; y/ 7! 1C xy;

�R
B W B! R; .x; y/ 7! jxj2 � jyj2:
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�R

0

�C�

Fig. 3. A schematic picture of B and its various moment maps and their targets. Two fibers of �C�

are shown, and the intersection of each fiber with .�R/�1.0/ is indicated in black.

The following properties are easily checked:

Lemma 6.1.2. (1) The map �C�

B is invariant under the C�-action on B given by
� � .x; y/ D .�x; ��1y/.

(2) The map �R
B is invariant under the U1 � C� action.

(3) The fibers of�R
B ��

C�

B over the complement of 0� 1 are free U1-orbits, thus defining
a principal U1-bundle PB over R �C� n 0 � 1.

(4) Let ! D Im.dx ^ dy/. The action of U1 � C� preserves !.

Proposition 6.1.3. The space B D C2 n ¹xy C 1 D 0º has the following properties:

(1) B is a smooth algebraic .C�;C�/-variety, with action .x; y/ 7! .�x; ��1y/ and map
�C�

B .x; y/ D 1C xy.

(2) It has a single C�-fixed point at .0; 0/. Any other point has trivial stabilizer.

(3) The inclusion 0.C�;C�/ ! .0; 0/ 2 B is a morphism of .C�;C�/ varieties.

(4) The attracting cell at this fixed point is SB WD ¹x D 0º Š C.

(5) SB Š A1 with its natural C�-action.

(6) The map
B n SB ! ŒC� �C��; .x; y/ 7! .x; xy C 1/;

is an isomorphism of .C�;C�/-spaces.

(7) As a .C�;C�/-space, B satisfies Hypothesis 5.3.1.

(8) �C�

B � �
R
B endows B with the structure of a .U1;C� �R/-manifold.

Definition 6.1.4. Given a graph � and generic �, we abbreviate

B.�/ WD B.C�;C�/.�; �/:
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We will suppress the dependence on � for most of this paper. In coordinates, the space
B.�/ is described as follows. Recall that BE.�/ has coordinates xe; ye for e 2 E.�/. The
subset ��1� .�/ � BE.�/ is defined byY

edges exiting v

.1C xeye/
Y

edges entering v

.1C xeye/
�1
D �v

for each v 2 V.�/. Then
B.�/ D ��1� .�/=

xC 0.�;C�/

where the factor of C� attached to v acts by �xe; �
�1ye on incoming edges, and

��1xe; �ye on outgoing edges. Hence B.�; �/ is a smooth complex affine variety.

6.2. Independence from orientation

As always, we work with some fixed orientation of � . However, the dependence on the
chosen orientation is quite mild, as shown by the following.

Proposition 6.2.1. If �;� 0 differ only by the choice of orientation, then there is a canon-
ical isomorphism

B.�/ ��! B.� 0/:

Proof. By Proposition 5.2.1, it is enough to find an automorphism B! B intertwining
the C�-action and the C�-moment map with their inverses. This is given by .x; y/ 7!
.�y; .1C xy/�1x/.

Remark 6.2.2. This is an especially simple case of the proof of independence from
orientation for multiplicative quiver varieties in [12]. Under the translation to microlo-
cal sheaves [4], the formula .x; y/ 7! .�y; .1C xy/�1x/ describes the behavior under
Fourier transform of the ‘canonical’ and ‘variation’ maps.

6.3. Deletion-contraction sequence

From Proposition 6.1.3, there are natural inclusions and projections of .C�;C�/-spaces
as follows:

0
�
 � SB

I
�! B

J
 � ŒC� �C��: (6.1)

As I;J give a decomposition of B into closed and open subsets, we have the following
exact triangle in the derived category Db.B/ of constructible sheaves on B:

IŠI
ŠQ! Q! J�J

�Q
Œ1�
�! : (6.2)

(In this paper, standard operations on sheaves, such as IŠ; I Š; J� and J �, are always under-
stood to be derived.)

Because I is the complex codimension 1 closed inclusion of one smooth variety in
another,

IŠI
ŠQ D QSB

Œ�2�.�1/:
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Proposition 6.3.1. H�.B;Q/ Š Q˚QŒ�1�.�1/˚QŒ�2�.�2/.

Proof. Taking sections of the triangle (6.2) returns the excision sequence in cohomology.
Its terms are as follows:

H�.BI IŠI ŠQ/ D H�.B;QSB
Œ�2�.�1// D H�.SB;Q/Œ�2�.�1/ D QŒ�2�.�1/;

H�.BIJ�J �Q/ D H�.C� �C�;Q/ D .Q˚QŒ�1�.�1//˝2

D Q˚Q˚2Œ�1�.�1/˚QŒ�2�.�2/:

The only potentially nonvanishing map in the long exact sequence is H1.BI J�J �Q/!
H2.BI IŠI ŠQ/. In fact, this map must be an isomorphism, since B has nonzero Betti
numbers b0 D b1 D b2 D 1.

Hypothesis 6.3.2. Y is a smooth irreducible .C�;C�/-variety, �Y W Y ! C� is noncon-
stant, and � 2 C� is such that C� acts freely on ��1

Y �B.�/ � Y �B.

Taking ?C� WD ?C�;C�;� with equation (6.1) induces morphisms

Y ?C� 0
�Y
 �� Y ?C� SB

IY
��! Y ?C� B

JY
 �� Y ?C� ŒC

�
�C��:

Lemma 6.3.3. IY .resp. JY / is the inclusion of a smooth divisor .resp. its complement/.

Proof. By Lemma 4.4.3, JY is the complement of IY . Let us see that IY is a smooth
divisor. Consider the divisor Y � SB�Y �B. Since the function�Y is nonconstant on Y ,
the function �Y �B is nonconstant on Y � SB and Y �B. Thus ��1

Y �B.�/ \ .Y � SB/ �

��1
Y �B.�/ is a divisor. Passing to the quotient by the (free) G-action, Y ?C� SB is a divisor

in Y ?C� B.

We thus obtain, as in (6.2), the triangle

QY ?SB
Œ�2�.�1/! Q! .JY /�J

�
YQ

Œ1�
�! : (6.3)

Lemma 6.3.4. The map �Y has fiber A1 and a section induced from the inclusion
0! SB.

Proof. We have �B.SB/ D 1. Hence Y ?C� SB D .�
�1
Y .�/ � SB/=C�. By assumption,

C� acts freely on ��1Y .�/. Hence the quotient is a bundle over ��1Y .�/=C
� with fiber

isomorphic to SB Š A1.

In particular, either pushforward along �Y or pullback along the section induces

H�.Y ?C� SB;Q/ Š H�.Y ?C� 0;Q/ Š H�.Y �� G;Q/: (6.4)

We have Y ?C� ŒC� �C��DY by Corollary 4.4.6 and Y ?C� 0DY �� C� by Lemma
4.3.7.

Taking cohomology of the triangle (6.3) and combining with the above isomorphisms,
we obtain the diagram
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H��2.Y �� C�;Q/.�1/ H�.Y;Q/

� � � H��2.Y ?C� SB;Q/.�1/ H�.Y ?C� B;Q/ H�.Y ?C� ŒC
� �C��;Q/ � � �

.0!S/� D

We call the dashed long exact sequence the B-deletion-contraction sequence of Y .
The terminology is motivated by the following special case:

Theorem 6.3.5. Let � be a graph, e a nonloop edge, and � chosen such that B.�/ is
smooth. Then there is a long exact sequence

! H��2.B.� n e/;Q/.�1/
aB

��! H�.B.�/;Q/
bB

��! H�.B.�=e/;Q/
cBŒC1�
�����! : (6.5)

Moreover, the maps strictly preserve the weight filtration on each space .taking into
account the Tate twist on the left-hand term/.

Remark 6.3.6. When we wish to highlight which edge of � is in play, we may write aB
e

and bB
e .

Proof of Theorem 6.3.5. Apply the B-deletion-contraction sequence to Y DB.�=e/ and
� D �t.e/ as specified in Section 5.6. Lemmas 5.6.2 and 5.6.4 give the desired identifica-
tions of the convolutions in the sequence with the stated spaces. The desired statement
regarding weight filtrations follows from the fact that the long exact sequence of a pair
respects mixed Hodge structures (see [20, Proposition 8.3.9], or more explicitly [71,
Propositions 5.4.6, 5.5.4]).

When e is a bridge, the space B.� n e/ is empty by Lemma 5.1.5, and the map bB

is an isomorphism. The following lemma shows that in this case we moreover have an
isomorphism of spaces.

Lemma 6.3.7. Let e be a bridge of � . Then we have a canonical isomorphism B.�/ D

B.�=e/.

Proof. By Lemma 5.6.2, we can write B.�/ D B.�=e/ ?C� B. On the other hand, B is
the disjoint union of SB and ŒC� �C�� as explained above.

Thus B.�=e/ ?C� B is the disjoint union of B.�=e/ ?C� SB and B.�=e/ ?C�

ŒC� � C�� by Lemma 4.4.3. The former is the empty set by Corollary 5.6.5. The latter
equals B.�=e/ by Corollary 4.4.6.

6.4. Class in the Grothendieck ring of varieties

The results above also allow us to calculate the class of B.�/ in the Grothendieck group
of varieties, and prove Theorem 1.0.3. We compute

jBj D jB n SBj C jSBj D jC
�
�C�j C jCj D .L � 1/2 C L D L2 � LC 1:



Deletion-contraction triangles for Hausel–Proudfoot varieties 33

Now Lemma 6.3.7 asserts that B.�/ D B.�=e/ if e is a bridge. Moreover, we know
that B.�/ D B.� n e/ �B.�/ if e is a loop, by Lemma 5.1.3.

The key remaining point is:

Corollary 6.4.1. In the Grothendieck ring of varieties, jY ?C� Bj D jY j CL � jY �� C�j.

Proof. By Lemma 6.3.4, Y ? SB is an A1-bundle with section over Y �� C�. In other
words, it is a line bundle, and thus Zariski locally trivial over Y �� C�. Its class in the
Grothendieck ring therefore factors as L � jY �� C�j, and the result follows.

Proof of Theorem 1.0.3. Indeed, by taking Y DB.�=e/ in Corollary 6.4.1, and substitut-
ing via Lemmas 5.6.2 and 5.6.4, we find jB.�/j D jB.�=e/j C LjB.� n e/j. This gives
a recursive formula for jB.�/j, with initial term jB.�/j D 1. The universal solution to
such recursions is a sum over spanning trees � 0 2 Span.�/ described, for instance, in
[6, Chapter 10, Theorem 2]. In our case it gives the desired formula:

jB.�/j D
X

�02Span.�/

.L � 1/2b1.�
0/Lb1.�/�b1.�

0/:

We will give a second proof of Theorem 1.0.3 in Remark 6.5.9 below, by directly
exhibiting a stratification by spaces which account for the terms in the above sum.

Corollary 6.4.2. The cohomology of B.�/ is Hodge–Tate. In other words, it is generated
by classes in W2pH�.B.�/;Q/ \ F pH�.B.�/;C/ for various p.

Proof. The deletion-contraction sequence (6.5) strictly preserves the weight filtrations,
and therefore defines a long exact sequence of associated graded spaces. We can therefore
reduce to the case where � consists of a single vertex with n loops, by the same recursion
as in the proof of Theorem 1.0.3. In this case B.�/ Š Bn. Since B is the complement
of a conic in C2, its cohomology is Hodge–Tate. The same is true of its powers, which
concludes the argument.

6.5. Charts and strata

We apply the construction of Definition 5.5.1 with .D; Z/ D .SB;B/ to obtain open
sets U�0 for � 0 � � . Note the identification B n SB Š ŒC� �C��. We write

De WD B.�/ n U�ne; e 2 E.�/:

Recall we obtain B.�/ from symplectic reduction of BE.�/ � .C2/E.�/. Explicitly, De
is the symplectic reduction of the locus ¹xe D 0º �B.�/. (The coordinate xe transforms
under a nontrivial weight of the torus we quotiented by to form B.�/, but descends to a
section of a line bundle, whose zero locus is still meaningful.) From the definition we see

U�0 D Z.�; �/ n
[

e2E.�0/

De:
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Lemma 6.5.1. The opens U�0 indexed by spanning trees � 0 � � define an open cover
of Z.�; �/. These open sets carry isomorphisms U�0 Š BE.�=�0/.

Proof. The opens U�0 are exactly those obtained from Lemma 5.5.2, starting from the
closed set SB � B. Lemma 5.5.4 and the identification B n SB Š ŒC� �C�� determine
isomorphisms U�0 Š BE.�=�0/.

Lemma 6.5.2. The divisor D.�/ WD
S
De � B.�/ has simple normal crossings.

Proof. The intersection of D.�/ with the opens U�0 of Lemma 6.5.1 is identified with
the normal crossings divisor

Q
e2�n�0 De under the isomorphism U�0 Š BE.�=�0/.

For J � E.�/, we write SJ WD
T
e2J De . By Lemma 6.5.2 that SJ is a real codimen-

sion 2jJ j submanifold. We have the following relation:

Lemma 6.5.3. There is a map �J W SJ ! B.� n J; � n J / expressing SJ as a rank jJ j
vector bundle over B.� n J; � n J / and � n J is defined as in Remark 2.0.8.

Proof. Consider the basic space B. We have a diagram

B ¹x D 0º

n D ¹x D y D 0º

�

The map � makes ¹x D 0º a C�-equivariant rank 1 vector bundle over n, trivialized by
the function y. Note also that the moment map 1C xy has constant value 1 on this locus.

SJ is by construction a quotient of .
Q
e2J ¹xe D 0º �

Q
e…J B/ \ ��1.�/ by

xC 0.�;C�/. The maps ¹xe D 0º ! n for e 2 J combine to give a map�Y
e2J

¹xe D 0º �
Y
e…J

B
�
\ ��1.�/!

�Y
e2J

n �
Y
e…J

B
�
\ ��1.�/:

This is a C 1.�;C�/-equivariant vector bundle (if we ignore the equivariant struc-
ture, it is a trivial vector bundle) over the target with fiber CJ . Taking the quotient by
xC 0.�;C�/ defines an H1.� n J;C�/-equivariant vector bundle � W SJ ! B.� n J /.

Note that as SJ is a real codimension 2jJ j submanifold, there is a Gysin map

H��2jJ j.SJ ;Q/! H�.B.�/;Q/: (6.6)

The following lemma establishes the required commutativity we need to later define
a deletion filtration on the cohomology of B.�/.

Lemma 6.5.4. For � 0 � � , the map

H��2j�n�
0j.B.� 0/;Q/ Š H��2j�n�

0j.D�n�0 ;Q/! H�.B.�/;Q/

is equal to the composition .in any order/ of aB
e for e 2 � n � 0.
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Proof. This holds by definition when j� n � 0j D 1. In general, it follows from the fact
that for any ordering ¹e1; : : : ; enº of � n � 0, each inclusion in the corresponding flag
of subspaces D�n�0 � � � � � Den�1;en � Den � D; D B.�/ is the inclusion of a real
codimension 2 submanifold.

We now turn to the construction of a stratification. The space B has a decomposi-
tion B D .C� �C�/ tA1 (see e.g. Proposition 6.1.3 (6)). Here we construct similarly a
stratification of B.�/ by vector bundles over algebraic tori.

For J � � , we recall the already defined SJ and introduce two related spaces:

SJ WD
\
e2J

De; KJ WD
[
e…J

SJ[e; QJ WD SJ nKJ : (6.7)

Example 6.5.5. Let � D� and let e be the only edge. Then S; D B.�/;K; D SB D

¹x D 0º andQ; DB.�/ n SB D ¹x ¤ 0º. On the other hand, Se D SB DQe;Ke D ;.

Lemma 6.5.6. SJ D ; if � n J is disconnected.

Proof. Combine Lemma 6.5.3, Lemma 5.1.5 and Remark 2.0.8.

Proposition 6.5.7. Suppose � n J is connected. The restriction of �J to QJ defines an
H1.�;C�/-equivariant vector bundle over H1.� n J;C�/ � H1.� n J;C�/�nJ .

Proof. From Lemma 5.1.7, we have B.�; �/ nD.�/ Š ŒC� �C��.�; �/ Š H1.�;C�/ �
H1.�;C�/� , where the middle term is the graph space associated to ŒC� � C��, in the
notation of Definition 5.1.1. The stated result now follows from Lemma 6.5.3, after sub-
stituting � n J for � in the previous line.

Proposition 6.5.8. B.�; �/ D
`
QJ .

Proof. By construction, QJ is the locus of points in Z.�/ contained in De , e 2 J , and
not in De , e … J .

Remark 6.5.9. Combining Lemma 6.5.6, Proposition 6.5.7, and Proposition 6.5.8, we
get another (and more explicit) proof of (1.3) in Theorem 1.0.3.

Remark 6.5.10. Going back at least to the work of Deodhar [23], stratifications by
.C�/a � Cb have been found frequently in representation-theoretic contexts. At least
since [75, Proposition 6.31], we have known that such stratifications often admit mod-
ular interpretations: often the spaces are moduli of objects in the Fukaya category of a
symplectic 4-manifold; and the strata each parameterize objects coming from a given
immersed Lagrangian.

The present case is presumably another example. From [4] we learn that B.�/ is
a moduli space of microlocal sheaves on a singular real surface L D

S
Li , where the

Li are the smooth irreducible components. In this context it is most natural to view L

as the Lagrangian skeleton of the symplectic plumbing W of the T �Li . By e.g. [31,
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Corollary 6.3] we may trade microlocal sheaves on L for the wrapped Fukaya cate-
gory of W . Now a spanning subgraph � 0 � � determines an immersed Lagrangian:
smooth the singularities of the skeleton corresponding to the edges � 0, and leave the
nodes in � n � 0. A rank 1 local system on this Lagrangian, together with some extra data
at the nodes, determines an object in the Fukaya category. The space of such choices is
.L � 1/2b1.�

0/Lj�j�j�
0j. It is also possible to give a similar description directly in terms

of the microlocal picture of [4].

6.6. C.�/ via differential forms on B.�/

The purpose of this subsection is to show that the complex C.�/ computes the coho-
mology of B.�/. This will be done using differential forms and the residue sequence
(see Section A.2) for a certain stratification of B.�/. As the space B.�/ is affine, as are
all strata we encounter, we will everywhere take termwise global sections in complexes
of sheaves of differential forms, and discuss the resulting complexes of sections rather
than complexes of sheaves. We preserve the notations of Section 6.5, especially for the
spaces (6.7).

As QJ has the homotopy type of a torus (Proposition 6.5.7), there is a quasi-iso-
morphism

V� H1.QJ ;C/ D H�.QJ ;C/
�
�! .��QJ ; ddR/; here the LHS has the zero

differential. Let us recall how to exhibit such explicitly. Let V be a complex vector
space with lattice VZ and dual V �. Then any w 2 V � defines a 1-form dw 2 �1.V /,
which descends to a closed one-form (which we denote by the same symbol dw) on the
torus V=VZ. This defines a linear map H1.V=VZ;C/Š V �!�1.V=VZ/; taking exterior
powers, we obtain the quasi-isomorphism

V�
V �
�
�! .��.V=VZ/; ddR/.

Definition 6.6.1. Consider V DH1.� n J;C/˚H1.� n J;C/; it is self-dual, with lattice
VZ WD H1.� n J;Z/˚H1.� n J;Z/ and with V=VZ D H1.� n J;C�/�H1.� n J;C�/.
Thus we obtain a map

H.� n J;C/ WD H1.� n J;C/˚H1.� n J;C/! �1.H1.� n J;C�/ �H1.� n J;C�//:
(6.8)

Composing with the pullback along the vector bundle �J W QJ ! H1.� n J;C�/ �
H1.� n J;C�/, we obtain a map

cJ W H.� n J;C/! �1QJ :

We use the same notation for the induced quasi-isomorphism cJ W
V�H.� n J;C/ ��!

.�1QJ ; ddR/.

Example 6.6.2. We continue Example 6.5.5. We have H.�;C/ D C ˚Ce. Then

c./ D
dx

x
and c.e/ D

d.xy C 1/

xy C 1
:

Remark 6.6.3. Using the stratification of B.�/ by the QJ (Proposition 6.5.8) and the
above identification of the cohomologies of the QJ , it follows formally from excision
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sequences that H�.B.�/;C/ can be computed by a complex with underlying graded
vector space

L
J

V�H.� n J;C/, whose differential respects the filtration by jJ j. Identi-
fying the differential with that of C.�/, however, necessarily involves understanding how
the closure of one stratum meets others. It is this which we accomplish using log forms
and residues, below.

We recall the notation DJ D
S
e2J De from Appendix A.2.

Lemma 6.6.4. KJ D DJ c \ SJ .

Proof. A point lies in SJ if it is contained in De for all e 2 J . A point lies in KJ if it is
contained in De for all e 2 J and at least one e … J .

By Lemma 6.5.2, KJ is a simple normal crossings divisor in SJ . The key point that
allows us to work with the log de Rham complex is:

Proposition 6.6.5. The image of cJ W H.� n J;C/! �1QJ lies in �1SJ hKJ i.

Proof. The proposition asserts that the forms in the image of cJ , a priori defined on QJ ,
in fact extend to meromorphic forms on SJ with logarithmic poles along divisors of the
form QJ[e .

We check this using certain open charts which contain both QJ and QJ[e . For
each spanning tree � 0 � � , Lemma 6.5.1 gives an open U�0 and an isomorphism U�0 Š

BE.�n�0/: The intersection
T
�0 U�0 is precisely B.�/ nD� , and the composition

H1.�;C�/ � H1.�;C�/ Š B.�/ nD�
Š .B n SB/

E.�n�0/
Š .C� �C�/E.�n�

0/

is described by Lemma 5.5.7. Now suppose � 0 � � n J . There is a corresponding con-
traction � n J ! .� n J /=� 0 D�E.�n.�

0[J//, inducing

H1.� n J;C�/ � H1.� n J;C�/ Š .C� �C�/E.�n.�
0[J//: (6.9)

We have an inclusion of opens

QJ � SJ n
[
e2�0

SJ[e: (6.10)

The right-hand side equals

U�0 \ SJ Š B�n.�0[J/
� SJB: (6.11)

Under the isomorphism (6.11), a dense open subset of the divisor SJ[e � SJ is identified
with ¹xe D 0º � B�n.�0[J/ � SJB. Moreover, the composition of (6.10) and (6.11) fits
into a commutative diagram

QJ .B n SB/
�n.�0[J/ � SJB B�n.�0[J/ � SJB

H1.� n J;C�/ � H1.� n J;C�/ .C� �C�/�n.�
0[J/ B�n.�0[J/

�

�J

�

(6.12)
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where the bottom left map is (6.9) and the middle vertical and bottom right maps are
induced by B n SB Š C� �C�.

Pulling back by the bottom left isomorphism of diagram (6.12), the map (6.8) is iden-
tified with the map

H.� n J;C/! .�1.C� �C�//�n.�
0[J/

given by

.; �/ 7!
1

2�i

�
he; i

dxe

xe
C �e

d.xeye C 1/

xeye C 1

�
: (6.13)

Here e ranges over � n .� 0 [ J / and �e is defined by � D
P
e2�n.�0[J/ �ee, as in Lemma

5.5.6. Via the lower right map in diagram (6.12), we can view the map (6.13) as a mero-
morphic form on B�n.�0[J/.

By (6.13), the image of cJ has logarithmic singularities along SJ[e D ¹xe D 0º for
any e 2 � n .� 0 [ J /. Since we can pick � 0 to avoid any e … J for which the divisor SJ[e
is nonempty, the image has logarithmic singularities along KJ � SJ .

Corollary 6.6.6. The induced map cJ W
V�H.� n J;C/! .��SJ hKJ i; ddR/ is a quasi-

isomorphism.

Proof. This map, composed with the quasi-isomorphism from the log de Rham complex
to the ordinary de Rham complex on QJ , is a quasi-isomorphism.

Proposition 6.6.7. The following diagram commutes:V�H.� n J;C/ ��.SJ hKJ i/

V��1 H.� n J [ e;C/ ���1.SJ[ehKJ[ei/

de

cJ

resJ!J[e

cJ[e

(6.14)

Proof. We will prove the case J D ;; the other cases are identical. As in the proof of
Lemma 3.0.2, we can write H.�;C/D F ˚K where KD H1.� n e;C/˚H1.�;C/ and
F is any complementary rank 1 subspace. We also fix a spanning tree � 0 � � n .J [ e/.

Let us first assume � D 1. By (6.13), we see that resJ!J[e ıcJ factors through the
projection to F , and is given by the pairing he; i. This proves the result when � D 1.

For � > 1, we can write
V�H.�;C/ D F ^

V��1 K˚
V�K. Then resJ!J[e ıcJ

kills the second summand, and acts on the first by resJ!J[e ıc.� ^ �/ D he; �ic.�/SJ[e
where c.�/SJ[e is the restriction of c.�/ to SJ[e . To compute this restriction, we use
(6.13), which immediately implies cJ .�/SJ[e D cJ[e.�/.

Comparing with the formula for de yields the result.

We now use the residue exact triangles from Appendix A.2.

Theorem 6.6.8. Define c by taking the direct sum of the maps cJ for all J . Then c induces
an inclusion of complexes C�.�;C/! D��

B.�/
.see Definition A.2.1/, which is in fact

a quasi-isomorphism. In particular, this induces a canonical isomorphism H�.C�.�;C//
�
�! H�.B.�/;C/.
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Proof. First, let us observe it is an inclusion of bigraded (by degree of wedge and size
of J ) vector spaces.

The de Rham differential vanishes on the image of c, since by construction it is com-
posed of wedge products of closed forms. Proposition 6.6.7 shows that dres restricts to dC.

The fact that the map is a quasi-isomorphism can be seen as follows. Filter both com-
plexes by the size of J , and consider the associated map of spectral sequences. It induces
an isomorphism in cohomology on the first page by Corollary 6.6.6, and thus on all sub-
sequent pages.

For the assertion regarding cohomology, note that since B.�/ is affine, Proposition
A.2.5 yields a quasi-isomorphism ��

B.�/
! D��

B.�/
. This combines with the quasi-

isomorphism c W C�.�;C/! D��
B.�/

to give the stated result.

Remark 6.6.9. In fact, the above argument shows that C�.�;C/! D��
B.�/

is an iso-
morphism in the filtered derived category, where both sides are filtered by the size of J .

Definition 6.6.10. The Betti deletion filtration is the increasing filtration obtained from
Definition 1.0.6, where the covariant functorA is defined on objects by � 7!H�.B.�/;Q/
and on morphisms by taking the inclusion � 0!� to the composition of deletion maps aB

e

(in any order) for e 2 � n � 0. (Independence from ordering follows from Lemma 6.5.4.)

Proposition 6.6.11. The map c identifies the C-deletion-contraction sequence with the
Betti deletion-contraction sequence, and the C-deletion filtration with the Betti deletion
filtration.

Proof. The quasi-isomorphism c of Theorem 6.6.8, and its analogues for � n e and �=e,
define a map of the short exact sequence from (3.2) to the exact sequence

0! Ke���2De
!

D��X !
D�XhDei ! 0

of Proposition A.2.3. (The commutativity of the c with the morphisms of sequences
holds because both exact sequences are the exact sequences associated to a cone, and
the cone is over morphisms which we have already seen to be compatible in Proposition
6.6.7.) Applying the comparison from Corollary A.2.6 recovers the deletion-contraction
sequence.

Proposition 6.6.12. The Betti deletion-contraction sequence is strictly compatible with
the Betti deletion filtration.

Proof. Follows from Proposition 6.6.11 and the corresponding fact for the C-deletion-
contraction sequence (Corollary 3.0.10).

Remark 6.6.13. The dependence of the remainder of this article on the present subsec-
tion factors through the statement of Proposition 6.6.12, which does not involve C.�/.
One could imagine this statement has a proof which does not require the comparison
with C.�/, but we do not know one.
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6.7. Deletion versus weight filtrations

Theorem 6.7.1. The weight filtration is given by doubling the Betti deletion filtration:

W2kH�.B.�/;Q/ D W2kC1H�.B.�/;Q/ D DkH�.B.�/;Q/:

Proof. First let us check the result when every edge of � is a bridge or a loop. By
Definition 1.0.6, in this case the first nonvanishing step of the deletion filtration is
DiHi .B.�/;Q/ D Hi .B.�/;Q/. We compute the weights. Recall from Lemma 6.3.7
that contracting bridges does not change B.�/; correspondingly we may as well assume
� is a vertex with n loops. For this space

H�.B.�/;Q/ D H�.B.�/n;Q/ D H�.B;Q/˝n:

It follows from Proposition 6.3.1 that the degree i cohomology of the RHS has weight 2i ,
as desired.

Next, let us show that for any � , we have

DkH�.B.�/;Q/ � W2kH�.B.�/;Q/: (6.15)

We proceed by induction on the number N of edges that are neither bridges nor loops.
We have already treated the case N D 0. Suppose N > 0. Note that DkH�.B.�/;Q/
is spanned by the images under aB

e for various e 2 E.�/ of Dk�1H��2.B.� n e/;Q/.
Consider the sequence

! Hi�2.B.� n e/;Q/˝Q.�1/
aB
e
��! Hi .B.�/;Q/

bB
e
��! Hi .B.�=e/;Q/

cB
e
��! :

By induction, we have Dk�1Hi�2.B.� n e/;Q/�W2k�2Hi�2.B.� n e/;Q/. Taking into
account the Tate twist, and noting that aB

e preserves the weight filtration, it follows that the
image of Dk�1Hi�2.B.� n e/;Q/ lies in W2kHi .B.�/;Q/, as desired. This completes
the proof of (6.15).

Finally, we are interested in upgrading the inclusion of (6.15) to an equality. By (6.15),
the identity on H��2.B.� n e/;Q/ induces a map of associated graded spaces; it will
suffice to show that this map is an isomorphism. Again we proceed by induction on N ,
having already established the case N D 0.

Pick an edge e 2 � which is neither a bridge nor a loop. By Theorem 6.3.5, the
deletion-contraction sequence for e is strictly compatible with the weight filtration. We
write grW .DCSe/ for the sequence obtained from the deletion-contraction sequence by
taking the associated graded spaces for the weight filtration. Strict compatibility implies
that grW .DCSe/ is exact (see Lemma A.3.2). Similarly we write gr2D.DCSe/ for the
sequence obtained from the deletion-contraction sequence by doubling indices and taking
the associated graded spaces for the deletion filtration.

Now, by strict compatibility of the deletion-contraction sequence with the Betti dele-
tion filtration (Proposition 6.6.12), we may conclude the sequence gr2D.DCSe/ is also
exact.
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Consider the map � W gr2D.DCSe/! grW .DCSe/ arising from the inclusion (6.15).
By induction, � is an isomorphism for the terms associated to � n e and �=e. Thus by the
five lemma, � is an isomorphism for the � terms as well. This completes the proof.

7. D

7.1. Complex analytic structure

The space D will be a neighborhood of the nodal rational curve with dual graph� inside
a family of genus 1 curves. We consider the universal cover of the universal deformation
of P1=¹0 D1º, as described in e.g. [21, Section VII], [63, p. 135].

Let D1 � C be the interior of the unit disk, and D�1 the punctured disk. Let q be the
coordinate on D1. One can form over D�1 the family of genus 1 curves with fiber C�=qZ;
it is by definition a quotient .D�1 �C�/=Z.

The monodromy of this family is such that it is natural to fill the special fiber by
the rational curve with dual graph�, and one wants to extend the quotient description
accordingly. The picture is that one takes D1 � P1, iteratively blows up the points at the
intersection of the fiber over zero and the strict transforms of the sections D1 � 0 and
D1 �1, and then finally deletes these sections. The result has central fiber an infinite
chain of P1.

It is now possible to extend the Z-action, as can be verified most easily in the following
coordinate description. We consider the slightly larger space C � P1. It is a toric variety
under the natural action of C� � C�, and the iterated blowups (at torus-fixed points)
inherit this toric structure. Each blowup admits a compatible set of toric charts C2

n Š C2,
with coordinates xn; yn, glued by identifying

C2
n n ¹xn D 0º $ C2

nC1 n ¹ynC1 D 0º

by the relations
xnyn D xnC1ynC1; xn D y

�1
nC1:

If we glue all such charts C2
n for n 2 Z, we obtain a complex manifold W.

Lemma 7.1.1. W carries the following structures:

(1) A holomorphic symplectic form � D dxn ^ dyn.

(2) A holomorphic function q WW ! C given by q.xn; yn/ D xnyn.

(3) A C�-action .xn; yn/ 7! .�xn; �
�1yn/, preserving � and the fibers of q.

Proof. One checks that the formulas given descend along the above specified gluing.

Proposition 7.1.2. The Z-action on W defined by k C .xn; yn/ D .xnCk ; ynCk/ is free
and discontinuous over q�1.D/.
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Proof. We check the freeness and discontinuity separately for z 2 Qq�1.D�1 / Š D� �C�,
and z 2 Qq�1.0/. In the former case, n 2 Z acts by multiplication by qn on the C�-factor,
which is free and discontinuous if jqj ¤ 1. In the latter case, n 2 Z acts by translating the
infinite chain Qq�1.0/ by n steps.

Definition 7.1.3. We write zDD q�1.D1/ and DD q�1.D1/=Z. We write n 2D for the
common image of the points .xn; yn/ D .0; 0/.

The structures from Lemma 7.1.1 restrict to zD and descend to D; we keep the same
notation for the resulting structures. Note the C�-action on D factors through the quotient
C�=qZ away from q�1.0/.

Proposition 7.1.4. We have the following:

(1) The map q WD! D1 is proper and holomorphic, with unique critical point n.

(2) The fiber q�1.0/ is a nodal rational curve, with node n.

(3) q admits a section with image disjoint from n and given in coordinates by x2n D
y2nC1 D 1.

(4) The U1 � C� action on D is free away from its unique fixed point n.

(5) There exist coordinates around n in which the U1-action is � � .x; y/ D .�x; ��1y/.

Proof. These can be checked in the coordinates given in Lemma 7.1.1.

Our construction of D defines a manifold with a U1-action, a U1-invariant integrable
complex structure ID, and a U1-stable .ID-holomorphic) elliptic fibration to the open
disk D1 with special fiber a nodal elliptic curve.

The U1-action can be recovered from the holomorphic map D! D1:

Lemma 7.1.5. Let X be a smooth complex analytic surface and q W X ! D1 an elliptic
fibration over a disk, with a single singular fiber at the origin of Kodaira type I1 .reduced
irreducible rational nodal elliptic curve/.

Then there is a canonical action of U1 on X . The action is free away from the sin-
gularity of the central fiber, and preserves the fibers of q. The quotient X=U1 ! D1 is
topologically a circle bundle.

Proof. The smooth locus of the fibers is identified with Pic1.X=B/, hence carries a
Pic0.X=B/-action. The universal cover QX is topologically a C�-bundle over the punc-
tured disk, with an infinite chain of rational curves over the origin; the Pic0.X=B/-action
lifts to the action of a C� acting fiberwise. We restrict this to U1 � C�. (The restriction
is canonical, as U1 is characterized as the maximal compact in C�.) The final assertion
regarding X=U1 ! D1 is a local calculation at the nodal curve.
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7.2. Hyperkähler structure

In this section we recall how the Gibbons–Hawking ansatz can be used to construct hyper-
kähler metrics on such elliptic fibrations [2, 26, 34–36, 69]. We learned these results from
two letters of Michael Thaddeus to Hausel and Proudfoot (circa 2008).

Fix the following data:

(1) A discrete subset S � R3.

(2) A positive harmonic function V W R3 n S ! R.

(3) A smooth U1-bundle � W X0 ! R3 n S .

(4) A connection one-form � 2 �1.X0/ with curvature d� D 2�i��.?dV /, where ?
denotes the Hodge star operator with respect to the standard metric on R3.

The connection one-form is uniquely determined by V up to adding a closed U1-
invariant form, which, as R3 n S is simply connected, must take the form � 0 D � C ��df .

To this data, Gibbons and Hawking [43] associate a metric g on X0 defined by

g WD V �1� � � C V��ds2 (7.1)

where ds2 is the Euclidean metric on R3.

Theorem 7.2.1 ([43]). The metric g of (7.1) is hyperkähler.

More precisely, in [43] the metric was shown to be Ricci flat, which in four dimensions
is equivalent to being hyperkähler.

The two-sphere of compatible complex structures and Kähler forms can be described
explicitly [2,36]. Choose an orthonormal frame e1; e2; e3 of R3, and write .u1; u2; u3/ for
the associated coordinate system. Lift these to horizontal vector fields Oe1; Oe2; Oe3 on X0.
Let Oe0 generate the U1-action on X0. Then

V 1=2 Oe0; V
�1=2
Oe1; V

�1=2
Oe2; V

�1=2
Oe3

are an orthonormal frame for g. A compatible complex structure sends V 1=2 Oe0 to a unit
vector V �1=2.a1 Oe1 C a2 Oe2 C a3 Oe3/ in the orthogonal complement. We can index the
complex structure by the unit vector s D a1e1 C a2e2 C a3e3 2 R3. For example, the
complex structure Ie1 is given by 2664

0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

3775 : (7.2)

The Kähler forms associated to Ie1 ; Ie2 ; Ie3 are

!1 D du1 ^ �=2�i C Vdu2 ^ du3;

!2 D du2 ^ �=2�i C Vdu3 ^ du1;

!3 D du3 ^ �=2�i C Vdu1 ^ du2:
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Lemma 7.2.2. The action of U1 on X0 is hyperhamiltonian, with hyperkähler moment
map given by the projection X0 ! R3.

The choice of s determines a decomposition R3 D .Rs/? ˚Rs D C �R, with coor-
dinates .zs; us/. The component zs W .X0; Is/! C of the hyperkähler moment map is
holomorphic.

Now suppose that we have a smooth four-manifold X with a U1-action, and an open
embeddingX=U1 �R3. Let S �R3 denote the image of the U1-fixed locus, and fix data
as above.

Hypothesis 7.2.3. Near each s 2 S , V ˙ 1
4�ju�sj

extends smoothly over s, where ˙1 is
the local Chern class of the U1-bundle defined by taking the preimage in X of a small
sphere around s.

Remark 7.2.4. By the mean value property for harmonic functions, if V ˙ 1
4�ju�sj

is
bounded, it is harmonic, and in particular smooth.

Proposition 7.2.5 ([2, Section 2]). Under Hypothesis 7.2.3, the metric g extends smoothly
to X . The extended metric g is hyperkähler, and the hyperkähler moment map and the
sphere of complex structures can be extended smoothly to X .

Proof. The existence of smooth extension is checked explicitly in coordinates. Such a
smooth extension is automatically hyperkähler, since the Ricci tensor is a continuous
function of the metric. The complex structures are then defined by parallel transport from
any point away from the singularity. Likewise, the circle action will preserve the extended
metric, since the Lie derivative is continuous.

When S � R3 is a finite set of points, we can produce a hyperkähler metric on X
starting from the everywhere positive harmonic function

V0 D
X
s2S

1

4�ju � sj
: (7.3)

If the number of points is infinite, but the space between these points grows sufficiently
fast, the corresponding sum (7.3) will converge to a harmonic function with the right
singularities, and one again obtains a hyperkähler metric.

Now consider the case where our four-manifold QX carries a free action of Z covering a
translation on R3, and the critical locus S is a single Z-orbit. In this case (7.3) will diverge
everywhere. By adding a suitable constant to each term, however, Ooguri and Vafa [69]
obtained a series which converges everywhere on R3 and is positive on a neighborhood
of S of the form Dr �R, where Dr a disk of some radius r > 0. One thereby obtains a Z-
invariant hyperkähler metric onX , which descends to a hyperkähler metric onX D QX=Z.

We now return to the setting of Lemma 7.1.5. The manifold X already carries a com-
plex structure, and we want to define a hyperkähler metric compatible with this structure.
Gross and Wilson [36] show how to accomplish this by adding to V0 a suitable harmonic
correction term, defined in terms of the periods of the elliptic fibration. The resulting
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function V will again be positive on a neighborhood of S of the form Dr � R. In fact,
they define a family of such metrics depending on " > 0, which give the elliptic fibers
volume ". The radius r of positivity of V will depend on both " and the periods of the
fibration.

Let us now give the precise statement. Given 0 < r < 1, let Dr � D be the disk of
radius r . Let Xr be the preimage of Dr .

Proposition 7.2.6 ([36, Section 3], [69]). For each " > 0 there exists a radius 0 < r < 1,
and a .noncomplete/ hyperkähler structure on Xr , extending the given complex struc-
ture I on Xr .in which q W Xr ! Dr is holomorphic/. This metric gives the elliptic fibers
volume ", and U1 acts by isometries and admits a hyperhamiltonian moment map of the
form

�X D q � �
U1
X W Xr ! D �U1: (7.4)

Moreover, let n 2 X be the node of q�1.0/. Then:

(1) The only critical point of �X is n, and �X .n/ D 0 � 1.

(2) Away from n, the map �X is a principal U1-bundle, with Chern class �1 2 Z D
H2.D �U1 n 0 � 1;Z/.

Proof. We recall the general outline of the argument; for details see [36, Section 3].
Consider the universal cover QX!X ; it has deck group Z. The task is then to construct

a Z- and U1-invariant hyperkähler metric on QXr , for which the U1-action is moreover
hyperhamiltonian with Z-equivariant moment map q � Q�R

X W X ! C � R. We do this
using the Gibbons–Hawking ansatz described above.

In the situation at hand, we fix an identification QX=U1 Š D �R, and write u2 C iu3
(resp. u1) for the coordinates on D (resp R). We take S to be the Z-invariant subset
¹.0; n/ j n 2 Zº � C �R. Let A 2 H1.Xb/ be the vanishing cycle in a nearby fiber, and
extend it to a basis A;B such that monodromy around zero acts by A 7! A, B 7! ACB .
We may normalize the periods of the elliptic fibers to be 1 along A. Then the period
along B will be

1

2�i
log.z/C ih.z/ (7.5)

for some holomorphic function h.z/.
Fix " > 0, and consider the function

V0 D
1

4�

1X
nD�1

�
1p

.uC "n/2 C z Nz
� an

�
; (7.6)

where
an D

1

"n
; n ¤ 0; a0 D 2.� C log.2"//=":

Here,  is Euler’s constant. The choice of an is made so that the series (7.6) converges
uniformly over compact subsets of jzj < 1. Since the individual terms are harmonic,
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Harnack’s convergence theorem implies that the limit is also harmonic. It is also man-
ifestly Z-invariant. Each term of the sum has a 1

4�ju�sj
-singularity at exactly one s 2 S ,

and this property is inherited by the sum.
Gross and Wilson show that there exists a function 0 < r."/ < 1 such that on

R �Dr."/, one has

V WD V0 C Re.h.z// > 0:

We fix r D r."/ and apply the Gibbons–Hawking construction to the fibration QXr !
R � Dr and the function V and a suitable choice of connection one-form � . The result
is a Z-invariant hyperkähler metric g on QXr , and a compatible sphere .aI C bJ C cK/
of complex structures. Let I be the complex structure for which the map X ! D is
holomorphic, and therefore defines an elliptic fibration. One can directly compute the
periods of an elliptic fiber as an integral of the function V , and verify that these match
(7.5). It follows that the elliptic fibration with complex structure I is fiberwise isomorphic
to the original elliptic fibration.

By Z-invariance, the metric descends to Xr . A direct calculation shows that the vol-
ume of each fiber equals ".

We will often abbreviate �U1
X to �X . The U1-action and map �X give X the structure

of a .U1;U1 �C/-manifold. We will however often be interested in the restricted structure
of a .U1;U1/-manifold given by just using �X . Note that from Proposition 7.2.6 (2) it fol-
lows that for "¤ 0, there is an isomorphism of .U1;U1/-manifolds q�1."/Š ŒU1 �U1�.

Lemma 7.2.7. Proposition 7.2.6 applies to the fibration D!D1, defining a hyperkähler
metric on Dr . We can take r arbitrarily close to 1 by making " sufficiently small.

Proof. For the elliptic fibration D! D with coordinate z D q on D, the correction term
Re.h.z// vanishes. The calculation of r."/ in [36, Section 3] shows that r can be taken
near 1 for " sufficiently small.

Remark 7.2.8. For Gross and Wilson, the important case is "� 1, for which these met-
rics approximate a global metric on a K3 surface. On the other hand, we are content to fix
some " > 0. For the purposes of this paper, the specific choice of r > 0 is irrelevant, and
we will suppress it by writing D D Dr in what follows.

Remark 7.2.9. We may rescale the metric on D so that the volume of any fiber of q
equals 1. Because the fibers are complex one-dimensional, the corresponding Kähler form
!I is integral. This will be helpful for later arguments regarding projectivity.

Remark 7.2.10. The holomorphic functions x0; q define an isomorphism QD n q�1.0/ Š
C� �D1. In fact, there is a family of such isomorphisms, obtained by

.x0; q/ 7! .f .q/x0; q/ (7.7)

for any map f W D1 ! C�. The function �R
D W
QD ! R is U1-invariant and therefore

depends only on jx0j; q.
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We do not know an explicit formula for �R
D. However, we can give the following

characterization. Set t D log jx0j. Then �R
D solves the nonlinear ODE

du

dt
D

1

V.u; q/
(7.8)

To see this, recall the vector field Oe0 generating the U1-action. Then I Oe0 generates the
action of R� � C�. We have

LI Oe0.�D/ D �I Oe0.d�D/ D g.I Oe0; I Oe0/ D g. Oe0; Oe0/ D V
�1:

Equation (7.8) has a unique solution up to shifts t 7! t C c.q/ of the argument. These
shifts correspond exactly to the modifications (7.7).

Lemma 7.2.11. The form � D dxn ^ dyn D d log.xn/ ^ dq from Lemma 7.1.1 agrees
with the holomorphic symplectic form �GW WD !J C

p
�1!K associated to the hyper-

kähler metric of Proposition 7.2.6

Proof. Fix a contractible open U � D n 0, and let zXU ! U be the restriction of
zX ! D. Gross and Wilson [36, Construction 2.6] show that on any such open, �GW D
d log.u/ ^ dq, where u W zXU ! C is a certain holomorphic function scaled with
weight 1 by C� and defined up to multiplication by an invertible function of q.4 Since
d log.u/ � d log.xn/ D d log.u=xn/ D df .q/ for some function f W U ! C, we have
d log.u/ ^ dq D d log.xn/ ^ dq.

�D

q

1

Fig. 4. A schematic picture of D and its various moment maps and their targets. Two fibers of q are
shown, and the intersection of each fiber with ��1

D
.1/ is indicated in black.

Lemma 7.2.12. There is a U1-equivariant deformation retraction of D onto q�1.D"/,
where D" is the open disk of radius 0 < " < 1. There is also a U1-equivariant deformation
retraction of D to q�1.0/.

Proof. Pick any U1-connection on the bundle described in Proposition 7.2.6 (we do not
require it to be flat). Then the linear retraction D �U1! D" �U1 or D �U1! 0 �U1

4To compare with [36]: our q is their y, and our u is their exp.2�ix/.
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induces the desired retraction of D via parallel transport. One must treat the case of the
line through 0 � 1 separately, as the fiber over 0 � 1 collapses to a point. The preimage
of this line is homeomorphic to a disk, and parallel transport extends to a retraction to the
origin.

7.3. Vanishing cycles for q

Given any space X and map q W X ! C, denote the inclusion of the zero fiber by i W
q�1.0/! X , and consider the inclusions

q�1.¹Re.z/ � 0º/
I
�! X

J
 � q�1.¹Re.z/ > 0º/:

The corresponding excision triangle IŠI
ŠQ! Q! J�J

�Q
Œ1�
�! restricts to the nearby-

vanishing triangle (in some accounts this is the definition of nearby and vanishing cycles).
That is,

‰qQ D i
�J�J

�Q; ˆqQ D i
�IŠI

ŠQ:

We now return to the case at hand. We define

SD WD �
�1
D .R�0 � 1/

and consider the inclusions SD
I
�!D

J
 �D n SD.

Lemma 7.3.1. SD is a codimension 2 submanifold of D, diffeomorphic to an open disk.

Proof. Since �D is a circle fibration away from 0 � 1, the preimage ��1D .R<0 � 1/ is
evidently a cylinder. It suffices to investigate the geometry near 0 � 1. This point is the
image of the fixed point n, where in local coordinates the circle action is � � .x; y/ D
.�x; ��1y/. It follows that the fibration is equivariantly diffeomorphic to the standard
Hopf fibration R4! R3, where it can be checked in coordinates that the preimage of any
smooth ray leaving the origin is a disk.

Remark 7.3.2. In Lemma 11.1.1 below, we use a more elaborate version of this argu-
ment to construct an embedding D � B, with respect to which SD D SB \D. Under
this embedding, we shall see that I; J are intertwined with the same-named maps from
equation (6.1).

Lemma 7.3.3. Let " > 0 be sufficiently small. We have a retraction of .U1;U1/-spaces
D n SD ! q�1."/.

Proof. D n SD is a trivial U1-bundle over D �U1 n Œ0; 1/ � 1. A retraction of D n Œ0; 1/
to " can be lifted to an .U1;U1/-retraction of the total space of the bundle.

Observe that we have a closed inclusion

SD D �
�1
D .R�0 � 1/ � ��1D .¹Re.z/ � 0º �U1/ D q

�1.¹Re.z/ � 0º/:
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Thus the excision triangle for SD maps to the excision triangle for q�1.¹Re.z/ � 0º/:

IŠI
ŠQ Q J�J

�Q

IŠI
ŠQ Q J�J

�Q

Œ1�

Œ1�

(7.9)

Proposition 7.3.4. The restriction of the above diagram to the nodal rational curve at
q�1.0/ is an isomorphism of triangles.

Proof. The only point of intersection between SD and the central fiber is the node:
SD \ q

�1.0/ D n. Away from the node, the map q is smooth. Thus along q�1.0/ n n,
the diagram restricts to

0 Q Q

0 Q Q

Œ1�

Œ1�

with all maps given by the identity or the zero map. On the other hand, the Milnor fiber
of q at n has cohomology supported in degrees 0 and 1, and the degree 1 homology is
generated by any orbit of U1. Similarly, the degree 1 homology of V n V \ SD (for V a
small ball containing n) is generated by any orbit of U1, since SD is a smooth U1-stable
codimension 2 submanifold. Thus the restriction map from V n V \ SD to the Milnor
fiber induces an isomorphism in cohomology. It follows that the right-hand vertical map
is an isomorphism in a neighborhood of n. Since it is also an isomorphism away from n,
it is a global isomorphism. Since the central vertical map of the diagram is simply the
identity, the left-hand map must also be an isomorphism.

Corollary 7.3.5. ‰qQ D QnŒ�2�.

Proof. We have

‰qQ D i
�IŠI

ŠQ D i�IŠI
ŠQ D i�QSD

Œ�2� D QnŒ�2�:

Here, the first equality is essentially the definition of vanishing cycles. The second
equality holds because of the isomorphism of exact triangles. The third equality holds
because SD is a real codimension 2 submanifold. The final equality holds because
SD \ q

�1.0/ D n.

Remark 7.3.6. The locus SD is a Lefschetz thimble for the vanishing cycle.

Remark 7.3.7. In the nearby-vanishing exact triangle of sheaves on q�1.0/,

‰qQ! Qjq�1.0/ ! ˆqQ
Œ1�
�!;

we substitute ‰qQ D QnŒ�2�, and pass to global cohomology:

QŒ�2�! Q˚QŒ�1�˚QŒ�2�! Q˚Q˚2Œ�1�˚QŒ�2�
Œ1�
�! :
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Note the similarity to the sequence appearing in the calculation of H�.B;Q/ in Proposi-
tion 6.3.1, save that the weight grading no longer appears. This similarity will ultimately
develop into the comparison result of Theorem 11.3.1.

8. D.�/

8.1. Construction

Per Proposition 7.2.6, the space D carries a .U1;C �U1/-structure.

Definition 8.1.1. Given a graph � and � 2 C0.�;C �U1/, we set

D.�/ WDD.U1;C�U1/.�; �/:

Writing � D p � �, the space D.�; �/ is ��1� .p � �/=
xC 0.�; U1/. The space

��1� .p � �/ �DE.�/ is the subset satisfyingX
edges exiting v

qe �
X

edges entering v

qe D pe; (8.1)Y
edges exiting v

�U1
e

Y
edges entering v

�
�U1
e

��1
D �v: (8.2)

Proposition 8.1.2. For generic �, the space D.�;�/ is a .noncomplete/ hyperkähler man-
ifold.

Proof. It follows from Proposition 7.2.6 that D satisfies Hypothesis 5.3.1 as a
.U1;C �U1/-space. Thus since we chose generic �, Proposition 5.3.2 implies D.�; �/ is
smooth.

As �U1
D � q is a multiplicative moment map for a hyperkähler action of U1 by Propo-

sition 7.2.6, D.�; �/ is the hyperkähler reduction of a hyperkähler manifold.

Proposition 8.1.3. D.�; �/ is equipped with a complex analytic action of H1.�;C�/ and
a proper holomorphic H1.�;C�/-invariant map qres WD.�; �/! CE.�/ whose image is
the intersection of the unit polydisk with H1.�;C/p .

Proof. Proposition 5.1.4 yields a proper map D.�; �/ ! H1.�; C � U1/� . Compos-
ing with the projection H1.�;C �U1/� ! H1.�;C/p preserves properness. Concretely,
the projection is induced by restricting qE.�/ to the zero fiber of the moment map and
descending to the quotient. The result is holomorphic and H1.�;C�/-invariant since q is
holomorphic and C�-invariant.

Note it is possible to arrange � D .p; v/ generic while requiring p D 0, as a spe-
cial case of Lemma 2.0.4. We will henceforth restrict attention to this case, in which
H1.�;C/p D H1.�;C/.
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Remark 8.1.4. Symplectic reduction of the holomorphic symplectic form �˚E.�/ on
DE .�/ gives a holomorphic symplectic form �� on D.�/. The map qres W D.�/ !

H1.�;C/ determines an integrable system, as can be seen e.g. by symplectic reduction
from the corresponding fact about q WD! D. We consider this structure to be the coun-
terpart of Hitchin’s integrable system on the moduli of Higgs bundles [46].

Proposition 8.1.5. The action of H1.�;C�/ preserves �� .

Proof. This follows from the fact that the C�-action preserves the holomorphic symplec-
tic form on D.

Remark 8.1.6. As with B.�/, we can show that the dependence on the chosen orienta-
tion is quite mild. More precisely, if �; � 0 differ only by the choice of orientation, then
there is a canonical isomorphism of smooth manifolds

D.�/!D.� 0/:

By Proposition 5.2.1, it is enough to find an isomorphism D!D of smooth manifolds,
intertwining the U1-action and the C � U1-moment map with their inverses. One can
construct such a map by arguments similar to the proof of Lemma 11.1.1. We will not
need this result elsewhere in the paper.

8.2. Vanishing cycles and convolution

We wish to show that the calculations of Section 7.3 ‘commute with convolution’ with an
auxiliary .U1;U1/-manifold X , under certain hypotheses on X to be described later.

Recall that by definition,

X ?U1;U1;� D WD .�X C �D/
�1.�/=U1:

As always we implicitly require (and must check for any particular X of interest) that � is
a regular value of the moment map, and that the U1-action on the fiber over � is free. For
the remainder of this subsection we abbreviate ? WD ?U1;U1;� , for some fixed � 2 U1.

Recall the map q WD!C. Composing with projection onto the second factor, we get
a map Qq2 W X �D! C, which descends to

q2 W X ?D! C:

Remark 8.2.1. In applications, often X D D.�/, hence has its own qres map. The sub-
script in the notation q2 reminds that the map is built only from the q of the second
factor D, and has nothing to do with this qres.

It is immediate from the definitions that

X ? q�1.t/ D q�12 .t/; (8.3)

X ? n D q�12 .0/ \ .X ? SD/: (8.4)
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In addition, note that for " ¤ 0, we have q�1."/ Š ŒU1 �U1� as a .U1;U1/-space, thus

q�12 ."/ D X ? q�1.t/ Š X; " ¤ 0: (8.5)

Lemma 8.2.2. The following inclusions are deformation retracts:

i W q�12 .0/ ,! X ?D; (8.6)

in W X ? n ,! X ? SD; (8.7)

i" W q
�1
2 ."/ ,! X ? .D n SD/; " 2 D n 0: (8.8)

Proof. In each case, the claim follows from the existence of a retraction on the basic
space:

(1) The retraction D ! q�1.0/ constructed in Corollary 7.2.12 is a retraction of
.U1;U1/-spaces, and thus induces a retraction X ?D! X ? q�1.0/ D q�12 .0/.

(2) Recall that SD is the preimage of 0 � R�0 under �D. The retraction of R�0

to 0 induces a retraction of .U1;U1/-spaces SD ! n, which in turn induces a retraction
X ? SD ! X ? n.

(3) We have a retraction of .U1;U1/-spaces D n SD! q�1."/ (Lemma 7.3.3), which
then induces a retraction X ?D n SD ! X ? q�1."/.

Proposition 8.2.3. Consider the maps

X ? SD
I
�! X ?D

J
 � X ? .D n SD/:

There is the following commutative diagram, with each row an exact triangle:

H�.X;Q/

H�.X ? SD; I
ŠQ/ H�.X ?D;Q/ H�.X ? .D n SD/;Q/

H�.X ? n; i�n I ŠQ/ H�.q�12 .0/;Q/ H�.q�12 .0/; i�J�J
�Q/

H�.q�12 .0/;ˆq2Q/ H�.q�12 .0/;Q/ H�.q�12 .0/; ‰q2Q/

i�n �i�

Œ1�

i�" �

Œ1�

Œ1�

(8.9)

Here, " is any nonzero element of D.

Proof. We will use the additional triangle

q�12 .¹Re.z/ � 0º/
I
�! X ?D

J
 � q�12 .¹Re.z/ > 0º/:

We have the comparison between excision triangles:

IŠI
ŠQ Q J�J

�Q

IŠI
ŠQ Q J�J

�Q

Œ1�

Œ1�

(8.10)
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and its restriction along i W q�12 .0/ � X ?D:

i�IŠI
ŠQ Q i�J�J

�Q

ˆq2Q Q ‰q2Q

Œ1�

Œ1�

(8.11)

which we may push forward again by i� to find

IŠI
ŠQ Q J�J

�Q

i�i
�IŠI

ŠQ i�Q i�i
�J�J

�Q

i�ˆq2Q i�Q i�‰q2Q

Œ1�

Œ1�

Œ1�

(8.12)

The main 3 � 3 square of diagram (8.9) is found by taking global sections of dia-
gram (8.12), and using (8.4). The indicated maps are isomorphisms by Lemma 8.2.2.

Lemma 8.2.4. The singular locus of q2 is contained in X ? n.

Proof. Let z 2D n n. Choose a small open neighborhood of a polydisk V1 � V2 contain-
ing �D.z/ 2 D � U1, not containing the point .0; 1/, on which the U1-bundle PD can
be trivialized. By Corollary 4.4.6, we have a diffeomorphism

��1D .V1 � V2/ ? X Š V1 � �
�1
X .V2/

and under this isomorphism q2 becomes projection onto V1. This concludes the proof.

Hypothesis 8.2.5. There is an open contractible neighborhood U � U1 of � 2 U1 such
that:

(1) The map �X W X ! U1 is locally constant near �, in the sense that for some inter-
val � 2 U � U1, the space ��1X .U/ � X is isomorphic as a .U1; U1/-space to
ŒU � ��1X .�/�.

(2) The action of U1 on ��1X .�/ is free.

Proposition 8.2.6. If Hypothesis 8.2.5 holds, then X ? SD is a submanifold of X ? D

with R-codimension 2, we have ˆq2Q D QX?nŒ�2�, and all vertical arrows in diagram
(8.9) are isomorphisms.

Proof. The key points are to show that

(a) X ? SD is a real-codimension two submanifold of X ?D,

(b) the left vertical map i�IŠI ŠQ! ˆq2Q of (8.11) is an isomorphism.
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Indeed, (a) implies I ŠQ D QŒ�2�; thus because in is a retraction, it would follow that i�n
is an isomorphism in diagram (8.9), hence all vertical arrows between the top rows are
isomorphisms. Then (b) implies that diagram (8.11) is an isomorphism of exact triangles.
From this, together with (a), we may deduceˆq2QDQX?nŒ�2� as in the proof of Corol-
lary 7.3.5. Also, by taking global sections, we find that the vertical maps between the two
bottom rows of (8.9) are isomorphisms.

We turn to establishing (a) and (b). Both are local statements. First we study them
away from X ? n, i.e. in X ? .D n n/. Since D n n is a principal U1-bundle (compatibly
with SD), it is easy to see that (a) holds here. As for (b), we will show both terms van-
ish. For i�IŠI ŠQ, this is simply because i�IŠ of anything is supported on q�12 .0/ \ SD,
which by (8.4) isX ? n. And it follows immediately from Lemma 8.2.4 thatˆq2Q is also
supported on X ? n.

We now study a neighborhood of X ? n. Recall U is some neighborhood of � 2 U1.
Let

B WD ��1D .� � U/:

(Since U1 is playing the role of moment image, in keeping with our general conventions
we use additive notion for its group law.)

As B is an open neighborhood of n 2D, the space q�12 .0/ \ .X ? B/ is a neighbor-
hood of q�12 .0/ \ .X ? n/. Observe that

X ? B D .�X C �D/
�1.�/=U1 D �

�1
X .U/ ? B:

By Hypothesis 8.2.5 (1), we have an isomorphism of .U1;U1/-spaces

��1X .U/ Š Œ��1X .�/ � U�; (8.13)

where the moment map on the RHS is the projection ��1X .�/ � U! U. By Hypothesis
8.2.5 (2), the action of U1 on ��1X .�/ is free, hence defines a principal U1-bundle � W
��1X .�/! ��1X .�/=U1.

Working locally, we may assume the bundle � W ��1X .�/! ��1X .�/=U1 is trivial. That
is, we have reduced ourselves to establishing the stated result of the proposition with X
replaced by a .U1;U1/-space of the form Y � ŒU1 � U�, where the U1-action is trans-
lation on the U1 factor, and the moment map is just projection to U � U1. As we have
(functorially) .Y � ŒU1 � U�/ ? K D Y � K for any .U1;U1/-subspace K � B , (a) is
obvious, and (b) follows immediately from Proposition 7.3.4.

Remark 8.2.7. Note in particular that Proposition 8.2.6 implies H�.q�12 .0/; ‰q2Q/ Š
H�.q�12 ."/;Q/ even though we do not require q2 proper.

8.3. A larger family

Here we introduce a larger family qres W V.�; �/! CE.�/, from which qres W D.�/!

H1.�;C/may be recovered via base change along the inclusion H1.�;C/�CE.�/. Later,
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we prove results D.�/ by first establishing their analogues for V.�; �/ and then studying
the restriction.

Recall that D had the structure of a .U1;U1 � C/-manifold. We write V for the
space D viewed as a .U1;U1/-manifold, i.e. we forget the projection to D.

Definition 8.3.1. For � 2 C0.�;U1/, we write V.�; �/ WD VU1;U1.�; �/.

More explicitly, we have V.�; �/ D ��1� .�/=
xC 0.�;U1/, where

VE.�/
� ��1� .�/ WD

° Y
edges exiting v

�U1
e

Y
edges entering v

.�U1
e /�1 D �v

±
: (8.14)

Proposition 8.3.2. For generic �, the space V.�; �/ is a .noncomplete/ Kähler mani-
fold, equipped with a complex analytic action of H1.�;C�/ and a proper holomorphic
H1.�;C�/-invariant map qres W V.�; �/! CE.�/ whose image is the unit polydisk.

Proof. The proof is similar to that of Proposition 8.1.3. D satisfies Hypothesis 5.3.1 as
a .U1;U1/-space, and � was chosen to be generic, so V.�; �/ is smooth by Proposition
5.3.2. Proposition 7.2.6 shows �U1

D is a multiplicative moment map for a Kähler action
of U1, so V.�; �/ is Kähler. The complex analytic action of C� on D descends to an
action of H1.�;C�/ on V.�; �/, preserving the fibers of qres.

Note that if � 2 C0.�;U1/ is generic, then so is � � 0 2 C0.�;C �U1/. We have the
following fiber product diagram:

D.�; �/ V.�; � � 0/

H1.�;C/ CE.�/

qres qres (8.15)

Note that neither of the vertical maps are surjective. We suppress the dependence on � for
much of the remainder of the article.

Remark 8.3.3. Let C be a nodal curve with rational components and dual graph � . Let
B be the base of a locally versal family of deformations of C ; it has dimension (# of
nodes of C ) = jE.�/j. Given an auxiliary choice of stability parameter, there is a family
of versal compactified Jacobians xJ ! B .

The family qres WV.�; �/! CE.�/ is very similar to this family, although neither one
is the base change of the other. In particular, the notation V is meant to suggest ‘versal’.
Meanwhile qres W D.�/! H1.�;C/ is similar to the relative compactified Jacobian of a
subfamily of deformations ofC within a fixed ambient holomorphic symplectic surface S .

8.4. Some retractions

Many of the spaces we consider here are equipped with maps � WX! V to a vector space
and a retraction to the central fiber ��1.0/. Here we record properties and examples of
such structure.
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We say a closed subset ƒ � V of a vector space is semiconical if it is stable with
respect to scalar multiplication by ¹r 2 Œ0; 1/º.

Let rt W D ! D, t 2 Œ0; 1�, be the retraction onto q�1.0/ constructed in Corollary
7.2.12, and let rE.�/ WDE.�/ ! q�1.0/E.�/ be the product retraction.

Lemma 8.4.1. Let ƒ � CE.�/ be a semiconical subset. Let T � UV.�/
1 be a subtorus

and � 2 Lie.T /�. Then the map rE.�/ descends to a retraction .qE.�//�1.ƒ/ �� T onto
.qE.�//�1.0/ �� T .

Proof. We first claim that rE.�/ restricts to a retraction of .qE.�//�1.ƒ/ onto
.qE.�//�1.0/. Indeed, q ı rt covers a linear retraction D! 0, and �U1

D ı rt D �
U1
D . It fol-

lows that rE.�/t preservesƒ, establishing the first claim. Since �U1
D ı rt D �

U1
D , it follows

that rE.�/t preserves the T -moment map. It is also UV.�/
1 -invariant, hence it descends to

a retraction on the quotient.

Corollary 8.4.2. Letƒ�ƒ0 �CE.�/ be semiconical. Fix a torus T �UV.�/
1 . The inclu-

sion .qE.�//�1.ƒ/ � T ! .qE.�//�1.ƒ0/ � T induces an isomorphism in cohomology.

Corollary 8.4.3. The inclusions q�1� .0/!D.�/ and D.�/! V.�; �/ induce isomor-
phisms in cohomology.

Proof. Both are special cases of Corollary 8.4.2. Indeed, D.�/ D .qE.�//�1.ƒ/=T

where ƒ D H1.�IC/ and T D UV.�/
1 . The same holds for V.�; �/ with ƒ D CE.�/

and T D UV.�/
1 .

8.5. The deletion-contraction sequence

We now consider X D D.�=e/, with .U1;U1/-structure as in Definition 5.6.1 and � D
�t.e/. Let us now verify Hypothesis 8.2.5 for this space.

Lemma 8.5.1. Condition (2) of Hypothesis 8.2.5 holds for generic choice of �.

Proof. Consider the embedding D.�=e; �=e/ � V.�=e; �=e/. By construction, both the
action of H1.�;U1/ and the map �X extend to the larger space.

By Lemma 5.6.4, we have V.� n e; � n e/ D V.�=e; �=e/ ?�t.e/ 0. The right-hand
space is by definition the U1-quotient of ��1X .�t.e// � V.�=e; �=e/. By genericity of �,
this is a free U1-quotient. Thus the same is true after restriction to the closed subset
D.�=e/ \ ��1X .�t.e//.

We turn to checking the local constancy asked in condition (1). Note that in our setting,
the map �X W X ! U1 is not proper.

Lemma 8.5.2. Let �U1
res W D.�/ ! H1.�;U1/� be the residual moment map. Let ˛ W

H1.�;U1/�!U1 be the restriction of a character of C1.�;U1/. For all but a finite set of
� 2 U1, Condition (1) of Hypothesis 8.2.5 holds, i.e. there exists an open neighborhood U

of � and an isomorphism of .U1;U1/-spaces .˛ ı �U1
res /
�1.U/ Š Œ.˛ ı �

U1
res /
�1.�/ � U�.
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Proof. In general, for a map E ! B , a (nonlinear) connection is an assignment, for each
path in the base B with endpoints x; y, of a diffeomorphism Ex Š Ey , compatible with
composition of paths. Given a stratification of B , by a stratified connection on E ! B ,
we mean the data of a connection on each stratum. In the presence of a group action, we
can discuss equivariant connections (those which commute with the group action).

Recall from Proposition 7.2.6 that D maps to C � U1 and is a principal U1-bundle
over D �U1 n 0 � 1. Fix a U1-equivariant connection r� for this bundle (i.e. a principal
bundle connection in the usual sense). We stratify C �U1 by 0 � 1 and its complement;
this also defines a stratification of the subspace D � U1. Then D! D � U1 carries a
stratified connection r, where r./ is defined by parallel transport using r� over the
open stratum. Since the closed stratum 0 � 1 is a point, it requires no extra data.

We now turn to D.�/, and set nD jE.�/j. Consider the residual moment map �C
res �

�
U1
res WD.�/! H1.�;C �U1/� . Its image B WD H1.�;C �U1/� \ .D �U1/

n inherits
a stratification from .D � U1/

n. Taking products defines a stratified connection rn on
Dn ! .D �U1/

n, which descends to a stratified connection r� on D.�/! B .
Let � 2 U1. The spaces H1.�;C/ � ˛�1.�/ inherit a stratification from the product

stratification on .C � U1/
n. This family of stratified spaces can be compactified to a

proper family P .H1.�;C/ ˚ C/ � ˛�1.�/ of stratified spaces over U1. The result is a
stratified submersion away from a finite set of points in U1.

Over the complement of these points, Thom’s first isotopy lemma tells us that the
family must be locally constant. In other words, for � 2 U1 avoiding a finite set of bad
points, there exists an open neighborhood � 2 U and a stratification-preserving map f W
H1.�;C/� ˛�1.U/! H1.�;C/� ˛�1.�/�U, covering the projection to H1.�;C/�U

and restricting to the identity on H1.�;C/ � ˛�1.�/.
Parallel transport for the stratified connection r� lifts f to the desired isomorphism

of .U1;U1/-spaces.

We may apply Proposition 8.2.6 to conclude that the vertical arrows in diagram (8.9)
are isomorphisms. Then we may extract from diagram (8.9) the sequence

! H��2.D.�=e/ ? n;Q/! H�.D.�=e/ ?D;Q/! H�.D.�=e/ ? .D n SD/;Q/! :

(8.16)

Recall that the convolution ? products above are ?U1 . We want to replace these by their
submanifolds given by the corresponding ?C�U1 products. Assume e is a nonloop, non-
bridge edge of � . Using Lemmas 5.6.2 and 5.6.4, we have

H��2.D.�=e/?U1 n;Q/
��n
�! H��2.D.�=e/?C�U1 n;Q/ D H��2.D.� ne/;Q/;

H�.D.�=e/?U1 D;Q/
��

�! H��2.D.�=e/?C�U1 D;Q/ D H�.D.�/;Q/;

H�.D.�=e/?U1 .DnSD/;Q/
i�"
�! H�.D.�=e/?C�U1 .DnSD/;Q/ D H�.D.�=e/;Q/:

(8.17)
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Theorem/Definition 8.5.3. Each of the restriction maps is an isomorphism. We may
therefore define the lower row in the following diagram by requiring that the diagram
commute:

H��2.D.�=e/?n;Q/ H�.D.�=e/?D;Q/ H�.D.�=e/?.DnSD/;Q/

H��2.D.�ne/;Q/ H�.D.�/;Q/ H�.D.�=e/;Q/

��n �� i�"

cD
e aD

e bD
e cD

e

(8.18)
We term this lower row the Dolbeault deletion-contraction sequence (D-DCS).

Proof. To see that the map ��n is an isomorphism, note that we are in the setting of Corol-
lary 8.4.2, with ƒ D H1.�=e;C/, ƒ0 D H1.� n e;C/ and T D UV.�/

1 .
Similarly, the fact that �� is an isomorphism follows from Corollary 8.4.2 with ƒ0 D

H1.�=e;C/, ƒ D H1.�;C/ and T D UV.�/
1 .

Finally, i�" is an isomorphism by Lemma 8.2.2; we have also used the identifica-
tion (8.5).

Lemma 8.5.4. The maps aD
e for different edges e commute when their composition is

defined.

Proof. Using the isomorphism ��n W H
�.D.�=e/ ?C�U1 SD;Q/ Š H�.D.� n e/;Q/, the

map aD
e may be identified with the Gysin map for the codimension 2 embedding of man-

ifolds D.�=e/ ?C�U1 SD �D.�/. The proof then proceeds along the same lines as the
corresponding argument for aB

e in Lemma 6.5.4.
We will give a second, independent proof of this lemma in Remark 11.2.2, by deduc-

ing the commutation of aD
e from that of aB

e .

The commutativity allows us to make the following special case of Definition 1.0.6.

Definition 8.5.5. The Dolbeault deletion filtration DrHn.D.�/;Q/ is the increasing fil-
tration obtained from Definition 1.0.6, where the functor A takes � to H�.D.�/;Q/ and
takes � 0 ! � to the composition, in any order, of aD

e for e 2 � n � 0.

8.6. Another sequence

The top row of (8.18) is identified with the long exact sequence of a pair upon replacing n
with SD in the upper left corner (n ! SD is the inclusion of a point in a line, hence
induces isomorphisms in cohomology). The long exact sequence has a natural map to its
?C�U1 version:

H��2.D.�=e/ ? SD;Q/ H�.D.�=e/ ?D;Q/ H�.D.�=e/ ? .D n SD/;Q/

H��2.D.�=e/ ?C�U1
SD;Q/ H�.D.�/;Q/ H�.D.�=e/ ?C�U1

.D n SD/;Q/

��S �� ��ı

AD
e BD

e CD
e

(8.19)
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Composing diagrams (8.18) and (8.19) gives

H��2.D.�=e/?C�U1SD;Q/ H�.D.�/;Q/ H�.D.�=e/?C�U1 .DnSD/;Q/

H��2.D.�ne/;Q/ H�.D.�/;Q/ H�.D.�=e/;Q/

AD
e BD

e CD
e

i�" .�
�
ı /
�1

aD
e bD

e cD
e

(8.20)
The left vertical ‘D’ is induced by the inclusion n! SD.

For later use we record the following structure:

D.�=e/ ?C�U1 .D n SD/ D.�=e/ ? .D n SD/

H1.�;C/ H1.�=e;C/ �C

�ı

qres�q (8.21)

9. Fibers and monodromy

9.1. Structure of the generic fiber

We write DE.�/
reg for the complement of the coordinate hyperplanes. Our first step is to give

a natural presentation of the fundamental group of a fiber over DE.�/
reg . Let b 2 DE.�/

reg . We
write V.�/b WD q

�1
res .b/.

Lemma 9.1.1. There is a natural short exact sequence of groups

H1.�;Z/! �1.V.�/b/! H1.�;Z/:

Proof. The basic space D is defined as a Z-quotient. Let b 2D�, and let C�!C�=bZŠ

q�1.b/ be the restriction of this quotient to the fiber. It induces an inclusion of fundamen-
tal groups, defining a short exact sequence

�1.C
�/! �1.q

�1.b//! Z;

where the image is identified via the inclusion to D with �1.D/.
Now let b 2 DE.�/

reg . The point b determines a product of elliptic curves

Eb WD
Y

e2E.�/

q�1e .be/

in DE.�/, and V.�/b is the Kähler reduction of Eb by UV.�/
1 . More precisely, there is a

moment map�U1
� WEb!UV.�/

1 for the action of UV.�/
1 on Eb , and V.�/b is the quotient

of the fiber Eb.�/ over �. Taking Cartesian products of the basic sequence of fundamental
groups, we obtain a sequence which we may write as

C 1.�;Z/! �1.Eb/! C1.�;Z/:
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The inclusion Eb.�/! Eb gives the embedded short exact sequence

C 1.�;Z/! �1.Eb.�//! H1.�;Z/:

The quotient Eb.�/=U
V.�/
1 defines the quotient short exact sequence

H1.�;Z/! �1.V.�/b/! H1.�;Z/:

We now give a description of V.�/b as a group quotient.
Recall that be for e 2 E.�/ are the coordinates of b in CE.�/. To alleviate notation,

we will label the edges of � as e1 through en and write bi for bei . Given ˇ 2 H1.�;Z/,
consider bˇ WD .b

ˇ1
1 ; : : : ; b

ˇn
n / 2 Cn where ˇi are the coordinates of the image of ˇ

under the pullback H1.�;Z/! C1.�;Z/. Since by assumption, all the bi are nonzero,
bˇ defines an element of C 1.�;C�/, and we write bˇ for its image in H1.�;C�/. This
defines a map �b W H1.�;Z/! H1.�;C�/. We write bH1.�;Z/ for the image of �b .

Proposition 9.1.2. bH1.�;Z/ is a discrete lattice in H1.�;C�/. The fiber q�1res .b/ is natu-
rally isomorphic to the quotient H1.�;C�/=bH1.�;Z/.

Proof. Consider the cover .C�/E.�/ ! Eb , obtained by taking the Cartesian prod-
uct of the maps C� ! C�=bZ

e Š q�1.be/. The torus-valued moment map �U1
� lifts

to a real-valued moment map �R
� W .C

�/E.�/ ! RV.�/. Pick any lift z� of �; the

quotient .�R
� /
�1.z�/=UV.�/

1 is the Galois cover of V.�/b corresponding to the sub-
group H1.�; Z/ � �1.V.�/b/. By the Kempf–Ness theorem, we can identify it with
.C�/E.�/=.C�/V.�/ D H1.�; C�/. We can compute the action of an element  2
�1.V.�/b/=H1.�;Z/ D H1.�;Z/ on the cover by choosing a lift to �1.Eb/; we find
it is given by multiplication by �b./. This proves the second claim.

Discreteness of the image of �b can be deduced from the fact that the quotient is a
manifold. Here we give a direct proof.

The torus C 1.�; C�/ splits into a real and a compact factor: C 1.�; C�/ D
C 1.�;U1/ � C

1.�;R>0/. Likewise, we have H1.�;C�/ D H1.�;U1/ � H1.�;R>0/.
The exponential map defines isomorphisms C 1.�;R/ Š C 1.�;R>0/ and H1.�;R/ Š
H1.�;R>0/. Postcomposing �b with the projection H1.�;C�/!H1.�;R>0/ŠH1.�;R/
defines a map H1.�;R/! H1.�;R/. Tensoring the left-hand side with R, we obtain a
map of vector spaces

�b W H1.�;R/! H1.�;R/

It is enough to show that this map is an isomorphism. Let ci D log jbi j < 0, and let
Œe� 2 H1.�;Z/ be the element of cohomology corresponding to the oriented edge e. Then
�b.ˇ/ D

Pn
iD1 ciˇ.vi /Œe�.

Define an inner product on C1.�;R/ by hx; x0ic WD
Pn
iD1 �cixex0e . Since it is mani-

festly positive definite, so is its pullback along the injection H1.�;R/! C1.�;R/. As �b
is the map H1.�;R/! .H1.�;R//_ D H1.�;R/ given by ˇ 7! hˇ;�ic , it follows that
it is an isomorphism, as was to be shown.

Corollary 9.1.3. The restriction of qres W V.�/! DE.�/ has a section.
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Proof. We can define such a section by taking the image of the unit section of the triv-
ial fibration .C�/E.�/ under the quotient map .C�/E.�/ ! H1.�;C�/! V.�/b from
Proposition 9.1.2.

Proposition 9.1.4. For b 2 DE.�/ in the complement of the coordinate hyperplanes,
q�1res .b/ is an abelian variety.

Proof. It suffices to show that q�1res .b/ is a compact complex group admitting a projective
embedding. We have shown that V.�/b is a compact complex group. We will now show
that V.�/b carries a Kähler form !b with integral pairings !b.ˇ/ for ˇ 2 H2.V.�/b;Z/.
The Kodaira embedding theorem then tells us that V.�/b admits a projective embedding.
Let z!b be the Kähler form on Eb; recall that we have chosen it to be integral. We can
represent any curve class ˇ 2 H2.V.�/b;Z/ as the image under the quotient map of a
curve ž in E.�/. The Kähler form on V.�/b is obtained by reduction of that on Eb , and
thus !b.ˇ/ D z!b. ž/ 2 Z.

9.2. Monodromy

For a torusA, we have a natural isomorphism H�.A;C/D
V�H1.A;C/. Thus the system

R�qres�QD.�/ is a graded local system on a hyperplane in DE.�/
reg , with fiber at b given

by
V� H1.V.�/b;Z/.
The monodromy of this local system is determined by the monodromy in degree 1.

This is described as follows. Consider the short exact sequence in cohomology

H1.�;Z/! H1.V.�/b;Z/! H1.�;Z/ (9.1)

dual to that of Lemma 9.1.1.

Proposition 9.2.1. Fix an edge e of � , and consider the corresponding hyperplane in
C1.�;C/. The logarithm of the monodromy of R1qres�QD.�/ around this hyperplane is

given by the composition H1.V.�/b;Z/!H1.�;Z/
he;�iŒe�
�����!H1.�;Z/!H1.V.�/b;Z/.

Proof. Fix a basepoint b near the hyperplane be D 0. Fix a basis e1 D e; e2; : : : ; eg of
H1.�;Z/ and a basis 1; : : : ; g of H1.�;Z/ such that hi ; ei D 0 for i ¤ 1. Thus he; i
picks out the coefficient of 1 in  D

P
i cii .

Recall the equality V.�/b D H1.�;C�/=bH1.�;Z/. Choose branches of the logarithms
log.bei /, and define Qi 2 H1.V.�/b/ as the cycle

Œ0; 1� 3 r 7! ¹exp.r log.bei /hi ; ei/ºe2E.�/: (9.2)

Let Qei 2 H1.H1.�;C�/;Z/ be the tautological cycles; we abusively use the same notation
for their projections to H1.V.�/b;Z/. Then Qei and Qi form a basis of H1.V.�/b;Z/. By
following the explicit cycle (9.2) as b0 7! exp.2�i�/b0, one can verify the proposition.

Note, however, that the general form of the answer follows without any further cal-
culations. Consider a small loop around the hyperplane be D 0, starting and ending at b.
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By construction, all the basis elements but 1 are globally defined along this loop; it

follows that the log monodromy factors through H1.V.�/b;Z/ ! H1.�;Z/
he;�i
���! Z.

Applying the same reasoning to the Poincaré dual basis in H2g�1.V.�/b; Z/ DV2g�1 H1.V.�/b;Z/, we see that the image of log monodromy must lie in the span
of e.

9.3. Structure of the special fiber

By construction, q�1res .0/ is the symplectic reduction of q�1.0/E.�/ by xC 0.�;U1/. It is

easier to understand this reduction by first passing to the universal cover Bq�1.0/E.�/
of q�1.0/E.�/. The universal cover of q�1.0/ is an infinite chain of rational curves P1n
which we index by n 2 Z. Thus Bq�1.0/E.�/ is an infinite grid of irreducible componentsQ
e2E.�/ P1ne .

To understand the reduction of Bq�1.0/E.�/, we will use Delzant’s dictionary between
polytopes and toric varieties [22], according to which a toric variety is classified by its
image under the moment map. The moment map

�
E.�/

D W
Bq�1.0/E.�/ ! C1.�;R/ D RE.�/

maps the component indexed by nD ¹neº to the cube �n WD
Q
e2E.�/Œne; ne C 1�. These

cubes are the chambers of the coordinate periodic hyperplane arrangement on C1.�;R/.
Identify U1 with R=Z, and suppose that � 2 xC0.�;Q=Z/. Let z� be a lift to xC0.�;Q/

with all components in the range 0 � z�v � 1. The affine subspace d�1� .z�/ � C1.�;R/
intersects the coordinate periodic arrangement in an H1.�;Z/-periodic arrangement Aper.
It is given by the hyperplanes h; ei D n C Q�e for e 2 E.�/; n 2 Z. By our genericity
assumptions on �, Aper is a simple unimodular arrangement, i.e. any k hyperplanes inter-
sect in codimension k, and the integral normal vectors at such an intersection span the
lattice H1.�;Z/.

The chambers of Aper are given by �n WD �n \ d
�1
� .z�/, for those n such that the

right-hand side is nonempty. Each such chamber �n corresponds to a component Xn WDQ
e2E.�/ P1ne �z� xC

0.�;U1/ of the reduction. The reduction of a toric variety by a torus
action is toric, with moment map obtained by restriction from the moment map of the
prequotient, and in particular the moment image of Xn is �n. The components Xn and
Xm intersect along the toric subvariety determined by the mutual face �n \�m of their
polytopes.

We thus obtain a description of Bq�1res .0/ as a union of smooth toric varieties glued along
toric subvarieties, whose moment map defines an infinite periodic hyperplane arrange-
ment. The fiber q�1res .0/ itself is obtained by quotienting this picture by H1.�;Z/.

9.4. Class of the central fiber in the Grothendieck group of varieties

The map q WD! D has fiber q�1.0/ a nodal rational curve with dual graph�. Thus in
the Grothendieck group of varieties, jq�1.0/j D jC�j C jpointj D L.
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The preceding description of q�1res .0/ as a union of toric varieties gives one way to
compute jq�1res .0/j. Here we give a different argument:

Proposition 9.4.1. The H1.�;C�/-fixed points of D.�/ are indexed by the spanning
trees � 0 � � . The fixed point p�0 is the reduction by xC 0.�;U1/ of the subspace

Q
e…�0 n�Q

e2�0 D �
Q
e2� D.

Proof. Let p 2 D.�/, and let Qp be a lift to DE.�/. Then p is fixed by H1.�;U1/ if and
only if the action of C 1.�;U1/ on Qp preserves the xC 0.�;U1/-orbit of Qp.

Let � 0 be the unique subgraph of � such that Qp 2
Q
e…�0 n�

Q
e2�0.Dnn/�

Q
e2� D.

Since we know that the xC 0.�;U1/-orbit of Qp is free by assumption, this subgraph must
contain all vertices of � .

The action of C 1.�;U1/ on this subspace factors through a free action of C 1.� 0;U1/,
which descends to a free action of H1.� 0;U1/D C

1.� 0;U1/= xC
0.� 0;U1/ on the quotient

space. Hence p is a fixed point if and only if H1.� 0;U1/ is trivial, i.e. � 0 is a tree.
From the description of p�0 , it follows that it is also fixed by H1.�;C�/.

Corollary 9.4.2. All H1.�; C�/-fixed points of D.�/ are contained in the central
fiber q�1res .0/.

Proof. By Proposition 9.4.1, qres.p�/ � �
E.�/

�Q
e…�0 n �

Q
e2�0 D

�
. In turn, the right-

hand side is contained in the image of C1.� 0;C/! C1.�;C/. Since � 0 � � is a tree, the
latter intersects H1.�;C/ at 0.

Theorem 9.4.3. In the Grothendieck group of varieties, the class of the central fiber is

jq�1res .0/j D .# of spanning trees of �/ �Ah
1.�/:

Proof. Pick a cocharacter � WC�!H1.�;C�/whose image is not contained in the kernel
of any restriction map H1.�;C�/! H1.� n e;C�/.

The resulting complex analytic action of C� on D.�/ preserves the fibers of qres and
has isolated fixed points p�0 2 q�1res .0/, naturally indexed by the spanning trees � 0 � � .

The attracting cell of a fixed point is a smooth variety with a contracting C�-action,
hence isomorphic to Cn for some n. Per Proposition 8.1.5, the action of H1.�;C�/ pre-
serves the holomorphic symplectic form on D.�/. It follows that the attracting cell is
Lagrangian, and thus of complex dimension 1

2
dimD.�/D h1.�/. Since q�1res .0/ is proper,

every C�-orbit has a limit point, and so the fiber is the disjoint union of these attracting
cells.

Example 9.4.4. The central fiber of D DD.�/ is the disjoint union of the node n and
a copy of C�. Their union is the attracting cell of the node, with respect to either the usual
action of C� or its inverse.

Remark 9.4.5. The class of the general fiber has a similar description, which we will not
need in this paper. Namely, let � 0 � � be the (possibly disconnected) subgraph consisting
of the edges e 2E.�/ for which be ¤ 0. We can view b as a generic point in DE.�0/. This
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defines an abelian variety V.� 0/b; it is a product of smaller abelian varieties determined
by the connected components of � 0; the general form of the factors is described explicitly
in Proposition 9.1.2. Then

jq�1res .b/j D jV.�
0/bj � .# of spanning trees of �=� 0/ �Ah

1.�=�0/:

Here �=� 0 is the contraction of � by � 0, where exceptionally we allow the contraction of
subgraphs of genus > 0.

9.5. Projectivity

Here we show that qres is projective, at least near the central fiber. The argument is inde-
pendent of Proposition 9.1.4.

Recall the definition of zD from Section 7.1. We define a line bundle L on zD with
transition function xn on the overlaps C2

n \ C2
nC1. Then L is naturally equivariant with

respect to the C�- and Z-actions. It is not, however, jointly equivariant. Instead, if s�1L

denotes the shift of L by 12Z, we have an equality of C�-equivariant bundles s�1LD �L

where � is the fundamental character of C�.
The following proposition is direct from the definition of L:

Proposition 9.5.1. L restricts to an ample bundle on any finite chain of rational curves
in the fiber Qq�1.0/ � zD.

Theorem 9.5.2. There is a line bundle L� on V.�; �/ and an open neigborhood of
0 2 H1.�;C/ such that for any b in this neighborhood, the restriction of L� to q�1res .b/

defines a projective embedding.

Proof. We will construct such a bundle starting from the bundle L in Proposition 9.5.1.
By [65, Proposition 1.4], if f W X ! S is a proper map of complex manifolds, and a line
bundle L on X is ample on a given fiber, then it is relatively ample over a neighborhood
of the image. Thus after constructing L� , it will be enough to check its ampleness on the
central fiber.

Let � 2 C1.�;Z/ satisfy d�.�/ D N z� for some integer N . Consider the C 1.�;C�/-
equivariant bundle

LN
� WD � ˝ �

e2E.�/
LN
e

on zDE.�/. It also carries an action of C1.�;Z/ which does not commute with the torus
action. The image of xC 0.�;C�/! C 1.�;C�/ D .C�/n, however, commutes with the
action of H1.�;Z/. Thus LN

� descends to an H1.�;Z/-equivariant bundle zL� on the

quotient zDn �� xC
0.�;U1/.

A component by component application of the dictionary between polytopes and toric
varieties shows that Bq�1res .0/ is the union of GIT quotients

Q
e2E.�/ P1ne �LN�

xC 0.�;C�/,

glued along GIT quotients of subvarieties, such that zL� restricts to the GIT bundle O.1/

on any component. It follows that zL� is ample on any finite union of components.
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We can now conclude that the descent L� of zL� to q�1res .0/ is also ample, by the same
argument as in [62, Theorem 3.10].

10. Perverse Leray filtrations

Given a map f W X ! B of algebraic varieties, the middle perverse t -structure on B
induces a filtration – the perverse Leray filtration – on the cohomology of X . We recall
some facts about this filtration in Appendix A.5.

Convention 10.0.1. When we speak without further qualification of ‘the’ perverse Leray
filtration on H�.D.�/;Q/, we mean the one associated to the map qres WD.�/!H1.�;C/
(which was defined in Proposition 8.1.3). Likewise, by ‘the’ perverse Leray filtration on
H�.V.�/;Q/, we mean the one associated to qres W V.�/! CE.�/.

There are two key takeaway results from this section. The first is Theorem 10.3.1
establishing an isomorphism H�.D.�/;Q/ Š H�.C.�/;Q/ intertwining the perverse fil-
tration with the C-filtration. The argument adapts the methods of [61] (where the complex
C.�/ plays a similar role for the Jacobian of a nodal curve with dual graph �). The sec-
ond is Proposition 10.4.1, where we show (nonstrict) compatibility of the deletion map aeD
with the perverse Leray filtration.

10.1. Compatibility of (8.9) with perverse filtrations

Let us begin with the following general discussion. Suppose K is a complex of sheaves
on a space Y equipped with a map f W Y !C. Then the nearby-vanishing triangle defines
a long exact sequence

!H�.f �1.0/; f̂ K/!H�.f �1.0/;Kjf �1.0//!H�.f �1.0/;‰f K/
Œ1�
�! : (10.1)

If we view the first and last terms in the sequence as carrying the perverse filtration
induced from the perverse t -structure on f �1.0/, and the middle term as carrying the
perverse filtration induced from the perverse t -structure on Y , then perverse t -exactness
implies that the maps in the sequence respect filtrations. (This would not generally be true
if we used the perverse t -structure on f �1.0/ to define the filtration on the middle term.)

We return to the setting of Section 8.2. Let V be a vector space. Suppose thatX comes
with a U1-invariant map qX W X ! V , proper over its image.

We have the following related maps:

� Compose the projection X �D! X with qX to obtain a map Qq1 W X �D! V . Since
this map is U1-invariant, it descends to the map

q1 W X ?D! V:

� Restrict q1 to the closed submanifold X ? n � X ?D to obtain

qn
1 W X ? n! V:
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� Compose the projection X �D! D with q W D! C1 to obtain q2 W X �D! C.
Since this map is U1-invariant, it descends to a map

q2 W X ?D! C:

� Since qX � q W X �D! V �C is invariant for the diagonal U1-action, it descends to
a map

q12 W X ?D! V �C:

The maps qn
1 and q12 are proper over their images. The maps q1; q2 are not proper.

This allows us to define three filtrations:

� H�.X;Q/ carries the perverse Leray filtration associated to qX .

� The map q12 W X ?D! B �D1 is proper, and endows H�.X ?D;Q/ with a perverse
Leray filtration. We can transport this filtration to H�.q�12 .0/;Q/ via the pullback by
i W q�12 .0/! X ?D (the top middle vertical map in diagram (8.9)).

� The map qn
1 endows H�.X ? n;Q/ with a perverse Leray filtration.

Proposition 10.1.1. In the above situation, and assuming in addition that Hypothesis
8.2.5 holds, the map H��2.X ? n;Q/¹�1º!H�.X ?D;Q/ is compatible with the above
perverse Leray filtrations.

Proof. The shift in perverse Leray filtration ¹�1º arises from our Convention A.5.1 that
although the perverse t-structure is symmetric around 0, the perverse Leray filtration for
a map between spaces ‘starts in degree zero’. The cohomological shift by 2 is inherited
from the shift appearing in the isomorphism ˆq2Q D QX?nŒ�2�.

The map H��2.X ? n;Q/¹�1º ! H�.X ? D;Q/, or rather its counterpart in the
bottom row of diagram (8.9), was previously described as being obtained from taking
hypercohomology of the map ˆq2Q ! Qjq�1

2
.0/. We may instead first push forward

by q12, or rather the restriction of q12 to q�12 .0/, and then take hypercohomology of
.q12/�ˆq2Q! .q12/�.Qq�1

2
.0//. Since q12 is proper, we can switch the order in which

we take vanishing cycles and pushforwards. (Recall that the commutativity of vanishing
cycles and pushforward along proper maps is an immediate consequence of proper base
change [37, Section 1.3.6.1].) That is, we should study

ˆr2.q12/�Q! ..q12/�Q/r�1
2
.0/; (10.2)

where the projection r2 W B �C ! C satisfies q2 D r2 ı q12.
It remains only to note that the perverse filtrations respected by the hypercohomology

of (10.2) are precisely those we have used to define the perverse Leray filtrations on the
cohomology groups of interest.

Remark 10.1.2. We will not directly check that H�.X ? D;Q/ ! H�.X;Q/ respects
the perverse Leray filtrations we have set up above. Doing so would involve studying
how such filtrations interact with the vertical maps in the left column of diagram (8.9).
Because certain nonproper maps would be involved, one would have to show by hand
(e.g. by methods similar to those of Lemma 8.5.2) some local constancy.
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10.2. Compatibility of (8.17) with perverse Leray filtrations

In this subsection we are ultimately interested in showing that the maps ��n and �� from
(8.17) preserve the perverse Leray filtrations defined by the vertical maps in diagrams
(10.9) and (10.4). To do this we use the transversality criterion of Corollary A.5.3. First
we give the relevant estimates on various images of derivatives.

Lemma 10.2.1. At any point z 2D, we have ker dq C ker d�D D TzD.

Proof. Recall that the basic map q W D! D is a submersion away from a single point,
namely .q ��D/

�1.0� 1/. Over .q ��D/
�1.0� 1/, this holds since kerdq is the entire

tangent space. At any other point q ��D is a submersion, and dim.kerdqC kerd�D/D

dim ker dq C dim ker d�D � dim ker d.q � �D/ D 2C 3 � 1 D 4.

Consider now DE.�/.

Definition 10.2.2. For z 2DE.�/, we write R.z/ � E.�/ for the subset of edges e with
the property that .qe � �D;e/.z/ D 0 � 1.

Lemma 10.2.3. The subset dq.TzDE.�// � T �
q.z/

DE.�/ is CE.�nR.z// � CE.�/.

Proof. We can calculate the images of the differential by taking direct sums.

Definition 10.2.4. A subset R � E.�/ is said to be independent if its elements are lin-
early independent in H1.�;C/. Equivalently, h1.� nR/ D h1.�;C/ � jRj.

Recall the subset ��1� .�/ � DE.�/, which, for generic �, is the space whose free

UV.�/
1 -quotient is V.�/.

Lemma 10.2.5. For � generic .see Definition 2.0.1/, R.z/ is independent for all
z 2 ��1� .�/.

Proof. By definition, � is generic if for all z 2 ��1� .�/, the graph � n R.z/ is connected.
Thus �.� nR.z// D 1 � h1.� nR.z//. On the other hand, we have

�.� nR.z// D �.�/C jR.z/j D 1 � h1.�/C jR.z/j:

The lemma follows.

This provides our transversality criterion:

Corollary 10.2.6. If a submanifold M � CE.�/ is transverse to all CE.�nR/ for inde-
pendent subsets R � � , then M is transverse to the map qres W V.�/! CE.�nR/.

In particular, this holds for M D H1.�;C/, or any submanifold containing it.

Proof. Regarding the general criterion, we may check instead for the map ��1� .�/ !
CE.�nR/, for which the result follows from Lemmas 10.2.3 and 10.2.5.

Now for M D H1.�;C/, we calculate

dim H1.�;C/C dim CE.�nR/
� dim CE.�/

D h1.�;C/ � jRj
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Thus it is enough to show that dim.H1.�;C/ \ CE.�nR// � h1.�;C/ � jRj. But this is
immediate from the condition that R be independent.

Theorem 10.2.7. The map f � W H�.V.�/;C/! H�.D.�/;C/ preserves the perverse
Leray filtrations associated to the following Cartesian diagram:

D.�/ V.�/

H1.�;C/ CE.�/

f

(10.3)

Proof. Immediate from Corollaries 10.2.6 and A.5.3.

We now turn to the situation of interest. Recall the maps � and �n which appear
in (8.18).

Theorem 10.2.8. There is a Cartesian diagram

D.�/ D.�=e/ ?D

H1.�;C/ H1.�=e;C/ �C

�

qres�q (10.4)

Here the bottom row is the pushforward along � ! �=e on the first factor, and the pro-
jection  ! h; ei on the second factor.

Moreover, the pullback �� in cohomology preserves the perverse filtrations given by
this diagram.

Proof. We start by constructing the diagram. By Lemma 5.6.2, we have a Cartesian dia-
gram

D.�/ .D.�=e/ �D/=U1

H1.�;C �U1/ H1.�=e;C �U1/ �C �U1

�res�� (10.5)

We have H1.�;C �U1/ D H1.�;C/ � H1.�;U1/, and the bottom map is the product of
the maps of the same description with C and U1 coefficients:

H1.�;C/! H1.�=e;C/ �C; H1.�;U1/! H1.�=e;U1/ �U1: (10.6)

Let Im.H1.�;U1// � .H1.�=e;U1/ � U1/ be the image of the right-hand map. We can
factor diagram (10.5) as a pair of Cartesian squares

D.�/ D.�=e/?D .D.�=e/�D/=U1

H1.�;C/�H1.�;U1/ .H1.�=e;C/�C/�Im.H1.�;U1// H1.�=e;C�U1/�C�U1/

�

�res��

(10.7)
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Now, diagram (10.4) is obtained by taking the left-hand square of diagram (10.7) and
projecting its bottom row to its complex part.

We can enlarge diagram (10.4) to

D.�/ D.�=e/ ?D V.�=e/ ?D D V.�/

H1.�;C/ H1.�=e;C/ �C CE.�=e/ �C D CE.�/

�

(10.8)

The left square is our original diagram. The right square is obtained by taking the ?-
product of the Cartesian square (10.3) (with � replaced by �=e) with D.

To show that the left square of diagram (10.8) respects perverse filtrations, it suffices
to show this for the right square and the total rectangle. Both follow by Corollaries 10.2.6
and A.5.3.

Theorem 10.2.9. There is a Cartesian diagram

D.� n e/ D.�=e/ ? n

H1.� n e;C/ H1.�=e;C/

�n

qres (10.9)

Here the bottom arrow is the pushforward along the composition � n e ! � ! �=e.
Moreover, the pullback ��n in cohomology preserves the perverse filtrations given by

this diagram.

Proof. We start by constructing the diagram. By Lemma 5.6.4, we have a Cartesian dia-
gram

D.� n e/ .D.�=e/ � n/=U1

H1.� n e;C �U1/ H1.�=e;C �U1/ �C �U1

�res�� (10.10)

As in the proof of Theorem 10.2.8, this diagram factors as a pair of Cartesian squares

D.�ne/ D.�=e/?n .D.�=e/�n/=U1

H1.�ne;C/�H1.�ne;U1/ H1.�=e;C/�C�Im.H1.�ne;U1/ H1.�=e;C�U1/�C�U1/

�n

�res��

(10.11)

Diagram (10.9) is obtained by taking the left-hand square of diagram (10.11) and
projecting its bottom row to its complex part.

We can enlarge diagram (10.9) as follows:

D.� n e/ D.�=e/ ? n V.�=e/ ? n D V.� n e/

H1.� n e;C/ H1.�=e;C/ CE.�=e/ D CE.�ne/

�n

(10.12)
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The left-hand square is our original (10.9). The right-hand square is obtained by taking ?n
with (10.3) (with � replaced by �=e).

To show that the left square of diagram (10.12) respects perverse filtrations, it suffices
to show this for the right square and the total rectangle. Both follow by Corollaries 10.2.6
and A.5.3.

10.3. The perverse Leray filtration and the C-filtration

Theorem 10.3.1. There is an isomorphism H�.D.�/;Q/ Š H�.C;Q/ identifying the
perverse filtration with the C-filtration.

Proof. By Corollary 8.4.3 and Theorem 10.2.7, it suffices to study the perverse filtration
on the central fiber induced by the map qres W V.�; �/! CE.�/.

We have shown in Theorem 9.5.2 that qres is projective in a neighborhood of the central
fiber; we henceforth restrict to this neighborhood. Recalling that V.�; �/ is nonsingular,
we may therefore apply the decomposition theorem of [3] to conclude qres�Q is a direct
sum of semisimple perverse sheaves.

Let qıres be the restriction of qres to the complement of the coordinate hyperplanes. One
summand of qres�Q is therefore

L
j IC.R

j qıres�Q/. Of these, the summands with j � k
contribute to the kth step of the perverse Leray filtration.

Comparing Proposition 9.2.1 to [61, (3.7)], we see that the local systems Rj qıres�Q
considered here are isomorphic to those called

Vj
R1��QjBreg in [61]. (See Remark 1.2.2

for some further discussion about the similarities and differences between qres and the
relative compactified Jacobian for the versal family of a nodal curve with dual graph � .)

In general, there is a formula [7] for the stalks of the intermediate extension of a local
system across a normal crossing divisor. [61] explicitly computed in the case of the local
system at hand; the result [61, Lemma 3.6] was that IC.Rj qıres�Q/0 is computed by the
complex we have here called C�.

We have seen there is a summand H�.C.�/;Q/ � H�.D.�/;Q/ such that the per-
verse filtration on the later restricts to the C-filtration on the former. It remains to show
this inclusion is an equality. By the argument of [60, Proposition 15], it suffices to check
the equality of weight polynomials. The calculation for C.�/ is carried out in [61, Corol-
lary 3.8], and for the central fiber of D.�/ in Theorem 9.4.3 above. The results agree:
each is t2h1.�/ times the number of spanning trees of � .

Remark 10.3.2. We will later show in Theorem 11.1.6 that B.�/ retracts to D.�/, hence
in particular has the same cohomology. We also know that H�.B.�/;Q/ Š H�.C.�/;Q/
from Theorem 6.6.8. It follows that H�.C.�/;Q/ and H�.D.�/;Q/ have the same total
dimension, hence the inclusion H�.C.�/;Q/ � H�.D.�/;Q/ must be an isomorphism.
This is an argument independent of the weight polynomial one given above.

We record the following special case.
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Corollary 10.3.3. The perverse Leray filtration on H�.D;Q/ with respect to the map
q WD! D is the filtration by cohomological degree. In other words,

P0H�.D;Q/ D H0.D;Q/;

P1H�.D;Q/ D H�1.D;Q/;

P2H�.D;Q/ D H�2.D;Q/:

Proof. One can of course verify this by direct geometric arguments. Here we simply note
that since the cohomology of D has rank at most 1 in any given degree, it is enough to
determine the associated graded of the perverse Leray filtration. This in turn is computed
by the case � D� of Theorem 10.3.1.

Remark 10.3.4. Comparing the formula for weight polynomials in [61, Corollary 3.8]
with the formula in Remark 9.4.5, we see that in fact every summand of .qres WV.�; �/!

CE.�//�Q has full support; in particular, pRj qres�Q D IC.Rj qıres�Q/.
By contrast, .q WD.�; �/! H1.�;C//�Q can have summands supported in positive

codimension.

Remark 10.3.5. By combining Theorem 10.3.1 with the results of [61], we establish the
isomorphism H�.D.�†// Š D.†/ asserted in Remark 1.2.2: both sides are computed
by C�.�/.

10.4. Compatibility of aD
e with perverse filtration

Following convention (10.0.1), each term of the Dolbeault deletion-contraction sequence
(dashed sequence in diagram (8.18)) carries a perverse Leray filtration. We will trans-
late the filtration on the left-hand term by one step – this is analogous to the Tate
twist occurring in the B-DCS. We denote the resulting filtered vector space by
H��2.X ? SD;Q/¹�1º, so that PkH��2.X ? SD;Q/¹�1º D Pk�1H��2.X ? SD;Q/.
That is, we consider

H��2.D.� n e/;Q/¹�1º H�.D.�/;Q/ H�.D.�=e/;Q/ :
cD
e aD

e bD
e cD

e

(10.13)

Proposition 10.4.1. The map aD
e of (10.13) is compatible with the perverse Leray filtra-

tion.

Proof. By combining Proposition 10.1.1, Theorem 10.2.8, and Theorem 10.2.9, we learn
that aD

e of (10.13) (not necessarily strictly) preserves the perverse filtration.

Remark 10.4.2. We will eventually show strict compatibility of all maps in (10.13)
with perverse Leray filtrations, but only by first proving that P D W compatibly with
an intertwining of the deletion-contraction sequences (which in turn will require having
first proven Proposition 10.4.1). Recall by contrast that strict compatibility of (6.5) with
weight filtrations followed from general considerations.
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Corollary 10.4.3. The Dolbeault deletion filtration is bounded by the perverse Leray
filtration.

Proof. Using Proposition 10.4.1, we find DkH�.D.�/;Q/ � PkH�.D.�/;Q/, by the
same argument as we used in Theorem 6.7.1 to establish (6.15).

11. Comparisons

11.1. ‘Hodge’ correspondence

We will construct a homotopy equivalence D! B, which we use to induce a homotopy
equivalence D.�/! B.�/.

Lemma 11.1.1. Let f W C �U1 Š C� �R be the group isomorphism

.z; e2�i� / 7! .e2�i�CIm.z/;Re.z//:

There is a .nonunique!/U1-equivariant C1 embedding F WD!B such that the follow-
ing diagram commutes:

D B

D �U1 C� �R

�
U1
D
�q

F

�C�
B
��R

B

f

Proof. We write 0DD 1� 0 2D �U1 and 0BD 1� 0 2C� �R. Evidently f.0D/D 0B.
The maps �C�

B � �R
B and �

U1
D � q define principal U1-bundles PB; PD away

from the point 0D and 0B (Lemma 6.1.2 and Proposition 7.2.6). The restrictions
of these bundles to D � U1 n 0D are classified by their Chern characters c1.Pi / 2
H2.D � U1 n 0D; Z/: The group H2.D � U1 n 0D; Z/ is spanned by a small sphere
around 0D. It follows that a U1-equivariant isomorphism over a small disk around
0D ! 0B can be extended to such an isomorphism over all of D � U1 n 0D. We must
show that some such isomorphism extends over 0D.

Both spaces B and D have a single U1-fixed point, with image 0B and 0D respec-
tively. By the differentiable slice theorem, the fibration near a small neighborhood of 0B

(or 0D) is equivariantly diffeomorphic to that given by a linear circle action on the unit
ball in R4. We have seen that our actions have no nontrivial stabilizers away from the
fixed point; it follows from this that the circle acts by the identity character, its inverse,
or a sum of these. In any case, in the coordinates of our descriptions of both of these
spaces, the U1-action around the fixed point was explicitly given in complex coordinates
as .x; y/ 7! .�x; ��1y/.

The above argument suffices to establish that some map lifts to an equivariant embed-
ding. To see that this is true for f specifically (or indeed, any homotopy equivalence
carrying 0D to 0B), it suffices to note that if R4! R3 is the Hopf fibration, then any dif-
feomorphism R3 ! R3 fixing the origin lifts to an equivariant diffeomorphism of Hopf
fibrations. This again follows from local linearity at the fixed point.
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Let B< be the image of F; alternatively, B< is the preimage of f.D �U1/.

Lemma 11.1.2. B< is a diffeomorphic homotopy retract of B:

Proof. Let r W C � I ! C be a linear retraction of C onto D. As in the proof of Corollary
7.2.12, this induces a diffeomorphism and homotopy retraction B! B<.

Lemma 11.1.3. SD D F�1.SB/.

Proof. Each is the moment preimage of a half-line, and we have chosen f to identify these
half-lines.

We turn to the case of D.�/ and B.�/. We restore now the moment map parameter
� in our notation, since it plays a priori different roles for B and D.

We have defined B.�/ as a complex algebraic (GIT) quotient; by the Kempf–Ness
theorem we can instead understand it as a symplectic reduction, as the following proposi-
tion shows.

Proposition 11.1.4. There is a diffeomorphism

BU1;R�C�.�; �/! BC�;C�.�; �/:

Proof. In the construction of B.�;�/, we took a .C�/V.�/-quotient of ��1� .�/. In fact, we
had the structure of a UV.�/

1 � .C�/V.�/ action on the complex manifold��1� .�/�BE.�/

with RV.�/-valued moment map, induced from the U1 � C� action on B with moment
map jxj2 � jyj2. By the Kempf–Ness theorem [52], we can replace the .C�/V.�/-quotient
of��1� .�/ by the symplectic reduction by UV.�/

1 . (This is a particularly simple application
of the Kempf–Ness theorem, since the .C�/V.�/-action is free on��1� .�/ and all orbits are
closed.) The resulting diffeomorphism takes a point z 2BU1;R�C�.�;�/ to the .C�/V.�/-
orbit of its image.

The virtue of the symplectic reduction picture of the Betti space is that it is more
readily comparable to the Dolbeault space. More precisely, we would like to compare a
retracted version:

Definition 11.1.5. B<.�; �/ WD .B</U1;R�C�.�; �/.

Theorem/Definition 11.1.6. There is a diffeomorphism F� WD.�; �/! B<.�; �/ mak-
ing the following diagram commutative:

D.�; �/ B<.�; �/

H1.�;C �U1/� H1.�;C� �R/�

V�
U1
D;res�qres

F�

�C�
B;res��

R
B;res

f�

Here f� is the isomorphism induced by f .
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Proof. Let F WD! B< be the diffeomorphism in Lemma 11.1.1. By construction, it is
U1-equivariant and covers a group isomorphism f W C �U1! R�C�. Hence it induces
a diffeomorphism

F� WD
.U1;C�U1/.�; �/ Š .B</U1;R�C�.�; �/

covering the group isomorphism f W H1.�;C �U1/! H1.�;R �C�/:

We see from Proposition 5.1.4 that D.�; �/ is an .H1.�;U1/;H1.�;C �U1//-space
and B<.�; �/ is an .H1.�;U1/;H1.�;R �C�//-space. The isomorphism f W C �U1 !

R �C� allows us to view both as .H1.�;U1/;H1.�;C �U1//-spaces.

Lemma 11.1.7. The map

F� WD.�; �/
�
�! B<.�; �/

is an isomorphism of .H1.�;U1/;H1.�;C �U1//-spaces.

Proof. This follows from U1-equivariance of Lemma 11.1.1.

Remark 11.1.8. Note that F was not unique, and thus nor is F� . However, the group
of smooth maps H1.�;C � U1/! H1.�;U1/ .not respecting any group structure/ acts
transitively on the set of choices. We will not need this fact in what follows.

Proposition 11.1.9. The retraction B! B< in Lemma 11.1.2 descends to a diffeomor-
phism and homotopy retraction from B.�; �/ to B<.�; �/ .

Proof. We have the following diagram:

��1� .�/=U
V.�/
1 ��1� .�/ BE.�/

d�1� .�/ C1.�;C �U1/ D .C �U1/
E.�/

(11.1)

Pick a diffeomorphism  W CE.�/ ! DE.�/ which preserves R-lines through the
origin. Linear interpolation between z and  .z/ defines a deformation retraction r W
CE.�/ � Œ0; 1�! DE.�/. Let

R W .C �U1/
E.�/
� Œ0; 1�! .C �U1/

E.�/

be the induced deformation retraction, which is constant in the UE.�/
1 -factor. Since R

preserves lines in CE.�/, R preserves d�1� .�/ and its stratification by coordinate hyper-
planes. As in Lemma 11.1.2, this induces a UE.�/

1 -equivariant retraction of ��1� .�/ onto
��1� .�/ \ .B

</E.�/. Passing to U1-quotients, we obtain the desired retraction.

Combining Proposition 11.1.9, Theorem/Definition 11.1.6 and Lemma 8.4.1, we
conclude that B.�; �/ also retracts onto q�1� .0/, viewed as a subset of B<.�; �/ via
Theorem/Definition 11.1.6.
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11.2. P D W

Proposition 11.2.1. The following diagram commutes:

B.� n e/ B.�/

D.� n e/ D.�/

F�ne F� (11.2)

Proof. The horizontal arrows can be defined in both cases by applying Lemma 5.6.6
to the edge e. This expresses B.� n e/ and D.� n e/ as subquotients of DE.�/ and
BE.�/ respectively. The maps F� and F�ne are induced from the product map FE.�/ W

DE.�/ ! BE.�/.

Remark 11.2.2. Using Proposition 11.2.1 we could instead prove the commutativity of
the D-deletion maps aD

e (Lemma 8.5.4) by importing the result from the corresponding
result on the maps aB

e (Lemma 6.5.4), or conversely.

Corollary 11.2.3. The map F�� identifies the Betti and Dolbeault deletion filtrations.

Proof. The deletion filtrations are determined by Gysin maps associated to the horizontal
arrows of diagram (11.2).

Proposition 11.2.4. DkH�.D.�/;Q/D PkH�.D.�/;Q/: In other words, the Dolbeault
deletion filtration equals the perverse Leray filtration.

Proof. We know that the Dolbeault deletion filtration is bounded by the perverse Leray
filtration by Corollary 10.4.3. Thus it is enough to show that the filtrations are abstractly
isomorphic, i.e. there exists an isomorphism of vector spaces taking the deletion filtration
to the perverse Leray filtration. We produce this isomorphism via F.

Namely, by Corollary 11.2.3, the Dolbeault deletion filtration is isomorphic to the
Betti deletion filtration. In turn, the Betti deletion filtration is isomorphic to the C-filtration
by Proposition 6.6.11. Finally, Theorem 10.3.1 shows that the C and perverse Leray fil-
trations are isomorphic.

Remark 11.2.5. To show Proposition 11.2.4 without appeal to the D � B comparison,
we could argue by induction if we fixed an isomorphism between the cohomology of the
D-space and the C-complex which intertwines the deletion maps. This may be possible,
since both the C-complex and the deletion map are built from nearby-vanishing cycle
operations, but we have not done it here.

Theorem 11.2.6 (P D W ). The map F�� identifies the filtration W2kH�.B.�/;Q/ with
PkH�.D.�/;Q/.

Proof. We have identified both filtrations with the deletion filtrations on the respective
spaces in Theorem 6.7.1 and Proposition 11.2.4. The result thus follows from Corollary
11.2.3.
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11.3. Intertwining of deletion-contraction sequences

Theorem 11.3.1. The following diagram commutes:

H��2.B.� n e/;Q/.�1/ H�.B.�/;Q/ H�.B.�=e/;Q/

H��2.D.� n e/;Q/¹�1º H�.D.�/;Q/ H�.D.�=e/;Q/

cB
e

F�
�ne

aB
e

F�
�

bB
e cB

e

F�
�=e

cD
e aD

e bD
e cD

e

(11.3)

Proof. We write tDe for the map given by the composition D.�/! H1.�;C � U1/!

C � U1, where the second map extracts the coefficient of the edge e. Similarly we have
a map tBe from a composition B.�/! H1.�;C� � R/! C� � R. Because F� covers
the map f� W H1.�;C �U1/! H1.�;C� �R/, it follows that we may fill in the dashed
arrow below:

B.�=e/ D B.�=e/?C� .BnSB/ ¹tBe … 1�R<0º B.�=e/?C�B D B.�/

D.�=e/?C�U1 .DnSD/ ¹tDe ¤ 1�0º D.�=e/?C�U1 D DD.�/

F�

(11.4)

From (11.4) we obtain a map of long exact sequences of pairs (taking notations from
Section A.1 and using in particular Lemma A.1.1), which we compose with diagram
(8.20) to obtain

H��2.B.�ne/;Q/ H�.B.�/;Q/ H�.B.�=e/;Q/

H��2.D.�=e/?C�U1SD;Q/ H�.D.�/;Q/ H�.D.�=e/?C�U1 .DnSD/;Q/

H��2.D.�ne/;Q/ H�.D.�/;Q/ H�.D.�=e/;Q/

.F� jD.�=e/?C�U1
SD
/�

aB
e

F�
�

bB
e

.F�;res/
�

cB
e

AD
e BD

e CD
e

i�" .�
�
ı /
�1

aD
e bD

e cD
e

(11.5)

Proposition 11.2.1 implies that the composition of the left vertical arrows is simply F�
�ne

.
To complete the proof of the theorem, it remains only to show that F�

�=e
D i�" .�

�
ı /
�1F��;res.

We will consider the following diagram:

B.�=e/ B.�=e/ ?C� .B n SB/ B.�=e/ ?U1
.B n SB/

D.�=e/ D.�=e/ ?U1
.D n SD/ D.�=e/ ?C�U1

.D n SD/ D.�=e/ ?U1
.D n SD/

�0

F�=e

i" �ı

F�

�ı

F�;res

(11.6)
We have not yet introduced the maps �0 and F�;res or explained how we can apply ?U1

in the upper left corner; we do so now. Recall from Proposition 6.1.3 (8) that B can also
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be regarded as a .U1;C� �R D C �U1/-space; the B.�/ etc. spaces have correspond-
ing structures. Moreover, the ?.C�;C�/ and ?.U1;C�U1/ type convolutions agree for these
spaces, by Kempf–Ness. In particular,

B.�=e/ D B.�=e/ ?C� .B n SB/
�
D B.�=e/ ?C�U1 .B n SB/:

The map �0 is defined to be the natural map from a ?C�U1 product to a ?U1 product. The
map F�;res is the restriction of the pullback map obtained from the ?U1 version of (11.4).
It is clear from the definitions that the left-hand square of (11.6) commutes.

The map F�;res is an embedding; we will show it is a homotopy equivalence. By
construction, the retraction B!B< given by Lemma 11.1.2 is a map of .U1;U1/-spaces.
The same is true for the induced retraction B n SB ! B< n .SB \B</. Likewise, the
retraction B.�=e/ ! B<.�=e/ is a map of H1.�=e;U1/ � H1.�=e;U1/-spaces. The
product of these retracts induces a retraction of B.�=e/ ?U1 .B n SB/ onto the image
of F�;res. In particular, F��;res is an isomorphism.

We claim all the maps in diagram (11.6) induce isomorphisms in cohomology. Indeed,
we have seen this now for all but �0, for which it follows by commutativity of the diagram.

We would be finished if the maps �0 ıF�=e and F�;res ı i" were equal; unfortunately,
they are not. To complete the proof of the theorem, we will show these two maps are
homotopic.

Recall B.�=e/ ?U1 .B n SB/ is obtained from some moment fiber ��1U1
.�/ �

B.�=e/ � .B n SB/ by a free U1-quotient. To distinguish the notation, we will write
��1U1

.�/D �D.�=e/�D for the corresponding moment fiber in the product of Dolbeault
spaces.

Define

QfC W B.�=e/! ŒC� �C�� D B n SB; y 7! .1; �=�C�.y//:

Consider q�1."/ � D where " 2 D is a small positive real number. We have an isomor-
phism q�1."/ Š ŒU1 �U1� as a .U1;U1/-manifold.

Any two such isomorphisms differ by multiplication by a smooth section of the
moment map ŒU1 �U1�! U1. In particular, there is a unique such isomorphism which,
when composed with F WD!B, intertwines the coordinates of U1 �U1 with the angle
coordinates of C� � C� W F.ei�1 ; ei�2/ D .r1ei�1 ; r2ei�2/ D .x; xy C 1/. Note that this
is automatic for the second coordinate by the construction of F, but not for the first coor-
dinate.

Define

Qf� WD.�=e/! ŒU1 �U1�
�
�! q�1."/ �D n SD; x 7! .1; �=�U1.x/D/;

We define a similar map f� W B.�=e/! q�1."/ by the same formula.
It follows from the definitions that the following diagram commutes, excluding the

dashed ‘D’.
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D.�=e/ B.�=e/ B.�=e/

��1U1
.�/D ��1U1

.�/ ��1C�.�/

D.�=e/?U1 .DnSD/ B.�=e/?U1 .BnSB/ B.�=e/?C� .BnSB/

id� Qf�

F�=e

i"
id�f� id� QfC

F�=e�F

F�;res �0

(11.7)

To construct a homotopy between the compositions of the maps around the outside of
diagram (11.7), it now suffices to show that the maps QfC; f� are homotopic via a family
of maps B.�=e/! B n SB whose graph lies in ��1U1

.�/.
We pick a deformation retraction rt of C onto ", chosen so that it restricts to a defor-

mation retraction of C nR�0 onto ". For instance, we may suppose " lies on the positive
real axis, and define rt .z/ D t "C .1 � t /z.

The space B n SB is a U1-bundle over C �U1 n .R�0 � 1/, with a trivialization given
by arg.x/. Using this trivialization, we can lift rt to a deformation retraction Qrt of B n SB

onto q�1."/ which keeps both U1-coordinates unchanged.
By definition, both QfC and f� have image contained in the image of the unit section

of the U1-bundle, and their projections to the U1-factor both coincide with �=�U1 D

�=ei arg.�C� /. Then Qrt ı QfC is the desired homotopy from QfC to f�.

Corollary 11.3.2. The Dolbeault deletion-contraction sequence strictly preserves the
perverse Leray filtration.

Proof. Follows immediately from Theorem 11.3.1, Theorem 11.2.6 and the correspond-
ing fact for the Betti deletion-contraction sequence.

Appendix A. Recollections on cohomology and filtrations

A.1. The long exact sequence of a pair

LetA
f
�!X be an embedding of topological spaces. The pullback H�.X;Q/

f �

��!H�.A;Q/
extends to a long exact sequence

� � � ! H�.X;A;Q/
co.f /�
����! H�.X;Q/

f �

��! H�.A;Q/! � � � ;

where co.f / is the map of pairs X;; ! X;A. Given a second embedding B �! Y and a
map of pairs given by a commutative diagram

A X

B Y

Fres F
(A.1)
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we obtain a map of long exact sequences of pairs

H�.Y; B;Q/ H�.Y;Q/ H�.B;Q/

H�.X;A;Q/ H�.X;Q/ H�.A;Q/

F �rel F � F �res
(A.2)

Lemma A.1.1. IfA;B are codimension d submanifolds ofX;Y , we can identify F �rel with
.F jXnA/

� W H��d .Y n B;Q/! H��d .X n A;Q/.

A.2. The residue exact triangle

Recall that if X is a topological space and p W V ! X is a closed subset, and q W X n V
! X its open complement, then there is the Verdier dual exact triangle of a pair:

p�p
ŠCV ! CX ! q�CXnV

Œ1�
�! :

In case X is a smooth complex manifold and D is a smooth divisor, this becomes

CDŒ�2�! CX ! q�CXnD
Œ1�
�! :

We can take analytic de Rham resolutions of the constant sheaves to obtain

p��
�
DŒ�2�! ��X ! q��

�
XnD

Œ1�
�! : (A.3)

In this setting one can replace q���XnD by the complex of differential forms with log
poles along D, which we denote ��

XhDi
. Having made this replacement, the connecting

map may be identified with the residue (see e.g. [17, Section II.3]). Thus

��X
�
�!

D��X WD Cone.��XhDi
res
�! p��

�
DŒ�1�/Œ�1�;

where the map is the inclusion of forms into log forms, ��X ,! ��
XhDi

. Note that D��X
(tautologically) allows us to replace the residue exact triangle (A.3) with the (quasi-
isomorphic) triangle associated to the exact sequence of complexes

0! p��
�
DŒ�2�!

D��X ! ��XhDi ! 0: (A.4)

More generally, if X is a topological space with an increasing filtration by closed
subsets Xn � Xn�1 � � � � � X0 D X , then we may iterate this procedure to obtain an
expression for CX as a twisted complex on the sum of shifts of the star pushforwards of
the CXinXiC1 .

When X is a complex manifold and D D
S
Dk is a normal crossings divisor, and Xi

above is the codimension i intersection of theDk , this complex can be explicitly described
in terms of differential forms with log poles, as in the case of a single divisor above. This
construction is presumably standard, but we have not found a convenient reference, so
we give some details here. For convenience we assume X is affine and pass to termwise
global sections of de Rham complexes.

Again we write ��
XhDi

for the complex of holomorphic differential forms with log
poles alongD. Recall this means that in coordinates whereD is cut out by

Q
i zi D 0, the
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sheaf �1
XhDi

is locally free and generated over �1X by d log zi , and ��
XhDi

is the exterior
algebra on �1

XhDi
, here equipped with the de Rham differential.

We fix notation for indexing divisors. Given J � ¹1; : : : ; nº, let SJ be the intersection
of components Dj for j 2 J , and DJ be their union. Write J c for the complement of J .
Note that KJ WD SJ \DJ c is a normal crossings divisor in SJ ; let QJ WD SJ nKJ be
its complement.

Suppose j … J . We take the residue of a form in ��
SJ hKJ i

along the component
Dj \D

J of KJ :
resj W �lSJ hKJ i ! �l�1DJ[j hKJ[j i

Definition A.2.1. Let D�2k;lX
WD

L
jJ jDk �

l
SJ hKJ i

and D��X D
L

D�
2k;l
X . The latter

carries the de Rham differential ddR of bidegree .0; 1/, and an endomorphism dres, given
by the sum of all residue maps, of bidegree .2;�1/.

Lemma A.2.2. We have d2dR D d
2
res D .ddR C dres/

2 D 0.

Proof. d2dR D 0 is of course standard. To show d2res D 0, we must check that for any two
distinct j; j 0, the corresponding residue maps in dres anti-commute. The two different
compositions correspond to integration over a 2-torus with the two opposite orientations,
which implies the result.

To verify .ddR C dres/
2 D 0, it remains to check that ddRdres D �dresddR. Let us focus

on the term resJ!J 0 of dres taking the residue along z1. We can locally write any form as
a sum of terms f .z/dz1

z1
! or f .z/!, where ! is a ddR-closed form nonsingular along z1.

In the first case, we have

res ddRf .z/
dz1

z1
! D �df .z/!; ddR resf .z/

dz1

z1
! D df .z/!:

Here we have used the same notation for a form nonsingular along z1 and its restriction
to z1 D 0. In the second case, both sides vanish. This concludes the proof.

We henceforth regard D��X as a singly-graded complex (the sum of the previous grad-
ings) equipped with the differential ddRC dres. This complex retains a filtration by the size
of J (the first degree of the bidegree).

As .SJ ; KJ / and .X n SJ ; D n SJ / are again pairs of a space and a normal cross-
ings divisor, we also have complexes KJ��SJ and DnSJ��

XnSJ
. We additionally define

D��
XhSJ i

� DnSJ��
XnSJ

as the subcomplex of forms whose extensions to the closure of
the relevant stratum in X have log poles along SJ , when this is a divisor. The inclusion
D��

XhSJ i
� DnSJ��

XnSJ
, being built from inclusions of log de Rham complexes in de

Rham complexes, is a quasi-isomorphism.

Proposition A.2.3. For any J , there is an exact sequence of complexes

0! KJ��SJ Œ�2jJ j�!
D��X !

D��XhSJ i ! 0; (A.5)

where the first map is the inclusion of summands from Definition A.2.1, and the second
map is the projection onto the complementary summands.



Deletion-contraction triangles for Hausel–Proudfoot varieties 81

Proof. There is evidently such an exact sequence of underlying graded spaces; indeed
a split one, which remains split upon imposing the differential ddR which preserves the
terms associated to any given stratum. The differential dres carries terms associated to
some stratum to terms associated to its closure, hence still respects the above maps.

Remark A.2.4. The corresponding projection map D��X !
DnSJ��

XnSJ
is not surjec-

tive, since forms in the codomain are not required to have simple poles along SJ .

We have a natural inclusion��X !
D��X , defined by the inclusion��X ! ��

XhDi
, the

latter being a summand of the underlying graded vector space of D��X , and dres restricted
to the image of ��X being trivial.

Proposition A.2.5. The inclusion of complexes ��X !
D��X is a quasi-isomorphism.

Proof. We proceed by induction on the number of components of D. The statement is
tautologous when D has no components. Choose a component Dj of D. Consider the
diagram

��Dj
Œ�2� ��X ��

XhDj i

Kj��Dj
Œ�2� D��X

D��
XhDj i

Here, the upper triangle is (A.3), the lower triangle is the triangle associated to (A.5), the
vertical arrows are the inclusions of forms into log forms on the appropriate stratum, the
dashed arrow is dashed as a reminder that it is defined only in the derived category (and
the commutativity of the left square must also be understood in the derived category).

By induction the left vertical map is a quasi-isomorphism. The right vertical map
maps to ��

XnDj
! DnDj��

XnDj
by quasi-isomorphisms, and this latter map is itself a

quasi-isomorphism by induction. Hence the center vertical map is a quasi-isomorphism
as well.

Corollary A.2.6. The exact triangle CDj Œ�2�! CX ! j�CXnDj is quasi-isomorphic
to the triangle Kj��Dj Œ�2�!

D��X !
D��

XhDj i
.

A.3. Filtrations

If V is a vector space with an increasing filtration F , we write the steps of the filtration as

� � � � F�1V � F0V � F1V � � � � :

We recall

Definition A.3.1. Let V;W be filtered vector spaces. A map g W V ! W is said to be

(1) compatible with the filtrations if g.FkV / � FkW ;

(2) strictly compatible with the filtrations if FkW \ g.V / D g.FkV /.
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We will also synonymously say the map (strictly) preserves or (strictly) respects the fil-
tration.

The significance of the strictness condition is:

Lemma A.3.2. Let � � � ! V�1
a
�! V0

b
�! V1 ! � � � be a long exact sequence of filtered

vector spaces, whose maps strictly preserve the filtrations. Then the sequence defined by

the associated graded spaces � � � ! grk V�1
gr.a/
���! grk V0

gr.b/
���! grk V1! � � � is also exact.

Proof. We first show that the kernel of gr.b/ contains the image of gr.a/. Given u 2 FiV ,
write gri .u/ for the associated element of gri V . Consider w 2 FkV�1. By exactness of
the original sequence, b.a.w// D 0. It follows that gr.b/.gr.a/.grk.w/// D 0.

We now show that the image of gr.a/ contains the kernel of gr.b/. Suppose v 2 FkV0
satisfies gr.b/.grk.v// D 0. By definition, this means b.v/ 2 Fk�1V1. By strictness of b,
there exists v0 2 Fk�1V0 such that b.v0/ D b.v/. By exactness of the sequence, there
exists w 2 V�1 such that a.w/ D v � v0. By strictness, there exists w0 2 FkV�1 with the
same property. It follows that gr.a/.grk.w

0// D grk.v � v
0/ D grk.v/.

Caution A.3.3. For a fixed short exact sequence 0!A! B! C ! 0 of vector spaces,
and fixed filtrations on A; C , there are many filtrations on B such that the maps strictly
preserve filtrations. Indeed, let A and C be one-dimensional, with gr1AD A;gr0C D C .
Then the filtration on B is determined by the subspace F0B Š C . The only condition on
F0B is that is must intersect the image of A trivially.

A.4. Weight filtration

According to [18–20], cohomology of algebraic varieties carries various filtrations,
strictly preserved by pullback with respect to any morphism of algebraic varieties. Of rel-
evance to us here is the weight filtration, defined on the rational cohomology, and denoted
W�H�.X;Q/. It is an increasing filtration, with W�Hn.X;Q/ supported in degrees Œ0; 2n�
in general, and in degrees Œ0; n� and Œn; 2n� if X is projective and smooth respectively.

The weight filtration of a smooth variety X is defined by choosing a normal cross-
ings compactification. Then the complex cohomology of X is computed by a complex of
differential forms with log singularities along the boundary, and W�CkH�.X;Q/ is gen-
erated by the subsheaf of forms singular along at most k different boundary components
near any given point.

In this sense, the size of GrW
�CkH�.X;Q/ for k > 0 is a measure of the noncompactness

of X .

A.5. Perverse Leray filtration

LetB be a topological space. For a complexK of sheaves onB , one can define a filtration
on the (hyper)cohomology of K� by cutting off the complex:

PkH�.BIK/ WD Image.H�.BI ��kK/! H�.BIK//:
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In case one has another t -structure available – in our case the middle perverse t -
structure for constructible sheaves on algebraic varieties – one gets a similar filtration
by using the truncations of the t -structure. We term the resulting filtration the perverse
filtration.

In the setting where one has a map � WX!B andK D��F , the perverse filtration on
K is the filtration which arises on H�.X IF / from the perverse t-structure Leray spectral
sequence. Thus it is called the perverse Leray filtration on H�.X IF /. See [14] and the
references therein for discussion of this filtration.

Convention A.5.1. Let f W X ! Y be a map of algebraic or complex analytic spaces.
When we discuss the perverse Leray filtration on H�.X;Q/ associated with f , i.e.
the perverse filtration on H�.f�Q/, we always shift the filtration so that P�1 D 0 and
1 2 P0H�.X;Q/.

In some circumstances, we may wish to further shift the filtration. We will write
H�.X;Q/¹nº to indicate we have shifted the filtration by n steps, i.e.

PiH�.X;Q/¹nº D PiCnH�.X;Q/:

Pullback and pushforward operations generally respect only ‘half’ of the perverse
t-structure. As a consequence, the perverse Leray filtration is not generally preserved
by base change. (In particular, the perverse Leray filtration of the base change to a
point is always trivial, in the sense of agreeing with the filtration by cohomological
degree.) However, base change which is ‘transverse to the singularities of the sheaf’ does
respect perversity. This can be precisely formulated in the language of microsupport of
Kashiwara–Schapira, as we now recall.

Proposition A.5.2 ([50, Corollary 10.3.16]). LetN �M be an inclusion of smooth com-
plex submanifolds and F a perverse sheaf on M . If N is noncharacteristic for F , i.e.,

ss.F / \ T �NM � T
�
MM;

then F jN ŒdimN � dimM� is perverse.

Corollary A.5.3. Consider a diagram of complex manifolds

A C

B D

f

(A.6)

Then H�.C;C/ and H�.A;C/ have perverse Leray filtrations coming from the maps to
B and D. If the vertical maps are proper, and the diagram is Cartesian .A D B �D C/
and transverse, then f � W H�.C;C/! H�.A;C/ strictly preserves the perverse Leray
filtrations.

Proof. Follows from Proposition A.5.2 and the standard microsupport estimate for proper
pushforward [50, Proposition 5.4.4].
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Appendix B. A holomorphic embedding DJ � B

Here we recall a more canonical choice of the embedding F of Lemma 11.1.1. The con-
struction is due to Yang Li. We do not logically depend on this result, but it provides a
better analogy with the hyperkähler aspects of the nonabelian Hodge diffeomorphism.

The sphere of complex structures compatible with the hyperkähler metric on D is
parameterized by a choice of unit vector s 2 R3, as described by (7.2). So far, we
have considered the complex structure Ie1 on D, with respect to which the fibers of
D! D are complex subvarieties. On the other hand, the complex structures Iae2Cbe3
for different .a; b/ 2 S1 define biholomorphic manifolds, because the function V is
symmetric under rotations of the e2; e3-plane. They were described in [55]. For con-
creteness, let J be the complex structure associated to e3, and let DJ denote the manifold
D with this choice of complex structure. Let � D u1 C iu2 be the complex part of the
moment map. The map exp.2�i�/ W DJ ! C� is holomorphic with image the annulus
exp.�2�r/ < jzj < exp.2�r/. Its fibers are complex surfaces, which are topologically
annuli away from 1 2 C�. Holomorphic coordinates on these fibers can be constructed as
follows.

Theorem B.0.1 ([55, Section 1.3.2]). There is a holomorphic embedding DJ ! C2 n

¹xy D 1º, identifying exp.2�i�/ with 1 � xy and u3 with a strictly monotonic function
of jxj2 � jyj2 . for fixed �/.

Proof. We summarize Li’s argument here, adapting the notation slightly to match our
own, and refer to [55] for details. The first task is to define holomorphic functions x; y W
DJ ! C satisfying xy D 1 � exp.2�i�/. Let �1 2 C and consider the following one-
forms on QDJ n ¹� 2 Zº:

�x D Vdu3Ci�C

�
�i

2
�i�1C lim

k!1

kX
nD�k

�
1

2.�Cn/
�

u3

2.�Cn/

q
u23Cj�Cnj

2

��
d�;

�y D �Vdu3�i�C

�
�i

2
Ci�1C lim

k!1

kX
nD�k

�
1

2.�Cn/
C

u3

2.�Cn/

q
u23Cj�Cnj

2

��
d�:

The apparent singularities of the second term at � 2 Z can be eliminated if we assume
u3 ¤ 0. On the other hand, the singularities at � 2 Z; u3 D 0 cannot be removed. A direct
calculation shows that away from this locus, �x ; �y are closed Z-invariant .1; 0/-forms.

The line integrals
R
�x ;
R
�y therefore define local holomorphic functions on QDJ away

from � 2Z. Moreover, the period around a U1-orbit is 2�i , and for a unique choice of �1
the period spanning a Z-translation also vanishes. One therefore has global holomorphic
functions

x D exp
�Z

�x

�
; y D exp

�Z
�y

�
on DJ defined away from u3 � 0; � D 0 and u3 � 0; � D 0 respectively. Moreover, a
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direct calculation shows

�x C �y D d log.1 � exp.2�i�// (B.1)

and therefore
xy D 1 � exp.2�i�/

wherever the left-hand side is defined. This in turn proves that x;y extend to holomorphic
functions on all of DJ , vanishing along u3 � 0; � D 0 and u3 � 0; � D 0 respectively.

Finally, we check that the map .x; y/ W DJ ! C2 is an embedding. It is enough to
verify that it restricts to an embedding on any fiber of exp.2�i�/. Each such fiber is
a U1-bundle over an interval a < u3 < b. The restriction of �x to such a fiber equals
Vdu3 C i� . It follows that x restricts to

R
.Vdu3 C i�/. The injectivity of x follows from

the fact that V is everywhere positive and � is a connection one-form. The claim regarding
u3 D u3.jxj

2 � jyj2; �/ likewise follows from the fact that V is everywhere positive.
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