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Abstract. In this article, we are interested in the question whether any complete contractible 3-
manifold of positive scalar curvature is homeomorphic to R3. We study the fundamental group at
infinity, �11 , and its relationship to the existence of complete metrics of positive scalar curvature.
We prove that a complete contractible 3-manifold with positive scalar curvature and trivial �11 is
homeomorphic to R3.
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1. Introduction

This paper is the sequel of [30] and is also devoted to the study of contractible 3-manifolds
which carry complete metrics of positive scalar curvature. We are mainly concerned with
the following question:

Question. Is any complete contractible 3-manifold of positive scalar curvature homeo-
morphic to R3?

Gromov–Lawson [11] and Chang–Weinberger–Yu [4] independently proved that a
complete contractible 3-manifold with uniformly positive scalar curvature (i.e. the scalar
curvature is bounded away from zero) is homeomorphic to R3. The proof of Gromov and
Lawson uses minimal surfaces theory, while Chang, Weinberger and Yu use K-theory.

The topological structure of contractible 3-manifolds is quite complicated. For ex-
ample, Whitehead [31] and McMillan [15] showed that there are infinitely many mutually
non-diffeomorphic contractible 3-manifolds, such as the Whitehead manifold.

The Geometrization Conjecture which was confirmed by Perelman [21–23] and a
result of McMillan [14] tell us that a contractible 3-manifold can be written as an ascend-
ing union of handlebodies. Note that if there are infinitely many handlebodies of genus
zero (i.e. 3-balls), the 3-manifold is homeomorphic to R3.
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In [30], we consider a contractible genus 3-manifold, an ascending union of solid tori.
As mentioned above, R3 is not genus one but genus zero, since it is an increasing union of
3-balls. In [30], it is proved that no contractible genus one 3-manifold admits a complete
metric of non-negative scalar curvature.

In the present paper, we study the existence of complete metrics of positive scalar
curvature and its relationship to the fundamental group at infinity.

The fundamental group at infinity, �11 , of a path-connected space is the inverse limit
of the fundamental groups of complements of compact subsets (see Definition 2.3). The
triviality of the fundamental group at infinity is not equivalent to simply-connectedness at
infinity. For example, the Whitehead manifold is not simply-connected at infinity but its
fundamental group at infinity is trivial.

We prove the following theorem:

Theorem 1.1. A complete contractible 3-manifold with positive scalar curvature and
trivial �11 is homeomorphic to R3.

However, there are uncountably many mutually non-homeomorphic contractible
3-manifolds with non-trivial �11 . In Appendix C, we construct such a manifold and show
that it has no complete metric of positive scalar curvature.

1.1. Handlebodies and Property (H)

Let .M; g/ be a complete contractible 3-manifold of positive scalar curvature. It is an
increasing union of closed handlebodies ¹Nkº (see Theorem 2.7).

In the following, we suppose that M is not homeomorphic to R3. We may assume
that none of the Nk is contained in a 3-ball (i.e. homeomorphic to a unit ball in R3) (see
Remark 2.2). This plays a crucial role in our argument.

In the genus one case, the family ¹Nkº has several good properties. For example,
the maps �1.@Nk/! �1.M nNk/ and �1.@Nk/! �1.Nk nN0/ are both injective (see
[30, Lemma 2.10]). These properties are crucial and necessary in the study of the existence
of complete metrics of positive scalar curvature. Generally, the family ¹Nkºmay not have
the above properties.

For example, the map �1.@N0/! �1.M nN0/ may not be injective. To overcome it,
we use topological surgeries on N0 and find a new handlebody to replace it. Roughly, we
use the loop lemma to find an embedded disc .D; @D/ � .M nN0; @N0/ whose bound-
ary is a non-nullhomotopic circle in @N0. The new handlebody is obtained from N0 by
attaching a closed tubular neighborhood N".D/ of D in M nN0.

We repeatedly use topological surgeries on each Nk to obtain a new family ¹Rkºk of
closed handlebodies with the following properties, called Property (H):

(1) the map �1.@Rk/! �1.Rk nR0/ is injective for k > 0;

(2) the map �1.@Rk/! �1.M nRk/ is injective for k � 0;

(3) each Rk is homotopically trivial in RkC1 but not contained in a 3-ball in M ;
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(4) there exists an increasing sequence ¹jkºk of integers such that �1.@Rk \ @Njk
/!

�1.@Rk/ is surjective.

Remark. If M is not homeomorphic to R3, the existence of such a family is ensured by
Theorem 4.6. It is not unique. In addition, the union of such a family may not be equal
to M .

For example, ifM WD
S
k Nk is a contractible genus one 3-manifold, the family ¹Nkº

(as above) satisfies Property (H) (see [30, Lemma 2.10]).

1.2. The vanishing property

It is classical that the geometry of minimal surfaces gives topological information on
3-manifolds. This was exhibited in Schoen–Yau’s works [27, 28] as well as in Gromov–
Lawson’s [11].

In the genus one case, the geometry of a stable minimal surface is constrained by the
geometric index (see Property P in [30]). In the higher genus case, the geometry of stable
minimal surfaces is related to the fundamental group at infinity.

In order to clarify that relationship, let us introduce a geometric property, called the
vanishing property. Consider a complete contractible 3-manifold .M;g/ of positive scalar
curvature which is not homeomorphic to R3. As indicated above, there is an increasing
family ¹Rkºk of closed handlebodies with Property (H) (see Theorem 4.6).

A complete embedded stable minimal surface † � .M; g/ is said to satisfy the van-
ishing property with respect to the family ¹Rkºk if there is a positive integer k.†/ such
that for k � k.†/, any circle in † \ @Rk is nullhomotopic in @Rk (see Definition 6.1).

If a complete stable minimal surface does not satisfy the vanishing property with
respect to ¹Rkºk , it gives a non-trivial element in the fundamental group at infinity (see
Lemma 6.2). As a consequence, if �11 is trivial, each complete stable minimal surface in
M has the vanishing property with respect to ¹Rkºk (see Corollary 6.3).

1.3. The idea of the proof of Theorem 1.1

Our main strategy is to argue by contradiction. Suppose that a complete contractible
3-manifold .M;g/with positive scalar curvature and trivial �11 .M/ is not homeomorphic
to R3.

Before constructing minimal surfaces, let us introduce two notions from 3-dimen-
sional topology. For a closed handlebody N of genus g > 0, a meridian  � @N of N is
an embedded circle which is nullhomotopic in N but not contractible in @N (see Defini-
tion 3.1).

A system of meridians of N is a collection ¹ lºg
lD1

of g distinct meridians with the
property that @N n

`g

lD1
 l is homeomorphic to an open disc with some punctures. Its

existence is ensured by Lemma 3.9.
Let ¹Nkºk and ¹Rkºk be as above. Since N0 is not contained in a 3-ball (see Remark

2.2), the genus of Nk is greater than zero. The handlebody Nk has a system of meridians
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¹ l
k
º
g.Nk/

lD1
. Roughly speaking, there are g.Nk/ disjoint area-minimizing discs ¹�l

k
ºl with

@�l
k
D  l

k
. Their existence is ensured by the works of Meeks and Yau [17, 18] when the

boundary @Nk is mean convex, as we now explain.
We construct these discs by induction on l .
When l D 1, there is an embedded area-minimizing disc �1

k
� Nk with boundary 1

k

(see [17, 18] or [7, Theorem 6.28]).
Suppose that there are l disjointly embedded stable minimal discs ¹�i

k
ºliD1 with

@�i
k
D  i

k
. Our target is to construct a stable minimal surface �lC1

k
with boundary  lC1

k
.

Consider the Riemannian manifold .Tk;l ; gjTk;l
/, where Tk;l WD Nk n

`l
iD1�

l
k

. It is
a handlebody of genus g.Nk/ � l ; for an example, see Figure 1.

�1
k

.Nk ; gk/

1
k

.Tk;1; gk jTk;1
/

�1�
k1�

k

�1C
k1C

k

Fig. 1

The boundary of .Tk;l ; gjTk;l
/ consists of @Nk n

`l
iD1 

i
k

and some disjoint discs
¹�i�

k
ºliD1 and ¹�iC

k
ºliD1. The two discs �i�

k
and �iC

k
both come from the same minimal

disc �i
k

. Therefore, the mean curvature of the boundary of .Tk;l ; gjTk;l
/ is non-negative

(see Section 5.1).
In addition, ¹ i

k
ºi>l is a system of meridians of the handlebody .Tk;l ; gjTk;l

/. Then,
we use the result of Meeks and Yau to find an embedded stable minimal surface �lC1

k
�

Tk;l with boundary  lC1
k

. The discs ¹�i
k
º
lC1
iD1 are disjoint inNk . This finishes the inductive

construction.
If @Nk is not mean convex, we can deform the metric in a small neighborhood of @Nk

so that for the new metric, it becomes mean convex. As constructed above, each �l
k

is
stable minimal for this new metric and for the original one away from a neighborhood of
@Nk (near Nk�1, for example). This is sufficient for our proof.



Contractible 3-manifolds and positive scalar curvature (II) 5

Define the lamination Lk WD
`
l �

l
k

(i.e. a disjoint union of embedded surfaces).
We show that each lamination Lk intersects the compact set R0 (from Corollary 3.10).
According to Colding–Minicozzi’s theory (see [6, Appendix B]), the sequence ¹Lkºk

subconverges to a lamination L WD
S
t2ƒ Lt in .M; g/. Note that each leaf Lt is a

complete (non-compact) stable minimal surface (see Theorem 5.4).
As indicated above, since .M; g/ has positive scalar curvature and �11 .M/ is trivial,

each leaf Lt in L has the vanishing property with respect to ¹Rkºk (see Lemma 6.2 and
Corollary 6.3). Furthermore, the lamination L also satisfies the vanishing property (see
Corollary 6.5). That is,

� there exists a positive integer k0 such that for any k � k0 and any t 2 ƒ, any circle in
Lt \ @Rk is nullhomotopic in @Rk .

The reason for this can be described as follows. We argue by contradiction. Suppose that
there exists a sequence ¹knºn of increasing integers and a sequence ¹Ltnº of leaves in L

such that Ltn \ @Rkn
has at least one non-nullhomotopic circle in @Rkn

for each n.
The sequence ¹Ltnº smoothly subconverges to some leaf in L . For our convenience,

we may assume that ¹Ltnº converges to the leafLt1 . The leafLt1 satisfies the vanishing
property (see Lemma 6.2). That is, there is a positive integer k.Lt1/ such that for k �
k.Lt1/, any circle in Lt1 \ @Rk is homotopically trivial in @Rk .

However, since Ltn \ @Rkn
has some non-nullhomotopic circle in @Rkn

, we show
that for kn > k.Lt1/, Ltn \ @Rk.Lt1 /

has a meridian of Rk.Lt1 /
(see Remark 4.7 and

Corollary 3.8). These meridians ofRk.Lt1 /
will converge to a meridian ofRk.Lt1 /

which
is contained in Lt1 \ @Rk.Lt1 /

. This is in contradiction with the previous paragraph.
Let us explain how to deduce a contradiction from the vanishing property of L .
We can show that if Nk contains Rk0

(for k large enough), then Lk \ @Rk0
contains

at least one meridian(s) of Rk0
(see Corollary 3.10). Since Lk subconverges to L , these

meridians of Rk0
will subconverge to a non-contractible circle in L \ @Rk0

. That is,
some leaf Lt in L contains this non-nullhomotopic circle in @Rk0

. This contradicts the
vanishing property of L .

1.4. The plan of this paper

In the first part of the paper, we describe the topological properties of contractible 3-
manifolds. In Section 2, we recall some notions, such as simply-connectedness at infinity,
fundamental group at infinity and handlebodies. In Section 3, we introduce meridian
curves and meridian discs in a handlebody. In Section 4, we introduce two types of surg-
eries on handlebodies. Using these surgeries, we show the existence of an increasing
family of handlebodies with good properties, called Property (H).

In the second part, we deal with minimal surfaces and related problems. In Section 5,
we construct minimal laminations and consider their convergence. In Section 6, we intro-
duce the vanishing property and study its relation to the fundamental group at infinity.
This relation is clarified by Lemma 6.2.
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In the third part, we give the complete proof of Theorem 1.1. In Sections 7 and 8,
our proof is similar to the genus one case. In Appendix C, we construct a contractible
3-manifold with non-trivial �11 . In addition, we prove that this manifold has no complete
metric of positive scalar curvature.

2. Background

2.1. Simply-connectedness at infinity and �11

Definition 2.1. A topological space M is simply-connected at infinity if for any com-
pact set K � M , there exists a compact set K 0 containing K such that the induced map
�1.M nK

0/! �1.M nK/ is trivial.

The Poincaré conjecture (see [2,3,19]) shows that any contractible 3-manifold is irre-
ducible (i.e. any embedded 2-sphere in the 3-manifold bounds a closed 3-ball). A result
of Stallings [29] tells us that the only contractible 3-manifold that is simply-connected at
infinity is R3.

Remark 2.2. If a contractible 3-manifoldM is not homeomorphic to R3, it is not simply-
connected at infinity. That is, there is a compact set K � M such that for any compact
set K 0 � M containing K, the induced map �1.M n K 0/! �1.M n K/ is not trivial.
We also know that the set K is not contained in a 3-ball in M . Indeed, if a closed 3-
ball B (i.e. a closed set homeomorphic to a closed unit ball in R3) contains K, then van
Kampen’s Theorem shows that �1.M/ Š �1.M n B/ ��1.@B/ �1.B/. In addition, �1.B/
and �1.@B/ are both trivial. Therefore, �1.M n B/ Š �1.M/ is trivial. That is, the map
�1.M n B/! �1.M nK/ is trivial, a contradiction.

Definition 2.3. The fundamental group at infinity �11 of a path-connected space is the
inverse limit of the fundamental groups of complements of compact subsets.

Remark 2.4. LetM be a contractible 3-manifold. Then �11 .M/ is non-trivial if and only
if there is a compact set K and a family ¹kºk of circles in M nK going to infinity with
the property that for each k,

� k is not nullhomotopic in M nK,

� k is homotopic to kC1 in M nK.

Such a family of circles gives a non-trivial element in �11 .M/.

A contractible n-manifold M n with n � 4 is simply-connected at infinity if and only
if �11 .M

n/ is trivial (see [4]). However, this result is not true in dimension 3.

Remark 2.5. Let M be a contractible genus one 3-manifold. Then M is not homeomor-
phic to R3. It is not simply-connected at infinity but its fundamental group at infinity is
trivial. Indeed, let M be an increasing union of solid tori ¹Nkº1kD1. Lemma 2.10 in [30]
shows that the induced maps �1.@Nk/! �1.Nk nN0/ and �1.@Nk/! �1.M nNk/ are
both injective for k > 0, that is, the family ¹Nkº is excellent (see [20, Section 2]).
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Lemma 4.1 of [20, p. 33] shows that if a closed curve  �M nNkC1 is homotopic to
 0 � Nk nNm in M nN0, then  is contractible in M nN0 where 0 < m < k.

Remark 2.4 shows that an element in �11 .M/ gives a family ¹iº1iD1 of circles going
to infinity and a compact set K. We may assume that K is equal to N0. Each i is homo-
topic to 1 in M nN0.

Let 1 be a subset of some Nk n N0. We choose i large enough so that i is a subset
of M n NkC1. We use the above statement to find that i is contractible in M n N0.
Consequently, �11 .M/ is trivial.

2.2. Handlebodies

Definition 2.6 ([24, p. 46]). A closed handlebody is any space obtained from the closed
3-ball D3 (a 0-handle) by attaching g distinct copies of D2 � Œ�1; 1� (1-handles) with
the homeomorphisms identifying the 2g discs D2 � ¹˙1º to 2g disjoint 2-discs on @D3,
all to be done in such a way that the resulting 3-manifold is orientable. The integer g is
called the genus of the handlebody.

Let us remark that a handlebody of genus g is homeomorphic to a boundary connected
sum of g solid tori. Therefore, its boundary is a compact surface of genus g (see [24,
p. 46]).

From a result of McMillan [14] and the Poincaré conjecture (see [2, 3, 19]), we know
the following:

Theorem 2.7 ([14, Theorem 1, p. 511]). Any contractible 3-manifold can be written as
an ascending union of handlebodies.

Remark 2.8. LetM be a contractible 3-manifold. If it is not homeomorphic to R3, it can
be written as an increasing family ¹Nkº of handlebodies such that

� Nk is homotopically trivial in NkC1 for each k;

� none of the Nk is contained in a 3-ball (by Remark 2.2).

3. Meridians

In this section, we consider a closed handlebody N .

Definition 3.1. An embedded circle  � @N is called a meridian if  is nullhomotopic in
N , but not contractible in @N .

An embedded closed disc .D;@D/� .N; @N / is called a meridian disc if its boundary
is a meridian of N .

The disc D is a separating meridian disc if N nD is not connected. Its boundary is
called a separating meridian.

The disc D is a non-separating disc if N nD is connected. Its boundary is called a
non-separating meridian.
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Remark. Let  be a meridian of N . If  is a separating meridian, it cuts @N into two
components. The class Œ� is equal to zero in H1.@N /.

If  is a non-separating meridian, then @N n  is connected. The class Œ� is a non-
trivial element in H1.@N /.

3.1. Effective meridians

Consider two closed handlebodies N 0 and N with N 0 � IntN .

Definition 3.2. A meridian  of N is called an effective meridian relative to N 0 if any
meridian disc with boundary  intersects the core of N 0, i.e. a deformation retraction
of N 0 which is a 1-dimensional CW complex.

The handlebody N is called an effective handlebody relative to N 0 if any meridian of
N is an effective meridian relative to N 0.

Note that if N 0 is contained in a 3-ball B � IntN , there is no effective meridian
relative to N 0.

In the following, we will repeatedly use the loop lemma.

Lemma 3.3 ([13, Theorem 3.1, p. 54]). Let M be an orientable 3-manifold with bound-
ary @M , not necessarily compact. If there is a map f W .D2; @D2/! .M; @M/ such that
f j@D2 is not nullhomotopic in @M , then there is an embedding h with the same property.

Remark 3.4. We may assume that h.IntD2/ � IntM . Indeed, consider a 1-sided open
neighborhood M" Š @M � Œ0; "/ of @M in M . Shrinking the image of f into M."/ WD
M nM", we find a map f" W .D2; @D2/! .M."/; @M."// with the property that f".@D2/

is not nullhomotopic in @M."/. We use Lemma 3.3 to find an embedding h" with the
same property. Its image stays in .M."/; @M."//. Therefore, the image of h" is contained
in IntM .

In addition, there is an embedded circle  � @M which is homotopic to h".@D2/

in M ". There is an embedded annulus A" � M" joining  and h".@D2/. We find a map
h W .D2; @D2/! .M; @M/ whose image is an embedded disc (the union of A" and the
image of h"). It has the same property as f and h.IntD2/ � IntM .

Lemma 3.5. Let N 0 and N be two closed handlebodies with N 0 � IntN . The handle-
body N is an effective handlebody relative to N 0 if and only if the map �1.@N / !
�1.N nN 0/ is injective.

Proof. If N is not an effective handlebody relative to N 0, then there is a meridian disc
.D; @D/ � .N; @N / withD \N 0 D ;. Therefore, the map �1.@N /! �1.N nN 0/ is not
injective.

Conversely, if �1.@N /! �1.N nN 0/ is not injective, we use Lemma 3.3 to find an
embedded disc .D0; @D0/ � .N nN 0; @N / whose boundary is not contractible in @N . As
in Remark 3.4, we may assume that IntD0 � Int.N n N 0/. We see that D0 is a meridian
disc with D0 \N 0 D ;. Therefore, N is not an effective handlebody relative to N 0. This
finishes the proof.
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We now introduce some notations for circles in a disc.

Definition 3.6 (see [30, Definition 2.11]). Let C WD ¹ciºi2I be a finite set of pairwise
disjoint circles in the disc D2 and Di � D2 the unique disc with boundary ci . Consider
¹Diºi2I as a partially ordered set, ordered by inclusion. For each maximal element Dj
in .¹Diºi2I ;�/, its boundary cj is called a maximal circle in C . For each minimal ele-
ment Dj , its boundary cj is a minimal circle in C .

Lemma 3.7. Let N 0 and N be two closed handlebodies such that N 0 � Int N and
�1.@N

0/! �1.N nN 0/ is injective. If N is an effective handlebody relative to N 0, then
any meridian disc .D; @D/ � .N; @N / contains a meridian of N 0.

Proof. The proof is the same as the proof of [30, Lemma 2.12]. Suppose that the closed
meridian disc D intersects @N 0 transversally where  WD @D is a meridian of N . The
intersectionD \ @N 0 is a disjoint union of circles ¹ciºi2I . Each ci bounds a unique closed
disc Di � IntD.

Consider the sets

C non
WD ¹ci j ci is not homotopically trivial in @N 0º;

Cmax
WD ¹ci j ci is a maximal circle in ¹ciºi2I º:

We will show that C non is non-empty, and a minimal circle in C non is the desired
meridian.

Suppose to the contrary that C non is empty. Hence, each ci 2 Cmax is contractible in
@N 0 and bounds a disc D0i � @N

0. Consider the immersed disc

OD WD
�
D n

[
ci2C

max

Di

�
[

� [
ci2C

max

D0i

�
with boundary  . Since OD \ IntN 0 D ;, we see that  is contractible in N nN 0.

However, Lemma 3.5 shows that the map �1.@N /! �1.N nN 0/ is injective. That
is, the circle  is nullhomotopic in @N . This is in contradiction with our hypothesis that 
is non-trivial in �1.@N /. We conclude that C non ¤ ;.

In the following, we will prove that each minimal circle cj in C non is a required merid-
ian. From Definition 3.1, it is sufficient to show that cj is homotopically trivial in N 0. We
will construct an immersed disc ODj � N 0 with boundary cj .

Let Cj WD ¹ci j ci � IntDj for i 2 I º and Cmax
j be the set of maximal circles in Cj .

We now have two cases: Cj D ; or Cj ¤ ;.
If Cj is empty, we consider the set Z WD IntDj and define ODj WD IntDj .
If Cj is not empty, then Cmax

j is also non-empty. From the minimality of cj in C non,
each ci 2 Cmax

j is nullhomotopic in @N 0 and bounds a disc D00i � @N
0.

Define Z WD IntDj n
S
ci2C

max
j
Di and the new disc ODj WD Z [

S
ci2C

max
j
D00i with

boundary cj .
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Let us explain why ODj is contained inN 0. In any case, @N 0 cutsN into two connected
components, N n N 0 and IntN 0. The set Z is one of the components of IntDj n @N 0.
Therefore, it must be contained in IntN 0 or N nN 0.

If Z is in N n N 0, then the disc ODj is contained in N nN 0, so cj is contractible
in N nN 0. However, since the induced map �1.@N 0/! �1.N nN 0/ is injective, cj is
homotopically trivial in @N 0, which contradicts the choice of cj 2 C non. We conclude that
Z is contained in IntN 0.

Therefore, ODj is contained in N 0. That is, cj is nullhomotopic in N 0. However, it is
non-trivial in �1.@N 0/. From Definition 3.1, we conclude that cj �D is a meridian ofN 0.
This finishes the proof.

As a consequence, we have

Corollary 3.8. LetN 0 andN be two closed handlebodies in a contractible 3-manifoldM
such that N 0 � IntN and the map �1.@N 0/! �1.M nN 0/ is injective. If an embedded
circle  � @N is not nullhomotopic in M nN 0, then any embedded disc D � M with
boundary  contains a meridian of N 0.

The proof is the same as that of Lemma 3.7.

3.2. Non-separating meridians

Lemma 3.9. For a closed handlebody N of genus g, there are g disjoint non-separating
meridians ¹ lºg

lD1
such that N n

`
l N"l

.Dl / is a closed 3-ball, where Dl is a closed
meridian disc with boundary  l and N"l

.Dl / is an open neighborhood of Dl in N with
small radius "l .

The set ¹ lºg
lD1

of these meridians is called a system of meridians of the handle-
body N of genus g. It is not unique.

Proof of Lemma 3.9. Pick any non-separating meridian 1 of N . We use Lemma 3.3 to
find an embedded disc D1 � N .

As in Remark 3.4, we may assume that IntD1 � IntN . The set N1 WD N n N".D1/
is a closed handlebody of genus g � 1, where N"1

.D1/ is the open tubular neighborhood
of D1 in N with small radius "1. In particular, the map �1.@N \ @N1/! �1.@N1/ is
surjective.

Choose a non-separating meridian 2 � @N \ @N1 ofN1. By Lemma 3.3, there exists
a meridian disc D2 of N1 D N nN"1

.D1/. The set

N2 WD N n .N"1
.D1/qN"2

.D2//

is a closed handlebody of genus g � 2, where N"2
.D2/ is an open tubular neighborhood

of D2 in N .
We repeat this process g � 2 times and obtain g disjointly embedded discs ¹Dlº such

that N n
`
l N"l

.Dl / is a handlebody of genus zero (a 3-ball). The boundaries ¹ lºg
lD1

of
these discs are g distinct meridians as required.
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Corollary 3.10. LetN �M , ¹ lº and ¹Dlº be as in Lemma 3.9, whereM is a 3-manifold
without boundary. If R � IntN is a closed handlebody that is not contained in a 3-ball
inM , and �1.@R/! �1.M nR/ is injective, then @R\

`
lDl contains a meridian ofR.

Proof. The proof is similar to the proof of [30, Lemma 2.12]. We may assume that @R
intersects

`
lDl transversally. The intersection @R\

`
lDl WD ¹º2C has finitely many

components. Set C non WD ¹ 2 C j  is not homotopically trivial in @Rº.

Claim. C non is non-empty.

Suppose that C non is empty. We see that any circle inDl \ @R is nullhomotopic in @R.
As in the proof of Lemma 3.7, we get a new disc in N nR with boundary  l . Therefore,
each  l is nullhomotopic in N nR.

We use Lemma 3.3 to find a meridian disc D01 � N nR with boundary 1. As in
Remark 3.4, we may assume that IntD01 � IntN nR (or D01 � N n R). Choose an open
tubular neighborhood N"0

1
.D01/ of D01 in N n R with small radius "01. The set N 01 WD

N nN"0
1
.D01/ is a closed handlebody of genus g � 1 containing R.

In addition, for l > 1,  l is a non-separating meridian of N 01 but nullhomotopic in
N n .N"0

1
.D01/qR/.

Repeating this process g � 1 times, we obtain g embedded discs ¹D0
l
º
g

lD1
such that

� R \
`
l N"0l

.D0
l
/ D ;;

� the handlebody N n
`
l N"0l

.D0
l
/ is of genus zero (a closed 3-ball),

where N"0
l
.D0

l
/ is an open tubular neighborhood of D0

l
in N with small radius "0

l
.

Therefore, R is contained in the 3-ball N n
`
l N"0l

.D0
l
/. This contradicts our hypoth-

esis and finishes the proof of the claim.
As in the proof of Lemma 3.7, we use the injectivity assumption to show that each

minimal circle in C non is a required meridian.

4. Effective handlebodies

4.1. Surgeries

Consider two closed handlebodies N 0 and N in a contractible 3-manifold M with N 0 �
IntN . We introduce two types of surgeries on handlebodies:

Type I: If there exists a meridian discD�N nN 0 ofN , then we consider an open tubular
neighborhood N".D/ � N nN 0 of D. We then have two cases:

If D is a separating meridian disc, then N nN".D/ has two components. The closed
handlebody W1 is defined as the component containing N 0.

If D is a non-separating meridian disc, then N n N".D/ is connected. The closed
handlebody W1 is defined to be N nN".D/.

Type II: Let  be a non-contractible circle in @N and D1 � M nN an embedded disc
with boundary  � @N . We may assume that IntD1 �M nN . Again we have two cases:
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If  is not homotopically trivial in N , we consider a closed tubular neighborhood
N"1

.D1/ of D1 in M nN . Define a new handlebody W2 as N [N"1
.D1/.

If  is nullhomotopic in N , it is a meridian of N . Consider a meridian disc D2 of N
with boundary  and the embedded sphere D1 [ D2. The Poincaré conjecture (see [2,
3, 19]) implies that this sphere bounds a 3-ball B .

We can conclude that D2 is a separating meridian disc. (Otherwise, we find a circle
0 �N such that the intersection number of the sphereD1 [ D2 and 0 is˙1. However,
since any sphere inM contractible, the intersection number must be zero, a contradiction.)
Therefore, B contains one of the components of N nD2 and the union B [ N is also a
handlebody. The new handlebody W2 is defined to be B [N .

Remark 4.1. For i D 1;2, the genus g.@Wi / of @Wi is less than g.@N /. In addition, @Wi is
a union of @Wi \ @N and some disjoint discs. This shows that the map �1.@Wi \ @N/!
�1.@Wi / is surjective.

Lemma 4.2. If N 0 is homotopically trivial in N , then N 0 is also homotopically trivial
in Wi for each i , where Wi is obtained from the above surgeries.

Proof. For the type II surgery, N is contained in W2. Therefore, N 0 is homotopically
trivial in W2.

For the type I surgery, it is sufficient to show that any circle c � N 0 bounds some
(immersed) disc OD0 � W1.

The closed curve c bounds an immersed disc D0 � IntN . We will construct the
required disc OD0 � W1 from D0.

We may assume thatD0 intersectsD�qDC WD IntN \ @N".D0/ transversally. Each
component ci ofD0 \ .DCqD�/ is a circle inD0 and bounds a closed subdiscD0i �D

0.
Since DC and D� are two disjoint discs, each ci is contractible in DC qD�. It also

bounds a disc D00i � D
C qD�. Let Cmax be the set of maximal circles of ¹ciºi2I in D0.

We construct a disc
OD0 WD

�
D0 n

[
ci2C

max

D0i

�
[

[
ci2C

max

D00i

with boundary c. It lies in N nN".D0/. That is, c is contractible in W1. Therefore, N 0 is
homotopically trivial in W1.

4.2. Existence of effective handlebodies

In the following, M is a contractible 3-manifold.

Theorem 4.3. Let N 0 and N be two closed handlebodies in M such that N 0 � IntN
and N 0 is homotopically trivial in N . Then there exists a closed handlebody R � M
containing N 0 and such that

(1) the map �1.@R/! �1.R nN 0/ is injective;

(2) the map �1.@R/! �1.M nR/ is injective;
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(3) N 0 is homotopically trivial in R;

(4) @R is a union of @R \ @N and some disjoint discs.

Remark. From Lemma 3.5, R is an effective handlebody relative to N 0.

Proof of Theorem 4.3. Suppose that either i1 W �1.@N /! �1.N nN 0/ or i2 W �1.@N /!
�1.M nN/ is not injective. (If both are injective, R is defined to be N .)

If i1 is not injective, Lemma 3.3 shows that there exists a meridian disc D1 of N
with D1 \ N 0 D ;. We do the type I surgery on N with the disc D1 to obtain a new
handlebody W .

If i2 is not injective, we use Lemma 3.3 to find an embedded circle  � @N and an
embedded discD2 �M nN (IntD2 �M nN ) where  D @D2 is not nullhomotopic in
@N . We do the type II surgery with the disc D2 to get a new handlebody W .

In any case, we have g.@W / < g.@N/. The boundary @W is a union of @W \ @N and
some disjoint discs ¹D0iºi . Therefore, �1.@W \ @N/! �1.@W / is surjective. In addition,
Lemma 4.2 implies that N 0 is contractible in W .

When picking a circle  0 � @W which is not nullhomotopic in @W , we may assume
that  0 is an embedded circle in @W \ @N . Therefore, when repeating these two types of
surgeries, we may assume that the new surgeries are performed away from these disjoint
discs ¹D0iº.

We iterate this process until we find a handlebody R satisfying (1) and (2). At each
step, the genus of the handlebody obtained from the surgery is less than the original one.
Therefore, this process stops in no more than g.N / steps.

As above, N 0 is homotopically trivial in R, and @R is a union of @R \ @N and some
disjoint discs.

Remark. IfN 0 is not contained in a 3-ball inM , then the genus ofR is greater than zero.

Lemma 4.4. Let R � M be a closed effective handlebody relative to the closed handle-
bodyN 0 � IntR and such that �1.@R/! �1.M nR/ is injective. If a closed handlebody
N is an effective handlebody relative to R � IntN , then N is an effective handlebody
relative to N 0.

Proof. From Lemma 3.5, it is sufficient to show that the map �1.@N /! �1.N nN 0/ is
injective.

We use Lemma 3.5 to show that the induced map �1.@R/! �1.R nN 0/ is injective.
Since �1.@R/! �1.M nR/ is injective, so is �1.@R/! �1.N nR/.

Van Kampen’s Theorem gives an isomorphism between �1.N nN 0/ and

�1.N nR/ ��1.@R/ �1.R nN
0/:

A classical result (see [25, Theorem 11.67, p. 404]) shows that the induced map
�1.N nR/! �1.N nN 0/ is injective.

Lemma 3.5 shows that �1.@N /! �1.N nR/ is injective, hence so is the composition
�1.@N /! �1.N nR/! �1.N nN 0/. This finishes the proof.
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4.3. Property .H/

In the following, M is a contractible 3-manifold which is not homeomorphic to R3.
By Theorem 2.7, M can be written as an ascending union of handlebodies ¹Nkº1kD0.

Each Nk is homotopically trivial in NkC1. As in Section 2, we can assume that N0 is not
contained in a 3-ball in M (because M is not homeomorphic to R3; see Remark 2.2).

In the genus one case, the family ¹Nkº has several good properties. For example, each
Nk is an effective handlebody relative to N0 and the map �1.@Nk/ ! �1.M nNk/ is
injective (see [30, Lemma 2.10]). These properties are necessary and crucial in our proof.
In general, the family ¹Nkºmay not have these properties. To overcome this difficulty, we
introduce a topological property, called Property (H).

Definition 4.5. A family ¹Rkºk of handlebodies in a contractible 3-manifold M WDS
k Nk is said to have Property .H/ if

(1) the map �1.@Rk/! �1.Rk nR0/ is injective for k > 0;

(2) the map �1.@Rk/! �1.M nRk/ is injective for k � 0;

(3) each Rk is contractible in RkC1 but not contained in a 3-ball in M ;

(4) there exists an increasing sequence ¹jkºk of integers such that �1.@Rk \ @Njk
/!

�1.@Rk/ is surjective.

where ¹Nkº is a fixed family of handlebodies as in Section 2.

For example, in a contractible genus one 3-manifold M D
S
k Nk , the family ¹Nkº

satisfies Property (H) (see [30, Lemma 2.11]).
In the following, we will prove that if a contractible 3-manifold M is not homeomor-

phic to R3, then there is a family of handlebodies with Property (H). However, such a
family is not unique.

Theorem 4.6. If a contractible 3-manifoldM WD
S
kNk .as above/ is not homeomorphic

to R3, then there is a family ¹Rkºk of handlebodies with Property .H/.

Remark 4.7. � The union
S
k Rk may not be equal to M .

� For k > 0, van Kampen’s Theorem gives an isomorphism between �1.M nR0/ and
�1.M nRk/ ��1.@Rk/ �1.Rk nR0/. By conditions (1) and (2) of Property (H), we can
use [25, Theorem 11.67, p. 404] to show that the map �1.@Rk/ ! �1.M nR0/ is
injective.

� As in Theorem 4.3 (4), @Rk is the union of @Rk \ @Njk
and disjoint discs.

Proof of Theorem 4.6. First, we construct R0. We repeatedly apply the type II surgery
to N0, until we find a handlebody R0 containing N0 and such that �1.@R0/ !
�1.M nR0/ is injective.

From Remark 4.1, we know that, at each step, the genus of the handlebody obtained
from the surgery is less than the original one. Therefore, this process stops in no more
than g.N0/ steps.
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In addition, since N0 is not contained in a 3-ball in M , neither is R0.
In the following, we construct the sequence ¹Rkºk inductively.
When k D 1, we pick a handlebody Nj1

containing R0 such that R0 is homotopically
trivial in Nj1

. Its existence is ensured by the following fact:
Because R0 is compact, there is some handlebody Nj1�1 containing R0. Since Nj1�1

is homotopically trivial in Nj1
, R0 is contained in Nj1

and contractible in Nj1
.

By Theorem 4.3, there exists a handlebody R1 containing R0 such that

� �1.@R1/! �1.R1 nR0/ is injective;

� �1.@R1/! �1.M nR1/ is injective;

� R0 is contractible in R1;

� @R1 is a union of @R1 \ @Nj1
and some disjoint closed discs. Therefore, the map

�1.@R1 \ @Nj1
/! �1.@R1/ is surjective.

In particular, since R0 is not contained in a 3-ball in M , neither is R1.
Suppose that there exists a handlebody Rk�1 and a positive integer jk�1 satisfying

(1)–(4) of Property (H).
Just as in the case of Nj1

, there exists a handlebody Njk
containing Rk�1 such that

Rk�1 is homotopically trivial in Njk
. We use Theorem 4.3 to find an effective handle-

body Rk relative to Rk�1 satisfying (2)–(4).
Since the map �1.@Rk�1/! �1.Rk�1 nR0/ is injective,Rk�1 is an effective handle-

body relative toR0 (by Lemma 3.5). Lemma 4.4 shows thatRk is an effective handlebody
relative to R0. We apply Lemma 3.5 again and conclude that Rk also satisfies (1). This
finishes the proof.

5. Minimal surfaces and laminations

In Sections 5 and 6, we will talk about minimal surfaces in contractible 3-manifolds. In
the following two sections, we make the following assumptions:

� .M; g/ is a complete 3-manifold which is not homeomorphic to R3;

� M is an increasing union of handlebodies ¹Nkº1kD0.

� Nk is homotopically trivial inNkC1 for each k andN0 is not contained in a 3-ball inM
(see Remark 2.2).

In addition, for each k, the genus of Nk is greater than zero. (If not, there is some
handlebody Nk of genus zero, so a 3-ball, contrary to assumption.)

5.1. Minimal laminations

From Lemma 3.9, each Nk has a system of meridians ¹ l
k
º
g.Nk/

lD1
, where g.Nk/ is the

genus of Nk . Our target is to construct a lamination Lk WD
S
l �

l
k
� Nk (i.e. a disjoint

union of embedded surfaces) with @�l
k
D  l

k
and “good” properties.
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As in [30], we use a result of Meeks and Yau (see [7, Theorem 6.26, p. 244]) to
construct them. However, it requires a geometric condition that the boundary of Nk is
mean convex. Therefore we construct a new metric gk over Nk such that

� gkjNk�1
D gjNk�1

;

� @Nk is mean convex for gk .

As in [30, Section 5.1], the metric gk is constructed as follows:

� Let h.t/ be a positive smooth function on R such that h.t/D 1, for any t 2 R n Œ�"; "�.
Consider the function f .x/ WD h.d.x; @Nk// and the metric gk WD f 2gjNk

. For the
metric gk , the mean curvature OH.x/ of @Nk is

OH.x/ D h�1.0/.H.x/C 2h0.0/h�1.0//:

Choosing " small enough and h with h.0/ D 2 and h0.0/ > 2maxx2@Nk
jH.x/j C 2,

one gets the required metric gk .

Let us describe the inductive construction of ¹�i
k
º
g.Nk/
iD1 .

When l D 1, there is an embedded area-minimizing disc �1
k
� Nk with boundary 1

k

for the metric gk (see [7, Theorem 6.28]).
Suppose that there are l disjointly embedded stable minimal discs ¹�i

k
ºliD1 with

@�i
k
D  i

k
.

Consider the Riemannian manifold .Tk;l ; gkjHk;l
/, where Tk;l WD Nk n

`l
iD1�

i
k

. It
is a handlebody of genus g.Nk/ � l (for an example, see Figure 1).

The boundary of .Tk;l ; gkjTk;l
/ consists of two different parts. One is @Nk n

`l
iD1 

i
l
.

The mean curvature is non-negative on this part. The other consists of 2l disjoint discs
¹�i�

k
ºliD1 and ¹�iC

k
ºliD1. The two discs �i�

k
and �iC

k
are two sides of the same minimal

disc �i
k

. The mean curvature vanishes on these discs.
Therefore, the mean curvature of the boundary of .Tk;l ; gkjHk;l

/ is non-negative. In
addition, ¹ i

k
ºi>l is a system of meridians of the handlebody .Tk;l ; gkjTk;l

/.
Then, we use the result of Meeks and Yau (see [7, Theorem 6.28]) to find an embedded

stable minimal surface�lC1
k

in the closure of .Tk;l ;gkjTk;l
/with boundary  lC1

k
. The disc

�lC1
k

intersects the boundary of .Tk;l ;gkjTk;l
/ transversally. Hence, Int�lC1

k
is contained

in IntTk;l . That is, ¹�i
k
º
lC1
iD1 are disjoint stable minimal surfaces for gk .

This finishes the inductive construction.
To sum up, there exist g.Nk/ disjointly embedded meridian discs ¹�l

k
º
gk

lD1
. Define

the lamination Lk by
`
l �

l
k

. It is a stable minimal lamination for the new metric gk and
for the original one away from @Nk (near Nk�1, for example).

The set Lk \Nk�1 is a stable minimal lamination in .M;g/. Each leaf has its bound-
ary contained in @Nk�1.

We know that each lamination Lk intersectsN0. Indeed, if Lk \N0D;, we choose a
tubular neighborhood N.Lk/ in Nk with small radius so that N.Lk/\N0 is also empty.
That is, N0 lies in the handlebody Nk n N.Lk/ of genus zero (i.e. a 3-ball), contrary to
assumption.
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5.2. Limits of laminations

First, we recall a classical convergence theorem for minimal surfaces.

Definition 5.1. In a complete Riemannian 3-manifold .M; g/, a sequence ¹†nº of
immersed minimal surfaces converges smoothly with finite multiplicity (at most m) to
an immersed minimal surface † if for each point p of †, there is a disc neighborhood
D in † of p, an integer m and a neighborhood U of D in M (consisting of geodesics
of M orthogonal to D and centered at such points of D) such that for n large enough,
each †n intersects U in at most m connected components. Each component is a graph
over D in the geodesic coordinates. Moreover, each component converges to D in the
C 2;˛-topology as n!1.

Note that if each †n is embedded, the surface † is also embedded. The multiplicity
at p is equal to the number of connected components of †n \ U for n large enough. It
remains constant on each component of †.

Remark 5.2. Let ¹†nºn be a family of properly embedded minimal surfaces converging
to a minimal surface † with finite multiplicity. Fix a compact simply-connected subset
D � †. Let U be the tubular neighborhood of D in M with radius " and � W U ! D be
the projection from U onto D. It follows that �j†n\U W †n \ U ! D is an m-sheeted
covering map for " small enough and n large enough, where m is the multiplicity.

Therefore, the restriction of � to each component of †n \ U is also a covering map.
Since D is simply-connected, the restriction is bijective. Therefore, each component of
†n \ U is a normal graph over D.

Theorem 5.3 (see [1, Compactness Theorem, p. 96] and [16, Theorem 4.37, p. 49]). Let
¹†kºk2N be a family of properly embedded minimal surfaces in a 3-manifold M 3 such
that each †k intersects a given compact set K0 and for any compact set K in M , there
are three constants C1 D C1.K/ > 0, C2 D C2.K/ > 0 and j0 D j0.K/ 2 N such that
for each k � j0,

(1) jA†k
j2 � C1 onK \†k , where jA†k

j2 is the square length of the second fundamen-
tal form of †k;

(2) Area.†k \K/ � C2.

Then, after passing to a subsequence, †k converges to a properly embedded minimal
surface with finite multiplicity in the C1-topology.

Note that the limit surface may be disconnected.
Let us consider the sequence ¹Lkº and its limit. However, this sequence may not

satisfy condition (2) in Theorem 5.3 (see [30, Section 5.2]).
Therefore, ¹Lkº may not subconverge with finite multiplicity. To overcome this, we

consider the convergence to a lamination. Colding–Minicozzi’s theory [6] shows that
the sequence ¹Lkº subconverges. More precisely, from [6, Proposition B.1, p. 610], this
sequence subconverges to a minimal lamination L in .M; g/. Furthermore, we have
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Theorem 5.4 ([30, Theorems 5.8 and 5.9, p. 18]). If .M;g/ has positive scalar curvature,
then each leaf in L is a complete .non-compact/ stable minimal surface.

5.3. Properness of the limit surfaces

To sum up, there is a family ¹Lkºk of laminations subconverging to a lamination L .
Each leaf in L is a complete (non-compact) embedded stable minimal surface in .M; g/
(see Theorem 5.4).

The remaining question is whether each leaf is properly embedded. The following
theorem gives an answer.

Theorem 5.5 ([30, Theorem 5.10, p. 18]). Let .M; g/ be a complete oriented 3-manifold
with positive scalar curvature �.x/. Assume that † is a complete non-compact stable
minimal surface in M . Then Z

†

�.x/ dv � 2�;

where dv is the volume form of the induced metric ds2 over †. Moreover, if † is an
embedded surface, then † is proper.

We will prove this in Appendix B.

6. The vanishing property

Let .M;g/ be a complete contractible Riemannian 3-manifold of positive scalar curvature
and † � .M; g/ a complete (non-compact) embedded stable minimal surface. From [28,
Theorem 2, p. 211] and Theorem 5.5, the surface † is a properly embedded plane (i.e.
diffeomorphic to R2).

In the genus one case, the geometry of such a stable minimal surface is constrained by
Property P (see [30, Theorem 4.2]). In general, its geometry is related to the fundamental
group at infinity.

Let .M;g/ and ¹Nkº be as in Section 5. Theorem 4.6 gives an increasing family ¹Rkºk
of closed handlebodies with Property (H).

Definition 6.1. A complete embedded stable minimal surface † � .M; g/ is said to sat-
isfy the vanishing property with respect to ¹Rkºk if there exists a positive integer k.†/
such that for any k � k.†/, any circle in † \ @Rk is contractible in @Rk .

Let L � .M; g/ be a stable minimal lamination where each leaf is a complete (non-
compact) stable minimal surface. Then L is said to have the vanishing property with
respect to ¹Rkºk if there is a positive integer k0 such that for any k � k0 and each leaf Lt
in L , any circle in Lt \ @Rk is contractible in @Rk .

We will prove in Corollary 6.3 and Theorem 6.4 that if �11 .M/ is trivial, then any
stable minimal lamination has the vanishing property with respect to ¹Rkºk .
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Lemma 6.2. Let .M;g/ be a complete contractible Riemannian 3-manifold with positive
scalar curvature �.x/ > 0 and ¹Rkºk a family of handlebodies with Property .H/. If there
is a complete embedded stable minimal surface † which does not satisfy the vanishing
property with respect to ¹Rkºk , then �11 .M/ is non-trivial.

Roughly, there is a sequence of non-trivial circles in† going to infinity. This sequence
gives a non-trivial element in �11 .M/.

Proof. Since † does not satisfy the vanishing property with respect to ¹Rkº, there is
an increasing sequence ¹knºn of integers such that for each kn, there is a circle n �
† \ @Rkn

which is not nullhomotopic in @Rkn
. By [28, Theorem 2, p. 211], † is diffeo-

morphic to R2. Each n bounds a unique closed disc Dn � †.

Remark. The circle n may not be a meridian of Rkn
. Property (H) implies that the map

�1.@Rkn
/! �1.M nRkn

/ is injective (see Definition 4.5). Corollary 3.8 implies thatDn
contains at least one meridian of Rkn

.

Without loss of generality, we may assume that n is a meridian of Rkn
and IntDn

contains no meridian of Rkn
. (If not, we can replace n by the meridian in IntDn).

Since ¹nºn is a collection of disjointly embedded circles in †, for each n and n0 one
of the following holds:

(1) Dn � Dn0 ; (2) Dn0 � Dn; (3) Dn \Dn0 D ;.

Based on our assumption, we know that

.�/ for any n0 > n, Dn � Dn0 or Dn \Dn0 D ;.

Indeed, if not, Dn0 is a subset of Dn. We use the argument in the above remark to find a
meridian curve in Dn0 \ @Rkn

� IntDn, in contradiction with the above assumption.
We will first show that there is an increasing subsequence of ¹Dnº and use the subse-

quence to find a non-trivial element in �11 .M/.

Step 1: The existence of an ascending subsequence of ¹Dnº. Suppose that there is no
ascending subsequence of ¹Dnº. Consider the partially ordered set .¹Dnºn;�/. Let Cmin

be the set of minimal elements in .¹Dnºn;�/. The discs in Cmin are disjoint in †.
If Cmin is finite, set n0 WD max ¹n j Dn 2 Cminº. From .�/ above, ¹Dnºn>n0

is an
increasing subsequence, which contradicts our hypothesis. Thus, Cmin is infinite, so there
is a subsequence ¹Dns

ºs of disjointly embedded discs.
From Remark 4.7, the map �1.@Rkns

/! �1.M nR0/ is injective. Then the discDns

intersects R0. Choose xs 2 R0 \Dns
and r0 D 1

2
min ¹i0; rº, where r WD dM .@R0; @R1/

and i0 WD infx2R1
InjM .x/. Hence, the geodesic ball B.xs; r0/ �M lies in R1.

We apply [17, Lemma 1, p. 445] to the minimal surface Dns
\ R1 in .R1; @R1/ and

obtain
Area.Dns

\ B.xs; r0// � C1.K; i0; r0/;
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where C1 is a constant independent of ns and K is the bound of the sectional curvature
on R1. By Theorem 5.5 this leads to a contradiction:

2� �

Z
†

� dv �

Z
R1\†

� dv �
X
s

Z
Dns\B.xs ;r0/

� dv

�

X
s

C Area.Dns
\ B.xs; r0// �

X
s

CC1 D1;

where C WD infx2R1
�.x/ > 0.

Thus there is an ascending subsequence of ¹Dnºn. From now on, we abuse the nota-
tion and write ¹Dnº for an ascending subsequence.

Step 2: �11 .M/ is non-trivial.

Claim. There is an integer n0 such that for n � n0, .Dn nDn�1/ \R0 is empty.

Towards a contradiction, suppose that there exists an increasing sequence ¹nlº of inte-
gers such that Dnl

nDnl�1
intersects R0.

Choose xl 2 .Dnl
nDnl�1

/ \ R0. Hence, the geodesic ball B.xl ; r0/ � M is con-
tained in R1, where r0 is as above. We again apply [17, Lemma 1, p. 445] to the minimal
surface .Dnl

nDnl�1
/ \R1 in .R1; @R1/ to get

Area..Dnl
nDnl�1/ \ B.xl ; r0// � C1.K; i0; r0/:

From Theorem 5.5, one gets a contradiction:

2� �

Z
†

� dv �

Z
R1\†

� dv �
X
l

Z
.Dnl

nDnl�1
/\B.xl ;r0/

� dv

�

X
l

C Area..Dnl
nDnl�1

/ \ B.xl ; r0// � C
X
l

C1 D1:

This completes the proof of the claim.
Therefore, for n > n0, n is homotopic to n0

in M nR0 and is not nullhomotopic in
M nR0.

Because
S
k Rk may not be equal to M , the sequence ¹nºn>n0

of circles may not
go to infinity. In order to overcome it, we replace it by a new family ¹ 0nºn>n0

of circles
going to infinity.

The map �1.@Rkn
\ @Njkn

/ ! �1.@Rkn
/ is surjective (see Theorem 4.6 and Defi-

nition 4.5). Hence, we can find a circle  0n � @Njkn
\ @Rkn

which is homotopic to n
in @Rkn

. The sequence ¹ 0nºn�n0
goes to infinity.

The sequence ¹ 0nº also has the property that for n > n0,

�  0n is homotopic to  0nC1 in M nR0;

�  0n is not nullhomotopic in M nR0.

From Remark 2.4, �11 .M/ is not trivial.

As a corollary, we have
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Corollary 6.3. Let .M; g/ be a complete Riemannian 3-manifold of positive scalar cur-
vature and ¹Rkºk a family of handlebodies with Property .H/. If �11 .M/ is trivial, then
any complete stable minimal surface in .M; g/ has the vanishing property with respect
to ¹Rkºk .

Theorem 6.4. Let .M; g/ be a complete Riemannian 3-manifold of positive scalar cur-
vature and ¹Rkºk a family of handlebodies with Property .H/. If each leaf in a lamination
L is a complete .non-compact/ stable minimal surface satisfying the vanishing property
with respect to ¹Rkºk , then L also has the vanishing property with respect to ¹Rkºk .

Proof. Suppose for contradiction that there exists a sequence ¹Ltnº of leaves in L and an
increasing sequence ¹knºn of integers such that for each n some circle n � Ltn \ @Rkn

is not homotopically trivial in @Rkn
.

The leaf Ltn is a complete (non-compact) stable minimal surface. From [28, The-
orem 2, p. 211], it is diffeomorphic to R2. The circle n bounds a unique closed disc
Dn � Ltn . Since n is not nullhomotopic inM nR0 (see Remark 4.7), the discDn inter-
sects R0.

Step 1: The sequence ¹Ltnºn subconverges smoothly with finite multiplicity. Since each
Ltn is a stable minimal surface, we use [26, Theorem 3, p. 122] to show that, for a fixed
compact set K �M , there exists a constant C1 D C1.K;M; g/ such that

jALtn
j
2
� C1 on K \ Ltn ;

where jALtn
j2 is the squared norm of the second fundamental form of Ltn .

From Theorem 5.5,
R
Ltn

� dv � 2� , hence

Area.K \ Ltn/ � 2�
�

inf
x2K

�.x/
��1

:

From Theorem 5.3, ¹Ltnºn smoothly subconverges to a sublamination L 0 of L with
finite multiplicity. In addition, L 0 is also properly embedded (see Theorem 5.3).

The lamination L 0 may have infinitely many components. Let L 00 � L 0 be a set of
leaves intersecting R0. Since L 0 is properly embedded, L 00 has finitely many leaves.

Since each leaf Lt in L 0 is homeomorphic to R2, an embedded circle  � @Rk \Lt
bounds a unique disc D � Lt for k > 0.

If Lt is in L 0 nL 00, the intersectionD \R0 is empty, so  is homotopically trivial in
M nR0. Since the map �1.@Rk/! �1.M nR0/ is injective for k > 0 (see Remark 4.7),
 is nullhomotopic in @Rk .

Therefore, for any k > 0 and any leaf Lt 2 L 0 n L 00, any circle in Lt \ @Rk is
homotopically trivial in @Rk .

Step 2: The vanishing property gives a contradiction. From now on, we abuse the nota-
tion and write ¹Ltnº for a convergent sequence. In addition, we assume the lamination L 00

equals
`m
sD1Lts (L 00 has finitely many leaves).



J. Wang 22

The vanishing property gives an integer k.Lts / for Lts . For k �
Pm
sD1 k.Lts /, any

circle in L 00 \ @Rk is contractible in @Rk . From the above fact, for k > 0, any closed
curve in .L 0 nL 00/ \ @Rk is also homotopically trivial in @Rk .

Therefore, for any k �
Pm
sD1 k.Lts /, any circle in L 0 \ @Rk is homotopically trivial

in @Rk .
We fix the integer k �

Pm
sD1 k.Lts / and have the following:

Claim. For n large enough, any circle in Ltn \ @Rk is homotopically trivial in @Rk .

We may assume that L 0 intersects @Rk transversally. Since L 0 is properly embedded,
L 0 \ @Rk has finitely many components. Each component of L 0 \ @Rk is an embedded
circle. From the above fact, it is homotopically trivial in @Rk . That is,

�1.L
0
\ @Rk/! �1.@Rk/ is the trivial map:

Choose an open tubular neighborhood U of L 0 \ @Rk in @Rk . It is homotopy equiv-
alent to L 0 \ @Rk in @Rk . Thus, the map �1.U /! �1.@Rk/ is also trivial.

Since ¹Ltnº converges to L 0,Ltn \ @Rk is contained in U for n large enough. Hence,
�1.Ltn \ @Rk/! �1.@Nk/ is trivial, so any circle in Ltn \ @Rk is homotopically trivial
in @Rk . The claim follows.

The boundary n � @Rkn
ofDn is non-contractible in @Rkn

. It is also non-contractible
in M nR0 (see Remark 4.7). If kn > k, we use Corollary 3.8 to find a meridian  0 �
Ltn \ @Rk of Rk . This is in contradiction with the above claim.

As a consequence, we have

Corollary 6.5. Let .M; g/ be a complete contractible Riemannian manifold of positive
scalar curvature and ¹Rkºk a family of handlebodies with Property .H/. If �11 .M/ is
trivial, then any complete stable minimal lamination in .M;g/ has the vanishing property
with respect to ¹Rkºk .

7. Proof of main theorems

In Sections 7 and 8, we will complete the proof of Theorem 1.1. We make the following
assumptions:

� .M; g/ is a complete contractible 3-manifold with trivial �11 .M/ and with positive
scalar curvature.

� M is an increasing union of closed handlebodies ¹Nkºk .

� M is not homeomorphic to R3.

� As in Remark 2.2, we may assume that each Nk is homotopically trivial in NkC1 and
none of the Nk is contained in a 3-ball (see Remark 2.2). In addition, the genus of Nk
is greater than zero for k > 0.
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� Each Nk has a system of meridians ¹ l
k
º
g.Nk/

lD1
. There is a lamination Lk WD

`
l �

l
k

� Nk , where each leaf �l
k

is a disc with boundary  l
k
� @Nk .

� As in Section 5, Lk subconverges to a lamination L WD
S
t2ƒLt , where each leaf Lt

is a complete (non-compact) stable minimal surface.

Towards a contradiction, we suppose that .M; g/ has positive scalar curvature. Each
leaf in L is a properly embedded plane (see Theorem 5.5 and a result of Schoen and
Yau [28]).

We now study the lamination L and its relationship to the vanishing property.
We now prove that there is an ascending family ¹Rkºk of handlebodies satisfying

Property (H) and such that

(a) the lamination L has the vanishing property with respect to ¹Rkºk ;

(b) for each k and anyNj containing Rk , the intersection Lj \ @Rk contains at least one
meridian of Rk .

Indeed, sinceM is not homeomorphic to R3, we use Theorem 4.6 to find ¹Rkºk . Since
�11 .M/ is trivial, Corollary 6.5 shows that L has the vanishing property with respect to
this family.

None of the Rk is contained in a 3-ball (see Definition 4.5). Together with Prop-
erty (H), we use Corollary 3.10 to show that if Nj contains Rk , then Lj \ @Rk contains
at least one meridian of Rk .

Remark 7.1. In Section 8, our proof requires that @Rk intersects some leaf Lt transver-
sally. In order to overcome it, we will deform the handlebody Rk in a small tubular
neighborhood of @Rk so that the boundary of the new handlebody intersects Lt transver-
sally.

This new handlebody also satisfies (a) and (b). Indeed, for any handlebody R0
k

obtained by deforming Rk , the maps �1.@R
0
k
/ ! �1.R

0
k
nR0/ and �1.@R

0
k
/ !

�1.M nR
0
k
/ are both injective. The proofs of items (a) and (b) just depend on that injec-

tivity. Hence, items (a) and (b) are also true for R0
k

.

We use item (a) to show that there is an integer k0 > 0 such that for any k � k0 and
any leaf Lt in L , any circle in Lt \ @Rk is nullhomotopic in @Rk .

This fact implies a covering lemma that we will prove in Section 8.

Lemma 7.2. For any k � k0, L \ @Rk."/ is contained in a disjoint union of finitely many
closed discs in @Rk."/, where Rk."/ WD Rk n N".@Rk/, and N".@Rk/ is some tubular
neighborhood of @Rk in Rk .

We now use the covering lemma to finish the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose that a complete contractible 3-manifold .M;g/, with pos-
itive scalar curvature and trivial �11 is not homeomorphic to R3. As above, there is an
ascending family ¹Rkºk of handlebodies with Property (H) such that

(a) the lamination L has the vanishing property with respect to ¹Rkºk ;
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(b) for each k and any Nj containing Rk."/, the intersection Lj \ @Rk."/ contains at
least one meridian of Rk."/.

The vanishing property implies Lemma 7.2 (we will show this in Section 8). That is,
L \ @Rk."/ is in the union of the disjoint closed discs ¹DiºsiD1 for k � k0.

Choose an open neighborhood U of the closed set L \RkC1 such that U \ @Rk."/ is
contained in a disjoint union

`s
iD1D

0
i , where D0i is an open tubular neighborhood of Di

in @Rk."/. Each D0i is an open disc in @Rk."/.
Since Lk subconverges to L , there exists an integer j , large enough, satisfying

(1) Lj \RkC1 � U ; (2) Rk."/ is contained in Nj .

Therefore, Lj \ @Rk."/ is contained in U \ @Rk."/ �
`
i D
0
i . Then the induced map

�1.Lj \ @Rk."//! �1.
`
i D
0
i /! �1.@Rk."// is trivial. We conclude that any circle in

Lj \ @Rk."/ is homotopically trivial in @Rk."/.
However, from (b), there exists a meridian  � Lj \ @Rk."/ of Rk."/. This contra-

dicts the previous paragraph and finishes the proof of Theorem 1.1.

8. The proof of Lemma 7.2

This section is the same as Section 7 of [30]. In order to prove Lemma 7.2, we introduce a
set S and prove its finiteness, which will imply Lemma 7.2. We begin with two topological
lemmas.

Lemma 8.1. Let .�; @�/ � .N; @N / be a 2-sided embedded disc with some closed sub-
discs removed, whereN is a closed handlebody of genus g > 0. Assume that each circle i
is contractible in @N , where @� D

`
i i . Then N n� has two connected components.

Moreover, there is a unique component B such that the induced map �1.B/! �1.N / is
trivial.

We will show the lemma in Appendix A.

Lemma 8.2. Let .�1; @�1/ and .�2; @�2/ be two disjoint surfaces as in Lemma 8.1.
Assume that for each t D 1; 2, N n �t has a unique component Bt such that the map
�1.Bt /! �1.N / is trivial. Then one of the following holds:

.1/ B1 \ B2 D ;; .2/ B1 � B2; .3/ B2 � B1.

The proof is the same as the proof of [30, Lemma 7.2].

8.1. Definition of the set S

Let .M;g/, ¹Nkºk and L WD
`
t2ƒLt be as at the beginning of Section 7. As in Section 7,

there is a family ¹Rkºk of handlebodies such that
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� there is a positive integer k0 such that for each k � k0 and each t 2 ƒ, each circle in
Lt \ @Rk is homotopically trivial in @Rk .

In the following, we will work on the open handlebody IntRk and construct the set S ,
for a fixed integer k � k0.

8.1.1. Set-up for defining S . Let ¹†ti ºi2It
be the set of components of Lt \ IntRk for

each t 2 ƒ. (It may be empty.) We will show that for each component †ti , Rk n†
t
i has a

unique component B ti such that �1.B ti /! �1.Rk/ is trivial.
If Lt intersects @Rk transversally, the boundary @†ti � Lt \ @Rk is the union of

some disjointly embedded circles. From the vanishing property, any circle in the boundary
@†ti � Lt \ @Rk is homotopically trivial in @Rk .

In addition, since Lt is homeomorphic to R2, †ti is homeomorphic to an open disc
with finitely many punctures. By Lemma 8.1, Rk n†ti has a unique component B ti such
that �1.B ti /! �1.Rk/ is trivial.

In general, Lt may not intersect @Rk transversally. To overcome it, we will deform
the surface @Rk . More precisely, for the leaf Lt , there is a new handlebody QRk Œ"t � con-
taining Rk such that Lt intersects @ QRŒ"t � transversally, where QRk Œ"t � is a closed tubular
neighborhood of Rk in M .

We consider the component Q†ti of Lt \ Int QRk Œ"t � containing †ti . As above,
QRk Œ"t � n Q†

t
i has a unique component QB ti such that the map �1. QB ti /!�1. QRk Œ"t �/ is trivial.

Choose the componentB ti of QB ti \Rk whose boundary contains†ti . It is a component
ofRk n†ti . In addition, the map �1.B ti /! �1. QB

t
i /! �1. QRk Œ"t �/ is trivial. SinceRk and

QRk Œ"t � are homotopy equivalent, the map �1.B ti /! �1.Rk/ is also trivial. This finishes
the construction of B ti .

8.1.2. The properties of S . From Lemma 8.2, for any B ti and B t
0

i 0 , one of the following
holds:

(1) B ti \ B
t 0

i 0 D ;; (2) B ti � B
t 0

i 0 ; (3) B t
0

i 0 � B
t
i ,

where t; t 0 2 ƒ, i 2 It and i 0 2 It 0 . Then .¹B ti ºt2ƒ; i2It
;�/ is a partially ordered set.

We now consider the set ¹Bj ºj2J of maximal elements. However, this set may be
infinite.

Definition 8.3. Set

S WD ¹Bj j Bj \Rk."=2/ ¤ ; for any j 2 J º;

where Rk."=2/ is Rk n N"=2.@Rk/ and N"=2.@Rk/ is a 2-sided tubular neighborhood of
@Rk with radius "=2.

Proposition 8.4. Let †ti be a component of Lt \ IntRk and let B ti be as above. If B ti is
an element in S , then †ti \Rk."=2/ is non-empty.

The proof is the same as that of [30, Proposition 6.5].
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Proposition 8.5. Rk."/\L �
S
Bj2S

xBj \Rk."/. Moreover, L \@Rk."/�
S
Bj2S

xBj
\ @Rk."/.

The proof is the same as that of [30, Proposition 6.6].

8.2. The finiteness of S

The set @Bj\IntRk equals some†ti�Lt for t 2ƒ. Set St WD¹Bj 2S j@Bj\IntRk�Ltº.
Then S D

`
t2ƒ St . Note that each Bj 2 St is a B ti for some i 2 It .

In this subsection, we first show that each St is finite. Then, we argue that ¹Stºt2ƒ
contains at most finitely many non-empty sets. These imply the finiteness of S .

Lemma 8.6. Each St is finite.

Proof. Suppose that St is infinite for some t .
For each Bj 2 St , there exists an i 2 It such that Bj is equal to B ti , where B ti is

a component of Rk n †ti and †ti is a component of Lt \ IntRk . By Proposition 8.4,
†ti \Rk."=2/ is non-empty.

Choose xj 2 †ti \ Rk."=2/ and r0 D 1
2

min ¹"=2; i0º, where i0 WD infx2Rk
InjM .x/.

Then the geodesic ball B.xj ; r0/ in M is contained in Rk .
We apply [17, Lemma 1, p. 445] to the minimal surface .†ti ; @†

t
i /� .Rk ; @Rk/ to find

that
Area.†ti \ B.xj ; r0// � C.r0; i0; K/

where K D supx2Rk
jKM j. By Theorem 5.5, this leads to a contradiction:

2� �

Z
Lt

�.x/ dv �
X
Bj2St

Z
†t

i

�.x/ dv �
X
Bj2St

Z
†t

i
\B.xj ;r0/

�.x/ dv

� inf
x2Rk

�.x/ �
X
Bj2St

Area.†ti \ B.xj ; r0//

� C � inf
x2Rk

�.x/ � jSt j D 1:

This finishes the proof.

Lemma 8.7. ¹Stºt2ƒ contains at most finitely many non-empty sets.

Proof. Suppose that there exists a sequence ¹Stnºn2N of non-empty sets. For any
Bjtn

2 Stn , there is some in 2 Itn such that Bjtn
equals B tnin where B tnin is a compo-

nent of Rk n†
tn
in

and †tnin is component of Ltn \ IntRk . Note that �1.B
tn
in
/! �1.Rk/ is

trivial.
By Proposition 8.4, †tnin \Rk."=2/ is not empty. Pick a point ptn in †tnin \Rk."=2/.

Step 1: ¹Ltnº subconverges to a lamination L 0 �L with finite multiplicity. Since Ltn is
a stable minimal surface, by [26, Theorem 3, p. 122], for any compact set K �M , there
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is a constant C1 WD C1.K;M; g/ such that

jALtn
j
2
� C1 on K \ Ltn :

From Theorem 5.5,
R
Ltn

�.x/ dv � 2� . Hence,

Area.K \ Ltn/ � 2�
�

inf
x2K

�.x/
��1

:

We use Theorem 5.3 to find a subsequence of ¹Ltnº subconverging to a properly
embedded lamination L 0 with finite multiplicity. Since L is a closed set inM , L 0 �L

is a sublamination.
From now on, we abuse notation and write ¹Ltnº and ¹ptnº for the convergent subse-

quence.

Step 2: ¹†tninº converges with multiplicity 1. Let Lt1 be the unique component of L 0

passing through p1, where p1 D limn!1 ptn . The limit of ¹†tninº is the component†1
of Lt1 \ Rk passing through p1, where †tnin is the unique component of Rk \ Ltn
passing through ptn .

Lt1

†1

†
tn
in

B†1.p1/

��1.B†1.p1// \†
tn
in

Fig. 2

Let D � Lt1 be a simply-connected subset satisfying †1 � D. (Its existence is
ensured by the fact that L1 is homeomorphic to R2.) Since ¹Ltnº smoothly converges
to Lt1 with finite multiplicity, there exists "1 > 0 and an integer n0 such that

†
tn
in
� D."1/ for n > n0;

where D."1/ is the tubular neighborhood of D with radius "1 in M (see Definition 5.1).
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Let � W D."1/! D be the projection. From Remark 5.2, we know that for n large
enough, the restriction of � to each component of Ltn \D."1/ is injective.

Hence, �j
†

tn
in

W †
tn
in
! D is injective. That is, †tnin is a normal graph over a subset

of D. Therefore, ¹†tninº converges to †1 with multiplicity 1 (see Definition 5.1). That is,
there is a geodesic disc B†1.p1/ � †1 centered at p1 with small radius such that

.��/ the set ��1.B†1.p1// \ †
tn
in

is connected and a normal graph over B†1.p1/,
for large n.

Step 3: Getting a contradiction. There exists a neighborhood U of p1 and a coordi-
nate map ˆ such that each component of ˆ.L \ U/ is R2 � ¹xº \ ˆ.U / for some
x 2 R (see the definition of the lamination in [6, Appendix B, 609–612]). Choose the disc
B†1.p1/ and "1 small enough such that ��1.B†1.p1// � U . We may assume that
U D ��1.B†1.p1//.

x1

xtn0

xtn

x1

xtn0

xtn

ˆ.U /

ˆ.U \ Bjtn
/ˆ.U /

ˆ.U \ Bjtn
/

Fig. 3

From .��/, †tnin \ U � Ltn is connected and a graph over B†1.p1/, for n
large enough. Since @Bjtn

\ U � Ltn equals †tnin \ U , it is also connected. Therefore
ˆ.@Bjtn

\ U/ equals R2 � ¹xtnº \ ˆ.U / for some xtn 2 R. In addition, ˆ.†1 \ U/
equals R2 � ¹x1º \ ˆ.U / for some x1 2 R. Since limn!1 ptn D p1, we have
limn!1 xtn D x1.

The set U n @Bjtn
has two components. Therefore,ˆ.Bjtn

\U/ is eitherˆ.U /\ ¹x j
x3 > xtnº or ˆ.U / \ ¹x j x3 < xtnº. For n large enough, there exists some n0 ¤ n such
that R2 � ¹xtn0 º \ˆ.U / � ˆ.Bjtn

\ U/. This implies that Bjtn
\ Bjtn0

is non-empty.
Since S consists of maximal elements in .¹B ti º;�/, the set Bjtn

\ Bjtn0
must be

empty, which leads to a contradiction. This finishes the proof.

8.3. The finiteness of S implies Lemma 7.2

We will now explain how to deduce Lemma 7.2 from the finiteness of S .

Proof of Lemma 7.2. Since S is finite, we may assume that @Bj intersects @Rk."/
transversally for each Bj 2 S . Note that each Bj is equal to some B ti and @Bj \ @Rk."/
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equals †ti \ @Rk."/. Since each †ti is properly embedded, ¹ciºi2I WD
S
Bj2S

@Bj \

@Rk."/ has finitely many components. Each component is an embedded circle.
The vanishing property of L and Remark 7.1 show that each ci is contractible in

@Rk."/ and bounds a unique closed disc Di � @Rk."/ (since k � k0). The set .Di ;�/ is
partially ordered. Let ¹Di 0ºi 02I 0 be the set of maximal elements. The set I 0 is finite .

Since the boundary of xBj \ @Rk."/ is a subset of @Bj \ @Rk."/ �
`
i2I ci , it is

contained in
`
i 02I 0 Di 0 for each Bj 2 S .

Next we show that for any Bj 2 S , xBj \ @Rk."/ is contained in
`
i 02I 0 Di 0 .

If not, @Rk."/ n
`
i 02I 0Di 0 is contained in xBj \ @Rk."/ for someBj 2 S . This implies

that the composition �1.@Rk."/ n
`
i 02I 0 Di 0/! �1. xBj /! �1.Rk/ is not the zero map,

which contradicts the fact that the induced map �1. xBj /! �1.Rk/ is trivial. We conclude
that for each Bj 2 S , xBj \ @Rk."/ is contained in

`
i 02I 0 Di 0 .

Therefore,
S
Bj2S

xBj \ @Rk."/ is contained in
`
i 02I 0 Di 0 . From Proposition 8.5,

L \ @Rk."/ is contained in a disjoint union of finitely many discs ¹Di 0ºi 02I 0 . This com-
pletes the proof.

Appendix A

Lemma 8.1. Let .�; @�/ � .N; @N / be a 2-sided embedded disc with some closed sub-
discs removed, where N is a closed handlebody of genus g > 0. Assume that each circle
i is contractible in @N , where @�D

`
i i . ThenN n� has two connected components.

Moreover, there is a unique component B such that the induced map �1.B/! �1.N / is
trivial.

Proof. As in [30, proof of Lemma 7.1], we find that � cuts N into two components, B1
and B2.

Note that each embedded circle i is contractible in @N and bounds a unique closed
disc Di � @N . Consider the surface O� WD � [

S
i Di . It is an immersed 2-sphere in N ,

so that the map �1.�/! �1. O�/ is trivial. Therefore, �1.�/! �1.N / is trivial.
In the following, we show the existence of B .
Consider the set ¹Diº to be partially ordered by inclusion. Then

S
i Di is equal to

a disjoint union of maximal elements in .¹Diº;�/. The set @N n
S
i Di is a compact

surface with some punctures.
Therefore, the induced map �1.@N n

S
i Di /! �1.@N / is surjective. In addition, the

induced map �1.@N /! �1.N / is also surjective. We can conclude that the composition
�1.@N n

S
i Di /! �1.N / of these two maps is also surjective.

The set @N n
S
i Di is contained in one of the two components, B1 or B2, of N n�.

Without loss of generality, we may assume that B1 contains @N n
S
i Di . From the above,

the induced map �1.B1/! �1.N / is surjective.
Let Gi be the image of �1.Bi / ! �1.N /. Van Kampen’s Theorem gives an iso-

morphism between �1.N / and �1.B1/ ��1.�/ �1.B2/. Since the image of �1.�/ !
�1.N / is trivial, �1.N / is isomorphic to G1 � G2. Grushko’s Theorem [12] shows that
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rank.G1/ C rank.G2/ D rank.�1.N //. (The rank of a group is the smallest cardinality
of a generating set for the group.) From the last paragraph, the image, G1, of the map
�1.B1/! �1.N / is isomorphic to �1.N /. That is, rank.G1/D rank.�1.N //. Therefore,
rank.G2/ is zero, so G2 is a trivial group. We find that B WD B2 is as required.

The uniqueness is proved as in the genus one case (see [30, proof of Lemma 7.1]).

Appendix B

Theorem 5.5. Let .M; g/ be a complete oriented 3-manifold with positive scalar cur-
vature �.x/. Assume that † is a complete .non-compact/ stable minimal surface in M .
Then Z

†

�.x/ dv � 2�;

where dv is the volume form of the induced metric ds2 over †. Moreover, if † is an
embedded surface, then † is proper.

Proof. By [28, Theorem 2, p. 211], † is conformally diffeomorphic to R2.
Consider the Jacobi operator L WD �† � K† C .�.x/ C

1
2
jAj2/, where K† is the

Gaussian curvature of the metric ds2 and �† is the Laplace–Beltrami operator of
.†; ds2/. From [9, Theorem 1, p. 201], there exists a positive function u on † satisfying
L.u/ D 0, since † is a stable minimal surface.

Consider the metric d Qs2 WD u2ds2. Let QK† be its sectional curvature and d Qv its vol-
ume form. We know that

QK† D u
�2.K† ��† logu/ and d Qv D u2dv:

By Fischer-Colbrie’s work [8, Theorem 1, p. 126], .†; d Qs2/ is a complete surface with
non-negative sectional curvature QK† � 0. By the Cohn-Vossen inequality [5],Z

†

QK† d Qv � 2��.†/;

where �.†/ is the Euler characteristic of †.
Since L.u/ D 0, one has

R
B†.0;R/

L.u/u�1dv D 0, where B†.0; R/ is the geodesic
ball in .†; ds2/ centered at 0 2 † with radius R. We deduce thatZ

B†.0;R/

�
�.x/C 1

2
jAj2

�
dv D

Z
B†.0;R/

.K† � u
�1�†u/ dv

D

Z
B†.0;R/

�
K† � .�† loguC u�2jruj/

�
dv

�

Z
B†.0;R/

u�2.K† ��† logu/u2 dv

D

Z
B†.0;R//

QK† d Qv �

Z
†

QK† d Qv:
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We know that �.†/ D 1, since † is diffeomorphic to R2. Combining the two inequalities
above and letting R!1, we obtainZ

†

�
�.x/C 1

2
jAj2

�
dv � 2�:

Suppose that † is not proper. There is an accumulation point p of † such that the
set B.p; r=2/ \† is a non-compact closed set in †. Hence, it is unbounded in .†; ds2/.
Thus, there is a sequence ¹pkº of points in † \ B.p; r=2/ going to infinity in .†; ds2/.

Therefore, we may assume that the geodesic discs ¹B†.pk ; r=2/ºk in † are disjoint.
Set r0 WD 1

2
min¹r; i0º andK WD supx2B.p;r/ jKM .x/jwhere i0 WD infx2B.p;r/ InjM .x/

and KM is the sectional curvature. The geodesic disc B†.pk ; r0=2/ is in B.p; r/.
Applying [10, Appendix, Theorem 3, p. 139] to the geodesic disc B†.pk ; r0=2/ �

B.p; r/, we have
Area.B†.pk ; r0=2// � C.i0; r0; K/:

This leads to a contradiction:

2� �

Z
†

�.x/ dv �

Z
B.p;r/\†

�.x/ dv �
X
k

Z
B†.pk ;r0=2/

�.x/

� inf
x2B.p;r/

�.x/ �
X
k

Area.B†.pk ; r0=2//

� inf
x2B.p;r/

�.x/ �
X
k

C D1:

Appendix C: Example

There are infinitely many contractible 3-manifolds with non-trivial fundamental group at
infinity. In this Appendix, we construct such a 3-manifold M and analyse its topology.
We will prove that this 3-manifold has no complete metric of positive scalar curvature.

C.1. The construction of M

Before constructing the 3-manifold, let us introduce a definition. A handlebodyN �S3 of
genus g is said to be unknotted in S3 if its complement in S3 is a handlebody of genus g.

Choose an unknotted handlebody W0 � S3 of genus 2. Take a second handlebody
W1 � IntW0 of genus 2 which is a tubular neighborhood of the curve in Figure 4. Then,
embed another handlebodyW2 of genus 2 insideW1 in the same way asW1 lies inW0, and
so on infinitely many times. Thus, we obtain a decreasing family ¹Wkº of handlebodies
of genus 2.

The manifold M is defined as M WD S3 n
T1
kD0Wk . It is an open manifold.

We see that each Wk is unknotted in S3, so the complement Nk of Wk in S3 is a
handlebody of genus 2. Therefore, M can be written as an increasing union of handle-
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Wk

WkC1

Fig. 4

kNkC1Kk

kC1

Fig. 5

bodies ¹Nkºk of genus 2. Furthermore, each Nk lies in NkC1 as in Figure 5. (The set Kk
is the core of Nk .)

Each Nk is homotopically trivial in NkC1. We can conclude that M is a contractible
3-manifold.

C.2. The topological property of M

In this part, we first show that the fundamental group at infinity of M is non-trivial. As
a consequence, M is not homeomorphic to R3. In the manifold M , there is a properly
embedded plane. This plane cuts M into two Whitehead manifolds.

First, we see from Figure 4 that Wk is an effective handlebody relative to WkC1 for
each k. From Lemma 3.5, the map �1.@Wk/! �1.Wk nWkC1/ is injective. In addition,
the set Wk nWkC1 is equal to NkC1 nNk . Therefore, we conclude that for each k, the
map �1.@Nk/! �1.NkC1 nNk/ is injective.

Second, from Figure 5, we see that each NkC1 is an effective handlebody relative
to Nk . By Lemma 3.5, the map �1.@NkC1/! �1.NkC1 nNk/ is injective.

As in the genus 1 case, for each k, the maps �1.@Nk/! �1.M nNk/ and �1.@Nk/
! �1.Nk nN0/ are both injective. That is, the family ¹Nkº has Property (H).

Pick the separating meridian k � @Nk as in Figure 5 . From Figure 5, for each k, k is
homotopic to kC1 inNkC1 nNk . Since ¹Nkº satisfies Property (H), the map �1.@Nk/!
�1.M nN0/ is injective (see Remark 4.7). That is, for k > 0, k is non-contractible in
M nN0.
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From Remark 2.4, the sequence ¹kº gives a non-trivial element in �11 .M/. Since
�11 .M/ is non-trivial, M is not simply-connected at infinity. In particular, M is not
homeomorphic to R3.

Next, we construct the properly embedded plane in M from the sequence ¹kºk .
Choose an embedded annulus Ak � NkC1 nNk with boundary k q kC1. Let

D0 � N0 be a meridian disc with boundary 0. We define the plane P as

P WD
[
k�0

Ak [D0:

The plane P cuts M into two contractible 3-manifolds M 0 and M 00. In addition, the
intersection P \Nk is a separating meridian disc of Nk with boundary k .

From the sequence ¹Nkº, we obtain two increasing families, ¹N 0
k
º and ¹N 00

k
º, of solid

tori in M satisfying

� M 0 D
S
k N
0
k

and M 00 D
S
k N
00
k

;

� Nk n .N
0
k
qN 00

k
/ is a tubular neighborhood of the meridian disc P \Nk .

N 0
k

N 0
kC1

Fig. 6

Furthermore, each N 0
k

is embedded into N 0
kC1

as in Figure 6. We see that M 0 is
homeomorphic to the Whitehead manifold. Similarly, the contractible 3-manifold M 00 is
also homeomorphic to the Whitehead manifold. Therefore, P cutsM into two Whitehead
manifolds.

C.3. Non-existence of PSC metrics

In this subsection, we show that the manifoldM has no complete metric of positive scalar
curvature.

Suppose for contradiction that M has a complete metric of positive scalar curvature.
As in Section 5.1, there is a family ¹Lkºk of laminations subconverging to a stable mini-
mal lamination L WD

S
t2ƒLt .

Since �11 .M/ is non-trivial, some leaf in L may not satisfy the vanishing property
for ¹Nkºk . To overcome it, we attempt to find a new family of handlebodies with Prop-
erty (H).
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We know that M 0 D
S
k N

0
k

is homeomorphic to the Whitehead manifold. The geo-
metric index I.N 0

k
;N 0

kC1
/ is equal to 2 (see [30, Section 2]). From [30, Lemma 2.10], the

maps �1.@N 0k/! �1.M nN
0
0/ and �1.@N 0k/! �1.N

0
k
nN 00/ are both injective. There-

fore, the family ¹N 0
k
º satisfies Property (H).

In addition, each leaf Lt in L satisfies Property P (see [30, Definition 3.3]). That is,
for any circle  � Lt \ @N 0k , one of the following holds:

�  is homotopically trivial in @N 0
k

;

� for l � k, D \ IntN 0
l

has at least I.N 0
l
; N 0

k
/ components intersecting N0,

where D � Lt is the unique disc with boundary  and the geometric index I.N 0
l
; N 0

k
/ is

equal to 2k�l .
In the following, we consider the geometry of the leaves intersectingM 0. We have the

following claim.

Claim. L satisfies the vanishing property with respect to ¹N 0
k
ºk .

The proof of this claim is the same as that of [30, Lemma 6.1]. Towards a contradic-
tion, suppose that there exists an increasing sequence ¹knºn of integers such that

� for each kn, there exists a minimal surface Ltn in ¹Ltºt2ƒ and an embedded curve
ckn
� Ltn \ @N

0
kn

which is not contractible in @N 0
kn

.

Since limn!1 kn D1, we have limn!1 I.N
0
1; N

0
kn
/ D1.

Since .M; g/ has positive scalar curvature, Ltn is homeomorphic to R2. Then there
exists a unique disc Dn � Ltn with boundary ckn

. From the above property, we see that
Dn \N

0
1 has at least I.N 01; N

0
kn
/ components intersecting N 00, denoted by ¹†j ºmjD1.

Define r WD dM .@N 00; @N
0
1/, C WD infx2N 0

1
�.x/, K WD supx2N 0

1
jKM j and i0 WD

infx2N 0
1

InjM .x/ , where KM is the sectional curvature of .M; g/ and InjM .x/ is the
injectivity radius of .M; g/ at x.

Choose r0 D 1
2

min ¹i0; rº and xj 2 †j \ N 00. Then B.xj ; r0/ is in N 01. We apply
[17, Lemma 1, p. 445] to the minimal surface .†j ; @†j / � .N 01; @N

0
1/. Hence,

Area.†j \ B.xj ; r0// � C1.K; i0; r0/:

From Theorem 5.5, we have

2� �

Z
Ltn

�.x/ dv �

mX
jD1

Z
†j

�.x/ dv �

mX
jD1

Z
†j\B.xj ;r0/

�.x/ dv

�

mX
jD1

C Area.†j \ B.xj ; r0// � CC1m � CC1I.N 01; N
0
kn
/:

This contradicts the fact that limn!1 I.N
0
1; N

0
kn
/ D 1 and completes the proof of the

claim.

In addition, since none of the N 0
k

is contained in a 3-ball, we use Corollary 3.10 to
find that if Nj contains N 0

k
, then Lj \ @N

0
k

contains at least one meridian of Rk .
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To sum up, the family ¹N 0
k
ºk satisfies (a) and (b) of Section 7. That is,

(a) L satisfies the vanishing property for ¹N 0
k
ºk ;

(b) if Nj contains N 0
k

, then Lj \ @N
0
k

contains at least one meridian of N 0
k

.

The remaining proof is the same as the proof of Theorem 1.1 in Sections 7 and 8.
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