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Abstract. For any s 2 Œ�1; 0� and oriented homology 3-sphere Y , we introduce a homology
cobordism invariant rs.Y / 2 .0;1�. The values ¹rs.Y /º are included in the critical values of the
SU.2/-Chern–Simons functional of Y , and we show a negative definite cobordism inequality and
a connected sum formula for rs . As applications, we obtain several new results on the homology
cobordism group. First, we give infinitely many homology 3-spheres which cannot bound any defi-
nite 4-manifold. Next, we show that if the 1-surgery of S3 along a knot has the Frøyshov invariant
negative, then all positive 1=n-surgeries along the knot are linearly independent in the homology
cobordism group. In another direction, we use ¹rsº to define a filtration on the homology cobordism
group which is parametrized by Œ0;1�. Moreover, we compute an approximate value of rs for the
hyperbolic 3-manifold obtained by 1=2-surgery along the mirror of the knot 52.
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1. Introduction

The study of the structure of the 3-dimensional homology cobordism group ‚3Z is one
of the central topics in low-dimensional topology. One of the motivations is a relation
to the triangulation problem of topological manifolds. In 1985, Galewski–Stern [25] and
Matumoto [42] proved that a topological n-manifold M with n � 5 admits a triangula-
tion if and only if a certain cohomology class ı.M/ 2H 5.M IKer�/ satisfies ı.M/D 0,
where �W‚3Z ! Z=2Z is the Rokhlin homomorphism. Since there is no essential dif-
ference between PL and smooth categories for 3- and 4-manifolds, ‚3Z is isomorphic to
its PL version. On the other hand, the n-dimensional PL version of homology cobordism
group is known to be trivial for n ¤ 3 ([34]). Also, Freedman’s result [20] implies that
the topological version of the 3-dimensional homology cobordism group is trivial.

Various gauge theories and Floer theories have been developed and used to improve
the understanding of ‚3Z. In the 1980s, Donaldson [10] applied Yang–Mills gauge theory
to 4-dimensional topology and proved the diagonalization theorem. The diagonalization
theorem and its extension due to Furuta [23] imply that the Poincaré sphere has infinite
order in ‚3Z. Fintushel–Stern [15] and Furuta [24] developed Yang–Mills gauge theory
for orbifolds with cylindrical ends to prove that ‚3Z contains Z1 as a subgroup. On the
other hand, Manolescu [40] disproved the triangulation conjecture using Seiberg–Witten
Floer theory. Recently, Dai–Hom–Stoffregen–Truong [8] proved the existence of a Z1-
summand in ‚3Z using involutive Heegaard–Floer theory.
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In this paper, we interpret the work of [15, 24] in Yang–Mills gauge theory in terms
of instanton Floer homology, and introduce a family ¹rsº of real-valued homology cobor-
dism invariants for any homology 3-sphere.

1.1. The invariants rs

Let Y be an oriented homology 3-sphere. In [12], Donaldson defined an obstruction
class Œ� � (denoted by D1 in [12]) lying in the first instanton cohomology group of Y
such that Œ� � ¤ 0 implies the non-existence of any negative definite 4-manifold with
boundary Y . On the other hand, Fintushel–Stern [16] defined filtered versions of the
instanton cohomology group ¹I �

Œr;rC1�
.Y /ºr2R such that their filtrations are given by a

perturbed Chern–Simons functional. Here, one can see that Fintushel–Stern’s method
actually enables us to define a cohomology group I �

Œs;r�
.Y / for an arbitrary interval Œs; r�,

and the obstruction class Œ� � is well-defined in I 1
Œs;r�

.Y / for any r 2 .0;1� (WD R>0 [
¹1º) and s 2 Œ�1; 0� (WD R�0 [ ¹�1º). Therefore, it is natural to ask whether Œ� � van-
ishes in I 1

Œs;r�
.Y / for a given Y and interval Œs; r�. In light of this observation, we define

rs.Y / WD sup ¹r 2 .0;1� j Œ� � D 0 2 I 1Œs;r�.Y /º

for any oriented homology 3-sphere Y and s 2 Œ�1; 0�. A more precise definition of rs is
stated in Definition 3.2. Such a quantitative construction in Floer homology has appeared
in several Floer theories including Hamiltonian Floer homology [18, 19] and embedded
contact homology [33].

Our main theorem is stated as follows.

Theorem 1.1. The values ¹rs.Y /ºs2Œ�1;0� are homology cobordism invariants of Y .
Moreover, the invariants ¹rsºs2Œ�1;0� satisfy the following properties:

(1) If there exists a negative definite cobordism W with @W D Y1 q�Y2, then

rs.Y2/ � rs.Y1/ for any s 2 Œ�1; 0�.

Moreover, if W is simply connected and rs.Y1/ <1, then

rs.Y2/ < rs.Y1/:

(2) If rs.Y / <1, then rs.Y / is a critical value of the Chern–Simons functional of Y .

(3) If s1 � s2, then rs1.Y / � rs2.Y /.

(4) The inequality

rs.Y1 # Y2/ � min ¹rs1.Y1/C s2; rs2.Y2/C s1º

holds for any s; s1; s2 2 .�1; 0� with s D s1 C s2.

Recently, Daemi [6] introduced a family ¹�Y .i/ºi2Z of real-valued homology cobor-
dism invariants. Since the �Y .i/ are also defined by using instanton Floer theory and
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satisfy the properties (1) and (2) in Theorem 1.1, it is natural to ask whether the �Y .i/ are
related to our rs.Y /. Roughly speaking, our invariants ¹rs.Y /ºs2Œ�1;0� can be seen as a
one-parameter family including ��Y .1/. More precisely, we prove the following equality.

Theorem 1.2. For any oriented homology 3-sphere Y ,

r�1.Y / D ��Y .1/:

As consequences of Theorem 1.2 and results in [6], we can understand a relationship
between rs and the Frøyshov invariant hW‚3Z ! Z ([21]), and obtain infinitely many
examples with non-trivial rs . Note that rs.S3/ D 1 for any s 2 Œ�1; 0�, and so we say
that rs.Y / is non-trivial if rs.Y / <1.

Corollary 1.3. The inequality r�1.Y / <1 holds if and only if h.Y / < 0. In particular,
if h.Y / < 0, then rs.Y / is finite for any s 2 Œ�1; 0�.

Let †.a1; : : : ; an/ denote the Seifert homology 3-sphere corresponding to a tuple
.a1; : : : ; an/ of pairwise coprime integers, and let R.a1; : : : ; an/ be an odd integer intro-
duced by Fintushel–Stern [14].

Corollary 1.4. If R.a1; : : : ; an/ > 0, then for any s 2 Œ�1; 0�,

rs.�†.a1; : : : ; an// D
1

4a1 � � � an
and rs.†.a1; : : : ; an// D1:

For instance, it is known that R.p; q; pqk � 1/ D 1 for any coprime p; q > 1 and
k 2 Z>0. Here, one might ask whether rs is constant for any Y . We show that the answer
is negative. Indeed, the connected sum formula for r0 in Theorem 1.1 and the above
corollaries imply that any Yk WD 2†.2; 3; 5/ # .�†.2; 3; 6k C 5// (k 2 Z>0) satisfies
r0.Yk/ D

1
24.6kC5/

<1, while r�1.Yk/ D1 because h.Yk/ D 1.

1.2. Topological applications

Next, we show topological applications of rs , which include several new results on the
homology cobordism group ‚3Z and the knot concordance group C .

1.2.1. Homology 3-spheres with no definite bounding. We call a 4-manifold definite if
it is positive definite or negative definite. It is well-known that the Frøyshov invariant
[21, 22] and the Heegaard–Floer correction term [45] are obstructions to the existence of
a positive definite bounding or a negative definite bounding. However, there has been no
invariant which is an obstruction to the existence of both positive and negative definite
boundings. Our invariant rs.Y / is the first example of such an obstruction. We have the
following theorem.

Theorem 1.5. There exist infinitely many homology 3-spheres ¹Ykº1kD1 which cannot
bound any definite 4-manifold. Moreover, we can choose them linearly independent in‚3Z.
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Indeed, we can take ¹Ykº1kD1 WD ¹2†.2; 3; 5/ # .�†.2; 3; 6k C 5//º1
kD1

as a concrete
example for Theorem 1.5. We will show that r0.Yk/ <1 and r0.�Yk/ <1. Here, we
note that if a homology 3-sphere Y is Seifert or obtained by a knot surgery, then Y bounds
a definite 4-manifold. In addition, the existence of a definite bounding is invariant under
homology cobordism. Therefore, we have the following corollaries.

Corollary 1.6. For any k 2 Z>0, the homology cobordism class

Œ2†.2; 3; 5/ # .�†.2; 3; 6k C 5//�

does not contain any Seifert homology 3-sphere.

The existence of such a homology 3-sphere was first proved by Stoffregen [56] using
Pin.2/-monopole Floer homology. On the other hand, our proof is based on Yang–Mills
instanton theory.

Corollary 1.7. For any k 2 Z>0, no representative of Œ2†.2; 3; 5/ # .�†.2; 3; 6k C 5//�
is obtained by a knot surgery.

1.2.2. Linear independence of 1=n-surgeries. In [15, 24], Fintushel–Stern and Furuta
proved that for any coprime integers p; q > 1, the Seifert homology 3-spheres
¹†.p;q;pqn� 1/º1nD1 are linearly independent in‚3Z. We note that†.p;q;pqn� 1/D
�S3

1=n
.Tp;q/, where Tp;q is the .p; q/-torus knot and S3

1=n
.K/ denotes the 1=n-surgery

along a knot K in S3. From this viewpoint, we generalize the above results as follows.

Theorem 1.8. For any knot K in S3, if h.S31 .K// < 0, then ¹S3
1=n
.K/º1nD1 are linearly

independent in ‚3Z.

Theorem 1.8 gives a huge number of linearly independent families in ‚3Z. In fact,
there exist infinitely many hyperbolic knots and satellite knots with h.S31 .K// < 0. As
hyperbolic examples, we can take the mirrors K�

k
of the 2-bridge knots Kk (k 2 Z>0)

corresponding to the rational numbers 2
4k�1

. (These Kk are often called twist knots. See
Figure 2 in Section 5.2.)

Corollary 1.9. For any k 2 Z>0, the homology 3-spheres ¹S3
1=n
.K�

k
/º1nD1 are linearly

independent in ‚3Z.

As satellite examples, we can take the .2; q/-cable of any knot K (denoted by K2;q)
with odd q � 3.

Corollary 1.10. For any knot K in S3 and odd integer q � 3, the homology 3-spheres
¹S3
1=n
.K2;q/º

1
nD1 are linearly independent in ‚3Z.

1.2.3. Linear independence of Whitehead doubles. In this paper, we consider the sub-
group T in the knot concordance group C generated by topologically slice knots. The
group T has been thorougly studied via several gauge theories, Floer theories [1, 7, 9, 13,
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27,30–32,38,39,41,44,46–49] and Khovanov homology theory [50] as in the case of‚3Z.
However, the structure of T is still mysterious.

Here we focus on the positively-clasped Whitehead double D.K/ of a knot K. Since
D.K/ has trivial Alexander polynomial, D.K/ lies in T , namely D.K/ is topologically
slice [20]. There is a famous conjecture about the Whitehead doubles:

Conjecture 1.11 ([35, Problem 1.38]). As elements of the knot concordance group C ,
the equality ŒD.K/� D 0 holds if and only if ŒK� D 0.

Motivated by this conjecture, Hedden–Kirk [27] conjectured that the map

DWC ! C ; ŒK� 7! ŒD.K/�;

preserves the linear independence, and they proved that the conjecture holds for the family
¹T2;2n�1º

1
nD2, that is, the Whitehead doubles ¹D.T2;2n�1/º1nD2 are linearly independent

in C .
We refine their result as follows.

Theorem 1.12. For any coprime p; q > 1, the Whitehead doubles ¹D.Tp;npCq/º1nD0 are
linearly independent in C .

Corollary 1.13. The Whitehead doubles ¹D.T2;2n�1/º1nD2 are linearly independent in C .

Note that Hedden–Kirk’s results were extended to more general satellite knots in [49],
and our technique enables us to extend a result in [49]. Moreover, our approach can be
used to see the linear independence of D.K/ for a certain family of twisted knots K.

1.3. Additional structures on ‚3Z and Ker h

Using involutive Heegaard–Floer theory, Hendricks, Hom and Lidman [29] introduced a
poset filtration on ‚3Z and re-proved the existence of a Z1-subgroup of ‚3Z. Moreover,
for the knot concordance group, such filtrations coming from Heegaard–Floer theory are
also given in [26, 54]. Inspired by these work, we give a Œ0;1�-filtration of ‚3Z using our
invariant rs , which can be used to re-prove that Fintushel–Stern’s and Furuta’s sequence
¹†.p; q; pqk � 1/º1

kD1
is linearly independent in‚3Z for any pair .p; q/ of coprime inte-

gers. Since rs.Y / coincides with a critical value of the SU.2/-Chern–Simons functional
of Y , our filtration has a flavor of geometry.

More precisely, for any r 2 Œ0;1�, we consider the set

‚3Z;r WD
®
ŒY � 2 ‚3Z

ˇ̌
min ¹r0.Y /; r0.�Y /º � r

¯
:

Then it follows from the connected sum formula for r0 that ‚3Z;r is a subgroup of ‚3Z.
Moreover, by definition, it is obvious that if r � r 0, then ‚3Z;r � ‚

3
Z;r 0 . In particular,

‚3Z;0 D ‚
3
Z. For this filtration, we prove that any quotient group is infinitely generated.

Theorem 1.14. For any r 2 .0;1�, the quotient group ‚3Z=‚
3
Z;r contains Z1 as a sub-

group.
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Fig. 1. A schematic picture of the filtration ¹‚3Z;r º.

Figure 1 gives a schematic picture of the filtration ¹‚3Z;rº. Since ‚3Z;r is a subgroup
for any r 2 Œ0;1�, it is easy to see from the figure that ¹†.p;q;pqk � 1/º1

kD1
are linearly

independent in‚3Z. Here, we note that the smallest subgroup‚3Z;1 is infinitely generated.
In fact, it is proved by Hendricks–Hom–Lidman [29] that ¹S3�1.T2;4nC1/º

1
nD1 are linearly

independent in ‚3Z. Moreover, it is not hard to see that S3�1.T2;4nC1/ bounds both a
positive definite 4-manifold and a negative definite 4-manifold, and hence Theorem 1.1 (1)
gives r0.S3�1.T2;4nC1// D r0.�S

3
�1.T2;4nC1// D1. Note that any positive knot bounds

a null-homologous disk in B4 # kCP 2 for sufficiently large k ([5]). Therefore, we have

‚3Z;1 � spanZ¹ŒS
3
�1.T2;4nC1/�º

1
nD1 Š Z1;

where spanZ is the Z-linear span in ‚3Z. We pose the following fundamental questions
about the filtration ¹‚3Z;rºr2Œ0;1�.

Question 1.15. Which subquotient ‚3Z;r 0=‚
3
Z;r is infinitely generated?

As another approach to studying ‚3Z, we use the value

s1.Y / WD sup ¹s 2 Œ�1; 0� j rs.Y / D1º

to introduce a pseudometric on Ker.hW‚3Z ! Z/. The pseudometric induces a metric on
the quotient group Ker h=‚3Z;1. For more details, see Section 6.1.

1.4. Computations for a hyperbolic 3-manifold

Finally, we discuss the relation between our invariants ¹rsº and geometric structures on
homology 3-spheres. While it is proved by Myers [43] that any homology cobordism class
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contains a hyperbolic representative, we also know that there exist infinitely many homol-
ogy cobordism classes containing no Seifert representative, as discussed in Section 1.2.
As the next step, it is natural to ask whether ‚3Z is generated by Seifert homology 3-
spheres or not. Recently, Hendricks, Hom, Stoffregen, and Zemke [28] proved that the
homology cobordism class ŒS31 .T

�
6;7 # T �6;7 # T6;13 # T �2;3W2;5/� is not contained in ‚3S ,

where T2;3W2;5 is the .2; 5/-cable of T2;3 and ‚3S denotes the subgroup of ‚3Z generated
by Seifert homology 3-spheres. Namely, they proved ‚3Z © ‚

3
S .

Here, we mention that S31 .T
�
6;7 # T �6;7 # T6;13 # T �2;3W2;5/ is not Seifert but a graph

manifold. (The proof will be given in Appendix A.) Hence, the following question still
remains open.

Question 1.16. Is the group ‚3Z generated by graph homology 3-spheres?

Let ‚3G denote the subgroup of ‚3Z generated by all graph homology 3-spheres, and
then Question 1.16 is equivalent to whether the equality ‚3Z D ‚

3
G holds or not. Here we

note that critical values of the SU.2/-Chern–Simons functional of graph 3-manifolds are
rational [2], and hence the image rs.‚3G/ is included in Q>0 [ ¹1º for any s 2 Œ�1; 0�.
Therefore, we have the following proposition.

Proposition 1.17. If there exists a homology 3-sphere Y and s 2 Œ�1; 0� such that rs.Y /
is finite and irrational, then ŒY � … ‚3G .

From the viewpoint of Proposition 1.17, we try to calculate ¹rsº for the 1=2-surgery
along the knot 5�2 , where 5�2 is the mirror of the knot 52 in Rolfsen’s knot table. Note
that 52 is K2 as a twist knot, S31 .5

�
2/ Š �†.2; 3; 11/ and that S3

1=2
.5�2/ is a hyperbolic

3-manifold (see [4]). These facts imply that the value rs.S31=2.5
�
2// is finite and might be

irrational. Moreover, using the computer, we get the following result.

Theorem 1.18. The numerical approximation

rs.S
3
1=2.5

�
2// � 0:0017648904 7864885113 0739625897 0947779330 4925308209

holds for any s 2 Œ�1; 0�, where the error is at most 10�50.

It is an open problem whether there exists a 3-manifold whose SU.2/-Chern–Simons
functional has an irrational critical value. Note that the decimal in Theorem 1.18 has no
repetition. Therefore, we have the following conjecture.

Conjecture 1.19. The value rs.S31=2.5
�
2// is an irrational number.

If Conjecture 1.19 is true, then it follows from Proposition 1.17 that ŒS3
1=2
.5�2/� is not

contained in ‚3G .

Organization

The paper is organized as follows. In Section 2, we give a review of filtered instanton
homology. In Section 3, we introduce the invariants rs using notions of Section 2, and
establish several basic properties of rs . In particular, Theorem 1.1 will be proved in this
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section. Section 4 is devoted to discussing the relation between rs and Daemi’s �Y .k/. In
Section 5, we prove all assertions stated in Section 1.2. In Section 6, we discuss additional
structures on ‚3Z and Ker h by using rs . In Section 7, we explain how to compute an
approximate value of rs.S31=2.5

�
2//.

2. Review of filtered instanton Floer homology

Throughout this paper, all manifolds are assumed to be smooth, compact, orientable and
oriented, and diffeomorphisms are orientation-preserving unless otherwise stated. In this
section, we review the definition of filtered instanton Floer homology. For instanton Floer
homology, see [12, 17]. For the filtered version of instanton Floer homology, see [16].

2.1. Preliminaries

2.1.1. Chern–Simons functional. For a homology 3-sphere Y , we denote the product
SU.2/ bundle by PY , and the product connection on PY by � . In addition, we denote

� A.Y / WD the set of SU.2/-connections on PY ,

� Aflat.Y / WD the set of SU.2/-flat connections on PY ,

� zB.Y / WD A.Y /=Map0.Y; SU.2//,

� zR.Y / WD Aflat.Y /=Map0.Y; SU.2//,

� R.Y / WD Aflat.Y /=Map.Y; SU.2//,

where Map.Y;SU.2// (resp. Map0.Y;SU.2//) is the set of smooth functions (resp. smooth
functions of mapping degree 0), and the right action of Map.Y; SU.2// on A.Y / is given
by a � g WD g�1dg C g�1ag. Note that the action preserves the flatness of a for any g.
Also, we write zB�.Y /, zR�.Y / and R�.Y / respectively for the subsets of zB.Y /, zR.Y /
and R.Y / whose stabilizers are constants in ¹˙I2º. The elements in zB�.Y / and zR�.Y /
are called irreducible connections. When the stabilizer of an SU.2/-connection is larger
than ¹˙I2º, the connection is said to be reducible. The Chern–Simons functional on A.Y /

is the map csY WA.Y /! R defined by

csY .a/ WD
1

8�2

Z
Y

Tr
�
a ^ daC 2

3
a ^ a ^ a

�
:

It is known that csY .a � g/� csY .a/D deg.g/ holds for g 2Map.Y;SU.2//, where deg.g/
is the mapping degree of g. Therefore, csY .a � g/D csY .a/ for any g 2Map0.Y; SU.2//,
and hence csY descends to a map zB.Y /! R. We denote it by the same notation csY .
Moreover, we use the notationsƒY andƒ�Y for csY . zR.Y // and csY . zR�.Y //, respectively.
Note that the setƒY is locally finite, that is, Œm;mC 1�\ƒY is a finite set for anym 2R.
For example, one can see that ƒS3 D Z and ƒ�

S3
D ;. Set

RY WD R nƒY

for any oriented homology 3-sphere Y .
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2.1.2. Perturbations of csY . Roughly speaking, the instanton Floer homology of Y is the
Morse homology associated to csY W zB�.Y /!R, where the set of critical points is zR�.Y /.
However, zR�.Y / does not satisfy non-degeneracy in general, and hence we need to per-
turb csY so that zR�.Y / becomes non-degenerate. In this paper, we use several classes of
perturbations of csY introduced in [17, Section (1b)] and [3, Section 5.5.1].

For any d 2 Z>0 and fixed l � 2, consider the set of orientation-preserving embed-
dings of d solid tori into Y ,

Fd WD
®
.fi WS

1
�D2 ,! Y /1�i�d

¯
;

and denote by C l .SU.2/d ;R/ad the set of adjoint invariant C l functions on SU.2/d . Then
the set of perturbations is defined by

P .Y / WD
[
d2N

Fd � C
l .SU.2/d ;R/ad:

Fix a 2-form d� on D2 supported in the interior of D2 with
R
D2
d� D 1. Then,

for any � D .f; h/ 2 P .Y /, we can define the �-perturbed Chern–Simons functional
csY;� W zB�.Y /! R by

csY;�.a/ D csY .a/C
Z
x2D2

h.Holf1.�;x/.a/; : : : ;Holfd .�;x/.a// d� ; (1)

where Holfi .�;x/.a/ is the holonomy around the loop t 7! fi .t; x/ for each i 2 ¹1; : : : ; dº.
We denote khkC l by k�k and the second term of the right-hand side in (1) by hf .

2.1.3. Gradient of csY;� . We next consider the gradient of csY;� . Fix a Riemannian met-
ric gY on Y . For i 2 ¹1; : : : ; dº, let �i WSU.2/! SU.2/d denote the i -th inclusion, and set
hi WD h ı �i W SU.2/! R. Then, identifying su.2/ with its dual by the Killing form, we
can regard the derivative h0i as a map h0i W SU.2/! su.2/.

Using the value of the holonomy around each loop ¹fi .s; x/ j s 2 S1º, we obtain a
section Holfi .s;x/.a/ of the bundle AutPY over Im fi . Sending the section Holfi .s;x/.a/
by the bundle map induced by h0i WAutPY ! adPY , we obtain a section h0i .Holfi .s;x/.a//
of adPY over Imfi .

We now describe the gradient-line equation of csY;� with respect to the L2-metric:

@

@t
at D grada csY;� D �gY

�
F.at /C

dX
iD1

h0i .Hol.at /fi .s;x//.fi /�pr�2 d�
�
; (2)

where pr2 is the second projection S1 �D2 ! D2, �gY is the Hodge star operator and
F.a/ denotes the curvature of a connection a. We denote pr�2d� by �. We set

zR.Y /� WD
°
a 2 zB.Y /

ˇ̌̌
F.a/C

dX
iD1

h0i .Hol.a/fi .s;x//.fi /�� D 0
±
;

zR�.Y /� WD zR.Y /� \ zB
�.Y /:
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The solutions of (2) correspond to connections A over Y �R which satisfy

FC.A/C �.A/C D 0; (3)

where

� the 2-form �.A/ is given by

dX
iD1

h0i .Hol.A/ Qfi .t;x;s//.
Qfi /�.pr�1�/;

� pr1 is the projection from .S1 �D2/ �R to S1 �D2,

� the superscript C is 1
2
.1C �/ where � is the Hodge star operator with respect to the

product metric on Y �R,

� the map Qfi WS1 �D2 �R! Y �R is fi � Id.

We introduce the spacesM Y .a;b/� of trajectories for given a;b 2 zR�.Y /� . Fix a pos-
itive integer q � 3. Let Aa;b be an SU.2/-connection on Y �R satisfying Aa;bjY�.�1;1�
D p�a and Aa;bjY�Œ1;1/ D p�b where p is the projection Y �R! Y . We define

M Y .a; b/� WD ¹Aa;b C c j c 2 �
1.Y �R/˝ su.2/L2q with (3)º=G .a; b/; (4)

where the gauge group G .a; b/ is given by

G .a; b/ WD ¹g 2 Aut.PY�R/ � End.C2/L2
qC1;loc

j g�Aa;b � Aa;b 2 L
2
qº:

Here the space L2qC1;loc consists of the sections which are L2qC1 on each compact set in
Y �R, and g�Aa;b denotes the pull-back of the connection Aa;b by g. The group G .a; b/

acts on ¹Aa;b C c j c 2 �1.Y � R/˝ su.2/L2q with (3)º via pull-backs of connections.
Since

kg�Aa;b � Aa;bkL2q.Y�Œn;nC1�/ ! 0 as n!˙1;

g lies in the stabilizer ¹˙1º of a and b asymptotically on both ends respectively. When
we define M Y .a; �/�;ı , we use the L2

q;ı
-norm instead of the L2q-norm. The definition of

L2
q;ı

-norm is given later in (5). The space R acts on M Y .a; b/� by translation.

2.1.4. Classes of perturbations. We also use several classes of perturbations. If the coho-
mology groups defined by the complex given in [52, (12)] satisfy H i

�;a D 0 for all Œa� 2
zR.Y /� n ¹Œg

��� j g 2 Map.Y; SU.2//º for a given � , we call � a non-degenerate pertur-
bation. If � satisfies the following conditions for a fixed small number ı > 0 and gY , we
call � a regular perturbation:

� The linearization

dCA C d�
C

A W�
1.Y �R/˝ su.2/L2q ! �C.Y �R/˝ su.2/L2

q�1

of the left-hand side of (3) is surjective for a; b 2 zR�.Y /� and ŒA� 2M Y .a; b/� .
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� The linearization

dCA C d�
C

A W�
1.Y �R/˝ su.2/L2

q;ı
! �C.Y �R/˝ su.2/L2

q�1;ı

of the left-hand side of (3) is surjective for a 2 zR�.Y /� and ŒA� 2M Y .a; �/� .

The relevant norms are given by

kf k2
L2q
WD

qX
jD0

Z
Y�R
jr
j
Aa;b

f j2

and

kf k2
L2
q;ı

WD

qX
jD0

Z
Y�R

eı Q� jr
j
Aa
f j2 (5)

for f 2 �i .Y �R/˝ su.2/ with compact support, where

� Aa;b and Aa;� are fixed connections as above,

� j � j is the product metric on Y �R,

� q is an integer greater than 2,

� Q� W Y � R! R is a smooth function satisfying Q�.y; t/ D t if t > 1 and Q�.y; t/ D 0 if
t < �1.

Here the spaces M Y .a; b/� and M Y .a; �/�;ı are given in (4) in Section 2.1.3.
Next, we will introduce a class of small perturbations which we actually use. In order

to explain this, we follow a method introduced in [16].

Definition 2.1. Let Y be a homology 3-sphere and g be a Riemannian metric on Y . For
� > 0, we define a class of perturbations P �.Y; g/ as the subset of P .Y / consisting of
elements � D .f; h/ which satisfy

(1) jhf .a/j < � for all a 2 zB.Y /,

(2) kgradg hf .a/kL4 < �=2; kgradg hf .a/kL2 < �=2 for all a 2 zB.Y /.

If necessary, for a non-degenerate regular perturbation � D .f; h/, we can assume h
is smooth (see [52, Section 8]).

For r; s 2 RY [ ¹�1º and a fixed Riemannian metric g, we define a class of per-
turbations P .Y; r; s; g/ in the following way. Let ¹R˛º be the connected components of
R�.Y /. Let U˛ be a neighborhood of R˛ in B.Y / with respect to the C1-topology such
that U˛ \ Uˇ D ; if ˛ ¤ ˇ and ¹U˛º is a covering of R�.Y /. We take all lifts of U˛ with
respect to pr W zBY ! BY . Since Map.Y; SU.2//=Map0.Y; SU.2// is isomorphic to Z, we
denote all lifts by ¹U i˛ºi2Z. In addition, we impose the following conditions on U i˛:

� If a 2 U i˛ , jcs.a/ � cs.R˛/j < min ¹d.r;ƒY /=8; d.s;ƒY /=8º, where

d.r;ƒY / WD min ¹jr � aj 2 R>0 j a 2 ƒY º:

� U i˛ has no reducible connections.

Note that, for any element � 2 zR.Y /, we have unique ˛ and i 2 Z such that � 2 U i˛ .
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By the Uhlenbeck compactness theorem, we can take a sufficiently small real number
�1.Y; g; ¹U˛º/ > 0 satisfying the following condition:

If a 2 B�.Y / and kF.a/kL2 � �1.Y; g; ¹U˛º/, then a 2 U˛ for some ˛: (6)

Definition 2.2. Set
�1.Y; g/ WD

1
2

sup
¹U˛º

�1.Y; g; ¹U˛º/;

where ¹U˛º runs over all coverings of ¹R˛º as above.

We also use the notation �Y WDmin ¹ja � bj j a; b 2ƒY with a¤ bº. Then we define
a class of perturbations which we will use later.

Definition 2.3. For a given r 2 RY , s 2 Œ�1;1/ and a metric g, we define

�.Y; r; s; g/ WD

´
min ¹�1.Y; g/; d.s;ƒY /=8; d.r;ƒY /=8; �Y =32º if s 2 RY ,

min ¹�1.Y; g/; d.r;ƒY /=8; �Y =32º if s 2 ƒY

and
P .Y; r; s; g/ WD P �.Y;r;s;g/.Y; g/ � P .Y /:

With the use of P .Y; r; s; g/, we have the following fundamental properties of the
values of the perturbed Chern–Simons functional.

Lemma 2.4. Given r 2 RY , s 2 R, and � 2 P .Y; r; s; g/, for any a 2 zR�.Y / one has

(1) jcs�.a/ � r j > 3
4
d.r;ƒY /,

(2) jcs�.a/ � sj > 3
4
d.s;ƒY / if s 2 RY ,

(3) jcs�.a/ � s C 1
2
�Y j >

3
4
d.s � �Y ; ƒY / if s 2 ƒY .

Proof. We only show (1). Due to the choice of perturbations, for each a 2 zR�.Y / one
can find � 2 zR.Y / satisfying a 2 U�, which leads to

jcs�.a/ � r j � jcs.�/ � r j � jcs�.a/ � cs.a/j � jcs.a/ � cs.�/j

> d.r;ƒY / �
1
8
d.r;ƒY / �

1
8
d.r;ƒY / D

3
4
d.r;ƒY /:

The proofs of (2) and (3) are essentially the same as that of (1).

2.2. Instanton Floer homology

In this subsection, we give the definition of the filtration of instanton Floer (co)homology
by using the technique in [16]. First, we give the definition of Z-graded instanton Floer
homology. Let Y be a homology S3 and fix a Riemannian metric gY on Y . Fix a non-
degenerate regular perturbation � 2 P .Y /. Roughly speaking, instanton Floer homology
is infinite-dimensional Morse homology with respect to

csY;� W zB�.Y /! R: (7)
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Floer defined indW zR�.Y /� ! Z, called the Floer index. The (co)chains of instanton
Floer homology are defined by

CIi .Y / WD Z¹a 2 zR�.Y /� j ind.a/ D iº .resp. CIi .Y / WD Hom.CIi .Y /;Z//:

The (co)boundary maps @WCIi .Y /! CIi�1.Y / .ıWCIi .Y /! CIiC1.Y // are given by

@.a/ WD
X

b2 zR�.Y /� ; ind.b/Di�1

#.M Y .a; b/�=R/b .ı WD @�/;

where M Y .a; b/� is the space of trajectories of csY;� from a to b.

Remark 2.5. Originally, instanton Floer homology is modeled on infinite-dimensional
Morse homology with respect to the functional

csY;� WB�.Y / WD A�.Y /=Map.Y; SU.2//! S1: (8)

If we use B.Y /, the Floer indices take values in Z=8Z. For our purpose, we will use the
R-valued Chern–Simons functional, that is, we consider (7) instead of (8). On zB�.Y /,
the Floer indices take values in Z. So, we obtain a Z-graded chain complex. The original
instanton chain group was given by

Ci .Y / WD Z¹a 2 zR�.Y /�=Z j ind.a/ D iº

for each i 2 Z=8Z. The following isomorphism gives a relation between the original
instanton Floer homology and Z-graded instanton Floer homology of Y :

H�.CIj .Y /; @/
Š
�! H�.Ci .Y /; @/

for i 2 Z=8Z, j 2 Z with j � i mod 8.

We review how to give orientations of M Y .a; b/�=R. For a given homology
3-sphere Y , a non-degenerate perturbation � , a 2 zR��.Y / and any oriented compact 4-
manifold X bounded by �Y , we define a configuration space

B.a;X/ WD ¹Aa C c j c 2 �
1.X�/˝ su.2/L2q º=G .a;X

�/; (9)

where X� denotes X [ Y � Œ0;1/ with a product Riemannian metric on the end and
G .a; X�/ is the gauge group defined analogously to the cylindrical case as above. Our
convention for the orientations is the same as that in [12, Section 5.4]. If we choose a
connection a as the product connection � , we need to use the weighted Sobolev norm (5)
to define the space B.�; X/. To give orientations of the spaces M Y .a; b/�=R, we use a
real line bundle

La ! B.a;X/ (10)

for a 2 zR�.Y /� , which is called the determinant line bundle. This bundle is defined as a
determinant line bundle of a family of operators d�A C d

C

A parametrized by A 2 B.a;X/.
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For details, see [12, Section 5.4]. It is shown there that the bundle La!B.a;X/ is trivial.
Define

LX WD
Vmax

.H 0.X IR/˚H 1.X IR/˚HC.X IR//:

If we fix an orientation of the orientation bundle

�a;X WD La ˝ LX (11)

associated with a, one can define an orientation of M Y .a; b/� in the following way. By
gluing connections and operators, one can obtain a continuous map

glWM Y .a; b/� �B.b; X/! B.a;X/:

Furthermore, we obtain a bundle isomorphism whose restriction to the fiber over .A;B/ 2
M Y .a; b/� �B.b; X/ is given by

zglW .Det.TM Y .a; b/�/˝ Lb/j.A;B/ ! gl�Laj.A;B/;

where TM Y .a; b/� is the tangent bundle of M Y .a; b/� . We have two orientations of
M Y .a; b/� : an orientation of Det.TM Y .a; b/�/ such that egl is an orientation-preserving
map and one coming from the R-translation. The consistency of these orientations gives
the sign of the differential. This definition does not depend on the choice of .A; B/ and
bump functions which are used to construct the map gl. Moreover, one can see that @2D 0
as in the case of Morse homology for finite-dimensional manifolds.

The instanton Floer (co)homology I�.Y / (resp. I �.Y /) is defined by

I�.Y / WD Ker @=Im @ .resp. I �.Y / WD Ker ı=Im ı/:

If we take another data of perturbations, Riemannian metric and orientations of �a;X ,
then the corresponding chain complexes are chain homotopy equivalent to each other.
Therefore the isomorphism classes of the groups CI�.Y / and CI�.Y / are well-defined.

2.3. Filtered instanton Floer homology

In this section, we introduce filtered instanton Floer homology which refines Fintushel–
Stern’s Floer homology introduced in [16].

We recallƒY D csY . zR.Y //,ƒ�Y D csY . zR�.Y // and RY D R nƒY . For r 2 RY , we
define the filtered instanton (co)homology I Œs;r�� .Y / (resp. I �

Œs;r�
.Y // using �-perturbations.

Definition 2.6. We fix s 2 Œ�1; 0�. For a given r 2 RY , metric g on Y , a non-degenerate
regular perturbation � 2P .Y;r; s;g/ and orientations on line bundles �a;X , the (co)chains
of filtered instanton Floer (co)homology are defined by

CIŒs;r�i .Y; �/ WD

´
Z¹Œa� 2 zR�.Y /� j ind.a/D i; s < csY;�.a/ < rº if s 2RY ,

Z¹Œa� 2 zR�.Y /� j ind.a/D i; s � �Y =2 < csY;�.a/ < rº if s 2ƒY ;

CIiŒs;r�.Y; �/ WD Hom.CIŒs;r�i .Y; �/;Z/;
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where �Y WD min ¹ja � bj j a ¤ b; a; b 2 ƒY º. The (co)boundary maps

@Œs;r�WCIŒs;r�i .Y; �/! CIŒs;r�i�1 .Y; �/ .resp. ır WCIiŒs;r�.Y /! CIiC1
Œs;r�

.Y //

are given by the restriction of @ to CIŒs;r�i .Y / (resp. ıŒs;r� WD .@Œs;r�/�).

Then one can see .@Œs;r�/2 D 0.

Definition 2.7. The filtered instanton Floer (co)homology I Œs;r�� .Y / (resp. I �
Œs;r�

.Y /) is
defined by

I Œs;r�� .Y / WD Ker @Œs;r�=Im @Œs;r� .resp. I �Œs;r�.Y / WD Ker ıŒs;r�=Im ıŒs;r�/:

Although the isomorphism class of CIŒs;r�i .Y; �/ depends on the choice of � , the
chain homotopy type is an invariant of Y . Thus, we omit � in the notation for Floer
(co)homology groups. The following lemma provides well-definedness of our invariants
I
Œs;r�
� .Y / and I �

Œs;r�
.Y /.

Lemma 2.8. Fix s 2 Œ�1; 0�, r 2 RY with s � 0 � r , two Riemannian metrics g and
g0 on Y , non-degenerate regular perturbations � , � 0 in P .Y; r; s; g/ and orientations of
orientation bundles for zR�.Y /� and zR�.Y /� 0 respectively. If we choose two elements �
and � 0 in P .Y; r; s; g/ and P .Y; r; s; g0/, then there exists a chain homotopy equivalence
between CIŒs;r�i .Y; �/ and CIŒs;r�i .Y; � 0/, the instanton chain complexes with respect to �
(resp. � 0).

Proof. Fix the following data:

� Fix a Riemannian metric g# on Y �R which coincides with gC dt2 on Y � .�1;�1�
and with g0 C dt2 on Y � Œ1;1/.

� Fix a regular perturbation �# on Y �R which coincides with � on Y � .�1;�1� and
with � 0 on Y � Œ1;1/ such that

k�#.A/kL2.Y�Œ�1;1�/ < min ¹�.Y; r; s; g/; �.Y; r; s; g0/º:

(In Section 2.1.4, we gave the definition of regular perturbations for the product per-
turbations. In the general case, we also define regular perturbations using a certain
surjectivity condition. For more details, see [12].)

Then, by considering the moduli spaceM Y .a; b/�# under the assumption ind.a/� ind.b/
D 0, we obtain compact 0-dimensional manifolds. The orientation comes as in the case
of cobordism maps which we will introduce in Section 2.4. Thus, we have a map

��;� 0 WCIŒs;r�i .Y; �/! CIŒs;r�i .Y; � 0/

defined by
a 7!

X
bW ind.a/�ind.b/D0

#M Y .a; b/�# :
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Similarly, we have a map �� 0;� WCIŒs;r�i .Y; � 0/! CIŒs;r�i .Y; �/. One can check that ��;� 0
and �� 0;� are chain maps. Moreover, �� 0;���;� 0 and ��;� 0�� 0;� are chain homotopic to
the identity, by the same argument as in [16]. This completes the proof.

Lemma 2.9. For r; r 0 2 RY , s; s0 2 R with s � s0 � 0 � r � r 0, there exists a chain map

i
Œs0;r 0�

Œs;r�
WCIŒs;r�i .Y /! CIŒs

0;r 0�
i .Y /:

The map i Œs
0;r 0�

Œs;r�
satisfies the following conditions:

(1) The chain homotopy class of i Œs
0;r 0�

Œs;r�
does not depend on the choice of additional data.

(2) If we take two triples of numbers .r; r 0; r 00/, .s; s0; s00/ with s � s0 � s00 � 0 � r �
r 0 � r 00, then

i
Œs;r�

Œs0;r 0�
ı i

Œs0;r 0�

Œs00;r 00�
D i

Œs;r�

Œs00;r 00�

as induced maps on cohomology, where i Œs;r�
Œs0;r 0�

, i Œs
0;r 0�

Œs00;r 00�
and i Œs;r�

Œs00;r 00�
are duals of i Œs

0;r 0�

Œs;r�
,

i
Œs00;r 00�

Œs0;r 0�
and i Œs

00;r 00�

Œs;r�
.

(3) If Œr; r 0�; Œs; s0� � R nƒ�Y , then the map i Œs
0;r 0�

Œs;r�
gives a chain homotopy equivalence.

Proof. First, we give the construction of i Œs
0;r 0�

Œs;r�
. One can take a non-degenerate regular

perturbation � satisfying � 2 P .Y; r; s; g/ \ P .Y; r 0; s0; g/. This gives a natural map
i
Œs0;r 0�

Œs;r�
WCIŒs;r�i .Y; �/! CIŒs

0;r 0�
i .Y; �/ by setting

i
Œs0;r 0�

Œs;r�
.a/ WD

´
a if a 2 CIŒs

0;r 0�
i .Y; �/,

0 otherwise.

This yields a chain map. The proof of (1) is similar to the proof of independence from the
choice of � ; (2) is obvious, because we can take a non-degenerate regular perturbation

� 2 P .Y; r; s; g/ \P .Y; r 0; s0; g/ \P .Y; r 00; s00; g/:

To prove (3), suppose that Œr; r 0�; Œs; s0� � R nƒ�Y . We take a sequence of non-degenerate
regular perturbations ¹�nº � P .Y; r; s; g/\P .Y; r 0; s0; g/ such that k�nk ! 0. We show
that the following maps are bijective for sufficiently large n:

inW ¹a 2 zR.Y /�n j s < cs�n.a/ < rº ! ¹a 2 zR.Y /�n j s
0 < cs�n.a/ < r

0
º:

Suppose there is a sequence ¹nkº of positive integers such that nk !1 as k !1
and ink is not bijective for any k 2 Z>0. Then we can take a sequence ¹bkº with s <
cs�k .bk/ < s

0 and r < cs�k .bk/ < r
0. Using Uhlenbeck’s compactness theorem, we bound

kg�
k
bkkL2

k
.Y /�Ck for some gauge transformations. By taking a subsequence, we can take

a limit connection b1. Since a reducible connection is isolated for a small perturbation
�nk , we can assume that b1 is irreducible. Since k�nkk ! 0, b1 satisfies F.b1/ D 0
and cs.b1/ 2 Œs; s0� [ Œr; r 0�. This gives a contradiction. Therefore, ik is a bijection for
sufficiently large k. This completes the proof.
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2.4. Cobordism maps

First, let us fix the convention about oriented cobordisms. We use the outward normal first
convention. For example,

@.Y � Œ0; 1�/ Š �@.Œ0; 1� � Y / D ¹0º � Y q .�¹1º � Y /

for an oriented 3-manifold Y , where Š denotes orientation-preserving diffeomorphism.
In this section, we review the cobordism maps for filtered instanton chain complexes.
These maps have already been considered in [16]. We fix sj 2 Œ�1; 0� for 1 � j � m
and put s D

P
1�j�m sj . Let Y � be the finite disjoint union of oriented homology 3-

spheres Y �j for 1 � j � m, Y C an oriented homology sphere and W a negative definite
connected cobordism with @W D Y C q .�Y �/ and b1.W / D 0. We assume sj 2 RY�

j

for 1 � j � m. First, we fix the following data related to @W :

� a Riemannian metric g on @W D Y C q�Y � and

r 2 RYC \
m\
jD1

RY�
j
;

� non-degenerate regular perturbations �C 2 P .Y C; r; s; gYC/ and ��j 2 P .Y �j ; r;

r � s C sj ; gY�
j
/ for 1 � j � m,

� for any a 2R�.Y C/�C and bj 2R�.Y �j /��j , orientations of La and Lbj for 1� j �m.

Using the above data, one can define filtered Floer chain complexes .C Œs;r�� .Y C/; @r / and
.C

Œs;r�
� .Y �j /; @

r /. Let us denote by W � the end-cylindrical 4-manifold given by

Y C �R�0 [W [ Y
�
�R�0:

We fix an orientation of W � which agrees with the orientations on Y C � R�0 and
Y � �R�0, and a Riemannian metric gW � on W � which coincides with the product met-
ric of g and the standard metric of R on Y C �R�0q Y � �R�0. For a 2 R.Y C/�C and
b D .bj / 2

Q
1�j�mR.Y

�
j /��j , we can define the ASD moduli space

M.a; W �;b/ WD ¹Aa;b C c j c 2 �
1.W �/˝ su.2/L2q ; .�/º=G .a; W

�;b/;

where

FC.Aa;b C c/C �
C

W .Aa;b C c/ D 0;

Aa;b is an SU.2/-connection on W � whose restrictions to the ends Y C � R��1 [
Y � � R�1 coincide with the pull-backs of a and b, and the group G .a; W �; b/ is given
similarly to the product case. If we take a limit connection � , we use the weighted norm
with a small positive weight as in the case of Y �R. The part �W is a perturbation onW �

satisfying the following conditions .��/:

� The perturbation �W coincides with ��j on Y �j � R�0 for any j and with �C on
Y C �R�0.
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� For a 2 �1.W /L2q ,

k�CW .a/kL2 <
1

8
min
j

´
d.r;ƒY�

j
/; �Y�

j
; d.r � s C sj ; ƒY�

j
/;

d.r;ƒYC/; �YC ; d.s;ƒYC/; d.sj ; ƒY�j /

µ
:

� For any irreducible element A 2M.a; W �;b/,

dCA C d.�
C

W /AW�
1.W �/˝ su.2/L2q ! �C.W �/˝ su.2/L2

q�1

is surjective, where d.�CW /A is the linearization of �CW . If a or b contains the reducible
connection � , we need to consider the weighted norm as in the case of Y �R.

Now we explain how to give an orientation of M.a; W �; b/. Let X�j and XC be
compact oriented 4-manifolds with @.X�j / D Y

�
j and @.XC/ D Y C. Then we obtain a

continuous map

glWM.a; W �;b/ �

mY
jD1

B.bj ; Y
�
j /! B

�
a;W [

m[
jD1

X�j

�
by gluing connections using cut-off functions. This gives a bundle map

zglWDetTM.a; W �;b/˝
mO
jD1

Lbj ! gl�La:

We fix the orientation of Det TM.a; W �; b/ so that zgl is orientation-preserving with
respect to the orientations induced from the orientations of the orientation bundles. Then
by computing the 0-dimensional part of M.a; W �;b/, we get a map

CW Œs;r�
i WCIŒs;r�i .Y C/!

M
P
j ljDi

0�lj�i

mO
jD1

CIŒs;r�
lj

.Y �j /

for i 2 Z. In this paper, we use only the cases of m D 1 and m D 2. In particular, for
m D 2, we also use the map

eCW Œs;r�
i WCIŒs;r�i .Y C/! CIŒs;r�i .Y �1 /˚ CIŒs;r�i .Y �2 /

defined via the 0-dimensional moduli spacesM.a;W �; .b; �// andM.a;W �; .�; b//. (We
use the weighted norm here.)

The following is the key lemma of this paper. Roughly speaking, it implies that the
cobordism maps are filtered.

Lemma 2.10. (1) SupposemD1. Let r 2RYC \RY�
1

, s2 Œ�1; r/, �C2P .Y C; r; s; g/

and ��1 2P .Y �1 ; r; s; g
�
1 /. Let aD a 2R.Y C/�C and bD b 2R.Y �1 /��1 . Suppose

thatM.a;W �;b/¤; for some perturbation �W satisfying .��/, and a2C Œs;r�� .Y C/.
Then cs��

1
.b/ < r .
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(2) SupposemD 2. Let r 2RYC \RY�
1
\RY�

2
and s; s1; s2 2 Œ�1; r/ with sD s1C s2,

r � s1 2RY�
2

and r � s2 2RY�
1

and choose perturbations �C 2P .Y C; r; r 0; g/,
��1 2P .Y �1 ; r � s2; s1; g

�
1 / and ��1 2P .Y �2 ; r � s1; s2; g

�
2 /. Let a 2R.Y C/�C and

bD .b1; b2/2R.Y
�
1 /��1 �R.Y

�
2 /��2 . IfM.a;W �;b/¤; for some perturbation �W

satisfying .��/, s < cs�C.a/< r and s1< cs��
1
.b1/< r � s2, then cs��

2
.b2/< r � s1.

(3) Under the same assumption as in Lemma 2.4 (2), the following holds. Let
a 2R.Y C/�C and b2 2R.Y �2 /��2 . Suppose that M.a; W �; .�; b2//¤ ; for some
perturbation �W satisfying .��/, and s < cs�C.a/ < r . Then cs��

2
.b2/ < r � s1.

(4) Under the same assumption as in Lemma 2.4 (2), additionally assume that s1 C s2
2RYC . Let a2R.Y C/�C and bD .b1; b2/2R.Y

�
1 /��1 �R.Y

�
2 /��2 . IfM.a;W �;b/

¤ ; for some perturbation �W satisfyng .��/, b1 2 C Œs1;r�s2�.Y �1 / and b2 2

C Œs2;r�s1�.Y �2 /, then cs�C.a/ > s1 C s2.

(5) Under the same assumption as in Lemma 2.4 (2), additionally assume that s1 C s2
2RYC . Let a 2R.Y C/�C and b2 2R.Y �2 /��2 . If M.a; W �; .�; b2//¤ ; for some
perturbation �W satisfying .��/, and b2 2 C Œs2;r�s1�.Y �2 /, then cs�C.a/ > s1 C s2.

Proof. First, let us show (1). By Lemma 2.4, we have

jr � cs��
1
.b/j > 3

4
d.r;ƒY�/:

If r � cs��
1
.b/ > 3

4
d.r;ƒY�/, then this is the conclusion, so assume

r � cs��
1
.b/ < �3

4
d.r;ƒY�/: (12)

LetA be an element inM.a;W �; b/. We setAC DAj@.YC�R�0/ andA� DAj@.Y��R�0/.
Since A is a flow of grad cs�C on Y C �R�0,

cs�C.a/ � cs�C.AC/:

We also have cs��
1
.A�/ � cs��

1
.b/ by the same argument. Moreover, we see that

cs��
1
.A�/ � cs�C.AC/

D .cs��
1
.A�/ � cs.A�// � .cs�C.AC/ � cs.AC//C cs.A�/ � cs.AC/

� max
²
1

4
d.r;ƒYC/;

1

4
d.r;ƒY�/

³
�

1

8�2

Z
W

Tr.F.A/ ^ F.A//:

Here, the second term is bounded by 1
8

min ¹d.r;ƒYC/; d.r;ƒY�1 /º because

�
1

8�2

Z
W

Tr.F.A/^F.A//D�
1

8�2

Z
W

Tr
�
.FC.A/CF �.A//^ .FC.A/CF �.A//

�
D �

1

8�2

Z
W

Tr.�CW .A/ ^ �
C

W .A//C
1

8�2

Z
W

Tr.F �.A/ ^ �F �.A//

�
1

8
min ¹d.r;ƒYC/; d.r;ƒY�/º �

1

8�2
kF �.A/k2

L2.W /
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by the choice of �W . Therefore,

cs��
1
.A�/ � cs�C.AC/ �

3
8

max ¹d.r;ƒYC/; d.r;ƒY�1 /º:

On the other hand,

cs�C.a/ < �
3
4
d.r;ƒYC/C r

by Lemma 2.4. Now we have

cs��
1
.b/ < r � 3

4
d.r;ƒYC/C

3
8

max ¹d.r;ƒYC/; d.r;ƒY�1 /º: (13)

Combining (12) and (13), we get

0 < �3
4
d.r;ƒYC/ �

3
4
d.r;ƒY�

1
/C 3

8
max ¹d.r;ƒYC/; d.r;ƒY�1 /º:

This gives a contradiction.
Next, we show (2). Using Lemma 2.4, we have

jr � s1 � cs��
2
.b2/j >

3
4
d.r � s1; ƒY�

2
/:

As above, we assume

r � s1 � cs��
2
.b2/ < �

3
4
d.r � s1; ƒY�

2
/:

Suppose A 2 M.a; W �; b/, AC D AjYC�R�0 , A1� D AjY�1 �R�0 and A2� D AjY�2 �R�0 .
Then

�r C 3
4
d.r;ƒYC/C s1 C

3
4
d.s1; ƒY�

1
/C cs��

2
.b2/

� �cs�C.AC/C cs��
1
.A1�/C cs��

2
.A2�/

�
1
2

max¹d.r;ƒYC/; d.s1; ƒY�1 /; d.r � s1; ƒY�2 /º

by the same argument. These give a contradiction.
Let us show (3). By using Lemma 2.4, we have

jr � s1 � cs��
2
.b2/j >

3
4
d.r � s1; ƒY�

2
/:

As above, we assume

r � s1 � cs��
2
.b2/ < �

3
4
d.r � s1; ƒY�

2
/:

By a similar discussion, since cs��
1
.�/ D 0, we have

�r C 3
4
d.r;ƒYC/C s1 C

3
4
d.s1; ƒY�

1
/C cs��

2
.b2/

�
1
2

max ¹d.r;ƒYC/; d.s1; ƒY�1 /; d.r � s1; ƒY�2 /º:

This gives a contradiction.
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Next, we show (4). By using Lemma 2.4, we have

jcs�C.a/ � sj >
3
4
d.s;ƒYC/:

As above, we assume

cs�C.a/ � s < �
3
4
d.s;ƒYC/:

For A 2 M.a; W �; b/, AC D AjYC�R�0 , A1� D AjY�1 �R�0 and A2� D AjY�2 �R�0 , one
has

s1 C
3
4
d.s1; ƒY�

1
/C s2 C

3
4
d.s2; ƒY�

2
/C cs�C.a/

�
1
2

max ¹d.s;ƒYC/; d.s1; ƒY�1 /; d.s2; ƒY�2 /º:

These give a contradiction. The proof of (5) is similar to that of (4).

Fintushel–Stern proved the following lemma. This is a corollary of Lemma 2.10 under
the assumption m D 1.

Lemma 2.11. For r 2 RYC \RY� ,

CW Œs;r�@Y
C

Œs;r� D @
Y�

Œs;r�CW Œs;r�:

We denote the induced map of CW Œs;r� (resp. CW Œs;r�) on instanton Floer (co)homol-
ogy by IW Œs;r� (resp. IW Œs;r�).

2.5. Obstruction class

In this section, we give a refinement ofD1 that appeared in Donaldson’s book [12], which
computes gradient flows of Chern–Simons functionals between irreducible critical points
and the product connection. We define a filtered version of D1.

Let Y be an oriented homology sphere. For r 2RY \ Œ0;1� and s 2 Œ�1; 0�, we now
define an invariant in I 1

Œs;r�
.Y /. A version of this invariant is defined in the third author’s

paper [57].

Definition 2.12. We define a homomorphism �
Œs;r�
Y WCIŒs;r�1 .Y /! Z by

�
Œs;r�
Y .Œa�/ WD #.M Y .a; �/�;ı=R/: (14)

As in [12, Section 3.3.1] and [21, Section 2.1], we use the weighted L2
q;ı

norm in (5) for
M Y .a; �/�;ı to use Fredholm theory. (In [12, Section 3.3.1] and [21, Section 2.1], � is
denoted byD1 or ı.) By the same discussion as in the proof of .ıŒs;r�/2 D 0, we can show
ıŒs;r�.�

Œs;r�
Y / D 0. Therefore we get the class Œ� Œs;r�Y � 2 I 1

Œs;r�
.Y /.

The class Œ� Œs;r�Y � does not depend on the small perturbation or the metric. The proof
is similar to the proof for the original Œ� �.
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Lemma 2.13. Let Y1 and Y2 be oriented homology spheres. Suppose that there is an
oriented negative definite cobordismW withH 1.W IR/D 0 and @W D Y1q .�Y2/. For
r 2 RY1 \RY2 , we have

IW Œs;r�Œ�
Œs;r�
Y2

� D c.W /Œ�
Œs;r�
Y1

�; where c.W / WD #H1.W IZ/:

Proof. We first consider the case of H 1.W IZ/ D 0. First we fix Riemannian metrics gi
on Yi , non-degenerate regular perturbations �i 2 P .Yi ; r; gi / for i D 1; 2, and orienta-
tions of �a;X for every critical point a. To consider the cobordism map induced by W ,
we fix a perturbation �W satisfying conditions .��/. For fixed a 2 zR.Y1/�1 satisfying
cs�1.a/ < r and ind.a/D 1, we consider the end-cylindrical manifoldW � and the moduli
spaceM.a;W �;�/ as above. We can choose a perturbation �W such thatM.a;W �;�/ has
the structure of a 1-manifold. There is a natural orientation on M.a;W �; �/ induced by
the orientations of �a;X . We now describe the end of a compactification of M.a;W �; �/.

By dimension counting and instanton gluing, we have two maps: gl1 from� [
b2 zR�.Y1/�1 ; ind.b/D0

M Y1.a; b/�1=R �M.b;W
�; �/ [M Y1.a; �/=R �M.�;W �; �/

�
� .0;1/

to M.a;W �; �/, and

gl2W
� [
c2 zR�.Y2/�2 ; ind.c/D1

M.a;W �; c/ �M Y2.c; �/�2=R
�
� .�1; 0/!M.a;W �; �/:

These are diffeomorphisms onto their images. Also, the complement of the union of their
images is compact.

Claim 2.14. By the definition of the orientations of M Y1.a; b/�1=R, M Y1.a; �/�1=R,
and M Y2.c; �/�2=R, the maps gl1 and gl2 are orientation-preserving.

More details about orientations of the moduli spaces are explained in the proof of
Claim 2.14 written after the proof of Lemma 2.13. Using the maps gl1 and gl2, one can
compactify M.a;W �; �/. The end of the compactified moduli space is the disjoint union
of three types of oriented points:[

b2 zR�.Y1/�1 ; ind.b/D0

M Y1.a; b/�1=R �M.b;W
�; �/;

M Y1.a; �/=R �M.�;W �; �/;

�

[
c2 zR�.Y2/�2 ; ind.c/D1

M.a;W �; c/ �M Y2.c; �/�2=R:

Here we follow the orientations convention in [12, Section 5.4]. Since the first homology
of W � is zero and the formal dimension of M.�; W �; �/ is �3, there is no reducible
connection except for � in M.�; W �; �/. So the space M.�; W �; �/ has just one point.
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When the space M Y .a; b/�=R is non-empty, we have cs�1.a/ > cs�2.b/. Therefore, the
first case can be written [

b2 zR�.Y1/�1 ; ind.b/D0; cs�1 .b/<r

M Y1.a; b/�1=R �M.b;W
�; �/:

If we can write the third case as

�

[
c2 zR�.Y2/�2 ; ind.c/D1; cs�2 .c/<r

M.a;W �; c/ �M.c; �/�2=R;

these computation imply that

ır .nr /.a/C �
Œs;r�
Y1

.a/ D CWr�
Œs;r�
Y2

.a/ (15)

for any a 2 CIŒs;r�1 .Y1/. If M.a;W �; c/ is non-empty, then by the use of Lemma 2.10 (1)
and cs�1.a/ < r , we get

cs�2.c/ < r:

Next, we handle the case of H 1.W IR/ D 0. We need to consider the transversality of
the moduli space M.�;W �; �/. As explained in [6, (2.16)] and [11], there are two types
of reducible flat connections and we can take a perturbation �W so that M.�;W �; �/ is
a finite set. Moreover, Donaldson [11] showed that the signs of the points are the same.
One can count the points and see that #M.�; W �; �/ D #H1.W IZ/. Using the above
perturbation, we have

ır .nr /.a/C c.W /�
Œs;r�
Y1

.a/ D CWr�
Œs;r�
Y2

.a/;

where c.W / D #H1.W IZ/.

Proof of Claim 2.14. We discuss the orientations of the moduli spaces. Let us consider
the restrictions

M Y1.a; b/�1=R �M.b;W
�; �/ � .0;1/!M.a;W �; �/;

M.a;W �; c/ �M Y2.c; �/�2=R � .�1; 0/!M.a;W �; �/

of the maps gl1 and gl2, respectively, where b 2 zR�.Y1/�1 with ind.b/ D 0 and c 2
zR�.Y2/�2 with ind.c/ D 1. We just give a sketch of the proof for these maps being
orientation-preserving. Note that the case b D � is shown similarly.

(i) We first introduce the configuration spaces BY1.a; b/, B.b;W �; �/, B.a;W �; c/

and BY2.c; �/ containing the moduli spaces M Y1.a; b/, M.b;W �; �/, M.a;W �; c/ and
M Y2.c; �/, respectively, which are defined similarly to (9).

(ii) As introduced in (10), using the sliced and linearized ASD map d�A C d
C

A C d�
C

A ,
we have the determinant line bundles L.a; b/, L.b; W �; �/, L.a; W �; c/ and L.c; �/
over BY1.a; b/, B.b; W �; �/, B.a; W �; c/ and BY2.c; �/, respectively. Let ƒY1.a; b/,
ƒ.b; W �; �/, ƒ.a; W �; c/ and ƒY2.c; �/ denote the sets of orientations of L.a; b/,
L.b;W �; �/, L.a;W �; c/ and L.c; �/, respectively.
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(iii) The (homotopy classes of) pregluing maps

BY1.a; b/ �B.b;W �; �/! B.a;W �; �/;

B.a;W �; c/ �BY2.c; �/! B.a;W �; �/

give identifications

i1Wƒ
Y1.a; b/ �Z2 ƒ.b;W

�; �/! ƒ.a;W �; �/;

i2Wƒ.a;W
�; c/ �Z2 ƒ

Y2.c; �/! ƒ.a;W �; �/;

where the Z2-actions on the set of orientations are non-trivial. See [12, Proposition 5.11]
for the details of the construction. A similar argument can be found in [37, Section 20.3].

(iv) We now fix orientations of the bundle �a;X1 defined in (11) for critical points a of
the perturbed Chern–Simons functional of Y1, whereX1 is a compact 4-manifold bounded
by �Y1. Note that we have the canonical homology orientation of W since b1.W / D 0
and bC.W / D 0. Using these data, we associate an element of ƒ.a; W �; �/ with each
critical point a by the following discussion: An excision argument for determinant line
bundles similar to [12, Proposition 5.11, p. 132] gives an identification

¹The set of orientations of �a;X1º �Z2 ƒ.a;W
�; �/

! ¹The set of orientations of ��;X1[Y2W º: (16)

Here we have used the canonical homology orientation of W . By the definition of �a;X ,
there is a canonical orientation of ��;X1[Y2W . For the orientation of �a;X1 in (iv), one
has the corresponding orientation in ƒ.a;W �; �/ via (16) and the canonical orientation
of ��;X1[Y2W . We fix these orientations inƒ.a;W �; �/ for all a. We also take an element
in ƒY1.a; b/ which is compatible with fixed elements in ƒ.b; W �; �/ and ƒ.a; W �; �/
under i1. Here, for a sufficiently small T1, one can consider a gluing map

g01W ¹ŒA1� 2M
Y1.a; b/�1 j c.A1/ < T1º �M.b;W

�; �/!M.a;W �; �/;

where c.A/ denotes the center of the density function kF.A/C �.A/kY�¹rº (r 2 R) for
a finite (perturbed) energy SU.2/-connection A on Y �R.

Let us explain the construction of g01, which implies that g01 is orientation-preserving.
For .ŒA1�; ŒA2�/ 2M Y1.a; b/�1 �M.b;W

�; �/ with c.A1/� 0, we first fix representa-
tives .A1;A2/ of .ŒA1�; ŒA2�/ so that the exponential decay estimates [12, Proposition 4.3]
are satisfied. In particular, under the assumption c.A1/� 0, there exist positive constants
Ck and ı such that

kA1jY1�Œs;sC1� � p
�bkL2

k
.Y1�Œs;sC1�/

� Cke
ı.c.A1/�s/ for c.A1/ � s � 0,

where p denotes the projection Y1 � R! Y1. Similarly, there exist C 0
k
> 0 and ı0 > 0

such that
kA2jY1�Œs;sC1� � p

�bkL2
k
.Y1�Œs;sC1�/

� C 0ke
ı0s for s � �1.
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We now define an SU.2/-connection  .A1; A2/ on W � called a pregluing by

 .A1; A2/

D

8̂̂̂̂
<̂
ˆ̂̂:
A1 on Y1 �

�
�1; 3

4
c.A1/

�
,

A1 c.A1/.–/C .1 �  c.A1/.–//p
�b on Y1 �

�
3
4
c.A1/ � 1;

1
2
c.A1/C

1
2

�
,

.1 �  c.A1/.–//p
�b C A2 c.A1/.–/ on Y1 �

�
1
2
c.A1/ �

1
2
; 1
4
c.A1/C 1

�
,

A2 on Y1 �
�
1
4
c.A1/; 0

�
[W [ Y2 � Œ0;1/.

Here  s W .34s � 1;
1
4
s C 1/! R is a smooth cut-off function satisfying

 s.t/ D

´
1 if t 2

�
3
4
s � 1; 3

4
s
�
[
�
1
4
s; 1
4
s C 1

�
,

0 if t 2
�
1
2
s � 1

2
; 1
2
s C 1

2

�
and jd sj � c=jsj for s � 0, where c > 0 is a constant independent of s. It follows from
the exponential decay estimates that there exist ı00 > 0 and C 00

k
> 0 such that

kFC. .A1; A2//C �
C. .A1; A2//kL2

k�1
.W �/ � C

00
k e
ı00c.A1/:

We perturb the connection  .A1; A2/ to obtain a solution by the following argument
based on [52, proof of Theorem 9.1, p. 854]. First, for the above .A1;A2/with c.A1/� 0,
we can prove that the operator

D .A1;A2/ WD d
�
 .A1;A2/

C dC
 .A1;A2/

C d�C
 .A1;A2/

has a right inverse Q .A1;A2/ with uniform bounds stated in [52, (112), (113)]. Then we
apply the implicit function theorem for the perturbed ASD equation FC. .A1; A2/C a/
C�C. .A1;A2/C a/D 0with a slice d�

 .A1;A2/
.a/D 0 and obtain a solution a.A1;A2/

to these equations. For a sufficiently small T1, we define the gluing map

g01W ¹ŒA1� 2M
Y1.a; b/�1 j c.A1/ < T1º �M.b;W

�; �/!M.a;W �; �/

by
g01.ŒA1�; ŒA2�/ D Œ .A1; A2/C a.A1; A2/�:

This map is orientation-preserving by construction. Similarly, under suitable orientations,
the map

g02WM.a;W
�; c/ � ¹ŒA2� 2M

Y2.c; �/�2 j c.A2/ > T2º !M.a;W �; �/

is defined and orientation-preserving for a sufficiently large T2.
(v) Now, we orient the moduli spaces M Y1.a; b/�1=R and M Y2.c; �/�2=R so that

.M Y1.a; b/�1=R/ �R DM Y1.a; b/�1 and .M Y2.c; �/�2=R/ �R DM Y2.c; �/�2
(17)

as oriented (R-equivariant) manifolds, where the orientations of M Y1.a; b/�1 and
M Y2.c; �/�2 are those in (iv). We now fix the convention of the R-action as
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c.s � A/ D c.A/ � s for s 2 R. Here, we identify ¹ŒA1� 2 M Y1.a; b/�1 j c.A1/ < T1º

with .M Y1.a; b/�1=R/ � .�T1;1/ by sending ŒA1� to .ŒA1�=R; �c.A1//, which
is orientation-preserving due to the fact c.r � A/ D c.A/ � r for all r 2 R. Also,
one has a similar identification between ¹ŒA2� 2 M Y2.a; b/�2 j c.A2/ > T2º and
.M Y2.a; b/�2=R/ � .�1;�T2/. By these identifications, g01 and g02 induce orientation-
preserving maps

g1WM
Y1.a; b/�1=R � .�T1;1/ �M.b;W

�; �/!M.a;W �; �/;

g2WM.a;W
�; c/ �M Y2.c; �/�2=R � .�1;�T2/!M.a;W �; �/

with respect to the orientations fixed in (iv) and (v). Since dimM.b;W �; �/ D 0, we also
have an identification

M Y1.a; b/�1=R �M.b;W
�; �/ � .�T1;1/

DM Y1.a; b/�1=R � .�T1;1/ �M.b;W
�; �/

as oriented manifolds. Thus, g1 induces an orientation-preserving map

g1WM
Y1.a; b/�1=R � .�T1;1/ �M.b;W

�; �/!M.a;W �; �/:

This completes the sketch of the proof.

The following property of the class � Œs;r�Y is useful when studying the invariants ¹rsº.

Lemma 2.15. For s; s0 2 RY and r; r 0 2 R with s � s0 � 0 � r � r 0,

i
Œs;r�

Œs0;r 0�
Œ�
Œs0;r 0�
Y � D Œ�

Œs;r�
Y �:

Proof. This property follows from the construction of i Œs;r�
Œs0;r 0�

in Lemma 2.9.

3. The invariant rs

3.1. Definition and invariance

We now introduce a family of invariants of an oriented homology 3-sphere Y . The defini-
tion of our invariants uses the birth-death property of our obstruction class Œ� Œs;r�Y � given
in the previous section.

Before introducing our invariant rs.Y /, we need to prove the following lemma.

Lemma 3.1. Let R be a commutative ring with 1. For any homology 3-sphere Y ,

¹r 2 .0;1� j 0 D Œ�
Œs;r�
Y ˝ IdR� 2 I 1Œs;r�.Y IR/º ¤ ;

for any s 2 Œ�1; 0�, where IdR is the identity map on R.

Proof. Suppose that

¹r 2 .0;1� j 0 D Œ�
Œs;r�
Y ˝ IdR� 2 I 1Œs;r�.Y IR/º D ;:
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Then there exists a sequence rn 2 RY with 0 ¤ Œ� Œs;rn�Y � 2 I 1
Œs;rn�

.Y / and 0 < rn! 0. We
take a sequence of non-degenerate regular perturbations �n in P .Y; g; s; rn/ satisfying
the following conditions:

� k�nk ! 0.

� There exists a small neighborhood U of Œ� � 2 zB�.Y / such that .hn/f jU D 0, where
�n D .f; hn/.

Note that we can assume the second condition because

Ker.�d� WKer d�� � �
1
Y ˝ su.2/! Ker d�� / D H

1.Y IR/˝ su.2/ D ¹0º:

Since 0 ¤ Œ�
Œs;rn�
Y �, one can take a sequence an 2 zR.Y /�n such that M Y .an; �/�n is

non-empty for all n and cs�n.an/! 0. Because of the choice of perturbations �n, we
have an … U for each n. We take a sequence An in M Y .an; �/�n . Moreover there is
no bubble because the dimension of M Y .an; �/�n is 1. Since ¹Anº has bounded energy
and ind.an/ D 1, there exists a sequence ¹sj º of real numbers, a subsequence ¹Anj º of
¹Anº and gauge transformations ¹gj º on Y �R such that g�j T

�
sj
Anj converges to A1 on

Y �R, where Tsj is the translation map on Y �R. We denote the limit connection of A1
by a1. One can see that Œa1� ¤ Œ� � because an … U .

On the other hand, we have cs.a1/ D 0. This implies that A1 becomes a flat con-
nection on Y � R. However, limt!1 A1jY�¹tº Š � . Since the connection � is isolated
in zR.Y /, we have Œa1� D Œ� �. This gives a contradiction.

Definition 3.2. For s 2 Œ�1; 0� and a commutative ring R with 1 and an oriented homol-
ogy 3-sphere Y , we define

rRs .Y / WD sup ¹r 2 .0;1� j 0 D Œ� Œs;r�Y ˝ IdR� 2 I 1Œs;r�.Y IR/º:

We often abbreviate � Œs;r�Y ˝ IdR to � Œs;r�Y . By definition, it follows that rRs .Y / is invari-
ant under orientation-preserving diffeomorphisms of Y . In addition, obviously rZ

s .Y / �

rQ
s .Y /. We focus on rQ

s .Y / in the most part of this paper, and hence we denote rQ
s .Y /

simply by rs.Y /.
Non-triviality of rs implies the following:

Theorem 3.3. Suppose that rs.Y / <1 for some s. Then for any metric g on Y , there
exists a solution A to the ASD equation on Y �R with

1

8�2
kF.A/k2

L2
D rs.Y /:

Proof. We put r D rs.Y / and take a sequence �n with 0 < �n ! 0 and a sequence of
regular non-degenerate perturbations �n 2 P .Y; g; r C �n; s/ with k�nk ! 0. Since 0 ¤
Œ�
�nCr
s �, we have a sequence an 2 zR.Y /�n such that M Y .an; �/�n is non-empty for all n

and cs�n.an/! r . We take elements An in M Y .an; �/�n for each n. There is no bubble
because the dimension of M Y .an; �/�n is 1. Since ind.an/ D 1, by the gluing argument,
we can conclude that there exists a sequence sj of real numbers, a subsequence ¹Anj º of
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¹Anº and gauge transformations ¹gj º on Y � R such that ¹g�j T
�
sj
Anj º converges to A1

on Y �R, where Tsj is the translation map on Y �R. We can see that

1

8�2
kF.A1/k

2
D lim
n!1

cs�n.an/ D r D rs.Y /:

Moreover, A1 satisfies FC.A1/ D 0. This completes the proof.

In the following, we state the fundamental properties of rRs .

Lemma 3.4 (Theorem 1.1 (2)). For any s 2 Œ�1; 0� and a homology 3-sphere Y , we have
rRs .Y / 2 ƒ

�
Y [ ¹1º.

Proof. By using Lemmas 2.15 and 2.9, we obtain the conclusion.

In the case of S3, note thatƒ�
S3
D;. Therefore, by Lemma 3.4, we have rRs .S

3/D1

for any s.

Lemma 3.5 (Theorem 1.1 (3)). Let s � s0 be non-positive numbers. Then, for any homol-
ogy 3-sphere Y , we have rRs0 .Y / � r

R
s .Y /.

Proof. This is also a corollary of Lemmas 2.15 and 2.9.

Using Lemma 2.15, we have the following lemma.

Lemma 3.6. For any s 2 Œ�1; 0� and r 2 R>0Y [ ¹1º, if r < rRs .Y /, then Œ� Œs;r�Y � D 0,
where R>0Y WD RY \ .0;1/.

Proof. By the definition of rRs .Y /, we can take r 0 2 R>0Y such that Œ� Œs;r
0�

Y � D 0 and r <
r 0 � rRs .Y /. Then it follows from Lemma 2.15 that

Œ�
Œs;r�
Y � D i

Œs;r�

Œs;r 0�
.Œ�

Œs;r 0�
Y �/ D 0:

Now we establish an important property of rs .

Theorem 3.7. Fix a commutative ring R with 1. Let Y1 and Y2 be oriented homol-
ogy 3-spheres. Suppose that there is an oriented negative definite cobordism W with
H 1.W IR/ D 0 and @W D Y1 q�Y2. If c.W / D #H1.W IZ/ is invertible in R, then

rRs .Y2/ � r
R
s .Y1/ for any s 2 Œ�1; 0�.

Moreover, if rRs .Y2/ D r
R
s .Y1/ <1, then there exist irreducible SU.2/-representations

�1 and �2 of �1.Y1/ and �1.Y2/ respectively which extend to one of �1.W /.

Proof. Suppose that rRs .Y1/ <1. For � > 0 satisfying �CrRs .Y1/…ƒY2 , by Lemma 2.13,
we get

IW�CrRs .Y1/
s Œ�

Œs;�CrRs .Y1/�

Y2
� D c.W /�

Œs;�CrRs .Y1/�

Y1
:

Since Œ��Cr
R
s .Y1/

s .Y1/� ¤ 0 for any � > 0 and c.W / is invertible, we have rRs .Y2/ �
rRs .Y1/C �. This implies the conclusion.
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Suppose that r WD rRs .Y2/ D r
R
s .Y1/ for some s. Fix Riemannian metrics g1 and g2

on Y1 and Y2. We take a sequence r < rn! r with rn 2RY1\RY2 , the classes Œ� Œs;rn�Y1
�¤ 0

and Œ� Œs;rn�Y2
� ¤ 0. Then we have sequences of regular perturbations on Y1 and Y2 denoted

by ¹�1nº � P .Y1; g1; rn/ and ¹�2nº � P .Y2; g2; rn/ satisfying

0 ¤ Œ�
Œs;rn�
Y1

� 2 CI1Œs;rn�.Y1/ and 0 ¤ Œ�
Œs;rn�
Y2

� 2 CI1Œs;rn�.Y2/:

Moreover, one can take critical points an and bn of ¹�1nº and ¹�2nº and regular perturba-
tions �nW on W � satisfying the following conditions:

� cs�1n .an/! r , cs�2n .bn/! r ,

� k� ink ! 0 for i D 1; 2,

� k�nW kC1 ! 0,

� �Y .an/ ¤ 0 and �Y .bn/ ¤ 0.

For all such data, by using (15), we take an and bn satisfying

M.an; W
�; bn/ ¤ ;:

Now we choose an element An in M.an; W �; bn/ for each n. Since we take regular
perturbations, the dimension of M.an; W �; bn/ is 0. Since ¹Anº has bounded energy and
there is no sliding end sequence by a gluing argument, one can take a subsequence ¹Anj º
and gauge transformations ¹gj º such that ¹g�j Anj º converges onW �. We denote the limit
by A1. By the second condition, we can see that the limit points a1 and b1 are flat
connections. Moreover, cs.a1/ D cs.b1/ D r and kF.A1/k2L2.Y�R/

D 0. Since we can
take perturbations so that the reducible flat connections of Y1 and Y2 are isolated, we see
that a1 and b1 are irreducible flat connections. Therefore, A1 determines an irreducible
flat connection on W . This gives a homomorphism �.A1/W�1.W /! SU.2/.

This result gives the following conclusion.

Corollary 3.8. The invariants rRs are homology cobordism invariants.

In addition, we also have the following corollary.

Corollary 3.9. If there exists a negative definite simply connected cobordism with bound-
ary Y1 q�Y2 and rRs .Y1/ <1, then rRs .Y2/ < r

R
s .Y1/.

Also by Theorem 3.7, for the case of rs D rQ
s , we have the following.

Theorem 3.10 (Theorem 1.1 (1)). Let Y1 and Y2 be oriented homology 3-spheres. Sup-
pose that there is an oriented negative definite cobordismW with @W D Y1q�Y2. Then

rs.Y2/ � rs.Y1/ for any s 2 Œ�1; 0�.

Moreover, ifH 1.W IR/D 0 and rs.Y2/D rs.Y1/ <1, then there exist irreducible SU.2/-
representations �1 and �2 of �1.Y / and �2.Y / respectively which extend the same rep-
resentation of �1.W /.
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Proof. By surgering out loops representing the free part of H1.W IZ/, without loss of
generality, we may assume that H1.W IR/ D 0. Then c.W / D #H1.W IZ/ is invertible
in Q, and hence Theorem 3.7 gives rs.Y2/ � rs.Y1/. The “moreover” assertion directly
follows from Theorem 3.7.

Corollary 3.11. If a homology 3-sphere Y bounds a negative definite 4-manifold, then

rs.Y / D1 for any s 2 Œ�1; 0�:

Proof. Suppose that Y bounds a negative definite 4-manifoldX , and letW denoteX with
an open 4-ball deleted. Then W is a negative definite 4-manifold with @W D Y q�S3.
Therefore, by Theorem 3.10, we have rs.Y / � rs.S3/ D1 for any s 2 Œ�1; 0�.

3.2. Connected sum formula

The aim of this subsection is to prove the following connected sum formula for rs .

Theorem 3.12 (Theorem 1.1 (4)). Let s;s1; s2 2 .�1;0�with sD s1C s2. For any homol-
ogy 3-spheres Y1 and Y2, we have

rs.Y1 # Y2/ � min ¹rs1.Y1/C s2; rs2.Y2/C s1º:

Before starting the proof, let us fix several additional data to define filtered instan-
ton Floer homology. Fix s; s1; s2 2 .�1; 0� with s D s1 C s2 and homology 3-spheres
Y1 and Y2. Take r 2 R>0Y1#Y2

such that r � s2 2 R>0Y1 and r � s1 2 R>0Y2 . Fix Riem-
annian metrics gi on Yi (resp. g# on Y1 # Y2), non-degenerate regular perturbations
�i 2 P .Yi ; r � sj ; si ; gi / for ¹i; j º D ¹1; 2º (resp. a non-degenerate regular perturba-
tion �# 2 P .Y1 # Y2; r; s; g#/) and orientations on line bundles �a;X with respect to �1,
�2 and �#. Here, we first suppose that s1 2 RY1 , s2 2 RY2 and s 2 RY1#Y2 . Next, let us
consider a cobordism W with @W D .Y1 # Y2/q �.Y1 q Y2/, which consists of only
a single 1-handle. Define Q-vector spaces C Œs;r�i .i D 0; 1/ as

C
Œs;r�
0 WD

CIŒs1;r�s2�0 .Y1/˝Q CIŒs2;r�s1�0 .Y2/

˚

CIŒs1;r�s2�0 .Y1/

˚

CIŒs2;r�s1�0 .Y2/

and

C
Œs;r�
1 WD

.CIŒs1;r�s2�1 .Y1/˝Q CIŒs2;r�s1�0 .Y2//˚ .CIŒs1;r�s2�0 .Y1/˝Q CIŒs2;r�s1�1 .Y2//

˚

CIŒs1;r�s2�1 .Y1/

˚

CIŒs2;r�s1�1 .Y2/:
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By the discussion of Section 2.4, the above initial data give the maps

CW Œs;r�
i ˚eCW Œs;r�

i WCIŒs;r�i .Y1 # Y2/! C
Œs;r�
i

for i D 0 and i D 1. We denote prj ı CW Œs;r�
i ˚eCW Œs;r�

i by pjCW Œs;r�
i , where prj is the

projection to the j -th component of C Œs;r�i for j 2 ¹1; 2; 3º. The following lemma is a key
to proving the connected sum inequality.

Lemma 3.13. Suppose that s1 2 RY1 , s2 2 RY2 and s 2 RY1#Y2 . The homomorphisms
CW Œs;r�

0 and CW Œs;r�
1 satisfy the following equalities:

(1) p1CW Œs;r�
0 ı @

Œs;r�
Y1#Y2

� .@
Œs1;r�s2�
Y1

˝ 1; 1˝ @
Œs2;r�s1�
Y2

/ ı p1CW Œs;r�
1 D 0,

(2) p2CW Œs;r�
0 ı @

Œs;r�
Y1#Y2

� @
Œs1;r�s2�
Y1

ı p2CW Œs;r�
1 � .0; 1˝ �

Œs2;r�s1�
Y2

/ ı p1CW Œs;r�
1 D 0,

(3) p3CW Œs;r�
0 ı @

Œs;r�
Y1#Y2

� @
Œs2;r�s1�
Y2

ı p3CW Œs;r�
1 � .�

Œs1;r�s2�
Y1

˝ 1; 0/ ı p1CW Œs;r�
1 D 0.

Proof. First, let us prove (1). For generators Œa� 2 CIŒs;r�1 .Y1 # Y2/ and Œb1� ˝ Œb2� 2
CIŒs1;r�s2�0 .Y1/ ˝Q CIŒs2;r�s1�0 .Y2/, we see that the moduli space M.a; W �; b1 q b2/

has the structure of an oriented manifold of dimension 1 whose orientation is induced by
the orientations of the line bundles �a;X . Moreover, by a gluing argument, we obtain the
gluing map gl from the union of� [

Œc�2 zR�.Y1#Y2/�# ; ind.c/D0
cs�# .Œc�/<cs�# .Œa�/

M Y1#Y2.a; c/�#=R �M.c;W
�; b1 q b2/

�
� .0;1/; (18)

� [
Œd�2 zR�.Y1/�1 ; ind.d/D1

cs�1 .Œd�/>cs�1 .Œb1�/

M.a;W �; d q b2/ �M
Y1.d; b1/�1=R

�
� .�1; 0/; (19)

and � [
Œe�2 zR�.Y2/�2 ; ind.e/D1

cs�2 .Œe�/>cs�2 .Œb2�/

M.a;W �; b1 q e/ �M
Y2.e; b2/�2=R

�
� .�1; 0/ (20)

toM.a;W �; b1q b2/. On the first two components (18) and (19), we can check that gl is
orientation-preserving as in the case of Y2 D ;. For the third component (20), in general,
gl changes the orientation by .�1/ind.b1/. This follows from a standard calculation of
index bundles via a gluing argument. In our situation, since ind.b1/D 0, gl is orientation-
preserving. So, the oriented boundaries of the compactification ofM.a;W �; b1q b2/ are
as follows: [

Œc�2 zR�.Y1#Y2/�# ; ind.c/D0
cs�# .Œc�/<cs�# .Œa�/

M Y1#Y2.a; c/�#=R �M.c;W
�; b1 q b2/;
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�

[
Œd�2 zR�.Y1/�1 ; ind.d/D1

cs�1 .Œd�/>cs�1 .Œb1�/

M.a;W �; d q b2/ �M
Y1.d; b1/�1=R;

�

[
Œe�2 zR�.Y2/�2 ; ind.e/D1

cs�2 .Œe�/>cs�2 .Œb2�/

M.a;W �; b1 q e/ �M
Y2.e; b2/�2=R:

Claim 3.14. The following inequalities hold:

cs�#.Œc�/ > s; cs�1.Œd �/ < r � s2; cs�2.Œe�/ < r � s1:

Proof. This is just a corollary of Lemma 2.10.

By using this lemma, we can regard Œc�, Œd � and Œe� above as Œc� 2 CIŒs;r�0 .Y1 # Y2/,
Œd � 2 CIŒs1;r�s2�1 .Y1/ and Œe� 2 CIŒs2;r�s1�1 .Y2/ respectively. Thus, we have

p1CW Œs;r�
0 ı @

Œs;r�
Y1#Y2

.Œa�/ � .@
Œs1;r�s2�
Y1

˝ 1; 0/ ı p1CW Œs;r�
1 .Œa�/

� .0; 1˝ @
Œs2;r�s1�
Y2

/ ı p1CW Œs;r�
1 .Œa�/ D 0:

Next, we prove (2). For generators Œa� 2 CIŒs;r�1 .Y1 # Y2/ and Œb1� 2 CIŒs1;r�s2�0 .Y1/,
considerM.a;W �; b1q �Y2/ as an oriented 1-manifold. Then its ends are the following:[

Œc�2 zR�.Y1#Y2/�# ; ind.c/D0

M Y1#Y2.a; c/�#=R �M.c;W
�; b1 q �Y2/;

�

[
Œd�2 zR�.Y1/�1 ; ind.d/D1

M.a;W �; d q �Y2/ �M
Y1.d; b1/�1=R;

�

[
Œe�2 zR�.Y2/�2 ; ind.e/D1

M.a;W �; b1 q e/ �M
Y2.e; �Y2/�2=R:

We need to show the following claim.

Claim 3.15. The following inequalities hold:

cs�#.Œc�/ > s; cs�1.Œd �/ < r � s2; cs�2.Œe�/ < r � s1:

Proof. This is also a corollary of Lemma 2.10.

Hence, we have

p2CW Œs;r�
0 ı @

Œs;r�
Y1#Y2

.Œa�/ � @
Œs1;r�s2�
Y1

ı p2CW1.Œa�/

� .0; 1˝ �
Œs2;r�s1�
Y2

/ ı p1CW Œs;r�
1 .a/ D 0:

By the same argument, the third assertion follows from considering the 1-dimensional
moduli space M.a;W �; �Y1 q b2/.

Since the proof of (3) is essentially the same as that of (2), we omit it.
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Next, we define a homomorphism @C WC
Œs;r�
1 ! C

Œs;r�
0 by

@C D

2664
.@
Œs1;r�s2�
Y1

˝ 1; 1˝ @
Œs2;r�s1�
Y2

/ 0 0

.0; 1˝ �
Œs2;r�s1�
Y2

/ @
Œs1;r�s2�
Y1

0

.�
Œs1;r�s2�
Y1

˝ 1; 0/ 0 @
Œs2;r�s1�
Y2

3775 :
Lemma 3.16. For s1 2 RY1 , s2 2 RY2 and s 2 RY1#Y2 , we have

@C ı CW Œs;r�
1 D CW Œs;r�

0 ı @
Œs;r�
Y1#Y2

:

Proof. By Lemma 3.13, we have

@C ı CW Œs;r�
1 D

2664
.@
Œs1;r�s2�
Y1

˝ 1; 1˝ @
Œs2;r�s1�
Y2

/ ı p1CW Œs;r�
1

.0; 1˝ �
Œs2;r�s1�
Y2

/ ı p1CW Œs;r�
1 C @

Œs1;r�s2�
Y1

ı p2CW Œs;r�
1

.�
Œs1;r�s2�
Y1

˝ 1; 0/ ı p1CW Œs;r�
1 @

Œs2;r�s1�
Y2

ı p3CW Œs;r�
1

3775
D

2664
p1CW Œs;r�

0 ı @
Œs;r�
Y1#Y2

p2CW Œs;r�
0 ı @

Œs;r�
Y1#Y2

p3CW Œs;r�
0 ı @

Œs;r�
Y1#Y2

3775 D CW Œs;r�
0 ı @

Œs;r�
Y1#Y2

:

Lemma 3.17. For s1 2 RY1 , s2 2 RY2 and s 2 RY1#Y2 , there exists a cochain f 2
CI0Œs;r�.Y1 # Y2/ such that

�
Œs;r�
Y1#Y2

C f ı @
Œs;r�
Y1#Y2

� .0; �
Œs1;r�s2�
Y1

; �
Œs2;r�s1�
Y2

/ ı CW Œs;r�
1 D 0:

Proof. For a generator Œa� 2 CIŒs;r�1 .Y1 # Y2/, consider M.a;W �; �Y1 q �Y2/ as an ori-
ented 1-manifold; then its ends are the following:

M Y1#Y2.a; �Y1#Y2/�#=R �M.�Y1#Y2 ; W
�; �Y1 q �Y2/;[

Œb�2 zR�.Y1#Y2/�# ; ind.b/D0

M Y1#Y2.a; b/�#=R �M.b;W
�; �Y1 q �Y2/;

�

[
Œc�2 zR�.Y1/�1 ; ind.c/D1

M.a;W �; c q �Y2/ �M
Y1.c; �Y1/�1=R;

�

[
Œd�2 zR�.Y2/�2 ; ind.d/D1

M.a;W �; �Y1 q d/ �M
Y2.d; �Y2/�2=R:

Since Y1 and Y2 are homology spheres, we see that M.�Y1#Y2 ; W
�; �Y1 q �Y2/ has just

one point. Thus, defining a homomorphism f WCIŒs;r�0 .Y1 # Y2/! Q by

Œb� 7! #.M.b;W �; �Y1 q �Y2//;

we have

�
Œs;r�
Y1#Y2

.Œa�/C f ı @
Œs;r�
Y1#Y2

.Œa�/� �
Œs1;r�s2�
Y1

ı p2CW1.Œa�/� �
Œs2;r�s1�
Y2

ı p3CW1.Œa�/D 0:

This completes the proof.
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Theorem 3.18. Let s1 2 RY1 , s2 2 RY2 and s 2 RY1#Y2 . If � Œs1;r�s2�Y1
and � Œs2;r�s1�Y2

are

coboundaries, then � Œs;r�Y .Y1 # Y2/ is also a coboundary.

Proof. Suppose that fi 2 CI0Œsi ;r�sCsi �.Yi / satisfies fi ı @
Œsi ;r�sCsi �
Yi

D �
Œsi ;r�sCsi �
Yi

for
each i 2 ¹1; 2º. Then we have a homomorphism

f 0 WD .�f1 ˝ f2; f1; f2/WC
Œs;r�
0 ! Q

and the equalities

f 0 ı @C D .�f1 ˝ f2; f1; f2/ ı @C

D .�; f1 ı @
Œs1;r�s2�
Y1

; f2 ı @
Œs2;r�s1�
Y2

/

D .�; �
Œs1;r�s2�
Y1

; �
Œs2;r�s1�
Y2

/;

where

� D �
�
.f1 ı @

Œs1;r�s2�
Y1

/˝ f2; f1 ˝ .f2 ı @
Œs2;r�s1�
Y2

/
�

C .0; f1 ˝ �
Œs2;r�s1�
Y2

/C .�
Œs1;r�s2�
Y1

˝ f2; 0/ D 0:

Therefore, combining it with Lemmas 3.16 and 3.17, we have

�
Œs;r�
Y .Y1 # Y2/ D �f ı @

Œs;r�
Y1#Y2

C .0; �
Œs1;r�s2�
Y1

; �
Œs2;r�s1�
Y2

/ ı CW Œs;r�
1

D �f ı @
Œs;r�
Y1#Y2

C f 0 ı @C ı CW Œs;r�
1

D .�f C f 0 ı CW Œs;r�
0 / ı @

Œs;r�
Y1#Y2

:

Proof of Theorem 3.12. First, we suppose that s1 2RY1 , s2 2RY2 and s 2RY1#Y2 . With-
out loss of generality, we may require that 0 < rs1.Y1/ C s2 � rs2.Y2/ C s1. Assume
rs.Y1 # Y2/ < rs1.Y1/ C s2. Then there exists r 2 R>0Y1#Y2

such that rs.Y1 # Y2/ < r <

rs1.Y1/C s2, r � s2 2 RY1 and r � s1 2 RY2 . Lemma 3.6 implies that

Œ�
Œs1;r�s2�
Y1

� D 0 and Œ�
Œs2;r�s1�
Y2

� D 0:

Therefore, by Theorem 3.18, we have Œ�
Œs;r�
Y1#Y2

� D 0. This contradicts the assertion
rs.Y1 # Y2/ < r , and hence rs.Y1 # Y2/ � rs1.Y1/C s2.

Now, we handle the case of s1 2 ƒY1 , s2 2 ƒY2 or s 2 ƒY1#Y2 . Let ¹sni ºn2Z>0 be
sequences for i D 1; 2 such that sn1 ! s1, sn2 ! s2, sn1 � s1, sn2 � s2, sn1 C s

n
2 is a regular

value of Y1 # Y2, and sni is a regular value of Yi for i D 1; 2. By the choices of ¹sni ºn2Z>0

for i D 1; 2, we have

rsn
1
Csn
2
.Y1 # Y2/ � min ¹rsn

1
.Y1/C s

n
2 ; rsn2 .Y2/C s

n
1 º:

For sufficiently large n, we have rsn
1
Csn
2
.Y1 # Y2/ D rs.Y1 # Y2/, rsn

1
.Y1/ D rs1.Y1/ and

rsn
2
.Y2/ D rs2.Y2/. This completes the proof.
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Remark 3.19. As described in [55, Section 9.4], we have Fukaya’s translation of
CI�.Y1 # Y2/ into a certain combination of CI�.Y1/ and CI�.Y2/. From this viewpoint,
we can extend C Œs;r�0 and C Œs;r�1 to a chain complex C� such that we have a “projection”

CI�.Y1 # Y2/� C�:

We guess that an alternative proof of Theorem 3.12 can be obtained from a filtered ver-
sion C Œs;r�� of C�, and such a proof would be more natural. However, establishing C Œs;r��

requires too many extra arguments, and so we extract a small part of C Œs;r�� .

4. Comparison with Daemi’s invariants

In this section, we compare our invariants rs.Y / with Daemi’s invariants �Y .k/.
In [6], Daemi constructed a family ¹�Y .k/ºk2Z of real-valued homology cobordism

invariants which has the following properties:

� Let Y1 and Y2 be homology 3-spheres, andW a negative definite cobordism with @W D
Y1 q�Y2 and b1.W / D 0. Then there exists a constant �.W / � 0 such that

�Y1.k/ �

´
�Y2.k/ � �.W / if k > 0,

max ¹�Y2.k/ � �.W /; 0º if k � 0.

Moreover, the constant �.W / is positive unless there exists an SU.2/-representation of
�1.W / whose restrictions to both �1.Y1/ and �1.Y2/ are non-trivial.

� We have � � � � �Y .�1/ � �Y .0/ � �Y .1/ � � � � :

� �Y .k/ is finite if and only if 2h.Y / � k, where h.Y / is the Frøyshov invariant of Y .

In this section, we prove that our invariant r�1.Y / coincides with ��Y .1/.

Theorem 1.4. For any Y , we have

r�1.Y / D ��Y .1/:

Since rs.Y / � r�1.Y / for any s 2 R<0, several facts and calculations for rs imme-
diately follow from the study of �Y .1/ in [6]. We also discuss them in this section.

4.1. Review of Daemi’s �Y .1/

Here, we need to compare our notations with [6]. The instanton Floer chain complex
depends on the choice of several conventions. For example, our sign convention for the
Chern–Simons functional is different from Daemi’s (see Table 1). In this section, we
consider a fixed homology 3-sphere Y .

First we introduce the coefficient ring

ƒ WD
° 1X
iD1

qi�
ri

ˇ̌̌
qi 2 Q; ri 2 R; lim

i!1
ri D1

±
;
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Sign of cs Cylinder Gradient

[6] � R � Y downward

ours C Y �R downward

Tab. 1. Conventions.

where � is a formal variable. We have an evaluating function mdegWƒ! R defined by

mdeg
� 1X
iD1

qi�
ri

�
WD min

i2Z>0
¹ri j qi ¤ 0º:

Fix a non-degenerate regular perturbation � and orientations of �a;X . Then a Z=8-graded
chain complex Cƒ� .Y / over ƒ is defined by

Cƒi .Y / WD Ci .Y /˝Z ƒ D ƒ¹Œa� 2 R
�.Y /� j ind.a/ D iº;

with differential

dƒ.Œa�/ WD
X

ind.a/�ind.b/�1 mod 8

#.M Y .Œa�; Œb�/�=R/ � �
E.A/Œb�;

where ŒA� 2 M Y .Œa�; Œb�/� , E.A/ WD 1
8�2

R
Y�R Tr..F.A/C �.A// ^ .F.A/C �.A///

and M Y .Œa�; Œb�/� denotes M Y .a; b/� for some representatives a and b of Œa� and Œb�
respectively satisfying ind.a/� ind.b/D 1. Note that we use zR�.Y /� as a generating set
of the Floer chain complex. On the other hand, in Daemi’s formulation, the chain group is
generated byR�.Y /� . In our notation, a, b are elements of zR�.Y /� and we let Œa� and Œb�
denote their images in R�.Y /� .

Remark 4.1. In Daemi’s formulation, C�.Y / and Cƒi .Y / are regarded as Z=8Z-graded
chain complexes.

We extend the function mdeg to a function on Cƒ� by

mdeg
� nX
kD1

�k Œak �
�
D min
1�k�n

mdeg �k :

In addition, we define the map D1WCƒ1 .Y /! ƒ by

D1.Œa�/ D .#M Y .Œa�; Œ��/�=R/ � �
E.A/;

where M Y .Œa�; Œ��/� denotes M Y .a; � i /� for some lifts a and � i of Œa� and Œ� � respec-
tively satisfying ind.a/ � ind.� i / D 1, and A 2M Y .Œa�; Œ��/� . Now, in our conventions,
��Y .1/ is described as

��Y .1/ D lim
k�k!0

�
inf

˛2Cƒ
1
.Y /; dƒ.˛/D0

D1.˛/¤0

¹mdeg.D1.˛// �mdeg.˛/º
�
:
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4.2. Translating �Y .1/ into a Z-grading

Following the construction of Cƒ� , we can define a Z-graded chain complex

CIƒi .Y / WD CIi .Y /˝Q ƒ D ƒ¹a 2 zR�.Y /� j ind.a/ D iº

with differential

@ƒ.a/ WD
X

ind.a/�ind.b/D1;A2MY .a;b/�

#.M Y .a; b/�=R/ � �
E.A/b

D

X
ind.a/�ind.b/D1

#.M Y .a; b/�=R/ � �
cs� .a/�cs� .b/b:

We can also define the map �ƒWCIƒ1 .Y /! ƒ by

�ƒ.a/ D .#M Y .a; �/�=R/ � �
E.A/
D �

Œ�1;1�
Y .a/�cs� .a/:

We define a Z-graded version of ��Y .1/ by

z��Y .1/ D lim
k�k!0

�
inf

˛2CIƒ
1
.Y /; @ƒ.˛/D0

�ƒ.˛/¤0

¹mdeg.�ƒ.˛// �mdeg.˛/º
�
:

Lemma 4.2. z��Y .1/ D ��Y .1/:

Proof. The maps  i WCIƒi .Y /! Cƒi .Y / .0 � i � 7/ induced by zR.Y /� ! R.Y /� are
ƒ-linear isomorphisms such that

� dƒ ı  i D  i�1 ı @
ƒ for each 1 � i � 7,

� D1 ı  1 D �
ƒ,

� mdeg is preserved by the  i .

These imply that the infimum in the definition of z��Y .1/ coincides with that of ��Y .1/
for each � , and hence z��Y .1/ D ��Y .1/:

4.3. Proof of Theorem 1.2

In this subsection, we fix orientations of the line bundles �a;X for non-degenerate regular
perturbations.

Lemma 4.3. Let ˛ D
Pn
kD1 ak ˝ xk be a chain in CIŒ�1;r�1 .Y /˝Q. Then ˛ is a cycle

if and only if z̨ is a cycle of CIƒ1 .Y /, where z̨ WD
Pn
kD1 ak ˝ xk�

�cs.ak/.

Proof. For any generator b˝ 12CIŒ�1;r�0 .Y /˝Q, the coefficient of b˝ 1 in @Œ�1;r�.˛/
2 CIŒ�1;r�1 .Y /˝Q is

nX
kD1

#.M Y .ak ; b/�=R/ � xk ;
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while the coefficient of b ˝ 1 in @ƒ.z̨/ is

nX
kD1

#.M Y .ak ; b/�=R/ � �
cs� .ak/�cs� .b/ � xk�

�cs� .ak/

D

� nX
kD1

#.M Y .ak ; b/�=R/ � xk
�
� ��cs� .b/:

This completes the proof.

Lemma 4.4. For a chain ˛D
Pn
kD1 ak ˝ xk in CIŒ�1;r�1 .Y /˝Q, we have � Œ�1;r�Y .˛/¤

0 if and only if �ƒ.z̨/¤ 0. Moreover, if � Œ�1;r�Y .˛/¤ 0, then for a number k0 2 ¹1; : : : ; nº
with xk0 ¤ 0 and cs�.ak0/ D max ¹cs�.ak/ j xk ¤ 0º, we have

mdeg.�ƒ.z̨// �mdeg.z̨/ D cs�.ak0/ < r:

Proof. The proof of the first assertion follows from the same argument as in Lemma 4.3.
Moreover, it is easy to see that

mdeg.z̨/ D mdeg
� nX
kD1

ak ˝ xk�
�cs.ak/

�
D �cs�.ak0/

and mdeg.�ƒ.z̨// D 0:

Lemma 4.5. Let Ǫ D
Pn
kD1 ak ˝ �k be a cycle in CIƒ1 .Y / with d WDmdeg.�ƒ. Ǫ // <1,

and xk the coefficient of �d�cs� .ak/ in �k .k D 1; : : : ; n/. Then

˛ WD

nX
kD1

ak ˝ xk

is a cycle in CI1.Y /˝Q with � Œ�1;1�Y .˛/ ¤ 0. Moreover, for a number k0 2 ¹1; : : : ; nº
with xk0 ¤ 0 and cs�.ak0/ D max ¹cs�.ak/ j xk ¤ 0º, the cycle z̨ satisfies

mdeg.�ƒ.z̨// �mdeg.z̨/ D cs�.ak0/ � mdeg.�ƒ. Ǫ // �mdeg. Ǫ /:

Proof. The coefficient of �d in �ƒ. Ǫ / is equal to

nX
kD1

#.M Y .ak ; �/�=R/ � xk ;

which coincides with � Œ�1;1�Y .˛/. Moreover, since mdeg.�ƒ. Ǫ // D d , this value is non-
zero. Hence � Œ�1;1�Y .˛/ ¤ 0. In a similar way, we can also verify that for any generator
b ˝ 1 2 CI0.Y / ˝ Q, the coefficient of b ˝ 1 in @.˛/ is equal to that of �d�cs� .b/

in @ƒ. Ǫ /, and hence @.˛/ D 0. Next, it follows from Lemma 4.4 that mdeg.�ƒ.z̨// �
mdeg.z̨/ D cs�.ak0/. Moreover, since xk0 ¤ 0 is the coefficient of �d�cs� .ak0 / in �k0 , we
have

mdeg. Ǫ / � d � cs�.ak0/:
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This gives
mdeg.�ƒ. Ǫ // �mdeg. Ǫ / D d �mdeg. Ǫ / � cs�.ak0/:

Proof of Theorem 1.2. Assume that r�1.Y / < ��Y .1/, and take r 2RY with r�1.Y / <
r < ��Y .1/. For any sufficiently small perturbation � , we have Œ� Œ�1;r�Y � ¤ 0, and hence
there exists a cycle ˛ D

Pn
kD1 ak ˝ xk in CIŒ�1;r�1 .Y /˝Q with � Œ�1;r�Y .˛/¤ 0. There-

fore, it follows from Lemmas 4.3 and 4.4 that there exists a sequence ¹�lºl2Z>0 of
perturbations with k�lk ! 0 (l ! 1) such that for each �l , CIƒ1 .Y / has a cycle z̨l
with �ƒ.z̨l / ¤ 0 and mdeg.�ƒ.z̨l // �mdeg.z̨l / < r . This gives

��Y .1/ D lim
k�k!0

�
inf

˛2CIƒ
1
.Y /; @ƒ.˛/D0

�ƒ.˛/¤0

¹mdeg.�ƒ.˛// �mdeg.˛/º
�
� r;

a contradiction. Hence r�1.Y / � ��Y .1/.
Conversely, assume that ��Y .1/ < r�1.Y /, and take r 2 RY with ��Y .1/ < r <

r�1.Y /. Then, for any sufficiently small perturbation compatible with r , there exists
a cycle Ǫ 2 CIƒ1 .Y / with �ƒ. Ǫ / ¤ 0 and mdeg.�ƒ. Ǫ // � mdeg. Ǫ / < r . Then, by
Lemma 4.5, we obtain a cycle ˛ D

Pn
kD1 ak ˝ xk in CI1.Y / ˝ Q and a number

k0 2 ¹1; : : : ; nº such that

(1) xk0 ¤ 0 and cs�.ak0/ D max ¹cs�.ak/ j xk ¤ 0º,

(2) � Œ�1;1�Y .˛/ ¤ 0,

(3) mdeg.�ƒ.z̨// �mdeg.z̨/ D cs�.ak0/ < r .

Here, (1) and (3) imply ˛ 2 CIŒ�1;r�1 .Y /˝Q, and hence (2) implies Œ� Œ�1;r�Y � ¤ 0. This
gives r � r�1.Y /, a contradiction. Hence �Y .1/ � r�1.Y /.

4.4. Consequences

Here, we prove some corollaries of Theorem 1.2.

Corollary 1.3. The inequality r�1.Y / <1 holds if and only if h.Y / < 0. In particular,
if h.Y / < 0, then rs.Y / is finite for any s 2 Œ�1; 0�.

Proof. It is shown in [6] that h.Y / < 0 if and only if ��Y .1/ <1. This fact and Theo-
rem 1.2 give the conclusion.

Recall that †.a1; : : : ; an/ denotes the Seifert homology 3-sphere corresponding to
a tuple .a1; : : : ; an/ of pairwise coprime integers and R.a1; : : : ; an/ is an odd integer
introduced by Fintushel–Stern [14].

Corollary 1.4. If R.a1; : : : ; an/ > 0, then for any s 2 Œ�1; 0�,

rs.�†.a1; : : : ; an// D
1

4a1 � � � an
; rs.†.a1; : : : ; an// D1:
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Proof. By using Lemma 3.5 and Theorem 1.2, we obtain

rs.�†.a1; : : : ; an// � r�1.�†.a1; : : : ; an//

D �†.a1;:::;an/.1/ D
1

4a1 � � � an
:

Moreover, it is shown in [15, 24] that

min .ƒ�†.a1;:::;an/ \R>0/ D
1

4a1 � � � an
:

This gives the first equality in Corollary 1.4. The second equality follows from Corol-
lary 3.11 and the fact that †.a1; : : : ; an/ bounds a negative definite 4-manifold.

Corollary 4.6. For any positive coprime integers p;q > 1 and positive integer k, we have

rs.�†.p; q; pqk � 1// D
1

4pq.pqk � 1/
; rs.†.p; q; pqk � 1// D1:

5. Applications

In this section, we prove the theorems stated in Section 1.2.

5.1. Useful lemmas

We first give several lemmas which are useful for computing r0.

Lemma 5.1. For any homology 3-spheres Y1 and Y2, if r0.�Y1/ D r0.�Y2/ D1, then

r0.Y1 # Y2/ D min ¹r0.Y1/; r0.Y2/º; r0.�Y1 # �Y2/ D1:

Proof. The equality r0.�Y1 # �Y2/ D1 and the inequality

r0.Y1 # Y2/ � min ¹r0.Y1/; r0.Y2/º

immediately follow from Theorem 3.12. To prove the opposite inequality, we first con-
sider r0.Y1 # Y2 # �Y2/. Then, by Corollary 3.8 and Theorem 3.12, we have

r0.Y1/ D r0.Y1 # Y2 # �Y2/ � min ¹r0.Y1 # Y2/; r0.�Y2/º:

Here, since r0.Y1 # Y2/ � r0.�Y2/ D1, we obtain r0.Y1/ � r0.Y1 # Y2/: Similarly, we
have r0.Y2/ � r0.Y1 # Y2/: This completes the proof.

Corollary 5.2. Suppose a homology 3-sphere Y satisfies r0.Y / <1 and r0.�Y / D1.
Then, for any n 2 Z>0, we have

r0.nŒY �/ D r0.Y / <1; r0.�nŒY �/ D1:

In particular, Y has infinite order in ‚3Z.

Proof. By induction on n, this corollary directly follows from Lemma 5.1.
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Lemma 5.3. For any homology 3-spheres Y1 and Y2, if r0.Y1/ < min ¹r0.Y2/; r0.�Y2/º,
then r0.Y1 # �Y2/ D r0.Y1/.

Proof. By applying Theorem 3.12 to Y1 # �Y2 and Y1 # �Y2 # Y2, we have

r0.Y1 # �Y2/ � min ¹r0.Y1/; r0.�Y2/º D r0.Y1/;

r0.Y1/ D r0.Y1 # �Y2 # Y2/ � min ¹r0.Y1 # �Y2/; r0.Y2/º:

Here, since r0.Y1/ < r0.Y2/, we obtain r0.Y1/ � r0.Y1 # �Y2/:

Theorem 5.4. Suppose that a linear combination
Pm
kD1 nk ŒYk � 2 ‚

3
Z satisfies

� r0.Ym/ < min1�k<m¹r0.Yk/; r0.�Yk/º,

� r0.�Ym/ D1,

� nm > 0.

Then r0.
Pm
kD1 nk ŒYk �/ D r0.Ym/ <1.

Proof. By assumption, it follows from Corollary 5.2 that r0.nmŒYm�/ D r0.Ym/. More-
over, Theorem 3.12 implies that

min
°
r0

�m�1X
kD1

.�nk/ŒYk �
�
; r0

�
�

m�1X
kD1

.�nk/ŒYk �
�±

� min
1�k<m

¹r0.Yk/; r0.�Yk/º > r0.nmŒYm�/:

Therefore, by Lemma 5.3, we have

r0

� mX
kD1

nk ŒYk �
�
D r0

�
nmŒYm� �

m�1X
kD1

.�nk/ŒYk �
�
D r0.Ym/:

For a homology 3-sphere Y , set

"1.Y / WD inf.ƒY \R>0/ and "2.Y / WD min ¹"1.Y /; "1.�Y /º:

Theorem 5.4 is regarded as a generalization of the following theorem due to Furuta.

Corollary 5.5 ([24, Theorem 6.1]). Let Y1; : : : ; Ym be homology 3-spheres with "2.Yi /
> 0 (i D 1; : : : ; m). Let Y0 D †.a1; : : : ; an/ be a Seifert homology 3-sphere such that
R.a1; : : : ; an/ > 0 and a1 � � � an > "2.Yi /�1 (i D 1; : : : ; m). Then

ZŒY0� \ .ZŒY1�C � � � C ZŒYm�/ D 0 in ‚3Z:

Proof. Note that since r0.Y / 2 ƒY \R>0 in general, we have

min ¹r0.Yi /; r0.�Yi /º � "2.Yi / >
1

a1 � � � an
D r0.�Y0/

for any i D 1; : : : ; m, where the last equality follows from Corollary 1.4. Therefore, if

n0Œ�Y0� D n1ŒY1�C n2ŒY2�C � � � C nmŒYm�
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and n0 > 0, then it follows from Theorem 5.4 that

1

a1 � � � an
D r0.�Y0/ D r0

�
n0Œ�Y0� �

mX
iD1

ni ŒYi �
�
D r0.S

3/ D1;

a contradiction.

Corollary 5.6. Let ¹Ykº1kD1 be a sequence of homology 3-spheres satisfying

1 > r0.Y1/ > r0.Y2/ > � � � and 1D r0.�Y1/ D r0.�Y2/ D � � � :

Then the Yk’s are linearly independent in ‚3Z.

Proof. Let
Pm
kD1 nk ŒYk � be a linear combination with nm ¤ 0. Without loss of generality,

we can assume nm > 0. Then
Pm
kD1 nk ŒYk � satisfies the hypothesis of Theorem 5.4, and

hence

r0

� mX
kD1

nk ŒYk �
�
D r0.Ym/ <1D r0.S

3/:

This implies that
Pm
kD1 nk ŒYk � ¤ 0:

5.2. Homology 3-spheres with no definite bounding

In this subsection, we prove Theorem 1.5.

Theorem 1.5. There exist infinitely many homology 3-spheres ¹Ykº1kD1 which cannot
bound any definite 4-manifold. Moreover, we can take such Yk so that the Yk’s are linearly
independent in ‚3Z.

For any k 2 Z>0, letKk be the knot depicted in Figure 2. Note thatKk is the 2-bridge
knot corresponding to the rational number 2

4k�1
. In particular, the first two knots K1 and

K2 are the left-handed trefoil 31 and the knot 52 in Rolfsen’s knot table [51] respectively.

Fig. 2. The knot Kk .

Lemma 5.7. For any k 2 Z>0, we have a diffeomorphism

†.2; 3; 6k � 1/ Š S3�1.Kk/:
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Fig. 3. Kirby calculus for S3
�1=k

.K1/ Š S
3
�1.Kk/.

Proof. It is well-known that†.2;3;6k � 1/Š S3
�1=k

.31/, and Figure 3 proves S3
�1=k

.31/

D S3
�1=k

.K1/ Š S
3
�1.Kk/.

While the Frøyshov invariant h is hard to compute in general, we have a nice estimate
for .�1/-surgeries on genus 1 knots.

Lemma 5.8 ([21, Lemma 9]). For any genus 1 knot K, we have

0 � h.S3�1.K// � 1:

Lemma 5.9. For any k 2 Z>0, we have h.†.2; 3; 6k � 1// D 1.

Proof. The inequality h.†.2; 3; 6k � 1// D �h.�†.2; 3; 6k � 1// > 0 follows from
Corollaries 1.3 and 4.6. The inequality h.†.2; 3; 6k � 1// � 1 follows from Lemmas 5.7
and 5.8 and the fact that Kk has genus 1 for any k 2 Z>0.

Now we prove one of the main theorems.

Proof of Theorem 1.5. We put Yk WD 2†.2; 3; 5/ # .�†.2; 3; 6k C 5// for any k 2 Z>0.
Then it follows from Corollaries 4.6 and 5.2 and Lemma 5.3 that r0.Yk/D 1

24.6kC5/
<1.

This fact and Corollary 3.11 imply that Yk cannot bound any negative definite 4-manifold.
Next, since the invariant h is a group homomorphism, Lemma 5.9 gives h.Yk/ D 1.

This fact and Corollary 1.3 imply that r�1.�Yk/ <1, and hence it follows from Corol-
lary 3.11 that Yk cannot bound any positive definite 4-manifold.

The linear independence of ¹Ykº1kD1 follows from that of ¹†.2; 3; 6k � 1/º1
kD1

.

5.3. Linear independence of 1=n-surgeries

In this subsection, we prove the theorems stated in Section 1.2.2.

Theorem 1.8. For any knot K in S3, if h.S31 .K// < 0, then ¹S3
1=n
.K/º1nD1 are linearly

independent in ‚3Z.
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Corollary 1.9. For any k 2 Z>0, the homology 3-spheres ¹S3
1=n
.Kk/º

1
nD1 are linearly

independent in ‚3Z.

Corollary 1.10. For any knot K in S3 and odd integer q � 3, the homology 3-spheres
¹S3
1=n
.K2;q/º

1
nD1 are linearly independent in ‚3Z.

Observe that Corollary 1.9 immediately follows from Theorem 1.8 and Lemmas 5.7
and 5.9. On the other hand, Corollary 1.10 follows from Theorem 1.8 and the following
two facts. Note that the intersection form of any spin 4-manifold whose boundary is a
homology 3-sphere is even, and hence it is non-diagonalizable, namely the intersection
form is not isomorphic to

L
.˙1/.

Theorem 5.10 ([21, Theorem 3]). If Y bounds a positive definite 4-manifold with non-
diagonalizable intersection form, then h.Y / < 0.

Theorem 5.11 ([53, Theorem 1.7]). For any knot K and odd q � 3, the homology 3-
sphere S31 .K2;q/ bounds a positive definite spin 4-manifold.

The proof of Theorem 1.8 is obtained by combining Corollary 5.6 with the following
theorem.

Theorem 5.12. For any knot K in S3, if h.S31 .K// < 0, then for any s, we have

1 > rs.S
3
1 .K// > rs.S

3
1=2.K// > � � � ;

1D rs.�S
3
1 .K// D rs.�S

3
1=2.K// D � � � :

Proof. For any knotK and n2Z>0, since S3
1=n
.K/ bounds a positive definite 4-manifold,

we have
1D rs.�S

3
1 .K// D rs.�S

3
1=2.K// D � � � :

Suppose that K satisfies h.S31 .K// < 0. Then Corollary 1.3 gives rs.S31 .K// <1. For
any n 2 Z>0, let Wn be the cobordism given by the relative Kirby diagram in Figure 4. It
is easy to see that @Wn D S31=.nC1/.K/q�S

3
1=n
.K/.

K

Fig. 4. The cobordism Wn.

Claim 5.13. The cobordism Wn is positive definite.
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KK

Fig. 5. The 4-manifold Xn.

Proof. Let Xn be a 4-manifold given by the Kirby diagrams in Figure 5, and X 0n a
4-dimensional submanifold ofXn obtained by attaching 2-handles along the 2-component
sublink in the left diagram of Figure 5 whose framing is .0;�n/. Then we have the diffeo-
morphismXn ŠX

0
n [S3

1=n
.K/Wn. For a 4-manifoldM , let bC2 .M/ (resp. b�2 .M/) denote

the number of positive (resp. negative) eigenvalues of the intersection form ofM . Then it
is easy to check that bC2 .Xn/D 2, b�2 .Xn/D 1 and bC2 .X

0
n/D b

�
2 .X

0
n/D 1. These imply

that b2.Wn/ D bC2 .Wn/ D 1 and b�2 .Wn/ D 0.

Claim 5.14. The cobordism Wn is simply connected.

Proof. Suppose that the number of crossings in the diagram of Figure 6 is mC 1. Then,
�1.S

3
1=n
.K// has the presentation

* xiC1 D x
"i
ki
xix
�"i
ki

.i D 1; : : : ; m � 1/;

x1; : : : ; xm; y xmy D yx1; yx1 D x1y;

� D 1; x1y
�n D 1

+
;

where

� the labels x1, xm and y are associated as shown in Figure 6,

� "i 2 ¹˙1º and ki 2 ¹1; : : : ; mº (i D 1; : : : ; m),

� � is a word corresponding to a longitude of K with framing 0.

K

Fig. 6. A surgery link for S3
1=n

.K/.
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Moreover, since the attaching sphere of the (unique) 2-handle of Wn is homotopic to y,
�1.Wn/ has the presentation* xiC1 D x

"i
ki
xix
�"i
ki

.i D 1; : : : ; m � 1/;

x1; : : : ; xm; y xmy D yx1; yx1 D x1y;

� D 1; x1y
�n D 1; y D 1

+

Š

*
x1; : : : ; xm

xiC1 D x
"i
ki
xix
�"i
ki

.i D 1; : : : ; m � 1/;

xm D x1 D 1; �jyD1 D 1

+
;

where �jyD1 is the word obtained from � by substituting 1 for y. Now, by induction, we
see that the relations x1 D � � � D xm D 1 hold, and hence �1.Wn/ D 1.

By Claims 5.13 and 5.14, we can apply Corollary 3.9 to all �Wn (n D 1; 2; : : :), and
obtain

1 > rs.S
3
1 .K// > rs.S

3
1=2.K// > � � � :

5.4. Linear independence of Whitehead doubles

In this subsection, we prove Theorem 1.12.

Theorem 1.12. For any coprime p; q > 1, the Whitehead doubles ¹D.Tp;npCq/º1nD0 are
linearly independent in C .

Let ‚3Q denote the rational homology cobordism group of rational homology 3-
spheres. Then we have a natural group homomorphism

‚3Z ! ‚3Q; ŒY � 7! ŒY �Q;

where ŒY �Q is the rational homology cobordism class of Y . We say that the rational
homology 3-spheres ¹Ykº1kD1 are linearly independent in ‚3Q if ¹ŒYk �Qº1kD1 are linearly
independent in ‚3Q. Then the invariance of rs and Corollary 5.6 are naturally generalized
in the following sense.

Theorem 5.15. For any homology 3-sphere Y and s 2 Œ�1; 0�, the value rs.Y / is invari-
ant under rational homology cobordism. Moreover, if a sequence ¹Ykº1kD1 of homology
3-spheres satisfies the assumption of Corollary 5.6, then the Yk’s are linearly independent
in ‚3Q.

Next, let K be an oriented knot and †.K/ the double branched cover of S3 over K.
Then it is known that the map

C ! ‚3Q; ŒK� 7! Œ†.K/�Q;

is well-defined and a group homomorphism. Moreover, for Whitehead doubles, it is also
known that †.D.K// Š S3

1=2
.K # �K/, where �K is orientation-reversed K. In partic-

ular, †.D.K// is a homology 3-sphere and bounds a positive definite 4-manifold. Hence
r0.�†.D.K/// D1 for any K. These arguments imply the following.
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Lemma 5.16. For a sequence ¹Knº1nD1 of oriented knots, if the homology 3-spheres
¹†.D.Kn//º

1
nD1 satisfy

1 > r0.†.D.K1/// > r0.†.D.K2/// > � � � ;

then the Whitehead doubles ¹D.Kn/º1nD1 are linearly independent in C .

For any coprime integers p; q > 1, we abbreviate D.Tp;q/ to Dp;q . The proof of
Theorem 1.12 is obtained by combining Lemma 5.16 with the following theorem.

Theorem 5.17. For any coprime integers p; q > 1, we have

1

4pq.2pq � 1/
� rs.†.Dp;q// > rs.†.Dp;pCq// > rs.†.Dp;2pCq// > � � � :

As another corollary of Theorem 5.17, we also have the following family of linearly
independent elements.

Corollary 5.18. Let a and b be coprime integers with 1 < a < b and

b D q0aC r0; a D q1r0 C r1; : : : ; rN�1 D qNC1rN C 1

the sequence derived from the Euclidean algorithm. Then

1 > rs.†.DrN ;rNC1// > rs.†.DrN ;2rNC1// > � � � > rs.†.DrN ;rN�1//

> rs.†.DrN�1;rN�1CrN // > � � � > rs.†.DrN�1;rN�2//

> � � � > rs.†.Da;aCr0// > � � � > rs.†.Da;b//:

In particular, all of these Whitehead doubles are linearly independent in C .

Now we start to prove Theorem 5.17. Let K be an oriented knot, D a diagram of K
and x1; : : : ; xm the arcs of D . Fix a base point in S3 nK, and associate a loop in S3 nK
to each xi in the usual way. (For instance, see [51, Section 3.D].) Then, for any n 2 Z, we
have a presentation of �1.S31=n.K// in the form

hx1; : : : ; xm j R [ ¹�
nx1 D 1ºi;

where R is the set of relations induced from the crossings of D (in the same way as the
Wirtinger presentation), and � is a word corresponding to a longitude ofK with framing 0.
(In particular, � is in the commutator subgroup of �1.S31=n.K//.)

Next, we consider the positive crossing change at a positive crossing c, which is a
deformation of D shown in Figure 7. Then we denote the labels of the arcs around c by
xic , xjc and xj 0c as shown in Figure 7.

Lemma 5.19. Suppose that D is deformed into a diagram D 0 of a knotK 0 by performing
positive crossing changes at crossings c1; : : : ; cl respectively. Then there exists a negative
definite cobordism W such that @W D �S3

1=n
.K/q S3

1=n
.K 0/ and

�1.W / Š hx1; : : : ; xm j R [ ¹�
nx1 D 1º [ ¹xick D xjck º

l
kD1i:
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Fig. 7. A positive crossing change.

Proof. We make a relative Kirby diagram hDi from D in the following way:

� Replace a neighborhood of each crossing ck with the picture shown in Figure 8. (Then
each component except for the original one has a framing.)

� Associate the framing h1=ni to the original component.

Then hDi is a diagram for a cobordism W obtained by attaching l copies of 2-handles to
S3
1=n
.K/ � Œ0; 1�. Moreover, we can verify that

� @W D �S3
1=n
.K/q S3

1=n
.K 0/,

� the intersection form of W is isomorphic to
Ll
kD1.�1/,

� as a loop, the attaching sphere of the 2-handle near ck is written as x�1jck
xick .

This completes the proof.

Fig. 8. The 2-handle attached to S3
1=n

.K/ � Œ0; 1� near ck .

Next, for any coprime p; q > 1, we consider the homology 3-sphere †.Dp;q/.

Lemma 5.20. rs.†.Dp;q// � 1
4pq.2pq�1/

.

Proof. Note that Tp;q has a diagram�
q
p with only positive crossings. (Indeed, the closure

of the braid �qp D .�1 � � � �p�1/
q with p strands is such a diagram for Tp;q .) For any

knot diagram, there exist finitely many crossings such that after crossing changes at the
crossings, the resulting diagram describes the unknot. As a consequence, we have finitely
many positive crossings of �qp such that after positive crossing changes at the crossings,
the resulting diagram .�

q
p/
U is as for the unknot. Now, considering the connected sum

of two �qp’s, we have finitely many positive crossings of �qp #�qp such that after positive
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crossing changes at the crossings, we have the diagram �
q
p # .�qp/U . Hence, by applying

Lemma 5.19, we have a negative definite cobordism with boundary �S3
1=2
.Tp;q # Tp;q/q

S3
1=2
.Tp;q/. Therefore, it follows from Theorem 3.10 and Corollary 4.6 that

rs.†.Dp;q// D rs.S
3
1=2.Tp;q # Tp;q//

� rs.S
3
1=2.Tp;q//

D rs.†.p; q; 2pq � 1// D
1

4pq.2pq � 1/
:

Now, let us consider a concrete diagram of Tp;pCq # Tp;pCq , which is depicted in
Figure 9 and denoted by D . Here �H is the braid

.�1 � � � �p�1/.�1 � � � �p�2/ � � � .�1�2/�1;

which is often called the half-twist. In addition, we associate the labels ¹xkº
2p

kD1
to arcs in

D as shown in Figure 9.

Fig. 9. The diagram D .

Lemma 5.21. As elements of �1.S3 n Tp;pCq # Tp;pCq/, all arcs belonging to the left
.resp. right/ side of the dashed line l in the diagram D are written as a conjugate of xk
by a wordw consisting of x1; : : : ; xp .resp. xpC1; : : : ; x2p/ for some k 2 ¹1; : : : ; pº .resp.
k 2 ¹p C 1; : : : ; 2pº/.

Proof. We prove the lemma by induction on the place of arcs. Here we first consider the
left side of l . Let us start from the bottom of the box�2H�

q
p . Then, for any k 2 ¹1; : : : ;pº,

the k-th arc from the left is just xk , and hence these p arcs satisfy the assertion of this
lemma.

Next, fix a crossing �k in �2H�
q
p and assume that all arcs below this �k satisfy the

assertion of the lemma. Then, since the upper right arc of the �k is the same as the bottom
left arc (denoted xi�k ), it also satisfies the assertion. Moreover, the upper left arc is equal
to x�1i�k

xj�k xi�k , where xj�k denotes the bottom right arc. Here, by assumption, there exist

some k0 2 ¹1; : : : ; pº and a word w consisting of x1; : : : ; xp such that xj�k D w
�1xk0w.
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Therefore, we have x�1i�k
xj�k xi�k D .wxi�k /

�1xk0.wxi�k /. Since xi�k also consists of
x1; : : : ; xp , this completes the proof for the left side of the dashed line l .

Similarly, we can prove the lemma for the right side of l .

Proof of Theorem 5.17. It is easy to check that

�H D �1.�2�1/ � � � .�p�1 � � � �2�1/:

In particular,

.��11 ��12 � � � �
�1
p�1/.�

�1
1 ��12 � � � �

�1
p�2/ � � � .�

�1
1 ��12 /��11 D �

�1
H ;

and hence the positive crossing changes at all crossings in �H give ��1H . Now we per-
form the positive crossing changes at all crossings in the first �H of both �2H�

q
p’s in

Figure 9. Then, by Lemma 5.19, we obtain a negative definite cobordism W with bound-
ary �S3

1=2
.Tp;pCq # Tp;pCq/ # S3

1=2
.Tp;q # Tp;q/ such that �1.W / has a presentation of

the form shown in Lemma 5.19. Here, we note that the crossing changes at the first p
crossings in �2H�

q
p on the left gives the relations

x1 D � � � D xp:

Similarly, we have xpC1 D � � � D x2p . Therefore, by Lemma 5.21, all arcs in the left (resp.
right) side of the dashed line l in D are equal to x1 (resp. xpC1) as elements of �1.W /.
Moreover, xpC1 belongs not only to the right side of l but also to the left side, and hence
xpC1 D x1.

Now, any two generators in our presentation of �1.W / are equal. Moreover, since � is
in the commutator subgroup, we have � D 1, and hence x1 D 1. This gives �1.W / D 1.
Therefore, by applying Corollary 3.9 to W , we have

rs.†.Dp;pCq// D rs.S
3
1=2.Tp;pCq # Tp;pCq// < rs.S31=2.Tp;q # Tp;q// D rs.†.Dp;q//:

Since q is an arbitrary integer with q > 1 and gcd.p; q/ D 1, this inequality holds even if
we replace q with kp C q for any k 2 Z>0. Consequently,

rs.†.Dp;q// > rs.†.Dp;pCq// > rs.†.Dp;2pCq// > � � � :

Combining this with Lemma 5.20 completes the proof.

6. Additional structures on ‚3
Z

and Ker h

In this section, we prove Theorems 1.14 and 6.1. Recall that for any r 2 Œ0;1�, the
subgroup ‚3Z;r � ‚

3
Z is defined by

‚3Z;r WD
®
ŒY � 2 ‚3Z

ˇ̌
min ¹r0.Y /; r0.�Y /º � r

¯
:

Theorem 1.14. For any r 2 .0;1�, the quotient group ‚3Z=‚
3
Z;r contains Z1 as a sub-

group.
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Proof. To prove the theorem, we use the sequence ¹†.2; 3; 6k � 1/º1
kD1

. (In fact, we can
replace it with any sequence ¹Ykº1kD1 such that ¹r0.Yk/º1kD1 is a decreasing sequence and
converges to zero.) Fix r 2 .0;1�. Then, since r0.�†.2; 3; 6k � 1// D 1=24.6k � 1/

converges to zero, there exists an integer N such that 1=24.6N � 1/ < r . Let ŒY �r denote
the equivalence class of ŒY � in ‚3Z=‚

3
Z;r . We prove that ¹Œ†.2; 3; 6k � 1/�rº1kDN are

linearly independent in ‚3Z=‚
3
Z;r .

Assume that
PM
kDN nk Œ†.2;3; 6k � 1/�r D 0 and nM ¤ 0. Without loss of generality,

we may assume that nM > 0. Then, by the definition of ‚3Z;r , we have

min
°
r0

� MX
kDN

nk Œ†.2; 3; 6k � 1/�
�
; r0

�
�

MX
kDN

nk Œ†.2; 3; 6k � 1/�
�±
� r:

However, Theorem 5.4 implies

r0

�
�

MX
kDN

nk Œ†.2; 3; 6k � 1/�
�
D r0.�†.2; 3; 6M � 1//

D
1

24.6M � 1/
�

1

24.6N � 1/
< r;

a contradiction.

6.1. A pseudometric on Ker h

We next consider a pseudometric on Kerh, where h W ‚3Z ! Z is the Frøyshov invariant.
To define it, set

s1.Y / WD sup ¹s 2 Œ�1; 0� j rs.Y / D1º:

As a corollary of the connected sum formula for ¹rsº, we have the following theorem.

Theorem 6.1. s1.Y1 # Y2/ � s1.Y1/C s1.Y2/.

Moreover, Corollary 1.3 implies that if h.Y / D 0, then max ¹�s1.Y /;�s1.�Y /º
<1. Now we can define a pseudometric on Ker h as

d1.ŒY1�; ŒY2�/ WD �s1.Y1 # .�Y2// � s1..�Y1/ # Y2/:

Moreover, the set of elements with d1.ŒS3�; ŒY �/ D 0 coincides with ‚3Z;1.

Theorem 6.2. The map d1 gives a metric on Kerh=‚3Z;1, and the action of Kerh=‚3Z;1
on .Ker h=‚3Z;1; d1/ is an isometry. In particular, Ker h=‚3Z;1 is a topological group
with respect to the metric topology induced by d1.

Note that ¹†.2; 3; 5/ # .�†.2; 3; 6k � 1//ºk2Z>1 are linearly independent in
Ker h=‚3Z;1, and hence Ker h=‚3Z;1 contains Z1 as a subgroup. Here, we ask the fol-
lowing question.
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Question 6.3. What is the isomorphism type of .Ker h=‚3Z;1; d1/ as a topological
group? In particular, is it a discrete group?

Lemma 6.4. If s1.Y / D 0, then r0.Y / D1.

Proof. Since s1.Y / D 0, for any s < 0 we have rs.Y / D 1, and hence Œ� Œs;1�Y � D 0.
Suppose that 0 2 R n ƒ�Y . Then we can take s < 0 such that Œs; 0� � R n ƒ�Y . Hence,
Lemmas 2.9 and 2.15 give an isomorphism from I 1

Œ0;1�
.Y / to I 1

Œs;1�
.Y / which maps

Œ�
Œ0;1�
Y � to Œ� Œs;1�Y �. This implies Œ� Œ0;1�Y � D 0, and hence r0.Y / D1.

Next, suppose that 0 2 ƒ�Y . Then, by the definition of CI�Œ0;1�.Y /, the cohomology

group I 1
Œ0;1�

.Y / and Œ� Œ0;1�Y � coincide with I 1
Œ� 12�Y ;1�

.Y / and Œ�
Œ� 12�Y ;1�

Y � respectively,

where �Y WD min ¹ja � bj j a; b 2 ƒY with a ¤ bº > 0. This implies Œ� Œ0;1�Y � D 0, and
hence r0.Y / D1.

Next, we prove Theorem 6.1.

Proof of Theorem 6.1. We may assume s1.Y1/ C s1.Y2/ ¤ �1. For any s 2

.�1; s1.Y1/C s1.Y2//, there exist s1 2 .�1; s1.Y1// and s2 2 .�1; s1.Y2// such
that s D s1 C s2. For such s1 and s2, we have the connected sum formula

rs.Y1 # Y2/ � min ¹rs1.Y1/C s2; rs2.Y2/C s1º:

Since s1 and s2 are in .�1; s1.Y1// and .�1; s1.Y2// respectively, it follows that
rs.Y1 # Y2/ D1. This completes the proof.

Now we prove Theorem 6.2. Recall that d1 is a function on Kerh �Kerh defined by

d1.ŒY1�; ŒY2�/ WD �s1.Y1 # �Y2/ � s1.�Y1 # Y2/:

By Corollary 1.3, the equalities r�1.Y / D r�1.�Y / D 0 hold if and only if h.Y / D 0.
Moreover, we have r�1.˙Y /D rs.˙Y / for sufficiently small s 2 .�1; 0�. These imply
that d1.ŒY1�; ŒY2�/ is finite for any pair .ŒY1�; ŒY2�/ 2 Ker h � Ker h.

Proof of Theorem 6.2. For any ŒY1�; ŒY2� 2 Ker h, the equalities d1.ŒY1�; ŒY1�/ D 0 and
d1.ŒY1�; ŒY2�/D d1.ŒY2�; ŒY1�/ obviously hold. Suppose that ŒY1�, ŒY2� and ŒY3� are three
elements of Ker h. Then, by Theorem 6.1, we have

d1.ŒY1�; ŒY3�/ D �s1.Y1 # �Y3/ � s1.�Y1 # Y3/

D �s1.Y1 # �Y3 # Y2 # �Y2/ � s1.�Y1 # Y3 # Y2 # �Y2/

� �s1.Y1 # �Y2/ � s1.Y2 # �Y3/ � s1.�Y1 # Y2/ � s1.�Y2 # Y3/

D d1.ŒY1�; ŒY2�/C d1.ŒY2�; ŒY3�/:

Therefore d1 gives a pseudometric on Ker h.
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We next prove that d1 is well-defined on Ker h=‚3Z;1. Let ŒY1�; ŒY2� 2 Ker h and
ŒM1�; ŒM2� 2 ‚

3
Z;1. Then s1.Mi / D s1.�Mi / D 0 (i D 1; 2), and hence Theorem 6.1

implies that

d1.ŒY1�C ŒM1�; ŒY2�C ŒM2�/

D �s1.Y1 #M1 # �Y2 # �M2/ � s1.�Y1 # �M1 # Y2 #M2/

� �s1.Y1 # �Y2/ � s1.�Y1 # Y2/ D d1.ŒY1�; ŒY2�/

and

d1.ŒY1�; ŒY2�/ D �s1.Y1 # �Y2/ � s1.�Y1 # Y2/

D �s1.Y1 #�Y2 #M1 #�M1 #M2 #�M2/� s1.�Y1 # Y2 #M1 #�M1 #M2 #�M2/

� �s1.Y1 #M1 #�Y2 #�M2/� s1.�Y1 #�M1 # Y2 #M2/

D d1.ŒY1�C ŒM1�; ŒY2�C ŒM2�/:

Therefore, d1 is well-defined on Ker h=‚3Z;1.
Next, we prove that d1 is a metric on Ker h=‚3Z;1. It is easy to check that it is a

pseudometric. Suppose that ŒY1�; ŒY2� 2 Ker h=‚3Z;1 satisfy d1.ŒY1�; ŒY2�/ D 0. Then
s1.Y1 # �Y2/ D s1.�Y1 # Y2/ D 0, and these equalities and Lemma 6.4 imply that
r0.Y1 # �Y2/ D r0.�Y1 # Y2/ D 1. Therefore, by the definition of ‚3Z;1 we see that
ŒY1�D ŒY2� as elements of Kerh=‚3Z;1. This proves that d1 is a metric on Kerh=‚3Z;1.

Finally, we prove that the group operation of Kerh=‚3Z;1 is an isometry with respect
to d1. Indeed,

d1.ŒY1�C ŒM �; ŒY2�C ŒM �/ D �s1.Y1 #M #�Y2 #�M/� s1.�Y1 #�M # Y2 #M/

D d1.ŒY1�; ŒY2�/

for any elements ŒY1�, ŒY2� and ŒM � of Ker h=‚3Z;1. This completes the proof.

As a concrete example, we give partial estimates of d1 for connected sums of some
Seifert homology 3-spheres.

Proposition 6.5. For any n 2 Z>0, we have

d1.ŒS
3�; Œ†.2; 3; 6n � 1/ # �†.2; 3; 6nC 5/�/ �

1

4.6n � 1/.6nC 5/
:

Proof. The connected sum formula for rs gives

rs.�†.2; 3; 6nC 5//

� min ¹rs1.†.2; 3; 6n � 1/ # �†.2; 3; 6nC 5//C s2; rs2.�†.2; 3; 6n � 1//C s1º

for any s, s1; s2 2 .�1; 0� with s D s1 C s2. In particular, if s2 D 0, then

1

24.6nC 5/
� min

²
rs1.†.2; 3; 6n � 1/ # �†.2; 3; 6nC 5//;

1

24.6n � 1/
C s1

³
:
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Hence if 1
24.6nC5/

< 1
24.6n�1/

C s1, then

rs1.†.2; 3; 6n � 1/ # �†.2; 3; 6nC 5// <1:

Consequently,

�s1.†.2; 3; 6n � 1/ # �†.2; 3; 6nC 5// �
1

24.6n � 1/
�

1

24.6nC 5/

D
1

4.6n � 1/.6nC 5/
:

Moreover, since �†.2; 3; 6n � 1/ D S3
1=n
.3�1/, we obtain a negative definite 4-manifold

with boundary �†.2; 3; 6n� 1/ #†.2; 3; 6nC 5/ from the cobordismWn in Section 5.3
with reversed orientation. Therefore, r0.�†.2; 3; 6n � 1/ # †.2; 3; 6nC 5// D 1 and
s1.�†.2; 3; 6n � 1/ #†.2; 3; 6nC 5// D 0. This completes the proof.

Here we pose the following question:

Question 6.6. Does the equality

d1.ŒS
3�; Œ†.2; 3; 6n � 1/ # �†.2; 3; 6nC 5/�/ D

1

4.6n � 1/.6nC 5/

hold?

If the equality holds, then the sequence

¹anº
1
nD1 WD ¹Œ†.2; 3; 6n � 1/ # �†.2; 3; 6nC 5/�º1nD1

converges to ŒS3� in Ker h=‚Z;1. In particular, we would conclude that the topology on
Ker h=‚Z;1 induced by d1 is different from the discrete topology.

7. Computation for a hyperbolic 3-manifold

In this section, we give approximations of the critical values of the Chern–Simons func-
tional on a certain hyperbolic 3-manifold. Moreover, using the computer, we obtain an
approximate value of rs.Y / for this hyperbolic 3-manifold.

7.1. 1=n-surgery along a knot K

We here review a formula for cs due to Kirk and Klassen [36], and explain our method of
computing an approximate value of cs. For a compact manifold M , we define R.M/ D

Hom.�1.M/;SL.2;C// and call it the SL.2;C/-representation space ofM . In this paper,
we equip R.M/ with the compact-open topology.

For a knot K in S3, let E.K/ denote the exterior of an open tubular neighborhood
of K, and let �, � 2 �1.T 2/ be a meridian and a (preferred) longitude respectively.
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Theorem 7.1 ([36, Theorem 4.2]). Let �0, �1 be SU.2/-representations of �1.S31=n.K//
and  W Œs0; s1�! ¹� 2 R.E.K// j �j�1.T 2/ is completely reducibleº a piecewise smooth
path with .si / D �i in R.E.K//. Then

cs.�1/ � cs.�0/ � 2
Z s1

s0

ˇ.s/˛0.s/ ds C n.ˇ.s1/
2
� ˇ.s0/

2/ mod Z; (21)

where ˛; ˇW Œs0; s1�! C are piecewise smooth functions such that the matrices .s/.�/,
.s/.�/ are simultaneously diagonalized as�

e2�i˛.s/ 0

0 e�2�i˛.s/

�
;

�
e2�iˇ.s/ 0

0 e�2�iˇ.s/

�
;

respectively.

Remark 7.2. Kirk and Klassen prowed Theorem 7.1 for a family of SU.2/-connections.
As written in [36, p. 354], the formula can be extended to the case of SL.2;C/. We need
to define the smoothness of a path

 W Œs0; s1�! ¹� 2 R.E.K// j �j�1.T 2/ is completely reducibleº

since Stokes’ theorem is used in the proof of Theorem 7.1. If we fix a generating sys-
tem of �1.E.K//, the space R.E.K// can be embedded into SL.2;C/N , where N is
the number of generators. If the composite of  W Œs0; s1�! R.E.K// and R.E.K//!

SL.2;C/N is piecewise smooth, we call  a piecewise smooth path. For such a path 
on Œs0; s1� D

S
j Ij , a piecewise smooth family of SL.2;C/-connections As on E.K/ is

defined by considering the inverse map of the holonomy correspondence. Then we have a
smooth connection on E.K/ � Ij for each j , and one can check formula (21).

It is difficult to find a suitable path and compute the above integral in general. For a
2-bridge knot K, the subspace Rirr.E.K// of the irreducible representations is explicitly
described by the Riley polynomial as follows. We first recall that �1.E.K// admits a
presentation of the form hx; y j wx D ywi, where w is a certain word in x and y (see
[36, p. 358]). For t 2 C n ¹0º, u 2 C and " 2 ¹˙1º, let �t;u;" denote the representation of
the free group hx; y j �i of rank 2 given by

�t;u;".x/ D "

�p
t 1=

p
t

0 1=
p
t

�
; �t;u;".y/ D "

� p
t 0

�
p
t u 1=

p
t

�
;

where
p
rei� D

p
r ei�=2 for r � 0 and�� < � � � . Here, the Riley polynomial ofK (for

the above presentation) is defined by �.t; u/ D w11 C .1 � t /w12 2 ZŒt˙1=2; u�, where
wij is the .i; j /-entry of �t;u;".w/. Then �t;u;" gives a representation of �1.E.K// if and
only if �.t; u/ D 0. Moreover, any irreducible representation of �1.E.K// is conjugate
to �t;u;" for some t , u and ".

Here, �t;u;" is conjugate to an SU.2/-representation if and only if jt j D 1, t ¤ 1 and u2
.t C t�1 � 2; 0/. Note that an SU.2/-representation �t;u;" is SU.2/-conjugate to �t�1;u;".
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Let us find a path from �t0;u0;"0 to �t1;u1;"1 in

¹� 2 Rirr.E.K// j �j�1.T 2/ is completely reducibleº:

First note that one need not care about "i since the right-hand side of (21) is independent
of the choice of "i . Consider the d -fold branched cover

pr1W ¹.t; u/ 2 .C n ¹0; 1º/ �C j �.t; u/ D 0º ! C n ¹0; 1º;

where d D degu �. In order to find a path, we first take a path  from t0 to t1 and its lift Q
satisfying pr2 ı Q.sj / D uj . Since the lift starting from .t0; u0/ might end at .t1; u01/ with
u01 ¤ u1, one should choose a path  carefully. We now have ˛.s/ D 1

4�i
log .s/ with

an analytic continuation along  .
Once the function u.s/ satisfying Q.s/ D ..s/; u.s// is given explicitly, one gets

ˇ.s/ D
1

2�i
log .P�1�.s/;u.s/;".�/P /11;

where P D P.s/ is a matrix satisfying .P�1�.s/;u.s/;".�/P /11 D e2�i˛.s/. We finally
integrate ˇ.s/˛0.s/ on Œs0; s1�.

In fact, one can express u.s/ explicitly by solving �.t; u/D 0 when degu � � 4. Here,
we should be careful to connect the solutions. For instance, let �.t; u/D t � u2. Then we
have u0.t/ D

p
t , u1.t/ D �

p
t . In order to find a path from .i; e�i=4/ to .�i; e3�i=4/,

we define  W Œ1=2; 3=2�! C by .s/ D es�i . The lift of  is obtained by combining u0
and u1:

Q.s/ D

´
..s/; u0..s/// if 1=2 � s � 1,

..s/; u1..s/// if 1 < s � 3=2.

Remark 7.3. It is difficult to solve �.t; u/ D 0 and �t;u;".��n/ D I2 simultaneously.
We actually use the A-polynomial AK.L;M/ 2 ZŒL;M� ofK. Indeed, first solve the one
variable equation AK.L;L�n/D 0, and then t DM 2 DL�2n. We next solve �.L�2n; u/
D 0 with respect to u.

7.2. 1=2-surgery along the knot 5�2

We actually consider the manifold S3
�1=2

.52/ D �S
3
1=2
.5�2/ and multiply the result of

computation of cs.�/ by �1. Recall that csY .�/ D �cs�Y .�/.
We first fix the presentation of the group �1.E.52// as hx; y j Œy; x�1�2x D

yŒy; x�1�2i, where a meridian and a longitude are expressed as x and Œx; y�1�2Œy; x�1�2,
respectively. Then the Riley polynomial and A-polynomial of 52 are given by

�.t; u/ D �.t�2 C t2/uC .t�1 C t /.2C 3uC 2u2/ � .3C 6uC 3u2 C u3/;

A52.L;M/ D �L3 �M 14
C L2.1 � 2M 2

� 2M 4
CM 8

�M 10/

C LM 4.�1CM 2
� 2M 6

� 2M 8
CM 10/:
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{1, 1}

{2, -1}

{3, 1}

{4, -1}

{5, 1}

{6, 1}

{7, -1}

{8, -1}

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-4

-3

-2

-1

0

θ

u

Fig. 10. The eight non-trivial representations of �1.S3�1=2.52// in the quotient space obtained from

the non-abelian representations of �1.E.52// by identifying �t;u;" and �t;u;�", where t D ei� . The
second entry of a label indicates ".

Here, one sees that there are eight conjugacy classes of non-trivial SU.2/-represen-
tations of �1.S3�1=2.52// as drawn in Figure 10. Strictly speaking, these are candidates
to being representations, coming from a numerical computation. Assume that some of
them do not give representations. Then there exists a non-trivial representation � close to
one of the candidates such that H 1.S3

�1=2
.52/I su.2/Adı�/ ¤ 0 since the Casson invari-

ant of S3
�1=2

.52/ is equal to �4 and j�4j � 2 D 8. Here, since � is non-abelian, we have
rankR @1 D 3 in the chain complex

C�.E.52/I su.2/Adı�/ D

8̂̂<̂
:̂

R3 if � D 0; 2,

R6 if � D 1,

0 otherwise;

obtained from the above presentation of �1.E.52//. It follows from the Mayer–Vietoris
exact sequence and Poincaré–Lefschetz duality that rankR @2 � 1. On the other hand, we
can see by computer that this inequality does not hold for the eight candidates. Therefore,
they correspond to true representations.

The following computation is based on Mathematica. Since degu � D 3, one gets the
explicit solutions u1.t/; u2.t/; u3.t/ of �.t; u/ D 0. We take eight paths as illustrated in
Figure 11 and apply Theorem 7.1 to these paths. Note that some paths start from a root of
the Alexander polynomial �52.t/ of 52, and for these paths we use [20, Lemma 5.3] to
compute integrals. The result of the computation is listed in Table 2.

Recall that rs.S31 .5
�
2//D 1=4 � 2 � 3 � 11� 0:00379. Since 0.00176489 is the only value

less than 0.00379 among the eight values, we conclude that rs.S31=2.5
�
2// � 0:00176489.
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{1, {3}}

{2, {2}}{3, {3}}

{4, {1}}
{5, {2}}

{6, {3}}
{7, {1}}

{8, {3}}

{4, {1, 3}}

{5, {1, 2}}

{6, {2, 3}}

{7, {2, 3}}

{8, {1, 3}}

{1, {2}}

{2, {3}}

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Fig. 11. The blue (resp. green, orange) dots correspond to representations of �1.S3�1=2.52// (resp.
the roots of �52.t/, some branched points). Here the label ¹i; ¹j ºº (resp. ¹i; ¹j1; j2ºº) at t 2 C
means �.t; uj .t// D 0 (resp. �.t; ujk .t// D 0 for k D 1; 2).

t u " �cs

�1 0:716932C 0:697143i �0:0755806 1 0:00176489

�2 0:309017C 0:951057i �1:00000 �1 0:166667

�3 �0:339570C 0:940581i �2:41421 1 0:604167

�4 �0:778407C 0:627759i �1:69110 �1 0:388460

�5 �0:809017C 0:587785i �1:00000 1 0:166667

�6 �0:905371C 0:424621i �2:16991 1 0:865934

�7 �0:912712C 0:408603i �3:62043 �1 0:321158

�8 �0:988857C 0:148870i �2:41421 �1 0:604167

Tab. 2. The values of�cs for the representations of �1.S3�1=2.52//. Note that 0:16666 : : : 67� 1=6
and 0:60416 : : : 67 � 29=48, where both decimals have 46 digits of 6’s in the omitted part.

Moreover, we improve the precision, and get

rs.S
3
1=2.5

�
2// � 0:0017648904 7864885113 0739625897 0947779330 4925308209

for all s 2 Œ�1; 0�.
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Appendix A. Hendricks, Hom, Stoffregen, and Zemke’s example

In [28], the authors intensively studied the homology 3-sphere obtained from S3 by Dehn
surgery along the framed knot at the top left in Figure 12. This appendix is devoted to
showing that their homology 3-sphere is a graph manifold.

Fig. 12. A diffeomorphism between S31 .2T
�
6;7 # T6;13 # T �2;3I2;5/ and a graph manifold.

The first diffeomorphism in Figure 12 follows from standard Kirby calculus. In order
to prove the second diffeomorphism, we consider three 3-manifolds obtained by Dehn
surgery along T �6;7, T6;13, and the mirror of the .2; 5/-cable of T2;3, respectively. Here we
put framed knots in these 3-manifolds as drawn in thick lines in Figures 13 and 14. Then,
regarding Figures 13 and 14 as diffeomorphisms of the exteriors of the framed knots,
respectively, one obtains the 3-manifold in Figure 12.

Fig. 13. Diffeomorphisms between 3-manifolds with framed knots. Note that the thick components
are not used for surgery.

In Figure 13, the diffeomorphisms between 3-manifolds with framed knots are shown
by Kirby calculus including a Rolfsen twist (or the slam-dunk).

In Figure 14, the first diffeomorphism follows from the definition of the .2; 5/-cable
of T2;3. The fourth diffeomorphism is obtained by sliding the 0-framed unknot at the
bottom to the one at the top. The rest of the diffeomorphisms are shown by standard
Kirby calculus.
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Fig. 14. Diffeomorphisms of 3-manifolds with framed knots.
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